WorldWideScience

Sample records for integrated insulation joint

  1. Development of integrated insulation joint for cooling pipe in tokamak reactor

    International Nuclear Information System (INIS)

    Nishio, Satoshi; Abe, Tetsuya; Kawamura, Masashi; Yamazaki, Seiichiro.

    1994-08-01

    In a tokamak fusion reactor, an electrically insulated part is needed for an in-vessel piping system in order to break an electric circuit loop. When a closed loop is formed in the piping system, large induced electromagnetic forces during a plasma disruption (rapid plasma current quench) could give damages on the piping system. Ceramic brazing joint is a conventional method for the electric circuit break, but an application to the fusion reactor is not feasible due to its brittleness. Here, a stainless steel/ceramics/stainless steel functionally gradient material (FGM) has been proposed and developed as an integrated insulation joint of the piping system. Both sides of the joint can be welded to the main pipes, and expected to be reliable even in the fusion reactor environment. When the FGM joint is manufactured by way of a sintering process, a residual thermal stress is the key issue. Through detailed computations of the residual thermal stress and several trial productions, tubular elements of FGM joints have been successfully manufactured. (author)

  2. Integrated Multilayer Insulation

    Science.gov (United States)

    Dye, Scott

    2009-01-01

    Integrated multilayer insulation (IMLI) is being developed as an improved alternative to conventional multilayer insulation (MLI), which is more than 50 years old. A typical conventional MLI blanket comprises between 10 and 120 metallized polymer films separated by polyester nets. MLI is the best thermal- insulation material for use in a vacuum, and is the insulation material of choice for spacecraft and cryogenic systems. However, conventional MLI has several disadvantages: It is difficult or impossible to maintain the desired value of gap distance between the film layers (and consequently, it is difficult or impossible to ensure consistent performance), and fabrication and installation are labor-intensive and difficult. The development of IMLI is intended to overcome these disadvantages to some extent and to offer some additional advantages over conventional MLI. The main difference between IMLI and conventional MLI lies in the method of maintaining the gaps between the film layers. In IMLI, the film layers are separated by what its developers call a micro-molded discrete matrix, which can be loosely characterized as consisting of arrays of highly engineered, small, lightweight, polymer (typically, thermoplastic) frames attached to, and placed between, the film layers. The term "micro-molded" refers to both the smallness of the frames and the fact that they are fabricated in a process that forms precise small features, described below, that are essential to attainment of the desired properties. The term "discrete" refers to the nature of the matrix as consisting of separate frames, in contradistinction to a unitary frame spanning entire volume of an insulation blanket.

  3. Electrically and Thermally Insulated Joint for Liquid Nitrogen Transfer

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Jensen, Kim Høj; Holbøll, Joachim T.

    1999-01-01

    A prototype of a superconducting cable is currently under construction. The cable conductor is cooled by liquid nitrogen in order to obtain superconductivity. The peripheral cooling circuit is kept at ground potential. This requires a joint which insulates both electrically and thermally...

  4. Joint efforts to harmonize sound insulation descriptors and classification schemes in Europe (COST TU0901)

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2010-01-01

    Sound insulation descriptors, regulatory requirements and classification schemes in Europe represent a high degree of diversity. One implication is very little exchange of experience of housing design and construction details for different levels of sound insulation; another is trade barriers...... for building systems and products. Unfortunately, there is evidence for a development in the "wrong" direction. For example, sound classification schemes for dwellings exist in nine countries. There is no sign on increasing harmonization, rather the contrary, as more countries are preparing proposals with new......, new housing must meet the needs of the people and offer comfort. Also for existing housing, sound insulation aspects should be taken into account, when renovating housing; otherwise the renovation is not “sustainable”. A joint European Action, COST TU0901 "Integrating and Harmonizing Sound Insulation...

  5. Insulation system in an integrated motor compressor

    Energy Technology Data Exchange (ETDEWEB)

    Sihvo, V.

    2010-07-01

    A high-speed and high-voltage solid-rotor induction machine provides beneficial features for natural gas compressor technology. The mechanical robustness of the machine enables its use in an integrated motor-compressor. The technology uses a centrifugal compressor, which is mounted on the same shaft with the high-speed electrical machine driving it. No gearbox is needed as the speed is determined by the frequency converter. The cooling is provided by the process gas, which flows through the motor and is capable of transferring the heat away from the motor. The technology has been used in the compressors in the natural gas supply chain in the central Europe. New areas of application include natural gas compressors working at the wellheads of the subsea gas reservoir. A key challenge for the design of such a motor is the resistance of the stator insulation to the raw natural gas from the well. The gas contains water and heavy hydrocarbon compounds and it is far harsher than the sales gas in the natural gas supply network. The objective of this doctoral thesis is to discuss the resistance of the insulation to the raw natural gas and the phenomena degrading the insulation. The presence of partial discharges is analyzed in this doctoral dissertation. The breakdown voltage of the gas is measured as a function of pressure and gap distance. The partial discharge activity is measured on small samples representing the windings of the machine. The electrical field behavior is also modeled by finite element methods. Based on the measurements it has been concluded that the discharges are expected to disappear at gas pressures above 4 - 5 bar. The disappearance of discharges is caused by the breakdown strength of the gas, which increases as the pressure increases. Based on the finite element analysis, the physical length of a discharge seen in the PD measurements at atmospheric pressure was approximated to be 40 - 120 mum. The chemical aging of the insulation when exposed to raw

  6. In-field implementation of impedance-based structural health monitoring for insulated rail joints

    Science.gov (United States)

    Albakri, Mohammad I.; Malladi, V. V. N. Sriram; Woolard, Americo G.; Tarazaga, Pablo A.

    2017-04-01

    Track defects are a major safety concern for the railroad industry. Among different track components, insulated rail joints, which are widely used for signaling purposes, are considered a weak link in the railroad track. Several joint-related defects have been identified by the railroad community, including rail wear, torque loss, and joint bar breakage. Current track inspection techniques rely on manual and visual inspection or on specially equipped testing carts, which are costly, timeconsuming, traffic disturbing, and prone to human error. To overcome the aforementioned limitations, the feasibility of utilizing impedance-based structural health monitoring for insulated rail joints is investigated in this work. For this purpose, an insulated joint, provided by Koppers Inc., is instrumented with piezoelectric transducers and assembled with 136 AREA rail plugs. The instrumented joint is then installed and tested at the Facility for Accelerated Service Testing, Transportation Technology Center Inc. The effects of environmental and operating conditions on the measured impedance signatures are investigated through a set of experiments conducted at different temperatures and loading conditions. The capabilities of impedance-based SHM to detect several joint-related damage types are also studied by introducing reversible mechanical defects to different joint components.

  7. Design principles for handmade electrical insulation of superconducting joints in W7-X

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, K., E-mail: kerstin.rummel@ipp.mpg.de [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); John, A. [Max Planck Institute for Plasma Physics, EURATOM Association, Wendelsteinstr. 1, 17491 Greifswald (Germany); Sulek, Z. [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Radzikowskiego 152 (Poland)

    2013-10-15

    Highlights: ► In W-7X there are several types of handmade electrical insulation. ► In general insulation based on impregnated glass tapes and special G10 pieces. ► A proper overlapping of glass tapes turned out to be mandatory. ► Detailed qualification and training helps to minimize the failure rate. ► Visual inspection and Paschen tests after every insulation steps are important. -- Abstract: The superconducting magnet system of the Wendelstein 7-X (W7-X) experiment consists of 50 non-planar and 20 planar coils, 121 bus bars and 14 current leads. The connection between bus bars, coils and current leads will be provided by 198 joints. The joints have to be insulated manually during the assembly of the machine in constraint positions and a tight environment. In general the insulation is based on glass tapes impregnated with epoxy resin and special G10 insulating pieces embedded in the glass tape insulation. In critical areas Kapton{sup ®}-foils are embedded in the insulation. All types of insulation were qualified at mock-ups in a 1:1 model of the expected environment in W7-X. The qualification programme comprises thermal cycling between room temperature and 77 K and high voltage tests under air, under vacuum and under reduced pressure (Paschen test). The paper describes the main principles used for different types of handmade Paschen-tight insulations in W7-X and the visual and electrical tests during and after assembly.

  8. Evaluation of the cryogenic mechanical properties of the insulation material for ITER Feeder superconducting joint

    Science.gov (United States)

    Wu, Zhixiong; Huang, Rongjin; Huang, ChuanJun; Yang, Yanfang; Huang, Xiongyi; Li, Laifeng

    2017-12-01

    The Glass-fiber reinforced plastic (GFRP) fabricated by the vacuum bag process was selected as the high voltage electrical insulation and mechanical support for the superconducting joints and the current leads for the ITER Feeder system. To evaluate the cryogenic mechanical properties of the GFRP, the mechanical properties such as the short beam strength (SBS), the tensile strength and the fatigue fracture strength after 30,000 cycles, were measured at 77K in this study. The results demonstrated that the GFRP met the design requirements of ITER.

  9. Laboratory testing of joints between windows and highly insulated cavity walls. Investigations of tightness against rain and wind

    Energy Technology Data Exchange (ETDEWEB)

    Kjaer, A

    1983-10-01

    In the Danish energy research programme, 1EFP 80, a number of laboratory tests have been carried out on models of highly insulated cavity brick walls in order to study rain- and wind tightness of the joints between windows and such walls. Tests have been carried out with joints tightened only with a rain barrier as well as with joints according to the two stage joint principle. In the exterior part of the joint has in both cases been used a mortar, and expanding gasket, an EPDM-profile and wooden battens. Further an experiment has been carried out on a plastic window, where mastic was used as well in the exterior as the interior part of the joint. The findings were that a two-stage joint gives the best performance as well regarding air tightness as rain tightness. Further the experiments have shown that a window frame should have a depth of at least 90 mm in order to design a joint between window and wall, which is satisfactory as well regarding thermal insulation as resistance to rain and wind.

  10. Radon Sub-slab Suctioning System Integrated in Insulating Layer

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    This poster presents a new radon sub-slab suctioning system. This system makes use of a grid of horizontal pressurised air ducts located within the lower part of the rigid insulation layer of the ground floor slab. For this purpose a new system of prefabricated lightweight elements is introduced...

  11. Parametric fuselage design : Integration of mechanics and acoustic & thermal insulation

    NARCIS (Netherlands)

    Krakers, L.A.

    2009-01-01

    Designing a fuselage is a very complex process, which involves many different aspects like strength and stability, fatigue, damage tolerance, fire resistance, thermal and acoustic insulation but also inspection, maintenance, production and repair aspects. It is difficult to include all design

  12. Joint Efforts Towards European HF Radar Integration

    Science.gov (United States)

    Rubio, A.; Mader, J.; Griffa, A.; Mantovani, C.; Corgnati, L.; Novellino, A.; Schulz-Stellenfleth, J.; Quentin, C.; Wyatt, L.; Ruiz, M. I.; Lorente, P.; Hartnett, M.; Gorringe, P.

    2016-12-01

    During the past two years, significant steps have been made in Europe for achieving the needed accessibility to High Frequency Radar (HFR) data for a pan-European use. Since 2015, EuroGOOS Ocean Observing Task Teams (TT), such as HFR TT, are operational networks of observing platforms. The main goal is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of HFR data access and tools. Particular attention is being paid by HFR TT to converge from different projects and programs toward those common objectives. First, JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatory - Novel European eXpertise for coastal observaTories, H2020 2015 Programme) will contribute on describing the status of the European network, on seeking harmonization through exchange of best practices and standardization, on developing and giving access to quality control procedures and new products, and finally on demonstrating the use of such technology in the general scientific strategy focused by the Coastal Observatory. Then, EMODnet (European Marine Observation and Data Network) Physics started to assemble HF radar metadata and data products within Europe in a uniform way. This long term program is providing a combined array of services and functionalities to users for obtaining free of charge data, meta-data and data products on the physical conditions of European sea basins and oceans. Additionally, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers from 2015 a core information service to any user related to 4 areas of benefits: Maritime Safety, Coastal and Marine Environment, Marine Resources, and Weather, Seasonal Forecasting and Climate activities. INCREASE (Innovation and Networking for the integration of Coastal Radars into EuropeAn marine SErvices - CMEMS Service Evolution 2016) will set the necessary developments towards the integration of existing European

  13. Insulating characteristics of polyvinyl alcohol for integrated electronics

    International Nuclear Information System (INIS)

    Van Etten, Eliana A.; Ximenes, Eder S.; Tarasconi, Lucas T.; Garcia, Irene T.S.; Forte, Maria M.C.; Boudinov, Henri

    2014-01-01

    The aim of this work is to evaluate the effects of molecular weight, hydrolysis degree, and cross-link on the performance of Polyvinyl Alcohol (PVA) when applied as dielectric material in organic field effect transistors. For this purpose, metal–insulator-structures and polymeric films were characterized. The polymer structure was analyzed by thermogravimetry and calorimetry, and the electrical characterization of the films was performed through current–voltage and capacitance–voltage curves; and dielectric spectrometry. Cross-linkage, followed by hydrolysis degree, presented the major impact on polymer properties, due to the strong influence on chain mobility. The chain mobility increases the dielectric response and decreases the insulation capacity, generating the need to compromise between these two properties. The largest drawback encountered was the high sensitivity of the films to ambient humidity. The best performance of the organic insulator was obtained from cross-linked films made of an incompletely hydrolyzed PVA. - Highlights: • Effect of molecular weight, hydrolysis and cross-link on polyvinyl alcohol (PVA) dielectric • Cross-linkage, followed by hydrolysis, showed the major impact on properties. • Cross-linkage followed by hydrolysis showed the strongest effect on chain mobility. • Best dielectric performance: cross-linked films made of incompletely hydrolyzed PVA • Largest drawback is the high sensitivity of the films to ambient humidity

  14. Integrated programmable photonic filter on the silicon -on- insulator platform

    DEFF Research Database (Denmark)

    Liao, Shasha; Ding, Yunhong; Peucheret, Christophe

    2014-01-01

    We propose and demonstrate a silicon - on - insulator (SOI) on - chip programmable filter based on a four - tap finite impulse response structure. The photonic filter is programmable thanks to amplitude and phase modulation of each tap controlled by thermal heater s. We further demonstrate...... the tunability of the filter central wavelength, bandwidth and variable passband shape. The tuning range of the central wavelength is at least 42% of the free spectral range. The bandwidth tuning range is at least half of the free spectral range. Our scheme has distinct advantages of compactness, capability...

  15. Insulator photocurrents: Application to dose rate hardening of CMOS/SOI integrated circuits

    International Nuclear Information System (INIS)

    Dupont-Nivet, E.; Coiec, Y.M.; Flament, O.; Tinel, F.

    1998-01-01

    Irradiation of insulators with a pulse of high energy x-rays can induce photocurrents in the interconnections of integrated circuits. The authors present, here, a new method to measure and analyze this effect together with a simple model. They also demonstrate that these insulator photocurrents have to be taken into account to obtain high levels of dose-rate hardness with CMOS on SOI integrated circuits, especially flip-flops or memory blocks of ASICs. They show that it explains some of the upsets observed in a SRAM embedded in an ASIC

  16. The effect of particulate debris on the insulation integrity of SSC coils during molding and collaring

    International Nuclear Information System (INIS)

    Nehrlich, E.; Markley, F.; Rogers, D.

    1991-03-01

    In order to simulate the effect of accidentally introduced debris on SSC coil insulation integrity, models consisting of two pieces of insulated SSC cable have been loaded in an hydraulic press after introducing foreign particles between the layers. The tests were originally suggested by R. Palmer of the SSC Laboratory. A high voltage (2 Kv) was continually applied between the two cables and the load gradually increased until an electrical short occurred. The high voltage was used as an easy method of detecting insulation punctures and to continue the general type of testing begun at Brookhaven by J. Skaritka, now at the SSC Laboratory, and continued at Fermilab by F. Markley and presented at last year's session of the Conference. A range of particles of different size, shape, and hardness were used, and both conducting and insulating particles were included. Fine wires were also used. When the data are normalized using the control (no particles added), data for each cable batch used, there is a slight correlation between pressure at breakdown and particle size for cables insulated with Kapton only. Adjustment must be made for soft particles that tend to deform and for particles with aspect ratios greater than one. Additional measurements have also been made where the opoxy-fiberglass layer was added to the Kapton insulation overwrap. These show a correlation between conductivity and breakdown pressure. 1 ref., 7 figs

  17. Integrating the Joint Force: Improving Coordination Among The Component Commanders

    National Research Council Canada - National Science Library

    Krogman, Kenneth

    2003-01-01

    .... By examining one aspect of joint fire support, the Fire Support Coordination Line (FSCL), the operational level implications of doctrine, and implications regarding horizontal integration and coordination become clear...

  18. Mechanical properties considerations for use of epoxy insulators and bonded joints in neutral beam ion sources

    International Nuclear Information System (INIS)

    Doll, D.W.; Trester, P.W.; Staley, H.G.

    1981-10-01

    In the Doublet III (D-III) neutral beam injectors, cast, rigid-epoxy insulators are joined to the AISI 304 stainless steel corona rings with semi-rigid epoxy adhesive. Selected mechanical properties of these materials were measured between 11 0 C and 65 0 C, well below the material temperature limits, to identify the trends and to confirm adequate mechanical strength for the insulators. Significant creep deformation was measured at 22 0 C. Empirical relationships were developed to predict long term strain over a range of stress and temperature of design interest. Delayed failure was observed in bonded specimens at stress levels well below the ultimate strength. In order to protect the D-III neutral beam ion source epoxy from elevated temperature effects, a chill was installed in the cooling water circuit. Outgassing measurements of the insulator epoxy were made and found to be low and primarily H 2 O

  19. Effect of moisture on the electrical performance of transition-joints for medium voltage paper-insulated cables; Elektrische Beeintraechtigung durch Feuchtigkeit an oelgetraenkten Isolierpapieren. Mittelspannungsuebergangsmuffen

    Energy Technology Data Exchange (ETDEWEB)

    Cardinaels, Jos [Nexans Network Solution, Erembodegem (Belgium). Produktentwicklung; Baesch, Manfred [Nexans Power Accessories Germany, Dortmund (Germany). Produkt- und Qualitaetsmanagement

    2009-06-15

    Paper-insulated cables are constructed with an impervious metallic outer jacket in order to protect them against ingress of moisture. On 'modern' transition-joints to XLPE-insulated cables, this metal barrier is interrupted, hence, a risk of moisture penetration exists. This text presents measurements of water-vapour permeability of used materials and discusses the results of ageing tests. (orig.)

  20. Standard Test Methods for Wet Insulation Integrity Testing of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 These test methods provide procedures to determine the insulation resistance of a photovoltaic (PV) module, i.e. the electrical resistance between the module's internal electrical components and its exposed, electrically conductive, non-current carrying parts and surfaces. 1.2 The insulation integrity procedures are a combination of wet insulation resistance and wet dielectric voltage withstand test procedures. 1.3 These procedures are similar to and reference the insulation integrity test procedures described in Test Methods E 1462, with the difference being that the photovoltaic module under test is immersed in a wetting solution during the procedures. 1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods. 1.5 The values stated in SI units are to be regarded as the standard. 1.6 There is no similar or equivalent ISO standard. 1.7 This standard does not purport to address all of the safety conce...

  1. Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform.

    Science.gov (United States)

    Li, Qing; Eftekhar, Ali A; Sodagar, Majid; Xia, Zhixuan; Atabaki, Amir H; Adibi, Ali

    2013-07-29

    We demonstrate a vertical integration of high-Q silicon nitride microresonators into the silicon-on-insulator platform for applications at the telecommunication wavelengths. Low-loss silicon nitride films with a thickness of 400 nm are successfully grown, enabling compact silicon nitride microresonators with ultra-high intrinsic Qs (~ 6 × 10(6) for 60 μm radius and ~ 2 × 10(7) for 240 μm radius). The coupling between the silicon nitride microresonator and the underneath silicon waveguide is based on evanescent coupling with silicon dioxide as buffer. Selective coupling to a desired radial mode of the silicon nitride microresonator is also achievable using a pulley coupling scheme. In this work, a 60-μm-radius silicon nitride microresonator has been successfully integrated into the silicon-on-insulator platform, showing a single-mode operation with an intrinsic Q of 2 × 10(6).

  2. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications

    International Nuclear Information System (INIS)

    Mogensen, K B; Boggild, P; Kutter, J P; Gangloff, L; Teo, K B K; Milne, W I

    2009-01-01

    A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 μM fluorescein and 50 μM 5-carboxyfluorescein in a 25 mm long column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest.

  3. Carbon nanotubes integrated in electrically insulated channels for lab-on-a-chip applications

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Gangloff, L.; Bøggild, Peter

    2009-01-01

    A fabrication process for monolithic integration of vertically aligned carbon nanotubes in electrically insulated microfluidic channels is presented. A 150 nm thick amorphous silicon layer could be used both for anodic bonding of a glass lid to hermetically seal the microfluidic glass channels...... and for de-charging of the wafer during plasma enhanced chemical vapor deposition of the carbon nanotubes. The possibility of operating the device with electroosmotic flow was shown by performing standard electrophoretic separations of 50 mu M fluorescein and 50 mu M 5-carboxyfluorescein in a 25 mm long...... column containing vertical aligned carbon nanotubes. This is the first demonstration of electroosmotic pumping and electrokinetic separations in microfluidic channels with a monolithically integrated carbon nanotube forest....

  4. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  5. Experimental and numerical study of heat transfer across insulation wall of a refrigerated integral panel van

    International Nuclear Information System (INIS)

    Glouannec, Patrick; Michel, Benoit; Delamarre, Guillaume; Grohens, Yves

    2014-01-01

    This paper presents an experimental and numerical design study of an insulation wall for refrigerated vans. The thermophysical properties of the insulating multilayer panel, the external environment impact (solar irradiation, temperature, etc.) and durability are taken into account. Different tools are used to characterize the thermal performances of the insulation walls and the thermal properties of the insulation materials are measured. In addition, an experiment at the wall scale is carried out and a 2D FEM model of heat and mass transfer within the wall is formulated. Three configurations are studied with this design approach. Multilayer insulation walls containing reflective multi-foil insulation, aerogel and phase change materials (PCM) are tested. Promising results are obtained with these materials, especially the reduction of peak heat transfer and energy consumption during the daytime period. Furthermore, the major influence of solar irradiation is highlighted as it can increase the peak heat transfer crossing the insulation wall by up to 43%. Nevertheless, we showed that the use of reflective multi-foil insulation and aerogel layers allowed decreasing this impact by 27%. - Highlights: • A design study of an insulation wall for a refrigerated van is carried out. • Experimental and numerical studies of multilayer insulation walls are performed. • The major influence of solar irradiation is highlighted. • New insulation materials (reflective multi-foil, aerogel and PCM) are tested

  6. Restructuring to Achieve Joint Engineer Integration and Transformation

    National Research Council Canada - National Science Library

    Kelly, Paul

    2003-01-01

    .... Increased joint engineer operations, including new homeland defense support requirements, transformation of the joint force, and the growing need for efficient use of scarce engineer resources...

  7. Loop containment (joint integrity) assessment Brayton Isotope Power System flight system

    International Nuclear Information System (INIS)

    1976-01-01

    The Brayton Isotope Power System (BIPS) contains a large number of joints. Since the failure of a joint would result in loss of the working fluid and consequential failure of the BIPS, the integrity of the joints is of paramount importance. The reliability of the ERDA BIPS loop containment (joint integrity) is evaluated. The conceptual flight system as presently configured is depicted. A brief description of the flight system is given

  8. Joint Integration Office Independent Review Committee annual report, 1985

    International Nuclear Information System (INIS)

    1986-08-01

    Comprised of seven persons with extensive experience in the issues of nuclear waste, the Independent Review Committee (IRC) provides independent and objective review of Defense Transuranic Waste Program (DTWP) activities managed by the Joint Integration Office (JIO), formerly the Defense Transuranic Waste Lead Organization (TLO). The Committee is ensured a broad, interdisciplinary perspective since its membership includes representatives from the fields of nuclear engineering, nuclear waste transportation, industrial quality control, systems and environmental engineering and state and local government. The scope of IRC activities includes overall review of specific TLO plans, projects and activities, and technical review of particular research and development projects. The Committee makes specific suggestions and recommendations based upon expertise in the field of TRU Waste Management. The IRC operates as a consulting group, under an independent charter providing objective review of program activities. This report summarizes the 12 major topics reviewed by the committee during 1985

  9. Integrated circuits of silicon on insulator S.O.I. technologies: State of the art and perspectives

    International Nuclear Information System (INIS)

    Leray, J.L.; Dupont-Nivet, E.; Raffaelli, M.; Coic, Y.M.; Musseau, O.; Pere, J.F.; Lalande, P.; Bredy, J.; Auberton-Herve, A.J.; Bruel, M.; Giffard, B.

    1989-01-01

    Silicon On Insulator technologies have been proposed to increase the integrated circuits performances in radiation operation. Active researches are conducted, in France and abroad. This paper reviews briefly radiation effects phenomenology in that particular type of structure S.O.I. New results are presented that show very good radiation behaviour in term of speed, dose (10 to 100 megarad (Si)), dose rate and S.E.U. performances [fr

  10. Integrating Quantitative and Qualitative Results in Health Science Mixed Methods Research Through Joint Displays.

    Science.gov (United States)

    Guetterman, Timothy C; Fetters, Michael D; Creswell, John W

    2015-11-01

    Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. © 2015 Annals of Family Medicine, Inc.

  11. Integrating Quantitative and Qualitative Results in Health Science Mixed Methods Research Through Joint Displays

    Science.gov (United States)

    Guetterman, Timothy C.; Fetters, Michael D.; Creswell, John W.

    2015-01-01

    PURPOSE Mixed methods research is becoming an important methodology to investigate complex health-related topics, yet the meaningful integration of qualitative and quantitative data remains elusive and needs further development. A promising innovation to facilitate integration is the use of visual joint displays that bring data together visually to draw out new insights. The purpose of this study was to identify exemplar joint displays by analyzing the various types of joint displays being used in published articles. METHODS We searched for empirical articles that included joint displays in 3 journals that publish state-of-the-art mixed methods research. We analyzed each of 19 identified joint displays to extract the type of display, mixed methods design, purpose, rationale, qualitative and quantitative data sources, integration approaches, and analytic strategies. Our analysis focused on what each display communicated and its representation of mixed methods analysis. RESULTS The most prevalent types of joint displays were statistics-by-themes and side-by-side comparisons. Innovative joint displays connected findings to theoretical frameworks or recommendations. Researchers used joint displays for convergent, explanatory sequential, exploratory sequential, and intervention designs. We identified exemplars for each of these designs by analyzing the inferences gained through using the joint display. Exemplars represented mixed methods integration, presented integrated results, and yielded new insights. CONCLUSIONS Joint displays appear to provide a structure to discuss the integrated analysis and assist both researchers and readers in understanding how mixed methods provides new insights. We encourage researchers to use joint displays to integrate and represent mixed methods analysis and discuss their value. PMID:26553895

  12. Integrative studies on cartilage tissue engineering and joint homeostasis

    NARCIS (Netherlands)

    Rutgers, M.

    2014-01-01

    The impact of cartilage injury to the joint is often larger than the initial clinical symptoms suggest. Through an alteration in joint homeostasis and biomechanical loading, cartilage lesions may accelerate osteoarthritis onset. Although good clinical results are achieved in patients treated by the

  13. Incorporating double copies of a chromatin insulator into lentiviral vectors results in less viral integrants

    DEFF Research Database (Denmark)

    Nielsen, Troels T; Jakobsson, Johan; Rosenqvist, Nina

    2009-01-01

    BACKGROUND: Lentiviral vectors hold great promise as gene transfer vectors in gene therapeutic settings. However, problems related to the risk of insertional mutagenesis, transgene silencing and positional effects have stalled the use of such vectors in the clinic. Chromatin insulators are boundary...

  14. Joint-operation in water resources project in Indonesia: Integrated or non-integrated

    Science.gov (United States)

    Ophiyandri, Taufika; Istijono, Bambang; Hidayat, Benny

    2017-11-01

    The construction of large water resources infrastructure project often involved a joint-operation (JO) project between two or more construction companies. The form of JO can be grouped into two categories - an integrated type and a non-integrated type. This paper investigates the reason of forming a JO project made by companies. The specific advantages and problems of JO project is also analysed in this paper. In order to achieve the objectives, three water resources infrastructure projects were selected as case studies. Data was gathered by conducting 11 semi-structured interviews to project owners, contractor managers, and project staffs. Data was analysed by means of content analysis. It was found that the most fundamental factor to form a JO is to win a competition or tender. An integrated model is in favour because it can reduce overhead costs and has a simple management system, while a non-integrated model is selected because it can avoid a sleeping partner and make contractor more responsible for their own job.

  15. Tests and Analysis of the Compressive Performance of an Integrated Masonry Structure of a Brick-Stem-Insulating Layer

    Directory of Open Access Journals (Sweden)

    Suizi Jia

    2016-05-01

    Full Text Available This paper proposes, for low buildings, an integrated wall structure of a brick-stem-insulating layer, which plays a major part in both heat preservation and force bearing. The research team has tested the thermal performance of the structure, the results of which are satisfying. To further study the force-bearing performance, the paper carries out compressive tests of specimens of different structural design, with two types of bricks, i.e., clay and recycled concrete bricks; three types of stems, i.e., square-shaped wood, square-shaped steel pipe and circular steel pipe; and one type of insulating layer, i.e., fly ash masonry blocks. Afterward, the force bearing performance, damage that occurred, compressive deformation and ductility of all of the specimens are compared. On the sideline, the structure is applied in the construction of a pilot residence project, yielding favorable outcomes. The results indicate that in comparison with a brick wall with an insulating layer sandwiched in between, the integrated wall structure of bricks and fly ash blocks is a more preferable choice in terms of compressive performance and ductility. The integrated wall structure of brick-stem-fly ash blocks delivers much better performance to this end. Note that regarding the stem’s contribution to compressive strength, circular steel pipe is highest, followed by square-shaped steel pipe and then square-shaped wood. The compressive performance of the sandwiched blocks surpasses that of the two brick wall pieces combined by a large margin.

  16. Integration of thermal insulation coating and moving-air-cavity in a cool roof system for attic temperature reduction

    International Nuclear Information System (INIS)

    Yew, M.C.; Ramli Sulong, N.H.; Chong, W.T.; Poh, S.C.; Ang, B.C.; Tan, K.H.

    2013-01-01

    Highlights: • A novel integrated cool roof system for attic temperature reduction is introduced. • 13 °C temperature reduction achieved due to its efficient heat transfer mechanism. • Aluminium tube cavity of the roof is able to reduce the attic temperature. • This positive result is due to its efficient heat reflection and hot air rejection. • Thermal insulation coating incorporates the usage of eggshell waste as bio-filler. - Abstract: Cool roof systems play a significant role in enhancing the comfort level of occupants by reducing the attic temperature of the building. Heat transmission through the roof can be reduced by applying thermal insulation coating (TIC) on the roof and/or installing insulation under the roof of the attic. This paper focuses on a TIC integrated with a series of aluminium tubes that are installed on the underside of the metal roof. In this study, the recycled aluminium cans were arranged into tubes that act as a moving-air-cavity (MAC). The TIC was formulated using titanium dioxide pigment with chicken eggshell (CES) waste as bio-filler bound together by a polyurethane resin binder. The thermal conductivity of the thermal insulation paint was measured using KD2 Pro Thermal Properties Analyzer. Four types of cool roof systems were designed and the performances were evaluated. The experimental works were carried out indoors by using halogen light bulbs followed by comparison of the roof and attic temperatures. The temperature of the surrounding air during testing was approximately 27.5 °C. The cool roof that incorporated both TIC and MAC with opened attic inlet showed a significant improvement with a reduction of up to 13 °C (from 42.4 °C to 29.6 °C) in the attic temperature compared to the conventional roof system. The significant difference in the results is due to the low thermal conductivity of the thermal insulation paint (0.107 W/mK) as well as the usage of aluminium tubes in the roof cavity that was able to transfer

  17. Standard Test Methods for Insulation Integrity and Ground Path Continuity of Photovoltaic Modules

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 These test methods cover procedures for (1) testing for current leakage between the electrical circuit of a photovoltaic module and its external components while a user-specified voltage is applied and (2) for testing for possible module insulation breakdown (dielectric voltage withstand test). 1.2 A procedure is described for measuring the insulation resistance between the electrical circuit of a photovoltaic module and its external components (insulation resistance test). 1.3 A procedure is provided for verifying that electrical continuity exists between the exposed external conductive surfaces of the module, such as the frame, structural members, or edge closures, and its grounding point (ground path continuity test). 1.4 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.5 There is no similar or equivalent ISO standard. This standard does not purport to address all of the safety concerns, if a...

  18. From intricate to integrated : Biofabrication of articulating joints

    NARCIS (Netherlands)

    Groen, Wilhelmina Margaretha; Diloksumpan, Paweena; van Weeren, Paul René; Levato, Riccardo; Malda, Jos

    2017-01-01

    Articulating joints owe their function to the specialized architecture and the complex interplay between multiple tissues including cartilage, bone and synovium. Especially the cartilage component has limited self-healing capacity and damage often leads to the onset of osteoarthritis, eventually

  19. Temporomandibular joint dysfunction in Parkinson's Disease: an integrative literature review

    Directory of Open Access Journals (Sweden)

    Taysa Vannoska de Almeida Silva

    Full Text Available ABSTRACT Temporomandibular joint dysfunction is a set of disorders involving the masticatory muscles, temporomandibular joint and associated structures. It is known that the progression of motor symptoms in Parkinson's disease is an indication that these people are more prone to the development of this dysfunction. Thus, this study aims to investigate the signs and symptoms of temporomandibular dysfunction in people with Parkinson's disease. The search was performed in the databases: MEDLINE/ PubMed, LILACs, CINAHL, SCOPUS, Web of Science and PEDro, without timing or language restriction. Specific descriptors were used for each database and keywords, evaluated by the instruments: Critical Appraisal Skill Program and Agency for Health care and Research and Quality. A total of 4,209 articles were found but only 5 were included. After critical analysis of the methodology of the articles, one did not reach the minimum score required by the evaluation instruments, thus, it was excluded. The selected articles addressed, as signs and symptoms of temporomandibular joint dysfunction, the following: myofascial pain, bruxism, limitation of mouth opening, dislocation of the articular disc and asymmetry in the distribution of occlusal contacts. Further studies are needed in order to determine the relationship between cause and effect of the analyzed variables, so as to contribute to more specific and effective therapeutic interventions.

  20. Joint China-United States Report for Year 1 Insulation Materials and Systems Project Area Clean Energy Research Center Building Energy Efficiency (CERC-BEE)

    Energy Technology Data Exchange (ETDEWEB)

    Stovall, Therese K [ORNL; Biswas, Kaushik [ORNL; Song, Bo [China Academy of Building Research; Zhang, Sisi [China Academy of Building Research

    2012-08-01

    In November of 2009, the presidents of China and the U.S. announced the establishment of the Clean Energy Research Center (CERC). This broad research effort is co-funded by both countries and involves a large number of research centers and universities in both countries. One part of this program is focused on improving the energy efficiency of buildings. One portion of the CERC-BEE was focused on building insulation systems. The research objective of this effort was to Identify and investigate candidate high performance fire resistant building insulation technologies that meet the goal of building code compliance for exterior wall applications in green buildings in multiple climate zones. A Joint Work Plan was established between researchers at the China Academy of Building Research and Oak Ridge National Laboratory. Efforts in the first year under this plan focused on information gathering. The objective of this research program is to reduce building energy use in China via improved building insulation technology. In cold regions in China, residents often use inefficient heating systems to provide a minimal comfort level within inefficient buildings. In warmer regions, air conditioning has not been commonly used. As living standards rise, energy consumption in these regions will increase dramatically unless significant improvements are made in building energy performance. Previous efforts that defined the current state of the built environment in China and in the U.S. will be used in this research. In countries around the world, building improvements have typically followed the implementation of more stringent building codes. There have been several changes in building codes in both the U.S. and China within the last few years. New U.S. building codes have increased the amount of wall insulation required in new buildings. New government statements from multiple agencies in China have recently changed the requirements for buildings in terms of energy efficiency and

  1. Standard Test Method for Wet Insulation Integrity Testing of Photovoltaic Arrays

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array. 1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

    2005-06-30

    Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

  3. Ultra-thin silicon (UTSi) on insulator CMOS transceiver and time-division multiplexed switch chips for smart pixel integration

    Science.gov (United States)

    Zhang, Liping; Sawchuk, Alexander A.

    2001-12-01

    We describe the design, fabrication and functionality of two different 0.5 micron CMOS optoelectronic integrated circuit (OEIC) chips based on the Peregrine Semiconductor Ultra-Thin Silicon on insulator technology. The Peregrine UTSi silicon- on-sapphire (SOS) technology is a member of the silicon-on- insulator (SOI) family. The low-loss synthetic sapphire substrate is optically transparent and has good thermal conductivity and coefficient of thermal expansion properties, which meet the requirements for flip-chip bonding of VCSELs and other optoelectronic input-output components. One chip contains transceiver and network components, including four channel high-speed CMOS transceiver modules, pseudo-random bit stream (PRBS) generators, a voltage controlled oscillator (VCO) and other test circuits. The transceiver chips can operate in both self-testing mode and networking mode. An on- chip clock and true-single-phase-clock (TSPC) D-flip-flop have been designed to generate a PRBS at over 2.5 Gb/s for the high-speed transceiver arrays to operate in self-testing mode. In the networking mode, an even number of transceiver chips forms a ring network through free-space or fiber ribbon interconnections. The second chip contains four channel optical time-division multiplex (TDM) switches, optical transceiver arrays, an active pixel detector and additional test devices. The eventual applications of these chips will require monolithic OEICs with integrated optical input and output. After fabrication and testing, the CMOS transceiver array dies will be packaged with 850 nm vertical cavity surface emitting lasers (VCSELs), and metal-semiconductor- metal (MSM) or GaAs p-i-n detector die arrays to achieve high- speed optical interconnections. The hybrid technique could be either wire bonding or flip-chip bonding of the CMOS SOS smart-pixel arrays with arrays of VCSELs and photodetectors onto an optoelectronic chip carrier as a multi-chip module (MCM).

  4. A joint classification method to integrate scientific and social networks

    NARCIS (Netherlands)

    Neshati, Mahmood; Asgari, Ehsaneddin; Hiemstra, Djoerd; Beigy, Hamid

    In this paper, we address the problem of scientific-social network integration to find a matching relationship between members of these networks. Utilizing several name similarity patterns and contextual properties of these networks, we design a focused crawler to find high probable matching pairs,

  5. Why Do Staff of Joint-Use Libraries Sometimes Fail to Integrate? Investigating Cultures and Ethics in a Public-Tertiary Joint-Use Library

    Science.gov (United States)

    Calvert, Philip James

    2010-01-01

    Joint-use libraries have identified staff integration as a problem. Using focus groups, this project investigated the culture, professional ethics, and attitudes of staff in a public-tertiary joint-use library in Auckland, New Zealand. Findings show some difference in organizational cultures, but more variation at the lower level of roles and…

  6. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  7. Large current MOSFET on photonic silicon-on-insulator wafers and its monolithic integration with a thermo-optic 2 × 2 Mach-Zehnder switch.

    Science.gov (United States)

    Cong, G W; Matsukawa, T; Chiba, T; Tadokoro, H; Yanagihara, M; Ohno, M; Kawashima, H; Kuwatsuka, H; Igarashi, Y; Masahara, M; Ishikawa, H

    2013-03-25

    n-channel body-tied partially depleted metal-oxide-semiconductor field-effect transistors (MOSFETs) were fabricated for large current applications on a silicon-on-insulator wafer with photonics-oriented specifications. The MOSFET can drive an electrical current as large as 20 mA. We monolithically integrated this MOSFET with a 2 × 2 Mach-Zehnder interferometer optical switch having thermo-optic phase shifters. The static and dynamic performances of the integrated device are experimentally evaluated.

  8. Tuning metal-insulator behavior in LaTiO3/SrTiO3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    Science.gov (United States)

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; Conlin, Patrick; Hensley, Ricky; Chrysler, Matthew; Su, Dong; Chen, Hanghui; Kumah, Divine P.; Ngai, Joseph H.

    2018-05-01

    We present electrical and structural characterization of epitaxial LaTiO3/SrTiO3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near an occupation of 1 electron per Ti site within the SrTiO3, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulator behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.

  9. Sound Insulation between Dwellings

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    2011-01-01

    Regulatory sound insulation requirements for dwellings exist in more than 30 countries in Europe. In some countries, requirements have existed since the 1950s. Findings from comparative studies show that sound insulation descriptors and requirements represent a high degree of diversity...... and initiate – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit of the inhabitants and the society. A European COST Action TU0901 "Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions", has been established and runs...... 2009-2013. The main objectives of TU0901 are to prepare proposals for harmonized sound insulation descriptors and for a European sound classification scheme with a number of quality classes for dwellings. Findings from the studies provide input for the discussions in COST TU0901. Data collected from 24...

  10. ASRM case insulation design and development

    Science.gov (United States)

    Bell, Matthew S.; Tam, William F. S.

    1992-10-01

    This paper describes the achievements made on the Advanced Solid Rocket Motor (ASRM) case insulation design and development program. The ASRM case insulation system described herein protects the metal case and joints from direct radiation and hot gas impingement. Critical failure of solid rocket systems is often traceable to failure of the insulation design. The wide ranging accomplishments included the development of a nonasbestos insulation material for ASRM that replaced the existing Redesigned Solid Rocket Motor (RSRM) asbestos-filled nitrile butadiene rubber (NBR) along with a performance gain of 300 pounds, and improved reliability of all the insulation joint designs, i.e., segmented case joint, case-to-nozzle and case-to-igniter joint. The insulation process development program included the internal stripwinding process. This process advancement allowed Aerojet to match to exceed the capability of other propulsion companies.

  11. Vacuum foil insulation system

    International Nuclear Information System (INIS)

    Hanson, J.P.; Sabolcik, R.E.; Svedberg, R.C.

    1976-01-01

    In a multifoil thermal insulation package having a plurality of concentric cylindrical cups, means are provided for reducing heat loss from the penetration region which extends through the cups. At least one cup includes an integral skirt extending from one end of the cup to intersection with the penetration means. Assembly of the insulation package with the skirted cup is facilitated by splitting the cup to allow it to be opened up and fitted around the other cups during assembly. The insulation is for an implantable nuclear powered artificial heart

  12. Waveguide-integrated vertical pin photodiodes of Ge fabricated on p+ and n+ Si-on-insulator layers

    Science.gov (United States)

    Ito, Kazuki; Hiraki, Tatsurou; Tsuchizawa, Tai; Ishikawa, Yasuhiko

    2017-04-01

    Vertical pin structures of Ge photodiodes (PDs) integrated with Si optical waveguides are fabricated by depositing Ge epitaxial layers on Si-on-insulator (SOI) layers, and the performances of n+-Ge/i-Ge/p+-SOI PDs are compared with those of p+-Ge/i-Ge/n+-SOI PDs. Both types of PDs show responsivities as high as 1.0 A/W at 1.55 µm, while the dark leakage current is different, which is consistent with previous reports on free-space PDs formed on bulk Si wafers. The dark current of the p+-Ge/i-Ge/n+-SOI PDs is higher by more than one order of magnitude. Taking into account the activation energies for dark current as well as the dependence on PD area, the dark current of the n+-Ge/i-Ge/p+-SOI PDs is dominated by the thermal generation of carriers via mid-gap defect levels in Ge, while for the p+-Ge/i-Ge/n+-SOI PDs, the dark current is ascribed to not only thermal generation but also other mechanisms such as locally formed conduction paths.

  13. The joint contribution of neighborhood poverty and social integration to mortality risk in the United States.

    Science.gov (United States)

    Marcus, Andrea Fleisch; Echeverria, Sandra E; Holland, Bart K; Abraido-Lanza, Ana F; Passannante, Marian R

    2016-04-01

    A well-established literature has shown that social integration strongly patterns health, including mortality risk. However, the extent to which living in high-poverty neighborhoods and having few social ties jointly pattern survival in the United States has not been examined. We analyzed data from the Third National Health and Nutrition Examination Survey (1988-1994) linked to mortality follow-up through 2006 and census-based neighborhood poverty. We fit Cox proportional hazards models to estimate associations between social integration and neighborhood poverty on all-cause mortality as independent predictors and in joint-effects models using the relative excess risk due to interaction to test for interaction on an additive scale. In the joint-effects model adjusting for age, gender, race/ ethnicity, and individual-level socioeconomic status, exposure to low social integration alone was associated with increased mortality risk (hazard ratio [HR]: 1.42, 95% confidence interval [CI]: 1.28-1.59) while living in an area of high poverty alone did not have a significant effect (HR: 1.10; 95% CI: 0.95-1.28) when compared with being jointly unexposed. Individuals simultaneously living in neighborhoods characterized by high poverty and having low levels of social integration had an increased risk of mortality (HR: 1.63; 95% CI: 1.35-1.96). However, relative excess risk due to interaction results were not statistically significant. Social integration remains an important determinant of mortality risk in the United States independent of neighborhood poverty. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  15. Joint principles: Integrating behavioral health care into the patient-centered medical home.

    Science.gov (United States)

    2014-06-01

    The Patient-centered Medical Home (PCMH) is an innovative, improved, and evolving approach to providing primary care that has gained broad acceptance in the United States. The Joint Principles of the PCMH, formulated and endorsed in February 2007, are sound and describe the ideal toward which we aspire. However, there is an element running implicitly through these joint principles that is difficult to achieve yet indispensable to the success of the entire PCMH concept. The incorporation of behavioral health care has not always been included as practices transform to accommodate to the PCMH ideals. This is an alarming development because the PCMH will be incomplete and ineffective without the full incorporation of this element, and retrofitting will be much more difficult than prospectively integrating into the original design of the PCMH. Therefore we offer a complementary set of joint principles that recognizes the centrality of behavioral health care as part of the PCMH. This document follows the order and language of the original joint principles while emphasizing what needs to be addressed to insure incorporation of the essential behavioral elements. It is intended to supplement and not replace the original Joint Principles document, which still stands.

  16. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  17. Synthesis of highly integrated optical network based on microdisk-resonator add-drop filters in silicon-on-insulator technology

    Science.gov (United States)

    Kaźmierczak, Andrzej; Dortu, Fabian; Giannone, Domenico; Bogaerts, Wim; Drouard, Emmanuel; Rojo-Romeo, Pedro; Gaffiot, Frederic

    2009-10-01

    We analyze a highly compact optical add-drop filter topology based on a pair of microdisk resonators and a bus waveguide intersection. The filter is further assessed on an integrated optical 4×4 network for optical on-chip communication. The proposed network structure, as compact as 50×50 μm, is fabricated in a CMOS-compatible process on a silicon-on-insulator (SOI) substrate. Finally, the experimental results demonstrate the proper operation of the fabricated devices.

  18. Thermal insulation

    International Nuclear Information System (INIS)

    Aspden, G.J.; Howard, R.S.

    1988-01-01

    The patent concerns high temperature thermal insulation of large vessels, such as the primary vessel of a liquid metal cooled nuclear reactor. The thermal insulation consists of multilayered thermal insulation modules, and each module comprises a number of metal sheet layers sandwiched between a back and front plate. The layers are linked together by straps and clips to control the thickness of the module. (U.K.)

  19. Cellulose Insulation

    Science.gov (United States)

    1980-01-01

    Fire retardant cellulose insulation is produced by shredding old newspapers and treating them with a combination of chemicals. Insulating material is blown into walls and attics to form a fiber layer which blocks the flow of air. All-Weather Insulation's founders asked NASA/UK-TAP to help. They wanted to know what chemicals added to newspaper would produce an insulating material capable of meeting federal specifications. TAP researched the query and furnished extensive information. The information contributed to successful development of the product and helped launch a small business enterprise which is now growing rapidly.

