WorldWideScience

Sample records for integrated in-situ process

  1. Development of the integrated in situ Lasagna process

    International Nuclear Information System (INIS)

    Ho, S.; Athmer, C.; Sheridan, P.

    1995-01-01

    Contamination in deep, low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in uniform delivery of treatment reagents have rendered existing in-situ methods such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites

  2. Evaluation of integrated biotreatment processes for in situ application

    International Nuclear Information System (INIS)

    Maher, A.; Lamptey, J.C.; Kennel, N.D.

    1994-01-01

    Petroleum hydrocarbon contamination of soils and groundwater associated with Underground Storage Tanks (UST) and aboveground fuel spills has become the focus of many bioremediation efforts. Two case studies in the application of in situ bioremediation to degrade petroleum hydrocarbons are presented. Site A has a history of fuel-handling practices associated with bulk petroleum storage and railroad yard activities. The majority of the hydrocarbon contamination appeared to be the result of past surface spills. Pre-treatment investigation indicated the presence of both volatile and semi- or non-volatile hydrocarbons in the soil. About 3,000 cubic yards of highly contaminated soils was excavated and is being treated in 2, lined, closed loop treatment cells. Groundwater is treated in situ with addition of nutritional cofactors and oxygen introduced through 3 infiltration galleries that are placed 6 feet deep and are each 100 feet in length. Groundwater is also recovered from 3 extraction wells placed 80 to 100 feet from each other, and subsequently treated in a bioreactor. Site B has a history of leaking underground gasoline storage tanks and spills from aboveground diesel fuel associated with county maintenance shed activities. One hundred cubic yards of soil contaminated with diesel components were excavated and treated aboveground in a lined cell. Gasoline contaminated groundwater and soil is being treated in situ by the addition of nutritional cofactors and oxygen through an infiltration gallery 4 feet below surface. The groundwater is recovered from an extraction gallery 92.5 feet down gradient of the infiltration gallery. Nutritional cofactors are introduced on a daily basis with on-site controls. Hydrocarbon reduction, up to 76%, was observed within 3 months of treatment startup in monitoring wells

  3. An integrated numerical and physical modeling system for an enhanced in situ bioremediation process

    International Nuclear Information System (INIS)

    Huang, Y.F.; Huang, G.H.; Wang, G.Q.; Lin, Q.G.; Chakma, A.

    2006-01-01

    Groundwater contamination due to releases of petroleum products is a major environmental concern in many urban districts and industrial zones. Over the past years, a few studies were undertaken to address in situ bioremediation processes coupled with contaminant transport in two- or three-dimensional domains. However, they were concentrated on natural attenuation processes for petroleum contaminants or enhanced in situ bioremediation processes in laboratory columns. In this study, an integrated numerical and physical modeling system is developed for simulating an enhanced in situ biodegradation (EISB) process coupled with three-dimensional multiphase multicomponent flow and transport simulation in a multi-dimensional pilot-scale physical model. The designed pilot-scale physical model is effective in tackling natural attenuation and EISB processes for site remediation. The simulation results demonstrate that the developed system is effective in modeling the EISB process, and can thus be used for investigating the effects of various uncertainties. - An integrated modeling system was developed to enhance in situ bioremediation processes

  4. IPCS: An integrated process control system for enhanced in-situ bioremediation

    International Nuclear Information System (INIS)

    Huang, Y.F.; Wang, G.Q.; Huang, G.H.; Xiao, H.N.; Chakma, A.

    2008-01-01

    To date, there has been little or no research related to process control of subsurface remediation systems. In this study, a framework to develop an integrated process control system for improving remediation efficiencies and reducing operating costs was proposed based on physical and numerical models, stepwise cluster analysis, non-linear optimization and artificial neural networks. Process control for enhanced in-situ bioremediation was accomplished through incorporating the developed forecasters and optimizers with methods of genetic algorithm and neural networks modeling. Application of the proposed approach to a bioremediation process in a pilot-scale system indicated that it was effective in dynamic optimization and real-time process control of the sophisticated bioremediation systems. - A framework of process control system was developed to improve in-situ bioremediation efficiencies and reducing operating costs

  5. Integrating In-Situ and Ex-Situ Data Management Processes for Biodiversity Conservation

    Directory of Open Access Journals (Sweden)

    Karin R. Schwartz

    2017-10-01

    Full Text Available There is an increasing need for a “one plan approach” for conservation strategies that integrate in-situ and ex-situ management processes. Zoological institutions contribute directly to threatened species conservation through paradigms, such as reintroduction, head-starting, supplementation, or rescue/rehabilitation/release. This in-situ/ex-situ integration necessitates collaboration at all levels of conservation action including planning, implementation, monitoring and assessment to drive adaptive management processes. Each component is dependent on the availability and accuracy of data for evidence to facilitate evaluation and adaptive management processes. The Zoological Information Management System (ZIMS, managed by Species360, is a centralized web-based information system used in zoological institutions worldwide to pool life history, behavior and health data and facilitate animal husbandry, health, and breeding management processes. Currently used for few integrated conservation programs, ZIMS is an innovative tool that offers a new opportunity to link data management processes for animals that spend a part of their lives under human care and part in their natural environment and has great potential for use in managed wild populations.

  6. Multiphoton microscopy for the in-situ investigation of cellular processes and integrity in cryopreservation.

    Science.gov (United States)

    Doerr, Daniel; Stark, Martin; Ehrhart, Friederike; Zimmermann, Heiko; Stracke, Frank

    2009-08-01

    In this study we demonstrate a new noninvasive imaging method to monitor freezing processes in biological samples and to investigate life in the frozen state. It combines a laser scanning microscope with a computer-controlled cryostage. Nearinfrared (NIR) femtosecond laser pulses evoke the fluorescence of endogenous fluorophores and fluorescent labels due to multiphoton absorption.The inherent optical nonlinearity of multiphoton absorption allows 3D fluorescence imaging for optical tomography of frozen biological material in-situ. As an example for functional imaging we use fluorescence lifetime imaging (FLIM) to create images with chemical and physical contrast.

  7. In Situ Remediation Integrated Program: Technology summary

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed.

  8. In Situ Remediation Integrated Program: Technology summary

    International Nuclear Information System (INIS)

    1994-02-01

    The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces, in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP intends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years. ISR IP is an applied research and development program broadly addressing known DOE environmental restoration needs. Analysis of a sample of 334 representative sites by the Office of Environmental Restoration has shown how many sites are amenable to in situ remediation: containment--243 sites; manipulation--244 sites; bioremediation--154 sites; and physical/chemical methods--236 sites. This needs assessment is focused on near-term restoration problems (FY93--FY99). Many other remediations will be required in the next century. The major focus of the ISR EP is on the long term development of permanent solutions to these problems. Current needs for interim actions to protect human health and the environment are also being addressed

  9. DOE In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    Yow, J.L. Jr.

    1993-01-01

    The In Situ Remediation Integrated Program (ISRP) supports and manages a balanced portfolio of applied research and development activities in support of DOE environmental restoration and waste management needs. ISRP technologies are being developed in four areas: containment, chemical and physical treatment, in situ bioremediation, and in situ manipulation (including electrokinetics). the focus of containment is to provide mechanisms to stop contaminant migration through the subsurface. In situ bioremediation and chemical and physical treatment both aim to destroy or eliminate contaminants in groundwater and soils. In situ manipulation (ISM) provides mechanisms to access contaminants or introduce treatment agents into the soil, and includes other technologies necessary to support the implementation of ISR methods. Descriptions of each major program area are provided to set the technical context of the ISM subprogram. Typical ISM needs for major areas of in situ remediation research and development are identified

  10. Integration of an In Situ MALDI-Based High-Throughput Screening Process: A Case Study with Receptor Tyrosine Kinase c-MET.

    Science.gov (United States)

    Beeman, Katrin; Baumgärtner, Jens; Laubenheimer, Manuel; Hergesell, Karlheinz; Hoffmann, Martin; Pehl, Ulrich; Fischer, Frank; Pieck, Jan-Carsten

    2017-12-01

    Mass spectrometry (MS) is known for its label-free detection of substrates and products from a variety of enzyme reactions. Recent hardware improvements have increased interest in the use of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) MS for high-throughput drug discovery. Despite interest in this technology, several challenges remain and must be overcome before MALDI-MS can be integrated as an automated "in-line reader" for high-throughput drug discovery. Two such hurdles include in situ sample processing and deposition, as well as integration of MALDI-MS for enzymatic screening assays that usually contain high levels of MS-incompatible components. Here we adapt our c-MET kinase assay to optimize for MALDI-MS compatibility and test its feasibility for compound screening. The pros and cons of the Echo (Labcyte) as a transfer system for in situ MALDI-MS sample preparation are discussed. We demonstrate that this method generates robust data in a 1536-grid format. We use the MALDI-MS to directly measure the ratio of c-MET substrate and phosphorylated product to acquire IC50 curves and demonstrate that the pharmacology is unaffected. The resulting IC50 values correlate well between the common label-based capillary electrophoresis and the label-free MALDI-MS detection method. We predict that label-free MALDI-MS-based high-throughput screening will become increasingly important and more widely used for drug discovery.

  11. Master of Puppets: Cooperative Multitasking for In Situ Processing

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Dmitriy [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lukic, Zarija [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-01

    Modern scientific and engineering simulations track the time evolution of billions of elements. For such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient to analyze the simulation data while it is still in memory. Here, we present a novel design for running multiple codes in situ: using coroutines and position-independent executables we enable cooperative multitasking between simulation and analysis, allowing the same executables to post-process simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson, an implementation of our design, and illustrate its versatility by tackling analysis tasks with different computational requirements. This design differs significantly from the existing frameworks and offers an efficient and robust approach to integrating multiple codes on modern supercomputers. The techniques we present can also be integrated into other in situ frameworks.

  12. EM-54 Technology Development In Situ Remediation Integrated Program

    International Nuclear Information System (INIS)

    1993-08-01

    The Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of Environmental Restoration and Waste Management (EM) in November 1989. EM manages remediation of all DOE sites as well as wastes from current operations. The goal of the EM program is to minimize risks to human health, safety and the environment, and to bring all DOE sites into compliance with Federal, state, and local regulations by 2019. EM-50 is charged with developing new technologies that are safer, more effective and less expensive than current methods. The In Situ Remediation Integrated Program (the subject of this report) is part of EM-541, the Environmental Restoration Research and Development Division of EM-54. The In Situ Remediation Integrated Program (ISR IP) was instituted out of recognition that in situ remediation could fulfill three important criteria: Significant cost reduction of cleanup by eliminating or minimizing excavation, transportation, and disposal of wastes; reduced health impacts on workers and the public by minimizing exposure to wastes during excavation and processing; and remediation of inaccessible sites, including: deep subsurfaces; in, under, and around buildings. Buried waste, contaminated soils and groundwater, and containerized wastes are all candidates for in situ remediation. Contaminants include radioactive wastes, volatile and non-volatile organics, heavy metals, nitrates, and explosive materials. The ISR IP tends to facilitate development of in situ remediation technologies for hazardous, radioactive, and mixed wastes in soils, groundwater, and storage tanks. Near-term focus is on containment of the wastes, with treatment receiving greater effort in future years

  13. IN SITU FIELD TESTING OF PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    J.S.Y. YANG

    2004-11-08

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes REV 02. The scientific analysis of data for inputs to model calibration and validation as documented in REV 02 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what

  14. IN SITU FIELD TESTING OF PROCESSES

    International Nuclear Information System (INIS)

    YANG, J.S.Y.

    2004-01-01

    The purpose of this scientific analysis report is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts and surface-based boreholes through unsaturated zone (UZ) tuff rock units. In situ testing, monitoring, and associated laboratory studies are conducted to directly assess and evaluate the waste emplacement environment and the natural barriers to radionuclide transport at Yucca Mountain. This scientific analysis report supports and provides data to UZ flow and transport model reports, which in turn contribute to the Total System Performance Assessment (TSPA) of Yucca Mountain, an important document for the license application (LA). The objectives of ambient field-testing activities are described in Section 1.1. This report is the third revision (REV 03), which supercedes2. The scientific analysis of data for inputs to model calibration and validation as documented in2 were developed in accordance with the Technical Work Plan (TWP) ''Technical Work Plan for: Performance Assessment Unsaturated Zone'' (BSC 2004 [DIRS 167969]). This revision was developed in accordance with the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.4) for better integrated, consistent, transparent, traceable, and more complete documentation in this scientific analysis report and associated UZ flow and transport model reports. No additional testing or analyses were performed as part of this revision. The list of relevant acceptance criteria is provided by ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654]), Table 3-1. Additional deviations from the TWP regarding the features, events, and processes (FEPs) list are discussed in Section 1.3. Documentation in this report includes descriptions of how, and under what conditions, the tests were conducted. The descriptions and analyses

  15. In Situ Field Testing of Processes

    International Nuclear Information System (INIS)

    Wang, J.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR

  16. In Situ Field Testing of Processes

    Energy Technology Data Exchange (ETDEWEB)

    J. Wang

    2001-12-14

    The purpose of this Analysis/Model Report (AMR) is to update and document the data and subsequent analyses from ambient field-testing activities performed in underground drifts of the Yucca Mountain Site Characterization Project (YMP). This revision updates data and analyses presented in the initial issue of this AMR. This AMR was developed in accordance with the ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' and ''Technical Work Plan for UZ Flow, Transport, and Coupled Processes Process Model Report. These activities were performed to investigate in situ flow and transport processes. The evaluations provide the necessary framework to: (1) refine and confirm the conceptual model of matrix and fracture processes in the unsaturated zone (UZ) and (2) analyze the impact of excavation (including use of construction water and effect of ventilation) on the UZ flow and transport processes. This AMR is intended to support revisions to ''Conceptual and Numerical Models for UZ Flow and Transport'' and ''Unsaturated Zone Flow and Transport Model Process Model Report''. In general, the results discussed in this AMR are from studies conducted using a combination or a subset of the following three approaches: (1) air-injection tests, (2) liquid-release tests, and (3) moisture monitoring using in-drift sensors or in-borehole sensors, to evaluate the impact of excavation, ventilation, and construction-water usage on the surrounding rocks. The liquid-release tests and air-injection tests provide an evaluation of in situ fracture flow and the competing processes of matrix imbibition. Only the findings from testing and data not covered in the ''Seepage Calibration Model and Seepage Testing Data'' are analyzed in detail in the AMR.

  17. In situ vitrification: Process and products

    International Nuclear Information System (INIS)

    Kindle, C.; Koegler, S.

    1991-06-01

    In situ vitrification (ISV) is an electrically powered thermal treatment process that converts soil into a chemically inert and stable glass and crystalline product. It is similar in concept to bringing a simplified glass manufacturing process to a site and operating it in the ground, using the soil as a glass feed stock. Gaseous emissions are contained, scrubbed, and filtered. When the process is completed, the molten volume cools producing a block of glass and crystalline material that resembles natural obsidian commingled with crystalline phases. The product passes US Environmental Protection Agency (EPA) leach resistance tests, and it can be classified as nonhazardous from a chemical hazard perspective. ISV was developed by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) for application to contaminated soils. It is also being adapted for applications to buried waste, underground tanks, and liquid seepage sites. ISV's then-year development period has included tests on many different site conditions. As of January 1991 there have been 74 tests using PNL's ISV equipment; these tests have ranged from technology development tests using nonhazardous conditions to hazardous and radioactive tests. 2 refs., 6 figs., 7 tabs

  18. Development of an integrated in-situ remediation technology. Topical report for task No. 7 entitled: Development of degradation processes, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Brackin, M.J.; Heitkamp, M.A.; Ho, Sa V.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to law permeability soils present at many contaminated sites. The Lasagna technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The general concept of the technology is to use electrokinetics to move contaminants from the soils into open-quotes treatment zonesclose quotes where the contaminants can be removed from the water by either adsorption or degradation. The focus of technical task No. 7 was to optimize the conditions required for electro-osmotic movement of contaminants and microbial degradation in the treatment zones. This topical report summarizes the results of aerobic microbial research performed to evaluate the feasibility of incorporating the chemical-degrading organisms into biotreatment zones in laboratory-scale electro-osmosis units and to demonstrate the combination of electrokinetics and aerobic microbial degradation for the removal of contaminants from clay. Also included in this report are the results of investigating microbial movement during electro-osmosis and studies involving the optimization of the microbial support matrix in the biozone. The Stanford study was conducted in order to obtain a better understanding of rates of anaerobic reductive dehalogenation of TCE to ethylene and of factors affecting these rates in order to determine the potential for application of TCE biodegradation as part of the Lasagna technology

  19. In-situ observation of structure formation in polymer processing

    International Nuclear Information System (INIS)

    Murase, Hiroki

    2009-01-01

    In-situ X-ray scattering in polymer processing is a crucial method to elucidate the mechanism of structure formation in the process. Fiber spinning is one such process primarily imposing extensional deformation on polymeric melt at the spin-line during rapid cooling. In-situ small-angle X-ray scattering using synchrotron radiation on the spinning process allows direct observation of the transient structure developing in the process. (author)

  20. In situ remediation integrated program: Success through teamwork

    International Nuclear Information System (INIS)

    Peterson, M.E.

    1994-08-01

    The In Situ Remediation Integrated Program (ISR IP), managed under the US Department of Energy's (DOE) Office of Technology Development, focuses research and development efforts on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. As described here, specific ISR IP projects are advancing the application of in situ technologies to the demonstration point, providing developed technologies to customers within DOE. The ISR IP has also taken a lead role in assessing and supporting innovative technologies that may have application to DOE

  1. Development of an integrated, in-situ remediation technology. Topical report for task No. 6: lab-scale development of microbial degradation process, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Odom, J.M.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil, and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 6 summarizes the results of a study of the potential for stimulating microbial reductive dehalogenation as part of the integrated in situ treatment process at the field experiment test site at DOE's Gaseous Diffusion Plant in Paducah, Kentucky. A series of open-quotes microcosm bottle testsclose quotes were performed on samples of contaminated soil and groundwater taken from the Paducah site and spiked with trichloroethene (TCE). A number of bottles were set up, each spiked with a different carbon source in order to enhance the growth of different microbial subpopulations already present within the indigenous population in the soil. In addition, a series of bottle tests were completed with samples of the granular activated carbon (GAC) treatment zone material retrieved from the test site during the Paducah field experiment. In these tests, the GAC samples were used in place of the soil. Results of the soil-groundwater microcosms yielded a negative indication of the presence of dechlorinating bacteria at the site. However, charcoal (GAC) samples from one location in the test plot exhibited marked dechlorination with conversion of TCE to dichloroethene

  2. In Situ Remediation Integrated Program: FY 1994 program summary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials.

  3. In Situ Remediation Integrated Program: FY 1994 program summary

    International Nuclear Information System (INIS)

    1995-04-01

    The US Department of Energy (DOE) established the Office of Technology Development (EM-50) as an element of the Office of Environmental Management (EM) in November 1989. In an effort to focus resources and address priority needs, EM-50 introduced the concept of integrated programs (IPs) and integrated demonstrations (IDs). The In Situ Remediation Integrated Program (ISR IP) focuses research and development on the in-place treatment of contaminated environmental media, such as soil and groundwater, and the containment of contaminants to prevent the contaminants from spreading through the environment. Using in situ remediation technologies to clean up DOE sites minimizes adverse health effects on workers and the public by reducing contact exposure. The technologies also reduce cleanup costs by orders of magnitude. This report summarizes project work conducted in FY 1994 under the ISR IP in three major areas: treatment (bioremediation), treatment (physical/chemical), and containment technologies. Buried waste, contaminated soils and groundwater, and containerized waste are all candidates for in situ remediation. Contaminants include radioactive waste, volatile and nonvolatile organics, heavy metals, nitrates, and explosive materials

  4. In-situ biogas upgrading process: modeling and simulations aspects

    DEFF Research Database (Denmark)

    Lovato, Giovanna; Alvarado-Morales, Merlin; Kovalovszki, Adam

    2017-01-01

    Biogas upgrading processes by in-situ hydrogen (H2) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H2 injection into the liquid phase of...

  5. A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production.

    Science.gov (United States)

    Xue, Chuang; Liu, Fangfang; Xu, Mengmeng; Zhao, Jingbo; Chen, Lijie; Ren, Jiangang; Bai, Fengwu; Yang, Shang-Tian

    2016-01-01

    Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5 g/L acetone, 75.5 g/L butanol, 7.0 g/L ethanol vs. 7.9 g/L acetone, 16.2 g/L butanol, 1.4 g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34 g/L · h vs. 0.30 g/L · h) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6 g/L butanol (199.9 g/L ABE), which after phase separation formed an organic phase containing 610.8 g/L butanol (656.1 g/L ABE) and an aqueous phase containing 85.6 g/L butanol (129.7 g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7 g/L butanol (593.2 g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3 g/L butanol (622.9 g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. © 2015 Wiley Periodicals, Inc.

  6. Signal processing methods for in-situ creep specimen monitoring

    Science.gov (United States)

    Guers, Manton J.; Tittmann, Bernhard R.

    2018-04-01

    Previous work investigated using guided waves for monitoring creep deformation during accelerated life testing. The basic objective was to relate observed changes in the time-of-flight to changes in the environmental temperature and specimen gage length. The work presented in this paper investigated several signal processing strategies for possible application in the in-situ monitoring system. Signal processing methods for both group velocity (wave-packet envelope) and phase velocity (peak tracking) time-of-flight were considered. Although the Analytic Envelope found via the Hilbert transform is commonly applied for group velocity measurements, erratic behavior in the indicated time-of-flight was observed when this technique was applied to the in-situ data. The peak tracking strategies tested had generally linear trends, and tracking local minima in the raw waveform ultimately showed the most consistent results.

  7. Process for the in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Habib, E.T.; Vogt, T.C.

    1982-01-01

    Process for the in-situ leaching of uranium employing an alkaline lixiviant and an alkali metal or alkaline earth metal hypochlorite as an oxidizing agent. The use of the hypochlorite oxidant results in significantly higher uranium recoveries and leaching rates than those attained by the use of conventional oxidants. The invention is particularly suitable for use in subterranean deposits in which the uranium mineral is associated with carbonaceous material which retards access to the uranium by the lixiviant

  8. Scaling considerations for modeling the in situ vitrification process

    International Nuclear Information System (INIS)

    Langerman, M.A.; MacKinnon, R.J.

    1990-09-01

    Scaling relationships for modeling the in situ vitrification waste remediation process are documented based upon similarity considerations derived from fundamental principles. Requirements for maintaining temperature and electric potential field similarity between the model and the prototype are determined as well as requirements for maintaining similarity in off-gas generation rates. A scaling rationale for designing reduced-scale experiments is presented and the results are assessed numerically. 9 refs., 6 figs

  9. In-situ fabrication of flexible vertically integrated electronic circuits by inkjet printing

    International Nuclear Information System (INIS)

    Wang Zhuo; Wu Wenwen; Yang Qunbao; Li Yongxiang; Noh, Chang-Ho

    2009-01-01

    In this paper, a facile approach for fabricating flexible vertically integrated electronic circuits is demonstrated. A desktop inkjet printer was modified and employed to print silver precursor on a polymer-coated buffer substrates. In-situ reaction was taken place and a conducting line was formed without need of a high temperature treatment. Through this process, several layers of metal integrated circuits were deposited sequentially with polymer buffer layers sandwiched between each layer. Hence, vertically integrated electronic components of diodes, solar cells, flexible flat panel displays, and electrochromic devices can be built with this simple and low-cost technique.

  10. Monitoring dynamic electrochemical processes with in situ ptychography

    Science.gov (United States)

    Kourousias, George; Bozzini, Benedetto; Jones, Michael W. M.; Van Riessen, Grant A.; Dal Zilio, Simone; Billè, Fulvio; Kiskinova, Maya; Gianoncelli, Alessandra

    2018-03-01

    The present work reports novel soft X-ray Fresnel CDI ptychography results, demonstrating the potential of this method for dynamic in situ studies. Specifically, in situ ptychography experiments explored the electrochemical fabrication of Co-doped Mn-oxide/polypyrrole nanocomposites for sustainable and cost-effective fuel-cell air-electrodes. Oxygen-reduction catalysts based on Mn-oxides exhibit relatively high activity, but poor durability: doping with Co has been shown to improve both reduction rate and stability. In this study, we examine the chemical state distribution of the catalytically crucial Co dopant to elucidate details of the Co dopant incorporation into the Mn/polymer matrix. The measurements were performed using a custom-made three-electrode thin-layer microcell, developed at the TwinMic beamline of Elettra Synchrotron during a series of experiments that were continued at the SXRI beamline of the Australian Synchrotron. Our time-resolved ptychography-based investigation was carried out in situ after two representative growth steps, controlled by electrochemical bias. In addition to the observation of morphological changes, we retrieved the spectroscopic information, provided by multiple ptychographic energy scans across Co L3-edge, shedding light on the doping mechanism and demonstrating a general approach for the molecular-level investigation complex multimaterial electrodeposition processes.

  11. Chattanooga shale: uranium recovery by in situ processing

    International Nuclear Information System (INIS)

    Jackson, D.D.

    1977-01-01

    The increasing demand for uranium as reactor fuel requires the addition of sizable new domestic reserves. One of the largest potential sources of low-grade uranium ore is the Chattanooga shale--a formation in Tennessee and neighboring states that has not been mined conventionally because it is expensive and environmentally disadvantageous to do so. An in situ process, on the other hand, might be used to extract uranium from this formation without the attendant problems of conventional mining. We have suggested developing such a process, in which fracturing, retorting, and pressure leaching might be used to extract the uranium. The potential advantages of such a process are that capital investment would be reduced, handling and disposing of the ore would be avoided, and leaching reagents would be self-generated from air and water. If successful, the cost reductions from these factors could make the uranium produced competitive with that from other sources, and substantially increase domestic reserves. A technical program to evaluate the processing problems has been outlined and a conceptual model of the extraction process has been developed. Preliminary cost estimates have been made, although it is recognized that their validity depends on how successfully the various processing steps are carried out. In view of the preliminary nature of this survey (and our growing need for uranium), we have urged a more detailed study on the feasibility of in situ methods for extracting uranium from the Chattanooga shale

  12. In situ high-resolution thermal microscopy on integrated circuits.

    Science.gov (United States)

    Zhuo, Guan-Yu; Su, Hai-Ching; Wang, Hsien-Yi; Chan, Ming-Che

    2017-09-04

    The miniaturization of metal tracks in integrated circuits (ICs) can cause abnormal heat dissipation, resulting in electrostatic discharge, overvoltage breakdown, and other unwanted issues. Unfortunately, locating areas of abnormal heat dissipation is limited either by the spatial resolution or imaging acquisition speed of current thermal analytical techniques. A rapid, non-contact approach to the thermal imaging of ICs with sub-μm resolution could help to alleviate this issue. In this work, based on the intensity of the temperature-dependent two-photon fluorescence (TPF) of Rhodamine 6G (R6G) material, we developed a novel fast and non-invasive thermal microscopy with a sub-μm resolution. Its application to the location of hotspots that may evolve into thermally induced defects in ICs was also demonstrated. To the best of our knowledge, this is the first study to present high-resolution 2D thermal microscopic images of ICs, showing the generation, propagation, and distribution of heat during its operation. According to the demonstrated results, this scheme has considerable potential for future in situ hotspot analysis during the optimization stage of IC development.

  13. Treatment of gas from an in situ conversion process

    Science.gov (United States)

    Diaz, Zaida [Katy, TX; Del Paggio, Alan Anthony [Spring, TX; Nair, Vijay [Katy, TX; Roes, Augustinus Wilhelmus Maria [Houston, TX

    2011-12-06

    A method of producing methane is described. The method includes providing formation fluid from a subsurface in situ conversion process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. At least the olefins in the first gas stream are contacted with a hydrogen source in the presence of one or more catalysts and steam to produce a second gas stream. The second gas stream is contacted with a hydrogen source in the presence of one or more additional catalysts to produce a third gas stream. The third gas stream includes methane.

  14. An integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection

    Science.gov (United States)

    Liu, Hai-Tao; Wen, Zhi-Yu; Xu, Yi; Shang, Zheng-Guo; Peng, Jin-Lan; Tian, Peng

    2017-09-01

    In this paper, an integrated microfluidic analysis microsystems with bacterial capture enrichment and in-situ impedance detection was purposed based on microfluidic chips dielectrophoresis technique and electrochemical impedance detection principle. The microsystems include microfluidic chip, main control module, and drive and control module, and signal detection and processing modulet and result display unit. The main control module produce the work sequence of impedance detection system parts and achieve data communication functions, the drive and control circuit generate AC signal which amplitude and frequency adjustable, and it was applied on the foodborne pathogens impedance analysis microsystems to realize the capture enrichment and impedance detection. The signal detection and processing circuit translate the current signal into impendence of bacteria, and transfer to computer, the last detection result is displayed on the computer. The experiment sample was prepared by adding Escherichia coli standard sample into chicken sample solution, and the samples were tested on the dielectrophoresis chip capture enrichment and in-situ impedance detection microsystems with micro-array electrode microfluidic chips. The experiments show that the Escherichia coli detection limit of microsystems is 5 × 104 CFU/mL and the detection time is within 6 min in the optimization of voltage detection 10 V and detection frequency 500 KHz operating conditions. The integrated microfluidic analysis microsystems laid the solid foundation for rapid real-time in-situ detection of bacteria.

  15. Office of Technology Development integrated program for development of in situ remediation technologies

    International Nuclear Information System (INIS)

    Peterson, M.

    1992-08-01

    The Department of Energy's Office of Technology Development has instituted an integrated program focused on development of in situ remediation technologies. The development of in situ remediation technologies will focus on five problem groups: buried waste, contaminated soils, contaminated groundwater, containerized wastes and underground detonation sites. The contaminants that will be included in the development program are volatile and non volatile organics, radionuclides, inorganics and highly explosive materials as well as mixtures of these contaminants. The In Situ Remediation Integrated Program (ISR IP) has defined the fiscal year 1993 research and development technology areas for focusing activities, and they are described in this paper. These R ampersand D topical areas include: nonbiological in situ treatment, in situ bioremediation, electrokinetics, and in situ containment

  16. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna trademark process, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna trademark experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site

  17. Development of the integrated, in-situ remediation technology. Topical report for tasks No. 8 and No. 10 entitled: Laboratory and pilot scale experiments of Lasagna{trademark} process, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Sa V.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated W and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the lab and pilot sized Lasagna{trademark} experiments conducted at Monsanto. Experiments were conducted with kaofinite and an actual Paducah soil in units ranging from bench-scale containing kg-quantity of soil to pilot-scale containing about half a ton of soil having various treatment zone configurations. The obtained data support the feasibility of scaling up this technology with respect to electrokinetic parameters as well as removal of organic contaminants. A mathematical model was developed that was successful in predicting the temperature rises in the soil. The information and experience gained from these experiments along with the modeling effort enabled us to successfully design and operate a larger field experiment at a DOE TCE-contaminated clay site.

  18. In situ process monitoring in selective laser sintering using optical coherence tomography

    Science.gov (United States)

    Gardner, Michael R.; Lewis, Adam; Park, Jongwan; McElroy, Austin B.; Estrada, Arnold D.; Fish, Scott; Beaman, Joseph J.; Milner, Thomas E.

    2018-04-01

    Selective laser sintering (SLS) is an efficient process in additive manufacturing that enables rapid part production from computer-based designs. However, SLS is limited by its notable lack of in situ process monitoring when compared with other manufacturing processes. We report the incorporation of optical coherence tomography (OCT) into an SLS system in detail and demonstrate access to surface and subsurface features. Video frame rate cross-sectional imaging reveals areas of sintering uniformity and areas of excessive heat error with high temporal resolution. We propose a set of image processing techniques for SLS process monitoring with OCT and report the limitations and obstacles for further OCT integration with SLS systems.

  19. In?situ permeability from integrated poroelastic reflection coefficients

    NARCIS (Netherlands)

    Van Dalen, K.N.; Ghose, R.; Drijkoningen, C.G.; Smeulders, D.M.J.

    2010-01-01

    A reliable estimate of the in?situ permeability of a porous layer in the subsurface is extremely difficult to obtain. We have observed that at the field seismic frequency band the poroelastic behavior for different seismic wavetypes can differ in such a way that their combination gives unique

  20. In situ laser processing in a scanning electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Nicholas A.; Magel, Gregory A.; Hartfield, Cheryl D.; Moore, Thomas M.; Fowlkes, Jason D.; Rack, Philip D. [Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Omniprobe, Inc., an Oxford Instruments Company, 10410 Miller Rd., Dallas, Texas 75238 (United States); Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States) and Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2012-07-15

    Laser delivery probes using multimode fiber optic delivery and bulk focusing optics have been constructed and used for performing materials processing experiments within scanning electron microscope/focused ion beam instruments. Controlling the current driving a 915-nm semiconductor diode laser module enables continuous or pulsed operation down to sub-microsecond durations, and with spot sizes on the order of 50 {mu}m diameter, achieving irradiances at a sample surface exceeding 1 MW/cm{sup 2}. Localized laser heating has been used to demonstrate laser chemical vapor deposition of Pt, surface melting of silicon, enhanced purity, and resistivity via laser annealing of Au deposits formed by electron beam induced deposition, and in situ secondary electron imaging of laser induced dewetting of Au metal films on SiO{sub x}.

  1. In situ polymerization process of polypyrrole ultrathin films

    International Nuclear Information System (INIS)

    Onoda, Mitsuyoshi; Tada, Kazuya; Shinkuma, Akira

    2006-01-01

    A novel thin film processing technique has been developed for the fabrication of ultrathin films of conducting polymers with molecular-level control over thickness and multilayer architecture. This new self-assembly process opens up vast possibilities in applications which require large area, ultrathin films of conducting polymers and more importantly in applications that can take advantage of the unique interactions achievable in the complex, supermolecular architectures of multilayer films. In in situ polymerized polypyrrole (PPy), the deposition process strongly depends on the nature of the substrate surface. That is, for a surface that is negatively charged, there is a linear correspondence between dipping time and the amount of PPy deposited on the substrate. However, in the case of a positively charged surface, there is an apparent rest period of approximately 10-20 min, during which no PPy is deposited. From optical absorption spectroscopy and photoelectron emission studies etc., it became clear that oligomers of pyrrole were adsorbed on the positively charged surface during the rest period, as a result the polymerization reaction of PPy could proceed

  2. In-situ biogas upgrading process: Modeling and simulations aspects.

    Science.gov (United States)

    Lovato, Giovanna; Alvarado-Morales, Merlin; Kovalovszki, Adam; Peprah, Maria; Kougias, Panagiotis G; Rodrigues, José Alberto Domingues; Angelidaki, Irini

    2017-12-01

    Biogas upgrading processes by in-situ hydrogen (H 2 ) injection are still challenging and could benefit from a mathematical model to predict system performance. Therefore, a previous model on anaerobic digestion was updated and expanded to include the effect of H 2 injection into the liquid phase of a fermenter with the aim of modeling and simulating these processes. This was done by including hydrogenotrophic methanogen kinetics for H 2 consumption and inhibition effect on the acetogenic steps. Special attention was paid to gas to liquid transfer of H 2 . The final model was successfully validated considering a set of Case Studies. Biogas composition and H 2 utilization were correctly predicted, with overall deviation below 10% compared to experimental measurements. Parameter sensitivity analysis revealed that the model is highly sensitive to the H 2 injection rate and mass transfer coefficient. The model developed is an effective tool for predicting process performance in scenarios with biogas upgrading. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. In-situ photoluminescence imaging for passivation-layer etching process control for photovoltaics

    Science.gov (United States)

    Lee, J. Z.; Michaelson, L.; Munoz, K.; Tyson, T.; Gallegos, A.; Sullivan, J. T.; Buonassisi, T.

    2014-07-01

    Light-induced plating (LIP) of solar-cell metal contacts is a scalable alternative to silver paste. However, LIP requires an additional patterning step to create openings in the silicon nitride (SiNx) antireflection coating (ARC) layer prior to metallization. One approach to pattern the SiNx is masking and wet chemical etching. In-situ real-time photoluminescence imaging (PLI) is demonstrated as a process-monitoring method to determine when SiNx has been fully removed during etching. We demonstrate that the change in PLI signal intensity during etching is caused by a combination of (1) decreasing light absorption from the reduction in SiNx ARC layer thickness and (2) decreasing surface lifetime as the SiNx/Si interface transitions to an etch-solution/Si. Using in-situ PLI to guide the etching process, we demonstrate a full-area plated single-crystalline silicon device. In-situ PLI has the potential to be integrated into a commercial processing line to improve process control and reliability.

  4. In situ vitrification: A new process for waste remediation

    International Nuclear Information System (INIS)

    Fitzpatrick, V.F.; Timmerman, C.L.; Buelt, J.L.

    1987-07-01

    In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert, stable glass and crystalline product. A square array of four electrodes are inserted into the ground to the desired treatment depth. Because the soil is not electrically conductive once the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed among the electrodes to act as the starter path. An electrical potential is applied to the electrodes, which establishes an electrical current in the starter path. The resultant power heats the starter path and surrounding soil up to 3600 0 F, well above the normal fusion temperature of soil of between 2000 and 2500 0 F. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is now electrically conductive. As the vitrified zone grows, it incorporates nonvolatile elements and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they combust in the presence of oxygen. A hood placed over the processing area provides confinement for the combustion gases, and the gases are drawn into the off-gas treatment system. 8 refs., 7 figs., 2 tabs

  5. Study of the Integration of LIDAR and Photogrammetric Datasets by in Situ Camera Calibration and Integrated Sensor Orientation

    Science.gov (United States)

    Mitishita, E.; Costa, F.; Martins, M.

    2017-05-01

    Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO) approach was performed using Interior Orientation Parameter (IOP) values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE) of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  6. STUDY OF THE INTEGRATION OF LIDAR AND PHOTOGRAMMETRIC DATASETS BY IN SITU CAMERA CALIBRATION AND INTEGRATED SENSOR ORIENTATION

    Directory of Open Access Journals (Sweden)

    E. Mitishita

    2017-05-01

    Full Text Available Photogrammetric and Lidar datasets should be in the same mapping or geodetic frame to be used simultaneously in an engineering project. Nowadays direct sensor orientation is a common procedure used in simultaneous photogrammetric and Lidar surveys. Although the direct sensor orientation technologies provide a high degree of automation process due to the GNSS/INS technologies, the accuracies of the results obtained from the photogrammetric and Lidar surveys are dependent on the quality of a group of parameters that models accurately the user conditions of the system at the moment the job is performed. This paper shows the study that was performed to verify the importance of the in situ camera calibration and Integrated Sensor Orientation without control points to increase the accuracies of the photogrammetric and LIDAR datasets integration. The horizontal and vertical accuracies of photogrammetric and Lidar datasets integration by photogrammetric procedure improved significantly when the Integrated Sensor Orientation (ISO approach was performed using Interior Orientation Parameter (IOP values estimated from the in situ camera calibration. The horizontal and vertical accuracies, estimated by the Root Mean Square Error (RMSE of the 3D discrepancies from the Lidar check points, increased around of 37% and 198% respectively.

  7. Process for in-situ biodegradation of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Ely, D.L.; Heffner, D.A.

    1991-01-01

    This patent describes an in situ process for biodegrading hydrocarbons by drawing oxygen into an undisturbed hydrocarbon contaminated zone in a fluid permeable soil. It comprises: establishing a borehole extending from the earth's surface through a hydrocarbon contaminated zone having hydrocarbon degrading microbes therein; lining the borehole with a fluid impermeable liner coaxially spaced and sealingly connected to the inside surface of the borehole and extending from the earth's surface to the hydrocarbon-contaminated zone; the liner including a fluid permeable portion extending from the lower end thereof and through at least a portion of the hydrocarbon contaminated zone, fluidly connecting a source of negative pressure to the fluid impermeable line; evacuating gas from the borehole through the fluid permeable portion of the liner at a rate sufficient to draw air from the earth's surface into the hydrocarbon containing zone; and adjusting the flow rate of the evacuated gas so that the amount of hydrocarbon biodegradation therein is within 50% of the maximum hydrocarbon biodegradation rate as detected by the volume of carbon dioxide in the evacuated gas

  8. In situ characterization of nanoscale catalysts during anodic redox processes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Renu [National Institute of Standards and Technology; Crozier, Peter [Arizona State University; Adams, James [Arizona State University

    2013-09-19

    Controlling the structure and composition of the anode is critical to achieving high efficiency and good long-term performance. In addition to being a mixed electronic and ionic conductor, the ideal anode material should act as an efficient catalyst for oxidizing hydrogen, carbon monoxide and dry hydrocarbons without de-activating through either sintering or coking. It is also important to develop novel anode materials that can operate at lower temperatures to reduce costs and minimized materials failure associated with high temperature cycling. We proposed to synthesize and characterize novel anode cermets materials based on ceria doped with Pr and/or Gd together with either a Ni or Cu metallic components. Ceria is a good oxidation catalyst and is an ionic conductor at room temperature. Doping it with trivalent rare earths such as Pr or Gd retards sintering and makes it a mixed ion conductor (ionic and electronic). We have developed a fundamental scientific understanding of the behavior of the cermet material under reaction conditions by following the catalytic oxidation process at the atomic scale using a powerful Environmental Scanning Transmission Electron Microscope (ESTEM). The ESTEM allowed in situ monitoring of structural, chemical and morphological changes occurring at the cermet under conditions approximating that of typical fuel-cell operation. Density functional calculations were employed to determine the underlying mechanisms and reaction pathways during anode oxidation reactions. The dynamic behavior of nanoscale catalytic oxidation of hydrogen and methane were used to determine: ? Fundamental processes during anodic reactions in hydrogen and carbonaceous atmospheres ? Interfacial effects between metal particles and doped ceria ? Kinetics of redox reaction in the anode material

  9. Mars Colony in situ resource utilization: An integrated architecture and economics model

    Science.gov (United States)

    Shishko, Robert; Fradet, René; Do, Sydney; Saydam, Serkan; Tapia-Cortez, Carlos; Dempster, Andrew G.; Coulton, Jeff

    2017-09-01

    This paper reports on our effort to develop an ensemble of specialized models to explore the commercial potential of mining water/ice on Mars in support of a Mars Colony. This ensemble starts with a formal systems architecting framework to describe a Mars Colony and capture its artifacts' parameters and technical attributes. The resulting database is then linked to a variety of ;downstream; analytic models. In particular, we integrated an extraction process (i.e., ;mining;) model, a simulation of the colony's environmental control and life support infrastructure known as HabNet, and a risk-based economics model. The mining model focuses on the technologies associated with in situ resource extraction, processing, storage and handling, and delivery. This model computes the production rate as a function of the systems' technical parameters and the local Mars environment. HabNet simulates the fundamental sustainability relationships associated with establishing and maintaining the colony's population. The economics model brings together market information, investment and operating costs, along with measures of market uncertainty and Monte Carlo techniques, with the objective of determining the profitability of commercial water/ice in situ mining operations. All told, over 50 market and technical parameters can be varied in order to address ;what-if; questions, including colony location.

  10. Process for in-situ leaching of uranium

    International Nuclear Information System (INIS)

    Espenscheid, W.F.; Yan, F.Y.

    1983-01-01

    The present invention relates to the recovery of uranium from subterranean ore deposits, and more particularly to an in-situ leaching operation employing an aqueous solution of sulfuric acid and carbon dioxide as the lixiviant. Uranium is solubilized in the lixiviant as it traverses the subterranean uranium deposit. The lixiviant is subsequently recovered and treated to remove the uranium

  11. Gas injection to inhibit migration during an in situ heat treatment process

    Science.gov (United States)

    Kuhlman, Myron Ira; Vinegar; Harold J.; Baker, Ralph Sterman; Heron, Goren

    2010-11-30

    Methods of treating a subsurface formation are described herein. Methods for treating a subsurface treatment area in a formation may include introducing a fluid into the formation from a plurality of wells offset from a treatment area of an in situ heat treatment process to inhibit outward migration of formation fluid from the in situ heat treatment process.

  12. In Situ Remediation Integrated Program. In situ physical/chemical treatment technologies for remediation of contaminated sites: Applicability, developing status, and research needs

    International Nuclear Information System (INIS)

    Siegrist, R.L.; Gates, D.D.; West, O.R.; Liang, L.; Donaldson, T.L.; Webb, O.F.; Corder, S.L.; Dickerson, K.S.

    1994-06-01

    The U.S. Department of Energy (DOE) In Situ Remediation Integrated Program (ISR IP) was established in June 1991 to facilitate the development and implementation of in situ remediation technologies for environmental restoration within the DOE complex. Within the ISR IP, four subareas of research have been identified: (1) in situ containment, (2) in situ physical/chemical treatment (ISPCT), (3) in situ bioremediation, and (4) subsurface manipulation/electrokinetics. Although set out as individual focus areas, these four are interrelated, and successful developments in one will often necessitate successful developments in another. In situ remediation technologies are increasingly being sought for environmental restoration due to the potential advantages that in situ technologies can offer as opposed to more traditional ex situ technologies. These advantages include limited site disruption, lower cost, reduced worker exposure, and treatment at depth under structures. While in situ remediation technologies can offer great advantages, many technology gaps exist in their application. This document presents an overview of ISPCT technologies and describes their applicability to DOE-complex needs, their development status, and relevant ongoing research. It also highlights research needs that the ISR IP should consider when making funding decisions

  13. In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 2 results

    International Nuclear Information System (INIS)

    Ballard, S.

    1994-08-01

    A suite of In Situ Permeable Flow Sensors was deployed at the site of the Savannah River Integrated Demonstration to monitor the interaction between the groundwater flow regime and air injected into the saturated subsurface through a horizontal well. One of the goals of the experiment was to determine if a groundwater circulation system was induced by the air injection process. The data suggest that no such circulation system was established, perhaps due to the heterogeneous nature of the sediments through which the injected gas has to travel. The steady state and transient groundwater flow patterns observed suggest that the injected air followed high permeability pathways from the injection well to the water table. The preferential pathways through the essentially horizontal impermeable layers appear to have been created by drilling activities at the site

  14. In Situ Remediation Integrated Program, Evaluation and assessment of containment technology

    International Nuclear Information System (INIS)

    Gerber, M.A.; Fayer, M.J.

    1994-04-01

    The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP's Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE's site restoration activities

  15. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Renaud, E.; Brennenstuhl, A.M.; Stewart, D.R.; Gonzalez, F.

    2000-01-01

    Degradation of steam generator tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced outages, unit derating, steam generator replacement or even the permanent shutdown of a reactor. In response to the onset of steam generator degradation at Ontario Power Generation's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for steam generator tubing repair and the unique properties of the advanced sleeve material. The successful installation of fourteen Electrosleeves that have been in service for more than six years in Alloy 400 tubing at the Pickering-S CANDU unit, and the more recent (Nov. 99) extension of the technology to Alloy 600 by the installation of 57 sleeves in a U.S. pressurized water reactor (PWR) at Callaway, is presented. The Electrosleeve process has been granted a conditional license by the U.S. Nuclear Regulatory Commission (NRC). In Canada, the process of licensing Electrosleeve with the CNSC / TSSA has begun. (author)

  16. SCALA: In situ calibration for integral field spectrographs

    Science.gov (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  17. Electrosleeve process for in-situ nuclear steam generator repair

    International Nuclear Information System (INIS)

    Barton, R.A.; Moran, T.E.; Renaud, E.

    1997-01-01

    Degradation of steam generator (SG) tubing by localized corrosion is a widespread problem in the nuclear industry that can lead to costly forced out-ages, unit de-rating, SG replacement or even the permanent shutdown of a reactor. In response to the onset of SG tubing degradation at Ontario Hydro's Pickering Nuclear Generating Station (PNGS) Unit 5, and the determined unsuitability of conventional repair methods (mechanically expanded or welded sleeves) for Alloy 400, an alternative repair technology was developed. Electrosleeve is a non-intrusive, low-temperature process that involves the electrodeposition of a nanocrystalline nickel microalloy forming a continuously bonded, structural layer over the internal diameter of the degraded region. This technology is designed to provide a long-term pressure boundary repair, fully restoring the structural integrity of the damaged region to its original state. This paper describes the Electrosleeve process for SG tubing repair and the unique properties of the advanced sleeve material. The successful installation of Electrosleeves that have been in service for more than three years in Alloy 400 SG tubing at the Pickering-5 CANDU unit, the more recent extension of the technology to Alloy 600 and its demonstration in a U.S. pressurized water reactor (PWR), is presented. A number of PWR operators have requested plant operating technical specification changes to permit Electrosleeve SG tube repair. Licensing of the Electrosleeve by the U.S. Nuclear Regulatory Commission (NRC) is expected imminently. (author)

  18. An evaluation of in-situ bioremediation processes

    International Nuclear Information System (INIS)

    Cole, L.L.; Rashidi, M.

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology

  19. In situ conversion process utilizing a closed loop heating system

    Science.gov (United States)

    Sandberg, Chester Ledlie [Palo Alto, CA; Fowler, Thomas David [Houston, TX; Vinegar, Harold J [Bellaire, TX; Schoeber, Willen Jan Antoon Henri

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  20. An evaluation of in-situ bioremediation processes

    Energy Technology Data Exchange (ETDEWEB)

    Cole, L.L. [Prairie View A and M Univ., TX (United States); Rashidi, M. [Lawrence Livermore National Lab., CA (United States). Environmental Programs Directorate

    1996-08-01

    Remediation of petroleum hydrocarbons in groundwater was the primary focus in the initial application of in-situ bioremediation which, from its development in the 1970s, has grown to become one of the most promising technologies for the degradation of a wide variety of organic contaminants. The degradation of contaminants in subsurface soils is the current new focus of the technology. While the need for improvements in the technology does exist, the indisputable fact remains that this technology is by far the least expensive and that it has the capability to provide long term reduced levels of contaminants or long term complete remediation of contaminated sites. The aim of this paper is to disclose pertinent information related to current conditions and current feelings in the area of new research, novel applications, new government regulations, and an overview of new topics on the horizon that relate to the overall technology.

  1. IN SITU STEAM ENHANCED RECOVERY PROCESS - HUGHES ENVIRONMENTAL SYSTEMS, INC. - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    Science.gov (United States)

    This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...

  2. Design and In-Situ Processing of Metal-Ceramic and Ceramic-Ceramic Microstructures

    National Research Council Canada - National Science Library

    Sass, Stephen

    1997-01-01

    .... Metal-ceramic microstructures have been synthesized in situ by a variety of novel processing techniques, including the partial reduction of oxide compounds and displacement reactions and sol-gel...

  3. Evaluation and selection of in-situ leaching mining method using analytic hierarchy process

    International Nuclear Information System (INIS)

    Zhao Heyong; Tan Kaixuan; Liu Huizhen

    2007-01-01

    According to the complicated conditions and main influence factors of in-situ leaching min- ing, a model and processes of analytic hierarchy are established for evaluation and selection of in-situ leaching mining methods based on analytic hierarchy process. Taking a uranium mine in Xinjiang of China for example, the application of this model is presented. The results of analyses and calculation indicate that the acid leaching is the optimum project. (authors)

  4. In Situ/Remote Sensing Integration to Assess Forest Health—A Review

    Directory of Open Access Journals (Sweden)

    Marion Pause

    2016-06-01

    Full Text Available For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted.

  5. Evaluating Acoustic Emission Signals as an in situ process monitoring technique for Selective Laser Melting (SLM)

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Karl A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Candy, Jim V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Guss, Gabe [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mathews, M. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-10-14

    In situ real-time monitoring of the Selective Laser Melting (SLM) process has significant implications for the AM community. The ability to adjust the SLM process parameters during a build (in real-time) can save time, money and eliminate expensive material waste. Having a feedback loop in the process would allow the system to potentially ‘fix’ problem regions before a next powder layer is added. In this study we have investigated acoustic emission (AE) phenomena generated during the SLM process, and evaluated the results in terms of a single process parameter, of an in situ process monitoring technique.

  6. Kinematic analysis of in situ measurement during chemical mechanical planarization process

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongkai; Wang, Tongqing; Zhao, Qian; Meng, Yonggang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084 (China)

    2015-10-15

    Chemical mechanical planarization (CMP) is the most widely used planarization technique in semiconductor manufacturing presently. With the aid of in situ measurement technology, CMP tools can achieve good performance and stable productivity. However, the in situ measurement has remained unexplored from a kinematic standpoint. The available related resources for the kinematic analysis are very limited due to the complexity and technical secret. In this paper, a comprehensive kinematic analysis of in situ measurement is provided, including the analysis model, the measurement trajectory, and the measurement time of each zone of wafer surface during the practical CMP process. In addition, a lot of numerical calculations are performed to study the influences of main parameters on the measurement trajectory and the measurement velocity variation of the probe during the measurement process. All the efforts are expected to improve the in situ measurement system and promote the advancement in CMP control system.

  7. IN-SITU TEST OF PRESSURE PIPELINE VIBRATION BASED ON DATA ACQUISITION AND SIGNAL PROCESSING

    OpenAIRE

    Hou, Huimin; Xu, Cundong; Liu, Hui; Wang, Rongrong; Jie, Junkun; Ding, Lianying

    2015-01-01

    Pipeline vibration of high frequency and large amplitude is an important factor that impacts the safe operation of pumping station and the efficiency of the pumps. Through conducting the vibration in-situ test of pipeline system in the pumping station, we can objectively analyze the mechanism of pipeline vibration and evaluate the stability of pipeline operation. By using DASP (data acquisition & signal processing) in the in-situ test on the 2# pipeline of the third pumping station in the gen...

  8. Electrochemical Processes for In-Situ Treatment of Contaminated Soils - Final Report - 09/15/1996 - 01/31/2001

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chin-Pao

    2001-05-31

    This project will study electrochemical processes for the in situ treatment of soils contaminated by mixed wastes, i.e., organic and inorganic. Soil samples collected form selected DOE waste sites will be characterized for specific organic and metal contaminants and hydraulic permeability. The soil samples are then subject to desorption experiments under various physical-chemical conditions such as pH and the presence of surfactants. Batch electro-osmosis experiments will be conducted to study the transport of contaminants in the soil-water systems. Organic contaminants that are released from the soil substrate will be treated by an advanced oxidation process, i.e., electron-Fantan. Finally, laboratory reactor integrating the elector-osmosis and elector-Fantan processes will be used to study the treatment of contaminated soil in situ.

  9. In-situ acoustic signature monitoring in additive manufacturing processes

    Science.gov (United States)

    Koester, Lucas W.; Taheri, Hossein; Bigelow, Timothy A.; Bond, Leonard J.; Faierson, Eric J.

    2018-04-01

    Additive manufacturing is a rapidly maturing process for the production of complex metallic, ceramic, polymeric, and composite components. The processes used are numerous, and with the complex geometries involved this can make quality control and standardization of the process and inspection difficult. Acoustic emission measurements have been used previously to monitor a number of processes including machining and welding. The authors have identified acoustic signature measurement as a potential means of monitoring metal additive manufacturing processes using process noise characteristics and those discrete acoustic emission events characteristic of defect growth, including cracks and delamination. Results of acoustic monitoring for a metal additive manufacturing process (directed energy deposition) are reported. The work investigated correlations between acoustic emissions and process noise with variations in machine state and deposition parameters, and provided proof of concept data that such correlations do exist.

  10. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    Energy Technology Data Exchange (ETDEWEB)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven, E-mail: srodt@physik.tu-berlin.de; Reitzenstein, Stephan [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Strittmatter, André [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg (Germany)

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  11. Structure determination of an integral membrane protein at room temperature from crystals in situ

    International Nuclear Information System (INIS)

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-01-01

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines

  12. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  13. The integrated in situ testing program for the Waste Isolation Pilot Plant (WIPP)

    International Nuclear Information System (INIS)

    Matalucci, R.V.

    1987-03-01

    The US Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) Project in southeastern New Mexico as a research and development (R and D) facility for examining the response of bedded (layered) salt to the emplacement of radioactive wastes generated from defense programs. The WIPP Experimental Program consists of a technology development program, including laboratory testing and theoretical analysis activities, and an in situ testing program that is being done 659 m underground at the project site. This experimental program addresses three major technical areas that concern (1) thermal/structural interactions, (2) plugging and sealing, and (3) waste package performance. To ensure that the technical issues involved in these areas are investigated with appropriate emphasis and timing, an in situ testing plan was developed to integrate the many activities and tasks associated with the technical issues of waste disposal. 5 refs., 4 figs

  14. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    International Nuclear Information System (INIS)

    Korte, N.E.; Siegrist, R.L.; Ally, M.

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations

  15. In situ treatment of mixed contaminants in groundwater: Review of candidate processes

    Energy Technology Data Exchange (ETDEWEB)

    Korte, N.E. [ed.] [Oak Ridge National Lab., Grand Junction, CO (United States); Siegrist, R.L. [ed.] [Oak Ridge National Lab., TN (United States); Ally, M. [and others

    1994-10-01

    This document describes the screening and preliminary evaluation of candidate treatment for use in treating mixed contaminants volatile organic compounds (VOCs) and radionuclides in groundwater. Treating mixed contaminants presents unusual difficulties. Typically, VOCs are the most abundant contaminants, but the presence of radionuclides results in additional health concerns that must be addressed, usually by a treatment approach different from that used for VOCs. Furthermore, the presence of radionuclides may yield mixed solid wastes if the VOCs are treated by conventional means. These issues were specifically addressed in the evaluation of candidate treatment processes for testing in this program. Moreover, because no research or early development of a particular process would be performed, the technology review also focused on technologies that could be readily adapted and integrated for use with mixed contaminants. The objective is to couple emerging or available processes into treatment modules for use in situ. The three year project, to be completed in September 1996, includes a full-scale field demonstration. The findings reported in this document encompass all activities through the treatment process evaluations.

  16. In Situ Acoustic Monitoring of Thermal Spray Process Using High-Frequency Impulse Measurements

    Science.gov (United States)

    Tillmann, Wolfgang; Walther, Frank; Luo, Weifeng; Haack, Matthias; Nellesen, Jens; Knyazeva, Marina

    2018-01-01

    In order to guarantee their protective function, thermal spray coatings must be free from cracks, which expose the substrate surface to, e.g., corrosive media. Cracks in thermal spray coatings are usually formed because of tensile residual stresses. Most commonly, the crack occurrence is determined after the thermal spraying process by examination of metallographic cross sections of the coating. Recent efforts focus on in situ monitoring of crack formation by means of acoustic emission analysis. However, the acoustic signals related to crack propagation can be absorbed by the noise of the thermal spraying process. In this work, a high-frequency impulse measurement technique was applied to separate different acoustic sources by visualizing the characteristic signal of crack formation via quasi-real-time Fourier analysis. The investigations were carried out on a twin wire arc spraying process, utilizing FeCrBSi as a coating material. The impact of the process parameters on the acoustic emission spectrum was studied. Acoustic emission analysis enables to obtain global and integral information on the formed cracks. The coating morphology and coating defects were inspected using light microscopy on metallographic cross sections. Additionally, the resulting crack patterns were imaged in 3D by means of x-ray microtomography.

  17. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    Science.gov (United States)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-04-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.

  18. Process defects and in situ monitoring methods in metal powder bed fusion: a review

    International Nuclear Information System (INIS)

    Grasso, Marco; Colosimo, Bianca Maria

    2017-01-01

    Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g. aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for in situ monitoring of powder bed fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems. (paper)

  19. Modeling segregated in- situ combustion processes through a vertical displacement model applied to a Colombian field

    International Nuclear Information System (INIS)

    Guerra Aristizabal, Jose Julian; Grosso Vargas, Jorge Luis

    2005-01-01

    Recently it has been proposed the incorporation of horizontal well technologies in thermal EOR processes like the in situ combustion process (ISC). This has taken to the conception of new recovery mechanisms named here as segregated in-situ combustion processes, which are conventional in-situ combustion process with a segregated flow component. Top/Down combustion, Combustion Override Split-production Horizontal-well and Toe-to-Heel Air Injection are three of these processes, which incorporate horizontal producers and gravity drainage phenomena. When applied to thick reservoirs a process of this nature could be reasonably modeled under concepts of conventional in-situ combustion and Crestal Gas injection, especially for heavy oils mobile at reservoir conditions. A process of this nature has been studied through an analytic model conceived for the particular conditions of the Castilla field, a homogeneous thick anticline structure containing high mobility heavy oil, which seems to be an excellent candidate for the application of these technologies

  20. Experimental Investigation and High Resolution Simulation of In-Situ Combustion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Margot Gerritsen; Tony Kovscek

    2008-04-30

    This final technical report describes work performed for the project 'Experimental Investigation and High Resolution Numerical Simulator of In-Situ Combustion Processes', DE-FC26-03NT15405. In summary, this work improved our understanding of in-situ combustion (ISC) process physics and oil recovery. This understanding was translated into improved conceptual models and a suite of software algorithms that extended predictive capabilities. We pursued experimental, theoretical, and numerical tasks during the performance period. The specific project objectives were (i) identification, experimentally, of chemical additives/injectants that improve combustion performance and delineation of the physics of improved performance, (ii) establishment of a benchmark one-dimensional, experimental data set for verification of in-situ combustion dynamics computed by simulators, (iii) develop improved numerical methods that can be used to describe in-situ combustion more accurately, and (iv) to lay the underpinnings of a highly efficient, 3D, in-situ combustion simulator using adaptive mesh refinement techniques and parallelization. We believe that project goals were met and exceeded as discussed.

  1. An integrated on-line irradiation and in situ live cell imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen, E-mail: gen.yang@pku.edu.cn; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO{sub 2}, O{sub 2} concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  2. An integrated on-line irradiation and in situ live cell imaging system

    International Nuclear Information System (INIS)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-01-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO 2 , O 2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia

  3. An integrated on-line irradiation and in situ live cell imaging system

    Science.gov (United States)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO2, O2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  4. The Integrated Renovation Process

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    The Integrated Renovation Process (IRP) is a user customized methodology based on judiciously selected constructivist and interactive multi-criteria decision making methods (Galiotto, Heiselberg, & Knudstrup, 2014 (expected)). When applied for home renovation, the Integrated Renovation Process...

  5. Investigation of the Geokinetics horizontal in situ oil-shale-retorting process. Fourth annual report, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.L. (ed.)

    1981-03-01

    The Geokinetics in situ shale oil project is a cooperative venture between Geokinetics Inc. and the US Department of Energy. The objective is to develop a true in situ process for recovering shale oil using a fire front moving in a horizontal direction. The project is being conducted at a field site, Kamp Kerogen, located 70 miles south of Vernal, Utah. This Fourth Annual Report covers work completed during the calendar year 1980. During 1980 one full-size retort was blasted. Two retorts, blasted the previous year, were burned. A total of 4891 barrels of oil was produced during the year.

  6. In situ heat treatment process utilizing a closed loop heating system

    Science.gov (United States)

    Vinegar, Harold J.; Nguyen, Scott Vinh

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  7. XPERT DESIGN AND DIAGNOSTICS' (XDD) IN-SITU CHEMICAL OXIDATION PROCESS USING POTASSIUM PERMANGANATE (KMNO4)

    Science.gov (United States)

    Xpert Design and Diagnostic's (XDD)potassium permanganate in situ chemical oxidation (ISCO) process was evaluated under the EPA Superfund Innovative Technology Evaluation (SITE) Program at the former MEC Building site located in Hudson, New Hampshire. At this site, both soil and ...

  8. Organization of Workshop on Emerging Technologies for In-Situ Processing

    Science.gov (United States)

    1992-08-31

    scale Structures Kengi Gamo Low Energy Fused Ion Beam System and In Situ Processing Mikio Takai Nanofabrication Using STM Tip (Discussion: Melngailis...Jon Orloff & Mitsugu Sato 1 Oregon Graduate Institute 19600 von Neumann Drive Beaverton, OR 97006, USA A high resolution focused ion beam (FIB) is an

  9. Process, engineering and design aspects of contaminated soil bioremediation. Pt. 1 In situ treatments

    International Nuclear Information System (INIS)

    De Fraja Frangipane, E.; Andreottola, G.; Tatano, F.

    1995-01-01

    The present paper is an up-to-date overview of contaminated soil bioremediation techniques, which are analyzed in detail with regard to main process, engineering and design aspects. General biochemical/kinetic aspects of bioremediation of contaminated soil, and in situ treatments, are discussed in this part one

  10. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates

    Science.gov (United States)

    Hill, Victoria J.; Matrai, Patricia A.; Olson, Elise; Suttles, S.; Steele, Mike; Codispoti, L. A.; Zimmerman, Richard C.

    2013-03-01

    Recent warming of surface waters, accompanied by reduced ice thickness and extent may have significant consequences for climate-driven changes of primary production (PP) in the Arctic Ocean (AO). However, it has been difficult to obtain a robust benchmark estimate of pan-Arctic PP necessary for evaluating change. This paper provides an estimate of pan-Arctic PP prior to significant warming from a synthetic analysis of the ARCSS-PP database of in situ measurements collected from 1954 to 2007 and estimates derived from satellite-based observations from 1998 to 2007. Vertical profiles of in situ chlorophyll a (Chl a) and PP revealed persistent subsurface peaks in biomass and PP throughout the AO during most of the summer period. This was contradictory with the commonly assumed exponential decrease in PP with depth on which prior satellite-derived estimates were based. As remotely sensed Chl a was not a good predictor of integrated water column Chl a, accurate satellite-based modeling of vertically integrated primary production (IPPsat), requires knowledge of the subsurface distribution of phytoplankton, coincident with the remotely sensed ocean color measurements. We developed an alternative approach to modeling PP from satellite observations by incorporating climatological information on the depths of the euphotic zone and the mixed layer that control the distribution of phytoplankton that significantly improved the fidelity of satellite derived PP to in situ observations. The annual IPP of the Arctic Ocean combining both in situ and satellite based estimates was calculated here to be a minimum of 466 ± 94 Tg C yr-1 and a maximum of 993 ± 94 Tg C yr-1, when corrected for subsurface production. Inflow shelf seas account for 75% of annual IPP, while the central basin and Beaufort northern sea were the regions with the lowest annual integrated productivity, due to persistently stratified, oligotrophic and ice-covered conditions. Although the expansion of summertime

  11. Natural Fractures Characterization and In Situ Stresses Inference in a Carbonate Reservoir—An Integrated Approach

    Directory of Open Access Journals (Sweden)

    Ali Shafiei

    2018-02-01

    Full Text Available In this paper, we characterized the natural fracture systems and inferred the state of in situ stress field through an integrated study in a very complex and heterogeneous fractured carbonate reservoir. Relative magnitudes and orientations of the in-situ principal stresses in a naturally fractured carbonate heavy oil field were estimated with a combination of available data (World Stress Map, geological and geotectonic evidence, outcrop studies and techniques (core analysis, borehole image logs and Side View Seismic Location. The estimates made here using various tools and data including routine core analysis and image logs are confirmatory to estimates made by the World Stress Map and geotectonic facts. NE-SW and NW-SE found to be the dominant orientations for maximum and minimum horizontal stresses in the study area. In addition, three dominant orientations were identified for vertical and sub-vertical fractures atop the crestal region of the anticlinal structure. Image logs found useful in recognition and delineation of natural fractures. The results implemented in a real field development and proved practical in optimal well placement, drilling and production practices. Such integrated studies can be instrumental in any E&P projects and related projects such as geological CO2 sequestration site characterization.

  12. In-situ plasma processing to increase the accelerating gradients of superconducting radio-frequency cavities

    Science.gov (United States)

    Doleans, M.; Tyagi, P. V.; Afanador, R.; McMahan, C. J.; Ball, J. A.; Barnhart, D. L.; Blokland, W.; Crofford, M. T.; Degraff, B. D.; Gold, S. W.; Hannah, B. S.; Howell, M. P.; Kim, S.-H.; Lee, S.-W.; Mammosser, J.; Neustadt, T. S.; Saunders, J. W.; Stewart, S.; Strong, W. H.; Vandygriff, D. J.; Vandygriff, D. M.

    2016-03-01

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipacting issues. In this article, the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus are discussed.

  13. Cyanobacteria to Link Closed Ecological Systems and In-Situ Resources Utilization Processes

    Science.gov (United States)

    Brown, Igor

    Introduction: A major goal for the Vision of Space Exploration is to extend human presence across the solar sys-tem. With current technology, however, all required consumables for these missions (propellant, air, food, water) as well as habitable volume and shielding to support human explorers will need to be brought from Earth. In-situ pro-duction of consumables (In-Situ Resource Utilization-ISRU) will significantly facilitate current plans for human ex-ploration and colonization of the solar system, especially by reducing the logistical overhead such as recurring launch mass. The production of oxygen from lunar materials is generally recognized as the highest priority process for lunar ISRU, for both human metabolic and fuel oxidation needs. The most challenging technology developments for future lunar settlements may lie in the extraction of elements (O, Fe, Mn, Ti, Si, etc) from local rocks and soils for life support, industrial feedstock and the production of propellants. With few exceptions (e.g., Johannson, 1992), nearly all technology development to date has employed an ap-proach based on inorganic chemistry (e.g. Allen et al., 1996). None of these technologies include concepts for inte-grating the ISRU system with a bioregenerative life support system and a food production systems. Bioregenerative life support efforts have recently been added to the Constellation ISRU development program (Sanders et al, 2007). Methods and Concerns: The European Micro-Ecological Life Support System Alternative (MELiSSA) is an ad-vanced concept for organizing a bioregenerative system for long term space flights and extraterrestrial settlements (Hendrickx, De Wever et al., 2005). However the MELiSSA system is a net consumer of ISRU products without a net return to in-situ technologies, e.g.. to extract elements as a result of complete closure of MELiSSA. On the other hand, the physical-chemical processes for ISRU are typically massive (relative to the rate of oxygen

  14. Deformation processes in functional materials studied by in situ neutron diffraction and ultrasonic techniques

    International Nuclear Information System (INIS)

    Sittner, P.; Novak, V.; Landa, M.; Lukas, P.

    2007-01-01

    The unique thermomechanical functions of shape memory alloys (hysteretic stress-strain-temperature responses) not their structural properties (as strength, fatigue, corrosion resistance, etc.) are primarily utilized in engineering applications. In order to better understand and predict the functional behavior, we have recently employed two dedicated non-invasive in situ experimental methods capable to follow the deformation/transformation processes in thermomechanically loaded polycrystalline samples. The in situ neutron diffraction method takes advantage of the ability of thermal neutrons to penetrate bulk samples. As a diffraction technique sensitive to interplanar spacings in crystalline solids, it provides in situ information on the changes in crystal structure, phase composition, phase stress and texture in the transforming samples. The combined in situ ultrasonic and electric resistance method follows variations of the electric resistance as well as speed and attenuation of acoustic waves propagating through the transforming sample. The acoustic waves are mainly sensitive to changes of elastic properties accompanying the deformation/transformation processes. The latter method thus follows the changes in interatomic bonds rather than changes in the interplanar lattice spacings focused in the neutron diffraction method. The methods are thus complementary. They are briefly described and selected experimental results obtained recently on NiTi alloys are presented and discussed

  15. In Situ Remediation Integrated Program: Evaluation and assessment of containment technology

    International Nuclear Information System (INIS)

    Gerber, M.A.; Fayer, M.J.

    1994-06-01

    Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy's (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities

  16. Silicon integrated circuit process

    International Nuclear Information System (INIS)

    Lee, Jong Duck

    1985-12-01

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  17. Silicon integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Duck

    1985-12-15

    This book introduces the process of silicon integrated circuit. It is composed of seven parts, which are oxidation process, diffusion process, ion implantation process such as ion implantation equipment, damage, annealing and influence on manufacture of integrated circuit and device, chemical vapor deposition process like silicon Epitaxy LPCVD and PECVD, photolithography process, including a sensitizer, spin, harden bake, reflection of light and problems related process, infrared light bake, wet-etch, dry etch, special etch and problems of etching, metal process like metal process like metal-silicon connection, aluminum process, credibility of aluminum and test process.

  18. Study on underground-water restoration of acid in-situ leaching process with electrodialytic desalination

    International Nuclear Information System (INIS)

    Huang Chongyuan; Meng Jin; Li Weicai

    2003-01-01

    The study focus undergrounder water restoration of acid in-situ leaching process with electrodialysis desalination in Yining Uranium Mine. It is shown in field test that electrodialysis desalination is an effective method for underground water restoration of acid in-situ leaching process. When TDS of underground-water at the decommissioning scope is 10-12 g/L, and TDS will be less than 1 g/L after the desalination process, the desalination rate is more than 90%, freshwater recovery 60%-70%, power consumption for freshwater recovery 5 kW·h/m 3 , the distance of the desalination flow 12-13 m, current efficiency 80%, and the throughput of the twin membrane 0.22-0.24 m 3 /(m 2 ·d)

  19. In situ ice and structure thickness monitoring using integrated and flexible ultrasonic transducers

    International Nuclear Information System (INIS)

    Liu, Q; Wu, K-T; Kobayashi, M; Jen, C-K; Mrad, N

    2008-01-01

    Two types of ultrasonic sensors are presented for in situ capability development of ice detection and structure thickness measurement. These piezoelectric film based sensors have been fabricated by a sol–gel spray technique for aircraft environments and for temperatures ranging from −80 to 100 °C. In one sensor type, piezoelectric films of thickness greater than 40 µm are deposited directly onto the interior of a 1.3 mm thick aluminum (Al) alloy control surface (stabilizer) of an aircraft wing structure as integrated ultrasonic transducers (UTs). In the other sensor type, piezoelectric films are coated onto a 50 µm thick polyimide membrane as flexible UTs. These were subsequently glued onto similar locations at the same control surfaces. In situ monitoring of stabilizer outer skin thickness was performed. Ice build-up ranging from a fraction of 1 mm to less than 1.5 mm was also detected on a 3 mm thick Al plate. Measurements using these ultrasonic sensors agreed well with those obtained by a micrometer. Tradeoffs of these two approaches are presented

  20. Integration of pneumatic fracturing and in situ vitrification in the soil subsurface

    International Nuclear Information System (INIS)

    Luey, J.; Seiler, D.K.; Schuring, J.R.

    1995-02-01

    Pacific Northwest Laboratory is evaluating ways to increase the applicability of the in situ vitrification (ISV) process at hazardous and radioactive waste sites. One innovation is the placement of a conductive material that will facilitate initiating the ISV process at a target depth. A series of laboratory tests performed at the New Jersey Institute of Technology (NJIT) assessed the feasibility of pneumatic fracturing (PF) in the highly permeable soils of the Hanford Site. The NJIT tests included an analysis of Hanford soils, a series of PF injection tests, and a parametric analysis to determine how soil properties affect the PF process. Results suggest that the PF process can be applied to Hanford soils and that dry medium (e.g., conductive material such as graphite flake) can be injected into the fracture. This paper describes the laboratory testing performed at NJIT, its results, and the application of those results to plans for a field demonstration at Hanford

  1. In situ characterization of the nitridation of dysprosium during mechanochemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Jaques, Brian J.; Osterberg, Daniel D.; Alanko, Gordon A.; Tamrakar, Sumit; Smith, Cole R.; Hurley, Michael F.; Butt, Darryl P., E-mail: DarrylButt@BoiseState.edu

    2015-01-15

    Highlights: • A nitridation reaction in a high energy planetary ball mill was monitored in situ. • Dysprosium mononitride was synthesized from Dy at low temperatures in short times. • Ideal gas law and in situ temperature and pressure used to assess reaction extent. • It is proposed that reaction rate is proportional to the creation of new surface. - Abstract: Processing of advanced nitride ceramics traditionally requires long durations at high temperatures and, in some cases, in hazardous atmospheres. In this study, dysprosium mononitride (DyN) was rapidly formed from elemental dysprosium in a closed system at ambient temperatures. An experimental procedure was developed to quantify the progress of the nitridation reaction during mechanochemical processing in a high energy planetary ball mill (HEBM) as a function of milling time and intensity using in situ temperature and pressure measurements, SEM, XRD, and particle size analysis. No intermediate phases were formed. It was found that the creation of fresh dysprosium surfaces dictates the rate of the nitridation reaction, which is a function of milling intensity and the number of milling media. These results show clearly that high purity nitrides can be synthesized with short processing times at low temperatures in a closed system requiring a relatively small processing footprint.