  20. From use cases of the Joint European Torus towards integrated commissioning requirements of the ITER tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neto, A.C. [Fusion for Energy, 08019 Barcelona (Spain); Stephen, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sartori, F.; Cavinato, M. [Fusion for Energy, 08019 Barcelona (Spain); Farthing, J.W. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Ranz, R.; Saibene, G. [Fusion for Energy, 08019 Barcelona (Spain); Winter, A. [ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex (France); Arnoux, G. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alves, D. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa (Portugal); Blackman, T.; Boboc, A.; Card, P.J.; Dalley, S.; Day, I.E. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); De Tommasi, G. [Consorzio CREATE/Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); Drewelow, P.; Elsmore, C.; Ivings, E.; Felton, R. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    The Joint European Torus (JET) is the largest tokamak currently in operation in the world. One of the greatest challenges of JET is the integrated commissioning of all its major plant systems. This is driven, partially, by the size and complexity of its operational infrastructure and also by the fact that, being an international environment, it has to address the issues of integrating, commissioning and maintaining plant systems developed by third parties. The ITER tokamak, now in construction, is a fusion device twice the size of JET and, being a joint effort between the European Union, China, India, Japan, South Korea, the Russian Federation and the USA, it will share on a wider scale all of the JET challenges regarding integration and integrated commissioning of very large and complex plant systems. With the scope of taking advantage from the history and experience of JET, Fusion for Energy (F4E) has worked together with the Culham Centre for Fusion Energy (CCFE), the host and operator of JET, for the provision of ITER relevant user experiences related to the integrated commissioning of the tokamak. This work presents and discusses the main results and the methods that were used to extract and translate the commissioning experience information into ITER requirements.

  1. Determination of ASTM 1016 structural welded joints fracture toughness through J integral

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Terra, Jose Lucio; Rabello, Emerson Giovani; Martins, Geraldo Antonio Scoralick; Carneiro, Jose Rubens Goncalves

    2009-01-01

    Fracture toughness is an important parameter for studies of materials behavior in nuclear and conventional industry. Crack propagation resistance is, in general, evaluate using one of the fracture mechanics parameters K IC , for the case of the materials that exhibits a linear elastic behavior, the CTOD (crack tip opening displacement) and J IC , the critical value of J Integral, for the case of materials with elastic-plastic behavior. On this work the fracture mechanics parameters of the ASTM 1016 structural steel welded joints were obtained, using the J Integral. Charpy V tests at several temperatures were also obtained, with the purpose to obtain the curves of ductile-brittle of the regions of the welded joints: Base Metal, (MB), and Melted Zone (MZ). The joints were welded by Gas Metal Arc Welding (GMAW) with V bevel for evaluation the MZ toughness properties. The tests were accomplished at temperatures varying from -100 deg C to 100 deg C using the technical of compliance variation for J IC determination, the critical value that defines the initial stable crack growth, that applies to brittle and ductile materials. The J Integral alternative specimens has square cross section 10mmX10mm, according ASTM E 1820, with notch localized respectively at the BM and MZ. After the tests, the specimens fractured were analyzed in a scanning microscopic electronic (SME) for verification of the fracture surface. The fractography of the specimens at elevated temperatures presented dimples at the region of stable crack growth, characteristic of ductile fracture. The results of J Integral and Charpy V presented a good correlation between these two parameters. From these correlations it can be concluded that in some applications, the use Charpy V energy to infer fracture toughness can be substitute the Integral J tests. (author)

  2. Harmonization of sound insulation descriptors and classification schemes in Europe: COST Action TU0901

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    -in-Chief. Handbook of noise and vibration control, USA: Wiley and Son; 2007 [Ch. 114]. [4] COST Action TU0901 “Integrating and Harmonizing Sound Insulation Aspects in Sustainable Urban Housing Constructions”, 2009-2013, www.cost.eu/index.php?id=240&action_number=tu0901 (public information at COST website) or http...... insulation requirements seems unrealistic. However, by preparing a harmonized European classification scheme with a number of quality classes, member states could select a "harmonized" class fitting the national needs and conditions. A joint European Action, COST Action TU0901 "Integrating and Harmonizing...... on good workmanship. The paper will summarize the background, discuss the present situation in Europe and describe the joint efforts to reduce the diversity in Europe, thus supporting and initiating – where needed – improvement of sound insulation of new and existing dwellings in Europe to the benefit...

  3. Swivel Joint For Liquid Nitrogen

    Science.gov (United States)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  4. Thermal insulation

    International Nuclear Information System (INIS)

    Pinsky, G.P.

    1977-01-01

    Thermal insulation for vessels and piping within the reactor containment area of nuclear power plants is disclosed. The thermal insulation of this invention can be readily removed and replaced from the vessels and piping for inservice inspection, can withstand repeated wettings and dryings, and can resist high temperatures for long periods of time. 4 claims, 3 figures

  5. Air Force Host and Tenant Agreements Between the 50th Space Wing, the Joint National Integration Center, and Tenants

    National Research Council Canada - National Science Library

    2007-01-01

    .... The 50th Space Wing makes available by permit two buildings on the base's real property records, 720 and 730, to the Joint National Integration Center, a Component of the Missile Defense Agency...

  6. Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Z.; Dong, P.; Liu, S.; Babu, S.; Olson, G.; DebRoy, T.

    2005-04-15

    The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstructure for improved material toughness and strength. This is a systems challenge that requires the optimization of the welding process, the welding consumable, the base material, as well as the structure design. The concept of virtual welded-joint design has been proposed and established in this project. The goal of virtual welded-joint design is to develop a thorough procedure to predict the relationship of welding process, microstructure, property, residual stress, and the ultimate weld fatigue strength by a systematic modeling approach. The systematic approach combines five sub-models: weld thermal-fluid model, weld microstructure model, weld material property model, weld residual stress model, and weld fatigue model. The systematic approach is thus based on interdisciplinary applied sciences including heat transfer, computational fluid dynamics, materials science, engineering mechanics, and material fracture mechanics. The sub-models are based on existing models with further development. The results from modeling have been validated with critical experiments. The systematic modeling approach has been used to design high fatigue resistant welds considering the combined effects of weld bead geometry, residual stress, microstructure, and material property. In particular, a special welding wire has been developed in this project to introduce

  7. Toughness study of an under matched welded joint: application to the mechanical integrity of the electron beam welded joint of 6016-T6 aluminium alloy

    International Nuclear Information System (INIS)

    Rekik, Wissal

    2016-01-01

    For the demonstration of the integrity of the most sensitive nuclear components, conventional defects, as cracks for example, must be considered within the design step as required by the nuclear safety authority. This phase is particularly crucial for dimensioning of welded structures. To ensure a conservative prediction, the position of the initial crack within the welded joint must be the most detrimental in fracture behavior. Commonly used analyzes consider homogeneous structure with the behavior of the base metal of the welded joint, considered as the weakest metallurgical zone in the case of an overmatched weld. In contrast, similar analysis is not conservative in case of under matched weld. The thesis contributes by the development of an experimental and numerical methodology allowing the identification of the detrimental metallurgical zone in fracture behavior of an under matched welded joint. The methodology proposed is applied to an electron beam welded joint on al 6061-T6. To reach this goal, the gradient of the mechanical behavior along the welded joint was first identified. This is particularly interesting to conduct an advanced analysis based on a multi material approach. In a second step, the fracture behavior of the welded joint was studied on CT specimen. The transferability of the J integral at initiation was approved on another geometry: this represents an important foundation for the transferability assumption to structure. Finally, a numerical analysis on full scale tube was developed. Residual welding stresses and structural effects were considered. The results demonstrate that the heat affected zone located at 13 mm from the middle of the welded joint is the most detrimental zone for fracture analysis. This contradicts the conventional methods conducted on fracture analysis which consider a conventional defect within the fusion zone. (author) [fr

  8. Beyond insulation and isolation

    DEFF Research Database (Denmark)

    Højlund, Marie Koldkjær

    2016-01-01

    are insulation and isolation strategies to reduce measurable and perceptual noise levels. However, these strategies do not actively support the need to feel like an integral part of the shared hospital environment, which is a key element in creating healing environments, according to the paradigm of Evidence-Based...

  9. Model-based sensorimotor integration for multi-joint control: development of a virtual arm model.

    Science.gov (United States)

    Song, D; Lan, N; Loeb, G E; Gordon, J

    2008-06-01

    An integrated, sensorimotor virtual arm (VA) model has been developed and validated for simulation studies of control of human arm movements. Realistic anatomical features of shoulder, elbow and forearm joints were captured with a graphic modeling environment, SIMM. The model included 15 musculotendon elements acting at the shoulder, elbow and forearm. Muscle actions on joints were evaluated by SIMM generated moment arms that were matched to experimentally measured profiles. The Virtual Muscle (VM) model contained appropriate admixture of slow and fast twitch fibers with realistic physiological properties for force production. A realistic spindle model was embedded in each VM with inputs of fascicle length, gamma static (gamma(stat)) and dynamic (gamma(dyn)) controls and outputs of primary (I(a)) and secondary (II) afferents. A piecewise linear model of Golgi Tendon Organ (GTO) represented the ensemble sampling (I(b)) of the total muscle force at the tendon. All model components were integrated into a Simulink block using a special software tool. The complete VA model was validated with open-loop simulation at discrete hand positions within the full range of alpha and gamma drives to extrafusal and intrafusal muscle fibers. The model behaviors were consistent with a wide variety of physiological phenomena. Spindle afferents were effectively modulated by fusimotor drives and hand positions of the arm. These simulations validated the VA model as a computational tool for studying arm movement control. The VA model is available to researchers at website http://pt.usc.edu/cel .

  10. Reusable Surface Insulation

    Science.gov (United States)

    1997-01-01

    Advanced Flexible Reusable Surface Insulation, developed by Ames Research Center, protects the Space Shuttle from the searing heat that engulfs it on reentry into the Earth's atmosphere. Initially integrated into the Space Shuttle by Rockwell International, production was transferred to Hi-Temp Insulation Inc. in 1974. Over the years, Hi-Temp has created many new technologies to meet the requirements of the Space Shuttle program. This expertise is also used commercially, including insulation blankets to cover aircrafts parts, fire barrier material to protect aircraft engine cowlings and aircraft rescue fire fighter suits. A Fire Protection Division has also been established, offering the first suit designed exclusively by and for aircraft rescue fire fighters. Hi-Temp is a supplier to the Los Angeles City Fire Department as well as other major U.S. civil and military fire departments.

  11. Thermal insulation

    International Nuclear Information System (INIS)

    Durston, J.G.; Birch, W.; Facer, R.I.; Stuart, R.A.

    1977-01-01

    Reference is made to liquid metal cooled nuclear reactors. In the arrangement described the reactor vessel is clad with thermal insulation comprising a layer of insulating blocks spaced from the wall and from each other; each block is rigidly secured to the wall, and the interspaces are substantially closed against convectional flow of liquid by resilient closure members. A membrane covering is provided for the layer of blocks, with venting means to allow liquid from the reactor vessel to penetrate between the covering and the layer of blocks. The membrane covering may comprise a stainless steel sheet ribbed in orthogonal pattern to give flexibility for the accommodation of thermal strain. The insulating blocks may be comprised of stainless steel or cellular or porous material and may be hollow shells containing ceramic material or gas fillings. (U.K.)

  12. Topological insulators

    CERN Document Server

    Franz, Marcel

    2013-01-01

    Topological Insulators, volume six in the Contemporary Concepts of Condensed Matter Series, describes the recent revolution in condensed matter physics that occurred in our understanding of crystalline solids. The book chronicles the work done worldwide that led to these discoveries and provides the reader with a comprehensive overview of the field. Starting in 2004, theorists began to explore the effect of topology on the physics of band insulators, a field previously considered well understood. However, the inclusion of topology brings key new elements into this old field. Whereas it was

  13. CONCERT. ''European joint programme for the integration of radiation protection research''

    International Nuclear Information System (INIS)

    Schmitt-Hannig, A.; Birschwilks, M.; Jung, T.

    2016-01-01

    CONCERT is a joint project of the EU and its member states which assume joint financing: Over the next five years the largest European radiation protection programme so far will have available about 28 Million Euros for research and integrative measures, whereby the European Commission will bear 70 per cent of the costs. Integrative measures include, among others, targeted vocational education and training of junior researchers in radiation protection, better access to research and irradiation facilities for scientists, as well as a stronger connection of universities and research centres in radiation protection research.

  14. Integrated High-Speed Torque Control System for a Robotic Joint

    Science.gov (United States)

    Davis, Donald R. (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Valvo, Michael C. (Inventor); Askew, R. Scott (Inventor)

    2013-01-01

    A control system for achieving high-speed torque for a joint of a robot includes a printed circuit board assembly (PCBA) having a collocated joint processor and high-speed communication bus. The PCBA may also include a power inverter module (PIM) and local sensor conditioning electronics (SCE) for processing sensor data from one or more motor position sensors. Torque control of a motor of the joint is provided via the PCBA as a high-speed torque loop. Each joint processor may be embedded within or collocated with the robotic joint being controlled. Collocation of the joint processor, PIM, and high-speed bus may increase noise immunity of the control system, and the localized processing of sensor data from the joint motor at the joint level may minimize bus cabling to and from each control node. The joint processor may include a field programmable gate array (FPGA).

  15. Atomic layer deposition of HfO{sub 2} for integration into three-dimensional metal-insulator-metal devices

    Energy Technology Data Exchange (ETDEWEB)

    Assaud, Loic [Aix Marseille Univ, CNRS, CINAM, Marseille (France); ICMMO-ERIEE, Universite Paris-Sud / Universite Paris-Saclay, CNRS, Orsay (France); Pitzschel, Kristina; Barr, Maissa K.S.; Petit, Matthieu; Hanbuecken, Margrit; Santinacci, Lionel [Aix Marseille Univ, CNRS, CINAM, Marseille (France); Monier, Guillaume [Universite Clermont Auvergne, Universite Blaise Pascal, CNRS, Institut Pascal, Clermont-Ferrand (France)

    2017-12-15

    HfO{sub 2} nanotubes have been fabricated via a template-assisted deposition process for further use in three-dimensional metal-insulator-metal (MIM) devices. HfO{sub 2} thin layers were grown by Atomic Layer Deposition (ALD) in anodic alumina membranes (AAM). The ALD was carried out using tetrakis(ethylmethylamino)hafnium and water as Hf and O sources, respectively. Long exposure durations to the precursors have been used to maximize the penetration depth of the HfO{sub 2} layer within the AAM and the effect of the process temperature was investigated. The morphology, the chemical composition, and the crystal structure were studied as a function of the deposition parameters using transmission and scanning electron microscopies, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. As expected, the HfO{sub 2} layers grown at low-temperature (T = 150 C) were amorphous, while for a higher temperature (T = 250 C), polycrystalline films were observed. The electrical characterizations have shown better insulating properties for the layers grown at low temperature. Finally, TiN/HfO{sub 2}/TiN multilayers were grown in an AAM as proof-of-concept for three-dimensional MIM nanostructures. (orig.)

  16. Insulators for fusion applications

    International Nuclear Information System (INIS)

    1987-04-01

    Design studies for fusion devices and reactors have become more detailed in recent years and with this has come a better understanding of requirements and operating conditions for insulators in these machines. Ceramic and organic insulators are widely used for many components of fusion devices and reactors namely: radio frequency (RF) energy injection systems (BeO, Al 2 O 3 , Mg Al 2 O 4 , Si 3 N 4 ); electrical insulation for the torus structure (SiC, Al 2 O 3 , MgO, Mg Al 2 O 4 , Si 4 Al 2 O 2 N 6 , Si 3 N 4 , Y 2 O 3 ); lightly-shielded magnetic coils (MgO, MgAl 2 O 4 ); the toroidal field coil (epoxies, polyimides), neutron shield (B 4 C, TiH 2 ); high efficiency electrical generation; as well as the generation of very high temperatures for high efficiency hydrogen production processes (ZrO 2 and Al 2 O 3 - mat, graphite and carbon - felt). Timely development of insulators for fusion applications is clearly necessary. Those materials to be used in fusion machines should show high resistance to radiation damage and maintain their structural integrity. Now the need is urgent for a variety of radiation resistant materials, but much effort in these areas is required for insulators to be considered seriously by the design community. This document contains 14 papers from an IAEA meeting. It was the objective of this meeting to identify existing problems in analysing various situations of applications and requirements of electrical insulators and ceramics in fusion and to recommend strategies and different stages of implementation. This meeting was endorsed by the International Fusion Research Council

  17. Development of a Measuring System Based on LabVIEW for Angular Stiffness of Integrative Flexible Joint

    International Nuclear Information System (INIS)

    Liu, C J; Wan, D A

    2006-01-01

    In order to meet the need of development of integrative flexible joint, this paper presents a higher precision measuring system for angular stiffness test of integrative flexible joint. The main parts of the system include PC, precision motorized goniometric stage, precision motorized rotary stage and high accuracy torque sensor. The measuring and control program is developed on the platform of LabVIEW. The measuring system developed has angular resolution at 0.00032 deg. (about 1'') theoretically in determining the angular displacement of the joint round its equatorial axis and torque accuracy at 0.005 mN · m. The developed program, which presents a friendly GUI, can implement the data acquisition and processing, measuring procedure automatically. In comparison with other measuring devices with similar purposes, the measuring device can improve the measuring efficiency and accuracy distinctly while has advantages of simple configuration, low cost and high stability

  18. The Urgent Need for a Comprehensive, Fully Integrated, Joint Intra-Theater Aeromedical Evacuation System

    Science.gov (United States)

    2017-04-06

    the Middle East and Africa , it is critical for the Army’s Medical Department (AMEDD) and the Joint Staff continue to leverage joint patient...Service and a single Service would prevent the establishment of a watered -down, lowest-common-denominator AE system that would result from a joint...to provide quality enroute care to increase survivability rates and decrease long-term morbidity. The current joint intra-theater AE system lacks

  19. Butt-joint integration of active optical components based on InP/AlInGaAsP alloys

    DEFF Research Database (Denmark)

    Kulkova, Irina; Kuznetsova, Nadezda; Semenova, Elizaveta

    2014-01-01

    We demonstrate all-active planar high quality butt-joint (BJ) integration of a QW Semiconductor Optical Amplifier (SOA) and MQW Electro-Absorption Modulator (EAM) based on an InP/AlInGaAsP platform. The degradation of the optical properties in the vicinity of ~1 μm to the BJ interface was determi...

  20. Perovskite-based heterostructures integrating ferromagnetic-insulating La0.1Bi0.9MnO3

    Science.gov (United States)

    Gajek, M.; Bibes, M.; Barthélémy, A.; Varela, M.; Fontcuberta, J.

    2005-05-01

    We report on the growth of thin films and heterostructures of the ferromagnetic-insulating perovskite La0.1Bi0.9MnO3. We show that the La0.1Bi0.9MnO3 perovskite grows single phased, epitaxially, and with a single out-of-plane orientation either on SrTiO3 substrates or onto strained La2/3Sr1/3MnO3 and SrRuO3 ferromagnetic-metallic buffer layers. We discuss the magnetic properties of the La0.1Bi0.9MnO3 films and heterostructures in view of their possible potential as magnetoelectric or spin-dependent tunneling devices.

  1. Joint force protection advanced security system (JFPASS) "the future of force protection: integrate and automate"

    Science.gov (United States)

    Lama, Carlos E.; Fagan, Joe E.

    2009-09-01

    The United States Department of Defense (DoD) defines 'force protection' as "preventive measures taken to mitigate hostile actions against DoD personnel (to include family members), resources, facilities, and critical information." Advanced technologies enable significant improvements in automating and distributing situation awareness, optimizing operator time, and improving sustainability, which enhance protection and lower costs. The JFPASS Joint Capability Technology Demonstration (JCTD) demonstrates a force protection environment that combines physical security and Chemical, Biological, Radiological, Nuclear, and Explosive (CBRNE) defense through the application of integrated command and control and data fusion. The JFPASS JCTD provides a layered approach to force protection by integrating traditional sensors used in physical security, such as video cameras, battlefield surveillance radars, unmanned and unattended ground sensors. The optimization of human participation and automation of processes is achieved by employment of unmanned ground vehicles, along with remotely operated lethal and less-than-lethal weapon systems. These capabilities are integrated via a tailorable, user-defined common operational picture display through a data fusion engine operating in the background. The combined systems automate the screening of alarms, manage the information displays, and provide assessment and response measures. The data fusion engine links disparate sensors and systems, and applies tailored logic to focus the assessment of events. It enables timely responses by providing the user with automated and semi-automated decision support tools. The JFPASS JCTD uses standard communication/data exchange protocols, which allow the system to incorporate future sensor technologies or communication networks, while maintaining the ability to communicate with legacy or existing systems.

  2. Effect of Al2O3 insulator thickness on the structural integrity of amorphous indium-gallium-zinc-oxide based thin film transistors.

    Science.gov (United States)

    Kim, Hak-Jun; Hwang, In-Ju; Kim, Youn-Jea

    2014-12-01

    The current transparent oxide semiconductors (TOSs) technology provides flexibility and high performance. In this study, multi-stack nano-layers of TOSs were designed for three-dimensional analysis of amorphous indium-gallium-zinc-oxide (a-IGZO) based thin film transistors (TFTs). In particular, the effects of torsional and compressive stresses on the nano-sized active layers such as the a-IGZO layer were investigated. Numerical simulations were carried out to investigate the structural integrity of a-IGZO based TFTs with three different thicknesses of the aluminum oxide (Al2O3) insulator (δ = 10, 20, and 30 nm), respectively, using a commercial code, COMSOL Multiphysics. The results are graphically depicted for operating conditions.

  3. Determination of the quasi-TE mode (in-plane) graphene linear absorption coefficient via integration with silicon-on-insulator racetrack cavity resonators.

    Science.gov (United States)

    Crowe, Iain F; Clark, Nicholas; Hussein, Siham; Towlson, Brian; Whittaker, Eric; Milosevic, Milan M; Gardes, Frederic Y; Mashanovich, Goran Z; Halsall, Matthew P; Vijayaraghaven, Aravind

    2014-07-28

    We examine the near-IR light-matter interaction for graphene integrated cavity ring resonators based on silicon-on-insulator (SOI) race-track waveguides. Fitting of the cavity resonances from quasi-TE mode transmission spectra reveal the real part of the effective refractive index for graphene, n(eff) = 2.23 ± 0.02 and linear absorption coefficient, α(gTE) = 0.11 ± 0.01dBμm(-1). The evanescent nature of the guided mode coupling to graphene at resonance depends strongly on the height of the graphene above the cavity, which places limits on the cavity length for optical sensing applications.

  4. An integrated optic ethanol vapor sensor based on a silicon-on-insulator microring resonator coated with a porous ZnO film.

    Science.gov (United States)

    Yebo, Nebiyu A; Lommens, Petra; Hens, Zeger; Baets, Roel

    2010-05-24

    Optical structures fabricated on silicon-on-insulator technology provide a convenient platform for the implementation of highly compact, versatile and low cost devices. In this work, we demonstrate the promise of this technology for integrated low power and low cost optical gas sensing. A room temperature ethanol vapor sensor is demonstrated using a ZnO nanoparticle film as a coating on an SOI micro-ring resonator of 5 microm in radius. The local coating on the ring resonators is prepared from colloidal suspensions of ZnO nanoparticles of around 3 nm diameter. The porous nature of the coating provides a large surface area for gas adsorption. The ZnO refractive index change upon vapor adsorption shifts the microring resonance through evanescent field interaction. Ethanol vapor concentrations down to 100 ppm are detected with this sensing configuration and a detection limit below 25 ppm is estimated.

  5. Assessment of the integrity of ferritic-austenitic dissimilar weld joints of different grades of Cr-Mo ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Laha, K.; Chandravathi, K.S.; Parameswaran, P.; Goyal, Sunil; Mathew, M.D. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Metallurgy and Materials Group

    2010-07-01

    Integrity of the 2.25 Cr-1Mo / Alloy 800, 9Cr-1Mo / Alloy 800 and 9Cr-1Mo-VNb / Alloy 800 ferritic-austenitic dissimilar joints, fusion welded employing Inconel 182 electrode, has been assessed under creep conditions at 823 K. The dissimilar weld joints displayed lower creep rupture strength than their respective ferritic steel base metals. The strength reduction was more for 2.25Cr-1Mo steel joint and least for 9Cr-1Mo steel joint. The failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of heat-affected zone (HAZ) in ferritic steel (type IV cracking) with decrease in stress. At still lower stresses the failure occurred at the ferritic / austenitic weld interface. Localized creep deformation and cavitation in the soft intercritical HAZ induced type IV failure whereas creep cavitation at the weld interface particles induced ferritic / austenitic interface cracking due to high creep strength mismatch across it. Micromechanisms of type IV failure and interface cracking in the ferritic / austenitic joints and different susceptibility to failure for different grades of ferritic steels are discussed based on microstructural investigation, mechanical testing and finite element analysis. (Note from indexer: paper contains many typographical errors.)

  6. Tank Insulation

    Science.gov (United States)

    1979-01-01

    For NASA's Apollo program, McDonnell Douglas Astronautics Company, Huntington Beach, California, developed and built the S-IVB, uppermost stage of the three-stage Saturn V moonbooster. An important part of the development task was fabrication of a tank to contain liquid hydrogen fuel for the stage's rocket engine. The liquid hydrogen had to be contained at the supercold temperature of 423 degrees below zero Fahrenheit. The tank had to be perfectly insulated to keep engine or solar heat from reaching the fuel; if the hydrogen were permitted to warm up, it would have boiled off, or converted to gaseous form, reducing the amount of fuel available to the engine. McDonnell Douglas' answer was a supereffective insulation called 3D, which consisted of a one-inch thickness of polyurethane foam reinforced in three dimensions with fiberglass threads. Over a 13-year development and construction period, the company built 30 tanks and never experienced a failure. Now, after years of additional development, an advanced version of 3D is finding application as part of a containment system for transporting Liquefied Natural Gas (LNG) by ship.

  7. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam- 603 102 (India)

    2012-07-01

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  8. The Joint Capabilities Integration and Development System: Its Impact on Air Force Acquisition Thirteen Years Later

    Science.gov (United States)

    2016-08-01

    PAROCHIALISM : OPERATIONAL REQUIREMENTS AND THE REQUIREMENTS GENERATION SYSTEM (RGS) ........................................................ 15 2003...SERVICE STOVEPIPES AND PAROCHIALISM : OPERATIONAL REQUIREMENTS AND THE REQUIREMENTS GENERATION SYSTEM (RGS) According to a 1974 General Accounting...The time had come to put aside service parochialism and self-interest and begin the march to joint capability development, joint concepts and

  9. ImWalkMF: Joint matrix factorization and implicit walk integrative learning for recommendation

    KAUST Repository

    Zhang, Chuxu

    2018-01-15

    Data sparsity and cold-start problems are prevalent in recommender systems. To address such problems, both the observable explicit social information (e.g., user-user trust connections) and the inferable implicit correlations (e.g., implicit neighbors computed by similarity measurement) have been introduced to complement user-item ratings data for improving the performances of traditional model-based recommendation algorithms such as matrix factorization. Although effective, (1) the utilization of the explicit user-user social relationships suffers from the weakness of unavailability in real systems such as Netflix or the issue of sparse observable content like 0.03% trust density in Epinions, thus there is no or little explicit social information that can be employed to improve baseline model in real applications; (2) the current similarity measurement approaches focus on inferring implicit correlations between a user (item) and their direct neighbors or top-k similar neighbors based on user-item ratings bipartite network, so that they fail to comprehensively unfold the indirect potential relationships among users and items. To solve these issues regarding both explicit/implicit social recommendation algorithms, we design a joint model of matrix factorization and implicit walk integrative learning, i.e., ImWalkMF, which only uses explicit ratings information yet models both direct rating feedbacks and multiple direct/indirect implicit correlations among users and items from a random walk perspective. We further propose a combined strategy for training two independent components in the proposed model based on sampling. The experimental results on two real-world sparse datasets demonstrate that ImWalkMF outperforms the traditional regularized/probabilistic matrix factorization models as well as other competitive baselines that utilize explicit/implicit social information.

  10. High-Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    A more accurate assessment of slab-on-grade foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated).

  11. The Joint Force Air Component Commander and the Integration of Offensive Cyberspace Effects: Power Projection through Cyberspace

    Science.gov (United States)

    2016-06-14

    in theory . Offensive cyberspace operations have the potential to provide these types of power- projecting effects in the battlespace, but how can...approach to allow for the maturation of command relationships, authorities, and buildup of operational capacity. In the direct support model...send cyber- space liaisons to the air component to integrate joint cyberspace operations. A major step in the center’s maturation process is

  12. IAIMS and JCAHO: implications for hospital librarians. Integrated Academic Information Management Systems. Joint Commission on Accreditation of Healthcare Organizations.

    OpenAIRE

    Doyle, J D

    1999-01-01

    The roles of hospital librarians have evolved from keeping print materials to serving as a focal point for information services and structures within the hospital. Concepts that emerged from the Integrated Academic Information Management Systems (IAIMS) as described in the Matheson Report and the 1994 Joint Commission on Accreditation of Healthcare Organizations (JCAHO) standards have combined to propel hospital libraries into many new roles and functions. This paper will review the relations...

  13. High-voltage polymeric insulated cables

    Energy Technology Data Exchange (ETDEWEB)

    Ross, A

    1987-01-01

    Reviews developments in high-voltage (here defined as 25 kV, 66 kV and 132 kV) polymeric insulated cables in the UK over the period 1979-1986, with particular reference to the experience of the Eastern Electricity Board. Outlines the background to the adoption of XPLE-insulated solid cable, and the design, testing, terminations, jointing and costs of 25 kV, 66 kV and 132 kV cables.

  14. Threshold current reduction for the metal–insulator transition in NbO2−x-selector devices: the effect of ReRAM integration

    International Nuclear Information System (INIS)

    Nandi, Sanjoy Kumar; Liu, Xinjun; Venkatachalam, Dinesh Kumar; Elliman, Robert Glen

    2015-01-01

    The threshold current for inducing the metal–insulator transition in a NbO 2−x selector element is shown to be affected by the properties of an adjacent memory element when integrated into a hybrid selector-memory device structure. Experimental results are reported for homogeneous NbO 2−x /Nb 2 O 5−y and heterogeneous NbO 2−x /HfO 2 device structures, and show that the threshold current is lower in both hybrid structures than in the selector element alone, and is lower in the heterogeneous structure than in the homogeneous structure. Finite element modeling of the selector-memory structure shows that this results primarily from current confinement produced by the filamentary conduction path in the resistive-switching memory layer (i.e. Nb 2 O 5−y or HfO 2 ), an observation that further implies a smaller diameter filament in HfO 2 than in Nb 2 O 5−y . The thermal and electrical conductivities of the memory layer are also shown to influence the threshold current, but to a lesser extent. (paper)

  15. Modelling joint air defence doctrinal issues with a LinkZA-based integration of two C2 simulators – a case study

    CSIR Research Space (South Africa)

    Nel, JJ

    2007-07-01

    Full Text Available This paper describes the integration between two command and control simulators in order to clarify doctrinal issues surrounding Joint Air Defence using as example the uncertainty of roles and responsibilities between the Air Defence Cell...

  16. The integrity of 9Cr-1Mo to stainless steel transition joints in AGR steam generators

    International Nuclear Information System (INIS)

    James, D.W.; Neumann, P.; Soo, J.

    1982-01-01

    The metallurgical aspects of the transition joint between 9Cr-1Mo and 316 stainless steel boiler tube sections are reviewed. A large minimum superheat margin (106 0 C) between the dryout zone and the 9Cr-1Mo to stainless steel transition joint was specified in the original design to eliminate the risk of wetting the stainless steel which is susceptible to stress corrosion cracking. However, small defects were discovered in the welds between the 9Cr-1Mo and Sanicro (72%Ni-16%Cr-10%Fe) transition piece, resulting from dilution of the weld pool by nickel from the transition piece. This led to the possibility of weld failure as a result of creep crack growth in service, and any significant reduction in operating temperature would mean that the large superheat margin could not be sustained. The creep properties of the joints, together with the transition joint temperature distribution, enabled tube failure rates to be determined as a function of operating temperature. A probabilistic model was developed so that the transition joint could be operated within a temperature 'window', the lower temperature limit being determined by stress corrosion considerations and the upper limit being set by creep rate limitations. This allows full load performance from the boilers throughout the anticipated life of the plant. (author)

  17. Estimation of thermal insulation performance in multi-layer insulator for liquid helium pipe

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Kuriyama, Masaaki; Shibata, Takemasa

    1991-01-01

    For a multi-layer insulator around the liquid helium pipes for cryopumps of JT-60 NBI, a multi-layer insulator composed of 10 layers, which can be wound around the pipe at the same time and in which the respective layers are in concentric circles by shifting them in arrangement, has been developed and tested. As the result, it was shown that the newly developed multi-layer insulator has better thermal insulation performance than the existing one, i.e. the heat load of the newly developed insulator composed of 10 layers was reduced to 1/3 the heat load of the existing insulator, and the heat leak at the joint of the insulator in longitudinal direction of the pipe was negligible. In order to clarify thermal characteristics of the multi-layer insulator, the heat transfer through the insulator has been analyzed considering the radiation heat transfer by the netting spacer between the reflectors, and the temperature dependence on the emissivities and the heat transmission coefficients of these two components of the insulator. The analytical results were in good agreements with the experimental ones, so that the analytical method was shown to be valid. Concerning the influence of the number of layers and the layer density on the insulation performance of the insulator, analytical results showed that the multi-layer insulator with the number of layer about N = 20 and the layer density below 2.0 layer/mm was the most effective for the liquid helium pipe of a JT-60 cryopump. (author)

  18. CONCERT-'European Joint Programme for the Integration at Radiation Protection Research'; CONCERT-''European Joint Programme for the Integration at Radiation Protection Research''

    Energy Technology Data Exchange (ETDEWEB)

    Birschwilks, Mandy; Schmitt-Hannig, Annemarie [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Internationale und Nationale Zusammenarbeit im Strahlenschutz; Jung, Thomas [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Strahlenschutz und Gesundheit

    2016-08-01

    In 2009 the High Level Expert Group (HLEG) on low dose research recommended the development of a scientific platform for low dose radiation research. The foundation of MELODI (Multidisciplinary European Low Dose Initiative) occurred in 2010. In 2015 a new project on radiation protection research was established: CONCERT (European Joint Programme for the Integration at Radiation Protection Research). The aim is the coordination of the already existing scientific platforms MELODI (radiation effects and interactions), ALLIANCE (radioecology), NERIS (nuclear and radiological emergency protection) and EURADOS (radiation dosimetry). With CONCERT an efficient use of this infrastructure for research cooperation and transparency is intended.

  19. Improving Integrated Operation in the Joint Integrated Mission Model (JIMM) and the Simulated Warfare Environment Data Transfer (SWEDAT) Protocol

    National Research Council Canada - National Science Library

    Mutschler, David W

    2005-01-01

    ...). It allows integrated operation of resources whereby the JIMM threat environment, stimulators virtual cockpits, systems under test, and other agents are combined within the same simulation exercise...

  20. Statement of the American Psychological Association in response to the "joint principles: integrating behavioral health care into the patient-centered medical home".

    Science.gov (United States)

    Anderson, Norman B; Belar, Cynthia D; Cubic, Barbara A; Garrison, Ellen G; Johnson, Suzanne Bennett; Kaslow, Nadine J

    2014-06-01

    Comments on the article "Joint principles: Integrating behavioral health care into the patient-centered medical home" (see record 2014-24217-011), presented by the Working Party Group on Integrated Behavioral Healthcare. The American Psychological Association (APA) shares concerns about the lack of reference to behavioral health care in the original 2007 Joint Principles of the Patient-Centered Medical Home for which this new document is intended to supplement but not replace. The decision to support the supplemental Joint Principles was not an easy one for APA, as there is one area of significant concern. That concern is related to the use of the term "physician-directed medical practice"

  1. Wnt9a signaling is required for joint integrity and regulation of Ihh during chondrogenesis.

    Science.gov (United States)

    Später, Daniela; Hill, Theo P; O'sullivan, Roderick J; Gruber, Michaela; Conner, David A; Hartmann, Christine

    2006-08-01

    Joints, which separate skeleton elements, serve as important signaling centers that regulate the growth of adjacent cartilage elements by controlling proliferation and maturation of chondrocytes. Accurate chondrocyte maturation is crucial for endochondral ossification and for the ultimate size of skeletal elements, as premature or delayed maturation results predominantly in shortened elements. Wnt9a has previously been implicated as being a player in joint induction, based on gain-of function experiments in chicken and mouse. We show that loss of Wnt9a does not affect joint induction, but results to synovial chondroid metaplasia in some joints. This phenotype can be enhanced by removal of an additional Wnt gene, Wnt4, suggesting that Wnts are playing a crucial role in directing bi-potential chondro-synovioprogenitors to become synovial connective tissue, by actively suppressing their chondrogenic potential. Furthermore, we show that Wnt9a is a temporal and spatial regulator of Indian hedgehog (Ihh), a central player of skeletogenesis. Loss of Wnt9a activity results in transient downregulation of Ihh and reduced Ihh-signaling activity at E12.5-E13.5. The canonical Wnt/beta-catenin pathway probably mediates regulation of Ihh expression in prehypertrophic chondrocytes by Wnt9a, because embryos double-heterozygous for Wnt9a and beta-catenin show reduced Ihh expression, and in vivo chromatin immunoprecipitation demonstrates a direct interaction between the beta-catenin/Lef1 complex and the Ihh promoter.

  2. Effect of Gold on the Microstructural Evolution and Integrity of a Sintered Silver Joint

    Science.gov (United States)

    Muralidharan, Govindarajan; Leonard, Donovan N.; Meyer, Harry M.

    2017-07-01

    There is a need for next-generation, high-performance power electronic packages and systems employing wide-bandgap devices to operate at high temperatures in automotive and electric grid applications. Sintered silver joints are currently being evaluated as an alternative to Pb-free solder joints. Of particular interest is the development of joints based on silver paste consisting of nano- or micron-scale particles that can be processed without application of external pressure. The microstructural evolution at the interface of a pressureless-sintered silver joint formed between a SiC die with Ti/Ni/Au metallization and an active metal brazed (AMB) substrate with Ag metallization at 250°C has been evaluated using scanning electron microscopy (SEM), x-ray microanalysis, and x-ray photoelectron spectroscopy (XPS). Results from focused ion beam (FIB) cross-sections show that, during sintering, pores in the sintered region near to the Au layer tend to be narrow and elongated with long axis oriented parallel to the interface. Further densification results in formation of many small, relatively equiaxed pores aligned parallel to the interface, creating a path for easy crack propagation. X-ray microanalysis results confirm interdiffusion between Au and Ag and that a region with poor mechanical strength is formed at the edge of this region of interdiffusion.

  3. Optimal Partner Combination for Joint Distribution Alliance using Integrated Fuzzy EW-AHP and TOPSIS for Online Shopping

    Directory of Open Access Journals (Sweden)

    Yandong He

    2016-04-01

    Full Text Available With the globalization of online shopping, deterioration of the ecological environment and the increasing pressure of urban transportation, a novel logistics service mode—joint distribution (JD—was developed. Selecting the optimal partner combination is important to ensure the joint distribution alliance (JDA is sustainable and stable, taking into consideration conflicting criteria. In this paper, we present an integrated fuzzy entropy weight, fuzzy analytic hierarchy process (fuzzy EW-AHP and fuzzy technique for order preference by similarity to an ideal solution (TOPSIS approach to select the optimal partner combination of JDA. A three-phase approach is proposed. In the first phase, we identify partner combination evaluation criteria using an economy-society-environment-flexibility (ESEF framework from a perspective that considers sustainability. In the second phase, the criteria weights and criteria combination performance of different partner combinations were calculated by using an integrated fuzzy EW-AHP approach considering the objective and subjective factors of experts. In the third phase, the JDA partner combinations are ranked by employing fuzzy TOPSIS approach. The sensitivity analysis is considered for the optimal partner combination. Taking JDA in Chongqing for example, the results indicate the alternative partner combination 3 (PC3 is always ranked first no matter how the criteria weights change. It is effective and robust to apply the integrated fuzzy EW-AHP and TOPSIS approach to the partner selection of JDA.

  4. Design of photonic phased array switches using nano electromechanical systems on silicon-on-insulator integration platform

    Science.gov (United States)

    Hussein, Ali Abdulsattar

    This thesis presents an introduction to the design and simulation of a novel class of integrated photonic phased array switch elements. The main objective is to use nano-electromechanical (NEMS) based phase shifters of cascaded under-etched slot nanowires that are compact in size and require a small amount of power to operate them. The structure of the switch elements is organized such that it brings the phase shifting elements to the exterior sides of the photonic circuits. The transition slot couplers, used to interconnect the phase shifters, are designed to enable biasing one of the silicon beams of each phase shifter from an electrode located at the side of the phase shifter. The other silicon beam of each phase shifter is biased through the rest of the silicon structure of the switch element, which is taken as a ground. Phased array switch elements ranging from 2x2 up to 8x8 multiple-inputs/multiple-outputs (MIMO) are conveniently designed within reasonable footprints native to the current fabrication technologies. Chapter one presents the general layout of the various designs of the switch elements and demonstrates their novel features. This demonstration will show how waveguide disturbances in the interconnecting network from conventional switch elements can be avoided by adopting an innovative design. Some possible applications for the designed switch elements of different sizes and topologies are indicated throughout the chapter. Chapter two presents the design of the multimode interference (MMI) couplers used in the switch elements as splitters, combiners and waveguide crossovers. Simulation data and design methodologies for the multimode couplers of interest are detailed in this chapter. Chapter three presents the design and analysis of the NEMS-operated phase shifters. Both simulations and numerical analysis are utilized in the design of a 0°-180° capable NEMS-operated phase shifter. Additionally, the response of some of the designed photonic phased

  5. Integrated FEM-DBEM simulation of crack propagation in AA2024-T3 FSW butt joints considering manufacturing effects

    DEFF Research Database (Denmark)

    Sonne, Mads Rostgaard; Carlone, P.; Citarella, R.

    2015-01-01

    This paper deals with a numerical and experimental investigation on the influence of residual stresses on fatigue crack growth in AA2024-T3 friction stir welded butt joints. An integrated FEM-DBEM procedure for the simulation of crack propagation is proposed and discussed. A numerical FEM model...... of the welding process of precipitation hardenable AA2024-T3 aluminum alloy is employed to infer the process induced residual stress field. The reliability of the FEM simulations with respect to the induced residual stresses is assessed comparing numerical outcomes with experimental data obtained by means...

  6. Integrating a vented airspace into a spray-foam insulated solid masonry historic building in a cold climate: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Tzekova, Ekaterina; Pressnail, K.D.; Binkley, Clarissa [Department of Civil Engineering, University of Toronto (Canada); Pearson, Nastassja [Halsall Associates Limited (Canada); Pasqualini, Paul [Engineering Link Inc (Canada); Aikin, Craig [Halcrow Yolles (Canada)

    2011-07-01

    Thermal insulation was not included during the construction of historic brick buildings in Canada. Although thermal retrofits can improve building energy performance and occupant comfort, heritage requirements restrict the use of internal insulation. This paper presents an innovative Vented Masonry Retrofit (VMR), which consists of creating a vented airspace by incorporating Mortairvent between the insulation and the masonry. A numerical model and a field trial involving a three-storey heritage building were performed to compare the hygrothermal performance of the VMR with that of standard interior insulation. Temperature and relative humidity were collected during the winter months in foam-insulated, side-by-side wall assemblies along the east and south facing walls using both approaches. Modeling results predicted that using VMR assemblies would reduce the moisture content in both east and south elevations to below that obtained with standard insulation. However, the field trial showed improvement only along the south facade. Long term performance evaluation is required far a better evaluation of the VMR approach.

  7. Ideal Compliant Joints and Integration of Computer Aided Design and Analysis

    Science.gov (United States)

    2013-11-17

    many MBS applications ( Vallejo et al., 2003; Hamed et al, 2011; Shabana et al, 2012). This can be achieved using ANCF finite elements which allow for...mechanical joints between finite elements can be formulated using linear connectivity conditions ( Vallejo et al., 2003; Hamed et al, 2011; Shabana...function of the damping stress dσ and the strain rate ε as ( Vallejo et al, 2005)  V dd dVP 2 1 T εσ

  8. Research on Joint Parameter Inversion for an Integrated Underground Displacement 3D Measuring Sensor

    Directory of Open Access Journals (Sweden)

    Nanying Shentu

    2015-04-01

    Full Text Available Underground displacement monitoring is a key means to monitor and evaluate geological disasters and geotechnical projects. There exist few practical instruments able to monitor subsurface horizontal and vertical displacements simultaneously due to monitoring invisibility and complexity. A novel underground displacement 3D measuring sensor had been proposed in our previous studies, and great efforts have been taken in the basic theoretical research of underground displacement sensing and measuring characteristics by virtue of modeling, simulation and experiments. This paper presents an innovative underground displacement joint inversion method by mixing a specific forward modeling approach with an approximate optimization inversion procedure. It can realize a joint inversion of underground horizontal displacement and vertical displacement for the proposed 3D sensor. Comparative studies have been conducted between the measured and inversed parameters of underground horizontal and vertical displacements under a variety of experimental and inverse conditions. The results showed that when experimentally measured horizontal displacements and vertical displacements are both varied within 0 ~ 30 mm, horizontal displacement and vertical displacement inversion discrepancies are generally less than 3 mm and 1 mm, respectively, under three kinds of simulated underground displacement monitoring circumstances. This implies that our proposed underground displacement joint inversion method is robust and efficient to predict the measuring values of underground horizontal and vertical displacements for the proposed sensor.

  9. Electrical insulator requirements for mirror fusion reactors

    International Nuclear Information System (INIS)

    Condit, R.H.; Van Konynenburg, R.A.

    1977-01-01

    The requirements for mirror fusion electrical insulators are discussed. Insulators will be required at the neutral beam injectors, injector power supplies, direct converters, and superconducting magnets. Insulators placed at the neutral beam injectors will receive the greatest radiation exposure, 10 14 to 10 16 neutrons/m 2 .s and 0.3 to 3 Gy/s (10 5 to 10 6 R/h) of gamma rays, with shielding. Direct converter insulators may receive the highest temperature (up to 1300 0 K), but low voltage holding requirements. Insulators made from organic materials (e.g., plastics) for the magnet coils may be satisfactory. Immediate conductivity increases of all insulators result from gamma irradiation. With an upper limit to gamma flux exposures of 300 Gy/s in a minimally shielded region, the conductivity could reach 10 -6 S/m. Damage from neutron irradiation may not be serious during several years' exposure. Surface changes in ceramics at the neutral beam injector may be serious. The interior of the injector will contain atomic hydrogen, and sputtering may transfer material away from or onto the ceramic insulators. Unknown and potentially damaging interactions between irradiation, electric fields, temperature gradients, cycling of temperature, surface and joint reactions, sputtering, polarization, and electrotransport in the dielectrics are of concern. Materials research to deal with these problems is needed

  10. High-quality MOVPE butt-joint integration of InP/AlGaInAs/InGaAsP-based all-active optical components

    DEFF Research Database (Denmark)

    Kulkova, Irina; Kadkhodazadeh, Shima; Kuznetsova, Nadezda

    2014-01-01

    In this paper, we demonstrate the applicability of MOVPE butt-joint regrowth for integration of all-active InP/AlGaAs/InGaAsP optical components and the realization of high-functionality compact photonic devices. Planar high-quality integration of semiconductor optical amplifiers of various epi...

  11. Economically optimal thermal insulation

    Energy Technology Data Exchange (ETDEWEB)

    Berber, J.

    1978-10-01

    Exemplary calculations to show that exact adherence to the demands of the thermal insulation ordinance does not lead to an optimal solution with regard to economics. This is independent of the mode of financing. Optimal thermal insulation exceeds the values given in the thermal insulation ordinance.

  12. Joint Institute for Nuclear Research as an example of socialist integration in science

    International Nuclear Information System (INIS)

    Bogolyubov, N.N.