  2. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale....... This incorporates fourteen pseudo components and fourteen reactions (distributed amongst thermal cracking, low temperature oxidation and high temperature oxidation). The paper presents a set of derivative plots indicating that reservoir process characterization in terms of thermal behavior of oil can be well...... construed in terms of thermo-oxidative sensitivity of SARA fractions. It can be interpreted from the results that operating parameters like air injection rate, oxygen feed concentration and activation energy have significant influence on oil recovery; an increase in air injection rate can lead to cooling...

  3. Integrated modelling of enhanced in situ biodenitrification in a fractured aquifer: biogeochemistry and isotope geochemistry

    Science.gov (United States)

    Rodríguez-Escales, Paula; Folch, Albert; van Breukelen, Boris M.; Vidal-Gavilan, Georgina; Soler, Albert

    2014-05-01

    Enhanced in-situ biodenitrification is a feasible technology to recovery groundwater polluted by nitrates and achieves drinking water standards. Under optimum conditions, nitrate is reduced by autochthonous bacteria trough different reactions until arrive to harmless dinitrogen gas. Isotopic fractionation monitoring in field applications allows knowing the exact degree and the real scope of this technology. Using the Rayleigh equation the change in the isotope ratio of the nitrate molecule (δ15N-NO3-, δ18O-NO3-) is related to the fraction of molecules remaining as a result of biodenitrification. However, Rayleigh application at field scale is sometimes limited due to other processes involved during groundwater flow such as dispersion or adsorption and geological media heterogeneities that interferes in concentration values. Then, include isotope fractionation processes in reactive transport models is a useful tool to interpret and predict data from in-situ biodenitrification. We developed a reactive transport model of enhanced in situ application at field scale in a fractured aquifer that considers biogeochemical processes as well as isotope fractionation to enable better monitoring and management of this technology. Processes considered were: microbiological- exogenous and endogenous nitrate and sulfate respiration coupled with microbial growth and decay, geochemical reactions (precipitation of calcite) and isotopic fractionation (δ15N-NO3-; δ18O- NO3- and carbon isotope network). The 2-D simulations at field scale were developed using PHAST code. Modeling of nitrate isotope geochemistry has allowed determining the extent of biodenitrification in model domain. We have quantified which is the importance in decreasing of nitrate concentrations due to biodegradation (percentage of biodegradation, 'B%') and due to dilution process (percentage of dilution, 'D%'). On the other hand, the stable carbon isotope geochemistry has been modeled. We have considered the

  4. Design of Hybrid Steam-In Situ Combustion Bitumen Recovery Processes

    International Nuclear Information System (INIS)

    Yang Xiaomeng; Gates, Ian D.

    2009-01-01

    Given enormous capital costs, operating expenses, flue gas emissions, water treatment and handling costs of thermal in situ bitumen recovery processes, improving the overall efficiency by lowering energy requirements, environmental impact, and costs of these production techniques is a priority. Steam-assisted gravity drainage (SAGD) is the most widely used in situ recovery technique in Athabasca reservoirs. Steam generation is done on surface and consequently, because of heat losses, the energy efficiency of SAGD can never be ideal with respect to the energy delivered to the sandface. An alternative to surface steam generation is in situ combustion (ISC) where heat is generated within the formation through injection of oxygen at a sufficiently high pressure to initiate combustion of bitumen. In this manner, the heat from the combustion reactions can be used directly to mobilize the bitumen. As an alternative, the heat can be used to generate steam within the formation which then is the agent to move heat in the reservoir. In this research, alternative hybrid techniques with simultaneous and sequential steam-oxygen injection processes are examined to maximize the thermal efficiency of the recovery process. These hybrid processes have the advantage that during ISC, steam is generated within the reservoir from injected and formation water and as a product of oxidation. This implies that ex situ steam generation requirements are reduced and if there is in situ storage of combustion gases, that overall gas emissions are reduced. In this research, detailed reservoir simulations are done to examine the dynamics of hybrid processes to enable design of these processes. The results reveal that hybrid processes can lower emitted carbon dioxide-to-oil ratio by about 46%, decrease the consumed natural gas-to-oil ratio by about 73%, reduce the cumulative energy-to-oil ratio by between 40% and 70% compared to conventional SAGD, and drop water consumption per unit oil produced

  5. In-situ electrical analysis in view of monitoring the processing of thermoplastics

    Science.gov (United States)

    Gonnet, J. M.; Guillet, J.; Ainser, A.; Boiteux, G.; Fulchiron, R.; Seytre, Gerard

    1999-12-01

    In the last recent years, electrical techniques like microdielectrometry have presented an attracting and increasing interest for continuous monitoring, in a nondestructive way, of the advancement of the reaction of thermoset resins under cure. We think that the use of electrical analysis for in situ monitoring of chemical reactions can be extended to get information on thermoplastic and the physical phenomena such sa crystallization or study of residence time distribution in processing machines such as extruders.

  6. Cluster tool for in situ processing and comprehensive characteriza tion of thin films at high temperatures.

    Science.gov (United States)

    Wenisch, Robert; Lungwitz, Frank; Hanf, Daniel; Heller, Rene; Zscharschuch, Jens; Hübner, René; von Borany, Johannes; Abrasonis, Gintautas; Gemming, Sibylle; Escobar-Galindo, Ramon; Krause, Matthias

    2018-05-31

    A new cluster tool for in situ real-time processing and depth-resolved compositional, structural and optical characterization of thin films at temperatures from -100 to 800 °C is described. The implemented techniques comprise magnetron sputtering, ion irradiation, Rutherford backscattering spectrometry, Raman spectroscopy and spectroscopic ellipsometry. The capability of the cluster tool is demonstrated for a layer stack MgO/ amorphous Si (~60 nm)/ Ag (~30 nm), deposited at room temperature and crystallized with partial layer exchange by heating up to 650°C. Its initial and final composition, stacking order and structure were monitored in situ in real time and a reaction progress was defined as a function of time and temperature.

  7. Seismic monitoring of in situ combustion process in a heavy oil field

    International Nuclear Information System (INIS)

    Zadeh, Hossein Mehdi; Srivastava, Ravi P; Vedanti, Nimisha; Landrø, Martin

    2010-01-01

    Three time-lapse 3D seismic surveys are analysed to monitor the effect of in situ combustion, a thermal-enhanced oil recovery process in the Balol heavy oil reservoir in India. The baseline data were acquired prior to the start of the in situ combustion process in four injection wells, while the two monitor surveys were acquired 1 and 2 years after injection start, respectively. We present the results of baseline and second monitor surveys. Fluid substitution studies based on acoustic well logs predict a seismic amplitude decrease at the top reservoir and an increase at the base reservoir. Both the amplitude dimming at the top reservoir and the brightening at the base reservoir are observed in the field data. The extent of the most pronounced 4D anomaly is estimated from the seismic amplitude and time shift analysis. The interesting result of seismic analysis is that the anomalies are laterally shifted towards the northwest, rather than the expected east, from the injector location suggesting a northwest movement of the in situ combustion front. No clear evidence of air leakage into other sand layers, neither above nor below the reservoir sand, is observed. This does not necessarily mean that all the injected air is following the reservoir sand, especially if the thief sand layers are thin. These layers might be difficult to observe on seismic data

  8. Integrated Renovation Process

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    2016-01-01

    renovation to be overcome. The homeowners were better integrated and their preferences and immaterial values were better taken into account. To keep the decision-making process economically viable and timely, the process as known today still needs to be improved, and new tools need to be developed....... This paper presents a new scheme: the integrated renovation process. One successful case study is introduced, and recommendations for future developments needed in the field are provided....

  9. In-Situ Simulation

    DEFF Research Database (Denmark)

    Bjerregaard, Anders Thais; Slot, Susanne; Paltved, Charlotte

    2015-01-01

    , and organisational characteristic. Therefore, it might fail to fully mimic real clinical team processes. Though research on in situ simulation in healthcare is in its infancy, literature is abundant on patient safety and team training1. Patient safety reporting systems that identify risks to patients can improve......Introduction: In situ simulation offers on-site training to healthcare professionals. It refers to a training strategy where simulation technology is integrated into the clinical encounter. Training in the simulation laboratory does not easily tap into situational resources, e.g. individual, team...... patient safety if coupled with training and organisational support. This study explored the use of critical incidents and adverse events reports for in situ simulation and short-term observations were used to create learning objectives and training scenarios. Method: This study used an interventional case...

  10. In Situ Integration of Anisotropic SnO₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage.

    Science.gov (United States)

    Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli

    2015-12-02

    Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.

  11. Manufacturing technology of integrated textile-based sensor networks for in situ monitoring applications of composite wind turbine blades

    Science.gov (United States)

    Haentzsche, Eric; Mueller, Ralf; Huebner, Matthias; Ruder, Tristan; Unger, Reimar; Nocke, Andreas; Cherif, Chokri

    2016-10-01

    Based on in situ strain sensors consisting of piezo-resistive carbon filament yarns (CFYs), which have been successfully integrated into textile reinforcement structures during their textile-technological manufacturing process, a continuous load of fibre-reinforced plastic (FRP) components has been realised. These sensors are also suitable for structural health monitoring (SHM) applications. The two-dimensional sensor layout is made feasible by the usage of a modular warp yarn path manipulation unit. Using a functional model of a small wind turbine blade in thermoset composite design, the sensor function for basic SHM applications (e.g. static load monitoring) are demonstrated. Any mechanical loads along the pressure or suction side of the wind turbine blade can be measured and calculated via a correlative change in resistance of the CFYs within the textile reinforcement plies. Performing quasi-static load tests on both tensile specimen and full-scale wind turbine blade, elementary results have been obtained concerning electro-mechanical behaviour and spatial resolution of global and even local static stresses according to the CFY sensor integration length. This paper demonstrates the great potential of textile-based and textile-technological integrated sensors in reinforcement structures for future SHM applications of FRPs.

  12. In Situ Fringe Projection Profilometry for Laser Power Bed Fusion Process

    Science.gov (United States)

    Zhang, Bin

    Additive manufacturing (AM) offers an industrial solution to produce parts with complex geometries and internal structures that conventional manufacturing techniques cannot produce. However, current metal additive process, particularly the laser powder bed fusion (LPBF) process, suffers from poor surface finish and various material defects which hinder its wide applications. One way to solve this problem is by adding in situ metrology sensor onto the machine chamber. Matured manufacturing processes are tightly monitored and controlled, and instrumentation advances are needed to realize this same advantage for metal additive process. This encourages us to develop an in situ fringe projection system for the LPBF process. The development of such a system and the measurement capability are demonstrated in this dissertation. We show that this system can measure various powder bed signatures including powder layer variations, the average height drop between fused metal and unfused powder, and the height variations on the fused surfaces. The ability to measure textured surface is also evaluated through the instrument transfer function (ITF). We analyze the mathematical model of the proposed fringe projection system, and prove the linearity of the system through simulations. A practical ITF measurement technique using a stepped surface is also demonstrated. The measurement results are compared with theoretical predictions generated through the ITF simulations.

  13. Novel in situ mechanical testers to enable integrated metal surface micro-machines.

    Energy Technology Data Exchange (ETDEWEB)

    Follstaedt, David Martin; de Boer, Maarten Pieter; Kotula, Paul Gabriel; Hearne, Sean Joseph; Foiles, Stephen Martin; Buchheit, Thomas Edward; Dyck, Christopher William

    2005-10-01

    The ability to integrate metal and semiconductor micro-systems to perform highly complex functions, such as RF-MEMS, will depend on developing freestanding metal structures that offer improved conductivity, reflectivity, and mechanical properties. Three issues have prevented the proliferation of these systems: (1) warpage of active components due to through-thickness stress gradients, (2) limited component lifetimes due to fatigue, and (3) low yield strength. To address these issues, we focus on developing and implementing techniques to enable the direct study of the stress and microstructural evolution during electrodeposition and mechanical loading. The study of stress during electrodeposition of metal thin films is being accomplished by integrating a multi-beam optical stress sensor into an electrodeposition chamber. By coupling the in-situ stress information with ex-situ microstructural analysis, a scientific understanding of the sources of stress during electrodeposition will be obtained. These results are providing a foundation upon which to develop a stress-gradient-free thin film directly applicable to the production of freestanding metal structures. The issues of fatigue and yield strength are being addressed by developing novel surface micromachined tensile and bend testers, by interferometry, and by TEM analysis. The MEMS tensile tester has a ''Bosch'' etched hole to allow for direct viewing of the microstructure in a TEM before, during, and after loading. This approach allows for the quantitative measurements of stress-strain relations while imaging dislocation motion, and determination of fracture nucleation in samples with well-known fatigue/strain histories. This technique facilitates the determination of the limits for classical deformation mechanisms and helps to formulate a new understanding of the mechanical response as the grain sizes are refined to a nanometer scale. Together, these studies will result in a science

  14. AVARIS - AREVA Valve Repair in-Situ. Innovative technology and processes

    International Nuclear Information System (INIS)

    Schultz, Ch.

    2012-01-01

    Concept of in-situ welding and turning machine is explained. The AVARIS processes are: Disassembly Evaluation Turning Welding Finish turning Penetration test Grinding Reassembly Result - The seats are within the dimensional and hardness tolerances. The repaired valves with AVARIS as in the case of Isar 2 in 2010 did not show any indications after one year in operation Advantages: Development based on an approved and safe technology; Capability for improving and/or modification of the hardfacing material according to specific system conditions; Minimization of dose exposure (ALARA)

  15. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    Science.gov (United States)

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  16. In-situ observation of atomic self-organization processes in Xe nanocrystals embedded in Al

    International Nuclear Information System (INIS)

    Mitsuishi, K.; Song, M.; Furuya, K.; Birtcher, R. C.; Allen, C. W.; Donnelly, S. E.

    1998-01-01

    Self-organization processes in Xe nanocrystals embedded in Al are observed with in-situ high-resolution electron microscopy. Under electron irradiation, stacking fault type defects are produced in Xe nanocrystals. The defects recover in a layer by layer manner. Detailed analysis of the video reveals that the displacement of Xe atoms in the stacking fault was rather small for the Xe atoms at boundary between Xe and Al, suggesting the possibility of the stacking fault in Xe precipitate originating inside of precipitate, not at the Al/Xe interface

  17. In situ 3D nanoprinting of free-form coupling elements for hybrid photonic integration

    Science.gov (United States)

    Dietrich, P.-I.; Blaicher, M.; Reuter, I.; Billah, M.; Hoose, T.; Hofmann, A.; Caer, C.; Dangel, R.; Offrein, B.; Troppenz, U.; Moehrle, M.; Freude, W.; Koos, C.

    2018-04-01

    Hybrid photonic integration combines complementary advantages of different material platforms, offering superior performance and flexibility compared with monolithic approaches. This applies in particular to multi-chip concepts, where components can be individually optimized and tested. The assembly of such systems, however, requires expensive high-precision alignment and adaptation of optical mode profiles. We show that these challenges can be overcome by in situ printing of facet-attached beam-shaping elements. Our approach allows precise adaptation of vastly dissimilar mode profiles and permits alignment tolerances compatible with cost-efficient passive assembly techniques. We demonstrate a selection of beam-shaping elements at chip and fibre facets, achieving coupling efficiencies of up to 88% between edge-emitting lasers and single-mode fibres. We also realize printed free-form mirrors that simultaneously adapt beam shape and propagation direction, and we explore multi-lens systems for beam expansion. The concept paves the way to automated assembly of photonic multi-chip systems with unprecedented performance and versatility.

  18. In situ vitrification: Test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Bonner, W.F.

    1989-04-01

    Pacific Northwest Laboratory (PNL) is developing in situ vitrification (ISV), a remedial action process for treating contaminated soils. In situ vitrification is a thermal treatment process that converts contaminated soil into a chemically inert and stable glass and crystalline product. Figure 1 depicts the process. A square array of four molybdenum/graphite electrodes is inserted into the ground to the desired treatment depth. Because soil is not electrically conductive when the moisture has been driven off, a conductive mixture of flaked graphite and glass frit is placed between the pairs of electrodes as a starter path. An electrical potential is applied to the electrodes to establish an electric current in the starter path. The resultant power heats the starter path and surrounding soil to 2000 degree C, well above the initial soil-melting temperature of 1100 to 1400 degree C. The graphite starter path is eventually consumed by oxidation, and the current is transferred to the molten soil, which is electrically conductive. As the molten or vitrified zone grows, it incorporates radionuclides and nonvolatile hazardous elements, such as heavy metals, and destroys organic components by pyrolysis. The pyrolyzed byproducts migrate to the surface of the vitrified zone, where they burn in the presence of oxygen. A hood placed over the area being vitrified directs the gaseous effluents to an off-gas treatment system. 5 refs., 1 fig., 1 tab

  19. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  20. In Situ Vitrification: Recent test results for a contaminated soil melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1988-06-01

    In Situ Vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy and other clients for the stabilization of soils and sludges contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product that is similar to obsidian. In June 1987, a large-scale test of the process was completed at a transuranic- contaminated soil site. This constituted the first full-scale demonstration of the ISV process at an actual site. This paper summarizes the preliminary results of this test and describes the processes' potential adaptation to radioactive and hazardous chemical waste contaminated soils. 10 refs., 10 figs

  1. Discrete magic angle turning system, apparatus, and process for in situ magnetic resonance spectroscopy and imaging

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Sears, Jr., Jesse A.; Hoyt, David W [Richland, WA; Wind, Robert A [Kennewick, WA

    2009-05-19

    Described are a "Discrete Magic Angle Turning" (DMAT) system, devices, and processes that combine advantages of both magic angle turning (MAT) and magic angle hopping (MAH) suitable, e.g., for in situ magnetic resonance spectroscopy and/or imaging. In an exemplary system, device, and process, samples are rotated in a clockwise direction followed by an anticlockwise direction of exactly the same amount. Rotation proceeds through an angle that is typically greater than about 240 degrees but less than or equal to about 360 degrees at constant speed for a time applicable to the evolution dimension. Back and forth rotation can be synchronized and repeated with a special radio frequency (RF) pulse sequence to produce an isotropic-anisotropic shift 2D correlation spectrum. The design permits tubes to be inserted into the sample container without introducing plumbing interferences, further allowing control over such conditions as temperature, pressure, flow conditions, and feed compositions, thus permitting true in-situ investigations to be carried out.

  2. A combined process coupling phytoremediation and in situ flushing for removal of arsenic in contaminated soil.

    Science.gov (United States)

    Yan, Xiulan; Liu, Qiuxin; Wang, Jianyi; Liao, Xiaoyong

    2017-07-01

    Phytoremediation and soil washing are both potentially useful for remediating arsenic (As)-contaminated soils. We evaluated the effectiveness of a combined process coupling phytoremediation and in situ soil flushing for removal of As in contaminated soil through a pilot study. The results showed that growing Pteris vittata L. (P.v.) accompanied by soil flushing of phosphate (P.v./Flushing treatment) could significantly decrease the total As concentration of soil over a 37day flushing period compared with the single flushing (Flushing treatment). The P.v./Flushing treatment removed 54.04% of soil As from contaminated soil compared to 47.16% in Flushing treatment, suggesting that the growth of P. vittata was beneficial for promoting the removal efficiency. We analyzed the As fractionation in soil and As concentration in soil solution to reveal the mechanism behind this combined process. Results showed that comparing with the control treatment, the percent of labile arsenate fraction significantly increased by 17% under P.v./Flushing treatment. As concentration in soil solution remained a high lever during the middle and later periods (51.26-56.22mg/L), which was significantly higher than the Flushing treatment. Although soil flushing of phosphate for more than a month, P. vittata still had good accumulation and transfer capacity of As of the soil. The results of the research revealed that combination of phytoremediation and in situ soil flushing is available to remediate As-contaminated soils. Copyright © 2016. Published by Elsevier B.V.

  3. Why in situ, real-time characterization of thin film growth processes?

    International Nuclear Information System (INIS)

    Auciello, O.; Krauss, A.R.

    1995-01-01

    Since thin-film growth occurs at the surface, the analytical methods should be highly surface-specific. although subsurface diffusion and chemical processes also affect film properties. Sampling depth and ambient-gas is compatibility are key factors which must be considered when choosing in situ probes of thin-film growth phenomena. In most cases, the sampling depth depends on the mean range of the exit species (ion, photon, or electron) in the sample. The techniques that are discussed in this issue of the MRS Bulletin (1) have been chosen because they may be used for in situ, real-time analysis of film-growth phenomena in vacuum and in the presence of ambient gases resulting either from the deposition process or as a requirement for the production of the desired chemical phase. A second criterion for inclusion is that the instrumentation be sufficiently compact and inexpensive to permit use as a dedicated tool in a thin-film deposition system

  4. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process

    International Nuclear Information System (INIS)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-01-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO 3 ) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO 3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO 3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO 3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO 3 content incorporation. The CaCO 3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO 3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO 3 hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO 3 bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO 3 incorporated into the BNC decreased crystallinity.

  5. Identification of chemical processes influencing constituent mobility during in-situ uranium leaching

    International Nuclear Information System (INIS)

    Sherwood, D.R.; Hostetler, C.J.; Deutsch, W.J.

    1984-07-01

    In-situ leaching of uranium has become a widely accepted method for production of uranium concentrate from ore zones that are too small, too deep, and/or too low in grade to be mined by conventional techniques. One major environmental concern that exists with in-situ leaching of uranium is the possible adverse effects mining might have on regional ground water quality. The leaching solution (lixiviant), which extracts uranium from the ore zone, might also mobilize other potential contaminants (As, Se, Mo, and SO 4 ) associated with uranium ore. Column experiments were performed to investigate the geochemical interactions between a lixiviant and a uranium ore during in-situ leaching and to identify chemical processes that might influence contaminant mobility. The analytical composition data for selected column effluents were used with the MINTEQ code to develop a computerized geochemical model of the system. MINTEQ was used to calculate saturation indices for solid phases based on the composition of the solution. A potential constraint on uranium leaching efficiency appears to be the solubility control of schoepite. Gypsum and powellite solubilities may limit the mobilities of sulfate and molybdenum, respectively. In contrast, the mobilities of arsenic and selenium were not limited by solubility constraints, but were influenced by other chemical interaction between the solution and sediment, perhaps adsorption. Bulk chemical and mineralogical analyses were performed on both the original and leached ores. Using these analyses together with the column effluent data, mass balance calculations were performed on five constituents based on solution chemical analysis and bulk chemical and γ-spectroscopy analysis for the sediment. 6 references, 10 figures, 10 tables

  6. In situ vitrification: Test results for a contaminated soil-melting process

    International Nuclear Information System (INIS)

    Buelt, J.L.; Timmerman, C.L.; Westsik, J.H. Jr.

    1989-10-01

    In situ vitrification (ISV) is being developed at Pacific Northwest Laboratory for the Department of Energy to stabilize soils and sludges that are contaminated with radioactive and hazardous chemical wastes. ISV is a process that immobilizes contaminated soil in place by converting it to a durable glass and crystalline product similar to obsidian and basalt. In June 1987, a large-scale test of the process was completed at a transuranic-contaminated soil site. The test constituted the first full-scale demonstration of ISV at an actual site. This paper summarizes the results of that test and describes the potential adaptation of the process to radioactive and hazardous chemical waste-contaminated soils. 15 refs., 9 figs., 3 tabs

  7. Integrating spatial and temporal oxygen data to improve the quantification of in situ petroleum biodegradation rates.

    Science.gov (United States)

    Davis, Gregory B; Laslett, Dean; Patterson, Bradley M; Johnston, Colin D

    2013-03-15

    Accurate estimation of biodegradation rates during remediation of petroleum impacted soil and groundwater is critical to avoid excessive costs and to ensure remedial effectiveness. Oxygen depth profiles or oxygen consumption over time are often used separately to estimate the magnitude and timeframe for biodegradation of petroleum hydrocarbons in soil and subsurface environments. Each method has limitations. Here we integrate spatial and temporal oxygen concentration data from a field experiment to develop better estimates and more reliably quantify biodegradation rates. During a nine-month bioremediation trial, 84 sets of respiration rate data (where aeration was halted and oxygen consumption was measured over time) were collected from in situ oxygen sensors at multiple locations and depths across a diesel non-aqueous phase liquid (NAPL) contaminated subsurface. Additionally, detailed vertical soil moisture (air-filled porosity) and NAPL content profiles were determined. The spatial and temporal oxygen concentration (respiration) data were modeled assuming one-dimensional diffusion of oxygen through the soil profile which was open to the atmosphere. Point and vertically averaged biodegradation rates were determined, and compared to modeled data from a previous field trial. Point estimates of biodegradation rates assuming no diffusion ranged up to 58 mg kg(-1) day(-1) while rates accounting for diffusion ranged up to 87 mg kg(-1) day(-1). Typically, accounting for diffusion increased point biodegradation rate estimates by 15-75% and vertically averaged rates by 60-80% depending on the averaging method adopted. Importantly, ignoring diffusion led to overestimation of biodegradation rates where the location of measurement was outside the zone of NAPL contamination. Over or underestimation of biodegradation rate estimates leads to cost implications for successful remediation of petroleum impacted sites. Crown Copyright © 2013. Published by Elsevier Ltd. All rights

  8. Reinforcement of LENRA film by in-situ generated silica produced by sol gel process

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Eda Yuhana Ariffin; Dahlan Mohd; Ibrahim Abdullah

    2008-08-01

    Liquid epoxidised natural rubber acrylate (LENRA) film was reinforced with silica-siloxane structures formed in-situ via sol gel process. Combination of these two components produces organic-inorganic composites. Tetraethylorthosilicate (TEOS) was used as precursor material for silica generation. Sol gel reaction was carried out at different concentrations of TEOS i.e. between 10 and 50 phr. Instrumental analysis was carried out by dynamic mechanical analysis (DMA), thermogravimetry analysis (TGA) and FTIR. It was found that miscibility between organic and inorganic components improved with the presence of silanol groups (Si-OH) and polar solvent i.e. THF, via hydrogen bonding formation between siloxane and LENRA. In this work, the effects of TEOS composition on mechanical properties and interaction that occurs between fillers and matrix have also been studied. It was observed that increasing the concentration of TEOS improved the scratch and stress properties of the film. Morphology study by the scanning electron microscopy (SEM) showed in-situ generated silica particles were homogenous and well dispersed at low concentrations of TEOS. (Author)

  9. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint.

    Science.gov (United States)

    Richter, Lee J; DeLongchamp, Dean M; Amassian, Aram

    2017-05-10

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  10. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint

    KAUST Repository

    Richter, Lee J.

    2017-04-17

    Solution-processed organic films are a facile route to high-speed, low cost, large-area deposition of electrically functional components (transistors, solar cells, emitters, etc.) that can enable a diversity of emerging technologies, from Industry 4.0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations. In this Review, we highlight insights into the fundamentals of solution-based film deposition afforded by recent state-of-the-art in situ measurements of functional film drying. Emphasis is placed on multimodal studies that combine surface-sensitive X-ray scattering (GIWAXS or GISAXS) with optical characterization to clearly define the evolution of solute structure (aggregation, crystallinity, and morphology) with film thickness.

  11. In situ characterization of uranium and americium oxide solid solution formation for CRMP process: first combination of in situ XRD and XANES measurements.

    Science.gov (United States)

    Caisso, Marie; Picart, Sébastien; Belin, Renaud C; Lebreton, Florent; Martin, Philippe M; Dardenne, Kathy; Rothe, Jörg; Neuville, Daniel R; Delahaye, Thibaud; Ayral, André

    2015-04-14

    Transmutation of americium in heterogeneous mode through the use of U1-xAmxO2±δ ceramic pellets, also known as Americium Bearing Blankets (AmBB), has become a major research axis. Nevertheless, in order to consider future large-scale deployment, the processes involved in AmBB fabrication have to minimize fine particle dissemination, due to the presence of americium, which considerably increases the risk of contamination. New synthesis routes avoiding the use of pulverulent precursors are thus currently under development, such as the Calcined Resin Microsphere Pelletization (CRMP) process. It is based on the use of weak-acid resin (WAR) microspheres as precursors, loaded with actinide cations. After two specific calcinations under controlled atmospheres, resin microspheres are converted into oxide microspheres composed of a monophasic U1-xAmxO2±δ phase. Understanding the different mechanisms during thermal conversion, that lead to the release of organic matter and the formation of a solid solution, appear essential. By combining in situ techniques such as XRD and XAS, it has become possible to identify the key temperatures for oxide formation, and the corresponding oxidation states taken by uranium and americium during mineralization. This paper thus presents the first results on the mineralization of (U,Am) loaded resin microspheres into a solid solution, through in situ XAS analysis correlated with HT-XRD.

  12. The Integrated Renovation Process

    DEFF Research Database (Denmark)

    Galiotto, Nicolas

    and constructivist multiple criteria decision-making analysis method is selected for developing the work further. The method is introduced and applied to the renovation of a multi-residential historic building. Furthermore, a new scheme, the Integrated Renovation Process, is presented. Finally, the methodology...... is applied to two single-family homes. In practice, such a scheme allowed most informational barriers to sustainable home renovation to be overcome. The homeowners were better integrated and their preferences and immaterial values were better taken into account. They assimilated the multiple benefits...... to keep the decision making process economically viable and timely, the process still needs to be improved and new tools need to be developed....

  13. Nano integrated circuit process

    International Nuclear Information System (INIS)

    Yoon, Yung Sup

    2004-02-01

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  14. Nano integrated circuit process

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Yung Sup

    2004-02-15

    This book contains nine chapters, which are introduction of manufacture of semiconductor chip, oxidation such as Dry-oxidation, wet oxidation, oxidation model and oxide film, diffusion like diffusion process, diffusion equation, diffusion coefficient and diffusion system, ion implantation, including ion distribution, channeling, multiimplantation and masking and its system, sputtering such as CVD and PVD, lithography, wet etch and dry etch, interconnection and flattening like metal-silicon connection, silicide, multiple layer metal process and flattening, an integrated circuit process, including MOSFET and CMOS.

  15. Integrating atomic layer deposition and ultra-high vacuum physical vapor deposition for in situ fabrication of tunnel junctions

    Energy Technology Data Exchange (ETDEWEB)

    Elliot, Alan J., E-mail: alane@ku.edu, E-mail: jwu@ku.edu; Malek, Gary A.; Lu, Rongtao; Han, Siyuan; Wu, Judy Z., E-mail: alane@ku.edu, E-mail: jwu@ku.edu [Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045 (United States); Yu, Haifeng; Zhao, Shiping [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-07-15

    Atomic Layer Deposition (ALD) is a promising technique for growing ultrathin, pristine dielectrics on metal substrates, which is essential to many electronic devices. Tunnel junctions are an excellent example which require a leak-free, ultrathin dielectric tunnel barrier of typical thickness around 1 nm between two metal electrodes. A challenge in the development of ultrathin dielectric tunnel barriers using ALD is controlling the nucleation of dielectrics on metals with minimal formation of native oxides at the metal surface for high-quality interfaces between the tunnel barrier and metal electrodes. This poses a critical need for integrating ALD with ultra-high vacuum (UHV) physical vapor deposition. In order to address these challenges, a viscous-flow ALD chamber was designed and interfaced to an UHV magnetron sputtering chamber via a load lock. A sample transportation system was implemented for in situ sample transfer between the ALD, load lock, and sputtering chambers. Using this integrated ALD-UHV sputtering system, superconductor-insulator-superconductor (SIS) Nb-Al/Al{sub 2}O{sub 2}/Nb Josephson tunnel junctions were fabricated with tunnel barriers of thickness varied from sub-nm to ∼1 nm. The suitability of using an Al wetting layer for initiation of the ALD Al{sub 2}O{sub 3} tunnel barrier was investigated with ellipsometry, atomic force microscopy, and electrical transport measurements. With optimized processing conditions, leak-free SIS tunnel junctions were obtained, demonstrating the viability of this integrated ALD-UHV sputtering system for the fabrication of tunnel junctions and devices comprised of metal-dielectric-metal multilayers.

  16. Understanding aquatic microbial processes using EEM's and in-situ fluorescence sensors

    Science.gov (United States)

    Fox, Bethany; Attridge, John; Rushworth, Cathy; Cox, Tim; Anesio, Alexandre; Reynolds, Darren

    2015-04-01

    The diverse origin of dissolved organic matter (DOM) in aquatic systems is well documented within the literature. Previous literature indicates that coloured dissolved organic matter (CDOM) is, in part, transformed by aquatic microbial processes, and that dissolved organic material derived from a microbial origin exhibits tryptophan-like fluorescence. However, this phenomenon is not fully understood and very little data is available within the current literature. The overall aim of our work is to reveal the microbial-CDOM interactions that give rise to the observed tryptophan-like fluorescence. The work reported here investigates the microbial processes that occur within freshwater aquatic samples, as defined by the biochemical oxygen demand (BOD) test, as a function of the T1 peak (λex/em 280/330-370 nm). A series of standard water samples were prepared using glucose, glutamic acid, BOD dilution water and a bacterial seed (Cole-Parmer BOD microbe capsules). Samples were spiked with CDOM (derived from an environmental water body) and subjected to time resolved BOD analysis and as excitation-emission fluorescence spectroscopy. All EEM spectral data was interrogated using parallel factor analysis (PARAFAC) in an attempt to determine the presence and dominance (relative intensities) of the CDOM-related and T1-related fluorophores within the samples. In-situ fluorescence sensors (Chelsea Technologies Group Ltd.) were also used to monitor the T1 fluorescence peak (UviLux Tryptophan) and the CDOM fluorescence peak (UviLux CDOM) during experiments. Tryptophan-like fluorescence was observed (albeit transient) in both spiked and un-spiked standard water samples. By furthering our understanding of aquatic organic matter fluorescence, its origin, transformation, fate and interaction with aquatic microbiological processes, we aim to inform the design of a new generation in-situ fluorescence sensor for the monitoring of aquatic ecosystem health.

  17. Evaluation of the in situ, time-integrated DGT technique by monitoring changes in heavy metal concentrations in estuarine waters

    International Nuclear Information System (INIS)

    Dunn, R.J.K.; Teasdale, P.R.; Warnken, J.; Jordan, M.A.; Arthur, J.M.

    2007-01-01

    Various natural and anthropogenic processes influence heavy metal concentrations within estuaries. In situ, time-integrated DGT measurements made over concurrent tidal phases found significantly higher concentrations of Cu (probability p = 0.017), Zn (p = 0.003) and Ni (p = 0.003) during the flood phase, because the incoming tide passes several point sources. DGT-reactive Cu concentrations significantly decreased with increased tidal-flushing and vice versa within a marina (correlation r = -0.788, p = 0.02). DGT measurements also recorded significant increases in Cu (4 out of 4 sites, p < 0.001) and Zn (3 out of 4 sites, p ≤ 0.015) after a 24 mm rainfall event. Finally, DGT-reactive Cu increased significantly (p < 0.001) during peak boating times, due to increased numbers of Cu-antifouled boats. This study demonstrates that, with judicious selection of deployment times, DGT measurements enable changes in heavy metal concentrations to be related to various cycles and events within estuaries. - Demonstration of the usefulness of DGT as a monitoring tool for heavy metals in dynamic estuaries

  18. Integrated biofuels process synthesis

    DEFF Research Database (Denmark)

    Torres-Ortega, Carlo Edgar; Rong, Ben-Guang

    2017-01-01

    Second and third generation bioethanol and biodiesel are more environmentally friendly fuels than gasoline and petrodiesel, andmore sustainable than first generation biofuels. However, their production processes are more complex and more expensive. In this chapter, we describe a two-stage synthesis......% used for bioethanol process), and steam and electricity from combustion (54%used as electricity) in the bioethanol and biodiesel processes. In the second stage, we saved about 5% in equipment costs and 12% in utility costs for bioethanol separation. This dual synthesis methodology, consisting of a top......-level screening task followed by a down-level intensification task, proved to be an efficient methodology for integrated biofuel process synthesis. The case study illustrates and provides important insights into the optimal synthesis and intensification of biofuel production processes with the proposed synthesis...

  19. In situ product removal in fermentation systems: improved process performance and rational extractant selection.

    Science.gov (United States)

    Dafoe, Julian T; Daugulis, Andrew J

    2014-03-01

    The separation of inhibitory compounds as they are produced in biotransformation and fermentation systems is termed in situ product removal (ISPR). This review examines recent ISPR strategies employing several classes of extractants including liquids, solids, gases, and combined extraction systems. Improvement through the simple application of an auxiliary phase are tabulated and summarized to indicate the breadth of recent ISPR activities. Studies within the past 5 years that have highlighted and have discussed "second phase" properties, and that have an effect on fermentation performance, are particular focus of this review. ISPR, as a demonstrably effective processing strategy, continues to be widely adopted as more applications are explored; however, focus on the properties of extractants and their rational selection based on first principle considerations will likely be key to successfully applying ISPR to more challenging target molecules.

  20. In Situ Spectroscopic Analysis of the Carbothermal Reduction Process of Iron Oxides during Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    Jun Fukushima

    2018-01-01

    Full Text Available The effects of microwave plasma induction and reduction on the promotion of the carbothermal reduction of iron oxides (α-Fe2O3, γ-Fe2O3, and Fe3O4 are investigated using in situ emission spectroscopy measurements during 2.45 GHz microwave processing, and the plasma discharge (such as CN and N2 is measured during microwave E-field irradiation. It is shown that CN gas or excited CN molecules contribute to the iron oxide reduction reactions, as well as to the thermal reduction. On the other hand, no plasma is generated during microwave H-field irradiation, resulting in thermal reduction. Magnetite strongly interacts with the microwave H-field, and the reduction reaction is clearly promoted by microwave H-field irradiation, as well as thermal reduction reaction.

  1. Evaluation Of In Situ Steam-Injection Processes For Reduction Of Petroleum Compounds Within An Abandoned Canal

    Science.gov (United States)

    A conceptual approach of a novel application of in-situ thermal processes that would either use a steam injection process or a steam/surfactant injection process was considered to remediate petroleum contaminated sediment residing in an abandoned canal. Laboratory tests were c...

  2. In-situ water vaporization improves bitumen production during electrothermal processes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J. [Calgary Univ., AB (Canada); McGee, B. [E-T Energy, Calgary, AB (Canada); Kantzas, A. [Calgary Univ., AB (Canada). Tomographic Imaging and Porous Media Laboratory

    2008-10-15

    Electro-thermal processes are now being considered as an alternative or complementary process to steam injection processes. This study used an in situ vaporized water process to optimize electrothermal processes for steam injection enhanced oil recovery (EOR). A simulation tool was used to model electro-thermal processes in an Athabasca oil sands reservoir. Incremental oil recovery was estimated based on a 3-block conceptual model. A field scale model was then used to investigate the effects of electrode spacing, water injection rates, and electrical heating rates on bitumen recovery. Results of the simulation studies were then analyzed using a statistical tool in order to determine optimal conditions for maximizing bitumen production. Results of the study showed that incremental recovery using the water vaporization technique resulted in oil recovery rates of 25 per cent original oil in place (OOIP). Sensitivity analyses showed that medium electrical heating rates, low water injection rates, and small spacings between electrodes maximized bitumen production rates. It was concluded that the technique can be used alone or combined with other methods to economically produce bitumens. 2 refs., 7 tabs., 9 figs.

  3. An Integrated Desgin Process

    DEFF Research Database (Denmark)

    Petersen, Mads Dines; Knudstrup, Mary-Ann

    2010-01-01

    Present paper is placed in the discussion about how sustainable measures are integrated in the design process by architectural offices. It presents results from interviews with four leading Danish architectural offices working with sustainable architecture and their experiences with it, as well...... as the requirements they meet in terms of how to approach the design process – especially focused on the early stages like a competition. The interviews focus on their experiences with working in multidisciplinary teams and using digital tools to support their work with sustainable issues. The interviews show...... the environmental measures cannot be discarded due to extra costs....

  4. An Integrated Design Process

    DEFF Research Database (Denmark)

    Petersen, Mads Dines; Knudstrup, Mary-Ann

    2010-01-01

    Present paper is placed in the discussion about how sustainable measures are integrated in the design process by architectural offices. It presents results from interviews with four leading Danish architectural offices working with sustainable architecture and their experiences with it, as well...... as the requirements they meet in terms of how to approach the design process – especially focused on the early stages like a competition. The interviews focus on their experiences with working in multidisciplinary teams and using digital tools to support their work with sustainable issues. The interviews show...... the environmental measures cannot be discarded due to extra costs....

  5. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    International Nuclear Information System (INIS)

    Liu Wei; He Qing; Li Fengyan; Li Changjian; Sun Yun; Tian Jianguo; Li Zubin

    2009-01-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga–Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses

  6. Novel in situ resistance measurement for the investigation of CIGS growth in a selenization process

    Science.gov (United States)

    Liu, Wei; Tian, Jian-Guo; Li, Zu-Bin; He, Qing; Li, Feng-Yan; Li, Chang-Jian; Sun, Yun

    2009-03-01

    During the selenization process of CIGS thin films, the relation between the element loss rate and the precursor depositions are analyzed. The growth of the CIGS thin films during the selenization process is investigated by the novel in situ resistance measurement, by which the formation of compound semiconductors can be observed directly and simultaneously. Their structures, phase evolutions and element losses are analyzed by XRD and XRF. Based on the experimental results, it can be concluded that the phase transforms have nothing to do with the deposition sequences of precursors, while the element loss rates are related to the deposition sequences in this process. In addition, element loss mechanisms of CIGS thin films prepared by the selenization process are analyzed by the phase evolutions and chemical combined path in the In, Ga-Se reaction processes. Moreover it is verified that the element losses are depressed by increasing the ramping-up rate finally. The results provide effective methods to fabricate high-quality CIGS thin films with low element losses.

  7. Hydrous pyrolysis/oxidation process for in situ destruction of chlorinated hydrocarbon and fuel hydrocarbon contaminants in water and soil

    Science.gov (United States)

    Knauss, Kevin G.; Copenhaver, Sally C.; Aines, Roger D.

    2000-01-01

    In situ hydrous pyrolysis/oxidation process is useful for in situ degradation of hydrocarbon water and soil contaminants. Fuel hydrocarbons, chlorinated hydrocarbons, polycyclic aromatic hydrocarbons, petroleum distillates and other organic contaminants present in the soil and water are degraded by the process involving hydrous pyrolysis/oxidation into non-toxic products of the degradation. The process uses heat which is distributed through soils and water, optionally combined with oxygen and/or hydrocarbon degradation catalysts, and is particularly useful for remediation of solvent, fuel or other industrially contaminated sites.

  8. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  9. Integrated funnel-and-gate/GZB product recovery technologies for in situ management of creosote NAPL-impacted aquifers

    International Nuclear Information System (INIS)

    Mueller, J.G.; Borchert, S.M.; Klingel, E.J.

    1997-01-01

    An in situ source management system was modeled and designed for the containment and recovery of creosote non-aqueous phase liquid (NAPL) at a former wood treating facility in Nashua, New Hampshire. The conceptual system was based on the integration of patented technologies for physical source containment and management (ie., funnel-and-gate technology) with patented in situ product recovery (i.e, GZB technology - described below). A funnel-and-gate physical barrier was proposed to mitigate the continued flow of NAPL into the Merrimack River. The purpose of the funnel was to divert groundwater (and potential NAPL) flow through two gate areas. Where required, an in situ system for product recovery was integrated. Mathematical modeling of the combined technologies led to the selection of a metal sheet pile barrier wall along 650 feet of the river's shoreline with the wall anchored into an underlying zone of lesser permeability. Multiple GZB wells were placed strategically within the system. This combination of technologies promised to offer a more effective, cost-efficient approach for long-term management of environmental concerns at Nashua, and related sites

  10. Building capacity for in-situ phenological observation data to support integrated biodiversity information at local to national scales

    Science.gov (United States)

    Weltzin, J. F.

    2016-12-01

    Earth observations from a variety of platforms and across a range of scales are required to support research, natural resource management, and policy- and decision-making in a changing world. Integrated earth observation data provides multi-faceted information critical to decision support, vulnerability and change detection, risk assessments, early warning and modeling, simulation and forecasting in the natural resource societal benefit area. The USA National Phenology Network (USA-NPN; www.usanpn.org) is a national-scale science and monitoring initiative focused on phenology - the study of seasonal life-cycle events such as leafing, flowering, reproduction, and migration - as a tool to understand the response of biodiversity to environmental variation and change. USA-NPN provides a hierarchical, national monitoring framework that enables other organizations to leverage the capacity of the Network for their own applications - minimizing investment and duplication of effort - while promoting interoperability and sustainability. Over the last decade, the network has focused on the development of a centralized database for in-situ (ground based) observations of plants and animals, now with 8 M records for the period 1954-present. More recently, we have developed a workflow for the production and validation of spatially gridded phenology products based on models that couple the organismal data with climatological and meteorological data at daily time-steps and relatively fine spatial resolutions ( 2.5 km to 4 km). These gridded data are now ripe for integration with other modeled or earth observation gridded data, e.g., indices of drought impact or land surface reflectance. This greatly broadens capacity to scale organismal observational data to landscapes and regions, and enables novel investigations of biophysical interactions at unprecedented scales, e.g., continental-scale migrations. Sustainability emerges from identification of stakeholder needs, segmentation of

  11. In-situ real-time x-ray scattering for probing the processing-structure-performance relation

    KAUST Repository

    Smilgies, Detlef-M.

    2014-01-01

    © 2014 Materials Research Society. In-situ X-ray scattering methodology is discussed, in order to analyze the microstructure development of soft functional materials during coating, annealing, and drying processes in real-time. The relevance of a fundamental understanding of coating processes for future industrial production is pointed out.

  12. Development of an integrated, in-situ remediation technology. Topical report for task No. 9. Part I. TCE degradation using nonbiological methods, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Shapiro, A.P.; Sivavec, T.M.; Baghel, S.S.

    1997-01-01

    Contamination in low-permeability soils poses a significant technical challenge for in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low-permeability soils present at many contaminated sites. The technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is used to move the contaminants back and forth through those zones until the treatment is completed. The present Draft Topical Report for Task No. 9 summarizes laboratory investigations into TCE degradation using nonbiological methods. These studies were conducted by the General Electric Company. The report concentrates on zero valent iron as the reducing agent and presents data on TCE and daughter product degradation rates in batch experiments, column studies, and electroosmotic cells. It is shown that zero valent iron effectively degrades TCE in electroosmotic experiments. Daughter product degradation and gas generation are shown to be important factors in designing field scale treatment zones for the Lasagna trademark process

  13. Rapid thermal processing chamber for in-situ x-ray diffraction

    International Nuclear Information System (INIS)

    Ahmad, Md. Imteyaz; Van Campen, Douglas G.; Yu, Jiafan; Pool, Vanessa L.; Van Hest, Maikel F. A. M.; Toney, Michael F.; Fields, Jeremy D.; Parilla, Philip A.; Ginley, David S.

    2015-01-01

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs −1 , and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi 2 O 3 -SiO 2 glass frit obtained during heating with ramp rates 5 °C s −1 and 100 °C s −1 , revealing numerous phase changes

  14. Rapid thermal processing chamber for in-situ x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Md. Imteyaz; Van Campen, Douglas G.; Yu, Jiafan; Pool, Vanessa L.; Van Hest, Maikel F. A. M.; Toney, Michael F., E-mail: mftoney@slac.stanford.edu [SSRL, SLAC National Accelerator Laboratory, 2575, Sand Hill Road, Menlo Park, California 94025 (United States); Fields, Jeremy D.; Parilla, Philip A.; Ginley, David S. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)

    2015-01-15

    Rapid thermal processing (RTP) is widely used for processing a variety of materials, including electronics and photovoltaics. Presently, optimization of RTP is done primarily based on ex-situ studies. As a consequence, the precise reaction pathways and phase progression during the RTP remain unclear. More awareness of the reaction pathways would better enable process optimization and foster increased adoption of RTP, which offers numerous advantages for synthesis of a broad range of materials systems. To achieve this, we have designed and developed a RTP instrument that enables real-time collection of X-ray diffraction data with intervals as short as 100 ms, while heating with ramp rates up to 100 °Cs{sup −1}, and with a maximum operating temperature of 1200 °C. The system is portable and can be installed on a synchrotron beamline. The unique capabilities of this instrument are demonstrated with in-situ characterization of a Bi{sub 2}O{sub 3}-SiO{sub 2} glass frit obtained during heating with ramp rates 5 °C s{sup −1} and 100 °C s{sup −1}, revealing numerous phase changes.

  15. Study of the Radical Chain Mechanism of Hydrocarbon Oxidation for In Situ Combustion Process

    Directory of Open Access Journals (Sweden)

    Alexandra Ushakova

    2017-01-01

    Full Text Available Despite the abundance of in situ combustion models of oil oxidation, many of the effects are still beyond consideration. For example, until now, initial stages of oxidation were not considered from a position of radical chain process. This is a serious difficulty for the simulation of oil recovery process that involves air injection. To investigate the initial stages of oxidation, the paper considers the sequence of chemical reactions, including intermediate short-living compounds and radicals. We have attempted to correlate the main stages of the reaction with areas of heat release observed in the experiments. The system of differential equations based on the equations of oxidation reactions was solved. Time dependence of peroxides formation and start of heat release is analytically derived for the initial stages. We have considered the inhibition of initial oxidation stages by aromatic oil compounds and have studied the induction time in dependence on temperature. Chain ignition criteria for paraffins and crude oil in presence of core samples were obtained. The calculation results are compared with the stages of oxidation that arise by high-pressure differential scanning calorimetry. According to experimental observations we have determined which reactions are important for the process and which can be omitted or combined into one as insignificant.

  16. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    Science.gov (United States)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  17. Aquifer restoration at in-situ leach uranium mines: evidence for natural restoration processes

    International Nuclear Information System (INIS)

    Deutsch, W.J.; Serne, R.J.; Bell, N.E.; Martin, W.J.

    1983-04-01

    Pacific Northwest Laboratory conducted experiments with aquifer sediments and leaching solution (lixiviant) from an in-situ leach uranium mine. The data from these laboratory experiments and information on the normal distribution of elements associated with roll-front uranium deposits provide evidence that natural processes can enhance restoration of aquifers affected by leach mining. Our experiments show that the concentration of uranium (U) in solution can decrease at least an order of magnitude (from 50 to less than 5 ppM U) due to reactions between the lixiviant and sediment, and that a uranium solid, possibly amorphous uranium dioxide, (UO 2 ), can limit the concentration of uranium in a solution in contact with reduced sediment. The concentrations of As, Se, and Mo in an oxidizing lixiviant should also decrease as a result of redox and precipitation reactions between the solution and sediment. The lixiviant concentrations of major anions (chloride and sulfate) other than carbonate were not affected by short-term (less than one week) contact with the aquifer sediments. This is also true of the total dissolved solids level of the solution. Consequently, we recommend that these solution parameters be used as indicators of an excursion of leaching solution from the leach field. Our experiments have shown that natural aquifer processes can affect the solution concentration of certain constituents. This effect should be considered when guidelines for aquifer restoration are established

  18. Fabrication of SiCp/Al Alloy Composites by In-situ Vacuum Hot Press Process

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. W.; Hong, S. K.; Kim, Y. M.; Kang, C. S. [Chonnam National University, Kwangju (Korea); Chang, S. Y. [Hanyang University, Seoul (Korea)

    2001-07-01

    SiCp/pure Al and SiCp/2024Al MMCs were fabricated by in-situ VHP process designed specially just in this study which is composed of the vacuum hot press at range from R.T. to 500 deg.C and the continuous extrusion without canning process at 520 deg.C. It was investigated the effect of SiC particle size, volume fraction and extrusion ratio on the tensile properties and micro structure in all composites. In case of the 10:1 extrusion ratio, but SiCp/pure Al and SiCp/2024Al composites were shown a sound appearance and a good micro structure without crack of SiCp as well as uniform distribution of SiCp. However, in case of the 16:1 extrusion ratio, the number of cracked SiC particles more than increased in a higher volume fraction composite and 2024Al matrix composite compared with pure Al matrix one. The tensile strength of the composites reinforced smaller SiCp was higher than that of the bigger SiCp reinforced in same volume fraction and extrusion ratio. (author) 14 refs., 14 figs.

  19. Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate.

    Science.gov (United States)

    Lee, T H; Byun, I G; Kim, Y O; Hwang, I S; Park, T J

    2006-01-01

    An in situ measuring system of respiration rate was applied for monitoring biodegradation of diesel fuel in a bioventing process for bioremediation of diesel contaminated soil. Two laboratory-scale soil columns were packed with 5 kg of soil that was artificially contaminated by diesel fuel as final TPH (total petroleum hydrocarbon) concentration of 8,000 mg/kg soil. Nutrient was added to make a relative concentration of C:N:P = 100:10:1. One soil column was operated with continuous venting mode, and the other one with intermittent (6 h venting/6 h rest) venting mode. On-line O2 and CO2 gas measuring system was applied to measure O2 utilisation and CO2 production during biodegradation of diesel for 5 months. Biodegradation rate of TPH was calculated from respiration rate measured by the on-line gas measuring system. There were no apparent differences between calculated biodegradation rates from two columns with different venting modes. The variation of biodegradation rates corresponded well with trend of the remaining TPH concentrations comparing other biodegradation indicators, such as C17/pristane and C18/phytane ratio, dehydrogenase activity, and the ratio of hydrocarbon utilising bacteria to total heterotrophic bacteria. These results suggested that the on-line measuring system of respiration rate would be applied to monitoring biodegradation rate and to determine the potential applicability of bioventing process for bioremediation of oil contaminated soil.

  20. A new application of passive samplers as indicators of in-situ biodegradation processes.

    Science.gov (United States)

    Belles, Angel; Alary, Claire; Criquet, Justine; Billon, Gabriel

    2016-12-01

    In this paper, a method for evaluating the in-situ degradation of nitro polycyclic aromatic hydrocarbons (nitro-PAH) in sediments is presented. The methodology is adapted from the passive sampler technique, which commonly uses the dissipation rate of labeled compounds loaded in passive sampler devices to sense the environmental conditions of exposure. In the present study, polymeric passive samplers (made of polyethylene strips) loaded with a set of labeled polycyclic aromatic hydrocarbons (PAH) and nitro-PAH were immersed in sediments (in field and laboratory conditions) to track the degradation processes. This approach is theoretically based on the fact that a degradation process induces a steeper concentration gradient of the labeled compounds in the surrounding sediment, thereby increasing their compound dissipation rates compared with their dissipation in abiotic conditions. Postulating that the degradation magnitude is the same for the labeled compounds loaded in polyethylene strips and for their native homologs that are potentially present in the sediment, the field degradation of 3 nitro-PAH (2-nitro-fluorene, 1-nitro-pyrene, 6-nitro-chrysene) was semi-quantitatively analyzed using the developed method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental optimization of catalytic process in-situ for heavy oil and bitumen upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A.; Fishwick, R.P.; Leeke, G.A.; Wood, J. [Birmingham Univ., Birmingham (United Kingdom); Rigby, S.P.; Greaves, M. [Bath Univ., Bath (United Kingdom)

    2010-07-01

    Peak crude oil production is expected to occur in the second decade of this century, followed by a phase of permanent decline in conventional crude oil production. However, very large resources of heavy oil and bitumen exist throughout the world, most notably in Canada and Venezuela. The high viscosity and density of these non-conventional crude oils require more energy intensive operations for production and upgrading, and also for transportation. As such, they are more costly to extract. This paper described some of the technological innovations that are being considered to extract heavier oil supplies with reduced environmental impact. The toe-to-heel air injection (THAI) process and its catalytic added-on (CAPRI) process combine in-situ combustion with catalytic upgrading using an annular catalyst packed around a horizontal producer well. Results of an experimental study concerning optimization of catalyst type and operating conditions showed that CAPRI can effect further upgrading of partially upgraded THAI oil, with upgrading levels of viscosity and API gravity dependent upon temperature and flow rate. 20 refs., 8 tabs., 10 figs.

  2. Integrating sustainable biofuel and silver nanomaterial production for in situ upgrading of cellulosic biomass pyrolysis

    International Nuclear Information System (INIS)

    Xue, Junjie; Dou, Guolan; Ziade, Elbara; Goldfarb, Jillian L.

    2017-01-01

    Graphical abstract: Integrated production of biotemplated nanomaterials and upgraded biofuels (solid lines indicate current processes, dashed lines indicated proposed pathway). - Highlights: • Novel integrated process to co-produce nanomaterials and biofuels via pyrolysis. • Impregnation of biomass with silver nitrate upgrades bio-oil during pyrolysis. • Co-synthesis enhances syngas produced with more hydrogen. • Biomass template impacts bio-fuels and morphology of resulting nanomaterials. - Abstract: Replacing fossil fuels with biomass-based alternatives is a potential carbon neutral, renewable and sustainable option for meeting the world’s growing energy demand. However, pyrolytic conversions of biomass-to-biofuels suffer marginal total energy gain, and technical limitations such as bio-oils’ high viscosity and oxygen contents that result in unstable, corrosive and low-value fuels. This work demonstrates a new integrated biorefinery process for the co-production of biofuels and silver nanomaterials. By impregnating pure cellulose and corn stalk with silver nitrate, followed by pyrolysis, the gas yield (especially hydrogen) increases substantially. The condensable bio-oil components of the impregnated samples are considerably higher in furfurals (including 5-hydroxymethylfurfural). Though the overall activation energy barrier, as determined via the Distributed Activation Energy Model, does not change significantly with the silver nitrate pre-treatment, the increase in gases devolatilized, and improved 5-hydroxymethylfurfural yield, suggest a catalytic effect, potentially increasing decarboxylation reactions. After using this metal impregnation to improve pyrolysis fuel yield, following pyrolysis, the silver-char composite materials are calcined to remove the biomass template to yield silver nanomaterials. While others have demonstrated the ability to biotemplate such nanosilver on cellulosic biomass, they consider only impregnation and oxidation of the

  3. Remediation of PCB-contaminated soils. Risk analysis of biological in situ processes

    Energy Technology Data Exchange (ETDEWEB)

    Rein, Arno

    2006-12-08

    effects on other soil organisms. Potential field release applications of in situ bioremediation using GMOs require performance control in the source zone (to ensure the functionality of the degradation process) and compliance monitoring, addressing contaminants, metabolites and GMOs. Detailed guidelines were compiled for respective tasks. (orig.)

  4. Solution-Processing of Organic Solar Cells: From In Situ Investigation to Scalable Manufacturing

    KAUST Repository

    Abdelsamie, Maged

    2016-12-05

    implementation of organic solar cells with high efficiency and manufacturability. In this dissertation, we investigate the mechanism of the BHJ layer formation during solution processing from common lab-based processes, such as spin-coating, with the aim of understanding the roles of materials, formulations and processing conditions and subsequently using this insight to enable the scalable manufacturing of high efficiency organic solar cells by such methods as wire-bar coating and blade-coating. To do so, we have developed state-of-the-art in situ diagnostics techniques to provide us with insight into the thin film formation process. As a first step, we have developed a modified spin-coater which allows us to perform in situ UV-visible absorption measurements during spin coating and provides key insight into the formation and evolution of polymer aggregates in solution and during the transformation to the solid state. Using this method, we have investigated the formation of organic BHJs made of a blend of poly (3-hexylthiophene) (P3HT) and fullerene, reference materials in the organic solar cell field. We show that process kinetics directly influence the microstructure and morphology of the bulk heterojunction, highlighting the value of in situ measurements. We have investigated the influence of crystallization dynamics of a wide-range of small-molecule donors and their solidification pathways on the processing routes needed for attaining high-performance solar cells. The study revealed the reason behind the need of empirically-adopted processing strategies such as solvent additives or alternatively thermal or solvent vapor annealing for achieving optimal performance. The study has provided a new perspective to materials design linking the need for solvent additives or annealing to the ease of crystallization of small-molecule donors and the presence or absence of transient phases before crystallization. From there, we have extended our investigation to small-molecule (p

  5. Electrochemically Modulated Gas/Liquid Separation Technology for In Situ Resource Utilization Process Streams, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In this phase I program MicroCell Technologies, LLC (MCT) proposes to demonstrate the feasibility of an electrochemically modulated phase separator for in situ...

  6. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    National Research Council Canada - National Science Library

    Siegrist, Robert L; Crimi, Michelle; Munakata-Marr, Junko; Illangasekare, Tissa; Dugan, Pamela; Heiderscheidt, Jeff; Jackson, Shannon; Petri, Ben; Sahl, Jason; Seitz, Sarah

    2006-01-01

    In situ chemical oxidation involves the introduction of chemical oxidants into the subsurface to destroy organic contaminants in soil and ground water, with the goal being to reduce the mass, mobility...

  7. Evidence of Chemical Cloud Processing from In Situ Measurements in the Polluted Marine Environment

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    SO2, indicating aqueous oxidation within cloud as associated with larger concentrations in the processed mode. Thus, in situ measurements indicate that chemical cloud processing alters size, Sc and κ of activated CCN. Hudson et al. (2015), JGRA, 120, 3436-3452.

  8. Effect of residual chips on the material removal process of the bulk metallic glass studied by in situ scratch testing inside the scanning electron microscope

    Directory of Open Access Journals (Sweden)

    Hu Huang

    2012-12-01

    Full Text Available Research on material removal mechanism is meaningful for precision and ultra-precision manufacturing. In this paper, a novel scratch device was proposed by integrating the parasitic motion principle linear actuator. The device has a compact structure and it can be installed on the stage of the scanning electron microscope (SEM to carry out in situ scratch testing. Effect of residual chips on the material removal process of the bulk metallic glass (BMG was studied by in situ scratch testing inside the SEM. The whole removal process of the BMG during the scratch was captured in real time. Formation and growth of lamellar chips on the rake face of the Cube-Corner indenter were observed dynamically. Experimental results indicate that when lots of chips are accumulated on the rake face of the indenter and obstruct forward flow of materials, materials will flow laterally and downward to find new location and direction for formation of new chips. Due to similar material removal processes, in situ scratch testing is potential to be a powerful research tool for studying material removal mechanism of single point diamond turning, single grit grinding, mechanical polishing and grating fabrication.

  9. Integrating Multi-Sensor Remote Sensing and In-situ Measurements for Africa Drought Monitoring and Food Security Assessment

    Science.gov (United States)

    Hao, X.; Qu, J. J.; Motha, R. P.; Stefanski, R.; Malherbe, J.

    2015-12-01

    Drought is one of the most complicated natural hazards, and causes serious environmental, economic and social consequences. Agricultural production systems, which are highly susceptible to weather and climate extremes, are often the first and most vulnerable sector to be affected by drought events. In Africa, crop yield potential and grazing quality are already nearing their limit of temperature sensitivity, and, rapid population growth and frequent drought episodes pose serious complications for food security. It is critical to promote sustainable agriculture development in Africa under conditions of climate extremes. Soil moisture is one of the most important indicators for agriculture drought, and is a fundamentally critical parameter for decision support in crop management, including planting, water use efficiency and irrigation. While very significant technological advances have been introduced for remote sensing of surface soil moisture from space, in-situ measurements are still critical for calibration and validation of soil moisture estimation algorithms. For operational applications, synergistic collaboration is needed to integrate measurements from different sensors at different spatial and temporal scales. In this presentation, a collaborative effort is demonstrated for drought monitoring in Africa, supported and coordinated by WMO, including surface soil moisture and crop status monitoring. In-situ measurements of soil moisture, precipitation and temperature at selected sites are provided by local partners in Africa. Measurements from the Soil Moisture and Ocean Salinity (SMOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) are integrated with in-situ observations to derive surface soil moisture at high spatial resolution. Crop status is estimated through temporal analysis of current and historical MODIS measurements. Integrated analysis of soil moisture data and crop status provides both in-depth understanding of drought conditions and

  10. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Abhijit [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sahir, A. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Tan, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Humbird, David [DWH Process Consulting, Denver, CO (United States); Snowden-Swan, Lesley J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Meyer, Pimphan A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Ross, Jeff [Harris Group, Inc., Seattle, WA (United States); Sexton, Danielle [Harris Group, Inc., Seattle, WA (United States); Yap, Raymond [Harris Group, Inc., Seattle, WA (United States); Lukas, John [Harris Group, Inc., Seattle, WA (United States)

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.

  11. Development of a crosshole sonic logging system for the integrity test of cast-in-situ piles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Tai-Sup; Sung, Nak-Hoon; Hwang, Hak-Soo [Korea Institute of Geoscience and Mineral Resources, Taejeon(Korea)

    2001-09-01

    To evaluate the integrity of cast-in-situ concrete piles, a notebook PC-based crosshole sonic logging system which can be handled by one operator was developed using PCMCIA-type analog to digital converter card. User-interactive software for operation of the system were also developed using Labview. The system was tested with the field model pile to confirm the performance of the developed system. The test result shows that the system is very stable and efficient for detecting defects of the pile. (author). 3 refs., 9 figs.

  12. Microfluidic electrochemical device and process for chemical imaging and electrochemical analysis at the electrode-liquid interface in-situ

    Science.gov (United States)

    Yu, Xiao-Ying; Liu, Bingwen; Yang, Li; Zhu, Zihua; Marshall, Matthew J.

    2016-03-01

    A microfluidic electrochemical device and process are detailed that provide chemical imaging and electrochemical analysis under vacuum at the surface of the electrode-sample or electrode-liquid interface in-situ. The electrochemical device allows investigation of various surface layers including diffuse layers at selected depths populated with, e.g., adsorbed molecules in which chemical transformation in electrolyte solutions occurs.

  13. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM

    International Nuclear Information System (INIS)

    Sun Wei; Zhang Yunsheng; Lin Wei; Liu Zhiyong

    2004-01-01

    Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed

  14. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  15. Investigating the Trimethylaluminium/Water ALD Process on Mesoporous Silica by In Situ Gravimetric Monitoring

    Directory of Open Access Journals (Sweden)

    Verena E. Strempel

    2018-05-01

    Full Text Available A low amount of AlOx was successfully deposited on an unordered, mesoporous SiO2 powder using 1–3 ALD (Atomic Layer Deposition cycles of trimethylaluminium and water. The process was realized in a self-built ALD setup featuring a microbalanceand a fixed particle bed. The reactor temperature was varied between 75, 120, and 200 °C. The self-limiting nature of the deposition was verified by in situ gravimetric monitoring for all temperatures. The coated material was further analyzed by nitrogen sorption, inductively coupled plasma-optical emission spectroscopy, powder X-ray diffraction, high-resolution transmission electron microscopy, attenuated total reflection Fourier transformed infrared spectroscopy, and elemental analysis. The obtained mass gains correspond to average growth between 0.81–1.10 Å/cycle depending on substrate temperature. In addition, the different mass gains during the half-cycles in combination with the analyzed aluminum content after one, two, and three cycles indicate a change in the preferred surface reaction of the trimethylaluminium molecule from a predominately two-ligand exchange with hydroxyl groups to more single-ligand exchange with increasing cycle number. Nitrogen sorption isotherms demonstrate (1 homogeneously coated mesopores, (2 a decrease in surface area, and (3 a reduction of the pore size. The experiment is successfully repeated in a scale-up using a ten times higher substrate batch size.

  16. The Integrated Renovation Process

    DEFF Research Database (Denmark)

    Galiotto, Nicolas; Heiselberg, Per; Knudstrup, Mary-Ann

    they get more time for the cost optimization and the qualitative analysis of the users’ needs and behaviours. In order to reach a fossil free energy building stock within an acceptable time frame, it is primordial that researchers, politicians and the building industry work hand in hand. Indeed, in order...... to overcome the financial barriers to energy renovation and bring a new type of building experts in the building renovation sector, cost optimization tools for building renovation have been and can be developed but new legislation and politico-economic supports are still much needed. We present in this report...... a new contribution from the research and industry sides and results reached with the newly developed methodology, but without a significant contribution from the politico-economic and legislation sides . The experiences met during application of the Integrated Renovation Process are described...

  17. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  18. Constraining processes of landscape change with combined in situ cosmogenic 14C-10Be analysis

    Science.gov (United States)

    Hippe, Kristina

    2017-10-01

    Reconstructing Quaternary landscape evolution today frequently builds upon cosmogenic-nuclide surface exposure dating. However, the study of complex surface exposure chronologies on the 102-104 years' timescale remains challenging with the commonly used long-lived radionuclides (10Be, 26Al, 36Cl). In glacial settings, key points are the inheritance of nuclides accumulated in a rock surface during a previous exposure episode and (partial) shielding of a rock surface after the main deglaciation event, e.g. during phases of glacier readvance. Combining the short-lived in situ cosmogenic 14C isotope with 10Be dating provides a valuable approach to resolve and quantify complex exposure histories and burial episodes within Lateglacial and Holocene timescales. The first studies applying the in situ14C-10Be pair have demonstrated the great benefit from in situ14C analysis for unravelling complex glacier chronologies in various glacial environments worldwide. Moreover, emerging research on in situ14C in sedimentary systems highlights the capacity of combined in situ14C-10Be analysis to quantify sediment transfer times in fluvial catchments or to constrain changes in surface erosion rates. Nevertheless, further methodological advances are needed to obtain truly routine and widely available in situ14C analysis. Future development in analytical techniques has to focus on improving the analytical reproducibility, reducing the background level and determining more accurate muonic production rates. These improvements should allow extending the field of applications for combined in situ14C-10Be analysis in Earth surface sciences and open up a number of promising applications for dating young sedimentary deposits and the quantification of recent changes in surface erosion dynamics.

  19. Fluorescent In Situ Hybridization to Detect Transgene Integration into Plant Genomes

    Science.gov (United States)

    Schwarzacher, Trude

    Fluorescent chromosome analysis technologies have advanced our understanding of genome organization during the last 30 years and have enabled the investigation of DNA organization and structure as well as the evolution of chromosomes. Fluorescent chromosome staining allows even small chromosomes to be visualized, characterized by their composition and morphology, and counted. Aneuploidies and polyploidies can be established for species, breeding lines, and individuals, including changes occurring during hybridization or tissue culture and transformation protocols. Fluorescent in situ hybridization correlates molecular information of a DNA sequence with its physical location on chromosomes and genomes. It thus allows determination of the physical position of sequences and often is the only means to determine the abundance and distribution of DNA sequences that are difficult to map with any other molecular method or would require segregation analysis, in particular multicopy or repetitive DNA. Equally, it is often the best way to establish the incorporation of transgenes, their numbers, and physical organization along chromosomes. This chapter presents protocols for probe and chromosome preparation, fluorescent in situ hybridization, chromosome staining, and the analysis of results.

  20. Quantification of the resist dissolution process: an in situ analysis using high speed atomic force microscopy

    Science.gov (United States)

    Santillan, Julius Joseph; Shichiri, Motoharu; Itani, Toshiro

    2016-03-01

    This work focuses on the application of a high speed atomic force microscope (HS-AFM) for the in situ visualization / quantification of the resist dissolution process. This technique, as reported in the past, has provided useful pointers on the formation of resist patterns during dissolution. This paper discusses about an investigation made on the quantification of what we refer to as "dissolution unit size" or the basic units of patterning material dissolution. This was done through the establishment of an originally developed analysis method which extracts the difference between two succeeding temporal states of the material film surface (images) to indicate the amount of change occurring in the material film at a specific span of time. Preliminary experiments with actual patterning materials were done using a positive-tone EUV model resist composed only of polyhydroxystyrene (PHS)-based polymer with a molecular weight of 2,500 and a polydispersity index of 1.2. In the absence of a protecting group, the material was utilized at a 50nm film thickness with post application bake of 90°C/60s. The resulting film is soluble in the alkali-based developer even without exposure. Results have shown that the dissolution components (dissolution unit size) of the PHS-based material are not of fixed size. Instead, it was found that aside from one constantly dissolving unit size, another, much larger dissolution unit size trend also occurs during material dissolution. The presence of this larger dissolution unit size suggests an occurrence of "polymer clustering". Such polymer clustering was not significantly present during the initial stages of dissolution (near the original film surface) but becomes more persistently obvious after the dissolution process reaches a certain film thickness below the initial surface.

  1. A Facile in Situ and UV Printing Process for Bioinspired Self-Cleaning Surfaces

    Directory of Open Access Journals (Sweden)

    Marina A. González Lazo

    2016-08-01

    Full Text Available A facile in situ and UV printing process was demonstrated to create self-cleaning synthetic replica of natural petals and leaves. The process relied on the spontaneous migration of a fluorinated acrylate surfactant (PFUA within a low-shrinkage acrylated hyperbranched polymer (HBP and its chemical immobilization at the polymer-air interface. Dilute concentrations of 1 wt. % PFUA saturated the polymer-air interface within 30 min, leading to a ten-fold increase of fluorine concentration at the surface compared with the initial bulk concentration and a water contact angle (WCA of 108°. A 200 ms flash of UV light was used to chemically crosslink the PFUA at the HBP surface prior to UV printing with a polydimethylsiloxane (PDMS negative template of red and yellow rose petals and lotus leaves. This flash immobilization hindered the reverse migration of PFUA within the bulk HBP upon contacting the PDMS template, and enabled to produce texturized surfaces with WCA well above 108°. The synthetic red rose petal was hydrophobic (WCA of 125° and exhibited the adhesive petal effect. It was not superhydrophobic due to insufficient concentration of fluorine at its surface, a result of the very large increase of the surface of the printed texture. The synthetic yellow rose petal was quasi-superhydrophobic (WCA of 143°, roll-off angle of 10° and its self-cleaning ability was not good also due to lack of fluorine. The synthetic lotus leaf did not accurately replicate the intricate nanotubular crystal structures of the plant. In spite of this, the fluorine concentration at the surface was high enough and the leaf was superhydrophobic (WCA of 151°, roll-off angle below 5° and also featured self-cleaning properties.

  2. Production of diamond wire by Cu15 v-% Nb 'in situ' process

    International Nuclear Information System (INIS)

    Filgueira, M.; Pinatti, D.G.

    2001-01-01

    Diamond wires are cutting tools used in the slabbing of dimension stones, such as marbles and granites, as well as in cutting of concrete structures. This tool consists of a steel cable on which diamond annular segments (pearls) are mounted with spacing between them. This work has developed a new technological route to obtain the diamond wires, whose fabrication involves metal forming processes such as rotary forging and wire drawing, copper tubes restacking, and thermal treatments of sintering and recrystallization. It was idealized the use of Cu 15v% Nb composite wires as the high tensile strength cable, covered with an external cutting rope made of bronze 4wt% diamond composite, along the overall wire surface. Investigations were carried out on the mechanical behavior and on the microstructural evolution of the Cu 15 vol % Nb wires, which showed ultimate tensile strength (UTS) of 960 MPa and deformation of approximately 3,0 %. The cutting external rope of 1.84 mm in diameter showed UTS = 230 MPa. On the microstructural side aspect it was observed that the diamond crystals were uniformly distributed throughout the tool bulk in the several processing steps. Cutting tests were carried out starting with an external diamond rope of 1.93 mm in diameter, which cut a marble sectional area of 1188 cm 2 , and the tool degraded to a final diameter of 1.23 mm. For marble the 'in situ' wire showed a probable performance 4 times higher than the diamond saws, however their probable performance was about 5 to 8 times less than the conventional diamond wires due to the low abrasion resistance of the bronze matrix and the low adhesion between the pair bronze-diamond. (author)

  3. Image processing for identification and quantification of filamentous bacteria in in situ acquired images.

    Science.gov (United States)

    Dias, Philipe A; Dunkel, Thiemo; Fajado, Diego A S; Gallegos, Erika de León; Denecke, Martin; Wiedemann, Philipp; Schneider, Fabio K; Suhr, Hajo

    2016-06-11

    In the activated sludge process, problems of filamentous bulking and foaming can occur due to overgrowth of certain filamentous bacteria. Nowadays, these microorganisms are typically monitored by means of light microscopy, commonly combined with staining techniques. As drawbacks, these methods are susceptible to human errors, subjectivity and limited by the use of discontinuous microscopy. The in situ microscope appears as a suitable tool for continuous monitoring of filamentous bacteria, providing real-time examination, automated analysis and eliminating sampling, preparation and transport of samples. In this context, a proper image processing algorithm is proposed for automated recognition and measurement of filamentous objects. This work introduces a method for real-time evaluation of images without any staining, phase-contrast or dilution techniques, differently from studies present in the literature. Moreover, we introduce an algorithm which estimates the total extended filament length based on geodesic distance calculation. For a period of twelve months, samples from an industrial activated sludge plant were weekly collected and imaged without any prior conditioning, replicating real environment conditions. Trends of filament growth rate-the most important parameter for decision making-are correctly identified. For reference images whose filaments were marked by specialists, the algorithm correctly recognized 72 % of the filaments pixels, with a false positive rate of at most 14 %. An average execution time of 0.7 s per image was achieved. Experiments have shown that the designed algorithm provided a suitable quantification of filaments when compared with human perception and standard methods. The algorithm's average execution time proved its suitability for being optimally mapped into a computational architecture to provide real-time monitoring.