    1979-01-01

    History of establishing, main directions of works and some results of investigations which have been carried out in the Joint Institute of Nuclear Research according to the program of the JINR member-states are stated as well as directions of the JINR co-operation with other countries are given. In detail, main works are stated in the field of high energy physics, theoretical nuclear physics, investigation of interactions of elementary particles, nuclear spectroscopy of nuclides. Examples are given of joint researches which have been conducted by scientists from the JINR together with scientists from other scientific research centers of the JINR member-states and other countries. Content is stated of works in the field of synthesis of ultraheavy elements and development of methods of study as their chemical properties. Composition of the JINR computer center is given as well as the list of problems which are solved at this center. Some results are given of works conducted in the JINR in the field of development of equipment for nuclear-physical researches and improvement of accelerators. Some results are presented of the JINR activity and plans for future [ru

  13. High Performance Slab-on-Grade Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Louise F. [NorthernSTAR, St. Paul, MN (United States); Mosiman, Garrett E. [NorthernSTAR, St. Paul, MN (United States)

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  14. Thermal insulating panel

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J.T.

    1985-09-11

    A panel of thermal insulation material has at least one main portion which comprises a dry particulate insulation material compressed within a porous envelope so that it is rigid or substantially rigid and at least one auxiliary portion which is secured to and extends along at least one of the edges of the main portions. The auxiliary portions comprise a substantially uncompressed dry particulate insulation material contained within an envelope. The insulation material of the auxiliary portion may be the same as or may be different from the insulation material of the main portion. The envelope of the auxiliary portion may be made of a porous or a non-porous material. (author).

  15. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    The goal of this research is to provide durable and long-term water management solutions using exterior insulating sheathing as part of the water management system. It is possible to tape or seal the joints in insulating sheathing to create a drainage plane and even an air control layer. There exists the material durability component of the tape as well as the system durability component being the taped insulating sheathing as the drainage plane. This measure guideline provides best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant issues were discussed with the group, which are required to make taped insulating sheathing a simple, long-term, and durable drainage plane: horizontal joints should be limited or eliminated wherever possible; where a horizontal joint exists use superior materials; and frequent installation inspection and regular trade training are required to maintain proper installation.

  16. Investigation Of The Effects Of Reflow Profile Parameters On Lead-free Solder Bump Volumes And Joint Integrity

    Science.gov (United States)

    Amalu, E. H.; Lui, Y. T.; Ekere, N. N.; Bhatti, R. S.; Takyi, G.

    2011-01-01

    The electronics manufacturing industry was quick to adopt and use the Surface Mount Technology (SMT) assembly technique on realization of its huge potentials in achieving smaller, lighter and low cost product implementations. Increasing global customer demand for miniaturized electronic products is a key driver in the design, development and wide application of high-density area array package format. Electronic components and their associated solder joints have reduced in size as the miniaturization trend in packaging continues to be challenged by printing through very small stencil apertures required for fine pitch flip-chip applications. At very narrow aperture sizes, solder paste rheology becomes crucial for consistent paste withdrawal. The deposition of consistent volume of solder from pad-to-pad is fundamental to minimizing surface mount assembly defects. This study investigates the relationship between volume of solder paste deposit (VSPD) and the volume of solder bump formed (VSBF) after reflow, and the effect of reflow profile parameters on lead-free solder bump formation and the associated solder joint integrity. The study uses a fractional factorial design (FFD) of 24-1 Ramp-Soak-Spike reflow profile, with all main effects and two-way interactions estimable to determine the optimal factorial combination. The results from the study show that the percentage change in the VSPD depends on the combination of the process parameters and reliability issues could become critical as the size of solder joints soldered on the same board assembly vary greatly. Mathematical models describe the relationships among VSPD, VSBF and theoretical volume of solder paste. Some factors have main effects across the volumes and a number of interactions exist among them. These results would be useful for R&D personnel in designing and implementing newer applications with finer-pitch interconnect.

  17. Flexible, pre-insulated pipelines for heat and water supply. Systems with integrated quality and service; Flexible, vorgedaemmte Rohrsysteme fuer die Versorgungstechnik. Gesamtsysteme mit Qualitaet und Service

    Energy Technology Data Exchange (ETDEWEB)

    Hetzel, Michaela [Uponor Central Europe, Hassfurt (Germany). Unternehmenskommunikation

    2010-10-15

    Flexible pipes are suited for heat distribution, cooling water and freshwater transport. Uponor uses a modified, cross-linked polythene for insulation. The material is flexible, ageing-resistant, and will reduce the heat loss. Pipes are supplied to the construction site within two days, cut to measure and with all required parts. (orig.)

  18. CONCERT. ''European joint programme for the integration of radiation protection research''; CONCERT. Gemeinsame Europaeische Forschungsfoerderung

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Hannig, A.; Birschwilks, M.; Jung, T. [Bundesamt fuer Strahlenschutz (Germany)

    2016-07-01

    CONCERT is a joint project of the EU and its member states which assume joint financing: Over the next five years the largest European radiation protection programme so far will have available about 28 Million Euros for research and integrative measures, whereby the European Commission will bear 70 per cent of the costs. Integrative measures include, among others, targeted vocational education and training of junior researchers in radiation protection, better access to research and irradiation facilities for scientists, as well as a stronger connection of universities and research centres in radiation protection research.

  19. Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team 1998

    Science.gov (United States)

    Hesselink, Lambertus

    1999-01-01

    The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available under the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching and vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.

  20. Summary of Work for Joint Research Interchanges with DARWIN Integrated Product Team

    Science.gov (United States)

    Hesselink, Lambertus

    1999-01-01

    The intent of Stanford University's SciVis group is to develop technologies that enabled comparative analysis and visualization techniques for simulated and experimental flow fields. These techniques would then be made available un- der the Joint Research Interchange for potential injection into the DARWIN Workspace Environment (DWE). In the past, we have focused on techniques that exploited feature based comparisons such as shock and vortex extractions. Our current research effort focuses on finding a quantitative comparison of general vector fields based on topological features. Since the method relies on topological information, grid matching an@ vector alignment is not needed in the comparison. This is often a problem with many data comparison techniques. In addition, since only topology based information is stored and compared for each field, there is a significant compression of information that enables large databases to be quickly searched. This report will briefly (1) describe current technologies in the area of comparison techniques, (2) will describe the theory of our new method and finally (3) summarize a few of the results.

  1. Integrated gasification combined cycle and steam injection gas turbine powered by biomass joint-venture evaluation

    International Nuclear Information System (INIS)

    Sterzinger, G.J.

    1994-05-01

    This report analyzes the economic and environmental potential of biomass integrated gasifier/gas turbine technology including its market applications. The mature technology promises to produce electricity at $55--60/MWh and to be competitive for market applications conservatively estimated at 2000 MW. The report reviews the competitiveness of the technology of a stand-alone, mature basis and finds it to be substantial and recognized by DOE, EPRI, and the World Bank Global Environmental Facility

  2. European networks in the field of structural integrity managed by the Joint Research Centre of the EC

    International Nuclear Information System (INIS)

    Crutzen, S.; Estorff, U. von

    1998-01-01

    Three European networks on structural integrity aspects of ageing nuclear components are presently managed by the Institute for Advanced Materials of the Joint Research Centre of the European Commission: AMES (Ageing Materials Evaluation and Studies), ENIQ (European Network for Inspection Qualification) and NESC (Network for Evaluating Steel Components). These club-type co-operations involving nuclear industry have the following broad objectives: 1) the integration of fragmented R and D work on structural integrity through the execution of studies and projects at European level; 2) the support or introduction of a long term strategy in some of the European groups or actions conducted by the Commission; 3) the use of European networks to influence studies and project results in the direction of codes and standards in Europe and for the harmonisation of codes in general The networks were launched during 1992 and 1993. Since then considerable progress has been achieved: AMES has identified priority items in reactor materials ageing research, which are of common interest. They were fit into a general strategy to be followed by AMES. ENIQ has moved to a Steering Committee composed of utilities as voting members. An important step was reached by issuing a consensus document about a European methodology for qualification of non-destructive testing and by developing pilot exercises. The NESC initiative provides a means for EU countries to collaborate in large scale shared cost experiments that investigate the entire process of structural integrity assessment. The pressurised thermal shock experiment of the first project NESC I has taken place during spring 1997 and it made use of the AEA Technology spinning cylinder facility. Evaluation of the test data is going on through destructive examination. (author)

  3. Panels of microporous insulation

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.J.

    1990-08-07

    Microporous thermal insulation materials have a lattice structure in which the average interstitial dimension is less than the mean free path of the molecules of air or other gas in which the material is arranged. This results in a heat flow which is less than that attributable to the molecular heat diffusion of the gas. According to this invention, a method is provided for manufacturing panels of microporous thermal insulation, in particular such panels in which the insulation material is bonded to a substrate. The method comprises the steps of applying a film of polyvinyl acetate emulsion to a non-porous substrate, and compacting powdery microporous thermal insulation material against the film so as to cause the consolidated insulation material to bond to the substrate and form a panel. The polyvinyl acetate may be applied by brushing or spraying, and is preferably allowed to dry prior to compacting the insulation material. 1 fig.

  4. Wall insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Kostek, P.T.

    1987-08-11

    In a channel specially designed to fasten semi-rigid mineral fibre insulation to masonry walls, it is known to be constructed from 20 gauge galvanized steel or other suitable material. The channel is designed to have pre-punched holes along its length for fastening of the channel to the drywall screw. The unique feature of the channel is the teeth running along its length which are pressed into the surface of the butted together sections of the insulation providing a strong grip between the two adjacent pieces of insulation. Of prime importance to the success of this system is the recent technological advancements of the mineral fibre itself which allow the teeth of the channel to engage the insulation fully and hold without mechanical support, rather than be repelled or pushed back by the inherent nature of the insulation material. After the insulation is secured to the masonry wall by concrete nail fastening systems, the drywall is screwed to the channel.

  5. A Non-Ventilated Solar Façade Concept Based on Selective and Transparent Insulation Material Integration: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Miroslav Čekon

    2017-06-01

    Full Text Available A new solar façade concept based on transparent insulation and a selective absorber is proposed, tested and compared with conventional insulation and a non-selective type of absorber, respectively. The presented study focuses on an experimental non-ventilated solar type of façade exposed to solar radiation both in the laboratory and in outdoor tests. Due to the high solar absorbance level of the façade, high- and low-emissivity contributions were primarily analysed. All of the implemented materials were contrasted from the thermal and optical point of view. An analysis was made of both thermodynamic and steady state procedures affecting the proposed solar façade concept. Experimental full scale tests on real building components were additionally involved during summer monitoring. An indicator of the temperature response generated by solar radiation exposure demonstrates the outdoor performance of the façade is closely related to overheating phenomena. From the thermal point of view, the proposed transparent insulation and selective absorber concept corresponds to the performance of conventional thermal insulation of identical material thickness; however, the non-selective prototype only provides 50% thermal performance. The results of the solar-based experiments show that with a small-scale experimental prototype, approximately no significant difference is measured when compared with a non-selective absorber type. The only difference was achieved at the maximum of 2.5 K, when the lower temperature was obtained in the solar selective concept. At the full-scale outdoor mode, the results indicate a maximum of 3.0 K difference, however the lower temperature achieves a non-selective approach. This solar façade can actively contribute to the thermal performance of building components during periods of heating.

  6. AlGaAs-On-Insulator nonlinear photonics

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm......We present an AlGaAs-on-insulator platform for integrated nonlinear photonics. We demonstrate the highest reported conversion efficiency and ultra-broadband four-wave mixing for an integrated platform around 1550nm...

  7. Integral blow moulding for cycle time reduction of CFR-TP aluminium contour joint processing

    Science.gov (United States)

    Barfuss, Daniel; Würfel, Veit; Grützner, Raik; Gude, Maik; Müller, Roland

    2018-05-01

    Integral blow moulding (IBM) as a joining technology of carbon fibre reinforced thermoplastic (CFR-TP) hollow profiles with metallic load introduction elements enables significant cycle time reduction by shortening of the process chain. As the composite part is joined to the metallic part during its consolidation process subsequent joining steps are omitted. In combination with a multi-scale structured load introduction element its form closure function enables to pass very high loads and is capable to achieve high degrees of material utilization. This paper first shows the process set-up utilizing thermoplastic tape braided preforms and two-staged press and internal hydro formed load introduction elements. Second focuses on heating technologies and process optimization. Aiming at cycle time reduction convection and induction heating in regard to the resulting product quality is inspected by photo micrographs and computer tomographic scans. Concluding remarks give final recommendations for the process design in regard to the structural design.

  8. Project of integrity assessment of flawed components with structural discontinuity (IAF). Data book for residual stress analysis in weld joint. Analysis model of dissimilar metal weld joint applied post weld heat treatment (PWHT)

    International Nuclear Information System (INIS)

    2012-12-01

    The project of Integrity Assessment of Flawed Components with Structural Discontinuity (IAF) was entrusted to Japan Power Engineering and Inspection Corporation (JAPEIC) from Nuclear and Industrial Safety Agency (NISA) and started from FY 2001. And then, it was taken over to Japan Nuclear Energy Safety Organization (JNES) which was established in October 2003 and carried out until FY 2007. In the IAF project, weld joints between nickel based alloys and low alloy steels around penetrations in reactor vessel, safe-end of nozzles and shroud supports were selected from among components and pipe arrangements in nuclear power plants, where high residual stresses were generated due to welding and complex structure. Residual stresses around of the weld joints were estimated by finite element analysis method (FEM) with a general modeling method, then the reasonability and the conservativeness was evaluated. In addition, for postulated surface crack of stress corrosion cracking (SCC), a simple calculation method of stress intensity factor (K) required to estimate the crack growth was proposed and the effectiveness was confirmed. JNES compiled results of the IAF project into Data Books of Residual Stress Analysis of Weld Joint, and Data Book of Simplified Stress Intensity Factor Calculation for Penetration of Reactor as typical Structure Discontinuity, respectively. Data Books of Residual Stress Analysis in Weld Joint. 1. Butt Weld Joint of Small Diameter Cylinder (4B Sch40) (JNES-RE-2012-0005), 2. Dissimilar Metal Weld Joint in Safe End (One-Side Groove Joint (JNES-RE-2012-0006), 3. Dissimilar Metal Weld Joint in Safe End (Large Diameter Both-Side Groove Joint) (JNES-RE-2012-0007), 4. Weld Joint around Penetrations in Reactor Vessel (Insert Joint) (JNES-RE-2012-0008), 5. Weld Joint in Shroud Support (H8, H9, H10 and H11 Welds) (JNES-RE-2012-0009), 6. Analysis Model of Dissimilar Metal Weld Joint Applied Post Weld Heat Treatment (PWHT) (JNES-RE-2012-0010). Data Book of

  9. Translucent insulating building envelope

    DEFF Research Database (Denmark)

    Rahbek, Jens Eg

    1997-01-01

    A new type of translucent insulating material has been tested. This material is made of Celulose-Acetat and have a honey-comb structure. The material has a high solar transmittance and is highly insulating. The material is relatively cheap to produce. Danish Title: Translucent isolerende klimaskærm....

  10. Heat insulation support device

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki; Koda, Tomokazu; Motojima, Osamu; Yamamoto, Junya.

    1994-01-01

    The device of the present invention comprises a plurality of heat insulation legs disposed in a circumferential direction. Each of the heat insulative support legs has a hollow shape, and comprises an outer column and an inner column as support structures having a heat insulative property (heat insulative structure), and a thermal anchor which absorbs compulsory displacement by a thin flat plate (displacement absorber). The outer column, the thermal anchor and the inner column are connected by a support so as to offset the positional change of objects to be supported due to shrinkage when they are shrunk. In addition, the portion between the superconductive coils as the objects to be supported and the inner column is connected by the support. The superconductive thermonuclear device is entirely contained in a heat insulative vacuum vessel, and the heat insulative support legs are disposed on a lower lid of the heat insulative vacuum vessel. With such a constitution, they are strengthened against lateral load and buckling, thereby enabling to reduce the amount of heat intrusion while keeping the compulsory displacement easy to be absorbed. (I.N.)

  11. Policy Goals of European Integration and Competitiveness in Academic Collaborations: An Examination of Joint Master's and Erasmus Mundus Programmes

    Science.gov (United States)

    Papatsiba, Vassiliki

    2014-01-01

    This study examines policy goals pertaining to joint Master's in Europe as presented in Bologna-related and Erasmus Mundus (EM) policy texts. The profile of joint programmes has risen in the aftermath of the Bologna Process (BP), together with the launch of the EU EM. Despite a European policy tradition of cooperation in higher education (HE),…

  12. Superconductor-insulator-normal-conductor-insulator-superconductor (Nb/Al{sub x}O{sub y}/Al/Al{sub x}O{sub y}/Nb) process development for integrated circuit applications

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, D.; Buchholz, F.M.; Schulze, H.; Khabipov, M.I.; Kessel, W.; Niemeyer, J. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    1998-12-01

    The paper reports on recent developments in a new technology process in LTS implementation to fabricate intrinsically shunted tunnel junctions. The process has been realized in SINIS Nb/Al{sub x}O{sub y}/Al/Al{sub x}O{sub y}/Nb multilayer thin-film technology. In various test series, circuits containing a large variety of single junctions and junction arrays of different contact areas and sizes were fabricated and measured. By variation of the oxidation parameters the fabrication process has been optimized for application in integrated circuits operating in RSFQ impulse logic. The junction parameter values realized for the critical current density j{sub c} range to up to about j{sub c} = 1000 A cm{sup -2}, those for the characteristic voltage V{sub c} to up to about V{sub c} = 230 {mu}V. The junctions show nearly non-hysteretic current-voltage characteristics; the intra-wafer parameter spread is below 10%. The junctions realized fulfil the requirements imposed for digital RSFQ circuit operation at clock frequencies in the lower GHz frequency range. (author)

  13. Theater Logistics Management: A Case for a Joint Distribution Solution

    National Research Council Canada - National Science Library

    Garcia, Jr, Mario V

    2008-01-01

    ...) and Joint Force Commanders (JFC). It explores the factors affecting theater distribution and joint theater logistics management including Joint Reception Staging Onward Movement and Integration (JRSOI) operations...

  14. Cooper Pairs in Insulators?

    International Nuclear Information System (INIS)

    Valles, James

    2008-01-01

    Nearly 50 years elapsed between the discovery of superconductivity and the emergence of the microscopic theory describing this zero resistance state. The explanation required a novel phase of matter in which conduction electrons joined in weakly bound pairs and condensed with other pairs into a single quantum state. Surprisingly, this Cooper pair formation has also been invoked to account for recently uncovered high-resistance or insulating phases of matter. To address this possibility, we have used nanotechnology to create an insulating system that we can probe directly for Cooper pairs. I will present the evidence that Cooper pairs exist and dominate the electrical transport in these insulators and I will discuss how these findings provide new insight into superconductor to insulator quantum phase transitions.

  15. Gas insulated substations

    CERN Document Server

    2014-01-01

    This book provides an overview on the particular development steps of gas insulated high-voltage switchgear, and is based on the information given with the editor's tutorial. The theory is kept low only as much as it is needed to understand gas insulated technology, with the main focus of the book being on delivering practical application knowledge. It discusses some introductory and advanced aspects in the meaning of applications. The start of the book presents the theory of Gas Insulated Technology, and outlines reliability, design, safety, grounding and bonding, and factors for choosing GIS. The third chapter presents the technology, covering the following in detail: manufacturing, specification, instrument transformers, Gas Insulated Bus, and the assembly process. Next, the book goes into control and monitoring, which covers local control cabinet, bay controller, control schemes, and digital communication. Testing is explained in the middle of the book before installation and energization. Importantly, ...

  16. Delivery of integrated diabetes care using logistics and information technology--the Joint Asia Diabetes Evaluation (JADE) program.

    Science.gov (United States)

    Chan, Juliana C N; Ozaki, Risa; Luk, Andrea; Kong, Alice P S; Ma, Ronald C W; Chow, Francis C C; Wong, Patrick; Wong, Rebecca; Chung, Harriet; Chiu, Cherry; Wolthers, Troels; Tong, Peter C Y; Ko, Gary T C; So, Wing-Yee; Lyubomirsky, Greg

    2014-12-01

    Diabetes is a global epidemic, and many affected individuals are undiagnosed, untreated, or uncontrolled. The silent and multi-system nature of diabetes and its complications, with complex care protocols, are often associated with omission of periodic assessments, clinical inertia, poor treatment compliance, and care fragmentation. These barriers at the system, patient, and care-provider levels have resulted in poor control of risk factors and under-usage of potentially life-saving medications such as statins and renin-angiotensin system inhibitors. However, in the clinical trial setting, use of nurses and protocol with frequent contact and regular monitoring have resulted in marked differences in event rates compared to epidemiological data collected in the real-world setting. The phenotypic heterogeneity and cognitive-psychological-behavioral needs of people with diabetes call for regular risk stratification to personalize care. Quality improvement initiatives targeted at patient education, task delegation, case management, and self-care promotion had the largest effect size in improving cardio-metabolic risk factors. The Joint Asia Diabetes Evaluation (JADE) program is an innovative care prototype that advocates a change in clinic setting and workflow, coordinated by a doctor-nurse team and augmented by a web-based portal, which incorporates care protocols and a validated risk engine to provide decision support and regular feedback. By using logistics and information technology, supported by a network of health-care professionals to provide integrated, holistic, and evidence-based care, the JADE Program aims to establish a high-quality regional diabetes database to reflect the status of diabetes care in real-world practice, confirm efficacy data, and identify unmet needs. Through collaborative efforts, we shall evaluate the feasibility, acceptability, and cost-effectiveness of this "high tech, soft touch" model to make diabetes and chronic disease care more

  17. Wrapped Multilayer Insulation

    Science.gov (United States)

    Dye, Scott A.

    2015-01-01

    New NASA vehicles, such as Earth Departure Stage (EDS), Orion, landers, and orbiting fuel depots, need improved cryogenic propellant transfer and storage for long-duration missions. Current cryogen feed line multilayer insulation (MLI) performance is 10 times worse per area than tank MLI insulation. During each launch, cryogenic piping loses approximately 150,000 gallons (equivalent to $300,000) in boil-off during transfer, chill down, and ground hold. Quest Product Development Corp., teaming with Ball Aerospace, developed an innovative advanced insulation system, Wrapped MLI (wMLI), to provide improved thermal insulation for cryogenic feed lines. wMLI is high-performance multilayer insulation designed for cryogenic piping. It uses Quest's innovative discrete-spacer technology to control layer spacing/ density and reduce heat leak. The Phase I project successfully designed, built, and tested a wMLI prototype with a measured heat leak 3.6X lower than spiral-wrapped conventional MLI widely used for piping insulation. A wMLI prototype had a heat leak of 7.3 W/m2, or 27 percent of the heat leak of conventional MLI (26.7 W/m2). The Phase II project is further developing wMLI technology with custom, molded polymer spacers and advancing the product toward commercialization via a rigorous testing program, including developing advanced vacuuminsulated pipe for ground support equipment.

  18. Survey of thermal insulation systems

    International Nuclear Information System (INIS)

    Kinoshita, Izumi

    1983-01-01

    Better thermal insulations have been developed to meet the growing demands of industry, and studies on thermal insulation at both high temperature and low temperature have been widely performed. The purpose of this survey is to summarize data on the performances and characteristics of thermal insulation materials and thermal insulation structures (for instance, gas cooled reactors, space vehicles and LNG storage tanks), and to discuss ravious problems regarding the design of thermal insulation structures of pool-type LMFBRs. (author)

  19. Fabrication of free standing LiNbO3 single crystal micro-platelets and their integration to Si-on-insulator platforms

    International Nuclear Information System (INIS)

    Lee, Yoo Seung; Lee, Sang-Shin; Lee, Wan-Gyu; Steier, William H.

    2011-01-01

    Free standing single crystal LiNbO 3 micro-platelets (mm long and 1 μm thick) have been obtained from a z-cut LiNbO 3 wafer by ion implantation and thermal treatment. X-ray diffraction measurement has proved that they have a single crystal structure. Their surface roughness and film quality have been investigated by atomic force microscope and field emission scanning electron microscope. These micro-platelets are transferable and bondable to other materials which require material properties of LiNbO 3 . They have been transferred, positioned and bonded to SiO 2 /LiNbO 3 , SiO 2 /Si, and Si-on-insulator (SOI: Si/SiO 2 /Si) by direct bonding method with optimum annealing conditions. For SiO 2 /Si and SOI substrates, there were large thermal mismatch between LiNbO 3 and Si. They were, however, bonded at high temperature since these ultra thin micro-platelets were flexible and stretchable. Finally, to realize multifunctional SOI applications, a hybrid structure of LiNbO 3 film and Si waveguide has been demonstrated.

  20. Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications

    Science.gov (United States)

    Al-mahmod, Md. Jubayer; Hyder, Rakib; Islam, Md Zahurul

    2017-07-01

    A nanosensor, based on a metal-insulator-metal (MIM) plasmonic ring resonator, is proposed for potential on-chip temperature sensing and its performance is evaluated numerically. The sensor components can be fabricated by using planar processes on a silicon substrate, making its manufacturing compatible to planar electronic fabrication technology. The sensor, constructed using silver as the metal rings and a thermo-optic liquid ethanol film between the metal layers, is capable of sensing temperature with outstanding optical sensitivity, as high as -0.53 nm/°C. The resonance wavelength is found to be highly sensitive to the refractive index of the liquid dielectric film. The resonance peak can be tuned according to the requirement of intended application by changing the radii of the ring resonator geometries in the design phase. The compact size, planar and silicon-based design, and very high resolutions- these characteristics are expected to make this sensor technology a preferred choice for lab-on-a-chip applications, as compared to other contemporary sensors.

  1. A Comparative Assessment of the Navy’s Future Naval Capabilities (FNC) Process and Joint Staff Capability Gap Assessment Process as Related to Pacific Commands (PACOM) Integrated Priority List Submission

    Science.gov (United States)

    2013-04-01

    based on personal interviews with Kit Carlan and Ken Bruner of PACOM, and PowerPoint slides dated March 23, 2011, and prepared by Kit Carlan. 8 The...Integration Branch, Joint Capability Division, J-8, Joint Staff; Mr. Ken Bruner , Science and Technology Advisor, PACOM; Mr. Kit Carlan, Future

  2. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  3. Lateral topological crystalline insulator heterostructure

    Science.gov (United States)

    Sun, Qilong; Dai, Ying; Niu, Chengwang; Ma, Yandong; Wei, Wei; Yu, Lin; Huang, Baibiao

    2017-06-01

    The emergence of lateral heterostructures fabricated by two-dimensional building blocks brings many exciting realms in material science and device physics. Enriching available nanomaterials for creating such heterostructures and enabling the underlying new physics is highly coveted for the integration of next-generation devices. Here, we report a breakthrough in lateral heterostructure based on the monolayer square transition-metal dichalcogenides MX2 (M  =  W, X  =  S/Se) modules. Our results reveal that the MX2 lateral heterostructure (1S-MX2 LHS) can possess excellent thermal and dynamical stability. Remarkably, the highly desired two-dimensional topological crystalline insulator phase is confirmed by the calculated mirror Chern number {{n}\\text{M}}=-1 . A nontrivial band gap of 65 meV is obtained with SOC, indicating the potential for room-temperature observation and applications. The topologically protected edge states emerge at the edges of two different nanoribbons between the bulk band gap, which is consistent with the mirror Chern number. In addition, a strain-induced topological phase transition in 1S-MX2 LHS is also revealed, endowing the potential utilities in electronics and spintronics. Our predictions not only introduce new member and vitality into the studies of lateral heterostructures, but also highlight the promise of lateral heterostructure as appealing topological crystalline insulator platforms with excellent stability for future devices.

  4. A Seismic Analysis for Reflective Metal Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyuhyung; Kim, Taesoon [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components.

  5. A Seismic Analysis for Reflective Metal Insulation

    International Nuclear Information System (INIS)

    Kim, Kyuhyung; Kim, Taesoon

    2016-01-01

    U.S. NRC (Nuclear Regulatory Commission) GSI- 191 (Generic Safety Issue-191) is concerned about the head-loss of emergency core cooling pumps caused by calcium silicate insulation debris accumulated on a sump screen when a loss of coolant accident (LOCA). In order to cope with the concern, many nuclear plants in U. S. have been replacing calcium silicate insulation in containment building with reflective metal insulation (RMI). In Korea, RMI has been used for only reactor vessels recently constructed, but the RMI was imported. Therefore, we have been developing the domestic design of RMI to supply to nuclear power plants under operation and construction in relation to the GSI-191. This paper covers that the structural integrity of the RMI assembly was evaluated under SSE (safety shutdown earthquake) load. An analysis model was built for the seismic test system of a reflective metal insulation assembly and pre-stress, modal, and spectrum analysis for the model were performed using a commercial structural analysis code, ANSYS. According to the results of the analyses, the buckles fastening the RMIs showed the structural integrity under the required response spectrum containing the safety shutdown earthquake loads applied to main components in containment building. Consequently, since the RMI isn't disassembled under the SSE load, the RMI is judged not to affect safety related components

  6. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME.

  7. Development of new methodologies to assess the structural integrity of the grouted joint of a 10MW wind turbine substructure

    DEFF Research Database (Denmark)

    Santos, Benjamin; Gintautas, Tomas; Sørensen, John Dalsgaard

    2018-01-01

    Monopiles are currently the most commonly used substructure in the offshore wind market due to their ease of installation in shallow to medium waters. The monopile and the transition piece are connected by a grouted joint. Fatigue and corrosion are two of the most important degradation mechanisms...

  8. Brazing technology of Ti alloy/stainless steel dissimilar metal joint at system integrated modular advanced reactor

    International Nuclear Information System (INIS)

    Kwon, Sang Chul; Kim, Sung Ho; Kim, Yong Wan; Kim, Jong In

    2001-02-01

    For the technoldogy development of brazing Ti alloy to stainless steel joints used at SMART, the status of brazing technology development, brazing processes, and the brazing technology of Ti alloy and stainless steel are reviewed. Because fusion welding process cannot be applied due to the formation of intermetallic compounds in the weld metal, brazing joint was selected at the design. The joint part is assembled with a thread composed with male part of Ti alloy tube and female part of stainless tube. The gap in the thread will be filled with brazing filler metal. However, brittle Ti-Fe intermetallic compounds are formed at the surface of stainless steel through the diffusion of Ti at the melt. Brazing conditions should be set-up to reduce the formation of intermetallic compounds. For that, 3 kinds of Ag filler metals were selected as the candidates and heating will be done with induction and electric furnaces. Through measuring of joint strength according to the control of pre- and post-braze treatment, heating rate and heating time, optimal brazing method will be fixed. To qualify the brazing procedure and performance and to check defects in final product, the inspection plan will be established according to the req2wuirements of AWS and ASME

  9. Insulation Reformulation Development

    Science.gov (United States)

    Chapman, Cynthia; Bray, Mark

    2015-01-01

    The current Space Launch System (SLS) internal solid rocket motor insulation, polybenzimidazole acrylonitrile butadiene rubber (PBI-NBR), is a new insulation that replaced asbestos-based insulations found in Space Shuttle heritage solid rocket boosters. PBI-NBR has some outstanding characteristics such as an excellent thermal erosion resistance, low thermal conductivity, and low density. PBI-NBR also has some significant challenges associated with its use: Air entrainment/entrapment during manufacture and lay-up/cure and low mechanical properties such as tensile strength, modulus, and fracture toughness. This technology development attempted to overcome these challenges by testing various reformulated versions of booster insulation. The results suggest the SLS program should continue to investigate material alternatives for potential block upgrades or use an entirely new, more advanced booster. The experimental design was composed of a logic path that performs iterative formulation and testing in order to maximize the effort. A lab mixing baseline was developed and documented for the Rubber Laboratory in Bldg. 4602/Room 1178.

  10. Self-Healing Wire Insulation

    Science.gov (United States)

    Parrish, Clyde F. (Inventor)

    2012-01-01

    A self-healing system for an insulation material initiates a self-repair process by rupturing a plurality of microcapsules disposed on the insulation material. When the plurality of microcapsules are ruptured, reactants within the plurality of microcapsules react to form a replacement polymer in a break of the insulation material. This self-healing system has the ability to repair multiple breaks in a length of insulation material without exhausting the repair properties of the material.

  11. Space shuttle SRM field joint: Review paper

    Directory of Open Access Journals (Sweden)

    S. Mohammad Gharouni

    2014-09-01

    Full Text Available Due to Challenger space shuttle accident in 1986, significant research has been done concerning structural behavior of field joints in solid rocket boosters (SRB. The structural deformations between the clevis inner leg and the tang (male-to-female parts of joint, the sealing of the O-ring to prevent the hot gas in joints, has been neglected causing the failure of the vehicle. Redesigning the field joint in SRB engine by accurate analysis of dynamic and thermal loads and by design of insulator and good O-ring, the leakiness of combustion hot gases was eliminated. Some parts of field joint such as capture feature (CF and its third O-ring, J-leg insulator and shim were added to redesigned field joint. Also, some adjustments in sealing system and pins were done to promote the efficiency of the field joint. Due to different experimental analysis on assembled field joints with default imperfections, redesigned joints operated well. These redesigned field joints are commonly used in aerospace and mechanical structures. This paper investigates the original and the redesigned field joints with additional explanations of different parts of the redesigned joints.

  12. Effect of an integrated approach of yoga therapy on quality of life in osteoarthritis of the knee joint: A randomized control study

    Directory of Open Access Journals (Sweden)

    John Ebnezar

    2011-01-01

    Full Text Available Aim: This study was designed to evaluate the efficacy of addition of integrated yoga therapy to therapeutic exercises in osteoarthritis (OA of knee joints. Materials and Methods: This was a prospective randomized active control trial. A total of t participants with OA of knee joints between 35 and 80 years (yoga, 59.56 ± 9.54 and control, 59.42 ± 10.66 from the outpatient department of Dr. John′s Orthopedic Center, Bengaluru, were randomly assigned to receive yoga or physiotherapy exercises after transcutaneous electrical stimulation and ultrasound treatment of the affected knee joints. Both groups practiced supervised intervention (40 min per day for 2 weeks (6 days per week with followup for 3 months. The module of integrated yoga consisted of shithilikaranavyayama (loosening and strengthening, asanas, relaxation techniques, pranayama, meditation and didactic lectures on yama, niyama, jnana yoga, bhakti yoga, and karma yoga for a healthy lifestyle change. The control group also had supervised physiotherapy exercises. A total of 118 (yoga and 117 (control were available for final analysis. Results: Significant differences were observed within (P < 0.001, Wilcoxon′s and between groups (P < 0.001, Mann-Whitney U-test on all domains of the Short Form-36 (P < 0.004, with better results in the yoga group than in the control group, both at 15 th day and 90 th day. Conclusion: An integrated approach of yoga therapy is better than therapeutic exercises as an adjunct to transcutaneous electrical stimulation and ultrasound treatment in improving knee disability and quality of life in patients with OA knees.

  13. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    Science.gov (United States)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-10-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions.

  14. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    International Nuclear Information System (INIS)

    He, Jingjing; Guan, Xuefei; Peng, Tishun; Liu, Yongming; Saxena, Abhinav; Celaya, Jose; Goebel, Kai

    2013-01-01

    This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic wafer-type sensors are employed to perform in situ non-destructive evaluation (NDE) during fatigue cyclical loading. PZT wafers are used to monitor the wave reflection from the boundaries of the fatigue crack at the edge of bolt joints. The group velocity of the guided wave is calculated to select a proper time window in which the received signal contains the damage information. It is found that the fatigue crack lengths are correlated with three main features of the signal, i.e., correlation coefficient, amplitude change, and phase change. It was also observed that a single feature cannot be used to quantify the damage among different specimens since a considerable variability was observed in the response from different specimens. A multi-feature integration method based on a second-order multivariate regression analysis is proposed for the prediction of fatigue crack lengths using sensor measurements. The model parameters are obtained using training datasets from five specimens. The effectiveness of the proposed methodology is demonstrated using several lap joint specimens from different manufactures and under different loading conditions. (paper)

  15. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  16. Irradiation effects on organic insulators

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1986-01-01

    The overall objective of this work is to contribute to development of organic insulators having the cryogenic neutron irradiation resistance required for MFE systems utilizing superconducting magnet confinement. The system for producing standard 3.2-mm (0.125-in) diameter rod specimens discussed in previous reports has been further refined to permit the fabrication of both fiber-reinforced and heat-resin specimens from hot-melt resin systems. The method has been successfully used to produce very high quality specimens duplicating the G-11CR system and specimens from a variant of that system eliminating a boron-containing additive. We have also produced specimens from an epoxy system suitable for impregnation or potting operations and from a bismaleimide polyimide system. These materials will be used in the first irradiation program in the National Low Temperature Neutron Irradiation Facility (NLTNIF) reactor at Oak Ridge. We have refined the 4-K torsional shear test method for evaluating radiation degradation of the fiber-matrix interface and have developed a method of quantitatively measuring changes in fracture energy as a function of radiation dose. Cooperative work with laboratories in Japan and England in this area is continuing and plans are being formulated for joint production, irradiation, and testing of specimens

  17. On results of tests of thermal insulation structural fragments for in-vessel equipment and pipelines of the VG-400 plant on vibrational and acoustic loads

    International Nuclear Information System (INIS)

    Ledenko, S.A.; Andreev, V.A.; Mirenkov, A.F.; Zakharov, V.A.; Suvorov, V.E.; Prokimnov, V.V.

    1990-01-01

    Results of vibrostrength and acoustic fatigue tests of the fragments of thermal insulation for in-vessel equipment and pipelines of the VG-400 reactor are presented. The insulation structure is based on the insulation layer made of steel foil and carbon materials. Weak points in the insulation structure, namely - the welded joints of stiffening ribs - are detected in the course of testing. A conclusion is made on the possibility of vibrational test substitution for the acoustic ones

  18. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  19. Improved cable insulation for superconducting magnets

    International Nuclear Information System (INIS)

    Anerella, M.; Ghosh, A.K.; Kelly, E.; Schmalzle, J.; Willen, E.; Fraivillig, J.; Ochsner, J.; Parish, D.J.

    1993-01-01

    Several years ago, Brookhaven joined with DuPont in a cooperative effort to develop improved cable insulation for SSC superconducting dipole magnets. The effort was supported by the SSC Central Design Group and later the SSC Laboratory. It was undertaken because turn-to-turn and midplane shorts were routinely being experienced during the assembly of magnets with coils made of the existing Kapton/Fiberglass (K/FG) system of Kapton film overwrapped with epoxy-impregnated fiberglass tape. Dissection of failed magnets showed that insulation disruption and punch-through was occurring near the inner edges of turns close to the magnet midplane. Coil pressures of greater than 17 kpsi were sufficient to disrupt the insulation at local high spots where wires in neighboring turns crossed one another and where the cable had been strongly compacted in the keystoning operation during cable manufacture. In the joint development program, numerous combinations of polyimide films manufactured by DuPont with varying configurations and properties (including thickness) were subjected to tests at Brookhaven. Early tests were bench trials using wrapped cable samples. The most promising candidates were used in coils and many of these assembled and tested as magnets in both the SSC and RHIC magnet programs currently underway. The Kapton CI (CI) system that has been adopted represents a suitable compromise of numerous competing factors. It exhibits improved performance in the critical parameter of compressive punch-through resistance as well as other advantages over the K/FG system

  20. Heat insulating plates

    Energy Technology Data Exchange (ETDEWEB)

    Allan, J.A.F.

    1976-10-28

    Micro-porous insulation plates are dealt with, for example, how they are used in the insulation of heat storage devices. Since one side of such plates is exposed to a temperature of over 700/sup 0/C, a shrinkage of the glass texture of the covering can occur, which can exceed the shrinkage of the inner micro-porous material, so that cracks and splits in the high temperature side of the covering can come about. The task of the invention is to design the plate in such a way as to prevent this from happening. For this purpose the plate is provided, according to invention specifications, with flutes, waves, ribs, waffle or grid patterns and the covering is set into the recesses originating from this.

  1. Green insulation: hemp fibers

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    2011-09-15

    Indian hemp (Cannabis indica) is known for its psychotropic values and it is banned in most countries. However, industrial hemp (Cannabis sativa) is known for its tough fibers. Several manufactures in Europe including, small niche players, have been marketing hemp insulation products for several years. Hemp is a low environmental impact material. Neither herbicide nor pesticide is used during the growth of hemp. The fibers are extracted in a waste-free and chemical-free mechanical process. Hemp can consume CO2 during its growth. In addition, hemp fiber can be disposed of harmlessly by composting or incineration at the end of its life. Hemp fibers are processed and treated only minimally to resist rot and fungal activity. There is little health risk when producing and installing the insulation, thanks to the absence of toxic additive. Its thermal resistance is comparable to mineral wool. But the development and marketing of hemp fibers may be restricted in North America.

  2. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  3. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  4. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  5. Insulating materials for optoelectronics

    International Nuclear Information System (INIS)

    Agullo-Lopez, F.

    1990-01-01

    Optoelectronics is an interdisciplinary field. Basic functions of an optoelectronic system include the generator of the optical signal, its transmission and handling and, finally, its detection, storage and display. A large variety of semiconductor and insulating materials are used or are being considered to perform those functions. The authors focus on insulating materials, mostly oxides. For signal generation, tunable solid state lasers, either vibronic or those based oon colour centres are briefly described, and their main operating parameters summarized. Reference is made to some developments on fiber and waveguide lasers. Relevant physical features of the silica fibres used for low-loss, long-band, optical transmission are reviewed, as well as present efforts to further reduce attenuation in the mid-infrared range. Particular attention is paid to photorefractive materials (LiNbO 3 , BGO, BSO, etc.), which are being investigated

  6. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  7. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. The design considerations and methods along with the development tests are presented. Special considerations to guard against adverse cracking of the insulation material, to maintain the clamp-pipe stiffness desired during a seismic event, to minimize clamp restraint on the pipe during normal pipe heatup, and to resist clamp rotation or spinning on the pipe are emphasized

  8. Insulated pipe clamp design

    International Nuclear Information System (INIS)

    Anderson, M.J.; Hyde, L.L.; Wagner, S.E.; Severud, L.K.

    1980-01-01

    Thin wall large diameter piping for breeder reactor plants can be subjected to significant thermal shocks during reactor scrams and other upset events. On the Fast Flux Test Facility, the addition of thick clamps directly on the piping was undesired because the differential metal temperatures between the pipe wall and the clamp could have significantly reduced the pipe thermal fatigue life cycle capabilities. Accordingly, an insulated pipe clamp design concept was developed. 5 refs

  9. Pourable Foam Insulation

    Science.gov (United States)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1989-01-01

    Report describes search for polyisocyanurate/polyurethane foam insulation with superior characteristics. Discusses chemistry of current formulations. Tests of formulations, of individual ingredients and or alternative new formulations described. Search revealed commercially available formulations exhibiting increased thermal stability at temperatures up to 600 degree C, pours readily before curing, presents good appearance after curing, and remains securely bonded to aluminum at cryogenic temperatures. Total of 42 different formulations investigated, 10 found to meet requirements.

  10. Reduction of heat insulation upon soaking of the insulation layer

    Science.gov (United States)

    Achtliger, J.

    1983-09-01

    Improved thermal protection of hollow masonry by introduction of a core insulation between the inner and outer shell is discussed. The thermal conductivity of insulation materials was determined in dry state and after soaking by water with different volume-related moisture contents. The interpolated thermal conductivity values from three measured values at 10 C average temperature are presented as a function of the pertinent moisture content. Fills of expanded polystyrene, perlite and granulated mineral fibers, insulating boards made of mineral fibers and in situ cellular plastics produced from urea-formaldehyde resin were investigated. Test results show a confirmation of thermal conductivity values for insulating materials in hollow masonry.

  11. Joint Urban Operations Joint Integrating Concept

    Science.gov (United States)

    2007-07-23

    concept could lead to a systems-engineering approach to urban operations based on the misconception that urban ecologies can be treated as if they...profits at the cost of irreparable societal and ecological destruction. The firms conduct a series of focus groups to determine what countermessages...Group, moving directly behind Task Force 1, quickly assemble “pop-up” prefabricated encampments to create temporary refugee camps off the main axis of

  12. Planar Fully-Depleted-Silicon-On-Insulator technologies: Toward the 28 nm node and beyond

    Science.gov (United States)

    Doris, B.; DeSalvo, B.; Cheng, K.; Morin, P.; Vinet, M.

    2016-03-01

    This paper presents a comprehensive overview of the research done in the last decade on planar Fully-Depleted-Silicon-On-Insulator (FDSOI) technologies in the frame of the joint development program between IBM, ST Microelectronics and CEA-LETI. In particular, we review the technological developments ranging from substrate engineering to process modules that enable functionality and improve FDSOI performance over several generations. Various multi Vt integration schemes to maximize the benefits of the thin BOX FDSOI platform are discussed. Manufacturability as well as scalability concerns are highlighted and addressed. In addition, this work provides understanding of the performance/power trade-offs for FDSOI circuits and device variability. Finally, clear directions for future application-specific products are given, demonstrating that FDSOI is an attractive CMOS option for next generation high performance and low-power applications.

  13. Electrical insulating liquid: A review

    Directory of Open Access Journals (Sweden)

    Deba Kumar Mahanta

    2017-08-01

    Full Text Available Insulating liquid plays an important role for the life span of the transformer. Petroleum-based mineral oil has become dominant insulating liquid of transformer for more than a century for its excellent dielectric and cooling properties. However, the usage of petroleum-based mineral oil, derived from a nonrenewable energy source, has affected the environment for its nonbiodegradability property. Therefore, researchers direct their attention to renewable and biodegradable alternatives. Palm fatty acid ester, coconut oil, sunflower oil, etc. are considered as alternatives to replace mineral oil as transformer insulation liquid. This paper gives an extensive review of different liquid insulating materials used in a transformer. Characterization of different liquids as an insulating material has been discussed. An attempt has been made to classify different insulating liquids-based on different properties.

  14. Advances in Thermal Insulation. Vacuum Insulation Panels and Thermal Efficiency to Reduce Energy Usage in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Thorsell, Thomas

    2012-07-01

    We are coming to realize that there is an urgent need to reduce energy usage in buildings and it has to be done in a sustainable way. This thesis focuses on the performance of the building envelope; more precisely thermal performance of walls and super insulation material in the form of vacuum insulation. However, the building envelope is just one part of the whole building system, and super insulators have one major flaw: they are easily adversely affected by other problems in the built environment. Vacuum Insulation Panels are one fresh addition to the arsenal of insulation materials available to the building industry. They are composite material with a core and an enclosure which, as a composite, can reach thermal conductivities as low as 0.004 W/(mK). However, the exceptional performance relies on the barrier material preventing gas permeation, maintaining a near vacuum into the core and a minimized thermal bridge effect from the wrapping of barrier material round the edge of a panel. A serpentine edge is proposed to decrease the heat loss at the edge. Modeling and testing shows a reduction of 60 % if a reasonable serpentine edge is used. A diffusion model of permeation through multilayered barrier films with metallization coatings was developed to predict ultimate service life. The model combines numerical calculations with analytical field theory allowing for more precise determination than current models. The results using the proposed model indicate that it is possible to manufacture panels with lifetimes exceeding 50 years with existing manufacturing. Switching from the component scale to the building scale; an approach of integrated testing and modeling is proposed. Four wall types have been tested in a large range of environments with the aim to assess the hydrothermal nature and significance of thermal bridges and air leakages. The test procedure was also examined as a means for a more representative performance indicator than R-value (in USA). The

  15. Magnetically insulated H- diodes

    International Nuclear Information System (INIS)

    Fisher, A.; Bystritskii, V.; Garate, E.; Prohaska, R.; Rostoker, N.

    1993-01-01

    At the Univ. of California, Irvine, the authors have been studying the production of intense H - beams using pulse power techniques for the past 7 years. Previously, current densities of H - ions for various diode designs at UCI have been a few A/cm 2 . Recently, they have developed diodes similar to the coaxial design of the Lebedev Physical Institute, Moscow, USSR, where current densities of up to 200 A/cm 2 were reported using nuclear activation of a carbon target. In experiments at UCI employing the coaxial diode, current densities of up to 35 A/cm 2 from a passive polyethylene cathode loaded with TiH 2 have been measured using a pinhole camera and CR-39 track recording plastic. The authors have also been working on a self-insulating, annular diode which can generate a directed beam of H - ions. In the annular diode experiments a plasma opening switch was used to provide a prepulse and a current path which self-insulated the diode. These experiments were done on the machine APEX, a 1 MV, 50 ns, 7 Ω pulseline with a unipolar negative prepulse of ∼ 100 kV and 400 ns duration. Currently, the authors are modifying the pulseline to include an external LC circuit which can generate a bipolar, 150 kV, 1 μs duration prepulse (similar prepulse characteristic as in the Lebedev Institute experiments cited above)

  16. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  17. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  18. Analysis of two way fluid structure interaction and local material properties of brazed joints for estimation of mechanical integrity

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seok Hoon; Park, Sang Hu; Son, Chang Min; Ha, Man Young; Min, June Kee; Jeong, Ho Sung [Pusan Nat' l Univ., Busan (Korea, Republic of); Cho, Jongrae [Korea Maritime Univ., Busan (Korea, Republic of); Kim, Hyun Jun [Donghwa Entec Co., Ltd., Busan (Korea, Republic of)

    2013-01-15

    Recent years have witnessed a strong need for eco friendly and energy efficient systems owing to global environmental problems. A heat exchanger is a well known mechanical rig that has long been used in many energy systems. The use of a heat exchanger in an airplane engine has been attempted. In this case, the heat exchanger should be redesigned to be compact, lightweight, and highly reliable, and the issue of mechanical integrity gains importance. Therefore, in this study, we proposed a method for evaluating the mechanical integrity of a tube type heat exchanger. A U shaped single tube was used as an example, and its behavior and stress distribution were studied using fluid structure interaction (FSI) analysis.

  19. Insulation structure of thermonuclear device

    International Nuclear Information System (INIS)

    Suzuki, Takayuki; Usami, Saburo; Tsukamoto, Hideo; Kikuchi, Mitsuru

    1998-01-01

    The present invention provides an insulating structure of a thermonuclear device, in which insulation materials between toroidal coils are not broken even if superconductive toroidal coils are used. Namely, a tokamak type thermonuclear device of an insulating structure type comprises superconductive toroidal coils for confining plasmas arranged in a circular shape directing the center each at a predetermined angle, and the toroidal coils are insulated from each other. The insulation materials are formed by using a biaxially oriented fiber reinforced plastics. The contact surface of the toroidal coils and the insulating materials are arranged so that they are contact at a woven surface of the fiber reinforced plastics. Either or both of the contact surfaces of the fiber reinforced plastics and the toroidal coils are coated with a high molecular compound having a low friction coefficient. With such a constitution, since the interlayer shearing strength of the biaxially oriented fiber reinforced plastics is about 1/10 of the compression strength, the shearing stress exerted on the insulation material is reduced. Since a static friction coefficient on the contact surface is reduced to provide a structure causing slipping, shearing stress does not exceeds a predetermined limit. As a result, breakage of the insulation materials between the toroidal coils can be prevented. (I.S.)

  20. Plastic Materials for Insulating Applications.

    Science.gov (United States)

    Wang, S. F.; Grossman, S. J.

    1987-01-01

    Discusses the production and use of polymer materials as thermal insulators. Lists several materials that provide varying degrees of insulation. Describes the production of polymer foam and focuses on the major applications of polystyrene foam, polyurethane foam, and polyisocyanurate foam. (TW)

  1. Joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret......Afhandlingen analysere de konkurrenceretlige og selskabsretlige regler som er bestemmende for hvordan et joint venture samarbejde er struktureret...

  2. Magnetically self-insulated transformers

    International Nuclear Information System (INIS)

    Novac, B.M.; Smith, I.R.; Brown, J.

    2002-01-01

    Magnetic insulation is the only practicable form of insulation for much equipment used in ultrahigh pulsed-power work, including transmission lines and plasma opening switches. It has not however so far been successfully exploited in the transformers that are necessarily involved, and the first proposed design that appeared more than 30 years ago raised apparently insuperable problems. The two novel arrangements for a magnetically insulated transformer described in this paper overcome the problems faced by the earlier designs and also offer considerable scope for development in a number of important areas. Theoretical justification is given for their insulating properties, and this is confirmed by proof-of-principle results obtained from a small-scale experimental prototype in which magnetic insulation was demonstrated at up to 100 kV. (author)

  3. Distribution and arrest of vertical through-going joints in a seismic-scale carbonate platform exposure (Sorrento peninsula, Italy): insights from integrating field survey and digital outcrop model

    Science.gov (United States)

    Corradetti, A.; Tavani, S.; Parente, M.; Iannace, A.; Vinci, F.; Pirmez, C.; Torrieri, S.; Giorgioni, M.; Pignalosa, A.; Mazzoli, S.

    2018-03-01

    Through-going joints cutting across beds are often invoked to match large-scale permeability patterns in tight carbonate reservoirs. However, despite the importance of these structures for fluid flow, only few field studies focused on the understanding and estimation of through-going joint dimensional parameters, including spacing and vertical extent in relation to stratigraphy. Recent improvements in the construction of digital models of outcrops can greatly help to overcome many logistic issues, favouring the evaluation of relationships between jointing and stratigraphy at the reservoir scale. In this study, we present the results obtained from integrating field measurements with a digital outcrop model of a carbonate platform reservoir analogue in the Sorrento peninsula (Italy). The outcrop consists of a nearly vertical cliff exposing a monocline of alternating gently-dipping shallow-water limestones and dolostones, crossed by several vertical joints of different size. This study allowed us to define how major through-going joints pass across thick beds (bed thickness > 30 cm), while they arrest against packages made of thinly stratified layers. In essence, through-going joints arrest on "weak" levels, consisting of thinly bedded layers interposed between packages made of thick beds, in the same manner as bed-confined joints arrest on less competent interlayers.

  4. Research on vacuum insulation for cryocables

    International Nuclear Information System (INIS)

    Graneau, P.

    1974-01-01

    Vacuum insulation, as compared with solid insulation, simplifies the construction of both resistive or superconducting cryogenic cables. The common vacuum space in the cable can furnish thermal insulation between the environment and the cryogenic coolant, provide electrical insulation between conductors, and establish thermal isolation between go- and return-coolant streams. The differences between solid and vacuum high voltage insulation are discussed, and research on the design, materials selection, and testing of vacuum insulated cryogenic cables is described

  5. Coracoclavicular joint

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kun Sang; Park, Chan Il; Ahn, Jae Doo; Lim, Chong Won [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1970-10-15

    The coracoclvicular joint, a rear abnormality which may be the cause of pain in the shoulder and limitation of motion of the shoulder joint, is discussed. A case of coracoclvicular joint with shoulder pain was observed in 65 yrs old Korean male.

  6. Excitons in insulators

    International Nuclear Information System (INIS)

    Grasser, R.; Scharmann, A.

    1983-01-01

    This chapter investigates absorption, reflectivity, and intrinsic luminescence spectra of free and/or self-trapped (localized) excitons in alkali halides and rare gas solids. Introduces the concepts underlying the Wannier-Mott and Frenkel exciton models, two extreme pictures of an exciton in crystalline materials. Discusses the theoretical and experimental background; excitons in alkali halides; and excitons in rare gas solids. Shows that the intrinsic optical behavior of wide gap insulators in the range of the fundamental absorption edge is controlled by modified Wannier-Mott excitons. Finds that while that alkali halides only show free and relaxed molecular-like exciton emission, in rare gas crystals luminescence due to free, single and double centered localized excitons is observed. Indicates that the simultaneous existence of free and self-trapped excitons in these solid requires an energy barrier for self-trapping

  7. Current redistribution in cables made of insulated, soldered, or oxidized strands

    International Nuclear Information System (INIS)

    Turck, B.

    1979-07-01

    Current redistributions are compared in cables made of insulated strands, soldered, or oxidized strands and insulated strands with periodic joints. After discussing the different current redistributions in the cases of a rapidly changing current and a dc current, several particular situations are investigated: what happens if a strand is broken, or if a local normal zone appears that does not affect all the strands equally, the detection of this normal zone, and the influence of short circuits between strands

  8. Measure Guideline: Guidance on Taped Insulating Sheathing Drainage Planes

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A.; Lstiburek, J.

    2014-09-01

    This guide provides information and recommendations to the following groups: insulation contractors; general contractors; builders; home remodelers; mechanical contractors; and homeowners, as a guide to the work that needs to be done. The order of work completed during home construction and retrofit improvements is important. Health and safety issues must be addressed first and are more important than durability issues. And durability issues are more important than saving energy. Not all techniques can apply to all houses. Special conditions will require special action. Some builders or homeowners will wish to do more than the important but basic retrofit strategies outlined by this guide. The following are best practice and product recommendations from the interviewed contractors and homebuilders who collectively have a vast amount of experience. Three significant items were discussed with the group which are required to make taped insulating sheathing a simple, long term, and durable drainage plane: 1. Horizontal joints should be limited or eliminated wherever possible; 2. Where a horizontal joint exists use superior materials; 3. Frequent installation inspection and regular trade training are required to maintain proper installation. Section 5 of this measure guideline contains the detailed construction procedure for the three recommended methods to effectively seal the joints in exterior insulating sheathing to create a simple, long term, and durable drainage plane.

  9. Improved clean development mechanism and joint implementation to promote holistic sustainable development - an integrated policy and methodology for international energy collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Kua Harn Wei

    2007-07-01

    The current Clean Development Mechanism/Joint Implementation framework does not emphasize on wholistic sustainability of energy projects. The Golden Standard was a good example of how this framework can be fine-tuned. However, it does not explicitly incentivize the adoption of the sustainability standards it outlines. A 4-element integrated policy strategy is proposed. A Sustainability Assessment Matrix is constructed to evaluate project proposals' sustainability performance. The Probational Sustainability Performance Demand requires continual monitoring of this performance of approved projects throughout a designated probation period. The involved countries will be awarded Sustainability Credits (measured with the matrix) in installments according to their performance within this period. The Probational Emission Reduction Demand requires investing countries to meet moderated emission reduction targets in order for them to claim the certified emission reductions/ emission reduction credits and their share of Sustainability Credits. These credits are converted into Sustainability Assistance Funds, which can be channeled back to finance either the approved projects or independent renewable energy projects in the involved countries. The MIT Energy Cost Model is used to estimate the required amount and identify the forms of such assistance package. Finally, an integrated policymaking framework is suggested to execute and monitor these interconnected policy elements. (auth)

  10. Excitonic metal-insulator phase transition of the Mott type in compressed calcium

    Science.gov (United States)

    Voronkova, T. O.; Sarry, A. M.; Sarry, M. F.; Skidan, S. G.

    2017-05-01

    It has been experimentally found that, under the static compression of a calcium crystal at room temperature, it undergoes a series of structural phase transitions: face-centered cubic lattice → body-centered cubic lattice → simple cubic lattice. It has been decided to investigate precisely the simple cubic lattice (because it is an alternative lattice) with the aim of elucidating the possibility of the existence of other (nonstructural) phase transitions in it by using for this purpose the Hubbard model for electrons with half-filled ns-bands and preliminarily transforming the initial electronic system into an electron-hole system by means of the known Shiba operators (applicable only to alternative lattices). This transformation leads to the fact that, in the new system of fermions, instead of the former repulsion, there is an attraction between electrons and holes. Elementary excitations of this new system are bound boson pairs—excitons. This system of fermions has been quantitatively analyzed by jointly using the equation-of-motion method and the direct algebraic method. The numerical integration of the analytically exact transcendental equations derived from the first principles for alternative (one-, two-, and three-dimensional) lattices has demonstrated that, in systems of two-species (electrons + hole) fermions, temperature-induced metal-insulator phase transitions of the Mott type are actually possible. Moreover, all these crystals are in fact excitonic insulators. This conclusion is in complete agreement with the analytically exact calculations of the ground state of a one-dimensional crystal (with half-filled bands), which were performed by Lieb and Wu with the aim to find out the Mott insulator-metal transition of another type.

  11. OSMOSIS: a new joint laboratory between SOFRADIR and ONERA for the development of advanced DDCA with integrated optics

    Science.gov (United States)

    Druart, Guillaume; Matallah, Noura; Guerineau, Nicolas; Magli, Serge; Chambon, Mathieu; Jenouvrier, Pierre; Mallet, Eric; Reibel, Yann

    2014-06-01

    Today, both military and civilian applications require miniaturized optical systems in order to give an imagery function to vehicles with small payload capacity. After the development of megapixel focal plane arrays (FPA) with micro-sized pixels, this miniaturization will become feasible with the integration of optical functions in the detector area. In the field of cooled infrared imaging systems, the detector area is the Detector-Dewar-Cooler Assembly (DDCA). SOFRADIR and ONERA have launched a new research and innovation partnership, called OSMOSIS, to develop disruptive technologies for DDCA to improve the performance and compactness of optronic systems. With this collaboration, we will break down the technological barriers of DDCA, a sealed and cooled environment dedicated to the infrared detectors, to explore Dewar-level integration of optics. This technological breakthrough will bring more compact multipurpose thermal imaging products, as well as new thermal capabilities such as 3D imagery or multispectral imagery. Previous developments will be recalled (SOIE and FISBI cameras) and new developments will be presented. In particular, we will focus on a dual-band MWIR-LWIR camera and a multichannel camera.

  12. Thermal test of the insulation structure for LH 2 tank by using the large experimental apparatus

    Science.gov (United States)

    Kamiya, S.; Onishi, K.; Konshima, N.; Nishigaki, K.

    Conceptual designs of large mass LH 2 (liquid hydrogen) storage systems, whose capacity is 50,000 m3, have been studied in the Japanese hydrogen project, World Energy Network (WE-NET) [K. Fukuda, in: WE-NET Hydrogen Energy Symposium, 1999, P1-P41]. This study has concluded that their thermal insulation structures for the huge LH 2 tanks should be developed. Their actual insulation structures comprise not only the insulation material but also reinforced members and joints. To evaluate their thermal performance correctly, a large test specimen including reinforced members and joints will be necessary. After verifying the thermal performance of a developed large experimental apparatus [S. Kamiya, Cryogenics 40 (1) (2000) 35] for measuring the thermal conductance of various insulation structures, we tested two specimens, a vacuum multilayer insulation (MLI) with a glass fiber reinforced plastic (GFRP) support and a vacuum solid insulation (microtherm ®) with joints. The thermal background test for verifying the thermal design of the experimental apparatus showed that the background heat leak is 0.1 W, small enough to satisfy apparatus performance requirement. The thermal conductance measurements of specimens also showed that thermal heat fluxes of MLI with a GFRP support and microtherm ® are 8 and 5.4 W/m2, respectively.

  13. Are Pressure Time Integral and Cumulative Plantar Stress Related to First Metatarsophalangeal Joint Pain? Results From a Community-Based Study.

    Science.gov (United States)

    Rao, Smita; Douglas Gross, K; Niu, Jingbo; Nevitt, Michael C; Lewis, Cora E; Torner, James C; Hietpas, Jean; Felson, David; Hillstrom, Howard J

    2016-09-01

    To examine the relationship between plantar stress over a step, cumulative plantar stress over a day, and first metatarsophalangeal (MTP) joint pain among older adults. Plantar stress and first MTP pain were assessed within the Multicenter Osteoarthritis Study. All included participants were asked if they had pain, aching, or stiffness at the first MTP joint on most days for the past 30 days. Pressure time integral (PTI) was quantified as participants walked on a pedobarograph, and mean steps per day were obtained using an accelerometer. Cumulative plantar stress was calculated as the product of regional PTI and mean steps per day. Quintiles of hallucal and second metatarsal PTI and cumulative plantar stress were generated. The relationship between predictors and the odds ratio of first MTP pain was assessed using a logistic regression model. Feet in the quintile with the lowest hallux PTI had 2.14 times increased odds of first MTP pain (95% confidence interval [95% CI] 1.42-3.25, P pain (95% CI 1.01-2.23, P = 0.042). Cumulative plantar stress was unassociated with first MTP pain. Lower PTI was modestly associated with increased prevalence of frequent first MTP pain at both the hallux and second metatarsal. Lower plantar loading may indicate the presence of an antalgic gait strategy and may reflect an attempt at pain avoidance. The lack of association with cumulative plantar stress may suggest that patients do not limit their walking as a pain-avoidance mechanism. © 2016, American College of Rheumatology.

  14. Engineered pipeline field joint coating solutions for demanding conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lwemuchi, Andre L.; Gudme, Carl C.; Buchanan, Robert [Canusa-CPS, Toronto, OT (Canada)

    2009-12-19

    Trends in the oil and gas pipeline industry see that the demand for new technologies and engineered solutions for pipeline external coatings are increasing. In general, superior mechanical resistance and long term performance are being required in addition to operating at higher temperatures. This demand for more robust coatings has been created because of factors such as more remote fields, deep onshore reservoirs, deep water offshore fields and heavy oil that must be pumped at higher temperatures. The development of new techniques for pipeline construction is also exposing the coatings to more aggressive construction conditions. Because of this, the use of three layer and multi-layer polypropylene mainline coating systems have been growing considerably. Following this trend, the field joint coating manufacturers developed polypropylene systems and more recently had to work on engineered solutions required for recent offshore projects in Europe where very thick polypropylene field joint heat-shrinkable systems were provided. In addition, projects in remote locations such as the recently completed projects in the Brazilian Amazon required special logistics and field services. The growth of the mining industry in South America with slurry pipelines constructed in the recent years also demanded thicker, more robust coatings. The popularization of directional drilling and shore approach applications moved the industry to develop improved abrasion resistant coating systems such as using sacrificial elements to protect the primary coating integrity after the pipeline pull. PETROBRAS plans to replace existing thermally insulated pipelines crossing Great Sao Paulo. Therefore, pumping heavy oil at high temperatures created the need to develop improved mainline and field joint coatings to avoid having the same sort of problems they are facing in existing thermally insulated lines. Due to these needs, the field joint coating manufactures have been challenged to provide

  15. Lightweight, Thermally Insulating Structural Panels

    Science.gov (United States)

    Eisen, Howard J.; Hickey, Gregory; Wen, Liang-Chi; Layman, William E.; Rainen, Richard A.; Birur, Gajanana C.

    1996-01-01

    Lightweight, thermally insulating panels that also serve as structural members developed. Honeycomb-core panel filled with low-thermal-conductivity, opacified silica aerogel preventing convection and minimizes internal radiation. Copper coating on face sheets reduces radiation. Overall thermal conductivities of panels smaller than state-of-art commercial non-structurally-supporting foam and fibrous insulations. On Earth, panels suitable for use in low-air-pressure environments in which lightweight, compact, structurally supporting insulation needed; for example, aboard high-altitude aircraft or in partially evacuated panels in refrigerators.

  16. Reflecting variable opening insulating panel

    International Nuclear Information System (INIS)

    Nungesser, W.T.

    1976-01-01

    A description is given of a reflecting variable opening insulating panel assembly, comprising a static panel assembly of reflecting insulation sheets forming a cavity along one side of the panel and a movable panel opening out by sliding from the cavity of the static panel, and a locking device for holding the movable panel in a position extending from the cavity of the static panel. This can apply to a nuclear reactor of which the base might require maintenance and periodical checking and for which it is desirable to have available certain processes for the partial dismantling of the insulation [fr

  17. Does Service Interdependence Take Jointness Too Far?

    National Research Council Canada - National Science Library

    Downs, Christopher G

    2008-01-01

    ... integration to support and improve the warfighting effectiveness of joint force commanders. The ability to effectively employ joint forces has increased the lethality, agility, and operational precision of the United States military...

  18. Molecular dewetting on insulators

    International Nuclear Information System (INIS)

    Burke, S A; Topple, J M; Gruetter, P

    2009-01-01

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C 60 on alkali halides, and the technologically important system of pentacene on SiO 2 . These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure. (topical review)

  19. Molecular dewetting on insulators.

    Science.gov (United States)

    Burke, S A; Topple, J M; Grütter, P

    2009-10-21

    Recent attention given to the growth and morphology of organic thin films with regard to organic electronics has led to the observation of dewetting (a transition from layer(s) to islands) of molecular deposits in many of these systems. Dewetting is a much studied phenomenon in the formation of polymer and liquid films, but its observation in thin films of the 'small' molecules typical of organic electronics requires additional consideration of the structure of the interface between the molecular film and the substrate. This review covers some key concepts related to dewetting and molecular film growth. In particular, the origins of different growth modes and the thickness dependent interactions which give rise to dewetting are discussed in terms of surface energies and the disjoining pressure. Characteristics of molecular systems which may lead to these conditions, including the formation of metastable interface structures and commensurate-incommensurate phase transitions, are also discussed. Brief descriptions of some experimental techniques which have been used to study molecular dewetting are given as well. Examples of molecule-on-insulator systems which undergo dewetting are described in some detail, specifically perylene derivatives on alkali halides, C(60) on alkali halides, and the technologically important system of pentacene on SiO(2). These examples point to some possible predicting factors for the occurrence of dewetting, most importantly the formation of an interface layer which differs from the bulk crystal structure.

  20. Insulating fcc YH

    International Nuclear Information System (INIS)

    Molen, S. J. van der; Nagengast, D. G.; Gogh, A. T. M. van; Kalkman, J.; Kooij, E. S.; Rector, J. H.; Griessen, R.

    2001-01-01

    We study the structural, optical, and electrical properties of Mg z Y 1-z switchable mirrors upon hydrogenation. It is found that the alloys disproportionate into essentially pure YH 3-δ and MgH 2 with the crystal structure of YH 3-δ dependent on the Mg concentration z. For 0 3-δ are observed, whereas for z≥0.1 only cubic YH 3-δ is present. Interestingly, cubic YH 3-δ is expanded compared to YH 2 , in disagreement with theoretical predictions. From optical and electrical measurements we conclude that cubic YH 3-δ is a transparent insulator with properties similar to hexagonal YH 3-δ . Our results are inconsistent with calculations predicting fcc YH 3-δ to be metallic, but they are in good agreement with recent GW calculations on both hcp and fcc YH 3 . Finally, we find an increase in the effective band gap of the hydrided Mg z Y 1-z alloys with increasing z. Possibly this is due to quantum confinement effects in the small YH 3 clusters

  1. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng; Randel, Jason C.; Peng, Hailin; Cha, Judy J.; Meister, Stefan; Lai, Keji; Chen, Yulin; Shen, Zhi-Xun; Manoharan, Hari C.; Cui, Yi

    2010-01-01

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive

  2. Measure Guideline: Basement Insulation Basics

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R.; Mantha, P.; Puttagunta, S.

    2012-10-01

    This guideline is intended to describe good practices for insulating basements in new and existing homes, and is intended to be a practical resources for building contractors, designers, and also to homeowners.

  3. Metal-insulator-semiconductor photodetectors.

    Science.gov (United States)

    Lin, Chu-Hsuan; Liu, Chee Wee

    2010-01-01

    The major radiation of the sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  4. Metal-Insulator-Semiconductor Photodetectors

    Directory of Open Access Journals (Sweden)

    Chu-Hsuan Lin

    2010-09-01

    Full Text Available The major radiation of the Sun can be roughly divided into three regions: ultraviolet, visible, and infrared light. Detection in these three regions is important to human beings. The metal-insulator-semiconductor photodetector, with a simpler process than the pn-junction photodetector and a lower dark current than the MSM photodetector, has been developed for light detection in these three regions. Ideal UV photodetectors with high UV-to-visible rejection ratio could be demonstrated with III-V metal-insulator-semiconductor UV photodetectors. The visible-light detection and near-infrared optical communications have been implemented with Si and Ge metal-insulator-semiconductor photodetectors. For mid- and long-wavelength infrared detection, metal-insulator-semiconductor SiGe/Si quantum dot infrared photodetectors have been developed, and the detection spectrum covers atmospheric transmission windows.

  5. 16 CFR 460.18 - Insulation ads.

    Science.gov (United States)

    2010-01-01

    ... Commercial Practices FEDERAL TRADE COMMISSION TRADE REGULATION RULES LABELING AND ADVERTISING OF HOME INSULATION § 460.18 Insulation ads. (a) If your ad gives an R-value, you must give the type of insulation and... your ad gives a price, you must give the type of insulation, the R-value at a specific thickness, the...

  6. Cryogenic foam insulation: Abstracted publications

    Science.gov (United States)

    Williamson, F. R.

    1977-01-01

    A group of documents were chosen and abstracted which contain information on the properties of foam materials and on the use of foams as thermal insulation at cryogenic temperatures. The properties include thermal properties, mechanical properties, and compatibility properties with oxygen and other cryogenic fluids. Uses of foams include applications as thermal insulation for spacecraft propellant tanks, and for liquefied natural gas storage tanks and pipelines.

  7. Flow-based market coupling. A joint ETSO-EuroPEX proposal for cross-border congestion management and integration of electricity markets in Europe. Interim report

    International Nuclear Information System (INIS)

    2004-09-01

    ETSO and EuroPEX have previously published separate proposals for congestion management and market operation across borders in Europe. ETSO has described a 'vision' in which Transmission System Operators (TSOs) would support trade between a variety of different markets by taking explicit account of the physical flows of electricity between them ('flow-based modelling'). EuroPEX has described 'Decentralized Market Coupling' as a method to integrate regional energy markets with cross-border congestion management. In most respects the ETSO and EuroPEX proposals are consistent and complementary. In particular, both organisations agree that market-based congestion management mechanisms should be used at all borders wherever possible, and that they should be co-ordinated to take account of the interdependence of physical flows. Furthermore, both ETSO and EuroPEX recognize that integrated markets are in general more efficient than separate ones, but accept that coupling of regional markets is the most realistic way of achieving efficiency benefits in the short and medium term. The commonalty between the ETSO and EuroPEX proposals has been noted by the 'Florence' Regulators' Forum, which has therefore encouraged ETSO and EuroPEX to work together to develop joint proposals. They have responded by setting up a Joint Working Group, which has produced this report to describe its progress to date. Currently, there exists a wide variety of organisational structures and operational practices in Europe. Consequently, ETSO and EuroPEX agreed at an early stage that, although a joint vision of a flow-based market coupling (FMC) model should be developed, it was equally important to identify how the current arrangements could evolve towards it in a series of practical steps. The work is not yet complete. This is an interim report designed to expose ideas at an early stage to enable Regulators, Users and other interested parties to join the debate and provide feedback. In particular

  8. Flow-based market coupling. A joint ETSO-EuroPEX proposal for cross-border congestion management and integration of electricity markets in Europe. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-09-01

    ETSO and EuroPEX have previously published separate proposals for congestion management and market operation across borders in Europe. ETSO has described a 'vision' in which Transmission System Operators (TSOs) would support trade between a variety of different markets by taking explicit account of the physical flows of electricity between them ('flow-based modelling'). EuroPEX has described 'Decentralized Market Coupling' as a method to integrate regional energy markets with cross-border congestion management. In most respects the ETSO and EuroPEX proposals are consistent and complementary. In particular, both organisations agree that market-based congestion management mechanisms should be used at all borders wherever possible, and that they should be co-ordinated to take account of the interdependence of physical flows. Furthermore, both ETSO and EuroPEX recognize that integrated markets are in general more efficient than separate ones, but accept that coupling of regional markets is the most realistic way of achieving efficiency benefits in the short and medium term. The commonalty between the ETSO and EuroPEX proposals has been noted by the 'Florence' Regulators' Forum, which has therefore encouraged ETSO and EuroPEX to work together to develop joint proposals. They have responded by setting up a Joint Working Group, which has produced this report to describe its progress to date. Currently, there exists a wide variety of organisational structures and operational practices in Europe. Consequently, ETSO and EuroPEX agreed at an early stage that, although a joint vision of a flow-based market coupling (FMC) model should be developed, it was equally important to identify how the current arrangements could evolve towards it in a series of practical steps. The work is not yet complete. This is an interim report designed to expose ideas at an early stage to enable Regulators, Users and other interested parties to join the

  9. Silicon-on-Insulator Nanowire Based Optical Waveguide Biosensors

    International Nuclear Information System (INIS)

    Li, Mingyu; Liu, Yong; Chen, Yangqing; He, Jian-Jun

    2016-01-01

    Optical waveguide biosensors based on silicon-on-insulator (SOI) nanowire have been developed for label free molecular detection. This paper reviews our work on the design, fabrication and measurement of SOI nanowire based high-sensitivity biosensors employing Vernier effect. Biosensing experiments using cascaded double-ring sensor and Mach-Zehnder- ring sensor integrated with microfluidic channels are demonstrated (paper)

  10. Low threshold frequency comb generation in AlGaAs-on-insulator microresonator in the normal dispersion regime

    DEFF Research Database (Denmark)

    Kamel, Ayman Nassar; Pu, Minhao; Yvind, Kresten

    2017-01-01

    We present milli-Watt threshold frequency comb generation in AlGaAs-on-insulator integrated microresonators exhibiting normal GVD by employing the effects of mode interaction.......We present milli-Watt threshold frequency comb generation in AlGaAs-on-insulator integrated microresonators exhibiting normal GVD by employing the effects of mode interaction....

  11. The role of the Joint Research Centre from the European Commission in the European Structural Integrity Networks AMES, ENIQ and NESC

    International Nuclear Information System (INIS)

    Estorff, U. von; Torronen, K.

    1999-01-01

    Due to the reduction in many countries of the research budget for nuclear safety several European institutions and organisations and the Institute for Advanced Materials (IAM) of the Joint Research Centre (JRC) of the European Commission (EC) have developed co-operative programmes now organised into 'Networks' for mutual benefit. They include utilities, engineering companies, research and development (R and D) laboratories and regulatory bodies. These Networks are all organised and managed in a similar way, i.e. like the successful Programme for the Inspection of Steel Components (PISC). The IAM plays the role of Operating Agent, Reference Laboratory and Network Manager of these Networks: European Network on Ageing Materials Evaluation and Studies (AMES), European Network for Inspection Qualification (ENIQ) and Network for Evaluating Steel Components (NESC), each of them dealing with a specific aspect of fitness for purpose of materials in structural components. This article will describe how the network organisation works, which was the positive experience from the past, why the networks are a tool for integrating fragmented research in Europe and how they fit into the mission of the JRC and therefore follow the EC policy. (orig.)

  12. Avalanches in insulating gases

    International Nuclear Information System (INIS)

    Verhaart, H.F.A.

    1982-01-01

    Avalanches of charged particles in gases are often studied with the ''electrical method'', the measurement of the waveform of the current in the external circuit. In this thesis a substantial improvement of the time resolution of the measuring setup, to be used for the electrical method, is reported. The avalanche is started by an N 2 -laser with a pulse duration of only 0.6 ns. With this laser it is possible to release a high number of primary electrons (some 10 8 ) which makes it possible to obtain sizeable signals, even at low E/p values. With the setup it is possible to analyze current waveforms with a time resolution down to 1.4 ns, determined by both the laser and the measuring system. Furthermore it is possible to distinguish between the current caused by the electrons and the current caused by the ions in the avalanche and to monitor these currents simultaneously. Avalanche currents are measured in N 2 , CO 2 , O 2 , H 2 O, air of varying humidity, SF 6 and SF 6 /N 2 mixtures. Depending on the nature of the gas and the experimental conditions, processes as diffusion, ionization, attachment, detachment, conversion and secondary emission are observed. Values of parameters with which these processes can be described, are derived from an analysis of the current waveforms. For this analysis already published theories and new theories described in this thesis are used. The drift velocity of both the electrons and the ions could be easily determined from measured avalanche currents. Special attention is paid to avalanches in air becasue of the practical importance of air insulation. (Auth.)

  13. A multi-feature integration method for fatigue crack detection and crack length estimation in riveted lap joints using Lamb waves

    Data.gov (United States)

    National Aeronautics and Space Administration — This paper presents an experimental study of damage detection and quantification in riveted lap joints. Embedded lead zirconate titanate piezoelectric (PZT) ceramic...

  14. Temporomandibular joint

    International Nuclear Information System (INIS)

    Westesson, P.L.; Hatala, M.; Tallents, R.H.; Katzberg, R.W.; Musgrave, M.; Levitt, S.

    1990-01-01

    This paper determines the frequency of MR signs of abnormal temporomandibular joints (TMJs) in asymptomatic volunteers. Forty-two volunteers with 84 clinically normal TMJs were imaged in the sagittal and coronal planes with surface coil MR imaging. Sagittal closed and open and coronal closed views were obtained bilaterally in all volunteers. The images were classified as normal (superior disk position) or abnormal (disk displacement of degenerative joint disease). Eighteen joints in 11 volunteers were abnormal; 12 had disk displacement with reduction and six had disk displacement without reduction, with associated degenerative joint disease in three of the six. Asymptomatic internal derangement and degenerative joint disease occur in about one-fourth of asymptomatic volunteers

  15. Hydrogen interactions with silicon-on-insulator materials

    OpenAIRE

    Rivera de Mena, A.J.

    2003-01-01

    The booming of microelectronics in recent decades has been made possible by the excellent properties of the Si/SiO2 interface in oxide on silicon systems.. This semiconductor/insulator combination has proven to be of great value for the semiconductor industry. It has made it possible to continuously increase the number of transistors per chip until the physical limit of integration is now almost reached. Silicon-on-insulator (SOI) materials were early on seen as a step in the logical evolutio...

  16. Numerical investigations for insulation particle transport phenomena in water flow

    International Nuclear Information System (INIS)

    Krepper, E.; Grahn, A.; Alt, S.; Kaestner, W.; Kratzsch, A.; Seeliger, A.

    2005-01-01

    The investigation of insulation debris generation, transport and sedimentation gains importance regarding the reactor safety research for PWR and BWR considering the long term behaviour of emergency core coolant systems during all types of LOCA. The insulation debris released near the break during LOCA consists of a mixture of very different particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Open questions of generic interest are e.g. the sedimentation of the insulation debris in a water pool, possible re-suspension, transport in the sump water flow, particle load on strainers and corresponding difference pressure. A joint research project in cooperation with Institute of Process Technology, Process Automation and Measuring Technology (IPM) Zittau deals with the experimental investigation and the development of CFD models for the description of particle transport phenomena in coolant flow. While experiments are performed at the IPM-Zittau, theoretical work is concentrated at Forschungszentrum Rossendorf. In the present paper the basic concepts for CFD modelling are described and first results including feasibility studies are shown. During the ongoing work further results are expected. (author)

  17. Joint Performance and Planning System

    Data.gov (United States)

    US Agency for International Development — A joint State/USAID system hosted by State that integrates resource and performance information at the program level and enables more flexible and frequent entry of...

  18. Self-Supporting High Performance Multi-Layer Insulation Technology Development (SSMLI)

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of MLI—Integrated Multi-Layer Insulation (IMLI)—uses rigid, low-conductivity polymer spacers instead of netting to keep the radiation barriers separated....

  19. Electrical insulators for the theta-pinch fusion reactor

    International Nuclear Information System (INIS)

    Clinard, F.W. Jr.

    1976-01-01

    The five major applications for electrical insulators in the Reference Theta Pinch Reactor are as follows: (1) first-wall insulator, (2) blanket intersegment insulator, (3) graphite encapsulating insulator, (4) implosion coil insulator, and (5) compression coil insulator. Insulator design proposals and some preliminary test results are given for each application

  20. Spontaneous breaking of time-reversal symmetry in topological insulators

    Energy Technology Data Exchange (ETDEWEB)

    Karnaukhov, Igor N., E-mail: karnaui@yahoo.com

    2017-06-21

    Highlights: • Proposed a new approach for description of phase transitions in topological insulators. • Considered the mechanism of spontaneous breaking of time-reversal symmetry in topological insulators. • The Haldane model can be implemented in real compounds of the condensed matter physics. - Abstract: The system of spinless fermions on a hexagonal lattice is studied. We have considered tight-binding model with the hopping integrals between the nearest-neighbor and next-nearest-neighbor lattice sites, that depend on the direction of the link. The links are divided on three types depending on the direction, the hopping integrals are defined by different phases along the links. The energy of the system depends on the phase differences, the solutions for the phases, that correspond to the minimums of the energy, lead to a topological insulator state with the nontrivial Chern numbers. We have analyzed distinct topological states and phase transitions, the behavior of the chiral gapless edge modes, have defined the Chern numbers. The band structure of topological insulator (TI) is calculated, the ground-state phase diagram in the parameter space is obtained. We propose a novel mechanism of realization of TI, when the TI state is result of spontaneous breaking of time-reversal symmetry due to nontrivial stable solutions for the phases that determine the hopping integrals along the links and show that the Haldane model can be implemented in real compounds of the condensed matter physics.

  1. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  2. Passive Collecting of Solar Radiation Energy using Transparent Thermal Insulators, Energetic Efficiency of Transparent Thermal Insulators

    Directory of Open Access Journals (Sweden)

    Smajo Sulejmanovic

    2014-11-01

    Full Text Available This paper explains passive collection of solar radiation energy using transparent thermal insulators. Transparent thermal insulators are transparent for sunlight, at the same time those are very good thermal insulators. Transparent thermal insulators can be placed instead of standard conventional thermal insulators and additionally transparent insulators can capture solar radiation, transform it into heat and save heat just as standard insulators. Using transparent insulators would lead to reduce in usage of fossil fuels and would help protection of an environment and reduce effects of global warming, etc.

  3. The Structural Heat Intercept-Insulation-Vibration Evaluation Rig (SHIVER)

    Science.gov (United States)

    Johnson, W. L.; Zoeckler, J. G.; Best-Ameen, L. M.

    2015-01-01

    NASA is currently investigating methods to reduce the boil-off rate on large cryogenic upper stages. Two such methods to reduce the total heat load on existing upper stages are vapor cooling of the cryogenic tank support structure and integration of thick multilayer insulation systems to the upper stage of a launch vehicle. Previous efforts have flown a 2-layer MLI blanket and shown an improved thermal performance, and other efforts have ground-tested blankets up to 70 layers thick on tanks with diameters between 2 3 meters. However, thick multilayer insulation installation and testing in both thermal and structural modes has not been completed on a large scale tank. Similarly, multiple vapor cooled shields are common place on science payload helium dewars; however, minimal effort has gone into intercepting heat on large structural surfaces associated with rocket stages. A majority of the vapor cooling effort focuses on metallic cylinders called skirts, which are the most common structural components for launch vehicles. In order to provide test data for comparison with analytical models, a representative test tank is currently being designed to include skirt structural systems with integral vapor cooling. The tank is 4 m in diameter and 6.8 m tall to contain 5000 kg of liquid hydrogen. A multilayer insulation system will be designed to insulate the tank and structure while being installed in a representative manner that can be extended to tanks up to 10 meters in diameter. In order to prove that the insulation system and vapor cooling attachment methods are structurally sound, acoustic testing will also be performed on the system. The test tank with insulation and vapor cooled shield installed will be tested thermally in the B2 test facility at NASAs Plumbrook Station both before and after being vibration tested at Plumbrooks Space Power Facility.

  4. Positron Annihilation in Insulating Materials

    International Nuclear Information System (INIS)

    Asoka-Kumar, P; Sterne, PA

    2002-01-01

    We describe positron results from a wide range of insulating materials. We have completed positron experiments on a range of zeolite-y samples, KDP crystals, alkali halides and laser damaged SiO 2 . Present theoretical understanding of positron behavior in insulators is incomplete and our combined theoretical and experimental approach is aimed at developing a predictive understanding of positrons and positronium annihilation characteristics in insulators. Results from alkali halides and alkaline-earth halides show that positrons annihilate with only the halide ions, with no apparent contribution from the alkali or alkaline-earth cations. This contradicts the results of our existing theory for metals, which predicts roughly equal annihilation contributions from cation and anion. We also present result obtained using Munich positron microprobe on laser damaged SiO 2 samples

  5. Floquet topological insulators for sound

    Science.gov (United States)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  6. Fermi surfaces in Kondo insulators

    Science.gov (United States)

    Liu, Hsu; Hartstein, Máté; Wallace, Gregory J.; Davies, Alexander J.; Ciomaga Hatnean, Monica; Johannes, Michelle D.; Shitsevalova, Natalya; Balakrishnan, Geetha; Sebastian, Suchitra E.

    2018-04-01

    We report magnetic quantum oscillations measured using torque magnetisation in the Kondo insulator YbB12 and discuss the potential origin of the underlying Fermi surface. Observed quantum oscillations as well as complementary quantities such as a finite linear specific heat capacity in YbB12 exhibit similarities with the Kondo insulator SmB6, yet also crucial differences. Small heavy Fermi sections are observed in YbB12 with similarities to the neighbouring heavy fermion semimetallic Fermi surface, in contrast to large light Fermi surface sections in SmB6 which are more similar to the conduction electron Fermi surface. A rich spectrum of theoretical models is suggested to explain the origin across different Kondo insulating families of a bulk Fermi surface potentially from novel itinerant quasiparticles that couple to magnetic fields, yet do not couple to weak DC electric fields.

  7. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  8. Joint diseases

    International Nuclear Information System (INIS)

    Weissman, S.D.

    1989-01-01

    The authors discuss how x-ray examination is essential in the diagnosis and evaluation of the arthritides. Most arthritides are first suspected by the clinician, and x-ray evaluation of these entities along with laboratory testing is important for confirmation of the clinical diagnosis and in staging of the disease process. Several arthritides are often diagnosed first by the podiatrist on x-ray evaluation, including pseudogout, ankylosing spondylitis, early rheumatoid arthritis, degenerative joint disease, and tuberculosis of bone. The joint responds to insult in only a limited number of ways that become apparent on x-ray. The soft tissues surrounding the joint, the articulating bones, and alignment of the joint space may all be involved by the arthritic process. On roentgenographic examination, the soft tissues must be examined for edema, masses, calcifications, and atrophy. The articulating bones must be examined for demineralization, erosions, osteophytes, periosteal reaction, cysts and sclerosis

  9. Joint pain

    Science.gov (United States)

    ... or conditions. It may be linked to arthritis , bursitis , and muscle pain . No matter what causes it, ... Autoimmune diseases such as rheumatoid arthritis and lupus Bursitis Chondromalacia patellae Crystals in the joint: Gout (especially ...

  10. Joint Commission

    Science.gov (United States)

    ... for the latest publication of The Joint Commission Journal on Quality and Patient Safety (JQPS). . How We Work Process improvement program breeds quality culture, empowers staff An article in Quality Progress, June ...

  11. Topological insulators fundamentals and perspectives

    CERN Document Server

    Ortmann, Frank; Valenzuela, Sergio O

    2015-01-01

    There are only few discoveries and new technologies in physical sciences that have the potential to dramatically alter and revolutionize our electronic world. Topological insulators are one of them. The present book for the first time provides a full overview and in-depth knowledge about this hot topic in materials science and condensed matter physics. Techniques such as angle-resolved photoemission spectrometry (ARPES), advanced solid-state Nuclear Magnetic Resonance (NMR) or scanning-tunnel microscopy (STM) together with key principles of topological insulators such as spin-locked electronic

  12. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  13. Nanometric holograms based on a topological insulator material.

    Science.gov (United States)

    Yue, Zengji; Xue, Gaolei; Liu, Juan; Wang, Yongtian; Gu, Min

    2017-05-18

    Holography has extremely extensive applications in conventional optical instruments spanning optical microscopy and imaging, three-dimensional displays and metrology. To integrate holography with modern low-dimensional electronic devices, holograms need to be thinned to a nanometric scale. However, to keep a pronounced phase shift modulation, the thickness of holograms has been generally limited to the optical wavelength scale, which hinders their integration with ultrathin electronic devices. Here, we break this limit and achieve 60 nm holograms using a topological insulator material. We discover that nanometric topological insulator thin films act as an intrinsic optical resonant cavity due to the unequal refractive indices in their metallic surfaces and bulk. The resonant cavity leads to enhancement of phase shifts and thus the holographic imaging. Our work paves a way towards integrating holography with flat electronic devices for optical imaging, data storage and information security.

  14. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  15. Propagation Characteristics of Multilayer Hybrid Insulator-Metal-Insulator and Metal-Insulator-Metal Plasmonic Waveguides

    Directory of Open Access Journals (Sweden)

    M. Talafi Noghani

    2014-02-01

    Full Text Available Propagation characteristics of symmetrical and asymmetrical multilayer hybrid insulator-metal-insulator (HIMI and metal-insulator-metal (HMIM plasmonic slab waveguides are investigated using the transfer matrix method. Propagation length (Lp and spatial length (Ls are used as two figures of merit to qualitate the plasmonic waveguides. Symmetrical structures are shown to be more performant (having higher Lp and lower Ls, nevertheless it is shown that usage of asymmetrical geometry could compensate for the performance degradation in practically realized HIMI waveguides with different substrate materials. It is found that HMIM slab waveguide could support almost long-range subdiffraction plasmonic modes at dimensions lower than the spatial length of the HIMI slab waveguide.

  16. Hydrodynamic states of phonons in insulators

    Directory of Open Access Journals (Sweden)

    S.A. Sokolovsky

    2012-12-01

    Full Text Available The Chapman-Enskog method is generalized for accounting the effect of kinetic modes on hydrodynamic evolution. Hydrodynamic states of phonon system of insulators have been studied in a small drift velocity approximation. For simplicity, the investigation was carried out for crystals of the cubic class symmetry. It has been found that in phonon hydrodynamics, local equilibrium is violated even in the approximation linear in velocity. This is due to the absence of phonon momentum conservation law that leads to a drift velocity relaxation. Phonon hydrodynamic equations which take dissipative processes into account have been obtained. The results were compared with the standard theory based on the local equilibrium validity. Integral equations have been obtained for calculating the objects of the theory (including viscosity and heat conductivity. It has been shown that in low temperature limit, these equations are solvable by iterations. Steady states of the system have been considered and an expression for steady state heat conductivity has been obtained. It coincides with the famous result by Akhiezer in the leading low temperature approximation. It has been established that temperature distribution in the steady state of insulator satisfies a condition of heat source absence.

  17. Electrical insulation for large multiaxis superconducting magnets

    International Nuclear Information System (INIS)

    Harvey, A.R.; Rinde, J.A.

    1975-01-01

    The selection of interturn and interlayer insulation for superconducting magnets is discussed. The magnet problems of the Baseball II device are described. Manufacture of the insulation and radiation damage are mentioned. A planned experimental program is outlined

  18. Emerging Trends in Topological Insulators and Topological ...

    Indian Academy of Sciences (India)

    /fulltext/reso/022/08/0787-0800. Keywords. Superconductor, quantum Hall effect, topological insulator, Majorana fermions. Abstract. Topological insulators are new class of materials which arecharacterized by a bulk band gap like ordinary ...

  19. Vacuum-insulated catalytic converter

    Science.gov (United States)

    Benson, David K.

    2001-01-01

    A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.

  20. On effective holographic Mott insulators

    Energy Technology Data Exchange (ETDEWEB)

    Baggioli, Matteo; Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE), Universitat Autònoma de Barcelona,The Barcelona Institute of Science and Technology,Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2016-12-20

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  1. Improved DC Gun Insulator Assembly

    International Nuclear Information System (INIS)

    Neubauer, M.L.; Dudas, A.; Sah, R.; Poelker, M.; Surles-Law, K.E.L.

    2010-01-01

    Many user facilities such as synchrotron radiation light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and often exhibit poor reliability. Two technical approaches to solving this problem will be investigated. Firstly, inverted ceramics offer solutions for reduced gradients between the electrodes and ground. An inverted design will be presented for 350 kV, with maximum gradients in the range of 5-10 MV/m. Secondly, novel ceramic manufacturing processes will be studied, in order to protect triple junction locations from emission, by applying a coating with a bulk resistivity. The processes for creating this coating will be optimized to provide protection as well as be used to coat a ceramic with an appropriate gradient in bulk resistivity from the vacuum side to the air side of an HV standoff ceramic cylinder. Example insulator designs are being computer modelled, and insulator samples are being manufactured and tested

  2. On effective holographic Mott insulators

    International Nuclear Information System (INIS)

    Baggioli, Matteo; Pujolàs, Oriol

    2016-01-01

    We present a class of holographic models that behave effectively as prototypes of Mott insulators — materials where electron-electron interactions dominate transport phenomena. The main ingredient in the gravity dual is that the gauge-field dynamics contains self-interactions by way of a particular type of non-linear electrodynamics. The electrical response in these models exhibits typical features of Mott-like states: i) the low-temperature DC conductivity is unboundedly low; ii) metal-insulator transitions appear by varying various parameters; iii) for large enough self-interaction strength, the conductivity can even decrease with increasing doping (density of carriers) — which appears as a sharp manifestation of ‘traffic-jam’-like behaviour; iv) the insulating state becomes very unstable towards superconductivity at large enough doping. We exhibit some of the properties of the resulting insulator-superconductor transition, which is sensitive to the momentum dissipation rate in a specific way. These models imply a clear and generic correlation between Mott behaviour and significant effects in the nonlinear electrical response. We compute the nonlinear current-voltage curve in our model and find that indeed at large voltage the conductivity is largely reduced.