  4. Buried waste integrated demonstration technology integration process

    International Nuclear Information System (INIS)

    Ferguson, J.S.; Ferguson, J.E.

    1992-04-01

    A Technology integration Process was developed for the Idaho National Energy Laboratories (INEL) Buried Waste Integrated Demonstration (BWID) Program to facilitate the transfer of technology and knowledge from industry, universities, and other Federal agencies into the BWID; to successfully transfer demonstrated technology and knowledge from the BWID to industry, universities, and other Federal agencies; and to share demonstrated technologies and knowledge between Integrated Demonstrations and other Department of Energy (DOE) spread throughout the DOE Complex. This document also details specific methods and tools for integrating and transferring technologies into or out of the BWID program. The document provides background on the BWID program and technology development needs, demonstrates the direction of technology transfer, illustrates current processes for this transfer, and lists points of contact for prospective participants in the BWID technology transfer efforts. The Technology Integration Process was prepared to ensure compliance with the requirements of DOE's Office of Technology Development (OTD)

  5. In-situ Spectroscopic Studies and Modelling of Crystallization Processes of Sulphuric Acid Catalysts

    DEFF Research Database (Denmark)

    Oehlers, C.; Fehrmann, Rasmus; Masters, Stephen Grenville

    1996-01-01

    Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe the crystall......Deactivation of commercial and prototype sulphuric acid catalysts has been investigated in-situ by ESR spectroscopy. The influence of support pore structure,and the chemical composition of the catalyst and the gas phase was dicussed.A statistical lattice model was applied to describe...

  6. Biogeochemical processes in a clay formation in situ experiment: Part F - Reactive transport modelling

    Energy Technology Data Exchange (ETDEWEB)

    Tournassat, Christophe, E-mail: c.tournassat@brgm.fr [BRGM, French Geological Survey, Orleans (France); Alt-Epping, Peter [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland); Gaucher, Eric C. [BRGM, French Geological Survey, Orleans (France); Gimmi, Thomas [Rock-Water Interaction Group, Institute of Geological Sciences, University of Bern (Switzerland)] [Laboratory for Waste Management, Paul Scherrer Institut, Villigen (Switzerland); Leupin, Olivier X. [NAGRA, CH-5430 Wettingen (Switzerland); Wersin, Paul [Gruner Ltd., CH-4020 Basel (Switzerland)

    2011-06-15

    Highlights: > Reactive transport modelling was used to simulate simultaneously solute transport, thermodynamic reactions, ion exchange and biodegradation during an in-situ experiment in a clay-rock formation. > Opalinus clay formation has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. > Buffering capacity is mainly attributed to the carbonate system and to the reactivity of clay surfaces (cation exchange, pH buffering). - Abstract: Reactive transport modelling was used to simulate solute transport, thermodynamic reactions, ion exchange and biodegradation in the Porewater Chemistry (PC) experiment at the Mont Terri Rock Laboratory. Simulations show that the most important chemical processes controlling the fluid composition within the borehole and the surrounding formation during the experiment are ion exchange, biodegradation and dissolution/precipitation reactions involving pyrite and carbonate minerals. In contrast, thermodynamic mineral dissolution/precipitation reactions involving alumo-silicate minerals have little impact on the fluid composition on the time-scale of the experiment. With the accurate description of the initial chemical condition in the formation in combination with kinetic formulations describing the different stages of bacterial activities, it has been possible to reproduce the evolution of important system parameters, such as the pH, redox potential, total organic C, dissolved inorganic C and SO{sub 4} concentration. Leaching of glycerol from the pH-electrode may be the primary source of organic material that initiated bacterial growth, which caused the chemical perturbation in the borehole. Results from these simulations are consistent with data from the over-coring and demonstrate that the Opalinus Clay has a high buffering capacity in terms of chemical perturbations caused by bacterial activity. This buffering capacity can be attributed to the carbonate system as well as to the reactivity of

  7. In-situ Polymerization-modification Process and Foaming of Poly(ethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    仲华; 奚桢浩; 刘涛; 赵玲

    2013-01-01

    Most of traditional linear poly(ethylene terephthalate) (PET) resins of relatively low molecular mass and narrow molecular mass distribution have low melt strength at foaming temperatures, which are not enough to support and keep cells. An in-situ polymerization-modification process with esterification and polycondensation stages was performed in a 2 L batch stirred reactor using pyromellitic dianhydride (PMDA) or pentaerythritol (PENTA) as modifying monomers to obtain PETs with high melt strength. The influence of amounts of modifying monomers on the properties of modified PET was investigated. It was found that the selected modifying monomers could effectively introduce branched structures into the modified PETs and improve their melt strength. With in-creasing the amount of the modifying monomer, the melt strength of the modified PET increased. But when the amount of PENTA reached 0.35%or PMDA reached 0.9%, crosslinking phenomenon was observed in the modified PET. Supercritical carbon dioxide (ScCO2) was employed as physical foaming agent to evaluate the foaming ability of modified PETs. The modified PETs had good foaming properties at 14 MPa of CO2 pressure with foaming tem-perature ranging from 265 °C to 280 °C. SEM micrographs demonstrated that both modified PET foams had ho-mogeneous cellular structures, with cell diameter ranging from 35 μm to 49 μm for PENTA modified PETs and 38μm to 57μm for PMDA modified ones. Correspondingly, the cell density had a range of 3.5×107 cells·cm-3 to 7×106 cells·cm-3 for the former and 2.8×107 cells·cm-3 to 5.8×106 cells·cm-3 for the latter.

  8. Development of an integrated, in-situ remediation technology. Topical report for task No. 5: Cost analysis, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Quinton, G.; Schultz, D.; Landis, R.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivering treatment reagents have rendered existing in situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The Lasagna trademark technology is an integrated in situ treatment in which established geotechnical methods are used to install degradation zones directly into the contaminated soil and electro-osmosis if utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report presents the results of an engineering evaluation and cost analysis of the vertically configured treatment process completed by the DuPont Company. The cost evaluation was prepared by developing a cost optimization model of the overall treatment process. This model considers various input parameters such as soil properties, depth of contamination, cost for emplacing electrodes and treatment zones, required purge water volume, time constraints to achieve cleanup, and cost of power. Several example cases were run using the cost model to provide representative cost ranges for applying the technology to clean up trichloroethene contamination in clay. These costs are estimated to range from $40 to $95 per cubic yard of soil for a 1-acre site, with cost depending on depth of contamination (cost range valid from 15 to 45 ft), method of electrode/treatment zone emplacement (cost range valid from 15 to 45 ft), method of electrode/treatment zone emplacement (cost range valid for Lasagna trademark Phase I emplacement and optimized emplacement techniques), and time available to complete remediation (cost range valid for one- and three-year timeframe)

  9. In situ ultrahigh-resolution optical coherence tomography characterization of eye bank corneal tissue processed for lamellar keratoplasty.

    Science.gov (United States)

    Brown, Jamin S; Wang, Danling; Li, Xiaoli; Baluyot, Florence; Iliakis, Bernie; Lindquist, Thomas D; Shirakawa, Rika; Shen, Tueng T; Li, Xingde

    2008-08-01

    To use optical coherence tomography (OCT) as a noninvasive tool to perform in situ characterization of eye bank corneal tissue processed for lamellar keratoplasty. A custom-built ultrahigh-resolution OCT (UHR-OCT) was used to characterize donor corneal tissue that had been processed for lamellar keratoplasty. Twenty-seven donor corneas were analyzed. Four donor corneas were used as controls, whereas the rest were processed into donor corneal buttons for lamellar transplantation by using hand dissection, a microkeratome, or a femtosecond laser. UHR-OCT was also used to noninvasively characterize and monitor the viable corneal tissue immersed in storage medium over 3 weeks. The UHR-OCT captured high-resolution images of the donor corneal tissue in situ. This noninvasive technique showed the changes in donor corneal tissue morphology with time while in storage medium. The characteristics of the lamellar corneal tissue with each processing modality were clearly visible by UHR-OCT. The in situ characterization of the femtosecond laser-cut corneal tissue was noted to have more interface debris than shown by routine histology. The effects of the femtosecond laser microcavitation bubbles on the corneal tissue were well visualized at the edges of the lamellar flap while in storage medium. The results of our feasibility study show that UHR-OCT can provide superb, in situ microstructural characterization of eye bank corneal tissue noninvasively. The UHR-OCT interface findings and corneal endothelial disc thickness uniformity analysis are valuable information that may be used to optimize the modalities and parameters for lamellar tissue processing. The UHR-OCT is a powerful approach that will allow us to further evaluate the tissue response to different processing techniques for posterior lamellar keratoplasty. It may also provide information that can be used to correlate with postoperative clinical outcomes. UHR-OCT has the potential to become a routine part of tissue

  10. Microstructural evolution and strengthening behavior in in-situ magnesium matrix composites fabricated by solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Chelliah, Nagaraj M., E-mail: cmnraj.7@gmail.com [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Singh, Harpreet, E-mail: harpreetsingh@iitrpr.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab (India); Surappa, M.K., E-mail: mirle@materials.iisc.ac.in [Department of Materials Engineering, Indian Institute of Science, Bengaluru 560012, Karnataka (India)

    2017-06-15

    In-situ magnesium matrix composites with three different matrix materials (including Mg, AZ91 and AE44 Mg-alloys) were fabricated by injecting cross-linked polymer directly into the molten Mg/Mg-alloys, and having it convert to the 2.5 vol% SiCNO ceramic phase using liquid stir-casting method. In-situ chemical reaction took place within the molten slurry tending to produce 42 and 18 vol% Mg{sub 2}Si crystals in Mg and AE44 matrix composites, respectively but not in AZ91 matrix composite. Microstructural evolution of Mg{sub 2}Si crystals was discussed on the basis of availability of heterogeneous nucleation sites and amount of Al-atoms in the molten slurry. The observed micro-hardness and yield strengths are enhanced by factor of four to three as compared to their unreinforced counterparts, and Taylor strengthening was found to be the predominant strengthening mechanism in magnesium and AE44 matrix composites. Summation model predicted the yield strengths of the fabricated composites more preciously when compared to Zhang and Chen, and modified Clyne models. - Highlights: • In-situ magnesium composites were fabricated using liquid stir-casting method. • In-situ pyrolysis of cross-linked polymer has been utilized to obtain ceramic phases. • Mg{sub 2}Si crystals were formed in magnesium and AE44 matrix composites but not in AZ91 matrix composites. • The variation in size and morphology of Mg{sub 2}Si crystals with matrix materials are discussed. • Strengthening mechanisms in in-situ composites are analyzed and discussed.

  11. Human-Systems Integration Processes

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of this project is to baseline a Human-Systems Integration Processes (HSIP) document as a companion to the NASA-STD-3001 and Human Integration Design...

  12. SEAMIST trademark in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program

    International Nuclear Information System (INIS)

    Lowry, W.E.; Dunn, S.D.; Cremer, S.C.; Williams, C.

    1994-01-01

    The SEAMIST trademark inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST trademark lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST trademark system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST trademark vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented

  13. In-Situ Anaerobic Biosurfactant Production Process For Remediation Of DNAPL Contamination In Subsurface Aquifers

    Science.gov (United States)

    Albino, J. D.; Nambi, I. M.

    2009-12-01

    microbial cultures. The microorganisms responsible for biosurfactant production was isolated and identified as Pseudomonas Sp (designated as Pseudomonas Sp ANBIOSURF-1, Gene bank no: FJ930079), Pseudomonas stutzeri (MTCC 10033), Pseudomonas Sp (MTCC 10032) from groundwater, soil and municipal sewage sludge enrichments respectively. This study confirms that biosurfactants can be produced under anaerobic conditions and also in sufficient quantities. The cultures were also able to cometabolically degrade PCE to Ethylene. The isolated microorganisms can be used for remediation of DNAPL contaminated sites by in-situ biosurfactant production.

  14. Sintering process optimization for multi-layer CGO membranes by in situ techniques

    DEFF Research Database (Denmark)

    Kaiser, Andreas; Prasad, A.S.; Foghmoes, Søren Preben Vagn

    2013-01-01

    The sintering of asymmetric CGO bi-layers (thin dense membrane on a porous support; Ce0.9Gd0.1O1.95-delta = CGO) with Co3O4 as sintering additive has been optimized by combination of two in situ techniques. Optical dilatometry revealed that bi-layer shape and microstructure are dramatically...... changing in a narrow temperature range of less than 100 degrees C. Below 1030 degrees C, a higher densification rate in the dense membrane layer than in the porous support leads to concave shape, whereas the densification rate of the support is dominant above 1030 degrees C, leading to convex shape. A fiat...... bi-layer could be prepared at 1030 degrees C, when shrinkage rates were similar. In situ van der Pauw measurements on tape cast layers during sintering allowed following the conductivity during sintering. A strong increase in conductivity and in activation energy E-a for conduction was observed...

  15. Direct in situ observations of single Fe atom catalytic processes and anomalous diffusion at graphene edges

    Science.gov (United States)

    Zhao, Jiong; Deng, Qingming; Avdoshenko, Stanislav M.; Fu, Lei; Eckert, Jürgen; Rümmeli, Mark H.

    2014-01-01

    Single-atom catalysts are of great interest because of their high efficiency. In the case of chemically deposited sp2 carbon, the implementation of a single transition metal atom for growth can provide crucial insight into the formation mechanisms of graphene and carbon nanotubes. This knowledge is particularly important if we are to overcome fabrication difficulties in these materials and fully take advantage of their distinct band structures and physical properties. In this work, we present atomically resolved transmission EM in situ investigations of single Fe atoms at graphene edges. Our in situ observations show individual iron atoms diffusing along an edge either removing or adding carbon atoms (viz., catalytic action). The experimental observations of the catalytic behavior of a single Fe atom are in excellent agreement with supporting theoretical studies. In addition, the kinetics of Fe atoms at graphene edges are shown to exhibit anomalous diffusion, which again, is in agreement with our theoretical investigations. PMID:25331874

  16. In-situ investigation of the calcination process of mixed oxide xerogels with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Panitz, J C [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The controlled calcination of materials derived by sol-gel reactions is important for the evolution of the final structure. Raman spectroscopy is an ideal tool for the identification of surface species under in-situ conditions, as demonstrated in the following for the example of a molybdenum oxide-silica xerogel. Raman spectra of this particular sample were recorded at temperatures as high as 1173 K, and compared with those of a reference material.(author) 3 figs., 4 refs.

  17. Remote sensed and in situ constraints on processes affecting tropical tropospheric ozone

    Directory of Open Access Journals (Sweden)

    B. Sauvage

    2007-01-01

    Full Text Available We use a global chemical transport model (GEOS-Chem to evaluate the consistency of satellite measurements of lightning flashes and ozone precursors with in situ measurements of tropical tropospheric ozone. The measurements are tropospheric O3, NO2, and HCHO columns from the GOME satellite instrument, lightning flashes from the OTD and LIS satellite instruments, profiles of O3, CO, and relative humidity from the MOZAIC aircraft program, and profiles of O3 from the SHADOZ ozonesonde network. We interpret these multiple data sources with our model to better understand what controls tropical tropospheric ozone. Tropical tropospheric ozone is mainly affected by lightning NOx and convection in the upper troposphere and by surface emissions in the lower troposphere. Scaling the spatial distribution of lightning in the model to the observed flashes improves the simulation of O3 in the upper troposphere by 5–20 ppbv versus in situ observations and by 1–4 Dobson Units versus GOME retrievals of tropospheric O3 columns. A lightning source strength of 6±2 Tg N/yr best represents in situ observations from aircraft and ozonesonde. Tropospheric NO2 and HCHO columns from GOME are applied to provide top-down constraints on emission inventories of NOx (biomass burning and soils and VOCs (biomass burning. The top-down biomass burning inventory is larger than the bottom-up inventory by a factor of 2 for HCHO and alkenes, and by a factor of 2.6 for NOx over northern equatorial Africa. These emissions increase lower tropospheric O3 by 5–20 ppbv, improving the simulation versus aircraft observations, and by 4 Dobson Units versus GOME observations of tropospheric O3 columns. Emission factors in the a posteriori inventory are more consistent with a recent compilation from in situ measurements. The ozone simulation using two different dynamical schemes (GEOS-3 and GEOS-4 is evaluated versus observations; GEOS-4 better represents O3 observations by 5–15 ppbv

  18. In Situ 3D Monitoring of Geometric Signatures in the Powder-Bed-Fusion Additive Manufacturing Process via Vision Sensing Methods.

    Science.gov (United States)

    Li, Zhongwei; Liu, Xingjian; Wen, Shifeng; He, Piyao; Zhong, Kai; Wei, Qingsong; Shi, Yusheng; Liu, Sheng

    2018-04-12

    Lack of monitoring of the in situ process signatures is one of the challenges that has been restricting the improvement of Powder-Bed-Fusion Additive Manufacturing (PBF AM). Among various process signatures.

  19. In situ flash x-ray high-speed computed tomography for the quantitative analysis of highly dynamic processes

    Science.gov (United States)

    Moser, Stefan; Nau, Siegfried; Salk, Manfred; Thoma, Klaus

    2014-02-01

    The in situ investigation of dynamic events, ranging from car crash to ballistics, often is key to the understanding of dynamic material behavior. In many cases the important processes and interactions happen on the scale of milli- to microseconds at speeds of 1000 m s-1 or more. Often, 3D information is necessary to fully capture and analyze all relevant effects. High-speed 3D-visualization techniques are thus required for the in situ analysis. 3D-capable optical high-speed methods often are impaired by luminous effects and dust, while flash x-ray based methods usually deliver only 2D data. In this paper, a novel 3D-capable flash x-ray based method, in situ flash x-ray high-speed computed tomography is presented. The method is capable of producing 3D reconstructions of high-speed processes based on an undersampled dataset consisting of only a few (typically 3 to 6) x-ray projections. The major challenges are identified, discussed and the chosen solution outlined. The application is illustrated with an exemplary application of a 1000 m s-1 high-speed impact event on the scale of microseconds. A quantitative analysis of the in situ measurement of the material fragments with a 3D reconstruction with 1 mm voxel size is presented and the results are discussed. The results show that the HSCT method allows gaining valuable visual and quantitative mechanical information for the understanding and interpretation of high-speed events.

  20. Separation of cadmium and lead from wastewater using supported liquid membrane integrated with in-situ electrodeposition

    International Nuclear Information System (INIS)

    Bhatluri, Kamal Kumar; Manna, Mriganka Sekhar; Ghoshal, Aloke Kumar; Saha, Prabirkumar

    2017-01-01

    A novel process for separation of heavy metals from liquid wastes and/or industrial effluents has been developed as described in this paper wherein the technique of supported liquid membrane based extraction and stripping of heavy metals has been augmented with electroplating inside the stripping chamber of SLM. Wastewater, infested with cadmium and lead, has been subject of research in this work. The said process is employed in transporting the heavy metals from the polluted source phase (wastewater) to the sink (or strip) phase while simultaneously depositing the heavy metals in-situ on the electrode placed inside the strip phase, and thereby the strip phase is remained ever-unsaturated. This arrangement yields high gradient of chemical potential across the liquid membrane and thereby facilitates enhanced and faster recovery of said heavy metals and also yields value added component, viz. electroplated items, for suitable end use.

  1. Closed-looped in situ nano processing on a culturing cell using an inverted electron beam lithography system

    International Nuclear Information System (INIS)

    Hoshino, Takayuki; Mabuchi, Kunihiko

    2013-01-01

    Highlights: ► An electron beam lithography (EBL) was used as an in situ nano processing for a living cell. ► A synchronized optics was containing an inverted EBL and an optical microscope. ► This system visualized real-time images of the EB-induced nano processing. ► We demonstrated the nano processing for a culturing cell with 200–300 nm resolution. ► Our system would be able to provide high resolution display of virtual environments. -- Abstract: The beam profile of an electron beam (EB) can be focused onto less than a nanometer spot and scanned over a wide field with extremely high speed sweeping. Thus, EB is employed for nano scale lithography in applied physics research studies and in fabrication of semiconductors. We applied a scanning EB as a control system for a living cell membrane which is representative of large scale complex systems containing nanometer size components. First, we designed the opposed co-axial dual optics containing inverted electron beam lithography (I-EBL) system and a fluorescent optical microscope. This system could provide in situ nano processing for a culturing living cell on a 100-nm-thick SiN nanomembrane, which was placed between the I-EBL and the fluorescent optical microscope. Then we demonstrated the EB-induced chemical direct nano processing for a culturing cell with hundreds of nanometer resolution and visualized real-time images of the scanning spot of the EB-induced luminescent emission and chemical processing using a high sensitive camera mounted on the optical microscope. We concluded that our closed-loop in situ nano processing would be able to provide a nanometer resolution display of virtual molecule environments to study functional changes of bio-molecule systems

  2. Integrating nanotubes into microsystems with electron beam lithography and in situ catalytically activated growth

    DEFF Research Database (Denmark)

    Gjerde, Kjetil; Fornés-Mora, Marc; Kjelstrup-Hansen, Jakob

    2006-01-01

    Integration of freestanding wire-like structures such as multi walled carbon nanotubes (MWCNT) into microsystems has many potential applications. Devices such as AFM tips or improved electrodes for conductivity measurements are obvious candidates. Catalytically activated growth opens up the possi......Integration of freestanding wire-like structures such as multi walled carbon nanotubes (MWCNT) into microsystems has many potential applications. Devices such as AFM tips or improved electrodes for conductivity measurements are obvious candidates. Catalytically activated growth opens up...... the possibility of waferscale fabrication of such devices. We combine conventional microfabrication techniques with state of the art electron beam lithography (EBL) to precisely position catalyst nanoparticles with sub 100 nm diameter into the microsystems. In particular, we have explored two main approaches...

  3. Biochemical Process Development and Integration | Bioenergy | NREL

    Science.gov (United States)

    Biochemical Process Development and Integration Biochemical Process Development and Integration Our conversion and separation processes to pilot-scale integrated process development and scale up. We also Publications Accounting for all sugar produced during integrated production of ethanol from lignocellulosic

  4. In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Saeed Moeini

    2017-09-01

    Full Text Available The interest in biodegradable polymer-matrix nanocomposites with bone regeneration potential has been increasing in recent years. In the present work, a solvothermal process is introduced to prepare hydroxyapatite (HA nanorod-reinforced polycaprolactone in-situ. A non-aqueous polymer solution containing calcium and phosphorous precursors is prepared and processed in a closed autoclave at different temperatures in the range of 60–150 °C. Hydroxyapatite nanorods with varying aspect ratios are formed depending on the processing temperature. X-ray diffraction analysis and field-emission scanning electron microscopy indicate that the HA nanorods are semi-crystalline. Energy-dispersive X-ray spectroscopy and Fourier transform infrared spectrometry determine that the ratio of calcium to phosphorous increases as the processing temperature increases. To evaluate the effect of in-situ processing on the mechanical properties of the nanocomposites, highly porous scaffolds (>90% containing HA nanorods are prepared by employing freeze drying and salt leaching techniques. It is shown that the elastic modulus and strength of the nanocomposites prepared by the in-situ method is superior (∼15% to those of the ex-situ samples (blended HA nanorods with the polymer solution. The enhanced bone regeneration potential of the nanocomposites is shown via an in vitro bioactivity assay in a saturated simulated body fluid. An improved cell viability and proliferation is also shown by employing (3-(4,5- dimethylthiazol-2-yl-2, 5-diphenyl tetrazolium bromide (MTT assay in human osteosarcoma cell lines. The prepared scaffolds with in vitro regeneration capacity could be potentially useful for orthopaedic applications and maxillofacial surgery.

  5. Laser processing of in situ TiN/Ti composite coating on titanium.

    Science.gov (United States)

    Sahasrabudhe, Himanshu; Soderlind, Julie; Bandyopadhyay, Amit

    2016-01-01

    Laser remelting of commercially pure titanium (CP-Ti) surface was done in a nitrogen rich inert atmosphere to form in situ TiN/Ti composite coating. Laser surface remelting was performed at two different laser powers of 425 W and 475 W. At each power, samples were fabricated with one or two laser scans. The resultant material was a nitride rich in situ coating that was created on the surface. The cross sections revealed a graded microstructure. There was presence of nitride rich dendrites dispersed in α-Ti matrix at the uppermost region. The structure gradually changed with lesser dendrites and more heat affected α-Ti phase maintaining a smooth interface. With increasing laser power, the dendrites appeared to be larger in size. Samples with two laser scans showed discontinuous dendrites and more α-Ti phase as compared to the samples with one laser scan. The resultant composite of TiN along with Ti2N in α-Ti showed substantially higher hardness and wear resistance than the untreated CP-Ti substrate. Coefficient of friction was also found to reduce due to surface nitridation. Leaching of Ti(4+) ions during wear test in DI water medium was found to reduce due to laser surface nitriding. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO3) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO3 content incorporation. The CaCO3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Integrating Visualization Applications, such as ParaView, into HEP Software Frameworks for In-situ Event Displays

    Science.gov (United States)

    Lyon, A. L.; Kowalkowski, J. B.; Jones, C. D.

    2017-10-01

    ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.

  8. Integrating Visualization Applications, such as ParaView, into HEP Software Frameworks for In-situ Event Displays

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, A. L. [Fermilab; Kowalkowski, J. B. [Fermilab; Jones, C. D. [Fermilab

    2017-11-22

    ParaView is a high performance visualization application not widely used in High Energy Physics (HEP). It is a long standing open source project led by Kitware and involves several Department of Energy (DOE) and Department of Defense (DOD) laboratories. Futhermore, it has been adopted by many DOE supercomputing centers and other sites. ParaView is unique in speed and efficiency by using state-of-the-art techniques developed by the academic visualization community that are often not found in applications written by the HEP community. In-situ visualization of events, where event details are visualized during processing/analysis, is a common task for experiment software frameworks. Kitware supplies Catalyst, a library that enables scientific software to serve visualization objects to client ParaView viewers yielding a real-time event display. Connecting ParaView to the Fermilab art framework will be described and the capabilities it brings discussed.

  9. Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels. Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Sahir, A.; Tan, E.; Humbird, D.; Snowden-Swan, L. J.; Meyer, P.; Ross, J.; Sexton, D.; Yap, R.; Lukas, J.

    2015-03-01

    This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptions outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.

  10. Integrated Optical Information Processing

    Science.gov (United States)

    1988-08-01

    applications in optical disk memory systems [91. This device is constructed in a glass /SiO2/Si waveguide. The choice of a Si substrate allows for the...contact mask) were formed in the photoresist deposited on all of the samples, we covered the unwanted gratings on each sample with cover glass slides...processing, let us consider TeO2 (v, = 620 m/s) as a potential substrate for applications requiring large time delays. This con- sideration is despite

  11. Integrated process status overview

    International Nuclear Information System (INIS)

    Gertman, D.I.; Gaudio, P. Jr.

    1986-01-01

    This report summarizes findings to date with the IPSO, a large plant status overview currently under development at the OECD Halden Reactor Project. As part of a joint Halden and Combustion Engineering project, the overview is being tested in part to determine whether the large screen overview concept being entertained for use in the nuclear power plant (NPP) industry will facilitate operator performance. To this end an interactive simulation technique was used to establish a proof-of-principle test for the IPSO. Process control, operations, and human factors experts at Halden participated in the test and evaluation

  12. In situ processing of concrete surface by impregnation and polymerization of an organic resin

    International Nuclear Information System (INIS)

    Pellecchia, V.; Ursella, P.; Moretto, G.

    1990-01-01

    The impregnation by resins of concrete structures is widely known as PIC (Polymer Impregnated Concrete). This process is normally used to improve the physical-chemical features of prefabricated items in particular to raise their lifetime under severe environmental conditions. The main target of this research contract was the verification of the possibility of a proper impregnation of existing concrete surfaces, of any dimensions and position, by comparing the obtained characteristics with those of untreated original material to check the improvement of chemical-physical properties and durability. In a nuclear facility, this goal is very important with reference to the long-term integrity of concrete walls during plant operative lifetime and after the final shutdown and decommissioning of the plant, if its dismantling is deferred. The operative steps of the research were the design, manufacturing and implementation of a tailored prototype equipment, the setting-up of the machine, the project and erection of a walling unit made of different density sectors in nuclear grade concrete and optimisation of the PIC process phases (dehydration, degassing, monomer injection, thermal cycles) during the experimental campaign. The data collected from samples gathered from field application gave results very similar to laboratory impregnated samples, thus confirming the satisfactory running of the prototype unit. Particularly the resin penetration, in spite of low porosity of nuclear grade concrete matrix, reached depths well beyond 50 mm with a significant increase of mechanical features, leaching resistance to aggressive agents and an appreciable sealing of concrete porosity

  13. Impedance matching of a coaxial antenna for microwave in-situ processing of polluted soils.

    Science.gov (United States)

    Pauli, Mario; Kayser, Thorsten; Wiesbeck, Werner; Komarov, Vyacheslav

    2011-01-01

    The present paper is focused on the minimization of return loss of a slotted coaxial radiator proposed for a decontamination system for soils contaminated by volatile or semi-volatile organic compounds such as oils or fuels. The antenna upgrade is achieved by coating it with a 5 mm thick Teflon layer. The electromagnetic characteristics reflection coefficient and power density distribution around the antenna surrounded by soils with different moisture levels are analyzed numerically. Simplified analytical approaches are employed to accelerate the optimization of the given antenna for microwave heating systems. The improved antenna design shows a good matching of the antenna to the surrounding soil with varying moisture levels. This ensures a high efficiency of the proposed in-situ soil decontamination system.

  14. In situ observations of solidification processes in γ-TiAl alloys by synchrotron radiation

    International Nuclear Information System (INIS)

    Shuleshova, Olga; Holland-Moritz, Dirk; Loeser, Wolfgang; Voss, Andrea; Hartmann, Helena; Hecht, Ulrike; Witusiewicz, Victor T.; Herlach, Dieter M.; Buechner, Bernd

    2010-01-01

    In situ observations of phase transformations involving melts are performed using energy-dispersive diffraction of synchrotron X-rays on electromagnetically levitated γ-TiAl alloys containing Nb. The determined primary solidification modes, confirmed by microstructure analysis, delivered new reliable data about the boundary of the α(Ti) solidification domain, which differs in the various Ti-Al-Nb phase diagram descriptions. These data have been used for a reassessment of the thermodynamic database of the ternary Ti-Al-Nb system. The new description realistically reflects the experimental findings. Liquidus and solidus temperatures determined by the pyrometric method agree fairly well with the calculated values. Direct experimental information on the nature of the reactions along the univariant lines is provided.

  15. Design and implementation of a highly integrated and automated in situ bioremediation system for petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Dey, J.C.; Rosenwinkel, P.; Norris, R.D.

    1996-01-01

    The proposed sale of an industrial property required that an environmental investigation be conducted as part of the property transfer agreement. The investigation revealed petroleum hydrocarbon compounds (PHCs) in the subsurface. Light nonaqueous phase liquids (LNAPLs) varsol (a gasoline like solvent), gasoline, and fuel oil were found across a three (3) acre area and were present as liquid phase PHCs, as dissolved phase PHCs, and as adsorbed phase PHCs in both saturated and unsaturated soils. Fuel oil was largely present in the unsaturated soils. Fuel oil was largely present in the unsaturated soils. Varsol represented the majority of the PHCs present. The presence of liquid phase PHCs suggested that any remedial action incorporate free phase recovery. The volatility of varsol and gasoline and the biodegradability of the PHCs present in the subsurface suggested that bioremediation, air sparging, and soil vapor extraction/bioventing were appropriate technologies for incorporation in a remedy. The imminent conversion of the impacted area to a retail facility required that any long term remedy be unobtrusive and require minimum activity across much of the impacted area. In the following sections the site investigation, selection and testing of remedial technologies, and design and implementation of an integrated and automated remedial system is discussed

  16. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    Energy Technology Data Exchange (ETDEWEB)

    Goebel, Ingeborg; Alheid, Hans-Joachim [BGR Hannover, Stilleweg 2, D-30655 Hannover (Germany); Jockwer, Norbert [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Theodor-Heuss-Str. 4, 38122 Braunschweig (Germany); Mayor, Juan Carlos [ENRESA, Emilio Vargas 7, E-Madrid (Spain); Garcia-Sineriz, Jose Luis [AITEMIN, c/ Alenza, 1 - 28003 Madrid (Spain); Alonso, Eduardo [International Center for Numerical Methods in Engineering, CIMNE, Edificio C-1, Campus Norte UPC, C/Gran Capitan, s/n, 08034 Barcelona (Spain); Weber, Hans Peter [NAGRA, Hardstrasse 73, CH-5430 Wettingen (Switzerland); Ploetze, Michael [ETHZ, Eidgenoessische Technische Hochschule Zuerich, ETH Zentrum, HG Raemistrasse 101, CH-8092 Zuerich (Switzerland); Klubertanz, Georg [COLENCO Power Engineering Ltd, CPE, Taefern Str. 26, 5405 Baden-Daettwil (Switzerland); Ammon, Christian [Rothpletz, Lienhard, Cie AG, Schifflaendestrasse 35, 5001 Aarau (Switzerland)

    2004-07-01

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  17. Integrated stationary Ornstein-Uhlenbeck process, and double integral processes

    Science.gov (United States)

    Abundo, Mario; Pirozzi, Enrica

    2018-03-01

    We find a representation of the integral of the stationary Ornstein-Uhlenbeck (ISOU) process in terms of Brownian motion Bt; moreover, we show that, under certain conditions on the functions f and g , the double integral process (DIP) D(t) = ∫βt g(s) (∫αs f(u) dBu) ds can be thought as the integral of a suitable Gauss-Markov process. Some theoretical and application details are given, among them we provide a simulation formula based on that representation by which sample paths, probability densities and first passage times of the ISOU process are obtained; the first-passage times of the DIP are also studied.

  18. Design and optimization of hybrid ex situ/in situ steam generation recovery processes for heavy oil and bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Yang, X.; Gates, I.D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Larter, S.R. [Calgary Univ., AB (Canada). Dept. of Geoscience]|[Alberta Ingenuity Centre for In Situ Energy, Edmonton, AB (Canada)

    2008-10-15

    Hybrid steam-air based oil recovery techniques were investigated using advanced 3-D reactive thermal reservoir simulations. The hybrid techniques combined ex situ steam and in situ steam generation processes in order to raise efficiency, lower natural gas consumption, and reduce gas emissions. The steam-air based processes used 70 per cent of the energy of conventional steam assisted gravity drainage (SAGD) techniques to recover the same amount of oil. The process used an SAGD wellpair arrangement, where steam and air were injected through the top injection well. The kinetic parameters used in the study were developed by history matching a combustion tube experiments with Athabasca bitumen conducted to predict cumulative bitumen and gas production volumes and compositions. A total of 6 SAGD and 6 in situ combustion simulations were conducted with steam oxygen volume ratios set at 50 per cent steam and 50 per cent oxygen. Various case studies were considered over a 5 year period. Carbon dioxide (CO{sub 2}) emissions were also measured as well as cumulative water and methane consumption rates. Results of the study were used to develop an optimized hybrid operation that consisted of a SAGD well pair arrangement operating with cyclic steam-oxygen injection at high pressures. It was concluded that the high pressure operation increased the steam partial pressure within the reservoir and enhanced combustion performance. A 29 per cent improvement in the cumulative energy to oil ratio was obtained. 23 refs., 2 tabs., 9 figs.

  19. Teaching Process Design through Integrated Process Synthesis

    Science.gov (United States)

    Metzger, Matthew J.; Glasser, Benjamin J.; Patel, Bilal; Hildebrandt, Diane; Glasser, David

    2012-01-01

    The design course is an integral part of chemical engineering education. A novel approach to the design course was recently introduced at the University of the Witwatersrand, Johannesburg, South Africa. The course aimed to introduce students to systematic tools and techniques for setting and evaluating performance targets for processes, as well as…

  20. Development of N_2O-MTV for low-speed flow and in-situ deployment to an integral effect test facility

    Science.gov (United States)

    André, Matthieu A.; Burns, Ross A.; Danehy, Paul M.; Cadell, Seth R.; Woods, Brian G.; Bardet, Philippe M.

    2018-01-01

    A molecular tagging velocity (MTV) technique is developed to non-intrusively measure velocity in an integral effect test (IET) facility simulating a high-temperature helium-cooled nuclear reactor in accident scenarios. In these scenarios, the velocities are expected to be low, on the order of 1 m/s or less, which forces special requirements on the MTV tracer selection. Nitrous oxide (N_2O) is identified as a suitable seed gas to generate NO tracers capable of probing the flow over a large range of pressure, temperature, and flow velocity. The performance of N_2O-MTV is assessed in the laboratory at temperature and pressure ranging from 295 to 781 K and 1 to 3 atm. MTV signal improves with a temperature increase, but decreases with a pressure increase. Velocity precision down to 0.004 m/s is achieved with a probe time of 40 ms at ambient pressure and temperature. Measurement precision is limited by tracer diffusion, and absorption of the tag laser beam by the seed gas. Processing by cross-correlation of single-shot images with high signal-to-noise ratio reference images improves the precision by about 10% compared to traditional single-shot image correlations. The instrument is then deployed to the IET facility. Challenges associated with heat, vibrations, safety, beam delivery, and imaging are addressed in order to successfully operate this sensitive instrument in-situ. Data are presented for an isothermal depressurized conduction cooldown. Velocity profiles from MTV reveal a complex flow transient driven by buoyancy, diffusion, and instability taking place over short (30 min) time scales at sub-meter per second speed. The precision of the in-situ results is estimated at 0.027, 0.0095, and 0.006 m/s for a probe time of 5, 15, and 35 ms, respectively.