  3. Thermal insulation of fuel elements

    International Nuclear Information System (INIS)

    Dubrovcak, P.; Pec, V.; Pitonak, J.

    1978-01-01

    The claim of the invention concerns thermal insulation of fuel elements heated for measurement of uranium fuel physical properties. For this, layers of aluminium film and of glass fibre are wound onto the inner tube of the element cladding. The space between the inner and the outer tubes is evacuated and the tubes are spaced using spacer wires. (M.S.)

  4. Forming Refractory Insulation On Copper Wire

    Science.gov (United States)

    Setlock, J.; Roberts, G.

    1995-01-01

    Alternative insulating process forms flexible coat of uncured refractory insulating material on copper wire. Coated wire formed into coil or other complex shape. Wire-coating apparatus forms "green" coat on copper wire. After wire coiled, heating converts "green" coat to refractory electrical insulator. When cured to final brittle form, insulating material withstands temperatures above melting temperature of wire. Process used to make coils for motors, solenoids, and other electrical devices to be operated at high temperatures.

  5. Optimization design for SST-1 Tokamak insulators

    International Nuclear Information System (INIS)

    Zhang Yuanbin; Pan Wanjiang

    2012-01-01

    With the help of ANSYS FEA technique, high voltage and cryogenic proper- ties of the SST-1 Tokamak insulators were obtained, and the structure of the insulators was designed and modified by taking into account the simulation results. The simulation results indicate that the optimization structure has better high voltage insulating property and cryogenic mechanics property, and also can fulfill the qualification criteria of the SST-1 Tokamak insulators. (authors)

  6. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  7. Polyimide Foams Offer Superior Insulation

    Science.gov (United States)

    2012-01-01

    At Langley Research Center, Erik Weiser and his colleagues in the Advanced Materials and Processing Branch were working with a new substance for fabricating composites for use in supersonic aircraft. The team, however, was experiencing some frustration. Every time they tried to create a solid composite from the polyimide (an advanced polymer) material, it bubbled and foamed. It seemed like the team had reached a dead end in their research - until they had another idea. "We said, This isn t going to work for composites, but maybe we could make a foam out of it," Weiser says. "That was kind of our eureka moment, to see if we could go in a whole other direction. And it worked." Weiser and his colleagues invented a new kind of polyimide foam insulation they named TEEK. The innovation displayed a host of advantages over existing insulation options. Compared to other commercial foams, Weiser explains, polyimide foams perform well across a broad range of temperatures, noting that the NASA TEEK foams provide effective structural insulation up to 600 F and down to cryogenic temperatures. The foam does not burn or off-gas toxic fumes, and even at -423 F - the temperature of liquid hydrogen - the material stays flexible. The inventors could produce the TEEK foam at a range of densities, from 0.5 pounds per cubic foot up to 20 pounds per cubic foot, making the foam ideal for a range of applications, including as insulation for reusable launch vehicles and for cryogenic tanks and lines. They also developed a unique, friable balloon format for manufacturing the foam, producing it as hollow microspheres that allowed the foam to be molded and then cured into any desired shape - perfect for insulating pipes of different sizes and configurations. The team s originally unplanned invention won an "R&D 100" award, and a later form of the foam, called LaRC FPF-44 (Spinoff 2009), was named "NASA Invention of the Year" in 2007.

  8. Insulator applications in a Tokamak reactor

    International Nuclear Information System (INIS)

    Leger, D.

    1986-06-01

    Insulators, among which insulators ceramics, have great potential applications in fusion reactors. They will be used for all plasma-facing components as protection and, magnetic fusion devices being subject to large electrical currents flowing in any parts of the device, for their electrical insulating properties

  9. The temporomandibular joint

    International Nuclear Information System (INIS)

    Campbell, W.

    1984-01-01

    Whilst the temporomandibular joint is in many ways unique, it is subject to all the diseases and disorders found in joints in other parts of the human skeleton. By far the most common disorder is injury, followed by arthropathy, acute and chronic dislocations, ankylosis, and in rare instances, neoplasms. The diagnosis and management of the temporomandibular joint are the primary responsibility of the oral surgeon. Nevertheless, this anatomical region is an area in which the cooperation of medical and dental disciplines may be required for the satisfactory conclusion of treatment. The more so when the disease process involves either associated psychosomatic illness or malignancy. The mainstay of the diagnosis is a careful radiological examination of the joint. There exists a delicate relationship between the dentition, the muscles of mastication, and the temporomandibular articulation, which is controlled by arthrokinetic reflex activity of the branches of the 5th cranial nerve. Imbalance between one or more of the components of this integrated system frequently leads to disturbances in function. Pain-dysfunction disorders constitute the larger part of temporomandibular joint disturbances generally encountered

  10. Joint Intentionality

    Directory of Open Access Journals (Sweden)

    Koreň Ladislav

    2016-03-01

    Full Text Available According to the shared intentionality hypothesis proposed by Michael Tomasello, two cognitive upgrades – joint and collective intentionality, respectively – make human thinking unique. Joint intentionality, in particular, is a mindset supposed to account for our early, species-specific capacity to participate in collaborative activities involving two (or a few agents. In order to elucidate such activities and their proximate cognitive-motivational mechanism, Tomasello draws on philosophical accounts of shared intentionality. I argue that his deference to such cognitively demanding accounts of shared intentional activities is problematic if his theoretical ambition is in part to show that and how early (prelinguistic and precultural capacities for joint action contribute to the development of higher cognitive capacities.

  11. Insulated electrocardiographic electrodes. [without paste electrolyte

    Science.gov (United States)

    David, R. M.; Portnoy, W. A. (Inventor)

    1975-01-01

    An integrated system is disclosed including an insulated electrode and an impedance transformer which can be assembled in a small plastic housing and used for the acquisition of electrocardiographic data. The electrode may be employed without a paste electrolyte and may be attached to the body for extended usage without producing skin reaction. The electrode comprises a thin layer of suitable nontoxic dielectric material preferably deposited by radio frequency sputtering onto a conductive substrate. The impedance transformer preferably comprises an operational amplifier having an FET input stage connected in the unity gain configuration which provides a very low lower cut-off frequency, a high input impedance with a very small input bias current, a low output impedance, and a high signal-to-noise ratio.

  12. Thermal support elements (TTE) made of high-tensile fibre-reinforced material and integrated vacuum-insulation panels (VIP) - Final report; Thermotragelemente (TTE) aus hochfestem Faserverbundstoff und integrierten Vakuumisolationspaneelen (VIP) - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Motavalli, M.; Ghazi Wakili, K.; Gsell, D.; Herwig, A.

    2008-07-01

    In this project, the static and thermal characteristics of the balcony connection element TTE (load carrying thermo-element) of the Hitek Construction Company AG were investigated. The TTE is an innovative element, which minimises thermal bridges that always exist in the vicinity of balcony connections. The concept of the element relies of the ability of fibre reinforced composites with superior thermal and mechanical characteristics to transfer the high mechanical loads from the balcony, through the layer of insulation, to the building. From a mechanical point-of-view, only very limited use of fibre reinforced composites has been seen for this type of construction application, therefore necessitating a detailed investigation of the element. In a first step, component tests of the individual load carrying elements were carried out, in which the elements showed an entirely satisfactory short-term behaviour. Furthermore, several assembly tests were carried out whereby parts of the balcony were reproduced, loaded and observed over longer term. During the investigations it was seen that very high stresses occur in the compression zone of the concrete deck and that the element must be modified in the future. From a thermal point-of-view, the TTE element offers a considerable improvement as compared with concrete decks without a thermal discontinuity. The thermal properties of the TTE element can be considered similar to or slightly better than other thermally discontinuous systems with the same load carrying capacity. This is understandable, since a thicker insulating layer with a thermal resistance of 2.5 m{sup 2} K/W was partially replaced through a thinner, yet more efficient insulation with a thermal resistance of 1.9 m{sup 2} K/W. Moreover, the glass fibre reinforced polymer has a larger thermal resistance than steel. The results obtained from the mechanical and thermal tests point to the need for further optimisation of the TTE element. It has been seen, however

  13. Development and validation of cryogenic foam insulation for LH2 subsonic transports

    Science.gov (United States)

    Anthony, F. M.; Colt, J. Z.; Helenbrook, R. G.

    1981-01-01

    Fourteen foam insulation specimens were tested. Some were plain foam while others contained flame retardants, chopped fiberglass reinforcement and/or vapor barriers. The thermal performance of the insulation was determined by measuring the rate at which LH2 boiled from an aluminum tank insulated with the test material. The test specimens were approximately 50 mm (2 in.) thick. They were structurally scaled so that the test cycle would duplicate the maximum thermal stresses predicted for the thicker insulation of an aircraft liquid hydrogen fuel tank during a typical subsonic flight. The simulated flight cycle of approximately 10 minutes duration heated the other insulation surface to 316 K (110 F) and cooled it to 226 K (20 F) while the inner insulation surface remained at liquid hydrogen temperature of 20 K (-423 F). Two urethane foam insulations exceeded the initial life goal of 2400 simulated flight cycles and sustained 4400 cycles with only minor damage. The addition of fiberglass reinforcement of flame retardant materials to an insulation degraded thermal performance and/or the life of the foam material. Installation of vapor barriers enhanced the structural integrity of the material but did not improve thermal performance. All of the foams tested were available materials; none were developed specifically for LH2 service.

  14. Joint Fire Support

    Science.gov (United States)

    2010-06-30

    intelligence application package for theater battle management core system ( TBMCS ) functionality at wing and squadron levels. The automated four... TBMCS , Joint Surveillance and Target Attack Radar System (Ground Control Station), and Global Command and Control System, as well as with Allied FA...The TBMCS is a force level integrated air C2 system. TBMCS provides hardware, software, and communications interfaces to support the preparation

  15. Dielectric and Insulating Technology 2005 : Reviews & Forecasts

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was done in the article of 2003. Thoese are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  16. Dielectric and Insulating Technology 2006 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of TC-DEI ( Technical Committee of Dielectrics and Electrical Insulation of IEEJ) activites. The activiteis are basically based on the activites of 8-10 investigation committees under TC-DEI. Recent activites were categorized into three functions in this article and remarkable activity or trend for each category is mentioned as was seen in the articles of 2005. Those are activities on asset management (AI application and insulation diagnosis), activities on new insulating and functional materials (Nano composite) and activities on new insulation technology for power tansmission (high Tc superconducting cable insulation).

  17. Joint imaging

    International Nuclear Information System (INIS)

    Hengst, W.

    1984-01-01

    Joint imaging is a proven diagnostic procedure which has become indispensable to the detection and treatment of different joint diseases in almost all disciplines. The method is suited for early diagnosis of joint affections both in soft tissue and bone which cannot be detected by X-ray or other procedures. The local activity accumulation depends on the rate of metabolism and is visualized in the scan, which in turn enables the extension and floridity of focal lesions to be evaluated and followed-up. Although joint scans may often give hints to probabilities relevant to differential diagnosis, the method is non-specific and only useful if based on the underlying clinical picture and X-ray finding, if possible. The radiation exposure is very low and does not represent a hazard in cases of adequate assessment of indication. In pregnant women and children the assessment of indication has to be based on very strict principles. The method is suited for out-patient diagnosis and can be applied in all installations equipped with a gamma camera and a technetium generator. (orig.) [de

  18. Joint purpose?

    DEFF Research Database (Denmark)

    Pristed Nielsen, Helene

    2013-01-01

    Starting from Crenshaw´s point that antiracism often fails to interrogate patriarchy and that feminism often reproduces racist practices (1991: 1252), this paper asks: What are the theoretical reasons for believing that feminism and anti-racism can be regarded as fighting for the joint purpose...

  19. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  20. Quantum fluctuations in insulating ferroelectrics

    International Nuclear Information System (INIS)

    Riseborough, Peter S.

    2010-01-01

    Graphical abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility. - Abstract: It has been proposed that in a ferroelectric insulator, an applied magnetic field may couple the transverse phonon modes and produce left and right circularly polarized phonon modes which are no longer degenerate. We quantize the theory and examine the effects of quantal fluctuations. In particular, we show that the zero-point fluctuations result in a large diamagnetic contribution to the magnetic susceptibility.

  1. Multilayer Insulation Ascent Venting Model

    Science.gov (United States)

    Tramel, R. W.; Sutherlin, S. G.; Johnson, W. L.

    2017-01-01

    The thermal and venting transient experienced by tank-applied multilayer insulation (MLI) in the Earth-to-orbit environment is very dynamic and not well characterized. This new predictive code is a first principles-based engineering model which tracks the time history of the mass and temperature (internal energy) of the gas in each MLI layer. A continuum-based model is used for early portions of the trajectory while a kinetic theory-based model is used for the later portions of the trajectory, and the models are blended based on a reference mean free path. This new capability should improve understanding of the Earth-to-orbit transient and enable better insulation system designs for in-space cryogenic propellant systems.

  2. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  3. Magnetically insulated transmission line oscillator

    Science.gov (United States)

    Bacon, L.D.; Ballard, W.P.; Clark, M.C.; Marder, B.M.

    1987-05-19

    A magnetically insulated transmission line oscillator employs self-generated magnetic fields to generate microwave energy. An anode of the oscillator includes slow-wave structures which are formed of a plurality of thin conductive vanes defining cavities therebetween, and a gap is formed between the anode and a cathode of the oscillator. In response to a pulsed voltage applied to the anode and cathode, self-generated magnetic fields are produced in a cross-field orientation with respect to the orientation of the electric field between the anode and the cathode. The cross-field magnetic fields insulate the flow of electrons in the gap and confine the flow of electrons within the gap. 11 figs.

  4. Insulation assembly for electric machine

    Science.gov (United States)

    Rhoads, Frederick W.; Titmuss, David F.; Parish, Harold; Campbell, John D.

    2013-10-15

    An insulation assembly is provided that includes a generally annularly-shaped main body and at least two spaced-apart fingers extending radially inwards from the main body. The spaced-apart fingers define a gap between the fingers. A slot liner may be inserted within the gap. The main body may include a plurality of circumferentially distributed segments. Each one of the plurality of segments may be operatively connected to another of the plurality of segments to form the continuous main body. The slot liner may be formed as a single extruded piece defining a plurality of cavities. A plurality of conductors (extendable from the stator assembly) may be axially inserted within a respective one of the plurality of cavities. The insulation assembly electrically isolates the conductors in the electric motor from the stator stack and from other conductors.

  5. RSRM Nozzle-to-Case Joint J-leg Development

    Science.gov (United States)

    Albrechtsen, Kevin U.; Eddy, Norman F.; Ewing, Mark E.; McGuire, John R.

    2003-01-01

    Since the beginning of the Space Shuttle Reusable Solid Rocket Motor (RSRM) program, nozzle-to-case joint polysulfide adhesive gas paths have occurred on several flight motors. These gas paths have allowed hot motor gases to reach the wiper O-ring. Even though these motors continue to fly safely with this condition, a desire was to reduce such occurrences. The RSRM currently uses a J-leg joint configuration on case field joints and igniter inner and outer joints. The J-leg joint configuration has been successfully demonstrated on numerous RSRM flight and static test motors, eliminating hot gas intrusion to the critical O-ring seals on these joints. Using the proven technology demonstrated on the case field joints and igniter joints, a nozzle-to-case joint J-leg design was developed for implementation on RSRM flight motors. This configuration provides an interference fit with nozzle fixed housing phenolics at assembly, with a series of pressurization gaps incorporated outboard of the joint mating surface to aid in joint pressurization and to eliminate any circumferential flow in this region. The joint insulation is bonded to the nozzle phenolics using the same pressure sensitive adhesive used in the case field joints and igniter joints. An enhancement to the nozzle-to-case joint J-leg configuration is the implementation of a carbon rope thermal barrier. The thermal barrier is located downstream of the joint bondline and is positioned within the joint in a manner where any hot gas intrusion into the joint passes through the thermal barrier, reducing gas temperatures to a level that would not affect O-rings downstream of the thermal barrier. This paper discusses the processes used in reaching a final nozzle-to-case joint J-leg design, provides structural and thermal results in support of the design, and identifies fabrication techniques and demonstrations used in arriving at the final configuration.

  6. Application to the system of insulated of diagnosis in high-voltage motors by partial discharge

    International Nuclear Information System (INIS)

    Mikami, M.

    2005-01-01

    In order to detect electric insulators degradation of high-voltage electric motors at an early stage, measurements of partial discharge of operating high-voltage electric motors (about 150 units) in the nuclear power plants were conducted from 2001 to 2004 by the use of on-line monitoring systems that could measure partial discharge of electric insulators. Influencing factors for measured values were identified from measured data and evaluation criteria of electric insulators integrity were established based on variations of partial discharge values. (T. Tanaka)

  7. Top-gate pentacene-based organic field-effect transistor with amorphous rubrene gate insulator

    Science.gov (United States)

    Hiroki, Mizuha; Maeda, Yasutaka; Ohmi, Shun-ichiro

    2018-02-01

    The scaling of organic field-effect transistors (OFETs) is necessary for high-density integration and for this, OFETs with a top-gate configuration are required. There have been several reports of damageless lithography processes for organic semiconductor or insulator layers. However, it is still difficult to fabricate scaled OFETs with a top-gate configuration. In this study, the lift-off process and the device characteristics of the OFETs with a top-gate configuration utilizing an amorphous (α) rubrene gate insulator were investigated. We have confirmed that α-rubrene shows an insulating property, and its extracted linear mobility was 2.5 × 10-2 cm2/(V·s). The gate length and width were 10 and 60 µm, respectively. From these results, the OFET with a top-gate configuration utilizing an α-rubrene gate insulator is promising for the high-density integration of scaled OFETs.

  8. Secondary electron emission from insulators

    International Nuclear Information System (INIS)

    Kanaya, K.; Ono, S.; Ishigaki, F.

    1978-01-01

    The high yield of secondary electron emission from insulators due to electron bombardment may be the result of an increase of the depth of escape. The free-electron scattering theory is applied to the high energy of primary beams, but cannot be applied to the low energy of secondary escaping beams because of the large energy gap of the insulators. The plasmon loss with the valence electron is considered when the secondary electrons escape. Based on the energy retardation power formula of the penetration and energy loss of an electron probe into solid targets, secondary electron emissions from insulators are calculated from the assumptions that the distribution of the secondary electrons due to both incident and back-scattered electrons within the target is isotropic and that it follows the absorption law of the Lenard type. The universal yield-energy curve of the secondary electron emission, which is deduced as a function of three parameters such as ionisation potential, valence electron and the back-scattered coefficient in addition to the free-electron density effect, is found to be in good agreement with the experimental results. (author)

  9. Influence of light masonry mortar on the thermal insulation of a solid brick wall

    Energy Technology Data Exchange (ETDEWEB)

    Kupke, C

    1980-12-01

    For calculations of the thermal insulation of structural components according to DIN 4108 and to the Thermal Insulation Ordinance, characteristic data of thermal conductivity are used which are contained in DIN 4108 and in the Bundesanzeiger in Supplements to the publication of material characteristics for the calculation of thermal insulation according to the Thermal Insulation Ordinance. For masonry, this value is equivalent to the thermal conductivity of the bricks, including mortar joints. The mortar considered is standard mortar, group II, according to DIN 1053. In the last few years, in order to improve the thermal insulation, mortars of low thermal conductivity and low volume weight - so-called light masonry mortars - have been used to an increasing extent. The improvement in thermal conductivity as compared with standard mortar is referred to as ..delta..lambda; it depends mostly on the thermal conductivity of the light mortar and the bricks. In the article, the laws governing the influence of light masonry mortar on the thermal insulation of masonry of solid bricks and solid blocks are reviewed.

  10. Effects of insulation on potted superconducting coils

    International Nuclear Information System (INIS)

    Zeller, A.F.; DeKamp, J.C.; Magsig, C.T.; Nolen, J.A.; McInturff, A.D.

    1989-01-01

    Test coils using identical wire but with either Formvar or Polyesterimid insulation were fabricated to determine the effects of insulation on training behavior. It was found that the type of insulation did not affect the training behavior. While considerable attention has been paid to epoxy formulations used for superconducting coils, little study has been devoted to the effects of the wire insulation on training behavior. If the insulation does not bind well with the epoxy, the wires will not be held securely in place, and training will be required to make the coil operate at its design limit. In fact, the coil may never reach its design current, showing considerable degredation. Conversely, if the epoxy-insulation reaction is to soften or weaken the insulation, then shorts and/or training may result. The authors have undertaken a study of the effects of the insulation on potted coils wet wound with Stycast 2850 FT epoxy. The wire was insulated with one of two insulting varnishes: Formvar (a polyvinyl formal resin) or Polyesterimid (a phenolic resin). Formvar is the standard insulation in the United States while Polyesterimid the European standard

  11. Insulation and Heat Treatment of Bi-2212 Wire for Wind-and-React Coils

    Energy Technology Data Exchange (ETDEWEB)

    Peter K. F. Hwang

    2007-10-22

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2" dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  12. Insulation and Heat Treatment of Bi-2212 Wires for Wind-and-React Coils

    International Nuclear Information System (INIS)

    Hwang, Peter K.F.

    2007-01-01

    Higher Field Magnets demand higher field materials such as Bi-2212 round superconducting wire. The Bi-2212 wire manufacture process depends on the coil fabrication method and wire insulation material. Considering the wind-and-react method, the coil must unifirmly heated to the melt temperature and uniformly cooled to the solidification temperature. During heat treat cycle for tightly wound coils, the leakage melt from conductor can chemically react with insulation on the conductor and creat short turns in the coils. In this research project, conductor, insulation, and coils are made to systemically study the suitable insulation materials, coil fabrication method, and heat treatment cycles. In this phase I study, 800 meters Bi-2212 wire with 3 different insulation materials have been produced. Best insulation material has been identified after testing six small coils for insulation integrity and critical current at 4.2 K. Four larger coils (2-inch dia) have been also made with Bi-2212 wrapped with best insulation and with different heattreatment cycle. These coils were tested for Ic in a 6T background field and at 4.2 K. The test result shows that Ic from 4 coils are very close to short samples (1 meter) result. It demonstrates that HTS coils can be made with Bi-2212 wire with best insulation consistently. Better wire insulation, improving coil winding technique, and wire manufacture process can be used for a wide range of high field magnet application including acclerators such as Muon Collider, fusion energy research, NMR spectroscopy, MRI, and other industrial magnets.

  13. Insulator-insulator and insulator-conductor transitions in the phase diagram of aluminium trichloride

    Directory of Open Access Journals (Sweden)

    Romina Ruberto

    2009-01-01

    Full Text Available We report a classical computer-simulation study of the phase diagram of AlCl3 in the pressure-temperature (p, T plane, showing (i that melting from a layered crystal structure occurs into a molecular liquid at low (p, T and into a dissociated ionic liquid at high (p, T, and (ii that a broad transition from a molecular insulator to an ionic conductor takes place in the liquid state.

  14. Expansion joints for LMFBR

    International Nuclear Information System (INIS)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1980-01-01

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of the development reviewed. Large Na (sodium)-heat transfer systems require a lot of valuable space if the component lay-out does not include compensation devices. So, in order to condense the spatial requirement as much as possible, expansion joints must be integrated into the pipe system. There are two basic types to suit the purpose: axial expansion joints and angular expansion joints. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows. Expansion joints must be designed and mounted in a manner to completely withstand seismic forces. The design must exclude any damage to the bellows during intermittent operations, that is, when sodium is drained the bellows' folds must be completely empty; otherwise residual solidified sodium could destroy the bellows when restarting. The expansion joints must be engineered on the basis of the following design data for the secondary system of the SNR project: working pressure: 16 bar; failure mode pressure: 5 events; failure mode: 5 sec., 28.5 bar, 520 deg. C; working temperature: 520 deg. C; temperature transients: 30 deg. C/sec.; service life: 200,000 h; number of load cycles: 10 4 ; material: 1.4948 or 1.4919; layer thickness of folds: 0.5 mm; angular deflection (DN 800): +3 deg. C or; axial expansion absorption (DN 600): ±80 mm; calculation: ASME class. The bellows' development work is not handled within this scope. The bellows are supplied by leading manufacturers, and warrant highest quality. Multiple bellows were selected on the basis of maximum elasticity - a property

  15. Joint Operation Planning

    National Research Council Canada - National Science Library

    2006-01-01

    .... It sets forth joint doctrine to govern the joint operation planning activities and performance of the Armed Forces of the United States in joint operations, and provides the joint doctrinal basis...

  16. Insulation Progress since the Mid-1950s

    Science.gov (United States)

    Timmerhaus, K. D.

    Storage vessel and cryostat design for modern cryogenic systems has become rather routine as the result of the wide use of and application of cryogenic fluids. Such vessels for these fluids range in size from 1 L flasks used in the laboratory for liquid nitrogen to the more than 200,000 m3 double-walled tanks used for temporary storage of liquefied natural gas before being transported overseas to their final destination. These storage vessels for cryogenic fluids range in type from low-performance containers insulated with rigid foam or fibrous insulation to high-performance containers insulated with evacuated multilayer insulations. The overriding factors in the type of container selected normally are of economics and safety. This paper will consider various insulation concepts used in such cryogenic storage systems and will review the progress that has been made over the past 50 years in these insulation systems.

  17. Handleable shapes of thermal insulation material

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, J. T.

    1989-01-17

    Handleable and machineable shapes of thermal insulation material are made by compacting finely divided thermal insulation material into the cells of a reinforcing honeycomb insulation material into the cells of a reinforcing honeycomb structure. The finely divided thermal insulation material may be, for example, silica aerogel, pyrogenic silica, carbon black, silica gel, volatilised silica, calcium silicate, vermiculate or perlite, or finely divided metal oxides such as alumina or titania. The finely divided thermal insulation material may include an infra-red opacifier and/or reinforcing fibres. The reinforcing honeycomb structure may be made from, for example, metals such as aluminium foil, inorganic materials such as ceramics, organic materials such as plastics materials, woven fabrics or paper. A rigidiser may be employed. The shapes of thermal insulation material are substantially rigid and may be machines, for example by mechanical or laser cutting devices, or may be formed, for example by rolling, into curved or other shaped materials. 12 figs.

  18. Hydrogen storage in insulated pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S.M.; Garcia-Villazana, O. [Lawrence Livermore National Lab., CA (United States)

    1998-08-01

    Insulated pressure vessels are cryogenic-capable pressure vessels that can be fueled with liquid hydrogen (LH{sub 2}) or ambient-temperature compressed hydrogen (CH{sub 2}). Insulated pressure vessels offer the advantages of liquid hydrogen tanks (low weight and volume), with reduced disadvantages (lower energy requirement for hydrogen liquefaction and reduced evaporative losses). This paper shows an evaluation of the applicability of the insulated pressure vessels for light-duty vehicles. The paper shows an evaluation of evaporative losses and insulation requirements and a description of the current analysis and experimental plans for testing insulated pressure vessels. The results show significant advantages to the use of insulated pressure vessels for light-duty vehicles.

  19. Insulated piggyBac vectors for insect transgenesis

    Directory of Open Access Journals (Sweden)

    Horn Carsten

    2006-06-01

    Full Text Available Abstract Background Germ-line transformation of insects is now a widely used method for analyzing gene function and for the development of genetically modified strains suitable for pest control programs. The most widely used transposable element for the germ-line transformation of insects is piggyBac. The site of integration of the transgene can influence gene expression due to the effects of nearby transcription enhancers or silent heterochromatic regions. Position effects can be minimized by flanking a transgene with insulator elements. The scs/scs' and gypsy insulators from Drosophila melanogaster as well as the chicken β-globin HS4 insulator function in both Drosophila and mammalian cells. Results To minimize position effects we have created a set of piggyBac transformation vectors that contain either the scs/scs', gypsy or chicken β-globin HS4 insulators. The vectors contain either fluorescent protein or eye color marker genes and have been successfully used for germ-line transformation of Drosophila melanogaster. A set of the scs/scs' vectors contains the coral reef fluorescent protein marker genes AmCyan, ZsGreen and DsRed that have not been optimized for translation in human cells. These marker genes are controlled by a combined GMR-3xP3 enhancer/promoter that gives particularly strong expression in the eyes. This is also the first report of the use of the ZsGreen and AmCyan reef fluorescent proteins as transformation markers in insects. Conclusion The insulated piggyBac vectors should protect transgenes against position effects and thus facilitate fine control of gene expression in a wide spectrum of insect species. These vectors may also be used for transgenesis in other invertebrate species.

  20. Polyester Apparel Cutting Waste as Insulation Material

    OpenAIRE

    Trajković, Dušan; Jordeva, Sonja; Tomovska, Elena; Zafirova, Koleta

    2017-01-01

    Polyester waste is the dominant component of the clothing industry waste stream, yet its recycling in this industry is rarely addressed. This paper proposes using polyester cutting waste as an insulation blanket for roofing and buildings’ internal walls in order to reduce environmental pollution. The designed textile structures used waste cuttings from different polyester fabrics without opening the fabric to fibre. Thermal insulation, acoustic insulation, fire resistance and biodegradation o...

  1. Highly Efficient Four-Wave Mixing in an AlGaAs-On-Insulator (AlGaAsOI) Nano-Waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Ottaviano, Luisa; Semenova, Elizaveta

    2015-01-01

    We propose an AlGaAs-on-insulator platform for nonlinear integrated photonics. We demonstrate highly efficient four-wave mixing in a 3-mm long AlGaAs-on-insulator nanowaveguide. A conversion efficiency of -21.1 dB is obtained with only a 45-mW pump......We propose an AlGaAs-on-insulator platform for nonlinear integrated photonics. We demonstrate highly efficient four-wave mixing in a 3-mm long AlGaAs-on-insulator nanowaveguide. A conversion efficiency of -21.1 dB is obtained with only a 45-mW pump...

  2. Radiation-resistant plastic insulators

    International Nuclear Information System (INIS)

    Sturm, B.J.; Parkinson, W.W.

    1975-01-01

    A high molecular weight organic composition useful as an electric insulator in radiation fields is provided and comprises normally a solid polymer of an organic compound having a specific resistance greater than 10 19 ohm-cm and containing phenyl groups and 1 to 7.5 weight percent of a high molecular weight organic phosphite. In one embodiment the composition comprises normally solid polystyrene having 7.5 weight percent tris-β-chloroethyl phosphite as an additive; the composition exhibited an increase in the post-irradiation resistivity of over an order of magnitude over the post-irradiation resistivity of pure polystyrene. (Patent Office Record)

  3. Processing of insulators and semiconductors

    Science.gov (United States)

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  4. Characterization of Microporous Insulation, Microsil

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-06-15

    Microsil microporous insulation has been characterized by Lawrence Livermore National Laboratory for possible use in structural and thermal applications in the DPP-1 design. Qualitative test results have provided mechanical behavioral characteristics for DPP-1 design studies and focused on the material behavioral response to being crushed, cyclically loaded, and subjected to vibration for a confined material with an interference fit or a radial gap. Quantitative test results have provided data to support the DPP-1 FEA model analysis and verification and were used to determine mechanical property values for the material under a compression load. The test results are documented within this report.

  5. A real-time insulation detection method for battery packs used in electric vehicles

    Science.gov (United States)

    Tian, Jiaqiang; Wang, Yujie; Yang, Duo; Zhang, Xu; Chen, Zonghai

    2018-05-01

    Due to the energy crisis and environmental pollution, electric vehicles have become more and more popular. Compared to traditional fuel vehicles, the electric vehicles are integrated with more high-voltage components, which have potential security risks of insulation. The insulation resistance between the chassis and the direct current bus of the battery pack is easily affected by factors such as temperature, humidity and vibration. In order to ensure the safe and reliable operation of the electric vehicles, it is necessary to detect the insulation resistance of the battery pack. This paper proposes an insulation detection scheme based on low-frequency signal injection method. Considering the insulation detector which can be easily affected by noises, the algorithm based on Kalman filter is proposed. Moreover, the battery pack is always in the states of charging and discharging during driving, which will lead to frequent changes in the voltage of the battery pack and affect the estimation accuracy of insulation detector. Therefore the recursive least squares algorithm is adopted to solve the problem that the detection results of insulation detector mutate with the voltage of the battery pack. The performance of the proposed method is verified by dynamic and static experiments.

  6. Method of manufacturing a thermally insulating body

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, J.A.; Morgan, D.E.; Jackson, J.D.

    1988-10-11

    A method of manufacturing a microporous thermally insulating body comprises mixing together a finely divided microporous insulating material such as silica aerogel or pyrogenic silica and a solid ammonia-generating compound in particulate form, and compressing the mixture to form a thermally insulating body. The ammonia-generating compound is dispersed evenly throughout the insulating material and may comprise, for example, ammonium carbonate, ammonium acetate or urea. Preferably, the ammonia-generating compound comprises a mixture of about one third by weight of ammonium carbonate and about two thirds by weight of ammonium bicarbonate together with a small proportion of magnesium oxide. Experiments are described which illustrate the manufacturing process. 6 tabs.

  7. Dielectric and Insulating Technology 2004 : Review & Forecast

    Science.gov (United States)

    Okamoto, Tatsuki

    This article reports the state-of-art of DEIS activites. DEIS activiteis are basically based on the activites of 8-10 investigation committees’ under DEIS committee. Recent DEIS activites are categlized into three functions in this article and remarkable activity or trend of each category is mentioned. Those are activities on insulation diagnosis (AI application and asset management), activities on new insulation technology for power tansmission (high Tc super conducting cable insulation and all solid sinulated substation), and activities on new insulating materials (Nanocomposite).

  8. Process insulation. Isolation thermique des equipements

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    A manual is presented to assist managers and operating personnel to recognize industrial energy management opportunities, and provides mathematical equations, general information on proven techniques and technology, and examples. It deals with process insulation, focusing on the insulation of mechanical systems such as piping, process vessels, equipment, and ductwork. The manual describes the effects of insulation materials; commonly encountered types of insulation, coverings and protective finishes as well as common applications; energy management opportunities, divided into housekeeping, low cost, and retrofit; and includes worked examples of each. Includes glossary. 17 figs., 8 tabs.

  9. Low Permeability Polyimide Insulation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Resodyn Technologies proposes a new technology that enables the application of polyimide based cryogenic insulation with low hydrogen permeability. This effort...

  10. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  11. Complex studies of mockups of electric insulators of cryoresistive coils of the T-15 device electromagnet system

    International Nuclear Information System (INIS)

    Aksenov, O.E.; Gringof, V.G.; Il'in, G.V.; Lapenas, A.A.; Stepanov, A.N.; Ulmanis, U.A.

    1982-01-01

    The test results are presented for multilayer electrical insulation of coils in the T-15 thermonuclear device electromagnet system. The insulation is made ion the base of polyimide tape with adhesive coating. In the 77-93 K range the tape insulating strength is 35 MV/m, the dielectric loss tangent is less than 10 -5 , dielectric permeability is 2.5, volume resistivity is more than 10 5 Ohmxcm. The insulation has been tested for radiation effects in the IRT-2000 nuclear reactor. Different batches of insulation mockups 0.7 mm thick have been irradiated up to the integral fast neutron flux within the 10 16 -5x10 18 neutr./cm 2 range (E >= 0.1 MeV), (J=10 11 -10 12 neutr./cm 2 xs) at the corresponding temperature between 390 and 420 K. The given data on insulating strength point to a high radiation resistance of the multilayer polyimide insulation. To make sure finally that the developed insulation system meets the requirements of the operating conditions for thermonuclear device electromagnet system coils the device has been tested for operational life. On the basis of the test results a conclusion can be made that at the present development stage the multilayer polyimide insulation based on the adhesive tape meets to the utmost degree the requirements corresponding to the complicated operating conditions of the T-15 thermonuclear devices

  12. Particle-vortex duality in topological insulators and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murugan, Jeff [The Laboratory for Quantum Gravity & Strings, Department of Mathematics and Applied Mathematics, University of Cape Town,Private Bag, Rondebosch, 7700 (South Africa); School of Natural Sciences, Institute for Advanced Study, Olden Lane, Princeton, NJ 08540 (United States); Nastase, Horatiu [Instituto de Física Teórica, UNESP-Universidade Estadual Paulista,R. Dr. Bento T. Ferraz 271, Bl. II, Sao Paulo 01140-070, SP (Brazil)

    2017-05-31

    We investigate the origins and implications of the duality between topological insulators and topological superconductors in three and four spacetime dimensions. In the latter, the duality transformation can be made at the level of the path integral in the standard way, while in three dimensions, it takes the form of “self-duality in odd dimensions'. In this sense, it is closely related to the particle-vortex duality of planar systems. In particular, we use this to elaborate on Son’s conjecture that a three dimensional Dirac fermion that can be thought of as the surface mode of a four dimensional topological insulator is dual to a composite fermion.

  13. Thermal insulation properties of walls

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey Dmitrievich

    2014-05-01

    Full Text Available Heat-protective qualities of building structures are determined by the qualities of the used materials, adequate design solutions and construction and installation work of high quality. This rule refers both to the structures made of materials similar in their structure and nature and mixed, combined by a construction system. The necessity to ecaluate thermal conductivity is important for a product and for a construction. Methods for evaluating the thermal protection of walls are based on the methods of calculation, on full-scale tests in a laboratory or on objects. At the same time there is a reason to believe that even deep and detailed calculation may cause deviation of the values from real data. Using finite difference method can improve accuracy of the results, but it doesn’t solve all problems. The article discusses new approaches to evaluating thermal insulation properties of walls. The authors propose technique of accurate measurement of thermal insulation properties in single blocks and fragments of walls and structures.

  14. Topological Insulator Nanowires and Nanoribbons

    KAUST Repository

    Kong, Desheng

    2010-01-13

    Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi2Se3 material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi2Se5 nanomaterials with a variety of morphologies. The synthesis of Bi 2Se5 nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [1120] direction with a rectangular cross-section and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with ∼ 1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitais to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states. © 2010 American Chemical Society.

  15. Material science experience gained from the space nuclear rocket program: Insulators

    International Nuclear Information System (INIS)

    Wagner, P.

    1992-07-01

    Although Rover reactors are viewed as the ultimate in high-temperature operating systems, many of the materials used in these reactors (for example, support rods, control drums, and the reflector) have to be held at relatively low temperatures while the reactor operates, in order to maintain their structural integrity. Thus the insulators needed to separate these temperature domains are crucial to the reactor's ultimate operating times and temperatures. All of the reactors that were tested used pyrolytic graphite as the primary insulator. However, it had been long planned to replace the graphite with zirconium carbide and a lengthy and intensive effort to develop the zirconium carbide insulators had been made at the time Rover was terminated. This report details research and development and the experience we gained with both these insulator materials

  16. Sound source measurement by using a passive sound insulation and a statistical approach

    Science.gov (United States)

    Dragonetti, Raffaele; Di Filippo, Sabato; Mercogliano, Francesco; Romano, Rosario A.

    2015-10-01

    This paper describes a measurement technique developed by the authors that allows carrying out acoustic measurements inside noisy environments reducing background noise effects. The proposed method is based on the integration of a traditional passive noise insulation system with a statistical approach. The latter is applied to signals picked up by usual sensors (microphones and accelerometers) equipping the passive sound insulation system. The statistical approach allows improving of the sound insulation given only by the passive sound insulation system at low frequency. The developed measurement technique has been validated by means of numerical simulations and measurements carried out inside a real noisy environment. For the case-studies here reported, an average improvement of about 10 dB has been obtained in a frequency range up to about 250 Hz. Considerations on the lower sound pressure level that can be measured by applying the proposed method and the measurement error related to its application are reported as well.

  17. Formation of multiple levels of porous silicon for buried insulators and conductors in silicon device technologies

    Science.gov (United States)

    Blewer, Robert S.; Gullinger, Terry R.; Kelly, Michael J.; Tsao, Sylvia S.

    1991-01-01

    A method of forming a multiple level porous silicon substrate for semiconductor integrated circuits including anodizing non-porous silicon layers of a multi-layer silicon substrate to form multiple levels of porous silicon. At least one porous silicon layer is then oxidized to form an insulating layer and at least one other layer of porous silicon beneath the insulating layer is metallized to form a buried conductive layer. Preferably the insulating layer and conductive layer are separated by an anodization barrier formed of non-porous silicon. By etching through the anodization barrier and subsequently forming a metallized conductive layer, a fully or partially insulated buried conductor may be fabricated under single crystal silicon.

  18. Development of a high power electron beam welding gun with replaceable high voltage feed-through insulators

    Energy Technology Data Exchange (ETDEWEB)

    Saha, T.K; Mascarenhas, M.; Kandaswamy, E., E-mail: tanmay@barc.gov.in [Power Beam Equipment Design Section, Bhabha Atomic Research Centre, Mumbai (India)

    2014-07-01

    Ceramic to metal sealed feed-through insulators are commonly used in electron beam welding gun. The above feed-through insulators are susceptible to failure, as the brazing joints in them are not always very strong. Failure in one of these feed-through could render the complete gun unusable. This problem has already been faced in BARC, which led to the development of the electron gun with replaceable feed through insulators. A 24 kW Electron Beam Welding (EBW) gun with indigenous designed replaceable insulators is fabricated in BARC. Emphasis during the design of the gun had been to reduce the use of imported components to zero. This paper describes the design and fabrication of this gun and reports various simulations and tests performed. Beam trajectory of the gun is numerically computed and presented. Weld passes were carried out on stainless steel plates show satisfactory penetrations. (author)

  19. Our actions in my mind: Motor imagery of joint action

    DEFF Research Database (Denmark)

    Vesper, Cordula; Knoblich, Günther; Sebanz, Natalie

    2014-01-01

    How do people imagine performing actions together? The present study investigated motor imagery of joint actions that requires integrating one's own and another's part of an action. In two experiments, individual participants imagined jumping alone or jointly next to an imagined partner. The joint...... condition required coordinating one's own imagined actions with an imagined partner's actions to synchronize landing times. We investigated whether the timing of participants' own imagined jumps would reflect the difference in jump distance to their imagined partner's jumps. The results showed...... of joint jumping. These findings link research on motor imagery and joint action, demonstrating that individuals are able to integrate simulations of different parts of a joint action....

  20. Architectural and structural qualities in timber joints

    DEFF Research Database (Denmark)

    Christensen, Jesper Thøger; Christensen, Mogens Fiil; Damkilde, Lars

    2016-01-01

    Design of joints in timber structures is crucial to reach both elegant and structural efficient designs. Design of joints should therefore be an integral part of the conceptual design phase. Traditionally this is not the case, and joints are often solely designed and analysed in the engineering...... but also increase timbers competitiveness in the building industry. The paper is part of an ongoing research project aiming at providing tools for an integrated design process for timber structures. The focus of the paper is to identify how structure and its joints contributes to architecture and vice...... design phase. The result is joints that function structurally but do not add value to the design, and may even compromise the architectural ideas. With an approach, integrating both structural and architectural design from the beginning, one should not only gain better structures and architecture...

  1. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  2. Thermal insulation of high temperature reactors

    International Nuclear Information System (INIS)

    Cornille, Y.

    1975-01-01

    Operating conditions of HTR thermal insulation are given and heat insulators currently developed are described (fibers kept in position by metallic structures). For future applications and higher temperatures, research is directed towards solutions using ceramics or associating fibers and ceramics [fr

  3. Quantitative analysis of thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2014-01-01

    This work concerns the development of simulation tools for mapping of insulation properties of thermal insulation coatings based on selected functional filler materials. A mathematical model, which includes the underlying physics (i.e. thermal conductivity of a heterogeneous two-component coating...

  4. Study of thermal conductivity of multilayer insulation

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, D; Sundaram, S; Nath, G K; Sethuram, N P; Chandrasekharan, T; Varadarajan, T G [Heavy Water Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author). 3 refs., 3 figs.

  5. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  6. Study of thermal conductivity of multilayer insulation

    International Nuclear Information System (INIS)

    Dutta, D.; Sundaram, S.; Nath, G.K.; Sethuram, N.P.; Chandrasekharan, T.; Varadarajan, T.G.

    1994-01-01

    This paper presents experimental determination of the apparent thermal conductivity of multilayer insulation for a cryogenic system. The variation of thermal conductivity with residual gas pressure is studied and the optimum vacuum for good insulating performance is determined. Evaporation loss technique for heat-inleak determination is employed. (author)

  7. Aharonov–Bohm interference in topological insulator nanoribbons

    KAUST Repository

    Peng, Hailin; Lai, Keji; Kong, Desheng; Meister, Stefan; Chen, Yulin; Qi, Xiao-Liang; Zhang, Shou-Cheng; Shen, Zhi-Xun; Cui, Yi

    2009-01-01

    Topological insulators represent unusual phases of quantum matter with an insulating bulk gap and gapless edges or surface states. The two-dimensional topological insulator phase was predicted in HgTe quantum wells and confirmed by transport

  8. Modeling of Dynamic Responses in Building Insulation

    Directory of Open Access Journals (Sweden)

    Anna Antonyová

    2015-10-01

    Full Text Available In this research a measurement systemwas developedfor monitoring humidity and temperature in the cavity between the wall and the insulating material in the building envelope. This new technology does not disturb the insulating material during testing. The measurement system can also be applied to insulation fixed ten or twenty years earlier and sufficiently reveals the quality of the insulation. A mathematical model is proposed to characterize the dynamic responses in the cavity between the wall and the building insulation as influenced by weather conditions.These dynamic responses are manifested as a delay of both humidity and temperature changes in the cavity when compared with the changes in the ambient surrounding of the building. The process is then modeled through numerical methods and statistical analysis of the experimental data obtained using the new system of measurement.

  9. Topological Insulators Dirac Equation in Condensed Matters

    CERN Document Server

    Shen, Shun-Qing

    2012-01-01

    Topological insulators are insulating in the bulk, but process metallic states around its boundary owing to the topological origin of the band structure. The metallic edge or surface states are immune to weak disorder or impurities, and robust against the deformation of the system geometry. This book, Topological insulators, presents a unified description of topological insulators from one to three dimensions based on the modified Dirac equation. A series of solutions of the bound states near the boundary are derived, and the existing conditions of these solutions are described. Topological invariants and their applications to a variety of systems from one-dimensional polyacetalene, to two-dimensional quantum spin Hall effect and p-wave superconductors, and three-dimensional topological insulators and superconductors or superfluids are introduced, helping readers to better understand this fascinating new field. This book is intended for researchers and graduate students working in the field of topological in...

  10. Foam insulated transfer line test report

    International Nuclear Information System (INIS)

    Squier, D.M.

    1994-06-01

    Miles of underground insulated piping will be installed at the Hanford site to transfer liquid waste. Significant cost savings may be realized by using pre-fabricated polyurethane foam insulated piping. Measurements were made on sections of insulated pipe to determine the insulation's resistance to axial expansion of the pipe, the force required to compress the foam in the leg of an expansion loop and the time required for heat up and cool down of a buried piping loop. These measurements demonstrated that the peak axial force increases with the amount of adhesion between the encasement pipe and the insulation. The compressive strength of the foam is too great to accommodate the thermal growth of long straight pipe sections into the expansion loops. Mathematical models of the piping system's thermal behavior can be refined by data from the heated piping loop

  11. The Linkage of Joint Operational Fires, Information Operations and the Army: Does the Army Have Effective Feedback Mechanisms that Integrate Operational Fires (Physical Destruction) and Information Operations?

    National Research Council Canada - National Science Library

    Mills, Charles

    2004-01-01

    The information revolution seems to hold a lot of promise to the U.S. economy and the U.S. military, but rigid bureaucratic hierarchies make it extremely difficult for effective integration of operational fires and information operations...

  12. DOE Task Force meeting on Electrical Breakdown of Insulating Ceramics in a High Radiation Field

    International Nuclear Information System (INIS)

    Green, P.H.