  1. Response of range grasses to water produced from in situ fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q D; Moore, T S; Sexton, J C

    1984-11-01

    In situ-produced waters collected while retorting oil shale and tar sands to produce oil, and coal to produce gas, were tested for their effects on plant growth. Basin wildrye (Elymus cinereus), western wheatgrass (Agropyron smithii) 'Rosana', alkali sacaton (Sporobolus airoides), bluebunch wheatgrass (Agropyron spicatum) and Nuttall alkaligrass (Puccinellia airoides) were utilized. Root weight, shoot weight, total dry weight, leaf area and root/shoot weight ratios were determined. All experiments were conducted under greenhouse conditions using hydroponic techniques and horticultural grade perlite for plant support. Measurements were collected after a 10-week growth period. Results show that differences in plant growth can be monitored using dry biomass, leaf area and root to shoot ratio measurements when plants are subjected to retort waters. Plant species reaction to a water may be different. Generally, alkali sacaton, basin wildrye and western wheatgrass are least susceptible to toxicity by the majority of retort waters tested. Bluebunch wheatgrass is most susceptible. Waters from different retort procedures vary in toxicity to different plant species.

  2. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process

    KAUST Repository

    Satyawali, Yamini; Schols, Edo; Van Roy, Sandra; Dejonghe, Winnie; Diels, Ludo; Vanbroekhoven, Karolien

    2010-01-01

    In situ bioprecipitation (ISBP), which involves immobilizing the metals as precipitates (mainly sulphides) in the solid phase, is an effective method of metal removal from contaminated groundwater. This study investigated the stability of metal precipitates formed after ISBP in two different solid-liquid matrices (artificial and natural). The artificial matrix consisted of sand, Zn (200mgL-1), artificial groundwater and a carbon source (electron donor). Here the stability of the Zn precipitates was evaluated by manipulation of redox and pH. The natural system matrices included aquifer material and groundwater samples collected from three different metal (Zn and Co) contaminated sites and different carbon sources were provided as electron donors. In the natural matrices, metal precipitates stability was assessed by changing aquifer redox conditions, sequential extraction, and BIOMET® assay. The results indicated that, in the artificial matrix, redox manipulation did not impact the Zn precipitates. However the sequential pH change proved detrimental, releasing 58% of the precipitated Zn back into liquid phase. In natural matrices, the applied carbon source largely affected the stability of metal precipitates. Elemental analysis performed on the precipitates formed in natural matrix showed that the main elements of the precipitates were sulphur with Zn and Co. © 2010 Elsevier B.V.

  3. Stability investigations of zinc and cobalt precipitates immobilized by in situ bioprecipitation (ISBP) process

    KAUST Repository

    Satyawali, Yamini

    2010-09-01

    In situ bioprecipitation (ISBP), which involves immobilizing the metals as precipitates (mainly sulphides) in the solid phase, is an effective method of metal removal from contaminated groundwater. This study investigated the stability of metal precipitates formed after ISBP in two different solid-liquid matrices (artificial and natural). The artificial matrix consisted of sand, Zn (200mgL-1), artificial groundwater and a carbon source (electron donor). Here the stability of the Zn precipitates was evaluated by manipulation of redox and pH. The natural system matrices included aquifer material and groundwater samples collected from three different metal (Zn and Co) contaminated sites and different carbon sources were provided as electron donors. In the natural matrices, metal precipitates stability was assessed by changing aquifer redox conditions, sequential extraction, and BIOMET® assay. The results indicated that, in the artificial matrix, redox manipulation did not impact the Zn precipitates. However the sequential pH change proved detrimental, releasing 58% of the precipitated Zn back into liquid phase. In natural matrices, the applied carbon source largely affected the stability of metal precipitates. Elemental analysis performed on the precipitates formed in natural matrix showed that the main elements of the precipitates were sulphur with Zn and Co. © 2010 Elsevier B.V.

  4. Utility of optical heterodyne displacement sensing and laser ultrasonics as in situ process control diagnostic for additive manufacturing

    Science.gov (United States)

    Manzo, Anthony J.; Helvajian, Henry

    2018-04-01

    An in situ process control monitor is presented by way of experimental results and simulations, which utilizes a pulsed laser ultrasonic source as a probe and an optical heterodyne displacement meter as a sensor. The intent is for a process control system that operates in near real time, is nonintrusive, and in situ: A necessary requirement for a serial manufacturing technology such as additive manufacturing (AM). We show that the diagnostic approach has utility in characterizing the local temperature, the area of the heat-affected zone, and the surface roughness (Ra ˜ 0.4 μm). We further demonstrate that it can be used to identify solitary defects (i.e., holes) on the order of 10 to 20 μm in diameter. Moreover, the technique shows promise in measuring properties of materials with features that have a small radius of curvature. We present results for a thin wire of ˜650 μm in diameter. By applying multiple pairs of probe-sensor systems, the diagnostic could also measure the local cooling rate on the scale of 1 μs. Finally, while an obvious application is used in AM technology, then all optical diagnostics could be applied to other manufacturing technologies.

  5. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Directory of Open Access Journals (Sweden)

    Ga Vin Kim

    2014-01-01

    Full Text Available The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5% > solvent quantity (26.7% > reaction time (17.5% > catalyst amount (8.3%. Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36% > catalyst (28.62% > time (19.72% > temperature (17.32%. The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2, reaction time of 10 hrs (level 2, catalyst amount of 5% (level 3, and biomass to solvent ratio of 1 : 15 (level 2, respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  6. Enhancement of Biodiesel Production from Marine Alga, Scenedesmus sp. through In Situ Transesterification Process Associated with Acidic Catalyst

    Science.gov (United States)

    Kim, Ga Vin; Choi, WoonYong; Kang, DoHyung; Lee, ShinYoung; Lee, HyeonYong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70°C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp. PMID:24689039

  7. Enhancement of biodiesel production from marine alga, Scenedesmus sp. through in situ transesterification process associated with acidic catalyst.

    Science.gov (United States)

    Kim, Ga Vin; Choi, Woonyong; Kang, Dohyung; Lee, Shinyoung; Lee, Hyeonyong

    2014-01-01

    The aim of this study was to increase the yield of biodiesel produced by Scenedesmus sp. through in situ transesterification by optimizing various process parameters. Based on the orthogonal matrix analysis for the acidic catalyst, the effects of the factors decreased in the order of reaction temperature (47.5%) > solvent quantity (26.7%) > reaction time (17.5%) > catalyst amount (8.3%). Based on a Taguchi analysis, the effects of the factors decreased in the order of solvent ratio (34.36%) > catalyst (28.62%) > time (19.72%) > temperature (17.32%). The overall biodiesel production appeared to be better using NaOH as an alkaline catalyst rather than using H2SO4 in an acidic process, at 55.07 ± 2.18% (based on lipid weight) versus 48.41 ± 0.21%. However, in considering the purified biodiesel, it was found that the acidic catalyst was approximately 2.5 times more efficient than the alkaline catalyst under the following optimal conditions: temperature of 70 °C (level 2), reaction time of 10 hrs (level 2), catalyst amount of 5% (level 3), and biomass to solvent ratio of 1 : 15 (level 2), respectively. These results clearly demonstrated that the acidic solvent, which combined oil extraction with in situ transesterification, was an effective catalyst for the production of high-quantity, high-quality biodiesel from a Scenedesmus sp.

  8. The LEAN Payload Integration Process

    Science.gov (United States)

    Jordan, Lee P.; Young, Yancy; Rice, Amanda

    2011-01-01

    It is recognized that payload development and integration with the International Space Station (ISS) can be complex. This streamlined integration approach is a first step toward simplifying payload integration; making it easier to fly payloads on ISS, thereby increasing feasibility and interest for more research and commercial organizations to sponsor ISS payloads and take advantage of the ISS as a National Laboratory asset. The streamlined integration approach was addressed from the perspective of highly likely initial payload types to evolve from the National Lab Pathfinder program. Payloads to be accommodated by the Expedite the Processing of Experiments for Space Station (EXPRESS) Racks and Microgravity Sciences Glovebox (MSG) pressurized facilities have been addressed. It is hoped that the streamlined principles applied to these types of payloads will be analyzed and implemented in the future for other host facilities as well as unpressurized payloads to be accommodated by the EXPRESS Logistics Carrier (ELC). Further, a payload does not have to be classified as a National Lab payload in order to be processed according to the lean payload integration process; any payload that meets certain criteria can follow the lean payload integration process.

  9. In situ biosynthesis of bacterial nanocellulose-CaCO{sub 3} hybrid bionanocomposite: One-step process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkazemi, Faranak, E-mail: f_mkazemi@sbu.ac.ir [Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Science and Research Campus, Zirab, Savadkooh, Mazandaran (Iran, Islamic Republic of); Faria, Marisa; Cordeiro, Nereida [Faculty of Exact Science and Engineering, University of Madeira, Funchal (Portugal)

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO{sub 3}) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO{sub 3} was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO{sub 3} hybrid bionanocomposites production, structure and properties. The BNC/CaCO{sub 3} biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO{sub 3} content incorporation. The CaCO{sub 3} was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO{sub 3} hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO{sub 3} hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO{sub 3} bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO{sub 3} incorporated into the BNC decreased crystallinity.

  10. In-situ investigations of corrosion processes on glass and metal surfaces by scanning probe microscopy (SPM)

    International Nuclear Information System (INIS)

    Nicolussi-Leck, G.

    1996-09-01

    The corrosion of potash-lime-silica glass was observed in-situ by AFM (atomic force microscopy) for the first time. The topographic changes with time due to the interaction of a replica glass with the ambient atmosphere were studied. A comparison of dynamic mode AFM and static mode AFM has demonstrated their potential for the investigation of soft, sensitive specimens. A combination of both methods yielded a correlation between structural changes during the corrosion process and different corrosion products on glass. The activation of surface reactions by the tip touching the surface could be observed with dynamic mode AFM. In-situ sample preparation and introduction of a defined atmosphere consisting of nitrogen with adjustable amounts of relative humidity and varying contents of SO 2 and NO 2 allowed model studies of the atmospheric corrosion. A replica glass with medieval composition was used in order to investigate the impact of the above described conditions. Besides the influence of the relative humidity the effects of SO 2 and NO 2 as well as their, synergistic effects could be studied. The evaluation of the phase signal in dynamic mode AFM in addition to the topographic information allowed the identification of humid domains in and on corrosion products, respectively. The observed contrast and thus the adhesion forces, are mainly related to the different water coverage of the surface regions or the hydroscopic properties, respectively. Furthermore, the topographic changes of copper-nickel, and palladium surfaces exposed to humidified nitrogen with SO 2 have been observed in-situ. Contrary to the assumption of the metal surfaces being covered by a homogeneous layer of corrosion products, distinct clusters of products could be observed. In case of different kinds of products these clusters were arranged adjacent to each other rather than in different stacked layers. (author)

  11. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors

    Science.gov (United States)

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K.; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-01

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s-1, the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g-1 with ultrahigh energy and power density of 62.96 W h kg-1 and 566.66 W kg-1 respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  12. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors.

    Science.gov (United States)

    Aphale, Ashish; Maisuria, Krushangi; Mahapatra, Manoj K; Santiago, Angela; Singh, Prabhakar; Patra, Prabir

    2015-09-23

    Supercapacitors also known as electrochemical capacitors, that store energy via either Faradaic or non-Faradaic processes, have recently grown popularity mainly because they complement, and can even replace, conventional energy storage systems in variety of applications. Supercapacitor performance can be improved significantly by developing new nanocomposite electrodes which utilizes both the energy storage processes simultaneously. Here we report, fabrication of the freestanding hybrid electrodes, by incorporating graphene and carbon nanotubes (CNT) in pyrrole monomer via its in-situ polymerization. At the scan rate of 5 mV s(-1), the specific capacitance of the polypyrrole-CNT-graphene (PCG) electrode film was 453 F g(-1) with ultrahigh energy and power density of 62.96 W h kg(-1) and 566.66 W kg(-1) respectively, as shown in the Ragone plot. A nanofibrous membrane was electrospun and effectively used as a separator in the supercapacitor. Four supercapacitors were assembled in series to demonstrate the device performance by lighting a 2.2 V LED.

  13. Hydrochemical processes in lowland rivers: insights from in situ, high-resolution monitoring

    Directory of Open Access Journals (Sweden)

    A. J. Wade

    2012-11-01

    Full Text Available This paper introduces new insights into the hydrochemical functioning of lowland river systems using field-based spectrophotometric and electrode technologies. The streamwater concentrations of nitrogen species and phosphorus fractions were measured at hourly intervals on a continuous basis at two contrasting sites on tributaries of the River Thames – one draining a rural catchment, the River Enborne, and one draining a more urban system, The Cut. The measurements complement those from an existing network of multi-parameter water quality sondes maintained across the Thames catchment and weekly monitoring based on grab samples. The results of the sub-daily monitoring show that streamwater phosphorus concentrations display highly complex dynamics under storm conditions dependent on the antecedent catchment wetness, and that diurnal phosphorus and nitrogen cycles occur under low flow conditions. The diurnal patterns highlight the dominance of sewage inputs in controlling the streamwater phosphorus and nitrogen concentrations at low flows, even at a distance of 7 km from the nearest sewage treatment works in the rural River Enborne. The time of sample collection is important when judging water quality against ecological thresholds or standards. An exhaustion of the supply of phosphorus from diffuse and multiple septic tank sources during storm events was evident and load estimation was not improved by sub-daily monitoring beyond that achieved by daily sampling because of the eventual reduction in the phosphorus mass entering the stream during events. The results highlight the utility of sub-daily water quality measurements and the discussion considers the practicalities and challenges of in situ, sub-daily monitoring.

  14. In-situ, real-time, studies of film growth processes using ion scattering and direct recoil spectroscopy techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Smentkowski, V. S.

    1999-04-22

    Time-of-flight ion scattering and recoil spectroscopy (TOF-ISARS) enables the characterization of the composition and structure of surfaces with 1-2 monolayer specificity. It will be shown that surface analysis is possible at ambient pressures greater than 3 mTorr using TOF-ISARS techniques; allowing for real-time, in situ studies of film growth processes. TOF-ISARS comprises three analytical techniques: ion scattering spectroscopy (ISS), which detects the backscattered primary ion beam; direct recoil spectroscopy (DRS), which detects the surface species recoiled into the forward scattering direction; and mass spectroscopy of recoiled ions (MSRI), which is 3 variant of DRS capable of isotopic resolution for all surface species--including H and He. The advantages and limitations of each of these techniques will be discussed. The use of the three TOF-ISARS methods for real-time, in situ film growth studies at high ambient pressures will be illustrated. It will be shown that MSRI analysis is possible during sputter deposition. It will be also be demonstrated that the analyzer used for MSRI can also be used for time of flight secondary ion mass spectroscopy (TOF-SIMS) under high vacuum conditions. The use of a single analyzer to perform the complimentary surface analytical techniques of MSRI and SIMS is unique. The dwd functionality of the MSRI analyzer provides surface information not obtained when either MSRI or SIMS is used independently.

  15. Enhanced Cyclability of Lithium-Oxygen Batteries with Electrodes Protected by Surface Films Induced via In-Situ Electrochemical Process

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Bin; Xu, Wu; Tao, Jinhui; Yan, Pengfei; Zheng, Jianming; Engelhard, Mark H.; Lu, Dongping; Wang, Chongmin; Zhang, Jiguang

    2018-04-16

    Although the rechargeable lithium-oxygen (Li-O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon-based air-electrode, Li metal anode, and electrolytes towards reduced oxygen species. Here we demonstrate a simple one-step in-situ electrochemical pre-charging strategy to generate thin protective films on both carbon nanotubes (CNTs) air-electrode and Li metal anode simultaneously under an inert atmosphere. Li-O2 cells after such pre-treatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity-limited protocol of 1000 mAh g-1 and 500 mAh g-1, respectively, which is far more than those without pre-treatment. The thin-films formed from decomposition of electrolyte during in-situ electrochemical pre-charging process in an inert environment can protect both CNTs air-electrode and Li metal anode prior to conventional Li-O2 discharge/charge cycling where reactive reduced oxygen species are formed. This work provides a new approach for protections of carbon-based air-electrode and Li metal anode in practical Li-O2 batteries, and may also be applied to other battery systems.

  16. Antibacterial and hemolysis activity of polypyrrole nanotubes decorated with silver nanoparticles by an in-situ reduction process.

    Science.gov (United States)

    Upadhyay, J; Kumar, A; Gogoi, B; Buragohain, A K

    2015-09-01

    Polypyrrole nanotube-silver nanoparticle nanocomposites (PPy-NTs:Ag-NPs) have been synthesized by in-situ reduction of silver nitrate (AgNO3) to suppress the agglomeration of Ag-NPs. The morphology and chemical structure of the nanocomposites have been studied by HRTEM, SEM, XRD, FTIR and UV-vis spectroscopy. The average diameter of the polypyrrole nanotubes (PPy-NTs) is measured to be 130.59±5.5 nm with their length in the micrometer range, while the silver nanoparticles (Ag-NPs) exhibit spherical shape with an average diameter of 23.12±3.23 nm. In-vitro blood compatibility of the nanocomposites has been carried out via hemolysis assay. Antimicrobial activity of the nanocomposites has been investigated with Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) bacteria. The results depict that the hemolysis and antimicrobial activities of the nanocomposites increase with increasing Ag-NP concentration that can be controlled by the AgNO3 precursor concentration in the in-situ process. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. In situ identification of the synthrophic protein fermentative Coprothermobacter spp. involved in the thermophilic anaerobic digestion process.

    Science.gov (United States)

    Gagliano, Maria Cristina; Braguglia, Camilla Maria; Rossetti, Simona

    2014-09-01

    Thermophilic bacteria have recently attracted great attention because of their potential application in improving different biochemical processes such as anaerobic digestion of various substrates, wastewater treatment or hydrogen production. In this study we report on the design of a specific 16S rRNA-targeted oligonucleotide probe for detecting members of Coprothermobacter genus characterized by a strong protease activity to degrade proteins and peptides. The newly designed CTH485 probe and helper probes hCTH429 and hCTH439 were optimized for use in fluorescence in situ hybridization (FISH) on thermophilic anaerobic sludge samples. In situ probing revealed that thermo-adaptive mechanisms shaping the 16S rRNA gene may affect the identification of thermophilic microorganisms. The novel developed FISH probe extends the possibility to study the widespread thermophilic syntrophic interaction of Coprothermobacter spp. with hydrogenotrophic methanogenic archaea, whose establishment is a great benefit for the whole anaerobic system. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  18. The Mg{sub 2}Si phase evolution during thermomechanical processing of in-situ aluminum matrix macro-composite

    Energy Technology Data Exchange (ETDEWEB)

    Shafieizad, A.H. [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Zarei-Hanzaki, A., E-mail: Zareih@ut.ac.ir [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Abedi, H.R. [The Complex Laboratory of Hot Deformation & Thermomechanical Processing of High Performance Engineering Materials, School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Al-Fadhalah, K.J. [Department of Mechanical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait)

    2015-09-17

    The microstructure and flow stress behavior of thermomechanically processed Al–Cu/Mg{sub 2}Si in-situ composite was studied emphasizing the evolution of primary and secondary reinforcement phases. Toward this end, the hot compression tests were conducted over the wide range of temperature (300–500 °C) and strain rate (0.001–0.1 s{sup −1}). Both the temperature and strain rate are found to possess a significant effect on the microstructural characteristics where a considerable softening is identified specially at low temperature regime. Besides the occurrence of restoration processes (mainly particle stimulated nucleation) the dynamic evolution of the reinforcements is introduced as the main factors affecting the reported softening. In this regard, the mechanical fragmentation, thermal disintegration, micro-buckling, coalescence and spheroidization of the primary and secondary particles are quantitatively and qualitatively addressed through a comprehensive scanning electron microscopy studies.

  19. In Situ Investigation of the Iron Carbide Precipitation Process in a Fe-C-Mn-Si Q&P Steel

    Directory of Open Access Journals (Sweden)

    Sébastien Y. P. Allain

    2018-06-01

    Full Text Available Quenching and Partitioning (Q&P steels are promising candidates for automotive applications because of their lightweight potential. Their properties depend on carbon enrichment in austenite which, in turn, is strongly influenced by carbide precipitation in martensite during quenching and partitioning treatment. In this paper, by coupling in situ High Energy X-Ray Diffraction (HEXRD experiments and Transmission Electron Microscopy (TEM, we give some clarification regarding the precipitation process of iron carbides in martensite throughout the Q&P process. For the first time, precipitation kinetics was followed in real time. It was shown that precipitation starts during the reheating sequence for the steel studied. Surprisingly, the precipitated fraction remains stable all along the partitioning step at 400 °C. Furthermore, the analyses enable the conclusion that the iron carbides are most probably eta carbides. The presence of cementite was ruled out, while the presence of several epsilon carbides cannot be strictly excluded.

  20. In situ groundwater bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, Terry C.

    2009-02-01

    In situ groundwater bioremediation of hydrocarbons has been used for more than 40 years. Most strategies involve biostimulation; however, recently bioaugmentation have been used for dehalorespiration. Aquifer and contaminant profiles are critical to determining the feasibility and strategy for in situ groundwater bioremediation. Hydraulic conductivity and redox conditions, including concentrations of terminal electron acceptors are critical to determine the feasibility and strategy for potential bioremediation applications. Conceptual models followed by characterization and subsequent numerical models are critical for efficient and cost effective bioremediation. Critical research needs in this area include better modeling and integration of remediation strategies with natural attenuation.

  1. Human Integration Design Processes (HIDP)

    Science.gov (United States)

    Boyer, Jennifer

    2014-01-01

    The purpose of the Human Integration Design Processes (HIDP) document is to provide human-systems integration design processes, including methodologies and best practices that NASA has used to meet human systems and human rating requirements for developing crewed spacecraft. HIDP content is framed around human-centered design methodologies and processes in support of human-system integration requirements and human rating. NASA-STD-3001, Space Flight Human-System Standard, is a two-volume set of National Aeronautics and Space Administration (NASA) Agency-level standards established by the Office of the Chief Health and Medical Officer, directed at minimizing health and performance risks for flight crews in human space flight programs. Volume 1 of NASA-STD-3001, Crew Health, sets standards for fitness for duty, space flight permissible exposure limits, permissible outcome limits, levels of medical care, medical diagnosis, intervention, treatment and care, and countermeasures. Volume 2 of NASASTD- 3001, Human Factors, Habitability, and Environmental Health, focuses on human physical and cognitive capabilities and limitations and defines standards for spacecraft (including orbiters, habitats, and suits), internal environments, facilities, payloads, and related equipment, hardware, and software with which the crew interfaces during space operations. The NASA Procedural Requirements (NPR) 8705.2B, Human-Rating Requirements for Space Systems, specifies the Agency's human-rating processes, procedures, and requirements. The HIDP was written to share NASA's knowledge of processes directed toward achieving human certification of a spacecraft through implementation of human-systems integration requirements. Although the HIDP speaks directly to implementation of NASA-STD-3001 and NPR 8705.2B requirements, the human-centered design, evaluation, and design processes described in this document can be applied to any set of human-systems requirements and are independent of reference

  2. Integration process and logistics results

    International Nuclear Information System (INIS)

    2004-01-01

    The Procurement and Logistics functions have gone through a process of integration since the beginning of integrated management of Asco and Vandellos II up to the present. These are functions that are likely to be designed for delivering a single product to the rest of the organization, defined from a high level of expectations, and that admit simplifications and materialization of synergy's as they are approached from an integrated perspective. The analyzed functions are as follows: Service and Material Purchasing, Warehouse and Material Management, and Documentation and General Services Management. In all case, to accomplish the integration, objectives, procedures and information systems were unified. As for the organization, a decision was made in each case on whether or not to out source. The decisive corporate strategy to integrate, resulting in actions such as moving corporate headquarters to Vandellos II, corporate consolidation, regulation of employment and implementation of the ENDESA Group Economic Information System (SIE) , has shaped this process, which at present can be considered as practically complete. (Author)

  3. Development of titanium based biocomposite by powder metallurgy processing with in situ forming of Ca-P phases

    Energy Technology Data Exchange (ETDEWEB)

    Karanjai, Malobika [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India)]. E-mail: malobika@arci.res.in; Sundaresan, Ranganathan [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India); Rao, Gummididala Venkata Narasimha [International Advanced Research Centre for Powder Metallurgy and New Materials, Balapur P.O., Hyderabad 500005, Andhra Pradesh (India); Mohan, Tallapragada Raja Rama [Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Powai, Mumbai 400076, Maharashtra (India); Kashyap, Bhagwati Prasad [Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Powai, Mumbai 400076, Maharashtra (India)

    2007-02-25

    Composites of titanium and calcium-phosphorus phases were developed by powder metallurgy processing and evaluated for bioactivity. Titanium hydride powder and precursors of calcium and phosphorus in the form of calcium carbonate and di-ammonium hydrogen orthophosphate were mixed in different proportions, compacted and calcined in different atmospheres. The calcined compacts were subsequently crushed, recompacted and sintered in vacuum. In situ formation of bioactive phases like hydroxylapatite, tricalcium phosphate and calcium titanate during the calcination and sintering steps was studied using X-ray diffraction. The effect of calcination atmosphere on density, interconnected porosity, phase composition and modulus of rupture of sintered composites was examined. The sintered composites were immersed in simulated body fluid for 7 days to observe their in vitro behaviour with XRD and FTIR spectroscopic identification of deposits. Composites with 10 wt% precursors sintered from vacuum calcined powder gave the best results in terms of bioactive phases, density and strength.

  4. In situ analysis of negative-tone resist pattern formation using organic-solvent-based developer process

    Science.gov (United States)

    Santillan, Julius Joseph; Yamada, Keisaku; Itani, Toshiro

    2014-01-01

    In situ resist “pattern formation” analysis during the development process using high-speed atomic force microscopy has been improved for application not only for conventional aqueous 0.26 N tetramethylammonium hydroxide (aq. TMAH), but also organic solvent n-butyl acetate (nBA) developers. Comparative investigations of resist dissolution in these developers, using the same resist material (hybrid of polyhydroxystyrene and methacrylate), showed a grainlike, uniform dissolution of the “unexposed resist film” in nBA development and uneven dissolution of the “exposed resist film” in aq. TMAH development. These results suggest the importance of dissolution uniformity in further improving the resulting pattern line width roughness.

  5. Instrumentation and process control development for in situ coal gasification. Fourth quarterly report, September--November 1975

    Energy Technology Data Exchange (ETDEWEB)

    Northrop, D.A. (ed.)

    1976-01-01

    The instrumentation effort for Phases 2 and 3 of the Second Hanna In Situ Coal Gasification Experiment was fielded and background data obtained prior to the initiation of Phase 2 on November 25, 1975. A total of over 600 channels of instrumentation in 15 instrumentation wells and two surface arrays was fielded for the instrumentation techniques under evaluation. The feasibility of the passive acoustic technique to locate the source of process-related noises has been demonstrated; its utility is presently hampered by the inexact definition of signal arrivals and the lack of automated signal monitoring and analysis systems. A revised mathematical model for the electrical techniques has been developed which demonstrates the potential for remote monitoring. (auth)

  6. In situ resistance measurements of bronze process Nb-Sn-Cu-Ta multifilamentary composite conductors during reactive diffusion

    International Nuclear Information System (INIS)

    Tan, K S; Hopkins, S C; Glowacki, B A; Majoros, M; Astill, D

    2004-01-01

    The conditions under which the Nb 3 Sn intermetallic layer is formed by solid-state reactive diffusion processes in bronze process multifilamentary conductors greatly influence the performance of the conductors. By convention, isothermal heat treatment is used and often causes non-uniformity of A15 layers formed across the wire. Therefore, characterization and optimization of the conductor during the reactive diffusion processes is crucial in order to improve the overall conductor's performance. In this paper, a different characterization approach and perhaps an optimization technique is presented, namely in situ resistance measurement by an alternating current (AC) method. By treating the components of such multifilamentary wires as a set of parallel resistors, the resistances of the components may be combined using the usual rules for resistors in parallel. The results show that the resistivity of the entire wire changes significantly during the reactive diffusion processes. The development of the Nb 3 Sn layer in bronze process Nb-Sn-Cu-Ta multifilamentary wires at different stages of the reactive diffusion processes has been monitored using measured resistivity changes, and correlated with results from DTA, ACS, SEM and EDS

  7. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    Science.gov (United States)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  8. Consciousness as a process of queries and answers in architectures based on in situ representations

    NARCIS (Netherlands)

    van der Velde, F.; van der Velde, Frank

    2013-01-01

    Functional or access consciousness can be described as an ongoing dynamic process of queries and answers. Whenever we have an awareness of an object or its surroundings, it consists of the dynamic process that answers (implicit) queries like "What is the color or shape of the object?" or "What

  9. Development of an aerobic/anaerobic process for in-situ-rehabilitation of a mostly with mineral oil contaminated location. Final report; Entwicklung eines aeroben/anaeroben Verfahrens zur `In situ-Sanierung` eines vorwiegend mineraloelkontaminierten Altlaststandortes. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Auerbach, C; Winsel, E; Wartenberg, G

    1994-12-31

    - A location contaminated with mineral oil was tested for the possibility of a bioremediation; - the microbiological tests showed, that there is both an aerobiotic and an optional anaerobic autochthonous pollutants degrading microflora but only the activation of the aerobiotic germs was possible by both suitable nutrients and test conditions; - in degrading tests with a high concentration of pollutants a degradation was possible by addition of different nutrients. Within a week a degradation of about 70% was shown. In areas of lower concentration the possible degradation was smaller. - An in-situ-rehabilitation by a hydraulic supply of the soil microorganisms was not possible because of the anisotropic conditions at the location in a depth of 5-10 m; - an in-situ-rehabilitation with both soil air aspiration and aeration, for the supply of the soil microorganisms too, is even possible at anisotropic soil conditions; - now there is knowledge about both a variable filtration and tubing for an optimal adaptation for the bioremediation to the damage; - apparatus were developped for in-situ-rehabilitation for small and medium locations, useable for biological processes too; - there is a wide utilization of the aeration apparatus is because of the careful environmental use. (orig.) [Deutsch] - Ein Mineraloel-kontaminierter Altlaststandort wurde im Hinblick auf eine moegliche biologische Sanierung untersucht. - Die mikrobiologischen Untersuchungen ergaben, dass eine aerobe und fakultativ anaerobe autochthone schadstoffabbauende Mikroflora vorhanden ist, aber nur der aeroben Keime durch geeignete Naehrstoffe und Versuchsbedingungen aktivierbar waren. - In Abbauuntersuchungen durch Zusatz unterschiedlicher Naehrsalze konnte bei hoher Schadstoffkonzentration schon nach 1 Woche ein Abbau > 70% erreicht werden. In niederen Konzentrationsbereichen war die Schadstoffabbaupotenz wesentlich geringer. - Die anisotropen Verhaeltnisse am Standort in 5-10m Tiefe liessen eine In-situ

  10. Study on in-situ electrochemical impedance spectroscopy measurement of anodic reaction in SO_2 depolarized electrolysis process

    International Nuclear Information System (INIS)

    Xue Lulu; Zhang Ping; Chen Songzhe; Wang Laijun

    2014-01-01

    SO_2 depolarized electrolysis (SDE) is the pivotal reaction in hybrid sulfur process, one of the most promising approaches for mass hydrogen production without CO_2 emission. The net result of hybrid sulfur process is to split water into hydrogen and oxygen at a relatively low voltage, which will dramatically decrease the energy consumption for the production of hydrogen. The potential loss of SDE process could be separated into four components, i.e. reversible cell potential, anode overpotential, cathode overpotential and ohmic loss. So far, it has been identified that the total cell potential for the SO_2 depolarized electrolyzer is dominantly controlled by sulfuric acid concentration of the anolyte and electrolysis temperature of the electrolysis process. In this work, an in-situ Electrochemical Impedance Spectroscopy (EIS) measurement of the anodic SDE reaction was conducted. Results show that anodic overpotential is mainly resulted from the SO_2 oxidation reaction other than ohmic resistance or mass transfer limitation. This study extends the understanding to SDE process and gives suggestions for the further improvement of the SDE performance. (author)

  11. Effective parameters, effective processes: From porous flow physics to in situ remediation technology

    International Nuclear Information System (INIS)

    Pruess, K.

    1995-06-01

    This paper examines the conceptualization of multiphase flow processes on the macroscale, as needed in field applications. It emphasizes that upscaling from the pore-level will in general not only introduce effective parameters but will also give rise to ''effective processes,'' i.e., the emergence of new physical effects that may not have a microscopic counterpart. ''Phase dispersion'' is discussed as an example of an effective process for the migration and remediation of non-aqueous phase liquid (NAPL) contaminants in heterogeneous media. An approximate space-and-time scaling invariance is derived for gravity-driven liquid flow in unsaturated two-dimensional porous media (fractures). Issues for future experimental and theoretical work are identified

  12. The crack propagating behavior of composite coatings prepared by PEO on aluminized steel during in situ tensile processing

    International Nuclear Information System (INIS)

    Chen Zhitong; Li Guang; Wu Zhenqiang; Xia Yuan

    2011-01-01

    Research highlights: → Composite coatings on the aluminized steel were prepared by the plasma electrolytic oxidation (PEO) technique, which comprised of Fe-Al layer, Al layer and Al 2 O 3 layer. → The evaluation method of the crack critical opening displacement δ c was introduced to describe quantitatively the resistance of Al layer to the propagation behavior of cracks and evaluate the fracture behavior of composite coatings. → The crack propagating model was established. - Abstract: This paper investigates the in situ tensile cracks propagating behavior of composite coatings on the aluminized steel generated using the plasma electrolytic oxidation (PEO) technique. Cross-sectional micrographs and elemental compositions were investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The composite coatings were shown to consist of Fe-Al, Al and Al 2 O 3 layers. The cracks propagating behavior was observed in real-time in situ SEM tensile test. In tensile process, the cracks were temporarily stopped when cracks propagated from Fe-Al layer to Al layer. The critical crack opening displacement δ c was introduced to quantitatively describe the resistance of the Al layer. There was a functional relation among the thickness ratio t Al /t Al 2 O 3 , the δ c of composite coatings and tensile cracks' spacing. The δ c increased with the increasing of the thickness ratio (t Al /t Al 2 O 3 ). The high δ c value means high fracture resistance. Therefore, a control of the thickness ratio t Al /t Al 2 O 3 was concerned as a key to improve the toughness and strength of the aluminized steel.

  13. In situ observation of plutonium transfer processes in the marine environment

    International Nuclear Information System (INIS)

    Guary, J.-C.; Fraizier, Andre

    1975-09-01

    A preliminary observation of plutonium transfer processes in the marine environment was carried out and showed that concentration of the radionuclide was lower when marine organisms stood at a higher trophic level. This observation supplemented by an investigation on contamination pathways showed that plutonium was not concentrated along the food chain and its uptake occured preferentially by direct contact of species with seawater, a process chiefly affecting producers and primary consumers. It appeared that the marine sediment was not a significant vector of plutonium transfer in burrowing species [fr

  14. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Greil, Stefanie M. [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Lauermann, Iver, E-mail: Iver.lauermann@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany); Aziz, Emad F., E-mail: Emad.Aziz@helmholtz-berlin.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin (Germany)

    2010-02-15

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  15. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    International Nuclear Information System (INIS)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-01-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  16. In situ investigation of wet chemical processes for chalcopyrite solar cells by L-edge XAS under ambient conditions

    Science.gov (United States)

    Greil, Stefanie M.; Lauermann, Iver; Ennaoui, Ahmed; Kropp, Timo; Lange, Kathrin M.; Weber, Matthieu; Aziz, Emad F.

    2010-02-01

    Two instrumental setups for in situ soft X-ray absorption spectroscopy in liquid systems are demonstrated in this work. One for investigating chemical reactions in solutions and a new one for the solid component of a liquid / (as in both / absorber) solid interface. We used these setups for investigating two production processes for chalcopyrite solar cells under ambient conditions, probing the L-edge of Zn and Cu. The first one is a flow cell with a silicon nitride membrane to study the chemical bath deposition process for Cd-free buffer layers. Examining the electronic structure of involved Zn complexes allows to determine the exact reaction mechanism taking place during this process. The second setup is a rotating disk for investigating the bath/absorber interface upon the etching process of superficial binary copper compounds of the absorber as a function of time. The time resolution of the chemical reaction demonstrated in this study ranges from the second to minute time scale.

  17. Reaction and Transport Processes Controlling In Situ Chemical Oxidation of DNAPLs

    Science.gov (United States)

    2006-11-01

    Contact Areas. Ground Water, 36(4):495-502. Atlas , R.M., and R. Bartha (1987). Microbial Ecology , Benjamin/Cummings Publishing Company, Menlo Park...relatively few species ( Atlas and Bartha 1987). If selection for bioremediation processes following oxidation does occur, competition for substrates...Experiments.....................................................................3-23 3.6.3. Microbial Culture Preparation for Evaluation of Coupling

  18. In-situ product removal from fermentations by membrane extraction: conceptual process design and economics

    NARCIS (Netherlands)

    Heerema, L.; Roelands, C.P.M.; Goetheer, E.L.V.; Verdoes, D.; Keurentjes, J.

    2011-01-01

    This paper describes a conceptual process design for the production of the model component phenol by a recombinant strain of the micro-organism Pseudomonas putida S12. The (bio)production of the inhibiting component phenol in a bioreactor is combined with direct product removal by membrane

  19. Morphology Development in Solution-Processed Functional Organic Blend Films: An In Situ Viewpoint

    KAUST Repository

    Richter, Lee J.; DeLongchamp, Dean M.; Amassian, Aram

    2017-01-01

    .0, to the Internet of things, to point-of-use heath care and elder care. The extreme sensitivity of the functional performance of organic films to structure and the general nonequilibrium nature of solution drying result in extreme processing-performance correlations

  20. In situ diagnostics of the crystal-growth process through neutron imaging

    DEFF Research Database (Denmark)

    Tremsin, Anton S.; Makowska, Malgorzata Grazyna; Perrodin, Didier

    2016-01-01

    Neutrons are known to be unique probes in situations where other types of radiation fail to penetrate samples and their surrounding structures. In this paper it is demonstrated how thermal and cold neutron radiography can provide time-resolved imaging of materials while they are being processed (e......, as limited by the resolution of the present experiments). It is also demonstrated that the dopant concentration can be quantified even for very low concentration levels (∼ 0.1%) in 10 mm thick samples. The interface between the solid and liquid phases can also be imaged, provided there is a sufficient change.......g. while growing single crystals). The processing equipment, in this case furnaces, and the scintillator materials are opaque to conventional X-ray interrogation techniques. The distribution of the europium activator within a BaBrCl:Eu scintillator (0.1 and 0.5% nominal doping concentrations per mole...

  1. Characterization of boron carbide particulate reinforced in situ copper surface composites synthesized using friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Sathiskumar, R., E-mail: sathiscit2011@gmail.com [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Murugan, N., E-mail: murugan@cit.edu.in [Department of Mechanical Engineering, Coimbatore Institute of Technology, Coimbatore, 641 014 Tamil Nadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering, V V College of Engineering, Tisaiyanvilai, 627 657 Tamil Nadu (India); Vijay, S.J., E-mail: vijayjoseph@karunya.edu [Centre for Research in Metallurgy (CRM), School of Mechanical Sciences, Karunya University, Coimbatore, 641 114 Tamil Nadu (India)

    2013-10-15

    Friction stir processing has evolved as a novel solid state technique to fabricate surface composites. The objective of this work is to apply the friction stir processing technique to fabricate boron carbide particulate reinforced copper surface composites and investigate the effect of B{sub 4}C particles and its volume fraction on microstructure and sliding wear behavior of the same. A groove was prepared on 6 mm thick copper plates and packed with B{sub 4}C particles. The dimensions of the groove was varied to result in five different volume fractions of B{sub 4}C particles (0, 6, 12, 18 and 24 vol.%). A single pass friction stir processing was done using a tool rotational speed of 1000 rpm, travel speed of 40 mm/min and an axial force of 10 kN. Metallurgical characterization of the Cu/B{sub 4}C surface composites was carried out using optical microscope and scanning electron microscope. The sliding wear behavior was evaluated using a pin-on-disk apparatus. Results indicated that the B{sub 4}C particles significantly influenced the area, dispersion, grain size, microhardness and sliding wear behavior of the Cu/B{sub 4}C surface composites. When the volume fraction of B{sub 4}C was increased, the wear mode changed from microcutting to abrasive wear and wear debris was found to be finer. Highlights: • Fabrication of Cu/B{sub 4}C surface composite by friction stir processing • Analyzing the effect of B{sub 4}C particles on the properties of Cu/B4C surface composite • Increased volume fraction of B{sub 4}C particles reduced the area of surface composite. • Increased volume fraction of B{sub 4}C particles enhanced the microhardness and wear rate. • B{sub 4}C particles altered the wear mode from microcutting to abrasive.

  2. In-situ treatment of PCP contaminated soil by electrokinetics-Fenton-biodegradation process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G.C.C.; Chen Jenteh [Inst. of Environmental Engineering, National Sun Yat-Sen Univ., Kaohsiung (Taiwan)

    2001-07-01

    This laboratory investigation was conducted to evaluate the treatment efficiency of a process combining electrokinetic remediation (EK), Fenton process, and biodegradation for treating a pentachlorophenol (PCP) contaminated soil. For EK-Fenton experiments, the results have indicated that an increase of treatment time (e.g., from 10 to 15 days) would substantially increase the overall treatment (i.e., removal and destruction) efficiency of PCP. Only a limited increase of the treatment efficiency would be found if the concentration of FeSO{sub 4} was increased from 0.0196M to 0.098M. When scrap iron power was employed as the catalyst, the residual PCP concentration for soil near the anode end was found to be lower than that of 0.0196M FeSO{sub 4}. But its overall treatment efficiency was only 56.58%, which is lower than 68.34% obtained by using 0.0196M FeSO{sub 4} and 0.35% H{sub 2}O{sub 2}. When H{sub 2}O{sub 2} concentration was further increased to 3.5%, an overall treatment efficiency of 79.77% would be obtained when 0.0196M FeSO{sub 4} was used. When treated by EK-biodegradation process with phenol enrichment bacteria, the overall treatment efficiency of PCP was as low as 25.67%. If PCP contaminated soil was pre-treated by EK-Fenton process and followed by EK-biodegradation, an overall treatment efficiency of 100% was found to be achievable. (orig.)

  3. Blendas PVC/NBR por processamento reativo I: desenvolvimento do processo de vulcanização Dinâmica in situ PVC/NBR blends by reactive processing I: in situ dynamic vulcanization process

    Directory of Open Access Journals (Sweden)

    Fábio R. Passador

    2007-06-01

    Full Text Available Vulcanização dinâmica é o processo de vulcanização de um elastômero durante a mistura no estado fundido com um termoplástico, que resulta em uma classe de materiais denominada termoplásticos vulcanizados. Neste trabalho, um novo tipo de termoplástico vulcanizado foi obtido por vulcanização dinâmica in situ da blenda PVC/NBR, utilizando-se um sistema de cura a base de enxofre (S e combinação dos aceleradores 2,2-ditiomercaptobenzotiazol (MBTS e dissulfeto de tetrametiltiuram (TMTD. As blendas PVC/NBR (90/10, 80/20 e 70/30% em massa foram processadas em um reômetro de torque Haake (Rheomix 600 a 160 °C com rotação de 60 rpm. As blendas obtidas por processamento reativo foram caracterizadas por calorimetria diferencial de varredura (DSC para determinação do grau de cura. Observou-se aumento no grau de cura das blendas com o tempo de mistura sendo o sistema de cura considerado eficiente.Dynamic vulcanization is a process of vulcanization of an elastomer during melt mixing with a thermoplastic wich results in material called thermoplastic vulcanizates or TPVs. In this study, a new kind of TPV was obtained by in situ dynamic curing of poly(vinyl chloride (PVC/nitrile rubber (NBR blends. The crosslinking of PVC/NBR blends was accomplished using sulphur (S/tetramethylthiuram disulphide (TMTD and mercaptobenzthiazyl disulphide (MBTS curative system during the reactive processing. The blends of PVC/NBR at the ratio of 90/10; 80/20 and 70/30 wt. (% were melt mixed using a Haake Rheomix 600 at 160 °C and rotor speed of 60 rpm. The curing behavior of NBR was investigated by a Monsanto Rheometer and the degree of cure was calculated using differential scanning calorimetry (DSC for different mixing times. It was observed that the degree of cure increases with the mixing time and the crosslinking system used in this work was considered efficient.

  4. Nondestructive Analysis of Tumor-Associated Membrane Protein Integrating Imaging and Amplified Detection in situ Based on Dual-Labeled DNAzyme.

    Science.gov (United States)

    Chen, Xiaoxia; Zhao, Jing; Chen, Tianshu; Gao, Tao; Zhu, Xiaoli; Li, Genxi

    2018-01-01

    Comprehensive analysis of the expression level and location of tumor-associated membrane proteins (TMPs) is of vital importance for the profiling of tumor cells. Currently, two kinds of independent techniques, i.e. ex situ detection and in situ imaging, are usually required for the quantification and localization of TMPs respectively, resulting in some inevitable problems. Methods: Herein, based on a well-designed and fluorophore-labeled DNAzyme, we develop an integrated and facile method, in which imaging and quantification of TMPs in situ are achieved simultaneously in a single system. The labeled DNAzyme not only produces localized fluorescence for the visualization of TMPs but also catalyzes the cleavage of a substrate to produce quantitative fluorescent signals that can be collected from solution for the sensitive detection of TMPs. Results: Results from the DNAzyme-based in situ imaging and quantification of TMPs match well with traditional immunofluorescence and western blotting. In addition to the advantage of two-in-one, the DNAzyme-based method is highly sensitivity, allowing the detection of TMPs in only 100 cells. Moreover, the method is nondestructive. Cells after analysis could retain their physiological activity and could be cultured for other applications. Conclusion: The integrated system provides solid results for both imaging and quantification of TMPs, making it a competitive method over some traditional techniques for the analysis of TMPs, which offers potential application as a toolbox in the future.

  5. In situ study of the epoxy cure process using a fibre-optic sensor

    Czech Academy of Sciences Publication Activity Database

    Chailleux, E.; Salvia, M.; Jaffrezic-Renault, N.; Matějec, Vlastimil; Kašík, Ivan

    2001-01-01

    Roč. 10, č. 2 (2001), s. 194-202 ISSN 0964-1726. [SPIE Annual International Symposium on Smart Structures and Materials /8./. Newport Beach, 04.03.2001-08.03.2001] R&D Projects: GA ČR GA102/99/0548; GA AV ČR KSK2067107 Projekt 07/01:4074 Institutional research plan: CEZ:AV0Z2067918 Keywords : fibre optic sensors * process monitoring Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.199, year: 2001

  6. How in-situ combustion process works in a fractured system : two-dimensional, core and block scale simulation

    Energy Technology Data Exchange (ETDEWEB)

    Fadaei, H.; Renard, G. [Inst. Francais du Petrole, Lyon (France); Quintard, M.; Debenest, G. [L' Inst. de Mecanique des Fluides de Toulouse, Toulouse (France); Kamp, A.M. [Centre Huile Lourde Ouvert et Experimental CHLOE, Pau (France)

    2008-10-15

    Core and matrix block scale simulations of in situ combustion (ISC) processes in a fractured reservoir were conducted. ISC propagation conditions and oil recovery mechanisms were studied at core scale, while the 2-D behaviour of ISC was also studied at block-scale in order to determine dominant processes for combustion propagation and the characteristics of different steam fronts. The study examined 2-phase combustion in a porous medium containing a solid fuel as well as 2-D conventional dry combustion methods. The aim of the study was to predict ISC extinction and propagation conditions as well as to understand the mechanisms of oil recovery using ISC processes. The simulations were also used to develop up-scaling guidelines for fractured systems. Computations were performed using different oxygen diffusion and matrix permeability values. The effect of each production mechanism was studied separately. The multi-phase simulations showed that ISC in fractured reservoirs is feasible. The study showed that ISC propagation is dependent on the oxygen diffusion coefficient, while matrix permeability plays an important role in oil production. Oil production was governed by gravity drainage and thermal effects. Heat transfer due to the movement of combustion front velocity in the study was minor when compared to heat transfer by conduction and convection. It was concluded that upscaling methods must also consider the different zones distinguished for oil saturation and temperatures. 15 refs., 2 tabs., 15 figs.

  7. In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.

    Science.gov (United States)

    Laborde-Boutet, Cedric; McCaffrey, William C

    2017-02-21

    To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.

  8. IN-SITU IONIC CHEMICAL ANALYSIS OF FRESH WATER VIA A NOVEL COMBINED MULTI-SENSOR / SIGNAL PROCESSING ARCHITECTURE

    Science.gov (United States)

    Mueller, A. V.; Hemond, H.

    2009-12-01

    The capability for comprehensive, real-time, in-situ characterization of the chemical constituents of natural waters is a powerful tool for the advancement of the ecological and geochemical sciences, e.g. by facilitating rapid high-resolution adaptive sampling campaigns and avoiding the potential errors and high costs related to traditional grab sample collection, transportation and analysis. Portable field-ready instrumentation also promotes the goals of large-scale monitoring networks, such as CUASHI and WATERS, without the financial and human resources overhead required for traditional sampling at this scale. Problems of environmental remediation and monitoring of industrial waste waters would additionally benefit from such instrumental capacity. In-situ measurement of all major ions contributing to the charge makeup of natural fresh water is thus pursued via a combined multi-sensor/multivariate signal processing architecture. The instrument is based primarily on commercial electrochemical sensors, e.g. ion selective electrodes (ISEs) and ion selective field-effect transistors (ISFETs), to promote low cost as well as easy maintenance and reproduction,. The system employs a novel architecture of multivariate signal processing to extract accurate information from in-situ data streams via an "unmixing" process that accounts for sensor non-linearities at low concentrations, as well as sensor cross-reactivities. Conductivity, charge neutrality and temperature are applied as additional mathematical constraints on the chemical state of the system. Including such non-ionic information assists in obtaining accurate and useful calibrations even in the non-linear portion of the sensor response curves, and measurements can be made without the traditionally-required standard additions or ionic strength adjustment. Initial work demonstrates the effectiveness of this methodology at predicting inorganic cations (Na+, NH4+, H+, Ca2+, and K+) in a simplified system containing

  9. Chemical effect in nuclear decay processes. Applications in in situ studies in hot atom chemistry

    International Nuclear Information System (INIS)

    Urch, D.S.

    1993-01-01

    In certain cases, secondary processes, such as X-ray or electron emission initiated by the primary event, do show effects which can be correlated with the chemical state of the emitting atom. The most well known is Moessbauer recoil-less γ-emission, but this talk will concentrate on other, more widespread processes that follow either γ-ray internal conversion (γIC) or electron capture (EC). The former leads to electron emission and the latter to X-ray and Auger electron emission. Such emissions have been extensively studied in non-radioactive situations. These studies have shown that changes in photo- or Auger-electron energy can be readily correlated with valency and that the energies, peak shapes and peak intensities of X-rays that are generated by valence-core transitions show chemically related perturbations. γIC has been applied to the determination of changes of 3p and 3d binding energies as a function of technetium valency. The results are comparable with those from conventional X-ray photoelectron spectroscopy. In X-ray emission spectroscopy (XES) it is the Kα and Kβ X-rays from chromium ( 51 Cr) that have been most extensively studied. Studies in non-radioactive systems for chromium and related first row transition elements seem to indicate that the Kβ/Kα intensity ratio increases with valency. This may be rationalized as due to a greater response by 3p than 2p electrons to a reduction in the number of 3d electrons: 3p becomes more contracted and so the 3p → 1s transition probability is enhanced leading to the relative increase in Kβ intensity. Once 'chemical effects' in γIC and EC:XES have been established for a range of recoil elements they may be used to determine the chemical state of a recoil atom in a solid state matrix without recourse to dissolution. Such a non-invasive procedure will yield invalunable data on the primary hot atom chemistry processes. (author)

  10. Using in-situ polymerization of conductive polymers to enhance the electrical properties of solution-processed carbon nanotube films and fibers.

    Science.gov (United States)

    Allen, Ranulfo; Pan, Lijia; Fuller, Gerald G; Bao, Zhenan

    2014-07-09

    Single-walled carbon nanotubes/polymer composites typically have limited conductivity due to a low concentration of nanotubes and the insulating nature of the polymers used. Here we combined a method to align carbon nanotubes with in-situ polymerization of conductive polymer to form composite films and fibers. Use of the conducting polymer raised the conductivity of the films by 2 orders of magnitude. On the other hand, CNT fiber formation was made possible with in-situ polymerization to provide more mechanical support to the CNTs from the formed conducting polymer. The carbon nanotube/conductive polymer composite films and fibers had conductivities of 3300 and 170 S/cm, respectively. The relatively high conductivities were attributed to the polymerization process, which doped both the SWNTs and the polymer. In-situ polymerization can be a promising solution-processable method to enhance the conductivity of carbon nanotube films and fibers.

  11. Space Plasma Ion Processing of Ilmenite in the Lunar Soil: Insights from In-Situ TEM Ion Irradiation Experiments

    Science.gov (United States)

    Christoffersen, R.; Keller, L. P.

    2007-01-01

    Space weathering on the moon and asteroids results largely from the alteration of the outer surfaces of regolith grains by the combined effects of solar ion irradiation and other processes that include deposition of impact or sputter-derived vapors. Although no longer considered the sole driver of space weathering, solar ion irradiation remains a key part of the space weathering puzzle, and quantitative data on its effects on regolith minerals are still in short supply. For the lunar regolith, previous transmission electron microscope (TEM) studies performed by ourselves and others have uncovered altered rims on ilmenite (FeTiO3) grains that point to this phase as a unique "witness plate" for unraveling nanoscale space weathering processes. Most notably, the radiation processed portions of these ilmenite rims consistently have a crystalline structure, in contrast to radiation damaged rims on regolith silicates that are characteristically amorphous. While this has tended to support informal designation of ilmenite as a "radiation resistant" regolith mineral, there are to date no experimental data that directly and quantitatively compare ilmenite s response to ion radiation relative to lunar silicates. Such data are needed because the radiation processed rims on ilmenite grains, although crystalline, are microstructurally and chemically complex, and exhibit changes linked to the formation of nanophase Fe metal, a key space weathering process. We report here the first ion radiation processing study of ilmenite performed by in-situ means using the Intermediate Voltage Electron Microscope- Tandem Irradiation facility (IVEM-Tandem) at Argonne National Laboratory. The capability of this facility for performing real time TEM observations of samples concurrent with ion irradiation makes it uniquely suited for studying the dose-dependence of amorphization and other changes in irradiated samples.

  12. Design of an integrated fermentation-crystallization process applied to the production of DOIP

    NARCIS (Netherlands)

    Blokker, S.; Dabkowski, M.; Groendijk, W.; Renckens, D.; De Rond, J.

    2004-01-01

    The design problem of CPD3312 was the comparison of the conventional batch (Base case) and the new integrated fermentation-crystallization process (In Situ Product Removal or ISPR case) in particular for the production of 2 tonnes 6R-dihydrooxoisophorone (DOIP) from 4-oxo-isophorone (OIP) per year.

  13. Ultrahigh surface area carbon from carbonated beverages: Combining self-templating process and in situ activation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengfei; Zhang, Zhiyong; Chen, Jihua; Dai, Sheng

    2015-11-01

    Ultrahigh surface area carbons (USACs, e.g., >2000 m2/g) are attracting tremendous attention due to their outstanding performance in energy-related applications. The state-of-art approaches to USACs involve templating or activation methods and all these techniques show certain drawbacks. In this work, a series of USACs with specific surface areas up to 3633 m2/g were prepared in two steps: hydrothermal carbonization (200 °C) of carbonated beverages (CBs) and further thermal treatment in nitrogen (600–1000 °C). The rich inner porosity is formed by a self-templated process during which acids and polyelectrolyte sodium salts in the beverage formulas make some contribution. This strategy covers various CBs such as Coca Cola®, Pepsi Cola®, Dr. Pepper®, and Fanta® and it enables an acceptable product yield (based on sugars), for example: 21 wt% for carbon (2940 m2/g) from Coca Cola®. Being potential electrode materials for supercapacitors, those carbon materials possessed a good specific capacitance (57.2–185.7 F g-1) even at a scan rate of 1000 mV s-1. Thus, a simple and efficient strategy to USACs has been presented.

  14. Development of an integrated in-situ remediation technology. Topical report for task No. 11 entitled: Evaluation of TCE contamination before and after the field experiment, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, B.M.; Athmer, C.J.; Sheridan, P.W. [and others

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna{trademark} process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE`s Gaseous Diffusion Plant in Paducah, Kentucky.

  15. Development of an integrated in-situ remediation technology. Topical report for task No. 11 entitled: Evaluation of TCE contamination before and after the field experiment, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Hughes, B.M.; Athmer, C.J.; Sheridan, P.W.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task No. 11 summarizes the results of TCE analysis in soil and carbon before and after conducting the field experiment. In addition, a discussion of the TCE material balance demonstrates that the Lasagna trademark process is effective in moving TCE from the contaminated soil into carbon treatment zones in the field experiment at DOE's Gaseous Diffusion Plant in Paducah, Kentucky

  16. In-situ formation of complex oxide precipitates during processing of oxide dispersion strengthened ferritic steels

    International Nuclear Information System (INIS)

    Jayasankar, K.; Pandey, Abhishek; Mishra, B.K.; Das, Siddhartha

    2016-01-01

    Highlights: • Use of dual drive planetary ball mill for Bench scale (>1 kg) production. • X-ray diffraction and TEM were used to study transformations during sintering. • HIPped and rolled samples with nearly 99% density successfully produced. - Abstract: In fusion and fission reactor material development, ODS alloys are the most suitable candidate materials due to its high temperature creep properties and irradiation resistance properties. This paper describes the preparation of oxide dispersion strengthened alloy powder in large quantity (>1 kg batch) in dual drive planetary ball mill using pre-alloyed ferrtic steel powder with nano sized Y_2O_3. The consolidation of the powders was carried out in hot isostatic press (HIP) followed by hot rolling. 99% of the theoretical density was achieved by this method. The vickers hardness values of pressed and rolled samples were in the range of 380 ± 2HV and 719 ± 2HV, respectively. Samples were further investigated using X-ray diffraction particle size analyzer and electron microscope. Initial increase in particle size with milling was observed showing flattening of the particle. It was found that 5 h of milling time is sufficient to reduce the particle size to achieve the desired size. Transmission electron microscopy analysis of milled ODS steel powder revealed a uniform distribution of combustion synthesized nano-Y_2O_3 in ferritic steel matrix after a milling time of 5 h. Preliminary results demonstrated suitability of dual drive planetary ball mill for mass production of alloy within a short time due to various kinds of forces acting at a time during milling process. Fine monoclinic Y_2Si_2O_7 precipitates were also observed in the steel. This study explains the particle characteristics of nano Y_2O_3 dispersed ODS powder and formation of nano clusters in ODS ferritic alloy.

  17. Two-stage pervaporation process for effective in situ removal acetone-butanol-ethanol from fermentation broth.

    Science.gov (United States)

    Cai, Di; Hu, Song; Miao, Qi; Chen, Changjing; Chen, Huidong; Zhang, Changwei; Li, Ping; Qin, Peiyong; Tan, Tianwei

    2017-01-01

    Two-stage pervaporation for ABE recovery from fermentation broth was studied to reduce the energy cost. The permeate after the first stage in situ pervaporation system was further used as the feedstock in the second stage of pervaporation unit using the same PDMS/PVDF membrane. A total 782.5g/L of ABE (304.56g/L of acetone, 451.98g/L of butanol and 25.97g/L of ethanol) was achieved in the second stage permeate, while the overall acetone, butanol and ethanol separation factors were: 70.7-89.73, 70.48-84.74 and 9.05-13.58, respectively. Furthermore, the theoretical evaporation energy requirement for ABE separation in the consolidate fermentation, which containing two-stage pervaporation and the following distillation process, was estimated less than ∼13.2MJ/kg-butanol. The required evaporation energy was only 36.7% of the energy content of butanol. The novel two-stage pervaporation process was effective in increasing ABE production and reducing energy consumption of the solvents separation system. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Processing of Bi-2212 and Nb$_3$Sn studied in situ by high energy synchrotron diffraction and micro-tomography

    CERN Document Server

    Kadar, Julian

    Next generation superconducting wires have been studied to obtain more information on the evolution of phase growth, crystallite size and strain state during wire processing. The high energy scattering beam line ID15 at the European Synchrotron Radiation Facility provides a very high flux of high energy photons for very fast in situ X-ray diffraction and micro-tomography studies of Bi-2212/Ag and Nb$_3$S/Cu wire samples. The typical wire processing conditions could be imitated in the X-ray transparent furnace at ID15 for diffraction and tomography studies. Efficient data analysis is mandatory in order to handle the very fast data acquisition rate. For this purpose an Excel-VBA based program was developed that allows a semi-automated fitting and tracking of peaks with pre-set constraints. With this method, more than one thousand diffraction patterns have been analysed to extract d-spacing, peak intensity and peak width values. X ray absorption micro tomograms were recorded simultaneously with the X-ray diffrac...

  19. A whole biodiesel conversion process combining isolation, cultivation and in situ supercritical methanol transesterification of native microalgae.

    Science.gov (United States)

    Jazzar, Souhir; Quesada-Medina, Joaquín; Olivares-Carrillo, Pilar; Marzouki, Mohamed Néjib; Acién-Fernández, Francisco Gabriel; Fernández-Sevilla, José María; Molina-Grima, Emilio; Smaali, Issam

    2015-08-01

    A coupled process combining microalgae production with direct supercritical biodiesel conversion using a reduced number of operating steps is proposed in this work. Two newly isolated native microalgae strains, identified as Chlorella sp. and Nannochloris sp., were cultivated in both batch and continuous modes. Maximum productivities were achieved during continuous cultures with 318mg/lday and 256mg/lday for Chlorella sp. and Nannochloris sp., respectively. Microalgae were further characterized by determining their photosynthetic performance and nutrient removal efficiency. Biodiesel was produced by catalyst-free in situ supercritical methanol transesterification of wet unwashed algal biomass (75wt.% of moisture). Maximum biodiesel yields of 45.62wt.% and 21.79wt.% were reached for Chlorella sp. and Nannochloris sp., respectively. The analysis of polyunsaturated fatty acids of Chlorella sp. showed a decrease in their proportion when comparing conventional and supercritical transesterification processes (from 37.4% to 13.9%, respectively), thus improving the quality of the biodiesel. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Evidence for Integrity of Parental Genomes in the Diploid Hybridogenetic Water Frog Pelophylax esculentus by Genomic in situ Hybridization

    Czech Academy of Sciences Publication Activity Database

    Zalésna, A.; Choleva, Lukáš; Ogielska, M.; Rábová, Marie; Marec, František; Ráb, Petr

    2011-01-01

    Roč. 134, č. 3 (2011), s. 206-212 ISSN 1424-8581 R&D Projects: GA MŠk LC06073; GA ČR GA523/09/2106 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50070508 Keywords : Amphibia * Chromosomes * Genomic in situ hybridization (GISH) Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.533, year: 2011

  1. In-situ bioremediation via horizontal wells

    International Nuclear Information System (INIS)

    Hazen, T.C.; Looney, B.B.; Enzien, M.; Franck, M.M.; Fliermans, C.B.; Eddy, C.A.

    1993-01-01

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade TCE, PCE and their daughter products in situ by addition of nutrients to the contaminated zone. In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work (Radian 1989). Subsurface soils and water adjacent to an abandoned process sewer line at the SRS have been found to have elevated levels of TCE (Marine and Bledsoe 1984). This area of subsurface and groundwater contamination is the focus of a current integrated demonstration of new remediation technologies utilizing horizontal wells. Bioremediation has the potential to enhance the performance of in situ air stripping as well as offering stand-alone remediation of this and other contaminated sites (Looney et al. 1991). Horizontal wells could also be used to enhance the recovery of groundwater contaminants for bioreactor conversions from deep or inaccessible areas (e.g., under buildings) and to enhance the distribution of nutrient or microbe additions in an in situ bioremediation

  2. Compact x-ray microradiograph for in situ imaging of solidification processes: Bringing in situ x-ray micro-imaging from the synchrotron to the laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Rakete, C.; Baumbach, C.; Goldschmidt, A.; Samberg, D.; Schroer, C. G. [Institut fuer Strukturphysik, Technische Universitaet Dresden, D-01062 Dresden (Germany); Breede, F.; Stenzel, C. [Astrium-Space Transportation, Department: TO 611, Claude-Dornier-Strasse, D-88039 Friedrichshafen (Germany); Zimmermann, G.; Pickmann, C. [ACCESS e.V., Intzestrasse 5, D-52072 Aachen (Germany); Houltz, Y.; Lockowandt, C. [Science Services Division, SSC, Box 4207, SE-17104 Solna (Sweden); Svenonius, O.; Wiklund, P. [Scint-X AB, Torshamnsgatan 35, SE-164 40 Kista (Sweden); Mathiesen, R. H. [Inst. for Fysikk, NTNU, N-7491 Trondheim (Norway)

    2011-10-15

    A laboratory based high resolution x-ray radiograph was developed for the investigation of solidification dynamics in alloys. It is based on a low-power microfocus x-ray tube and is potentially appropriate for x-ray diagnostics in space. The x-ray microscope offers a high spatial resolution down to approximately 5 {mu}m. Dynamic processes can be resolved with a frequency of up to 6 Hz. In reference experiments, the setup was optimized to yield a high contrast for AlCu-alloys. With samples of about 150 {mu}m thickness, high quality image sequences of the solidification process were obtained with high resolution in time and space.

  3. In situ analysis of thin film deposition processes using time-of-flight (TOF) ion beam analysis methods

    International Nuclear Information System (INIS)

    Im, J.; Lin, Y.; Schultz, J.A.; Auciello, O.H.; Chang, R.P.H.

    1995-05-01

    Non-destructive, in situ methods for characterization of thin film growth phenomena is key to understand thin film growth processes and to develop more reliable deposition procedures, especially for complex layered structures involving multi-phase materials. However, surface characterization methods that use either electrons (e.g. AES or XPS) or low energy ions (SIMS) require an UHV environment and utilize instrumentation which obstructs line of sight access to the substrate and are therefore incompatible with line of sight deposition methods and thin film deposition processes which introduce gas, either part of the deposition or in order to produce the desired phase. We have developed a means of differentially pumping both the ion beam source and detectors of a TOF ion beam surface analysis spectrometer that does not interfere with the deposition process and permits compositional and structural analysis of the growing film in the present system, at pressures up to several mTorr. Higher pressures are feasible with modified source-detector geometry. In order to quantify the sensitivity of Ion Scattering Spectroscopy (ISS) and Direct Recoil Spectroscopy (DRS), we have measured the signal intensity for stabilized clean metals in a variety of gas environments as a function of the ambient gas species and pressure, and ion beam species and kinetic energy. Results are interpreted in terms of collision cross sections which are compared with known gas phase scattering data and provide an apriori basis for the evaluation of time-of-flight ion scattering and recoil spectroscopies (ToF-ISARS) for various industrial processing environments which involve both inert and reactive cases. The cross section data for primary ion-gas molecule and recoiled atom-gas molecule interactions are also provided. from which the maximum operating pressure in any experimental configuration can be obtained

  4. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

    KAUST Repository

    Barrit, Dounya; Sheikh, Arif D.; Munir, Rahim; Barbe, Jeremy; Li, Ruipeng; Smilgies, Detlef-M.; Amassian, Aram

    2017-01-01

    from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones

  5. New insight in the template decomposition process of large zeolite ZSM-5 crystals: an in situ UV-Vis/fluorescence micro-spectroscopy study

    NARCIS (Netherlands)

    Karwacki, L.|info:eu-repo/dai/nl/304824283; Weckhuysen, B.M.|info:eu-repo/dai/nl/285484397

    2011-01-01

    A combination of in situ UV-Vis and confocal fluorescence micro-spectroscopy was used to study the template decomposition process in large zeolite ZSM-5 crystals. Correlation of polarized light dependent UV-Vis absorption spectra with confocal fluorescence emission spectra in the 400–750 nm region

  6. Enzymatic in-situ generation of H2O2 for decolorization of Acid Blue 113 by fenton process

    Directory of Open Access Journals (Sweden)

    Karimi Afzal

    2012-01-01

    Full Text Available Decolorization of Acid Blue 113 in an aqueous medium by bio-Fenton process has been investigated in this research. Enzymatic oxidation of glucose was performed to in-situ generation of H2O2 which was employed to react with Fe2+ for producing hydroxyl radicals. The effect of various parameters include concentrations of 113, glucose, and FeSO4, activity of glucose oxidase (GOx and the effect of pH were assessed. The highest decolorization of AB 113 were achieved at Fe2+ concentration of 0.2 mmol/L, pH =4.0, glucose concentration of 0.018 mol/L, and glucose oxidase activity of 2500 U/L in the constant temperature (23 ±0.1ºC and constant shaking rate (160 r/min, while the concentration of 113 was 40 mg/L. In these conditions, 113 decolorization efficiency after 60 min was obtained about 95%.

  7. Deposition and characteristics of PbS thin films by an in-situ solution chemical reaction process

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Junna; Ji, Huiming; Wang, Jian; Zheng, Xuerong; Lai, Junyun; Liu, Weiyan; Li, Tongfei [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China); Ma, Yuanliang; Li, Haiqin; Zhao, Suqin [College of Physics and Electronic Information Engineering, Qinghai University for Nationalities, Xining 810007 (China); Jin, Zhengguo, E-mail: zhgjin@tju.edu.cn [School of Materials Science and Engineering, Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Tianjin University, Tianjin 300072 (China)

    2015-09-01

    Preferential oriented and uniform PbS thin films were deposited by a room temperature in-situ solution chemical reaction process, in which the lead nitrate as precursor in a form of thin solid films from lead precursor solution was used to react with ammonium sulfide ethanol solution. Influence of 1-butanol addition in the lead precursor solution, Pb:S molar ratios in the separate cationic and anionic solutions, deposition cycle numbers and annealing treatment in Ar atmosphere on structure, morphology, chemical composition and optical absorption properties of the deposited PbS films were investigated based on X-ray diffraction, field emission scanning electron microscopy, energy dispersive spectrometer, atomic force microscopy, selected area electron diffraction, UV–vis, near infrared ray and fourier transform infrared spectroscopy measurements. The results showed that the deposited PbS thin films had a cubic structure and highly preferred orientation along with the plane (100). The deposition rate of single-layer was stable, about 30 nm in thickness per deposition cycle. - Highlights: • Time-efficiency synthetic method for the preparation of lead sulfide (PbS) films • Effect of 1-butanol addition into cationic precursor solution is discussed. • Growth rate of the PbS films is stable at about 30 nm per cycle.

  8. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naohiko [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)]. E-mail: e0957@mosk.tytlabs.co.jp; Konomi, Ichiro [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Seno, Yoshiki [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Motohiro, Tomoyoshi [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2005-05-15

    The crystallization processes of the Ge{sub 2}Sb{sub 2}Te{sub 5} thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T{sub 1} on the rate of temperature elevation R{sub et} gave an activation energy E{sub a}: 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge{sub 4}Sb{sub 1}Te{sub 5} film whose large reflectance change attains the readability by CD-ROM drives gave E{sub a}: 1.13 eV with larger T{sub 1} than Ge{sub 2}Sb{sub 2}Te{sub 5} thin films at any R{sub et} implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk.

  9. Modulation of drug release kinetics of shellac-based matrix tablets by in-situ polymerization through annealing process.

    Science.gov (United States)

    Limmatvapirat, Sontaya; Limmatvapirat, Chutima; Puttipipatkhachorn, Satit; Nunthanid, Jurairat; Luangtana-anan, Manee; Sriamornsak, Pornsak

    2008-08-01

    A new oral-controlled release matrix tablet based on shellac polymer was designed and developed, using metronidazole (MZ) as a model drug. The shellac-based matrix tablets were prepared by wet granulation using different amounts of shellac and lactose. The effect of annealing temperature and pH of medium on drug release from matrix tablets was investigated. The increased amount of shellac and increased annealing temperature significantly affected the physical properties (i.e., tablet hardness and tablet disintegration) and MZ release from the matrix tablets. The in-situ polymerization played a major role on the changes in shellac properties during annealing process. Though the shellac did not dissolve in acid medium, the MZ release in 0.1N HCl was faster than in pH 7.3 buffer, resulting from a higher solubility of MZ in acid medium. The modulation of MZ release kinetics from shellac-based matrix tablets could be accomplished by varying the amount of shellac or annealing temperature. The release kinetics was shifted from relaxation-controlled release to diffusion-controlled release when the amount of shellac or the annealing temperature was increased.

  10. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    International Nuclear Information System (INIS)

    Kato, Naohiko; Konomi, Ichiro; Seno, Yoshiki; Motohiro, Tomoyoshi

    2005-01-01

    The crystallization processes of the Ge 2 Sb 2 Te 5 thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T 1 on the rate of temperature elevation R et gave an activation energy E a : 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge 4 Sb 1 Te 5 film whose large reflectance change attains the readability by CD-ROM drives gave E a : 1.13 eV with larger T 1 than Ge 2 Sb 2 Te 5 thin films at any R et implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk

  11. In Situ Synthesis of Al-Si-Cu Alloy During Brazing Process and Mechanical Property of Brazing Joint

    Directory of Open Access Journals (Sweden)

    LONG Wei-min

    2016-06-01

    Full Text Available The Al-Si-Cu alloy system is considered to be a promising choice of filler metal for aluminium alloys brazing due to its high strength and low melting point. The greatest obstacle is its lack of plastic forming ability and being difficult to be processed by conventional methods. This disadvantage is ascribed to the considerable amount of brittle CuAl2 intermetallic compound which forms when alloy composition is around the ternary eutectic point. In order to overcome this deficiency, authors of this article proposed to synthesize Al-Si-Cu filler metal by using in situ synthesis method, and the structure and properties of brazing joints were studied. The results show that AlSi alloy is used as the wrap layer, and CuAl alloy is used as the powder core in the composite brazing wire, the two alloys have similar melting points. The machinability of the composite brazing wire is much superior to the traditional Al-Si-Cu filler metal. During the induction brazing of 3A21 alloy, when using AlSi-CuAl composite filler wire, AlSi and CuAl alloys melt almost simultaneously, then after short time holding, Al-Si-Cu braze filler is obtained, the brazing seam has uniform composition and good bonding interface, also, the shearing strength of the brazing joints is higher than the joint brazed by conventional Al-Si-Cu filler metal.

  12. In situ synchrotron x-ray characterization of microstructure formation in solidification processing of Al-based metallic alloys

    International Nuclear Information System (INIS)

    Billia, Bernard; Nguyen-Thi, Henri; Mangelinck-Noel, Nathalie

    2010-01-01

    The microstructure formed during the solidification step has a major influence on the properties of materials processed by major techniques (casting, welding ...). In situ and real-time characterization by synchrotron X-ray imaging is the method of choice to unveil the dynamical formation of the solidification microstructure in metallic alloys, and thus provide precise data for the critical validation of the theoretical predictions that is needed for sound advancement of modeling and numerical simulation. After a description of the experimental procedure used at the European Synchrotron Radiation Facility (ESRF), dynamical phenomena in the formation of the grain structure and dendritic or equiaxed solidification microstructure in Al-based alloys are presented. Beyond fluid flow interaction, earth gravity induces stresses, deformation and fragmentation in the dendritic mush. Settling of dendrite arms and equiaxed grains thus occurs, in particular in the columnar to equiaxed transition. Other types of stresses and strains are caused by the mere formation of the solidification microstructure itself. In white-beam X-ray topography, stresses and strains are manifested by specific contrasts and breaking of the Laue images into several pieces. Finally, quantitative analysis of the grey level in radiographs enables the analysis of solute segregation, which noticeably results in solutal poisoning of growth when equiaxed grains are interacting. (author)

  13. Comparison of biodiesel production from sewage sludge obtained from the A²/O and MBR processes by in situ transesterification.

    Science.gov (United States)

    Qi, Juanjuan; Zhu, Fenfen; Wei, Xiang; Zhao, Luyao; Xiong, Yiqun; Wu, Xuemin; Yan, Fawei

    2016-03-01

    The potential of two types of sludge obtained from the anaerobic-anoxic-oxic (A(2)/O) and membrane bioreactor (MBR) processes as lipid feedstock for biodiesel production via in situ transesterification was investigated. Experiments were conducted to determine the optimum conditions for biodiesel yield using three-factor and four-level orthogonal and single-factor tests. Several factors, namely, methanol-to-sludge mass ratio, acid concentration, and temperature, were examined. The optimum yield of biodiesel (16.6% with a fatty acid methyl ester purity of 96.7%) from A(2)/O sludge was obtained at a methanol-to-sludge mass ratio of 10:1, a temperature of 60°C, and a H2SO4 concentration of 5% (v/v). Meanwhile, the optimum yield of biodiesel (4.2% with a fatty acid methyl ester purity of 92.7%) from MBR sludge was obtained at a methanol-to-sludge mass ratio of 8:1, a temperature of 50°C, and a H2SO4 concentration of 5% (v/v). In this research, A(2)/O technology with a primary sedimentation tank is more favorable for obtaining energy from wastewater than MBR technology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator.