    1991-08-01

    This volume contains the abstracts and presentation material from the Research Assistance Task Force Meeting ''Electrical Breakdown of Insulating Ceramics in a High-Radiation Field.'' The meeting was jointly sponsored by the Office of Basic Energy Sciences and the Office of Fusion Energy of the US Department of Energy in Vail, Colorado, May 28--June 1, 1991. The 26 participants represented expertise in fusion, radiation damage, electrical breakdown, ceramics, and semiconductor and electronic structures. These participants came from universities, industries, national laboratories, and government. The attendees represented eight nations. The Task Force meeting was organized in response to the recent discovery that a combination of temperature, electric field, and radiation for an extended period of time has an unexplained adverse effect in ceramics, termed radiation-enhanced electrical degradation (REED). REED occurs after an incubation period and continues to accelerate with irradiation until the ceramics can no longer be regarded as insulators. It appears that REED is irreversible and the ceramic insulators cannot be readily annealed or otherwise repaired for future services. This effect poses a serious threat for fusion reactors, which require electrical insulators in diagnostic devices, in radio frequency and neutral beam systems, and in magnetic assemblies. The problem of selecting suitable electrical insulating materials in thus far more serious than previously anticipated

  13. UK manufacturers construction joint venture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    This report examines the legal and commercial framework for UK manufacturers to collaborate in a construction venture for a small combustion/steam cycle power plant fueled with biomass. The integration of technology and project plan, the working capital and capitalisation, financial aspects, the market plan, turnkey packages, joint venture entities, and collaboration are discussed. (UK)

  14. Luminescence from metals and insulators

    International Nuclear Information System (INIS)

    Crawford, O.H.

    1985-01-01

    The term luminescence is normally applied to light emission that is not explainable by the mechanisms discussed by the other speakers in this meeting. Specifically, it is not transition radiation, surface plasmon radiation, or bremsstrahlung. One normally thinks of luminescence as arising from one-electron transitions within a medium. This talk consists of an overview of luminescence from condensed matter under irradiation by either energetic particles or photons. The author begins with organic molecules, where luminescence is best understood, and then discusses inorganic insulators and metals. Finally, the dependence of yield upon projectile species and velocity is discussed, and predictions are made concerning the relative effectiveness of electrons, protons, and hydrogen atoms in exciting luminescence

  15. Handbook of Thermal Insulation Applications.

    Science.gov (United States)

    1983-01-01

    Wiuppuoror *tIe beamsWiefag ln~ td ~oair ilmstool beams Plate 18. Metal Building Ceilings - A 18b: Fir* hataird rathge may limit the use of foam Insulation...RFCTANGUI.AR SOL TD A = 2(WxL+LxH+HxW) B V = WxLxH H L TRAPEZOID A 2 (A + B) x H A CONE A -n xRxS+ i xR 2 B V =( /3)x R2 x H TRIANGLE A BxH A- 2 CYLI NDER H 2...FABRICATIIG RECTANGULAR HEATING AND COOLING DUCTWORK. FIBERGLAS DUCT BOARD OWENS-CORNING FIBERGLAS CORP GLASS FIBER RIGID BOARD WITH ALUMINUM 4bD FOIL VAPOR

  16. Electrical resistivity study of insulators

    International Nuclear Information System (INIS)

    Liesegang, J.; Senn, B.C.; Holcombe, S.R.; Pigram, P.J.

    1998-01-01

    Full text: Conventional methods of electrical resistivity measurement of dielectric materials involve the application of electrodes to a sample whereby a potential is applied and a current through the material is measured. Although great care and ingenuity has often been applied to this technique, the recorded values of electrical resistivity (p), especially for insulator materials, show great disparity. In earlier work by the authors, a method for determining surface charge decay [Q(t)], using a coaxial cylindrical capacitor arrangement interfaced to a personal computer, was adapted to allow the relatively straightforward measurement of electrical resistivity in the surface region of charged insulator materials. This method was used to develop an ionic charge transport theory, based on Mott-Gurney diffusion to allow a greater understanding into charge transport behaviour. This theory was extended using numerical analysis to produce a two dimensional (2-D) computational model to allow the direct comparison between experimental and theoretical charge decay data. The work also provided a means for the accurate determination of the diffusion coefficient (D) and the layer of thickness of surface charge (Δz) on the sample. The work outlined here involves an extension of the theoretical approach previously taken, using a computational model based more closely on the 3-D experimental set-up, to reinforce the level of confidence in the results achieved for the simpler 2-D treatment. Initially, a 3-D rectangular box arrangement similar to the experimental set-up was modelled and a theoretical and experimental comparison of voltage decay results made. This model was then transferred into cylindrical coordinates to allow it to be almost identical to the experiment and again a comparison made. In addition, theoretical analysis of the coupled non-linear partial differential equations governing the charge dissipation process has led to a simplification involving directly, the

  17. The Multinational Logistics Joint Task Force (MLJTF)

    National Research Council Canada - National Science Library

    Higginbotham, Matthew T

    2007-01-01

    In this monograph, by analyzing the UN, NATO and the US Army's evolving Modular Logistics Doctrine, the author integrates the key areas from each doctrine into a multinational logistics joint task force (MLJTF) organization...

  18. Overview of thermal conductivity models of anisotropic thermal insulation materials

    Science.gov (United States)

    Skurikhin, A. V.; Kostanovsky, A. V.

    2017-11-01

    Currently, the most of existing materials and substances under elaboration are anisotropic. It makes certain difficulties in the study of heat transfer process. Thermal conductivity of the materials can be characterized by tensor of the second order. Also, the parallelism between the temperature gradient vector and the density of heat flow vector is violated in anisotropic thermal insulation materials (TIM). One of the most famous TIM is a family of integrated thermal insulation refractory material («ITIRM»). The main component ensuring its properties is the «inflated» vermiculite. Natural mineral vermiculite is ground into powder state, fired by gas burner for dehydration, and its precipitate is then compressed. The key feature of thus treated batch of vermiculite is a package structure. The properties of the material lead to a slow heating of manufactured products due to low absorption and high radiation reflection. The maximum of reflection function is referred to infrared spectral region. A review of current models of heat propagation in anisotropic thermal insulation materials is carried out, as well as analysis of their thermal and optical properties. A theoretical model, which allows to determine the heat conductivity «ITIRM», can be useful in the study of thermal characteristics such as specific heat capacity, temperature conductivity, and others. Materials as «ITIRM» can be used in the metallurgy industry, thermal energy and nuclear power-engineering.

  19. Attention, Joint Attention, and Social Cognition

    OpenAIRE

    Mundy, Peter; Newell, Lisa

    2007-01-01

    Before social cognition there is joint processing of information about the attention of self and others. This joint attention requires the integrated activation of a distributed cortical network involving the anterior and posterior attention systems. In infancy, practice with the integrated activation of this distributed attention network is a major contributor to the development of social cognition. Thus, the functional neuroanatomies of social cognition and the anterior–posterior attention ...

  20. Heat insulation device for reactor pressure vessel in water

    International Nuclear Information System (INIS)

    Nakamura, Heiichiro; Tanaka, Yoshimi.

    1993-01-01

    Outer walls of a reactor pressure vessel are covered with water-tight walls made of metals. A heat insulation metal material is disposed between them. The water tight walls are joined by welding and flanges. A supply pipeline for filling gases and a discharge pipeline are in communication with the inside of the water tight walls. Further, a water detector is disposed in the midway of the gas discharge pipeline. With such a constitution, the following advantages can be attained. (1) Heat transfer from the reactor pressure vessel to water of a reactor container can be suppressed by filled gases and heat insulation metal material. (2) Since the pressure at the inside of the water tight walls can be equalized with the pressure of the inside of the reactor container, the thickness of the water-tight walls can be reduced. (3) Since intrusion of water to the inside of the walls due to rupture of the water tight walls is detected by the water detector, reactor scram can be conducted rapidly. (4) The sealing property of the flange joint portion is sufficient and detaching operation thereof is easy. (I.S.)

  1. Countercurrent in high-current microsecond diodes with magnetic insulation

    International Nuclear Information System (INIS)

    Bugaev, S.P.; Kim, A.A.; Koshelev, V.I.

    1979-01-01

    In order to increase the efficiency of the generation of tube electron beams in diodes and the efficiency of the electron beam current pulse duration studied is the formation of the electron counter current in microsecond diodes with magnetic insulation in dependence on the various geometry of the cathode joint. The experiments have been carried out at the accelerator with the following parameters: diode voltage from 400 to 600 kV, the front and duration of the pulse 75 ns and 1-2 μs respectively, beam current from 4 to 17 kA, magnetic field of 18 kGs. The current in the drift tube and the total current of the electron gun have been measured. Distributing resistance current of vacuum insulator has been controlled. Conclusions have been made, that, in the case when the diameters of cathode and cathode holder are equal, the electron current is being produced from the reverse side of cathode plasma, which expands across the magnetic field with the rate of (4-5)x10 5 sm/cs. The counter current value has constituted 15% of the total current at the use of reflector with the geometry repeating the shape of the magnetic field force lines, corresponding to the cathode radius. The counter current has not been present at the use of the flat reflector

  2. Labeling and advertising of home insulation

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-01

    This staff report, prepared by the F.T.C.'s Bureau of Consumer Protection for Commission review, includes recommendations as to the final form of a trade regulation rule relating to the labeling and advertising of home insulation. Because of marketing abuses which accompanied the rising demand for home insulation, there has been broad support for a rule requiring information disclosures to help purchasers of home insulation to make an informed decision. The Commission, to provide such rule as quickly as possible, undertook its rulemaking proceeding under its new expedited rulemaking procedure. The rule was proposed on November 18, 1977, and, following a two-month period for written comments, four weeks of hearings were held in Washington, D.C. in February 1978. The record, contributed to by a variety of interests, shows that consumers do not know how to shop for home insulation. The staff-recommended rule, among other things, would require that insulation be tested and R-values (a measure of insulation's ability to retain heat) disclosed on labels and in advertising. To facilitate comparison shopping, the industry would also be required to furnish consumers with fact sheets describing, on a product-to-product basis, factors that can reduce the R-value of insulation.

  3. Slab edge insulating form system and methods

    Science.gov (United States)

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  4. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  5. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  6. Joint Instability and Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Darryl Blalock

    2015-01-01

    Full Text Available Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA. Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  7. Joint instability and osteoarthritis.

    Science.gov (United States)

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  8. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  9. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  10. Design and assembly technology for the thermal insulation of the W7-X cryostat

    Energy Technology Data Exchange (ETDEWEB)

    Risse, K., E-mail: konrad.risse@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Nagel, M.; Pietsch, M.; Braatz, A. [Max-Planck-Institut fuer Plasmaphysik (IPP), Euratom Association, Wendelsteinstrasse 1, D-17491 Greifswald (Germany); Binni, A. [MAN Diesel and Turbo SE, Dpt. OSA, Werftstrasse 17, D-94469 Deggendorf (Germany); Posselt, H. [Linde AG Engineering Div., Dr.-Carl-von-Linde-Strasse 6-14, D-82049 Hoellriegelskreuth (Germany)

    2011-10-15

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m{sup 2}. Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  11. Design and assembly technology for the thermal insulation of the W7-X cryostat

    International Nuclear Information System (INIS)

    Risse, K.; Nagel, M.; Pietsch, M.; Braatz, A.; Binni, A.; Posselt, H.

    2011-01-01

    The Max-Planck-Institut fuer Plasmaphysik in Greifswald is building up the stellarator fusion experiment Wendelstein 7-X (W7-X). To operate the superconducting magnet system the vacuum and the cold structures are protected by a thermal insulated cryostat. The plasma vessel forms the inner cryostat wall, the outer wall is realised by a thermal insulated outer vessel. In addition 254 thermal insulated ports are fed through the cryogenic vacuum to allow the access to the plasma vessel for heating systems, supply lines or plasma diagnostics. The thermal insulation is being manufactured and assembled by MAN Diesel and Turbo SE (Germany). It consists of a multi-layer insulation (MLI) made of aluminized Kapton with a silk like fibreglass spacer and a thermal shield covering the inner cryostat surfaces. The shield on the plasma vessel is made of fibreglass reinforced epoxy resin with integrated copper meshes. The outer vessel insulation is made of brass panels with an average size of 3.3 x 2.0 m 2 . Cooling loops made of stainless steel are connected via copper strips to the brass panels. Especially the complex 3 D shape of the plasma vessel, the restricted space inside the cryostat and the consideration of the operational component movements influenced the design work heavily. The manufacturing and the assembly has to fulfil stringent geometrical tolerances e.g. for the outer vessel panels +3/-2 mm.

  12. Investigation of the feasibility of an international integrated demonstration: Joint demonstration of environmental cleanup technologies in Eastern Europe/former Soviet Union

    International Nuclear Information System (INIS)

    Hagood, M.C.; Stein, S.L.; Brouns, T.M.; McCabe, G.H.

    1993-01-01

    Eastern Europe (EE) and the former Soviet Union (FSU) republics have areas that are contaminated with radioactive and hazardous constituents. The Westinghouse Hanford Company is exploring the feasibility of establishing a collaborative effort with various US agencies to establish an International Integrated Demonstration (IID). Westinghouse manages the waste management and cleanup programs at the US Department of Energy's (DOE) Hanford Site. The purpose of the IID would be to (1) facilitate assistance to EE/FSU cleanup efforts, (2) provide hands-on management and operational assistance to EE/FSU countries, (3) provide a basis for evaluating opportunities for and establishing future collaborations, and (4) evaluate the applicability of US technologies to both US and EE/FSU cleanup efforts. The DOE's Integrated Demonstration Programs are currently providing the conduit for development and demonstration and transfer and deployment of innovative technologies to meet DOE's cleanup need for hazardous and radioactive wastes. The Integrated Demonstrations are focused on all facets of environmental restoration including characterization, remediation, monitoring, site closure, regulatory compliance, and regulatory and public acceptance. Innovative technologies are being tested and demonstrated at host sites across the country to provide the necessary performance data needed to deploy these technologies. The IID concept would be to conduct an Integrated Demonstration at one or more EE/FSU host sites

  13. Measure Guideline. Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a “partial drainage” detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  14. Measure Guideline: Hybrid Foundation Insulation Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K.; Lstiburek, J.

    2012-05-01

    This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

  15. External insulation with cellular plastic materials

    DEFF Research Database (Denmark)

    Sørensen, Lars Schiøtt; Nielsen, Anker

    2014-01-01

    External thermal insulation composite systems (ETICS) can be used as extra insulation of existing buildings. The system can be made of cellular plastic materials or mineral wool. There is a European Technical guideline, ETAG 004, that describe the tests that shall be conducted on such systems....... This paper gives a comparison of systems with mineral wool and cellular plastic, based on experience from practice and literature. It is important to look at the details in the system and at long time stability of the properties such as thermal insulation, moisture and fire. Investigation of fire properties...

  16. Silicon on insulator self-aligned transistors

    Science.gov (United States)

    McCarthy, Anthony M.

    2003-11-18

    A method for fabricating thin-film single-crystal silicon-on-insulator (SOI) self-aligned transistors. Standard processing of silicon substrates is used to fabricate the transistors. Physical spaces, between the source and gate, and the drain and gate, introduced by etching the polysilicon gate material, are used to provide connecting implants (bridges) which allow the transistor to perform normally. After completion of the silicon substrate processing, the silicon wafer is bonded to an insulator (glass) substrate, and the silicon substrate is removed leaving the transistors on the insulator (glass) substrate. Transistors fabricated by this method may be utilized, for example, in flat panel displays, etc.

  17. Thermal characteristic of insulation for optimum design of RI transport package

    International Nuclear Information System (INIS)

    Lee, J. C.; Bang, K. S.; Seo, K. S.

    2002-01-01

    A package to transport the high level radioactive materials in required to withstand the hypothetical accident conditions as well as normal transport conditions according to IAEA and domestic regulations. The regulations require that the package should maintain the shielding, thermal and structural integrities to release no radioactive material. Thermal characteristics of insulations were evaluated and optimum insulation thickness was deduced for RI transport package. The package has a maximum capacity of 600 Curies for Ir-192 sealed source. The insulation thickness was decided with 10 mm of polyurethane form to maintain the thermal safety under fire accident condition. Thermal analysis was carried out for RI transport package, and it was shown that the thermal integrity of the package was maintained. The results obtained this study will be applied to a basic data for design of RI transport cask

  18. Surfaces and slabs of fractional topological insulator heterostructures

    Science.gov (United States)

    Sahoo, Sharmistha; Sirota, Alexander; Cho, Gil Young; Teo, Jeffrey C. Y.

    2017-10-01

    Fractional topological insulators (FTIs) are electronic topological phases in (3 +1 ) dimensions enriched by time reversal (TR) and charge U (1 ) conservation symmetries. We focus on the simplest series of fermionic FTIs, whose bulk quasiparticles consist of deconfined partons that carry fractional electric charges in integral units of e*=e /(2 n +1 ) and couple to a discrete Z2 n +1 gauge theory. We propose massive symmetry preserving or breaking FTI surface states. Combining the long-ranged entangled bulk with these topological surface states, we deduce the novel topological order of quasi-(2 +1 ) -dimensional FTI slabs as well as their corresponding edge conformal field theories.

  19. Compilation of radiation damage test data cable insulating materials

    CERN Document Server

    Schönbacher, H; CERN. Geneva

    1979-01-01

    This report summarizes radiation damage test data on commercially available organic cable insulation and jacket materials: ethylene- propylene rubber, Hypalon, neoprene rubber, polyethylene, polyurethane, polyvinylchloride, silicone rubber, etc. The materials have been irradiated in a nuclear reactor to integrated absorbed doses from 5*10/sup 5/ to 5*10/sup 6/ Gy. Mechanical properties, e.g. tensile strength, elongation at break, and hardness, have been tested on irradiated and non-irradiated samples. The results are presented in the form of tables and graphs, to show the effect of the absorbed dose on the measured properties. (13 refs).

  20. Repeatability of Cryogenic Multilayer Insulation

    Science.gov (United States)

    Johnson, W. L.; Vanderlaan, M.; Wood, J. J.; Rhys, N. O.; Guo, W.; Van Sciver, S.; Chato, D. J.

    2017-12-01

    Due to the variety of requirements across aerospace platforms, and one off projects, the repeatability of cryogenic multilayer insulation (MLI) has never been fully established. The objective of this test program is to provide a more basic understanding of the thermal performance repeatability of MLI systems that are applicable to large scale tanks. There are several different types of repeatability that can be accounted for: these include repeatability between identical blankets, repeatability of installation of the same blanket, and repeatability of a test apparatus. The focus of the work in this report is on the first two types of repeatability. Statistically, repeatability can mean many different things. In simplest form, it refers to the range of performance that a population exhibits and the average of the population. However, as more and more identical components are made (i.e. the population of concern grows), the simple range morphs into a standard deviation from an average performance. Initial repeatability testing on MLI blankets has been completed at Florida State University. Repeatability of five Glenn Research Center (GRC) provided coupons with 25 layers was shown to be +/- 8.4% whereas repeatability of repeatedly installing a single coupon was shown to be +/- 8.0%. A second group of 10 coupons has been fabricated by Yetispace and tested by Florida State University, the repeatability between coupons has been shown to be +/- 15-25%. Based on detailed statistical analysis, the data has been shown to be statistically significant.

  1. Surface electrical resistivity of insulators

    International Nuclear Information System (INIS)

    Senn, B. C.; Liesegang, J.

    1996-01-01

    A method is presented here for measuring surface charge decay, and theory has been developed so as to produce determinations of resistivity in the surface region of insulator films or wafers. This method incorporates the use of a coaxial cylindrical capacitor arrangement and an electrometer interfaced to a PC. The charge transport theory given here is based on Mott-Gurney diffusion, and allows easy interpretation of the experimental data, especially for the initial phase of surface charge decay. Resistivity measurements are presented for glass, mica, perspex and polyethylene, covering a range of 10 9 to 10 18 Ωm, as an illustration of the useful range of the instrument for static and antistatic materials, particularly in film or sheet form. Values for the surface charge diffusion constants of the materials are also presented. The charge transport theory has also been extended to allow the experimental and computational theoretical comparison of surface charge decay not only over the initial phase of charge decay, but also over longer times. The theoretical predictions show excellent agreement with experiment using the values for the diffusion constants referred to above

  2. Spintronics Based on Topological Insulators

    Science.gov (United States)

    Fan, Yabin; Wang, Kang L.

    2016-10-01

    Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.

  3. Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study

    Directory of Open Access Journals (Sweden)

    Christiane Möller

    2015-01-01

    Full Text Available We investigated the ability of cortical and subcortical gray matter (GM atrophy in combination with white matter (WM integrity to distinguish behavioral variant frontotemporal dementia (bvFTD from Alzheimer's disease (AD and from controls using voxel-based morphometry, subcortical structure segmentation, and tract-based spatial statistics. To determine which combination of MR markers differentiated the three groups with the highest accuracy, we conducted discriminant function analyses. Adjusted for age, sex and center, both types of dementia had more GM atrophy, lower fractional anisotropy (FA and higher mean (MD, axial (L1 and radial diffusivity (L23 values than controls. BvFTD patients had more GM atrophy in orbitofrontal and inferior frontal areas than AD patients. In addition, caudate nucleus and nucleus accumbens were smaller in bvFTD than in AD. FA values were lower; MD, L1 and L23 values were higher, especially in frontal areas of the brain for bvFTD compared to AD patients. The combination of cortical GM, hippocampal volume and WM integrity measurements, classified 97–100% of controls, 81–100% of AD and 67–75% of bvFTD patients correctly. Our results suggest that WM integrity measures add complementary information to measures of GM atrophy, thereby improving the classification between AD and bvFTD.

  4. Topological insulators Dirac equation in condensed matter

    CERN Document Server

    Shen, Shun-Qing

    2017-01-01

    This new edition presents a unified description of these insulators from one to three dimensions based on the modified Dirac equation. It derives a series of solutions of the bound states near the boundary, and describes the current status of these solutions. Readers are introduced to topological invariants and their applications to a variety of systems from one-dimensional polyacetylene, to two-dimensional quantum spin Hall effect and p-wave superconductors, three-dimensional topological insulators and superconductors or superfluids, and topological Weyl semimetals, helping them to better understand this fascinating field. To reflect research advances in topological insulators, several parts of the book have been updated for the second edition, including: Spin-Triplet Superconductors, Superconductivity in Doped Topological Insulators, Detection of Majorana Fermions and so on. In particular, the book features a new chapter on Weyl semimetals, a topic that has attracted considerable attention and has already b...

  5. KSI's Cross Insulated Core Transformer Technology

    International Nuclear Information System (INIS)

    Uhmeyer, Uwe

    2009-01-01

    Cross Insulated Core Transformer (CCT) technology improves on Insulated Core Transformer (ICT) implementations. ICT systems are widely used in very high voltage, high power, power supply systems. In an ICT transformer ferrite core sections are insulated from their neighboring ferrite cores. Flux leakage is present at each of these insulated gaps. The flux loss is raised to the power of stages in the ICT design causing output voltage efficiency to taper off with increasing stages. KSI's CCT technology utilizes a patented technique to compensate the flux loss at each stage of an ICT system. Design equations to calculate the flux compensation capacitor value are presented. CCT provides corona free operation of the HV stack. KSI's CCT based High Voltage power supply systems offer high efficiency operation, high frequency switching, low stored energy and smaller size over comparable ICT systems.

  6. Cryogenic Insulation Standard Data and Methodologies

    Data.gov (United States)

    National Aeronautics and Space Administration — Extending some recent developments in the area of technical consensus standards for cryogenic thermal insulation systems, a preliminary Inter-Laboratory Study of...

  7. Electrical breakdown studies with Mycalex insulators

    International Nuclear Information System (INIS)

    Waldron, W.; Greenway, W.; Eylon, S.; Henestroza, E.; Yu, S.

    2003-01-01

    Insulating materials such as alumina and glass-bonded mica (Mycalex) are used in accelerator systems for high voltage feedthroughs, structural supports, and barriers between high voltage insulating oil and the vacuum beam pipe in induction accelerator cells. Electric fields in the triple points should be minimized to prevent voltage breakdown. Mechanical stress can compromise seals and result in oil contamination of the insulator surface. We have tested various insulator cleaning procedures including ultrasonic cleaning with a variety of aqueous-based detergents, and manual scrubbing with various detergents. Water sheeting tests were used to determine the initial results of the cleaning methods. Ultimately, voltage breakdown tests will be used to quantify the benefits of these cleaning procedures

  8. Characterization techniques for ion bombarded insulators

    International Nuclear Information System (INIS)

    Borders, J.A.

    1987-01-01

    The chapter gives a comprehensive review of the experimental methods for the analysis of ion-bombarded insulators including optical and structural methods, resonance, energetic ion methods, and surface techniques. 48 refs.; 34 figs

  9. Corrosion-under-insulation (CUI) guidelines

    CERN Document Server

    Staff, European Federation of Corrosion; Winnik, S

    2014-01-01

    Corrosion under insulation (CUI) refers to the external corrosion of piping and vessels that occurs underneath externally clad/jacketed insulation as a result of the penetration of water. By its very nature CUI tends to remain undetected until the insulation and cladding/jacketing is removed to allow inspection or when leaks occur. CUI is a common problem shared by the refining, petrochemical, power, industrial, onshore and offshore industries. The European Federation of Corrosion (EFC) Working Parties WP13 and WP15 have worked to provide guidelines on managing CUI together with a number of major European refining, petrochemical and offshore companies including BP, Chevron-Texaco, Conoco-Phillips, ENI, Exxon-Mobil, IFP, MOL, Scanraff, Statoil, Shell, Total and Borealis. The guidelines within this document are intended for use on all plants and installations that contain insulated vessels, piping and equipment. The guidelines cover a risk-based inspection methodology for CUI, inspection techniques (including n...

  10. (ajst) effects of ground insulation and greenhouse

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    and quality of biogas generation from dairy cattle dung. The effects ... Therefore ground insulation of plastic biogas digester under greenhouse conditions significantly enhances ..... The low values obtained did not suggest failure of the system ...

  11. Improved thermal monitoring of rotating machine insulation

    International Nuclear Information System (INIS)

    Stone, G.C.; Sedding, H.G.; Bernstein, B.S.

    1991-01-01

    Aging of motor and generator insulation is most often induced as a result of operation at high temperatures. In spite of this knowledge, stator and rotor temperatures are only crudely monitored in existing machines. In EPRI project RP2577-1, three new means of detecting machine temperatures were successfully developed. Two of the techniques, the Electronic Rotor Temperature Sensor and the Passive Rotor Temperature Sensor, were specifically developed to give point temperature readings on turbine generator rotor windings. The Insulation Sniffer allows operators to determine when any electrical insulation in a motor is overheating. Another electronic device, called the Thermal Life Indicator, helps operators and maintenance personnel determine how accumulated operation has affected the remaining life of the insulation in rotating machines. These new devices permit nuclear station operators to avoid hazardous operating conditions and will help to determine priorities for maintenance and plant life extension programs

  12. Thermal insulation performance of green roof systems

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Serdar; Morgan, Susan; Retzlaff, William; Once, Orcun [southern Illinois University (United States)], e-mail: scelik@siue.edu, e-mail: smorgan@siue.edu, e-mail: wretzla@siue.edu, e-mail: oonce@siue.edu

    2011-07-01

    With the increasing costs of energy, good building insulation has become increasingly important. Among existing insulation techniques is the green roof system, which consists of covering the roof of a building envelop with plants. The aim of this paper is to assess the impact of vegetation type and growth media on the thermal performance of green roof systems. Twelve different green roof samples were made with 4 different growth media and 3 sedum types. Temperature at the sample base was recorded every 15 minutes for 3 years; the insulation behavior was then analysed. Results showed that the insulation characteristics were achieved with a combination of haydite and sedum sexangulare. This study demonstrated that the choice of growth media and vegetation is important to the green roof system's performance; further research is required to better understand the interactions between growth media and plant roots.

  13. Aluminum nitride insulating films for MOSFET devices

    Science.gov (United States)

    Lewicki, G. W.; Maserjian, J.

    1972-01-01

    Application of aluminum nitrides as electrical insulator for electric capacitors is discussed. Electrical properties of aluminum nitrides are analyzed and specific use with field effect transistors is defined. Operational limits of field effect transistors are developed.

  14. Effect of Sweating on Insulation of Footwear.

    Science.gov (United States)

    Kuklane, Kalev; Holmér, Ingvar

    1998-01-01

    The study aimed to find out the influence of sweating on footwear insulation with a thermal foot model. Simultaneously, the influence of applied weight (35 kg), sock, and steel toe cap were studied. Water to 3 sweat glands was supplied with a pump at the rate of 10 g/hr in total. Four models of boots with steel toe caps were tested. The same models were manufactured also without steel toe. Sweating reduced footwear insulation 19-25% (30-37% in toes). During static conditions, only a minimal amount of sweat evaporated from boots. Weight affected sole insulation: Reduction depended on compressibility of sole material. The influence of steel toe varied with insulation. The method of thermal foot model appears to be a practical tool for footwear evaluation.

  15. Grandstand view of phenolic foam insulation

    Energy Technology Data Exchange (ETDEWEB)

    1987-03-01

    Stadium Insulation Ltd, manufacture pipe sections, tank and vessel insulation products in Lowphen, polyisocyanurate, polyurethane foams and expanded polystyrene, though for certain specialist applications, cork is still employed in small quantities. Currently the emphasis is very much on Lowphen, the company's range of pipe sections based on phenolic foam. The company's manufacturing and marketing effort reflects the increasing market trend towards the use of insulating material capable of withstanding higher temperatures, and phenolic foam neatly satisfies the demand since it is capable of use at temperatures up to 140/sup 0/C. Moreover, phenolic foam has the lowest K value at 0.02W/m/sup 0/C of any of the currently available range of insulating materials, and while the product is slightly more expensive than alternatives such as polyisocyanurate and polyurethane, its high performance offsets that premium.

  16. Total dose hardening of buried insulator in implanted silicon-on-insulator structures

    International Nuclear Information System (INIS)

    Mao, B.Y.; Chen, C.E.; Pollack, G.; Hughes, H.L.; Davis, G.E.

    1987-01-01

    Total dose characteristics of the buried insulator in implanted silicon-on-insulator (SOI) substrates have been studied using MOS transistors. The threshold voltage shift of the parasitic back channel transistor, which is controlled by charge trapping in the buried insulator, is reduced by lowering the oxygen dose as well as by an additional nitrogen implant, without degrading the front channel transistor characteristics. The improvements in the radiation characteristics of the buried insulator are attributed to the decrease in the buried oxide thickness or to the presence of the interfacial oxynitride layer formed by the oxygen and nitrogen implants

  17. Facility for endurance tests of thermal insulations

    International Nuclear Information System (INIS)

    Mauersberger, R.

    1984-01-01

    In the following report the design and construction of an experimental facility for endurance tests of thermal insulations is presented. It's name in abbreviation is 'ADI' standing for the German words A nlage zum Dauertest von Isolierungen . This test facility was build by HRB in order to investigate the performance of thermal insulation systems of hot gas ducts for the process heat-reactor-project. The tests are intended to simulate the conditions of reactor operation. They include short-time experiments for selection of insulation-concepts and in a second step long-time experiments as performance tests. During these tests are measured the effective heat conductivity the local heat losses the temperature profiles of the insulation, of the fixing elements and along the wall of the duct. The design-data required to perform all these tasks are shown in the first picture: The gas-atmosphere must be Helium in tests like in reactor with regard to the special thermal and hydraulic properties of Helium and to the influence of Helium on mechanic friction and wear. The hot gas temperature in the PNP-reactor will be 950 deg. C and should be equal in the experiments. The temperature on the cold side of the insulation has to be adjustable from 50 deg. C up to 300 deg. C. The Helium pressure in the hot gas ducts of a HTR-plant is about 42 bar. The ADI was laid out for 70 bar to cover the hole range of interest. A Helium mass flow has to stream through the insulated test duct in order to realize equal temperatures on the hot side of the insulation. A flow rate of 4,5 kg/s is sufficient for this requirement. The axial pressure gradient along the insulation must be the same as in the reactor, because this has an essential influence on the heat losses. This pressure gradient is about 40 Pa/m

  18. Status of surface conduction in topological insulators

    International Nuclear Information System (INIS)

    Barua, Sourabh; Rajeev, K. P.

    2014-01-01

    In this report, we scrutinize the thickness dependent resistivity data from the recent literature on electrical transport measurements in topological insulators. A linear increase in resistivity with increase in thickness is expected in the case of these materials since they have an insulating bulk and a conducting surface. However, such a trend is not seen in the resistivity versus thickness data for all the cases examined, except for some samples, where it holds for a range of thickness

  19. Measure Guideline. Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F. [Building Science Corporation (BSC), Somerville, MA (United States); Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Schumacher, C. J. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  20. Measure Guideline: Internal Insulation of Masonry Walls

    Energy Technology Data Exchange (ETDEWEB)

    Straube, J. F.; Ueno, K.; Schumacher, C. J.

    2012-07-01

    This measure guideline provides recommendations for interior insulation assemblies that control interstitial condensation and durability risks; recommendations for acceptable thermal performance are also provided. An illustrated guide of high-risk exterior details (which concentrate bulk water), and recommended remediation details is provided. This is followed by a recommended methodology for risk assessment of a masonry interior insulation project: a series of steps are suggested to assess the risks associated with this retrofit, with greater certainty with added steps.

  1. Integrating Social-Contextual and Intrapersonal Mechanisms of "Maturing Out": Joint Influences of Familial-Role Transitions and Personality Maturation on Problem-Drinking Reductions.

    Science.gov (United States)

    Lee, Matthew R; Ellingson, Jarrod M; Sher, Kenneth J

    2015-09-01

    "Maturing out" of problem drinking is associated with both role transitions (e.g., getting married) and personality development. However, little is known concerning how these 2 mechanisms jointly influence problem-drinking desistance. This study investigated whether salutary effects of role transitions and personality occur at different points in young-adult development and whether they mediate one another's effects. Participants were initially recruited as first-year undergraduates, with family history of alcoholism overrepresented by design (N = 489). Using 4 waves of data at roughly ages 21, 25, 29, and 34, cross-lagged panel models estimated prospective relations among familial-role transitions (marriage or parenthood), personality (disinhibition, conscientiousness, and neuroticism), and problem drinking. Mixed support was found for the prediction of roles being more strongly associated with earlier maturing out of problem drinking and personality being more strongly associated with later maturing out. Regarding mediation, no evidence was found for the expectation that role effects would be mediated by personality. However, results did support mediation of personality effects by role transitions. Specifically, lower disinhibition and higher conscientiousness in emerging adulthood predicted role adoption, which, in turn, predicted later problem-drinking reductions. Family history of alcoholism also distally influenced these mediation processes. The differential timing of role and personality effects is consistent with the notion of decreasing contextual influences and increasing intrapersonal influences across development. In light of role incompatibility theory, results suggest that, over the course of development, the association of familial roles with problem drinking may increasingly reflect problem-drinking effects on role entry (i.e., role selection) and decreasingly reflect role entry effects on problem drinking (i.e., role socialization). As emerging

  2. Load responsive multilayer insulation performance testing

    International Nuclear Information System (INIS)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2014-01-01

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI

  3. Proximity effects in topological insulator heterostructures

    International Nuclear Information System (INIS)

    Li Xiao-Guang; Wu Guang-Fen; Zhang Gu-Feng; Culcer Dimitrie; Zhang Zhen-Yu; Chen Hua

    2013-01-01

    Topological insulators (TIs) are bulk insulators that possess robust helical conducting states along their interfaces with conventional insulators. A tremendous research effort has recently been devoted to Tl-based heterostructures, in which conventional proximity effects give rise to a series of exotic physical phenomena. This paper reviews our recent studies on the potential existence of topological proximity effects at the interface between a topological insulator and a normal insulator or other topologically trivial systems. Using first-principles approaches, we have realized the tunability of the vertical location of the topological helical state via intriguing dual-proximity effects. To further elucidate the control parameters of this effect, we have used the graphene-based heterostructures as prototypical systems to reveal a more complete phase diagram. On the application side of the topological helical states, we have presented a catalysis example, where the topological helical state plays an essential role in facilitating surface reactions by serving as an effective electron bath. These discoveries lay the foundation for accurate manipulation of the real space properties of the topological helical state in TI-based heterostructures and pave the way for realization of the salient functionality of topological insulators in future device applications. (topical review - low-dimensional nanostructures and devices)

  4. Load responsive multilayer insulation performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Dye, S.; Kopelove, A. [Quest Thermal Group, 6452 Fig Street Suite A, Arvada, CO 80004 (United States); Mills, G. L. [Ball Aerospace and Technologies Corp, 1600 Commerce Street, Boulder, CO 80301 (United States)

    2014-01-29

    Cryogenic insulation designed to operate at various pressures from one atmosphere to vacuum, with high thermal performance and light weight, is needed for cryogenically fueled space launch vehicles and aircraft. Multilayer insulation (MLI) performs well in a high vacuum, but the required vacuum shell for use in the atmosphere is heavy. Spray-on foam insulation (SOFI) is often used in these systems because of its light weight, but can have a higher heat flux than desired. We report on the continued development of Load Responsive Multilayer Insulation (LRMLI), an advanced thermal insulation system that uses dynamic beam discrete spacers that provide high thermal performance both in atmosphere and vacuum. LRMLI consists of layers of thermal radiation barriers separated and supported by micromolded polymer spacers. The spacers have low thermal conductance, and self-support a thin, lightweight vacuum shell that provides internal high vacuum in the insulation. The dynamic load responsive spacers compress to support the external load of a vacuum shell in one atmosphere, and decompress under reduced atmospheric pressure for lower heat leak. Structural load testing was performed on the spacers with various configurations. LRMLI was installed on a 400 liter tank and boil off testing with liquid nitrogen performed at various chamber pressures from one atmosphere to high vacuum. Testing was also performed with an MLI blanket on the outside of the LRMLI.

  5. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  6. International joint ventures

    DEFF Research Database (Denmark)

    Sørensen, Karsten Engsig

    2001-01-01

    The article analysis problems connected with corporate joint ventures. Among others the possible conflicts between the joint venture agreement and the statutes of the companies is examined, as well as certain problems connected to the fact that the joint venture partners have created commen control...... over their joint company....

  7. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  8. Development of insulating coatings for liquid metal blankets

    International Nuclear Information System (INIS)

    Malang, S.; Borgstedt, H.U.; Farnum, E.H.; Natesan, K.; Vitkovski, I.V.

    1994-07-01

    It is shown that self-cooled liquid metal blankets are feasible only with electrically insulating coatings at the duct walls. The requirements on the insulation properties are estimated by simple analytical models. Candidate insulator materials are selected based on insulating properties and thermodynamic consideration. Different fabrication technologies for insulating coatings are described. The status of the knowledge on the most crucial feasibility issue, the degradation of the resisivity under irradiation, is reviewed

  9. Joint development of evidence-based medical record by doctors and patients through integrated Chinese and Western medicine on digestive system diseases.

    Science.gov (United States)

    Li, Bo; Gao, Hong-yang; Gao, Rui; Zhao, Ying-pan; Li, Qing-na; Zhao, Yang; Tang, Xu-dong; Shang, Hong-cai

    2016-02-01

    Building the clinical therapeutic evaluation system by combing the evaluation given by doctors and patients can form a more comprehensive and objective evaluation system. A literature search on the practice of evidence-based evaluation was conducted in key biomedical databases, i.e. PubMed, Excerpt Medica Database, China Biology Medicine disc and China National Knowledge Infrastructure. However, no relevant study on the subjects of interest was identified. Therefore, drawing on the principles of narrative medicine and expert opinion from systems of Chinese medicine and Western medicine, we propose to develop and pilot-test a novel evidence-based medical record format that captures the perspectives of both patients and doctors in a clinical trial. Further, we seek to evaluate a strategic therapeutic approach that integrates the wisdom of Chinese medicine with the scientific basis of Western medicine in the treatment of digestive system disorders. Evaluation of therapeutic efficacy of remedies under the system of Chinese medicine is an imperative ongoing research. The present study intends to identify a novel approach to assess the synergistic benefits achievable from an integrated therapeutic approach combining Chinese and Western system of medicine to treat digestive system disorders.

  10. An Insulating Glass Knowledge Base

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Doll; Gerald Hendrickson; Gerard Lagos; Russell Pylkki; Chris Christensen; Charlie Cureija

    2005-08-01

    This report will discuss issues relevant to Insulating Glass (IG) durability performance by presenting the observations and developed conclusions in a logical sequential format. This concluding effort discusses Phase II activities and focuses on beginning to quantifying IG durability issues while continuing the approach presented in the Phase I activities (Appendix 1) which discuss a qualitative assessment of durability issues. Phase II developed a focus around two specific IG design classes previously presented in Phase I of this project. The typical box spacer and thermoplastic spacer design including their Failure Modes and Effect Analysis (FMEA) and Fault Tree diagrams were chosen to address two currently used IG design options with varying components and failure modes. The system failures occur due to failures of components or their interfaces. Efforts to begin quantifying the durability issues focused on the development and delivery of an included computer based IG durability simulation program. The focus/effort to deliver the foundation for a comprehensive IG durability simulation tool is necessary to address advancements needed to meet current and future building envelope energy performance goals. This need is based upon the current lack of IG field failure data and the lengthy field observation time necessary for this data collection. Ultimately, the simulation program is intended to be used by designers throughout the current and future industry supply chain. Its use is intended to advance IG durability as expectations grow around energy conservation and with the growth of embedded technologies as required to meet energy needs. In addition the tool has the immediate benefit of providing insight for research and improvement prioritization. Included in the simulation model presentation are elements and/or methods to address IG materials, design, process, quality, induced stress (environmental and other factors), validation, etc. In addition, acquired data

  11. Jointly Sponsored Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Everett A. Sondreal; John G. Hendrikson; Thomas A. Erickson

    2009-03-31

    U.S. Department of Energy (DOE) Cooperative Agreement DE-FC26-98FT40321 funded through the Office of Fossil Energy and administered at the National Energy Technology Laboratory (NETL) supported the performance of a Jointly Sponsored Research Program (JSRP) at the Energy & Environmental Research Center (EERC) with a minimum 50% nonfederal cost share to assist industry in commercializing and effectively applying highly efficient, nonpolluting energy systems that meet the nation's requirements for clean fuels, chemicals, and electricity in the 21st century. The EERC in partnership with its nonfederal partners jointly performed 131 JSRP projects for which the total DOE cost share was $22,716,634 (38%) and the nonfederal share was $36,776,573 (62%). Summaries of these projects are presented in this report for six program areas: (1) resource characterization and waste management, (2) air quality assessment and control, (3) advanced power systems, (4) advanced fuel forms, (5) value-added coproducts, and (6) advanced materials. The work performed under this agreement addressed DOE goals for reductions in CO{sub 2} emissions through efficiency, capture, and sequestration; near-zero emissions from highly efficient coal-fired power plants; environmental control capabilities for SO{sub 2}, NO{sub x}, fine respirable particulate (PM{sub 2.5}), and mercury; alternative transportation fuels including liquid synfuels and hydrogen; and synergistic integration of fossil and renewable resources.

  12. Biodegradation performance of environmentally-friendly insulating oil

    Science.gov (United States)

    Yang, Jun; He, Yan; Cai, Shengwei; Chen, Cheng; Wen, Gang; Wang, Feipeng; Fan, Fan; Wan, Chunxiang; Wu, Liya; Liu, Ruitong

    2018-02-01

    In this paper, biodegradation performance of rapeseed insulating oil (RDB) and FR3 insulating oil (FR3) was studied by means of ready biodegradation method which was performed with Organization for Economic Co-operation and Development (OECD) 301B. For comparison, the biodegradation behaviour of 25# mineral insulating oil was also characterized with the same method. The testing results shown that the biodegradation degree of rapeseed insulating oil, FR3 insulating oil and 25# mineral insulating oil was 95.8%, 98.9% and 38.4% respectively. Following the “new chemical risk assessment guidelines” (HJ/T 154 - 2004), which illustrates the methods used to identify and assess the process safety hazards inherent. The guidelines can draw that the two vegetable insulating oils, i.e. rapeseed insulating oil and FR3 insulating oil are easily biodegradable. Therefore, the both can be classified as environmentally-friendly insulating oil. As expected, 25# mineral insulating oil is hardly biodegradable. The main reason is that 25# mineral insulating oil consists of isoalkanes, cyclanes and a few arenes, which has few unsaturated bonds. Biodegradation of rapeseed insulating oil and FR3 insulating oil also remain some difference. Biodegradation mechanism of vegetable insulating oil was revealed from the perspective of hydrolysis kinetics.

  13. Effect of integrated yoga therapy on pain, morning stiffness and anxiety in osteoarthritis of the knee joint: A randomized control study

    Directory of Open Access Journals (Sweden)

    John Ebnezar

    2012-01-01

    Full Text Available Aim: To study the effect of integrated yoga on pain, morning stiffness and anxiety in osteoarthritis of knees. Materials and Methods: Two hundred and fifty participants with OA knees (35-80 years were randomly assigned to yoga or control group. Both groups had transcutaneous electrical stimulation and ultrasound treatment followed by intervention (40 min for two weeks with follow up for three months. The integrated yoga consisted of yogic loosening and strengthening practices, asanas, relaxation, pranayama and meditation. The control group had physiotherapy exercises. Assessments were done on 15 th (post 1 and 90 th day (post 2. Results: Resting pain (numerical rating scale reduced better (P<0.001, Mann-Whitney U test in yoga group (post 1=33.6% and post 2=71.8% than control group (post 1=13.4% and post 2=37.5%. Morning stiffness decreased more (P<0.001 in yoga (post 1=68.6% and post 2=98.1% than control group (post 1=38.6% and post 2=71.6%. State anxiety (STAI-1 reduced (P<0.001 by 35.5% (post 1 and 58.4% (post 2 in the yoga group and 15.6% (post 1 and 38.8% (post 2 in the control group; trait anxiety (STAI 2 reduced (P<0.001 better (post 1=34.6% and post 2=57.10% in yoga than control group (post 1=14.12% and post 2=34.73%. Systolic blood pressure reduced (P<0.001 better in yoga group (post 1=−7.93% and post 2=−15.7% than the control group (post 1=−1.8% and post 2=−3.8%. Diastolic blood pressure reduced (P<0.001 better in yoga group (post 1=−7.6% and post 2=−16.4% than the control group (post 1=−2.1% and post 2=−5.0%. Pulse rate reduced (P<0.001 better in yoga group (post 1=−8.41% and post 2=−12.4% than the control group (post 1=−5.1% and post 2=−7.1%. Conclusion: Integrated approach of yoga therapy is better than physiotherapy exercises as an adjunct to transcutaneous electrical stimulation and ultrasound treatment in reducing pain, morning stiffness, state and trait anxiety, blood pressure and pulse rate in patients

  14. Institutionalizing Blended Learning into Joint Training: A Case Study and Ten Recommendations

    Science.gov (United States)

    2014-12-01

    mail.mil pbockelman@mesh.dsci.com ABSTRACT In 2011, the Joint Staff J7 (Joint Training) directorate initiated the Continuum of eLearning project in...Orlando, FL. 14. ABSTRACT In 2011, the Joint Staff J7 (Joint Training) directorate initiated the Continuum of eLearning project in order to integrate...dispersed organizations still poses significant challenges. The Joint Staff J7, Deputy Director for Joint Training initiated the Continuum of eLearning

  15. Energy conservation through thermally insulated structures

    International Nuclear Information System (INIS)

    Abu-Dayyeh, Ayoub

    2006-01-01

    The propose of this paper is to explicate its title through investigating the different available thermal insulating materials and the various techniques of application, as practiced in Jordan, in particular, and as practiced in many parts of the world in general, which will satisfy Jordanian standards in terms of heat transmittance and thermal comfort. A brief comparison with international standards will shed some light on the stringent measures enforced in the developed world and on our striving aspirations to keep pace. The paper consists of four main parts, pseudoally divided. The first part will deal with the mechanism of heat loss and heat gain in structures during summer and winter. It will also explain the Time-lag phenomenon which is vital for providing thermal comfort inside the dwellings. The second part will evaluate the damages induced by the temperature gradients on the different elements of the structure, particularly next to exterior opening. The paper will also demonstrate the damages induced by water condensation and fungus growth on the internal surfaces of the structure and within its skeleton. A correlation between condensation and thermal insulation will be established. The third part of the paper will evaluate the different available thermal insulating materials and the application techniques which will satisfy the needs for thermal insulating and thermal comfort at the least cost possible. The criteria of an economical design shall be established. As a conclusion, the paper infers answers to the following different criteria discussed throughout the different parts of the paper. The main theme of questions can be summarized as follows: 1)How energy conservation is possible due to thermal insulation? 2)The feasibility of investing in thermal insulation? 3)Is thermal comfort and a healthy atmosphere possible inside the dwellings during all season! What are the conditions necessary to sustain them? 4)What environmental impacts can exist due to

  16. Insulation systems of the building construtions

    Directory of Open Access Journals (Sweden)

    Rumiantcev Boris

    2016-01-01

    Full Text Available Constructions of the exterior insulation and decoration combines materials of different functionality and constructive solutions allows to these materials to demonstrate their efficiency to the great extent. Fire safety of buildings is mandatory requirement for building systems. Some insulating material may belong to the group of combustible, but their use in structures so as to minimize the risk of fire. On the other hand, there are special designs, in which non-flammable insulation acts as a flame retardant barrier. In the article carried systematization of construction systems used in the flat and pitched roof during the insulation and wall covering and facades. Taking into account the experience of leading firms were considered the application features of using exterior finish systems: construction solutions, requirements for materials and recommendations about the installation these systems.The article deals with the construction ventilated roofing system of two types: flat roof and pitched roof seam. In the first case, the ventilation system is created using milled insulation boards in the second - by a ventilated gap. In both cases the natural convection of air in the air cavities. Ensuring operational stability insulation is laid on the stages of production of heat-insulating materials. It is important: firstly responsible execution of all process operations associated with providing regulatory properties of materials and secondly, the performance of additional operations associated with the produc-tion of materials, working in a specific design. An example of a material whose properties can modify for a particular application, are milled mineral wool (with air channels for systems of ventilated flat roof.

  17. Improvements to the electrical insulation resistance of high quality magnesia insulated cables

    International Nuclear Information System (INIS)

    Mauger, R.A.; Goodings, A.

    1984-03-01

    Mineral insulated signal cables for nuclear reactor instrumentation schemes have to meet stringent electrical insulation requirements at high temperatures. This report discusses the factors which influence the attainment of this objective and the way in which it has been reached under industrial manufacturing conditions. It emphasises the importance of moisture and gives details of the improvements achieved as a result of moisture reduction. (author)

  18. INSUL, Calculation of Thermal Insulation of Various Materials Immersed in He

    International Nuclear Information System (INIS)

    Kinkead, A.N.; Pitchford, B.E.

    1977-01-01

    1 - Nature of the physical problem solved: Performance of thermal insulation immersed in helium. 2 - Method of solution: Mineral fibre, metal fibre and metallic multi-layer foils are studied. An approximate analysis for performance evaluation of multi-layer insulation in vertical gas spaces including the regime between fully suppressed natural convection and that for which an accepted power relationship applies is included

  19. The inaccuracy of heat transfer characteristics for non-insulated and insulated spherical containers neglecting the influence of heat radiation

    International Nuclear Information System (INIS)

    Wong, King-Leung; Salazar, Jose Luis Leon; Prasad, Leo; Chen, Wen-Lih

    2011-01-01

    In this investigation, the differences of heat transfer characteristics for insulated and non-insulated spherical containers between considering and neglecting the influence of heat radiation are studied by the simulations in some practical situations. It is found that the heat radiation effect cannot be ignored in conditions of low ambient convection heat coefficients (such ambient air) and high surface emissivities, especially for the non-insulated and thin insulated cases. In most practical situations when ambient temperature is different from surroundings temperature and the emissivity of insulation surface is different from that of metal wall surface, neglecting heat radiation will result in inaccurate insulation effect and heat transfer errors even with very thick insulation. However, the insulation effect considering heat radiation will only increase a very small amount after some dimensionless insulated thickness (such insulation thickness/radius ≥0.2 in this study), thus such dimensionless insulated thickness can be used as the optimum thickness in practical applications. Meanwhile, wrapping a material with low surface emissivity (such as aluminum foil) around the oxidized metal wall or insulation layer (always with high surface emissivity) can achieve very good insulated effect for the non-insulated or thin insulated containers.

  20. Joint Attention, Social-Cognition, and Recognition Memory in Adults

    OpenAIRE

    Kim, Kwanguk; Mundy, Peter

    2012-01-01

    The early emerging capacity for Joint Attention, or socially coordinated visual attention, is thought to be integral to the development of social-cognition in childhood. Recent studies have also begun to suggest that joint attention affects adult cognition as well, but methodological limitations hamper research on this topic. To address this issue we developed a novel virtual reality (VR) paradigm that integrates eye-tracking and virtual avatar technology to measure two types of joint attenti...

  1. Direct current insulator based dielectrophoresis (DC-iDEP) microfluidic chip for blood plasma separation

    OpenAIRE

    Mohammadi, Mahdi

    2015-01-01

    Lab-on-a-Chip (LOC) integrated microfluidics has been a powerful tool for new developments in analytical chemistry. These microfluidic systems enable the miniaturization, integration and automation of complex biochemical assays through the reduction of reagent use and enabling portability.Cell and particle separation in microfluidic systems has recently gained significant attention in many sample preparations for clinical procedures. Direct-current insulator-based dielectrophoresis (DC-iDEP) ...

  2. Arthrography of the ankle joint

    International Nuclear Information System (INIS)

    Crespi Porro, R.; Zellner, A.; Puricelli, G.; Quaglia, R.; Chelazzi, G.

    1984-01-01

    Arthrography of the ankle joint was first carried out by Johnson and Palmer at the Military Hospital in Stockholm in 1940. Arthrography can be used for judging the integrity of the articular cartilage, of osteochondritis dissecans, arthritis or adhesive capsulitis. The literature shows, however, that more than 95% of the patients on whom this examination has been performed has suffered from acute trauma. (orig.) [de

  3. Heat transfer performance of multi-layer insulation structure under roof-slab of pool-type LMFBR

    International Nuclear Information System (INIS)

    Kinoshita, I.; Yoshida, K.; Uotani, M.; Fukada, T.

    1988-01-01

    At the normal operation of the pool-type LMFBR, the free surface of liquid sodium at about 500 0 C is present below the roof-slab, separated by a space of the argon cover gas. The temperature of the roof-slab has to be maintained low and uniform in the horizontal direction for sufficient strength of the structure. Therefore, thermal insulation structures must be installed on the lower surface of the roof-slab. In addition to the installation of thermal insulator, forced cooling of the roof-slab is required for assured structural integrity of the roof-slab. The capacity of cooling equipment can be reduced by installation of structures with high thermal insulating performance. The objective of this study is to evaluate the thermal insulation characteristics of multi-layer type insulator installed below the roof-slab by analytically and experimentally. The analytical study is intended to evaluate the effect of number, distance and emissivity of layers on the heat transfer performances. This is treated as the one-dimensional heat transfer with natural convection, conduction and thermal radiation. In the experiments, we have evaluated effects of gap distances between adjacent thermal insulators placed below the roof-slab on the thermal insulation performances

  4. Insulators form gene loops by interacting with promoters in Drosophila.

    Science.gov (United States)

    Erokhin, Maksim; Davydova, Anna; Kyrchanova, Olga; Parshikov, Alexander; Georgiev, Pavel; Chetverina, Darya

    2011-09-01

    Chromatin insulators are regulatory elements involved in the modulation of enhancer-promoter communication. The 1A2 and Wari insulators are located immediately downstream of the Drosophila yellow and white genes, respectively. Using an assay based on the yeast GAL4 activator, we have found that both insulators are able to interact with their target promoters in transgenic lines, forming gene loops. The existence of an insulator-promoter loop is confirmed by the fact that insulator proteins could be detected on the promoter only in the presence of an insulator in the transgene. The upstream promoter regions, which are required for long-distance stimulation by enhancers, are not essential for promoter-insulator interactions. Both insulators support basal activity of the yellow and white promoters in eyes. Thus, the ability of insulators to interact with promoters might play an important role in the regulation of basal gene transcription.

  5. Integrated Voltage—Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer

    Directory of Open Access Journals (Sweden)

    Yuenyong Nilsiam

    2015-11-01

    Full Text Available To provide process optimization of metal fabricating self-replicating rapid prototyper (RepRap 3-D printers requires a low-cost sensor and data logger system to measure current (I and voltage (V of the gas metal arc welders (GMAW. This paper builds on previous open-source hardware development to provide a real-time measurement of welder I-V where the measuring circuit is connected to two analog inputs of the Arduino that is used to control the 3-D printer itself. Franklin firmware accessed through a web interface that is used to control the printer allows storing the measured values and downloading those stored readings to the user’s computer. To test this custom current and voltage monitoring device this study reports on its use on an upgraded all metal RepRap during the printing of aluminum alloy (ER1100, ER4043, ER4943, ER4047, and ER5356. The voltage and current data were analyzed on a per alloy basis and also layer-by-layer in order to evaluate the device’s efficacy as a monitoring device for 3-D printing and the results of the integrated design are discussed.

  6. Artificial heart system thermal insulation component development

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Buckman, R.W. Jr.

    1975-01-01

    A concentric cup vacuum multifoil insulation system has been selected by virtue of its size, weight, and thermal performance to insulate the hot radioisotope portion of the thermal converter of an artificial implantable heart system. A factor of 2 improvement in thermal performance, based on the heat loss per number of foil layers (minimum system weight and volume) has been realized over conventional spiral wrapped multifoil vacuum insulation. This improvement is the result of the concentric cup construction to maintain a uniform interfoil spacing and the elimination of corner heat losses. Based on external insulation system dimensions (surface area in contact with host body), heat losses of 0.019 W/ cm 2 at 1140 0 K (1600 0 F) and 0.006 W/cm 2 at 920 0 K (1200 0 F) have been achieved. Factors which influence thermal performance of the nickel foil concentric cup insulation system include the number of cups, configuration and method of application of zirconia (ZrO 2 ) spacer material, system pressure, emittance of the cups, and operating temperature

  7. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  8. Detection of wall thinning of carbon steel pipe covered with insulation using Pulsed Eddy Current technique

    International Nuclear Information System (INIS)

    Park, Duckgun; Kishore, M. B.; Lee, D. H.

    2013-01-01

    The test sample is a ferromagnetic carbon steel pipe having different thickness, covered with a 10 cm plastic insulation laminated by 0.4 mm Al plate to simulate the pipelines in NPPs. The PEC Probe used for the wall thinning detection consists of an excitation coil and a Hall sensor. The excitation coils in the probe is driven by a rectangular bipolar current pulse and the Hall-sensor will detects the resultant field. The Hall sensor output is considered as PEC signal. Results shows that the PEC system can detect wall thinning in an insulated pipeline of the NPPs. Local wall thinning in pipelines affects the structural integrity of industries like nuclear power plants (NPPs). In the present study a pulsed eddy current (PEC) technology to detect the wall thing of carbon steel pipe covered with insulation is developed

  9. Infrared Thermography As Quality Control For Foamed In-Place Insulation

    Science.gov (United States)

    Schwartz, Joel A.

    1989-03-01

    Since November of 1985, FOAM-TECH, INC. has been utilizing an I.S.I. Model 91 Videotherm Camera to quality control the installation of foamed in-place polyurethane and polyisocyanurate insulation. Monitoring the injection of foam into the walls and roofs of new construction and during the the retrofitting of older buildings has become an integral and routine step in daily operations. The Videotherm is also used to monitor the injection of foam into hot water tanks, trailer bodies for refrigeration trucks, and pontoons and buoys for flotation. The camera is also used for the detection of heat loss and air infiltration for conventionally insulated buildings. Appendix A are thermograms of foamed in-place insulation.

  10. TU-CD-BRB-02: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Identification of Molecular Phenotypes by Integrating Radiomics and Genomics

    Energy Technology Data Exchange (ETDEWEB)

    Grossmann, P; Velazquez, E Rios; Parmar, C; Aerts, H [Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA (United States); Grove, O; Gillies, R [H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida (United States); El-Hachem, N [Institut de Recherches Cliniques de Montreal, Montreal, Quebec (Canada); Leijenaar, R [Research Institute GROW, Maastricht (Netherlands); Haibe-Kains, B [University Health Network, Toronto, Ontario (Canada); Lambin, P

    2015-06-15

    Purpose: To uncover the mechanistic connections between radiomic features, molecular pathways, and clinical outcomes, to develop radiomic based predictors of pathway activation states in individual patients, and to assess whether combining radiomic with clinical and genomic data improves prognostication. Methods: We analyzed two independent lung cancer cohorts totaling 351 patients, for whom diagnostic computed tomography (CT) scans, gene-expression profiles, and clinical outcomes were available. The tumor phenotype was characterized based on 636 radiomic features describing tumor intensity, texture, shape and size. We performed an integrative analysis by developing and independently validating association modules of coherently expressed radiomic features and molecular pathways. These modules were statistically tested for significant associations to overall survival (OS), TNM stage, and pathologic histology. Results: We identified thirteen radiomic-pathway association modules (p < 0.05), the most prominent of which were associated with the immune system, p53 pathway, and other pathways involved in cell cycle regulation. Eleven modules were significantly associated with clinical outcomes (p < 0.05). Strong predictive power for pathway activation states in individual patients was observed using radiomics; the strongest per module predictions ranged from an intra-tumor heterogeneity feature predicting RNA III polymerase transcription (AUC 0.62, p = 0.03), to a tumor intensity dispersion feature predicting pyruvate metabolism and citric acid TCA cycle (AUC 0.72, p < 10−{sup 6}). Stepwise combinations of radiomic data with clinical outcomes and gene expression profiles resulted in consistent increases of prognostic power to predict OS (concordance index max = 0.73, p < 10−{sup 9}). Conclusion: This study demonstrates that radiomic approaches permit a non-invasive assessment of molecular and clinical characteristics of tumors, and therefore have the unprecedented

  11. Improving the Performance of a Semitransparent BIPV by Using High-Reflectivity Heat Insulation Film

    Directory of Open Access Journals (Sweden)

    Huei-Mei Liu

    2016-01-01

    Full Text Available Currently, standard semitransparent photovoltaic (PV modules can largely replace architectural glass installed in the windows, skylights, and facade of a building. Their main features are power generation and transparency, as well as possessing a heat insulating effect. Through heat insulation solar glass (HISG encapsulation technology, this study improved the structure of a typical semitransparent PV module and explored the use of three types of high-reflectivity heat insulation films to form the HISG building-integrated photovoltaics (BIPV systems. Subsequently, the authors analyzed the influence of HISG structures on the optical, thermal, and power generation performance of the original semitransparent PV module and the degree to which enhanced performance is possible. The experimental results indicated that the heat insulation performance and power generation of HISGs were both improved. Selecting an appropriate heat insulation film so that a larger amount of reflective solar radiation is absorbed by the back side of the HISG can yield greater enhancement of power generation. The numerical results conducted in this study also indicated that HISG BIPV system not only provides the passive energy needed for power loading in a building, but also decreases the energy consumption of the HVAC system in subtropical and temperate regions.

  12. Joint Replacement (Finger and Wrist Joints)

    Science.gov (United States)

    ... All Topics A-Z Videos Infographics Symptom Picker Anatomy Bones Joints Muscles Nerves Vessels Tendons About Hand Surgery What is a Hand Surgeon? What is a Hand Therapist? Media Find a Hand Surgeon Home Anatomy Joint Replacement Email to a friend * required fields ...

  13. A lime based mortar for thermal insulation of medieval church vaults

    DEFF Research Database (Denmark)

    Larsen, P.K.; Hansen, Tessa Kvist

    A new mortar for thermal insulation of medieval church vaults was tested in a full scale experiment in Annisse Church, DK. The mortar consists of perlite, a highly porous aggregate, mixed with slaked lime. These materials are compatible with the fired clay bricks and the lime mortar joints....... The lambda-value of the insulation mortar is 0.08 W/m K or twice the lambda-value for mineral wool. The water vapour permeability is equal to a medieval clay brick, and it has three times higher capacity for liquid water absorption. The mortar was applied to the top side of the vaults in a thickness of 10 cm......, despite a water vapour pressure gradient up to 500 Pa between the nave and attic. There was no reduction in energy consumption the first winter, possibly due to the increased heat loss related to the drying of the mortar....

  14. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis

    Science.gov (United States)

    Chen, Wen; Tang, Ming

    2017-04-01

    The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.

  15. PD-pulse characteristics in rotating machine insulation

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Jensen, A

    1994-01-01

    In this paper results are presented from investigations on partial discharges (PD) in insulation systems, resembling the stator insulation in high voltage rotating machines. A model, simulating a stator winding in a slot, has been developed, consisting of simple rotating machine insulation test...... bars with epoxy/mica insulation, mounted between steel sheets forming a dot, in order to investigate the fundamental behaviour of PD in insulation defects in epoxy/mica insulation and the characteristics of the resulting electrical pulses. Stator slot couplers (SSC) were used to detect pulses coming...

  16. Electrical insulator assembly with oxygen permeation barrier

    Science.gov (United States)

    Van Der Beck, Roland R.; Bond, James A.

    1994-01-01

    A high-voltage electrical insulator (21) for electrically insulating a thermoelectric module (17) in a spacecraft from a niobium-1% zirconium alloy wall (11) of a heat exchanger (13) filled with liquid lithium (16) while providing good thermal conductivity between the heat exchanger and the thermoelectric module. The insulator (21) has a single crystal alumina layer (SxAl.sub.2 O.sub.3, sapphire) with a niobium foil layer (32) bonded thereto on the surface of the alumina crystal (26) facing the heat exchanger wall (11), and a molybdenum layer (31) bonded to the niobium layer (32) to act as an oxygen permeation barrier to preclude the oxygen depleting effects of the lithium from causing undesirable niobium-aluminum intermetallic layers near the alumina-niobium interface.

  17. Optimisation of Multilayer Insulation an Engineering Approach

    CERN Document Server

    Chorowski, M; Parente, C; Riddone, G

    2001-01-01

    A mathematical model has been developed to describe the heat flux through multilayer insulation (MLI). The total heat flux between the layers is the result of three distinct heat transfer modes: radiation, residual gas conduction and solid spacer conduction. The model describes the MLI behaviour considering a layer-to-layer approach and is based on an electrical analogy, in which the three heat transfer modes are treated as parallel thermal impedances. The values of each of the transfer mode vary from layer to layer, although the total heat flux remains constant across the whole MLI blanket. The model enables the optimisation of the insulation with regard to different MLI parameters, such as residual gas pressure, number of layers and boundary temperatures. The model has been tested with experimental measurements carried out at CERN and the results revealed to be in a good agreement, especially for insulation vacuum between 10-5 Pa and 10-3 Pa.

  18. Acoustic excitation of containment insulation cover plate

    International Nuclear Information System (INIS)

    Fenech, H.; Rao, A.K.

    1978-01-01

    An experimental and theoretical program has been implemented by NRC-BNL since 1975 at the University of California, Santa Barbara to assess the reliability of the PCRV thermal insulation cover plate and the possible safety problem caused by the failure of this plate. A typical large HTGR PCRV unit [1160 MW(e)] and thermal insulation class A were selected. The upper core cavity is estimated to be the most critical volume where the noise pressure levels are expected to reach 110 to 130 dB (rel. to 2 x 10 -4 dynes/cm 2 ). The noise spectrum in that cavity is a composite of circulator noise, vortex shedding boundary layer turbulence, and flow impingement. Some anticipated safety related problems associated with the thermal insulation failure are examined

  19. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1998-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the difficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  20. Acoustic quality and sound insulation between dwellings

    DEFF Research Database (Denmark)

    Rindel, Jens Holger

    1999-01-01

    to another, however, several of the results show a slope around 4 % per dB. The results may be used to evaluate the acoustic quality level of a certain set of sound insulation requirements, or they may be used as a basis for specifying the desired acoustic quality of future buildings.......During the years there have been several large field investigations in different countries with the aim to find a relationship between sound insulation between dwellings and the subjective degree of annoyance. This paper presents an overview of the results, and the dif-ficulties in comparing...... the different findings are discussed. It is tried to establish dose-response relationships between airborne sound insulation or impact sound pressure level according to ISO 717 and the percentage of people being annoyed by noise from neighbours. The slopes of the dose-response curves vary from one investigation...

  1. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  2. Insulating Foams Save Money, Increase Safety

    Science.gov (United States)

    2009-01-01

    Scientists at Langley Research Center created polyimide foam insulation for reusable cryogenic propellant tanks on the space shuttle. Meanwhile, a small Hialeah, Florida-based business, PolyuMAC Inc., was looking for advanced foams to use in the customized manufacturing of acoustical and thermal insulation. The company contacted NASA, licensed the material, and then the original inventors worked with the company's engineers to make a new material that was better for both parties. The new version, a high performance, flame retardant, flexible polyimide foam, is used for insulating NASA cryogenic propellant tanks and shows promise for use on watercraft, aircraft, spacecraft, electronics and electrical products, automobiles and automotive products, recreation equipment, and building and construction materials.

  3. Saving millions by thermal insulation; Miljoenen besparen door goede isolatie

    Energy Technology Data Exchange (ETDEWEB)

    Van der Velden, U. [Nederlands Centrum voor Technische Isolatie NCTI, spijkenisse (Netherlands)

    2009-07-15

    Corrosion under insulation (CUI) can be reduced by the application of a correctly designed, installed and maintained insulation system. In refrigeration plants a heat flow will occur from the warm outside towards the cold inside. Hot air, containing more moisture, will be distributed to the cold components of the installation, such as separators, intermediate coolers, piping and valves, thus not only facilitating CUI, but also seriously compromising the thermal performance of the system. Furthermore, this moisture could condensate or freeze and compromise the integrity of the installation. Insulation in cold systems is built up with closed cell materials, such as elastomeric foam, PIR (polyisocyanurate) or cellular glass. On the outside a vapor barrier (e.g. reinforced aluminium foil) is essential to prevent hot moist air from penetrating the system. For protection against weather influences and/or mechanical damage, the system should be finished with a (non)metal cladding. [Dutch] Corrosie onder isolatie (CUI) kan worden beperkt door toepassing van een correct ontworpen, geinstalleerd en onderhouden isolatiesysteem. Bij koude-isolatiesystemen treedt een warmtestroom van buiten naar binnen op. Warme lucht - die meer vocht bevat - dringt naar installatiecomponenten, zoals afscheiders, tussenkoelers, leidingen en afstuiters, waarbij niet alleen het risico op CUI aanzienlijk toeneemt, maar ook de isolatiewaarde van het systeem gereduceerd wordt. Vocht kan hierbij ook nog condenseren of bevriezen en de integriteit van de hele installatie in gevaar brengen. Koude-isolatiesystemen dienen te worden opgebouwd met gesloten cel-materiaal, zoals elastomeer schuim, PIR (polyisocyanurate) of cellulair glas. Het systeem dient aan de buitenzijde te worden voorzien van een dampremmende laag (van bijvoorbeeld versterkt aluminiumfolie) om binnendringend vocht te blokkeren. In buitencondities moet het systeem worden voorzien van een (metalen of niet-metalen) eindafwerking, die

  4. Structural analysis for the joint of the ITER ELM coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shanwen, E-mail: zhangshanwen123@163.com [College of Mechanical Engineering Yangzhou University, Yangzhou 225127 (China); Song, Yuntao; Wang, Zhongwei; Ji, Xiang [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 200031 (China); Zhang, Jianfeng [College of Mechanical Engineering Yangzhou University, Yangzhou 225127 (China)

    2017-01-15

    Highlights: • The FE sub-model method is feasible and rapid for the joint design. • The components meet the static and fatigue criteria. • Nuclear heat is the key factor for the joint design. - Abstract: The joint is an important component of the Edge Localized Modes (ELM) coils in fusion reactor, which is used to connect the ELM coils. Like the ELM coils, the joints work in an environment with high radiation levels, high temperature and high magnetic field. These joints are mainly subject to nuclear heat from the plasma and cyclic electromagnetic (EM) loads induced by the interaction of ELM coil current with magnetic fields. Take the joint of ITER ELM coil for example. In order to assure the structural integrity of joints under these loads, it is necessary to estimate the strength and fatigue of the joints. As a local model, the joint without ELM coil is investigated by the sub-model method. Results show that the finite element sub-model method is feasible and rapid for the joint design. The maximum magnetic flux intensity occurs in the axial direction for the joint local reference, which parallels with the current and corresponds to the toroidal direction of the ITER. The two areas at the top of the Inconel sleeve appear high temperature. For the joint, the conductor, jacket and sleeve can meet the static and fatigue criteria and the joint design is valid and feasible. The thermal load from the nuclear heat is the key factor for the joint design.

  5. Report of the Joint IPCC WG 2 and 3 expert meeting on the integration of adaptation, mitigation and sustainable development into the 4. IPCC assessment report

    International Nuclear Information System (INIS)

    2005-01-01

    The objectives for this meeting at Reunion Island were: - To feed new views from outside the climate change literature into the assessment of Working Group II (WG II) and WG III concerning the strongly interrelated area of adaptation, mitigation and sustainable development. - to dove-tail zero-order draft texts of WG II and WG III (by the authors) with a view to ensuring that the treatment of Adaptation and Mitigation (AM) and Sustainable Development (SD) issues in both assessments is: 'Consistent, Complementary, Concise and Complete' ('4 Cs'). Furthermore, it was decided that the deliverable should be: - Recommendations for the writing team of WG II fourth Assessment Report (AR4) for incorporation of AM and SD issues in their First Order Draft (following their 2. Lead Author meeting in Cairns, 14-17 March 2005); - Recommendations for the writing team of WG III for incorporation in their Zero-order Draft (ZOD, to be completed 11 March 2005) The programme of the meeting was developed by the TSUs of WG II and III under the responsibility of the co-chairs of WG II and III. Day 1 the programme was devoted to a series of key note speakers, covering both potential user views as well as relevant new perspectives on the handling of AM and SD issues. These areas have not been fully addressed in the IPCC assessment work to date. The invited experts elaborated on 'new science areas' or 'new literatures' that inform parts of the AR4. The morning programme of Day 1 also contained an opening session featuring several ministers of Environment of neighbouring Small Island States, a representative of the European Parliament, and government officials from both the French Republic and Reunion Island. Day 2 and 3 were used for working sessions between authors on the integration of adaptation, mitigation and sustainable development into the contributions of Working Groups II and III of the AR4. The full programme is attached to the document. The meeting brought together more than forty

  6. Report of the Joint IPCC WG 2 and 3 expert meeting on the integration of adaptation, mitigation and sustainable development into the 4. IPCC assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objectives for this meeting at Reunion Island were: - To feed new views from outside the climate change literature into the assessment of Working Group II (WG II) and WG III concerning the strongly interrelated area of adaptation, mitigation and sustainable development. - to dove-tail zero-order draft texts of WG II and WG III (by the authors) with a view to ensuring that the treatment of Adaptation and Mitigation (AM) and Sustainable Development (SD) issues in both assessments is: 'Consistent, Complementary, Concise and Complete' ('4 Cs'). Furthermore, it was decided that the deliverable should be: - Recommendations for the writing team of WG II fourth Assessment Report (AR4) for incorporation of AM and SD issues in their First Order Draft (following their 2. Lead Author meeting in Cairns, 14-17 March 2005); - Recommendations for the writing team of WG III for incorporation in their Zero-order Draft (ZOD, to be completed 11 March 2005) The programme of the meeting was developed by the TSUs of WG II and III under the responsibility of the co-chairs of WG II and III. Day 1 the programme was devoted to a series of key note speakers, covering both potential user views as well as relevant new perspectives on the handling of AM and SD issues. These areas have not been fully addressed in the IPCC assessment work to date. The invited experts elaborated on 'new science areas' or 'new literatures' that inform parts of the AR4. The morning programme of Day 1 also contained an opening session featuring several ministers of Environment of neighbouring Small Island States, a representative of the European Parliament, and government officials from both the French Republic and Reunion Island. Day 2 and 3 were used for working sessions between authors on the integration of adaptation, mitigation and sustainable development into the contributions of Working Groups II and III of the AR4. The full programme is attached to the document. The

  7. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  8. Allowance for insulation aging in the new concept of accelerated life tests of high-voltage power transformers

    International Nuclear Information System (INIS)

    Levit, A.G.; Grechko, O.N.; Shchipunova, N.P.

    1992-01-01

    This paper reports that the existing system of type and acceptance tests of high-voltage transformer insulation does not take into account insulation ageing, which is particularly objectionable with respect to equip-met with reduced insulation levels. Suggested in the paper is a new concept of accelerated life tests based on integrated simulation of basic operating loads, both periodic (surge) and long-term ones; by making a long-term accelerated test simulating the working conditions, with exposure of test object and/or its insulation to periodic operating surges (overvoltages and overcurrents). This test replaces a group of conventional individual acceptance tests and provides more ample and more precise information on performance and dependability of the equipment. The test procedure was checked in test of a small lot of 1600 kVA 35 kV power transformers

  9. Detection of UV Pulse from Insulators and Application in Estimating the Conditions of Insulators

    Science.gov (United States)

    Wang, Jingang; Chong, Junlong; Yang, Jie

    2014-10-01

    Solar radiation in the band of 240-280 nm is absorbed by the ozone layer in the atmosphere, and corona discharges from high-voltage apparatus emit in air mainly in the 230-405 nm range of ultraviolet (UV), so the band of 240-280 nm is called UV Solar Blind Band. When the insulators in a string deteriorate or are contaminated, the voltage distribution along the string will change, which causes the electric fields in the vicinity of insulators change and corona discharge intensifies. An UV pulse detection method to check the conditions of insulators is presented based on detecting the UV pulse among the corona discharge, then it can be confirmed that whether there exist faulty insulators and whether the surface contamination of insulators is severe for the safe operation of power systems. An UV-I Insulator Detector has been developed, and both laboratory tests and field tests have been carried out which demonstrates the practical viability of UV-I Insulator Detector for online monitoring.

  10. High-fluence implantation in insulators. 1

    International Nuclear Information System (INIS)

    Mazzoldi, P.

    1989-01-01

    The defects which can be formed by ion implantation depend upon the insulator structure and composition. Thus, for glasses and ceramics, different changes are expected in mechanical and tribological properties, network dilatation, induced optical absorption and luminescence, compositional changes and modifications in the chemical behaviour. The modifications induced by ion implantation in the composition of glasses, with particular reference to alkali silicate glasses, the mechanical and tribological properties of ion implanted insulators, in particular glasses and ceramics, and the optical properties are discussed. 56 refs.; 20 figs

  11. Soup Cooking by Thermal Insulation Method

    OpenAIRE

    佐藤, 辰江; 根本, 勢子; サトウ, タツエ; ネモト, セイコ; TATSUE, SATO; SEIKO, NEMOTO

    1992-01-01

    In order to examine the thermal insulation method of soup cooking, we cooked two kinds of soup. The soup cooked by thermal insulation method was compared with the soup cooked by standard boiling method. ln sensory test, it was more aromatic and palatable than the soup by boiling, and some panels commented that it was rather mild. The measured values of pH, specific gravity, acidity and amount of dry weight of souble solids, total-N, formal-N of the soup cooked by the two methods mentioned abo...

  12. Radiant Heat Transfer in Reusable Surface Insulation

    Science.gov (United States)

    Hughes, T. A.; Linford, R. M. F.; Chmitt, R. J.; Christensen, H. E.

    1973-01-01

    During radiant testing of mullite panels, temperatures in the insulation and support structure exceeded those predicted on the basis of guarded hot plate thermal conductivity tests. Similar results were obtained during arc tunnel tests of mullite specimens. The differences between effective conductivity and guarded hot plate values suggested that radiant transfer through the mullite was occurring. To study the radiant transport, measurements were made of the infrared transmission through various insulating materials and fibers of interest to the shuttle program, using black body sources over the range of 780 to 2000 K. Experimental data were analyzed and scattering coefficients were derived for a variety of materials, fiber diameters, and source temperature.

  13. Three-dimensional topological insulators and bosonization

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, Andrea [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Randellini, Enrico [INFN, Sezione di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, 50019 Sesto Fiorentino - Firenze (Italy); Sisti, Jacopo [Scuola Internazionale Superiore di Studi Avanzati (SISSA),Via Bonomea 265, 34136 Trieste (Italy)

    2017-05-25

    Massless excitations at the surface of three-dimensional time-reversal invariant topological insulators possess both fermionic and bosonic descriptions, originating from band theory and hydrodynamic BF theory, respectively. We analyze the corresponding field theories of the Dirac fermion and compactified boson and compute their partition functions on the three-dimensional torus geometry. We then find some non-dynamic exact properties of bosonization in (2+1) dimensions, regarding fermion parity and spin sectors. Using these results, we extend the Fu-Kane-Mele stability argument to fractional topological insulators in three dimensions.

  14. Gnathological splint therapy in temporomandibular joint disorder

    OpenAIRE

    Gnanashanmugham, K.; Saravanan, B.; Sukumar, M. R.; Tajir, T. Faisal

    2015-01-01

    Temporomandibular joint (TMJ) forms an integral functional part of stomatognathic system. Position, shape, structure and function of teeth have an influence on the proper functioning and health of TMJ. But a problem associated with TMJ is often neglected, and treatment for it is mostly restricted to palliative therapy. A proper understanding of the underlying cause of temporomandibular joint disorder (TMD) is necessary to device a proper treatment plan. Etiology of TMDs varies from idiopathic...

  15. Two Dimensional Heat Transfer around Penetrations in Multilayer Insulation

    Science.gov (United States)

    Johnson, Wesley L.; Kelly, Andrew O.; Jumper, Kevin M.

    2012-01-01

    The objective of this task was to quantify thermal losses involving integrating MLI into real life situations. Testing specifically focused on the effects of penetrations (including structural attachments, electrical conduit/feedthroughs, and fluid lines) through MLI. While there have been attempts at quantifying these losses both analytically and experimentally, none have included a thorough investigation of the methods and materials that could be used in such applications. To attempt to quantify the excess heat load coming into the system due to the integration losses, a calorimeter was designed to study two dimensional heat transfer through penetrated MLI. The test matrix was designed to take as many variables into account as was possible with the limited test duration and system size. The parameters varied were the attachment mechanism, the buffer material (for buffer attachment mechanisms only), the thickness of the buffer, and the penetration material. The work done under this task is an attempt to measure the parasitic heat loads and affected insulation areas produced by system integration, to model the parasitic loads, and from the model produce engineering equations to allow for the determination of parasitic heat loads in future applications. The methods of integration investigated were no integration, using a buffer to thermally isolate the strut from the MLI, and temperature matching the MLI on the strut. Several materials were investigated as a buffer material including aerogel blankets, aerogel bead packages, cryolite, and even an evacuated vacuum space (in essence a no buffer condition).

  16. Hip joint injection

    Science.gov (United States)

    ... medicine into the joint. The provider uses a real-time x-ray (fluoroscopy) to see where to place ... Wakefield RJ. Arthrocentesis and injection of joints and soft tissue. In: Firestein GS, Budd RC, Gabriel SE, ...

  17. Sacroiliac joint pain - aftercare

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000610.htm Sacroiliac joint pain - aftercare To use the sharing features on this page, please enable JavaScript. The sacroiliac joint (SIJ) is a term used to describe ...

  18. Reliability of Tubular Joints

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    In this paper the preliminary results obtained by tests on tubular joints are presented. The joints are T-joints and the loading is static. It is the intention in continuation of these tests to perform tests on other types of joints (e.g. Y-joints) and also with dynamic loading. The purpose...... of the test is partly to obtain empirical data for the ultimate load-carrying capacity of tubular T-joints and partly to obtain some experience in performing tests with tubular joints. It is well known that tubular joints are usually designed in offshore engineering on the basis of empirical formulas obtained...... by experimental test results. Therefore, there is a need for performing experimental tests in this area....

  19. Hip joint replacement - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100006.htm Hip joint replacement - series—Normal anatomy To use the ... to slide 5 out of 5 Overview The hip joint is made up of two major parts: ...

  20. Design of mechanical joints

    CERN Document Server

    Blake, Alexander

    2018-01-01

    A cornerstone publication that covers the basic principles and practical considerations of design methodology for joints held by rivets, bolts, weld seams, and adhesive materials, Design of Mechanical Joints gives engineers the practical results and formulas they need for the preliminary design of mechanical joints, combining the essential topics of joint mechanics...strength of materials...and fracture control to provide a complete treatment of problems pertinent to the field of mechanical connections.

  1. Managing Joint Production Motivation

    DEFF Research Database (Denmark)

    Lindenberg, Siegwart; Foss, Nicolai Juul

    2011-01-01

    We contribute to the microfoundations of organizational performance by proffering the construct of joint production motivation. Under such motivational conditions individuals see themselves as part of a joint endeavor, each with his or her own roles and responsibilities; generate shared...... representations of actions and tasks; cognitively coordinate cooperation; and choose their own behaviors in terms of joint goals. Using goal-framing theory, we explain how motivation for joint production can be managed by cognitive/symbolic management and organizational design....

  2. Environmental safety providing during heat insulation works and using thermal insulation materials

    Directory of Open Access Journals (Sweden)

    Velichko Evgeny

    2017-01-01

    Full Text Available This article considers the negative effect of thermal insulating materials and products on human health and environment pollution, particularly in terms of the composition of environmentally hazardous construction products. The authors have analyzed the complex measures for providing ecological safety, sanitary and epidemiological requirements, rules and regulations both during thermal insulation works and throughout the following operation of buildings and premises. The article suggests the protective and preventive measures to reduce and eliminate the negative impact of the proceeding of thermal insulation works on the natural environment and on human health.

  3. Thermographic identification of wetted insulation on pipelines in the arctic oilfields

    Science.gov (United States)

    Miles, Jonathan J.; Dahlquist, A. L.; Dash, L. C.

    2006-04-01

    Steel pipes used at Alaskan oil-producing facilities to transport production crude, gas, and injection water between well house and drill site manifold building, and along cross-country lines to and from central processing facilities, must be insulated in order to protect against the severely cold temperatures that are common during the arctic winter. A problem inherent with this system is that the sealed joints between adjacent layers of the outer wrap will over time degrade and can allow water to breach the system and migrate into and through the insulation. The moisture can ultimately interact with the steel pipe and trigger external corrosion which, if left unchecked, can lead to pipe failure and spillage. A New Technology Evaluation Guideline prepared for ConocoPhillips Alaska, Inc. in 2001 is intended to guide the consideration of new technologies for pipeline inspection in a manner that is safer, faster, and more cost-effective than existing techniques. Infrared thermography (IRT) was identified as promising for identification of wetted insulation regions given that it offers the means to scan a large area quickly from a safe distance, and measure the temperature field associated with that area. However, it was also recognized that there are limiting factors associated with an IRT-based approach including instrument sensitivity, cost, portability, functionality in hostile (arctic) environments, and training required for proper interpretation of data. A methodology was developed and tested in the field that provides a technique to conduct large-scale screening for wetted regions along insulated pipelines. The results of predictive modeling analysis and testing demonstrate the feasibility under certain condition of identifying wetted insulation areas. The results of the study and recommendations for implementation are described.

  4. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    Science.gov (United States)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second

  5. VIP A B C. Vacuum Insulation Panels Applied in Building Constructions

    Energy Technology Data Exchange (ETDEWEB)

    Tenpierik, M.J.

    2010-02-01

    -scale application of VIPs in the building industry. However, integration of VIPs into buildings must be performed very meticulously for several reasons; first, due to its nature a VIP cannot be processed on site and needs careful planning in advance; second, it is very sensitive to mechanical damage thus requiring careful handling; third, thermal bridges along the panel's edges reduce its performance; fourth, the composite system is highly subjected to aging. This dissertation therefore looks into many of these aspects, presents several calculation tools and shows how VIPs can be applied in facade panels, EPS insulation boards and as under-floor insulation. With the wide-spread proliferation of VIPs in buildings a more sustainable and healthy environment can then be achieved.

  6. Assessing The Role Of Integrated Learning In The BSc International Field Geosciences (IFG) Joint Degree Programme At University College Cork, the University of Montana and the University of Potsdam.

    Science.gov (United States)

    Meere, Patrick; Hendrix, Marc; Strecker, Manfred; Berger, Andreas

    2010-05-01

    The Department of Geology at University College Cork (UCC), Ireland, in conjunction with the Universities of Montana (UM) and Potsdam (UP) launched a new BSc in International Field Geosciences in Autumn 2008. In this program superb natural field geoscience laboratories available in Europe and the western United States are utilized as learning environments forming the basis for a ‘Joint' Bachelor of Science undergraduate degree. This programme focuses on the documentation, interpretation, and synthesis of critical geological issues in the field. It rests upon a backbone of existing modules that are the foundation of current geology programs at three partner institutions complemented by an emphasis on the development of field-based learning in an intercultural setting. The core curriculum is identical to that required for the existing BSc Geology at UCC except the third Year is spent abroad at UM while additional courses are taken at the UP at the start the fourth year. The mobility component of the programme is funded as part of a joint EU/US ATLANTIS project. The motivation for the new programme was primarily driven by the growing international demand for geoscientists with integrated field skills. Over the last two decades existing geoscience programmes in Europe and the US have tended to progressively reduce their field based learning components. One of the major reasons for this neglect is the increasing cost associated with physically transporting students into the field and maintaining a safe outdoor working environment. Heath and safety considerations in an increasingly litigious society have led to increasingly limited choices for suitable field areas in the last few decades. Lastly, recent technological advances such as GIS and various other forms of remote sensing have led to new ways of analyzing geospatial data that, while certainly useful, divert the attention of the Geoscience community away from collecting ‘ground truth' data and making direct

  7. Using microtherm microporous insulation in smelter applications

    Science.gov (United States)

    MacKenzie, Iain

    2000-02-01

    Microtherm is effective in reducing shell temperatures in confined spaces where compression is severe and much insulation is required. This material can prove beneficial for applications such as cement and lime rotary kiln transition and hot zones; copper converters and anode furnaces; steel and iron ladles, tundishes, RH vessels, and blast furnaces; and aluminum filter boxes, runners, and metal transporters.

  8. Mineral insulated cables for post accident service

    International Nuclear Information System (INIS)

    McMillin, P.L.; Winkler, M.E.

    1986-01-01

    The regulatory requirement to measure the gamma radiation levels during accident conditions inside a reactor containment building is discussed. The development of a mineral-insulated cable and connector system to accurately transmit this measurement is described and a model of the response is developed

  9. Synthesis and characterization of innovative insulation materials

    Directory of Open Access Journals (Sweden)

    Skaropoulou Aggeliki

    2018-01-01

    Full Text Available Insulation elements are distinguished in inorganic fibrous and organic foamed materials. Foamed insulation materials are of great acceptance and use, but their major disadvantage is their flammability. In case of fire, they tend to transmit the flame producing toxic gases. In this paper, the synthesis and characterization of innovative inorganic insulation materials with properties competitive to commercial is presented. Their synthesis involves the mixing of inorganic raw material and water with reinforcing agent or/and foaming agent leading to the formation of a gel. Depending on raw materials nature, the insulation material is produced by freeze drying or ambient drying techniques of the gel. The raw material used are chemically benign and abundantly available materials, or industrial by-products and the final products are non-toxic and, in some cases, non-flammable. Their density and thermal conductivity was measured and found 0.02-0.06 g/cm3 and 0.03-0.04 W/mK, respectively.

  10. Insulating materials resistance in intense radiation beams

    International Nuclear Information System (INIS)

    Oproiu, Constantin; Martin, Diana; Scarlat, Florin; Timus, Dan; Brasoveanu, Mirela; Nemtanu, Monica

    2002-01-01

    The paper emphasizes the main changes of the mechanical and electrical properties of some organic insulating materials exposed to accelerated electron beams. These materials are liable to be used in nuclear plants and particle accelerators. The principal mechanical and electrical properties analyzed were: tensile strength, fracture strength, tearing on fracture, dielectric strength, electrical resistivity, dielectric constant and tangent angle of dielectric losses. (authors)

  11. Light fireproof insulating plate-formed material

    Energy Technology Data Exchange (ETDEWEB)

    Plum, B.A.; Juhl, L.F.

    1981-02-23

    Light fireproof insulating plates were produced by pressure processing of a mixture of rice-husk ashes with pearlite aluminium phosphate and glass wool. The corn size of pearlite is 0-5 mm., of rice-husk ashes 0-5 mm. and the fiber length of fibrous additive is about 25 mm.

  12. Insulating jacket for heat sensitive components

    International Nuclear Information System (INIS)

    Class, G.

    1980-01-01

    The insulating jacket for long core components of sodium-cooled reactors consists of several layers of austenitic steel, between which a woven wire mesh of the same material is fitted. It is wound in the form of a spiral bandage on the core component. (DG) [de

  13. Interfacial Coatings for Inorganic Composite Insulation Systems

    International Nuclear Information System (INIS)

    Hooker, M. W.; Fabian, P. E.; Stewart, M. W.; Grandlienard, S. D.; Kano, K. S.

    2006-01-01

    Inorganic (ceramic) insulation materials are known to have good radiation resistance and desirable electrical and mechanical properties at cryogenic and elevated temperatures. In addition, ceramic materials can withstand the high-temperature reaction cycle used with Nb3Sn superconductor materials, allowing the insulation to be co-processed with the superconductor in a wind-and-react fabrication process. A critical aspect in the manufacture of ceramic-based insulation systems is the deposition of suitable fiber-coating materials that prevent chemical reaction of the fiber and matrix materials, and thus provide a compliant interface between the fiber and matrix, which minimizes the impact of brittle failure of the ceramic matrix. Ceramic insulation produced with CTD-FI-202 fiber interfaces have been found to exhibit very high shear and compressive strengths. However, this material is costly to produce. Thus, the goal of the present work is to evaluate alternative, lower-cost materials and processes. A variety of oxide and polyimide coatings were evaluated, and one commercially available polyimide coating has been shown to provide some improvement as compared to uncoated and de-sized S2 glass

  14. Topics in magnetism: magnetic excitations in insulators

    International Nuclear Information System (INIS)

    Rezende, S.M.

    1975-01-01

    The concept of spin waves is introduced and green's functions formalism is used in connection with thermodynamic properties of ferromagnets. Simple features of magnons in ferromagnetic insulators are discussed and also of those with dipolar and anisotropic contributions in the hamiltonian. Magnons in more complex systems, e.g. antiferromagnetic crystals, are dealt with. Finally, excitation and detection of magnons are also discussed [pt

  15. Tetradymites as thermoelectrics and topological insulators

    Science.gov (United States)

    Heremans, Joseph P.; Cava, Robert J.; Samarth, Nitin

    2017-10-01

    Tetradymites are M2X3 compounds — in which M is a group V metal, usually Bi or Sb, and X is a group VI anion, Te, Se or S — that crystallize in a rhombohedral structure. Bi2Se3, Bi2Te3 and Sb2Te3 are archetypical tetradymites. Other mixtures of M and X elements produce common variants, such as Bi2Te2Se. Because tetradymites are based on heavy p-block elements, strong spin-orbit coupling greatly influences their electronic properties, both on the surface and in the bulk. Their surface electronic states are a cornerstone of frontier work on topological insulators. The bulk energy bands are characterized by small energy gaps, high group velocities, small effective masses and band inversion near the centre of the Brillouin zone. These properties are favourable for high-efficiency thermoelectric materials but make it difficult to obtain an electrically insulating bulk, which is a requirement of topological insulators. This Review outlines recent progress made in bulk and thin-film tetradymite materials for the optimization of their properties both as thermoelectrics and as topological insulators.

  16. Electrical machining method of insulating ceramics

    International Nuclear Information System (INIS)

    Fukuzawa, Y.; Mohri, N.; Tani, T.

    1999-01-01

    This paper describes a new electrical discharge machining method for insulating ceramics using an assisting electrode with either a sinking electrical discharge machine or a wire electrical discharge machine. In this method, the metal sheet or mesh is attached to the ceramic surface as an assisting material for the discharge generation around the insulator surface. When the machining condition changes from the attached material to the workpiece, a cracked carbon layer is formed on the workpiece surface. As this layer has an electrical conductivity, electrical discharge occurs in working oil between the tool electrode and the surface of the workpiece. The carbon is formed from the working oil during this electrical discharge. Even after the material is machined, an electrical discharge occurs in the gap region between the tool electrode and the ceramic because an electrically conductive layer is generated continuously. Insulating ceramics can be machined by the electrical discharge machining method using the above mentioned surface modification phenomenon. In this paper the authors show a machined example demonstrating that the proposed method is available for machining a complex shape on insulating ceramics. Copyright (1999) AD-TECH - International Foundation for the Advancement of Technology Ltd

  17. Power flow studies of magnetically insulated lines

    International Nuclear Information System (INIS)

    McDaniel, D.H.; Poukey, J.W.; Bergeron, K.D.; VanDevender, J.P.; Johnson, D.L.

    1977-01-01

    The designs for relativistic electron beam accelerators with power levels of 20 to 100 TW are greatly restricted by the inductance of a single diode of reasonable size. This fact leads to modular designs of very large accelerators. One concept uses several small insulators at a large radius arranged around the accelerator center. The total effective inductance is then low, but the energy must then be transported by self-magnetic insulated vacuum lines to the target volume. A triplate vacuum line configuration eases many mechanical support problems and allows more A-K gaps or feeds to be packaged around a given radius. This type of vacuum transmission line was chosen for initial experiments at Sandia. The experiments were conducted on the MITE (Magnetically Insulated Transmission Experiment) accelerator. The water pulse forming lines are connected to a vacuum triplate line through a conventional stacked insulator. Diagnostics on the experiment consisted of: (1) input V; (2) input I; (3) I monitors at the input, middle, and output of both the center conductor and ground plane of the transmission line; (4) magnetic energy analyzer to view peak electron energy in the A-K gap; (5) calorimetry; and (6) Faraday cups to look at electron current flowing across the transmission line. The main goal of the experiment is to obtain input impedance of the transmission line as a function of voltage and to measure electron loss currents. These measurements are compared to theoretical models for the input impedance and energy losses

  18. Infrared circular photogalvanic effect in topological insulators

    Science.gov (United States)

    Luo, Siyuan

    2018-04-01

    Topological insulators have attracted a lot of attention in recent years due to its unique phenomena. Circular photogalvanic effect (CPGE) is one of the important phenomena in topological insulators. Bi2Se3, as one of the 3D topological insulators, consist of a single Dirac cone at the Γ point in k-space [1], corresponding to the surface states. Controlled by the Berry curvature of the surface band, the dominant photo response due to the interband transition is helicity dependent [2]. In addition, due to the spin-momentum locking in topological insulators' surface, the sign of spin-angular-momentum of obliquely incident light and photo currents are locked together. On the other hand, Bi2Se3 consists of quintuple layers which make it possible to be exfoliated and transferred based on graphene fabrication. In this paper, Bi2Se3 devices were fabricated and Ohm contact was achieved. We experimentally demonstrated the CPGE in Bi2Se3 using 1550nm incident laser.

  19. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  20. Sound insulation requirements in the Nordic countries

    DEFF Research Database (Denmark)

    Rasmussen, Birgit

    All Nordic countries have sound insulation requirements for housing and sound classification schemes originating from a common INSTA‐proposal in the mid 90’s, but unfortunately being increasingly diversified since then. The present situation impedes development and create barriers for trade and e...

  1. Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus

    Science.gov (United States)

    Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi

    This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.

  2. Attic Retrofits Using Nail-Base Insulated Panels

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, David [Home Innovation Research Labs; Kochkin, Vladimir [Home Innovation Research Labs

    2018-03-26

    This project developed and demonstrated a roof/attic energy retrofit solution using nail-base insulated panels for existing homes where traditional attic insulation approaches are not effective or feasible. Nail-base insulated panels (retrofit panels) consist of rigid foam insulation laminated to one face of a wood structural panel. The prefabricated panels are installed above the existing roof deck during a reroofing effort.

  3. Effects of radiation on insulation materials

    International Nuclear Information System (INIS)

    Poehlchen, R.

    1992-01-01

    This presentation will concentrate on the insulation materials which are suitable for the insulation of superconducting magnets for fusion. For the next generation of fusion machines with magnetic confinement as NET and ITER general agreement exists that the insulation will consist of fibre reinforced organic matrix material, a composite. Much effort has been put into the investigation of the radiation resistance of such materials during the last 20-30 years, see in particular the numerous reports of accelerator laboratories on this subject. But very few of the published data are relevant for the superconducting magnets of fusion machines. Either the irradiation and testing was carried out at RT or LN 2 temperature and/or the irradiation spectrum was not representative for a fusion machine and/or the materials investigated are not applicable for the insulation of S.C. fusion magnets. Therefore test programs have been launched recently, one by the NET team. The intention of the first chapter is to give guidance on the choice of materials which are suitable as insulation materials from a more general point of view. A good understanding of the coil manufacturing process is needed for this purpose. The second chapter explains the irradiation spectrum seen by the magnets. A third chapter does present the NET/ITER test programme. Step 1 was completed at the end of 1989, the second step will be carried out in the autumn of 1991. Finally, a general assessment of materials and testing methods will be given with recommendations for further testing

  4. Cellulose insulation as an air barrier

    Energy Technology Data Exchange (ETDEWEB)

    Manning, K.

    1989-10-01

    The objective of this study was to determine if a wet sprayed cellulose wall insulation system would function satisfactorily without use of a polyethylene air/vapour barrier. The research was designed to demonstrate that this particular insulation system would form enough of a barrier to air leakage, that moisture accumulation from condensation and vapour diffusion would be insignificant. Field work conducted in Alberta, involved construction of a conventional duplex housing unit which was insulated with wet sprayed cellulose in the exterior walls and dry loose-fill cellulose in the attic areas. One half of the unit did not have a polyethylene air/vapor barrier installed. Air leakage and exterior wall moisture levels were monitored for a year following construction. Data collected during this time indicated that the moisture added to the walls during the insulating process was dissipated over the study period. The presence of polyethylene sheeting had no significant effect on the moisture levels in either the wall or attic areas of the test structure. On the other hand, testing indicated that the use of polyethylene sheeting in the wall system did serve to improve blower door air test results. In conclusion, although the air leakage resistance apparently provided by the polyethylene sheeting is significant, the amount is probably not more than could otherwise be obtained by more careful attention to sealing procedures such as those used in the airtight drywall technique. A more important finding is that the use of polyethylene sheeting is not essential in a structure which has the degree of air leakage resistance provided by the insulation system used in this project. 6 figs., 2 tabs.

  5. Field evaluation of reflective insulation in south east Asia

    Science.gov (United States)

    Teh, Khar San; Yarbrough, David W.; Lim, Chin Haw; Salleh, Elias

    2017-12-01

    The objective of this research was to obtain thermal performance data for reflective insulations in a South East Asia environment. Thermal resistance data (RSI, m2 ṡ K/W) for reflective insulations are well established from 1-D steady-state tests, but thermal data for reflective insulation in structures like those found in South East Asia are scarce. Data for reflective insulations in South East Asia will add to the worldwide database for this type of energy-conserving material. RSI were obtained from heat flux and temperature data of three identical structures in the same location. One unit did not have insulation above the ceiling, while the second and third units were insulated with reflective insulation with emittance less than 0.05. RSI for the uninsulated test unit varied from 0.37 to 0.40 m2 ṡ K/W. RSI for a single-sheet reflective insulation (woven foil) varied from 2.15 to 2.26 m2 ṡ K/W, while bubble-foil insulation varied from 2.69 to 3.09 m2 ṡ K/W. The range of RSI values resulted from differences in the spacing between the reflective insulation and the roof. In addition, the reflective insulation below the roof lowered attic temperatures by as much as 9.7° C. Reductions in ceiling heat flux of 80 to 90% relative to the uninsulated structure, due to the reflective insulation, were observed.

  6. 49 CFR 236.527 - Roadway element insulation resistance.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Roadway element insulation resistance. 236.527 Section 236.527 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD... element insulation resistance. Insulation resistance between roadway inductor and ground shall be...

  7. Insulating process for HT-7U central solenoid model coils

    International Nuclear Information System (INIS)

    Cui Yimin; Pan Wanjiang; Wu Songtao; Wan Yuanxi

    2003-01-01

    The HT-7U superconducting Tokamak is a whole superconducting magnetically confined fusion device. The insulating system of its central solenoid coils is critical to its properties. In this paper the forming of the insulating system and the vacuum-pressure-impregnating (VPI) are introduced, and the whole insulating process is verified under the super-conducting experiment condition

  8. Quality labels for retrofit cavity wall insulation : a comparative analysis

    NARCIS (Netherlands)

    Rovers, Twan Johannes Hendrikus; Entrop, Alexis Gerardus; Halman, Johannes I.M.

    2017-01-01

    Retrofit cavity wall insulation can be exerted to reduce the energy use for space heating and cooling of existing buildings. In multiple countries, quality labels have emerged for this insulation service. In this research project, an evaluation framework for cavity wall insulation is developed by

  9. Tubular House - Form Follows Technology, Concrete Shell Structure with Inner Thermal Insulation

    Science.gov (United States)

    Idem, Robert; Kleczek, Paweł; Pawłowski, Krzysztof; Chudoba, Piotr

    2017-10-01

    The aim of this paper is the theoretical analysis of the possibilities and limitations of using an unconventional technology and the original architectural form stemming from it - the building with external construction and internal insulation. In Central European climatic conditions, the traditional solution for the walls of heated buildings relies on using external thermal insulation. This stems from building physics: it prevents interstitial condensation of water vapour in the wall. Internal insulation is used exceptionally. This is done e.g. in historical buildings undergoing thermal modernization (due to the impossibility of interfering with facade). In such cases, a thermal insulation layer is used on the internal wall surface, along with an additional layer of vapour barrier. The concept of building concerns the intentional usage of an internal insulation. In this case, the construction is a tight external reinforced concrete shell. The architectural form of such building is strongly interrelated with the technology, which was used to build it. The paper presents the essence of this concept in descriptive and drawing form. The basic elements of such building are described (the external construction, the internal insulation and ventilation). As a case study, authors present a project of a residential building along with the description of the applied materials and installation solutions, and the results obtained from thermal, humidity and energetic calculations. The discussion presents the advantages and disadvantages of the proposed concept. The basic advantage of this solution is potentially low building cost. This stems from minimizing the ground works, the simplicity of the joints and the outer finish, as well as from the possibility of prefabrication of the elements. The continuity of the thermal insulation allows to reduce the amount of thermal bridges. The applied technology and form are applicable most of all for small buildings, due to limited

  10. Wilmar joint market model, Documentation

    International Nuclear Information System (INIS)

    Meibom, P.; Larsen, Helge V.; Barth, R.; Brand, H.; Weber, C.; Voll, O.

    2006-01-01

    The Wilmar Planning Tool is developed in the project Wind Power Integration in Liberalised Electricity Markets (WILMAR) supported by EU (Contract No. ENK5-CT-2002-00663). A User Shell implemented in an Excel workbook controls the Wilmar Planning Tool. All data are contained in Access databases that communicate with various sub-models through text files that are exported from or imported to the databases. The Joint Market Model (JMM) constitutes one of these sub-models. This report documents the Joint Market model (JMM). The documentation describes: 1. The file structure of the JMM. 2. The sets, parameters and variables in the JMM. 3. The equations in the JMM. 4. The looping structure in the JMM. (au)

  11. Wilmar joint market model, Documentation

    Energy Technology Data Exchange (ETDEWEB)

    Meibom, P.; Larsen, Helge V. [Risoe National Lab. (Denmark); Barth, R.; Brand, H. [IER, Univ. of Stuttgart (Germany); Weber, C.; Voll, O. [Univ. of Duisburg-Essen (Germany)

    2006-01-15

    The Wilmar Planning Tool is developed in the project Wind Power Integration in Liberalised Electricity Markets (WILMAR) supported by EU (Contract No. ENK5-CT-2002-00663). A User Shell implemented in an Excel workbook controls the Wilmar Planning Tool. All data are contained in Access databases that communicate with various sub-models through text files that are exported from or imported to the databases. The Joint Market Model (JMM) constitutes one of these sub-models. This report documents the Joint Market model (JMM). The documentation describes: 1. The file structure of the JMM. 2. The sets, parameters and variables in the JMM. 3. The equations in the JMM. 4. The looping structure in the JMM. (au)

  12. A thermal insulation system intended for a prestressed concrete vessel

    International Nuclear Information System (INIS)

    Aubert, Gilles; Petit, Guy.

    1975-01-01

    The description is given of a thermal insulation system withstanding the pressure of a vaporisable fluid for a prestressed concrete vessel, particularly the vessel of a boiling water nuclear reactor. The ring in the lower part of the vessel has, between the fluid inlet pipes and the bottom of the vessel, an annular opening of which the bottom edge is integral with an annular part rising inside the ring and parallel to it. This ring is hermetically connected to the bottom of the vessel and is coated with a metal lagging, at least facing the annular opening. This annular opening is made in the ring half-way up between the fluid inlet pipes and the bottom of the vessel. It is connected to the bottom of the vessel through the internal structure enveloping the reactor core [fr

  13. Accelerated life test of an ONO stacked insulator film for a silicon micro-strip detector

    International Nuclear Information System (INIS)

    Okuno, Shoji; Ikeda, Hirokazu; Saitoh, Yutaka

    1996-01-01

    We have used to acquire the signal through an integrated capacitor for a silicon micro-strip detector. When we have been using a double-sided silicon micro-strip detector, we have required a long-term stability and a high feasibility for the integrated capacitor. An oxide-nitride-oxide (ONO) insulator film was theoretically expected to have a superior nature in terms of long term reliability. In order to test long term reliability for integrated capacitor of a silicon micro-strip detector, we made a multi-channel measuring system for capacitors

  14. Process for manufacture of Te microwire in glass insulation

    International Nuclear Information System (INIS)

    Bodiul, Pavel; Nicolaeva, Alibina; Konopko, Leonid; Bondarciuc, Nicolae

    2010-01-01

    The invention relates to the manufacturing of microwires in glass insulation and can be used in electronics and in the manufacturing of thermoelectrodes for thermoelectric sensors. The process for manufacture of Te microwire in glass insulation consists in softening the Te sample and its pulling in glass insulation. Near the microwire pulling zone through the furnace is maintained a temperature of 430-440 degrees Celsius, which causes the solidification firstly of Te microwire, and then of glass insulation. The result of the invention is to obtain Te microwires in glass insulation of high quality with a diameter of 50-100 μm and a length of 3-15 cm.

  15. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  16. Integrated Health Management Definitions

    Data.gov (United States)

    National Aeronautics and Space Administration — The Joint Army Navy NASA Air Force Modeling and Simulation Subcommittee's Integrated Health Management panel was started about 6 years ago to help foster...

  17. Joint seal in tank

    International Nuclear Information System (INIS)

    Colquhoun, J.; White, G.V.

    1981-01-01

    A seal for a joint or gap between edges of adjacent wall sections (e.g. of concrete) of a liquid-containing vessel, such as a nuclear reactor cooling pond, comprises a sheet metal strip having longitudinally-extending edge parts, secured to the respective vessel-section edges, and a central part which is longitudinally corrugated to provide sufficient flexibility to accommodate slight relative movements between the vessel-section edges (e.g. due to thermal expansions). The edges of the sheet metal of the strip are turned in so that the edge parts of the strip are formed as generally U-section channels. These accommodate longitudinally extending securing bars which are bolted to the vessel wall sections by bolts which pass through the bars, through the free-edged wall of the channel section and through a longitudinally extending resilient seal pad compressed between that wall of the channel section and the vessel wall section to which it is secured. The other wall of the channel section (integral with the corrugated central part of the strip) has access windows through which the bolts are inserted and tightened, the windows being then closed off in liquid-tight manner by welding closure caps over them. (author)

  18. Superconductivity and ferromagnetism in topological insulators

    Science.gov (United States)

    Zhang, Duming

    Topological insulators, a new state of matter discovered recently, have attracted great interest due to their novel properties. They are insulating inside the bulk, but conducting at the surface or edges. This peculiar behavior is characterized by an insulating bulk energy gap and gapless surface or edge states, which originate from strong spin-orbit coupling and time-reversal symmetry. The spin and momentum locked surface states not only provide a model system to study fundamental physics, but can also lead to applications in spintronics and dissipationless electronics. While topological insulators are interesting by themselves, more exotic behaviors are predicted when an energy gap is induced at the surface. This dissertation explores two types of surface state gap in topological insulators, a superconducting gap induced by proximity effect and a magnetic gap induced by chemical doping. The first three chapters provide introductory theory and experimental details of my research. Chapter 1 provides a brief introduction to the theoretical background of topological insulators. Chapter 2 is dedicated to material synthesis principles and techniques. I will focus on two major synthesis methods: molecular beam epitaxy for the growth of Bi2Se3 thin films and chemical vapor deposition for the growth of Bi2Se3 nanoribbons and nanowires. Material characterization is discussed in Chapter 3. I will describe structural, morphological, magnetic, electrical, and electronic characterization techniques used to study topological insulators. Chapter 4 discusses the experiments on proximity-induced superconductivity in topological insulator (Bi2Se3) nanoribbons. This work is motivated by the search for the elusive Majorana fermions, which act as their own antiparticles. They were proposed by Ettore Majorara in 1937, but have remained undiscovered. Recently, Majorana's concept has been revived in condensed matter physics: a condensed matter analog of Majorana fermions is predicted to

  19. Mechanics of Suture Joints

    Science.gov (United States)

    Li, Yaning; Song, Juha; Ortiz, Christine; Boyce, Mary; Ortiz Group/DMSE/MIT Team; Boyce Group/ME/MIT Team

    2011-03-01

    Biological sutures are joints which connect two stiff skeletal or skeletal-like components. These joints possess a wavy geometry with a thin organic layer providing adhesion. Examples of biological sutures include mammalian skulls, the pelvic assembly of the armored fish Gasterosteus aculeatus (the three-spined stickleback), and the suture joints in the shell of the red-eared slider turtle. Biological sutures allow for movement and compliance, control stress concentrations, transmit loads, reduce fatigue stress and absorb energy. In this investigation, the mechanics of the role of suture geometry in providing a naturally optimized joint is explored. In particular, analytical and numerical micromechanical models of the suture joint are constructed. The anisotropic mechanical stiffness and strength are studied as a function of suture wavelength, amplitude and the material properties of the skeletal and organic components, revealing key insights into the optimized nature of these ubiquitous natural joints.

  20. Design of Chern insulating phases in honeycomb lattices

    Science.gov (United States)

    Pickett, Warren E.; Lee, Kwan-Woo; Pentcheva, Rossitza

    2018-06-01

    The search for robust examples of the magnetic version of topological insulators, referred to as quantum anomalous Hall insulators or simply Chern insulators, so far lacks success. Our groups have explored two distinct possibilities based on multiorbital 3d oxide honeycomb lattices. Each has a Chern insulating phase near the ground state, but materials parameters were not appropriate to produce a viable Chern insulator. Further exploration of one of these classes, by substituting open shell 3d with 4d and 5d counterparts, has led to realistic prediction of Chern insulating ground states. Here we recount the design process, discussing the many energy scales that are active in participating (or resisting) the desired Chern insulator phase.

  1. Economical evaluation of damaged vacuum insulation panels in buildings

    Science.gov (United States)

    Kim, Y. M.; Lee, H. Y.; Choi, G. S.; Kang, J. S.

    2015-12-01

    In Korea, thermal insulation standard of buildings have been tightened annually to satisfy the passive house standard from the year 2009. The current domestic policies about disseminating green buildings are progressively conducted. All buildings should be the zero energy building in the year 2025, obligatorily. The method is applied to one of the key technologies for high-performance insulation for zero energy building. The vacuum insulation panel is an excellent high performance insulation. But thermal performance of damaged vacuum insulation panels is reduced significantly. In this paper, the thermal performance of damaged vacuum insulation panels was compared and analyzed. The measurement result of thermal performance depends on the core material type. The insulation of building envelope is usually selected by economic feasibility. To evaluate the economic feasibility of VIPs, the operation cost was analyzed by simulation according to the types and damaged ratio of VIPs

  2. Expansion joints for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Dzenus, M.; Hundhausen, W.; Jansing, W.

    1979-10-15

    This discourse recounts efforts put into the SNR-2 project; specifically the development of compensation devices. The various prototypes of these compensation devices are described and the state of development reviewed. The expansion joints were developed on the basis of specific design criteria whereby differentiation is made between expansion joints of small and large nominal diameter. Expansion joints for installation in the sodium-filled primary piping are equipped with safety bellows in addition to the actual working bellows.

  3. Thermally-insulating layer for nuclear reactors

    International Nuclear Information System (INIS)

    1975-01-01

    The thermally-insulating layer has been designed both for insulating surfaces within the core of a nuclear reactor and transmitting loads such as the core-weight. Said layer comprises a layer of bricks and a layer of tiles with smaller clearance between the tiles than between the bricks, the latter having a reduced cross-section against the tiles so as to be surrounded by relatively large interconnected ducts forming a continuous chamber behind the tile-layer in order to induce a substantial decreases in the transverse flow of the reactor-core coolant. The core preferably comprises hexagonal columns supported by rhomb-shaped plates, with channels distributed so as to mix the coolant of twelve columns. The plates are separated from support-tiles by means of pillars [fr

  4. Nuclear reactor insulation and preheat system

    International Nuclear Information System (INIS)

    Wampole, N.C.

    1978-01-01

    An insulation and preheat system is disclosed for preselected components of a fluid cooled nuclear reactor. A gas tight barrier or compartment of thermal insulation surrounds the selected components and includes devices to heat the internal atmosphere of the ocmpartment. An external surface of the compartment of enclosure is cooled, such as by a circulating fluid. The heating devices provide for preheating of the components, as well as maintenance of a temperature sufficient to ensure that the reactor coolant fluid will not solidify during shutdown. The external cooling limits the heat transferred to other plant structures, such as supporting concrete and steel. The barrier is spaced far enough from the surrounded components so as to allow access for remote or manual inspection, maintenance, and repair

  5. Self-magnetically insulated ion diode

    International Nuclear Information System (INIS)

    VanDevender, J.; Quintenz, J.; Leeper, R.; Johnson, D.; Crow, J.

    1981-01-01

    Light ion diodes for producing 1--100 TW ion beams are required for inertial confinement fusion. The theory, numerical simulations, and experiments on a self-magnetically insulated ion diode are presented. The treatment is from the point of view of a self-magnetically insulated transmission line with an ion loss current and differs from the usual treatment of the pinched electron beam diode. The simulations show that the ratio V/IZ 0 =0.25 in such a structure with voltage V, local total current I, and local vacuum wave impedance Z 0 . The ion current density is enhanced by a factor of approximately 2 over the simple space-charge limited value. The simulation results are verified in an experiment. An analytical theory is then presented for scaling the results to produce a focused beam of protons with a power of up to 10 13 W

  6. Individual Magnetic Molecules on Ultrathin Insulating Surfaces

    Science.gov (United States)

    El Hallak, Fadi; Warner, Ben; Hirjibehedin, Cyrus

    2012-02-01

    Single molecule magnets have attracted ample interest because of their exciting magnetic and quantum properties. Recent studies have demonstrated that some of these molecules can be evaporated on surfaces without losing their magnetic properties [M. Mannini et al., Nature 468, 417, (2010)]. This remarkable progress enhances the chances of real world applications for these molecules. We present STM imaging and spectroscopy data on iron phthalocyanine molecules deposited on Cu(100) and on a Cu2N ultrathin insulating surface. These molecules have been shown to display a large magnetic anisotropy on another thin insulating surface, oxidized Cu(110) [N. Tsukahara et al., Phys. Rev. Lett. 102, 167203 (2009)]. By using a combination of elastic and inelastic electron tunnelling spectroscopy, we investigate the binding of the molecules to the surface and the impact that the surface has on their electronic and magnetic properties.

  7. Tests on irradiated magnet-insulator materials

    International Nuclear Information System (INIS)

    Schmunk, R.E.; Miller, L.G.; Becker, H.

    1983-01-01

    Fusion-reactor coils, located in areas where they will be only partially shielded, must be fabricated from materials which are as resistant to radiation as possible. They will probably incorporate resistive conductors with either water or cryogenic cooling. Inorganic insulators have been recommended for these situations, but the possibility exists that some organic insulators may be usuable as well. Results were previously reported for irradiation and testing of three glass reinforced epoxies: G-7, G-10, and G-11. Thin disks of these materials, nominally 0.5 mm thick by 11.1 mm diameter, were tested in compressive fatigue, a configuration and loading which represents reasonably well the magnet environment. In that work G-10 was shown to withstand repeated loading to moderately high stress levels without failure, and the material survived better at liquid nitrogen temperature than at room temperature

  8. Development of radiation resistant PEEK insulation cable

    International Nuclear Information System (INIS)

    Mio, Keigo; Ogiwara, Norio; Hikichi, Yusuke; Furukori, Hisayoshi; Arai, Hideyuki; Nishizawa, Daiji; Nishidono, Toshiro

    2009-04-01

    Material characterization and development has been carried out for cable insulation suitable for use in the J-PARC 3-GeV RCS radiation environment. In spite of its high cost, PEEK (polyether-ether-ketone) has emerged as the leading candidate satisfying requirements of being non-halogen based, highly incombustible and with radiation resistant at least 10 MGy, along with the usual mechanical characteristics such as good elongation at break, which are needed in a cable insulation. Gamma-ray irradiation tests have been done in order to study radiation resistance of PEEK cable. Further, mechanical, electrical and fire retardant characteristics of a complete cable such as would be used at the J-PARC RCS were investigated. As a result, PEEK cables were shown to be not degraded by radiation up to at least 10 MGy, and thus could be expected to operate stably under the 3-GeV RCS radiation environment. (author)

  9. Correlations in hydrothermal properties of building insulation

    International Nuclear Information System (INIS)

    Antonyová, A

    2013-01-01

    The contribution comprises analysis that is based on scientific work as a part of participation on the international research project carried out at the University of Prešov in Prešov and Vienna University of Technology entitled 'Detection and Management of Risk Processes in Building Insulation' and numbered SRDA SK-AT-0008-10. Statistical approach with correlations among humidity, time and temperature values in the space between the wall and building insulation uses the set of data obtained during the measurement series as testing using a new technology with equipment that does not influence the environment properties in the space. Therefore such real mapping can bring a real picture of possible condensation as a risk process in the building envelope.

  10. Edge forward mechanical protection for porcelain insulators

    Energy Technology Data Exchange (ETDEWEB)

    deCasseres, D.K.

    1987-12-01

    Vandal damage to exposed outdoor insulators of all types has become an increasing problem. Porcelain is susceptible to impact fracture, and Area Boards have frequently found it necessary to protect expensive and often highly vulnerable terminating assemblies from the unwelcome attention of hooligans. Various means of physical protection can be used, but many of these are highly demanding in terms of maintenance. This article discusses the 'state of the art' in insulator protection, and describes the design and development of a new concept in the field-the Shed Protector-a number of which are now installed on 132kV sealing ends throughout the Electricity Supply Industry.

  11. Joint Services Electronics Program.

    Science.gov (United States)

    1983-04-01

    study of controlled source audio magneto -telluric (CSAMT) surveys is in progres3. It is the logical continuation of the previous scattering problem in...heating is the insertion of an insulated antenna into a tumor to produce local hyper- thermia in conjunction with radiation therapy . This application

  12. Nanoantenna couplers for metal-insulator-metal waveguide interconnects

    Science.gov (United States)

    Onbasli, M. Cengiz; Okyay, Ali K.

    2010-08-01

    State-of-the-art copper interconnects suffer from increasing spatial power dissipation due to chip downscaling and RC delays reducing operation bandwidth. Wide bandwidth, minimized Ohmic loss, deep sub-wavelength confinement and high integration density are key features that make metal-insulator-metal waveguides (MIM) utilizing plasmonic modes attractive for applications in on-chip optical signal processing. Size-mismatch between two fundamental components (micron-size fibers and a few hundred nanometers wide waveguides) demands compact coupling methods for implementation of large scale on-chip optoelectronic device integration. Existing solutions use waveguide tapering, which requires more than 4λ-long taper distances. We demonstrate that nanoantennas can be integrated with MIM for enhancing coupling into MIM plasmonic modes. Two-dimensional finite-difference time domain simulations of antennawaveguide structures for TE and TM incident plane waves ranging from λ = 1300 to 1600 nm were done. The same MIM (100-nm-wide Ag/100-nm-wide SiO2/100-nm-wide Ag) was used for each case, while antenna dimensions were systematically varied. For nanoantennas disconnected from the MIM; field is strongly confined inside MIM-antenna gap region due to Fabry-Perot resonances. Major fraction of incident energy was not transferred into plasmonic modes. When the nanoantennas are connected to the MIM, stronger coupling is observed and E-field intensity at outer end of core is enhanced more than 70 times.

  13. Excavationless Exterior Foundation Insulation Exploratory Study

    Energy Technology Data Exchange (ETDEWEB)

    Mosiman, G.; Wagner, R.; Schirber, T.

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  14. Organic insulator studies at Los Alamos

    International Nuclear Information System (INIS)

    Parkin, D.M.; Clinard, F.W.

    1981-01-01

    The effects of radiation on the structural and electrical properties of organic insulators to be used in superconducting magnets in fusion devices has been identified as a critical materials problem. These materials will be exposed to both γ-ray and neutron radiation. LANL has been asked by the OFE Materials Branch to look at the relationship between the effects of γ-ray and neutron radiation effects. Some thoughts on planning the program are outlined

  15. D.B.S. in disordered insulators

    International Nuclear Information System (INIS)

    Bunch, J.M.

    1976-01-01

    These studies were undertaken in order to determine insulator properties for the CTR program. Most of the d.b.s. studies so far have been with various forms of Al 2 O 3 . Some work using fission neutrons and 15-MeV protons along with some high-energy heavy ions is briefly described. Attempts to measure d.b.s. and other electrical properties are mentioned

  16. Electronic correlations in insulators, metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael Andreas

    2010-12-03

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  17. Spectral correlations in Anderson insulating wires

    Science.gov (United States)

    Marinho, M.; Micklitz, T.

    2018-01-01

    We calculate the spectral level-level correlation function of Anderson insulating wires for all three Wigner-Dyson classes. A measurement of its Fourier transform, the spectral form factor, is within reach of state-of-the-art cold atom quantum quench experiments, and we find good agreement with recent numerical simulations of the latter. Our derivation builds on a representation of the level-level correlation function in terms of a local generating function which may prove useful in other contexts.

  18. Building ceramics with improved thermal insulation parameters

    Directory of Open Access Journals (Sweden)

    Rzepa Karol

    2016-01-01

    Full Text Available One of the most important performance characteristics of masonry units is their high thermal insulation. There are many different ways to improve this parameter, however the most popular methods in case of ceramic masonry units are: addition of pore-creating raw materials and application of proper hole pattern. This study was an attempt to improve thermal insulation of ceramics by applying thermal insulation additives. Perlite dust created as a subgrain from expansion of perlite rock was used. Perlite subgrain is not very popular among consumers, that’s why it’s subjected to granulation to obtain coarse grain. The authors presented concept of direct application of perlite dust for the production of building ceramics with improved thermal insulation. Fineness of this additive is asset for molding of ceramic materials from plastic masses. Based on the results it was found that about 70% perlite by volume can be added to obtain material with a coefficient of heat conductivity of 0,37 W/mK. Higher content of this additive in ceramic mass causes deterioration of its rheological properties. Mass loses its plasticity, it tears up and formed green bodies are susceptible to deformation. During sintering perlite takes an active part in compaction process. Higher sintering dynamics is caused by: high content of alkali oxides in perlite and glass nature of perlite. Alkali oxides generate creation of liquid phase which intensifies mass compaction processes. Active role of perlite in sintering process causes good connection of its grains with clay groundwork which is important factor for mechanical parameters of ceramic materials. It was also noted that addition of perlite above 40% by volume of mass effectively neutralized negative effect of efflorescence in ceramic materials.

  19. NDE of ceramic insulator blanks by radiography

    International Nuclear Information System (INIS)

    Sarvanan, S.; Venkatraman, B.; Jayakumar, T.; Baldev Raj

    1996-01-01

    The production of ceramic insulators in electrical industry involves a number of steps, one of which is the green blank. The defects such as voids and crack can be present in the extruded green blank. One of the best non-destructive evaluation (NDE) technique radiography. This paper deals with the development of methodology based on theoretical modeling for the examination of ceramics by high sensitivity radiography. (author)

  20. Sound insulation design of modular construction housing

    OpenAIRE

    Yates, D. J.; Hughes, Lawrence; Campbell, A.

    2007-01-01

    This paper provides an insight into the acoustic issues of modular housing using the Verbus System of construction. The paper briefly summarises the history of the development of Verbus modular housing and the acoustic design considerations of the process. Results are presented from two sound insulation tests conducted during the course of the project. The results are discussed in terms of compliance with Approved Document E1 and increased performance standards such as EcoHomes2.

  1. Thermic insulation in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Nicolaon, G. (Ambassade de France a New York (USA)); Atlas, O. (Illinois Institute of Technology, Chicago, (USA))

    1984-01-30

    At present, thermic insulation accounts for 13% of the savings which have been made and this percentage should increase substantially in the future. The ideal insulation material must have low thermic conductivity, but also be light, have a low dilatation coefficient, good mechanical resistance and be fireproof and non-toxic. Rock wool and above all glass wool have the major portion in the insulation market with about 75% of the total. The prospects for an increase in sales are average: 6 to 7% per year until 1990 with a stabilization or a decrease after this date. Production is concentrated in the hands of about ten producers. The insulation with a cellulose base -with the addition of a combustion inhibitor, usually borax- represent about 15% of the market. Manufacturers are numerous and the production units are small. Any serious evaluation of the future of this product is difficult to make. However, it should be noted that combustion inhibition is one of the main factors of success of this product and constitutes a relatively active field of research. Perlite and vermiculite have a marginal part of the market which is concentrated in the hands of a few dozen producers. Their future seems promising and their production should double between now and the end of the century. There is also the field of plastics which has to be considered and notably polystyrene, polyurethanes and polyisocyanates. These can be injected and moulded in situ. To the extent that toxicity studies can definitively conclude that they are not harmful (urea-formol resins have just been prohibited), their future is brillant and their growth rate could reach about 200% per year. The big chemical and pharmaceutical companies are interested in these products and their portion of the market can rapidly go beyond their present 6 to 8%.

  2. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  3. Phase Separation in Doped Mott Insulators

    Directory of Open Access Journals (Sweden)

    Chuck-Hou Yee

    2015-04-01

    Full Text Available Motivated by the commonplace observation of Mott insulators away from integer filling, we construct a simple thermodynamic argument for phase separation in first-order doping-driven Mott transitions. We show how to compute the critical dopings required to drive the Mott transition using electronic structure calculations for the titanate family of perovskites, finding good agreement with experiment. The theory predicts that the transition is percolative and should exhibit Coulomb frustration.

  4. Coherence and correlations in a Mott insulator

    International Nuclear Information System (INIS)

    Gerbier, F.; Widera, A.; Foelling, S.; Mandel, O.; Gericke, T.; Bloch, I.

    2005-01-01

    The observation of the super fluid to Mott insulator transition has triggered an intense interest in studying ultracold quantum gases in optical lattices. Such a transition is commonly associated with the disappearance of the interference pattern observed when releasing a coherent (i.e. Bose condensed) ensemble from the lattice. In this talk, I will show that even in the insulating phase, the visibility of this interference pattern remains finite. Our results show that although long-range order is absent, short-range coherence still persists in a rather broad range, and that this can be identified as a characteristic feature of the system for large, but finite lattice depths. For even deeper lattices, the visibility is close to zero, and the interference pattern unobservable. I will explain that information is still present in such featureless images, and can be extracted by studying the density-density correlation function of the expanded cloud, as proposed theoretically. A sharp diffraction-like pattern observed in the correlations reveals the underlying lattice structure, and can be understood by generalizing the well-known Hanbury-Brown and Twiss effect to many bosonic sources '' emitting '' from each lattice site. This new detection method allows in principle the detection of spin ordering in a multi-component Mott insulator. As a first step in this direction, we have recently observed spin dynamics in a Mott insulator, where a spin-dependent collisional coupling induces strongly under damped Rabi oscillations between two-particle states with the same total magnetization. I will briefly report on these results. (author)

  5. Fabricate-On-Demand Vacuum Insulating Glazings

    Energy Technology Data Exchange (ETDEWEB)

    McCamy, James W. [PPG Industries, Inc., Pittsburgh, PA (United States)

    2017-09-19

    PPG proposed to design a fabricate-on-demand manufacturing process to overcome the cost and supply chain issues preventing widespread adoption of vacuum insulated glazing (VIG) units. To do so, we focused on improving three areas of VIG manufacturing that drive high costs and limit the ability for smaller manufacturers to enter the market: edge sealing, pillar design/placement, and evacuating the VIG.

  6. Electronic correlations in insulators, metals and superconductors

    International Nuclear Information System (INIS)

    Sentef, Michael Andreas

    2010-01-01

    In this thesis dynamical mean-field methods in combination with a continuous-time quantum Monte Carlo impurity solver are used to study selected open problems of condensed matter theory. These problems comprise the effect of correlations and their quantification in covalent band insulators, non-local correlation effects and their intriguing consequences in frustrated two-dimensional systems, and a phenomenological approach to investigate temperature-dependent transport in graphene in the presence of disorder. (orig.)

  7. Plasma immersion ion implantation into insulating materials

    International Nuclear Information System (INIS)

    Tian Xiubo; Yang Shiqin

    2006-01-01

    Plasma immersion ion implantation (PIII) is an effective surface modification tool. During PIII processes, the objects to be treated are immersed in plasmas and then biased to negative potential. Consequently the plasma sheath forms and ion implantation may be performed. The pre-requirement of plasma implantation is that the object is conductive. So it seems difficult to treat the insulating materials. The paper focuses on the possibilities of plasma implantation into insulting materials and presents some examples. (authors)

  8. Metallic insulation transport and strainer clogging tests

    International Nuclear Information System (INIS)

    Hyvaerinen, J.; Hongisto, O.

    1994-06-01

    Experiments to probe the transport and clogging properties of metallic (metal reflective) insulation have been carried out in order to provide data for evaluation of their influence on the emergency core cooling and containment spray systems of the Finnish boiling water reactors in the event of a design basis accident. The specific metallic insulation tested was DARMET, provided by Darchem Engineering Ltd. The inner foils of Darmet are dimped. Available literature on the metallic insulation performance under design basis accident conditions has been reviewed. On the basis of the review a parametric approach has been chosen for the transport and clogging experiments. This approach involves testing a wide size range of various shapes of foil pieces. Five sets of experiments have been carried out. The first three sets investigate transport properties of the foil pieces, starting from sedimentation in stagnant waste pool and proceeding to transport in horizontal and vertically circulating flows. The clogging experiments have been addressed the differential pressures obtained due to accumulation of both pure and metallic and a mixture of metallic and fibrous (mineral wool) depris. (4 refs., 24 figs., 2 tabs.)

  9. Fabrication of insulator nanocapillaries from diatoms

    International Nuclear Information System (INIS)

    Bereczky, R.J.; Tokesi, K.

    2006-01-01

    Complete text of publication follows. Diatoms are unicellular microscopic organisms with silicon-dioxide based skeleton enveloped with an organic material, which composes essentially polysaccharides and proteins (see Fig. 1a.). As it was shown, the valva of the diatoms build up almost from clean silicondioxide [1]. Therefore, removing the organic compounds from the diatom, we can have in our hand an ideal, about 100 μ m-sized, and almost cylindrical shaped insulating nanostructure. There are various techniques available to disembarrass the diatom from its organic compounds. We used the so called hydrogen peroxide method. The advantageous properties of this method are the followings: a) this is one of the fastest procedures among the possible methods, b) do not require special equipment, c) cheap, and last but not least it is less harmful for health compared to other methods. This procedure can be an alternative way of the fabrication of insulator nanocapillaries. In this case the preparation of the nanocapillaries is simple and quick. Moreover, we do not need to invest expensive special techniques, (like micromachining-, electrochemical etching technique, moulding process etc) as it was necessary for the case of previously developed method producing insulator nanocapillaries [2,3]. Fig. 1b and Fig. 1c. show the scanning electron micrograph of the skeleton of the diatoms. The size of the cylindrical holes are roughly 200 nm (see Fig. 1c). (author)

  10. Humidity effects on wire insulation breakdown strength.

    Energy Technology Data Exchange (ETDEWEB)

    Appelhans, Leah

    2013-08-01

    Methods for the testing of the dielectric breakdown strength of insulation on metal wires under variable humidity conditions were developed. Two methods, an ASTM method and the twisted pair method, were compared to determine if the twisted pair method could be used for determination of breakdown strength under variable humidity conditions. It was concluded that, although there were small differences in outcomes between the two testing methods, the non-standard method (twisted pair) would be appropriate to use for further testing of the effects of humidity on breakdown performance. The dielectric breakdown strength of 34G copper wire insulated with double layer Poly-Thermaleze/Polyamide-imide insulation was measured using the twisted pair method under a variety of relative humidity (RH) conditions and exposure times. Humidity at 50% RH and below was not found to affect the dielectric breakdown strength. At 80% RH the dielectric breakdown strength was significantly diminished. No effect for exposure time up to 140 hours was observed at 50 or 80%RH.

  11. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  12. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  13. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  14. Novel load responsive multilayer insulation with high in-atmosphere and on-orbit thermal performance

    Science.gov (United States)

    Dye, S.; Kopelove, A.; Mills, G. L.

    2012-04-01

    Aerospace cryogenic systems require lightweight, high performance thermal insulation to preserve cryopropellants both pre-launch and on-orbit. Current technologies have difficulty meeting all requirements, and advances in insulation would benefit cryogenic upper stage launch vehicles, LH2 fueled aircraft and ground vehicles, and provide capabilities for sub-cooled cryogens for space-borne instruments and orbital fuel depots. This paper reports the further development of load responsive multilayer insulation (LRMLI) that has a lightweight integrated vacuum shell and provides high thermal performance both in-air and on-orbit. LRMLI is being developed by Quest Product Development and Ball Aerospace under NASA contract, with prototypes designed, built, installed and successfully tested. A 3-layer LRMLI blanket (0.63 cm thick, 77 K cold, 295 K hot) had a measured heat leak of 6.6 W/m2 in vacuum and 40.6 W/m2 in air at one atmosphere. In-air LRMLI has an 18× advantage over Spray On Foam Insulation (SOFI) in heat leak per thickness and a 16× advantage over aerogel. On-orbit LRMLI has a 78× lower heat leak than SOFI per thickness and 6× lower heat leak than aerogel. The Phase II development of LRMLI is reported with a modular, flexible, thin vacuum shell and improved on-orbit performance. Structural and thermal analysis and testing results are presented. LRMLI mass and thermal performance is compared to SOFI, aerogel and MLI over SOFI.

  15. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside.

  16. Numerical Simulation of Natural Convection in a Vertically Installed Wet Thermal Insulator

    International Nuclear Information System (INIS)

    Bae, Youngmin; Kim, Seong H.; Seo, Jae K.; Kim, Young I.

    2016-01-01

    Natural convection in an enclosure with disconnected vertical partitions inside is thought of as major concerns in the design of thermal insulators. For example, in a system-integrated modular advanced reactor (SMART), vertical partitions are disposed inside the so-called wet thermal insulator with gaps at the top and bottom ends to compensate for thermal expansion . In such a case, buoyancy driven flow circulates throughout the enclosure, i.e., fluid rises up in the hot-side layers, passing through the gap at the top, moving downward in the vertical channels near the cold side, and returning to the hot-side layers via the gap at the bottom. Compared with the case of connected partitions, this often causes an undesirable increase in the circulation flow rate and heat transfer within the enclosure, thus deteriorating the thermal insulation performance. In this study, laminar natural convection in a tall rectangular enclosure with disconnected vertical partitions inside is investigated numerically. The effects of main governing parameters such as the modified Rayleigh number, enclosure height to width ratio, and number of fluid layers are scrutinized along with a discussion of the heat transfer regimes. This study investigates the laminar natural convection in a tall rectangular enclosure having isothermal side walls of different temperatures and insulated top and bottom walls with disconnected vertical partitions inside

  17. Reentrant Metal-Insulator Transitions in Silicon -

    Science.gov (United States)

    Campbell, John William M.

    This thesis describes a study of reentrant metal -insulator transitions observed in the inversion layer of extremely high mobility Si-MOSFETs. Magneto-transport measurements were carried out in the temperature range 20mK-4.2 K in a ^3He/^4 He dilution refrigerator which was surrounded by a 15 Tesla superconducting magnet. Below a melting temperature (T_{M}~500 mK) and a critical electron density (n_{s }~9times10^{10} cm^{-2}), the Shubnikov -de Haas oscillations in the diagonal resistivity enormous maximum values at the half filled Landau levels while maintaining deep minima corresponding to the quantum Hall effect at filled Landau levels. At even lower electron densities the insulating regions began to spread and eventually a metal-insulator transition could be induced at zero magnetic field. The measurement of extremely large resistances in the milliKelvin temperature range required the use of very low currents (typically in the 10^ {-12} A range) and in certain measurements minimizing the noise was also a consideration. The improvements achieved in these areas through the use of shielding, optical decouplers and battery operated instruments are described. The transport signatures of the insulating state are considered in terms of two basic mechanisms: single particle localization with transport by variable range hopping and the formation of a collective state such as a pinned Wigner crystal or electron solid with transport through the motion of bound dislocation pairs. The experimental data is best described by the latter model. Thus the two dimensional electron system in these high mobility Si-MOSFETs provides the first and only experimental demonstration to date of the formation of an electron solid at zero and low magnetic fields in the quantum limit where the Coulomb interaction energy dominates over the zero point oscillation energy. The role of disorder in favouring either single particle localization or the formation of a Wigner crystal is explored by

  18. Performance of antisolar insulated roof system

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Irshad [Alternative Energy Development Board (AEDB), House No. 1, Main Nazimuddin Road, F-10/4, Islamabad (Pakistan)

    2010-01-15

    Rooms with concrete slab roofs directly exposed to the sun become unbearably hot during summer and very cold during winter. Huge amounts of energy are required to keep them comfortable. Application of thermal insulation on roofs significantly reduces energy required for heating and cooling. The effectiveness of roof insulations may be further enhanced if a layer of antisolar coating is applied on top of the insulation. The antisolar coating reflects most of the incident sunlight and prevents the roof from heating up. This reduces the daily cycles of thermal expansion and contraction which cause cracks in the roof slabs for the rainwater to leak through. The antisolar coating prolongs the useful life of the building structure as well as the life of the insulation that evaporates with heat. The method of application of the antisolar coating has been specially developed to eliminate thermal bridges formed between the edges of the tiles. This report presents the results of an experiment conducted at the Attock Refinery Limited (ARL) Rawalpindi to assess the performance of the antisolar insulated roof system. Record of the room temperature before and after the installation of the system shows a significant reduction in the indoor temperature. The room occupants, who used to experience a very high thermal stress after 10:30 am in spite of the 1.5-ton air conditioner operating in the room, felt much relieved after the installation. They had to turn back the thermostat of the air conditioner and even had to switch it off occasionally. A detailed thermal analysis of the room shows that cost of an antisolar system is paid back in less than a year in the form of savings of energy required for air-conditioning in summer and for gas heating in winter. In addition, the system prevents the addition of 150 kg per year of green house gases to the atmosphere for each square meter of the area covered by the system. It also provides a quieter environment by reducing the operational

  19. Joint ventures and concentrations in oil market

    International Nuclear Information System (INIS)

    Tabarelli, D.

    1996-01-01

    Many are the joint ventures taken during last year by the oil companies as a move towards the ever existing rules of the oil market: integration, economies of scale and reduction of competitive market uncertainty. This article discusses some of the most interesting points of the recent events and the initiatives in the Italian market

  20. Joint Attention Enhances Visual Working Memory

    Science.gov (United States)

    Gregory, Samantha E. A.; Jackson, Margaret C.

    2017-01-01

    Joint attention--the mutual focus of 2 individuals on an item--speeds detection and discrimination of target information. However, what happens to that information beyond the initial perceptual episode? To fully comprehend and engage with our immediate environment also requires working memory (WM), which integrates information from second to…