    Science.gov (United States)

    Bestley, Sophie; Jonsen, Ian D; Hindell, Mark A; Guinet, Christophe; Charrassin, Jean-Benoît

    2013-01-07

    A fundamental goal in animal ecology is to quantify how environmental (and other) factors influence individual movement, as this is key to understanding responsiveness of populations to future change. However, quantitative interpretation of individual-based telemetry data is hampered by the complexity of, and error within, these multi-dimensional data. Here, we present an integrative hierarchical Bayesian state-space modelling approach where, for the first time, the mechanistic process model for the movement state of animals directly incorporates both environmental and other behavioural information, and observation and process model parameters are estimated within a single model. When applied to a migratory marine predator, the southern elephant seal (Mirounga leonina), we find the switch from directed to resident movement state was associated with colder water temperatures, relatively short dive bottom time and rapid descent rates. The approach presented here can have widespread utility for quantifying movement-behaviour (diving or other)-environment relationships across species and systems.

  15. Harmonising and semantically linking key variables from in-situ observing networks of an Integrated Atlantic Ocean Observing System, AtlantOS

    Science.gov (United States)

    Darroch, Louise; Buck, Justin

    2017-04-01

    Atlantic Ocean observation is currently undertaken through loosely-coordinated, in-situ observing networks, satellite observations and data management arrangements at regional, national and international scales. The EU Horizon 2020 AtlantOS project aims to deliver an advanced framework for the development of an Integrated Atlantic Ocean Observing System that strengthens the Global Ocean Observing System (GOOS) and contributes to the aims of the Galway Statement on Atlantic Ocean Cooperation. One goal is to ensure that data from different and diverse in-situ observing networks are readily accessible and useable to a wider community, including the international ocean science community and other stakeholders in this field. To help achieve this goal, the British Oceanographic Data Centre (BODC) produced a parameter matrix to harmonise data exchange, data flow and data integration for the key variables acquired by multiple in-situ AtlantOS observing networks such as ARGO, Seafloor Mapping and OceanSITES. Our solution used semantic linking of controlled vocabularies and metadata for parameters that were "mappable" to existing EU and international standard vocabularies. An AtlantOS Essential Variables list of terms (aggregated level) based on Global Climate Observing System (GCOS) Essential Climate Variables (ECV), GOOS Essential Ocean Variables (EOV) and other key network variables was defined and published on the Natural Environment Research Council (NERC) Vocabulary Server (version 2.0) as collection A05 (http://vocab.nerc.ac.uk/collection/A05/current/). This new vocabulary was semantically linked to standardised metadata for observed properties and units that had been validated by the AtlantOS community: SeaDataNet parameters (P01), Climate and Forecast (CF) Standard Names (P07) and SeaDataNet units (P06). Observed properties were mapped to biological entities from the internationally assured AphiaID from the WOrld Register of Marine Species (WoRMS), http

  16. Implementing an integrated in-situ coaching, observational audit, and story-telling intervention to support safe surgery.

    Science.gov (United States)

    Carthey, Jane; McCormack, Katie; Coombes, Julie; Gilbert, Douglas; Farrar, Daniel

    2016-12-01

    This article describes an intervention that combined in-situ coaching, observational audits and story-telling to educate theatre teams at University College London Hospitals about the Five steps to safer surgery (NPSA 2010). Our philosophy was to educate theatre teams about 'what goes right' (good catches, exemplary leadership etc) as well as 'what could be improved'. Results showed improvements on 'behavioural reliability' metrics, a 68% increase in near miss reporting and a reduction in surgical harm incidents. Copyright the Association for Perioperative Practice.

  17. An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing

    Energy Technology Data Exchange (ETDEWEB)

    Bruvera, I.J. [Aragon Institute of Nanoscience (INA), University of Zaragoza, 50018 (Spain); Hernández, R.; Mijangos, C. [Instituto de Ciencia y Tecnología de Polímeros, CSIC, Juan Cierva 3, E-28006 Madrid (Spain); Goya, G.F., E-mail: goya@unizar.es [Aragon Institute of Nanoscience (INA), University of Zaragoza, 50018 (Spain); Condensed Matter Physics Department, Science Faculty, University of Zaragoza, 50009 (Spain)

    2015-03-01

    We have developed a device capable of remote triggering and in situ quantification of therapeutic drugs, based on magnetically-responsive hydrogels of poly (N-isopropylacrylamide) and alginate (PNiPAAm). The heating efficiency of these hydrogels measured by their specific power absorption (SPA) values showed that the values between 100 and 300 W/g of the material were high enough to reach the lower critical solution temperature (LCST) of the polymeric matrix within few minutes. The drug release through application of AC magnetic fields could be controlled by time-modulated field pulses in order to deliver the desired amount of drug. Using B12 vitamin as a concept drug, the device was calibrated to measure amounts of drug released as small as 25(2)×10{sup −9} g, demonstrating the potential of this device for very precise quantitative control of drug release. - Highlights: • A device for magnetically driven drug release was developed and constructed. • Thermally responsive PNiPAAm and Fe3O4 nanoparticles were usedas drug reservoir. • The device allowed repetitive, remote and precisely controlled drug release. • By in situ spectrometry we could detect released drug quantities as small as 25 ng. • Released drug was controlled through magnetic ac field parameters H, f and time.

  18. An integrated device for magnetically-driven drug release and in situ quantitative measurements: Design, fabrication and testing

    International Nuclear Information System (INIS)

    Bruvera, I.J.; Hernández, R.; Mijangos, C.; Goya, G.F.

    2015-01-01

    We have developed a device capable of remote triggering and in situ quantification of therapeutic drugs, based on magnetically-responsive hydrogels of poly (N-isopropylacrylamide) and alginate (PNiPAAm). The heating efficiency of these hydrogels measured by their specific power absorption (SPA) values showed that the values between 100 and 300 W/g of the material were high enough to reach the lower critical solution temperature (LCST) of the polymeric matrix within few minutes. The drug release through application of AC magnetic fields could be controlled by time-modulated field pulses in order to deliver the desired amount of drug. Using B12 vitamin as a concept drug, the device was calibrated to measure amounts of drug released as small as 25(2)×10 −9 g, demonstrating the potential of this device for very precise quantitative control of drug release. - Highlights: • A device for magnetically driven drug release was developed and constructed. • Thermally responsive PNiPAAm and Fe3O4 nanoparticles were usedas drug reservoir. • The device allowed repetitive, remote and precisely controlled drug release. • By in situ spectrometry we could detect released drug quantities as small as 25 ng. • Released drug was controlled through magnetic ac field parameters H, f and time

  19. An in situ generated carbon as integrated conductive additive for hierarchical negative plate of lead-acid battery

    Science.gov (United States)

    Saravanan, M.; Ganesan, M.; Ambalavanan, S.

    2014-04-01

    In this work, we report an in situ generated carbon from sugar as additive in the Negative Active Mass (NAM) which enhances the charge-discharge characteristics of the lead-acid cells. In situ formed sugar derived carbon (SDC) with leady oxide (LO) provides a conductive network and excellent protection against NAM irreversible lead sulfation. The effect of SDC and carbon black (CB) added negative plates are characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), galvanostatic charge-discharge, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), respectively. The results show that subtle changes in the addition of carbon to NAM led to subsequent changes on the performance during partial-state-of-charge (PSoC) operations in lead-acid cells. Furthermore, SDC added cells exhibit remarkable improvement in the rate capability, active material utilization, cycle performance and charge acceptance compared to that of the conventional CB added cells. The impact of SDC with LO at various synthesis conditions on the electrochemical performance of the negative plate is studied systematically.

  20. Improvement of the operational performance of SRF cavities via in situ helium processing and waveguide vacuum processing

    International Nuclear Information System (INIS)

    Reece, C.E.; Drury, M.; Rao, M.G.; Nguyen-Tuong, V.

    1997-01-01

    The useful performance range of the superconducting rf (SRF) cavities in the CEBAF accelerator at Jefferson Lab is frequently limited by electron field emission and derived phenomena. Improvements are required to support future operation of the accelerator at higher than 5 GeV. Twelve operational cryomodules have been successfully processed to higher useful operating gradients via rf-helium processing. Progress against field emission was evidenced by improved high-field Q, reduced x-ray production and greatly reduced incidence of arcing at the cold ceramic window. There was no difficulty reestablishing beamline vacuum following the processing. Cavities previously limited to 4-6 MV/m are now operating stably at 6-9 MV/m. By applying a pulsed-rf processing technique, we have also improved the pressure stability of the thermal transition region of the input waveguide for several cavities

  1. Automated processing of fluorescence in-situ hybridization slides for HER2 testing in breast and gastro-esophageal carcinomas.

    Science.gov (United States)

    Tafe, Laura J; Allen, Samantha F; Steinmetz, Heather B; Dokus, Betty A; Cook, Leanne J; Marotti, Jonathan D; Tsongalis, Gregory J

    2014-08-01

    HER2 fluorescence in-situ hybridization (FISH) is used in breast and gastro-esophageal carcinoma for determining HER2 gene amplification and patients' eligibility for HER2 targeted therapeutics. Traditional manual processing of the FISH slides is labor intensive because of multiple steps that require hands on manipulation of the slides and specifically timed intervals between steps. This highly manual processing also introduces inter-run and inter-operator variability that may affect the quality of the FISH result. Therefore, we sought to incorporate an automated processing instrument into our FISH workflow. Twenty-six cases including breast (20) and gastro-esophageal (6) cancer comprising 23 biopsies and three excision specimens were tested for HER2 FISH (Pathvysion, Abbott) using the Thermobrite Elite (TBE) system (Leica). Up to 12 slides can be run simultaneously. All cases were previously tested by the Pathvysion HER2 FISH assay with manual preparation. Twenty cells were counted by two observers for each case; five cases were tested on three separate runs by different operators to evaluate the precision and inter-operator variability. There was 100% concordance in the scoring between the manual and TBE methods as well as among the five cases that were tested on three runs. Only one case failed due to poor probe hybridization. In total, seven cases were positive for HER2 amplification (HER2:CEP17 ratio >2.2) and the remaining 19 were negative (HER2:CEP17 ratio <1.8) utilizing the 2007 ASCO/CAP scoring criteria. Due to the automated denaturation and hybridization, for each run, there was a reduction in labor of 3.5h which could then be dedicated to other lab functions. The TBE is a walk away pre- and post-hybridization system that automates FISH slide processing, improves work flow and consistency and saves approximately 3.5h of technologist time. The instrument has a small footprint thus occupying minimal counter space. TBE processed slides performed

  2. Integrated planning of laboratory, in-situ, modelling and natural analogue studies in the Swiss radioactive waste management programme

    International Nuclear Information System (INIS)

    McKinley, I.G.; Zuidema, P.

    2001-01-01

    After more than 25 years of development, the Swiss radioactive waste management programme has a well established disposal strategy supported by an integrated R and D infrastructure. The process of implementation of repository projects is constrained by political factors, but a dynamic R and D programme is strongly guided by periodic integrated performance assessments and includes: Experimental studies in conventional and ''hot'' laboratories; Projects in underground test facilities and field test sites; Model development verification and validation; Natural and archaeological analogue projects. R and D in the Swiss national programme focuses on filling remaining gaps in system understanding, enhancing confidence via validation and demonstration projects, system optimisation and maintaining state of the art technical capacity in key areas. Increasingly, such work is carried out in collaboration with partner national waste management organisations. In addition, The National Cooperative for the Disposal of Radioactive Waste (Nagra) provides support services to developing programmes - which allows Nagra to widen its range of experience while providing attractive access to a knowledge base accumulated at a cost of over 750 M CHF. (author)

  3. Stress/strain characteristics of Cu alloy sheath in situ processed MgB2 superconducting wires

    International Nuclear Information System (INIS)

    Katagiri, Kazumune; Kasaba, Koichi; Shoji, Yoshitaka

    2005-01-01

    The mechanical properties of copper and copper alloy (Cu-Zr, Cu-Be and Cu-Cr) sheath in situ PIT-processed MgB 2 superconducting wires were studied at room temperature (RT) and 4.2 K. The effects of stress-strain on the critical current (I c ) of the wires have also been studied at 4.2 K and in magnetic fields up to 5 T. It has been clarified that alloying the Cu sheath significantly increases the yield and flow stresses of the wires at both RT and 4.2 K. The 0.5% flow stresses of the Cu alloy sheath wire were 147-237 MPa, whereas that of Cu was 55 MPa. At RT, serration corresponding to multiple cracking was observed around a strain of 0.4% and the stress-strain curves saturated beyond that point. The strain dependence of I c prior to the critical strain (ε irr ) was different depending on the magnetic field; being almost constant at 2 T and increasing with strain at 5 T. The I c decreased beyond ε irr , which is much larger for Cu alloy sheath wires as compared to Cu sheath wire. This is due to the difference in the residual compressive strain in the MgB 2 core during cooling from the heat-treatment temperature to 4.2 K, which is determined through relaxation by yielding in the sheath materials. The transverse compression tests revealed that the I c of the Cu alloy sheath wire did not degrade up to 314 MPa, which is also higher than that of Cu sheath wire. (author)

  4. In situ characterization and analysis of Salmonella biofilm formation under meat processing environments using a combined microscopic and spectroscopic approach.

    Science.gov (United States)

    Wang, Huhu; Ding, Shijie; Wang, Guangyu; Xu, Xinglian; Zhou, Guanghong

    2013-11-01

    Salmonella biofilm on food-contact surfaces present on food processing facilities may serve as a source of cross-contamination. In our work, biofilm formation by multi-strains of meat-borne Salmonella incubated at 20 °C, as well as the composition and distribution of extracellular polymeric substances (EPS), were investigated in situ by combining confocal laser scanning microscopy (CLSM), scanning electron microscope (SEM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and Raman spectroscopy. A standard laboratory culture medium (tryptic soy broth, TSB) was used and compared with an actual meat substrate (meat thawing-loss broth, MTLB). The results indicated that Salmonella grown in both media were able to form biofilms on stainless steel surfaces via building a three-dimensional structure with multilayers of cells. Although the number of biofilm cells grown in MTLB was less than that in TSB, the cell numbers in MTLB was adequate to form a steady and mature biofilm. Salmonella grown in MTLB showed "cloud-shaped" morphology in the mature biofilm, whereas when grown in TSB appeared "reticular-shaped". The ATR-FTIR and Raman analysis revealed a completely different chemical composition between biofilms and the corresponding planktonic cells, and some important differences in biofilms grown in MTLB and in TSB. Importantly, our findings suggested that the progress towards a mature Salmonella biofilm on stainless steel surfaces may be associated with the production of the EPS matrix, mainly consisting of polysaccharides and proteins, which may serve as useful markers of biofilm formation. Our work indicated that a combination of these non-destructive techniques provided new insights into the formation of Salmonella biofilm matrix. © 2013.

  5. Logistics integration processes in the food industry

    OpenAIRE

    Giménez, Cristina

    2003-01-01

    This paper analyses the integration process that firms follow to implement Supply Chain Management (SCM). This study has been inspired in the integration model proposed by Stevens (1989). He suggests that companies internally integrate first and then extend integration to other supply chain members, such as customers and suppliers. To analyse the integration process a survey was conducted among Spanish food manufacturers. The results show that there are companies in three different integratio...

  6. The Influence of Sub-Block Position on Performing Integrated Sensor Orientation Using In Situ Camera Calibration and Lidar Control Points

    Directory of Open Access Journals (Sweden)

    Felipe A. L. Costa

    2018-02-01

    Full Text Available The accuracy of photogrammetric and Lidar dataset integration is dependent on the quality of a group of parameters that models accurately the conditions of the system at the moment of the survey. In this sense, this paper aims to study the effect of the sub-block position in the entire image block to estimate the interior orientation parameters (IOP in flight conditions to be used in integrated sensor orientation (ISO. For this purpose, five sub-blocks were extracted in different regions of the entire block. Then, in situ camera calibrations were performed using sub-blocks and sets of Lidar control points (LCPs, computed by a three planes’ intersection extracted from the Lidar point cloud on building roofs. The ISO experiments were performed using IOPs from in situ calibrations, the entire image block, and the exterior orientation parameters (EOP from the direct sensor orientation (DSO. Analysis of the results obtained from the ISO experiments performed show that the IOP from the sub-block positioned at the center of the entire image block can be recommended.

  7. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro; Khan, Abdulaziz M.; Tang, Yu; Nguyen, Luan; Ziani, Ahmed; Jacobs, Benjamin W; Elbaz, Ayman M.; Sarathy, S Mani; Tao, Franklin Feng

    2017-01-01

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  8. Patchwork policy, fragmented forests: In-situ oil sands, industrial development, and the ecological integrity of Alberta's boreal forest

    International Nuclear Information System (INIS)

    MacCrimmon, G.; Marr-Laing, T.

    2000-05-01

    Environmental impacts of current oil sands industry activities and the potential cumulative impacts of new in-situ oil sands development on the boreal forest of northeastern Alberta are reviewed. The objective is to improve understanding of the impacts of existing industrial activity on the broader boreal forest ecosystem, and the environmental implications of further disturbance to this ecosystem from future development of heavy and conventional fossil fuel reserves in the province. The report also outlines elements of a boreal forest use framework that could assist in managing industrial activity within ecologically sustainable limits and makes recommendations for specific actions that need to be taken by government and industry to guide future development decisions. The top 50 key landscape areas of interest in the province, identified by the World Wildlife Federation, based primarily on a series of reports by Alberta Environmental Protection, are briefly described. Implications of failure to act are also outlined. 138 end-notes, 8 tabs., 16 figs

  9. Integrated in situ characterization of molten salt catalyst surface: Evidence of sodium peroxide and OH radical formation

    KAUST Repository

    Takanabe, Kazuhiro

    2017-06-26

    Na-based catalysts (i.e., Na2WO4) were proposed to selectively catalyze OH radical formation from H2O and O2 at high temperatures. This reaction may proceed on molten salt state surfaces due to the lower melting point of the used Na salts compared to the reaction temperature. This study provides direct evidence of the molten salt state of Na2WO4, which can form OH radicals, using in situ techniques including X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), laser induced fluorescence (LIF) spectrometer, and ambient-pressure X-ray photoelectron spectroscopy (AP-XPS). As a result, Na2O2 species, which were hypothesized to be responsible for the formation of OH radicals, has been identified on the outer surfaces at temperatures ≥800°C, and these species are useful for various gas-phase hydrocarbon reactions including the selective transformation of methane to ethane.

  10. A Pd-Catalyzed in situ domino process for mild and quantitative production of 2,5-dimethylfuran directly from carbohydrates

    DEFF Research Database (Denmark)

    Li, Hu; Zhao, Wenfeng; Riisager, Anders

    2017-01-01

    An in situ domino process has been developed to be highly efficient for direct and mild conversion of various hexose sugars to the biofuel 2,5-dimethylfuran in almost quantitative yields, without separation of unstable intermediates at 120 °C in n-butanol, by using polymethylhydrosiloxane...... and hydrophobic Pd/C as a H-donor and a bifunctional catalyst, respectively. Among the cascade reactions, the hydrosilylation process was confirmed by deuterium-labeling and kinetic studies to be favorable for sugar dehydration and exclusively acts on deoxygenation of in situ formed intermediates including...... furanic alcohols and aldehydes to DMF via a hydride transfer process that was facilitated by an alcoholic solvent. The catalytic system is more selective than the H2-participated counterpart, and could be scaled up with only 0.04 mol% catalyst loading, giving DMF in a comparable yield of 85%. Moreover, Pd...

  11. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  12. Enhanced J c property in nano-SiC doped thin MgB2/Fe wires by a modified in situ PIT process

    International Nuclear Information System (INIS)

    Jiang, C.H.; Nakane, T.; Hatakeyama, H.; Kumakura, H.

    2005-01-01

    A modified in situ PIT process, which included a short time pre-annealing and intermediate drawing step in the conventional in situ PIT process, was employed to fabricate thin round MgB 2 /Fe wires from MgH 2 and B powders. The pores and cracks resulted from the MgH 2 decomposition during the pre-annealing were effectively eliminated by the intermediate drawing step, which subsequently increased the core density and J c property of final heat treated wires. A higher reduction rate after the pre-annealing led to a larger enhancement in J c within this study. The reproducibility of our new process on the J c improvement in MgB 2 wires was confirmed in two series of wires doped with 5 mol% or 10 mol% nano-SiC particles separately

  13. In situ TEM observation of stress-induced martensitictransformations and twinning processes in CuAlNi single crystals

    Czech Academy of Sciences Publication Activity Database

    Zárubová, Niva; Gemperlová, Juliana; Gemperle, Antonín; Dlabáček, Zdeněk; Šittner, Petr; Novák, Václav

    2010-01-01

    Roč. 58, č. 15 (2010), s. 5109-5119 ISSN 1359-6454 R&D Projects: GA AV ČR(CZ) IAA200100627 Institutional research plan: CEZ:AV0Z10100520 Keywords : CuAlNi shape memory alloy * martensitic transformation * in situ TEM straining Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.781, year: 2010

  14. Environmental survey - tar sands in situ processing research program (Vernal, Uintah County, Utah). [Reverse-forward combustion; steam injection

    Energy Technology Data Exchange (ETDEWEB)

    Skinner, Q.

    1980-03-01

    Research will be done on the reverse-forward combustion and steam injection for the in-situ recovery of oil from tar sands. This environmental survey will serve as a guideline for the consideration of environmental consequences of such research. It covers the construction phase, operational phase, description of the environment, potential impacts and mitigations, coordination, and alternatives. (DLC)

  15. In situ leaching of uranium

    International Nuclear Information System (INIS)

    Martin, B.

    1980-01-01

    A process is described for the in-situ leaching of uranium-containing ores employing an acidic leach liquor containing peroxymonosulphuric acid. Preferably, additionally, sulphuric acid is present in the leach liquor. (author)

  16. Lessons learned from the Febex in situ test: geochemical processes associated to the microbial degradation and gas generation

    International Nuclear Information System (INIS)

    Fernandez, A. M.; Sanchez, D.M.; Melon, A.; Mingarro, M.; Wieczorek, K.

    2012-01-01

    existence of gaps between the bentonite blocks, which favour the development and growth of inactive and dormant cells or spores belonging to the original bentonite. In this work, the observed geochemical and corrosion processes influenced both by organic matter degradation and micro-organisms in the 1:1 scale FEBEX in situ test (Grimsel, Switzerland) are described. This test consists of two heaters, simulating radioactive waste containers, emplaced in a horizontal gallery and surrounded by a highly compacted bentonite barrier. Samples from pore water, gases and bentonite (SHSDI-01: clay in contact with AISI 316L metal; S29 and BSBI-26: clay in contact with carbon steel) have been analysed. The samples were obtained during the test and the dismantling of the heater 1 after six years of experiment. The solid samples were analysed by XRD, SEM, XPS, FTIR, ATD-TG and chemical analysis; the water samples by IC and ICP-OES, and the gases by gas chromatography. Different geochemical processes have been detected as a function of the temperature and water content of the samples. When the water content is high, there are aerobic respiration and fermentation processes, anaerobic respiration with SO 4 2- as electron acceptor, and anaerobic production of methane with CO 2 as electron acceptor. In a first phase, both oxygen consumption and an increase of CH 4 and CO 2 is observed. Afterwards, there is a reduction of sulfates by SRB bacteria, which provokes corrosion processes. As a consequence, a precipitation of sulphurs, iron oxy-hydroxides and carbonates occurs, as well as H 2 generation. There is an increase of the iron content in the smectite and the neo-formation of zeolites. However this alteration is punctual and localized. The redox potential of the bentonite pore water was of -284 mV. When the temperature is high and water content is low, other processes take place

  17. Integrated modelling in materials and process technology

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    2008-01-01

    Integrated modelling of entire process sequences and the subsequent in-service conditions, and multiphysics modelling of the single process steps are areas that increasingly support optimisation of manufactured parts. In the present paper, three different examples of modelling manufacturing...... processes from the viewpoint of combined materials and process modelling are presented: solidification of thin walled ductile cast iron, integrated modelling of spray forming and multiphysics modelling of friction stir welding. The fourth example describes integrated modelling applied to a failure analysis...

  18. Comparison of retina damage thresholds simulating the femtosecond-laser in situ keratomileusis (fs-LASIK) process with two laser systems in the CW- and fs-regime

    Science.gov (United States)

    Sander, M.; Minet, O.; Zabarylo, U.; Müller, M.; Tetz, M. R.

    2012-04-01

    The femtosecond-laser in situ keratomileusis procedure affords the opportunity to correct ametropia by cutting transparent corneal tissue with ultra-short laser pulses. Thereby the tissue cut is generated by a laser-induced optical breakdown in the cornea with ultra-short laser pulses in the near-infrared range. Compared to standard procedures such as photorefractive keratectomy and laser in-situ keratomileusis with the excimer laser, where the risk potential for the eye is low due to the complete absorption of ultraviolet irradiation from corneal tissue, only a certain amount of the pulse energy is deposited in the cornea during the fs-LASIK process. The remaining energy propagates through the eye and interacts with the retina and the strong absorbing tissue layers behind. The objective of the presented study was to determine and compare the retina damage thresholds during the fs-LASIK process simulated with two various laser systems in the CW- and fs-regime.

  19. In-situ, real time micro-CT imaging of pore scale processes, the next frontier for laboratory based micro-CT scanning

    OpenAIRE

    Boone, Marijn; Bultreys, Tom; Masschaele, Bert; Van Loo, Denis; Van Hoorebeke, Luc; Cnudde, Veerle

    2016-01-01

    Over the past decade, laboratory based X-ray computed micro-tomography (micro-CT) has given unique insights in the internal structure of complex reservoir rocks, improving the understanding of pore scale processes and providing crucial information for pore scale modelling. Especially in-situ imaging using X-ray optimized Hassler type cells has enabled the direct visualization of fluid distributions at the pore scale under reservoir conditions. While sub-micrometre spatial resolutions are achi...

  20. imFASP: An integrated approach combining in-situ filter-aided sample pretreatment with microwave-assisted protein digestion for fast and efficient proteome sample preparation.

    Science.gov (United States)

    Zhao, Qun; Fang, Fei; Wu, Ci; Wu, Qi; Liang, Yu; Liang, Zhen; Zhang, Lihua; Zhang, Yukui

    2016-03-17

    An integrated sample preparation method, termed "imFASP", which combined in-situ filter-aided sample pretreatment and microwave-assisted trypsin digestion, was developed for preparation of microgram and even nanogram amounts of complex protein samples with high efficiency in 1 h. For imFASP method, proteins dissolved in 8 M urea were loaded onto a filter device with molecular weight cut off (MWCO) as 10 kDa, followed by in-situ protein preconcentration, denaturation, reduction, alkylation, and microwave-assisted tryptic digestion. Compared with traditional in-solution sample preparation method, imFASP method generated more protein and peptide identifications (IDs) from preparation of 45 μg Escherichia coli protein sample due to the higher efficiency, and the sample preparation throughput was significantly improved by 14 times (1 h vs. 15 h). More importantly, when the starting amounts of E. coli cell lysate decreased to nanogram level (50-500 ng), the protein and peptide identified by imFASP method were improved at least 30% and 44%, compared with traditional in-solution preparation method, suggesting dramatically higher peptide recovery of imFASP method for trace amounts of complex proteome samples. All these results demonstrate that the imFASP method developed here is of high potential for high efficient and high throughput preparation of trace amounts of complex proteome samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  2. Dynamical observation of lithium insertion/extraction reaction during charge-discharge processes in Li-ion batteries by in situ spatially resolved electron energy-loss spectroscopy.

    Science.gov (United States)

    Shimoyamada, Atsushi; Yamamoto, Kazuo; Yoshida, Ryuji; Kato, Takehisa; Iriyama, Yasutoshi; Hirayama, Tsukasa

    2015-12-01

    All-solid-state Li-ion batteries (LIBs) with solid electrolytes are expected to be the next generation devices to overcome serious issues facing conventional LIBs with liquid electrolytes. However, the large Li-ion transfer resistance at the electrode/solid-electrolyte interfaces causes low power density and prevents practical use. In-situ-formed negative electrodes prepared by decomposing the solid electrolyte Li(1+x+3z)Alx(Ti,Ge)(2-x)Si(3z)P(3-z)O12 (LASGTP) with an excess Li-ion insertion reaction are effective electrodes providing low Li-ion transfer resistance at the interfaces. Prior to our work, however, it had still been unclear how the negative electrodes were formed in the parent solid electrolytes. Here, we succeeded in dynamically visualizing the formation by in situ spatially resolved electron energy-loss spectroscopy in a transmission electron microscope mode (SR-TEM-EELS). The Li-ions were gradually inserted into the solid electrolyte region around 400 nm from the negative current-collector/solid-electrolyte interface in the charge process. Some of the ions were then extracted in the discharge process, and the rest were diffused such that the distribution was almost flat, resulting in the negative electrodes. The redox reaction of Ti(4+)/Ti(3+) in the solid electrolyte was also observed in situ during the Li insertion/extraction processes. The in situ SR-TEM-EELS revealed the mechanism of the electrochemical reaction in solid-state batteries. © The Author 2015. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Effect of directional solidification rate on the microstructure and properties of deformation-processed Cu–7Cr–0.1Ag in situ composites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Keming [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Jiang, Zhengyi; Zhao, Jingwei [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Zou, Jin; Chen, Zhibao [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China); Lu, Deping, E-mail: llludp@163.com [Jiangxi Key Laboratory for Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330029 (China)

    2014-11-05

    Highlights: • Effect of directional solidification (DS) rate on a Cu–Cr–Ag in situ composite. • The microstructure and properties of the DS in situ composite were investigated. • The second-phase Cr grains were parallel to drawing direction, and were finer. • The tensile strength was higher and the combination of properties was better. - Abstract: The influence of directional solidification rate on the microstructure, mechanical properties and conductivity of deformation-processed Cu–7Cr–0.1Ag in situ composites produced by thermo-mechanical processing was systematically investigated. The microstructure was analyzed by optical microscopy and scanning electronic microscopy. The mechanical properties and conductivity were evaluated by tensile-testing machine and micro-ohmmeter, respectively. The results indicate that the size, shape and distribution of second-phase Cr grains are significantly different in the Cu–7Cr–0.1Ag alloys with different growth rates. At a growth rate of 200 μm s{sup −1}, the Cr grains transform into fine Cr fiber-like grains parallel to the pulling direction from the Cr dendrites. The tensile strength of the Cu–7Cr–0.1Ag in situ composites from the directional solidification (DS) alloys is significantly higher than that from the as-cast alloy, while the conductivity of the in situ composites from the DS alloys is slightly lower than that from the as-cast alloy. The following combinations of tensile strength, elongation to fracture and conductivity of the Cu–7Cr–0.1Ag in situ composites from the DS alloy with a growth rate of 200 μm s{sup −1} and a cumulative cold deformation strain of 8 after isochronic aging treatment for 1 h can be obtained respectively as: (i) 1067 MPa, 2.9% and 74.9% IACS; or (ii) 1018 MPa, 3.0%, and 76.0% IACS or (iii) 906 MPa, 3.3% and 77.6% IACS.

  4. In situ and real-time small-angle neutron scattering studies of living anionic polymerization process and polymerization-induced self-assembly of block copolymers

    International Nuclear Information System (INIS)

    Tanaka, H.; Yamauchi, K.; Hasegawa, H.; Miyamoto, N.; Koizumi, S.; Hashimoto, T.

    2006-01-01

    We have studied a simultaneous living anionic polymerization process of isoprene and deuterated styrene in deuterated benzene with sec-buthyl lithium as an initiator into polyisoprene-block-poly(styrene-d 8 ) and the polymerization-induced self-assembling process. This polymerization-induced self-assembling process was directly observed by an in situ and real-time small-angle neutron scattering (SANS) experiment. The time-resolved SANS studies enabled us to explore a time evolution of hierarchical structures induced by a time evolution of the primary structure (linear sequential connection of two monomers)

  5. Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB Process

    Directory of Open Access Journals (Sweden)

    Jinfeng Nie

    2017-01-01

    Full Text Available In this study, a kind of Al-TiB2/TiC in situ composite was successfully prepared using the melt reaction method and the accumulative roll-bonding (ARB technique. The microstructure evolution of the composites with different deformation treatments was characterized using field emission scanning electron microscopy (FESEM and a transmission electron microscope (TEM. The mechanical properties of the Al-TiB2/TiC in situ composite were also studied with tensile and microhardness tests. It was found that the distribution of reinforcement particles becomes more homogenous with an increasing ARB cycle. Meanwhile, the mechanical properties showed great improvement during the ARB process. The ultimate tensile strength (UTS and microhardness of the composites were increased to 173.1 MPa and 63.3 Hv after two ARB cycles, respectively. Furthermore, the strengthening mechanism of the composite was analyzed based on its fracture morphologies.

  6. In situ study of the growth and degradation processes in tetragonal lysozyme crystals on a silicon substrate by high-resolution X-ray diffractometry

    Science.gov (United States)

    Kovalchuk, M. V.; Prosekov, P. A.; Marchenkova, M. A.; Blagov, A. E.; D'yakova, Yu. A.; Tereshchenko, E. Yu.; Pisarevskii, Yu. V.; Kondratev, O. A.

    2014-09-01

    The results of an in situ study of the growth of tetragonal lysozyme crystals by high-resolution X-ray diffractometry are considered. The crystals are grown by the sitting-drop method on crystalline silicon substrates of different types: both on smooth substrates and substrates with artificial surface-relief structures using graphoepitaxy. The crystals are grown in a special hermetically closed crystallization cell, which enables one to obtain images with an optical microscope and perform in situ X-ray diffraction studies in the course of crystal growth. Measurements for lysozyme crystals were carried out in different stages of the crystallization process, including crystal nucleation and growth, developed crystals, the degradation of the crystal structure, and complete destruction.

  7. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  8. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  9. Effects of aqueous effluents from in situ fossil fuel processing technologies on aquatic systems. Annual progress report, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, H.L.

    1980-01-04

    This is the third annual progress report for a continuing EPA-DOE jointly funded project to evaluate the effects of aqueous effluents from in situ fossil-fuel processing technologies on aquatic biota. The project is organized into four project tasks: (1) literature review; (2) process water screening; (3) methods development; and (4) recommendations. Our Bibliography of aquatic ecosystem effects, analytical methods and treatment technologies for organic compounds in advanced fossil-fuel processing effluents was submitted to the EPA for publication. The bibliography contains 1314 citations indexed by chemicals, keywords, taxa and authors. We estimate that the second bibliography volume will contain approximately 1500 citations and be completed in February. We compiled results from several laboratories of inorganic characterizations of 19 process waters: 55 simulated in situ oil-shale retort waters; and Hanna-3, Hanna-4B 01W and Lawrence Livermore Hoe Creek underground coal gasification condenser waters. These process waters were then compared to a published summary of the analyses from 18 simulated in situ oil-shale retort waters. We completed this year 96-h flow-through toxicity bioassays with fathead minnows and rainbow trout and 48-h flow-through bioassays with Daphnia pulicaria exposed to 5 oil-shale process waters, 1 tar-sand process water, 2 underground coal gasification condenser waters, 1 post-gasification backflood condenser water, as well as 2 bioassays with fossil-fuel process water constituents. The LC/sub 50/ toxicity values for these respective species when exposed to these waters are given in detail. (LTN)

  10. Biogeochemical processes in a clay formation in situ experiment: Part G - Key interpretations and conclusions. Implications for repository safety

    Energy Technology Data Exchange (ETDEWEB)

    Wersin, P., E-mail: paul.wersin@gruner.ch [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)] [Gruner Ltd., Gellertstrasse 55, 4020 Basel (Switzerland); Stroes-Gascoyne, S. [Atomic Energy of Canada Limited (AECL), Whiteshell Laboratories, Pinawa, Manitoba, Canada R0E 1L0 (Canada); Pearson, F.J. [Ground-Water Geochemistry, 5108 Trent Woods Drive, New Bern, NC 28562 (United States); Tournassat, C. [BRGM, French Geological Survey, 3 Avenue Claude Guillemin, B.P. 36009, 45060 Orleans Cedex 2 (France); Leupin, O.X.; Schwyn, B. [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2011-06-15

    Highlights: > From the results of the PC experiment it can be inferred that degradation of organic compounds may induce. > Changes in pH and Eh which may affect the mobility of radionuclides eventually released from the waste. > Such changes will be limited in space and time because of large buffering capacity and low permeability of clay. > Nevertheless, amount of organic material in high level waste repositories should be kept small. > This will ensure achievement of background concentrations within short time period after repository closure. - Abstract: The in situ porewater chemistry (PC) experiment carried out in the Opalinus Clay formation at the Mont Terri Rock Laboratory, Switzerland for a period of 5 a allowed the identification and quantification of the biogeochemical processes resulting from and affected by an anaerobic microbial disturbance. The unintentional release of degradable organic compounds (mainly glycerol) induced microbially-mediated SO{sub 4} reduction in the borehole with concomitant significant geochemical changes in the circulating water and the adjacent porewater. These changes included a decrease in SO{sub 4}{sup 2-} concentration and pH and an increase in pCO{sub 2} and alkalinity relative to the non-affected formation water. However, the cation composition of the water and the mineralogy of the clay close to the borehole wall showed very little change. This is explained by (1) the strong chemical buffering processes in the clay and (2) by the diffusion-limited flux of solutes. With the aid of a reactive transport model with a minimum set of kinetic parameters for the hypothesised degradation reactions, the evolution of solutes in the borehole could be modelled adequately. The model was also applied to the prediction of restoration times upon depletion of the C source and results indicated restoration times to undisturbed conditions of about 15 a, but also highlighted the rather large uncertainties inherent in the geochemical model

  11. Remedial Process Optimization and Green In-Situ Ozone Sparging for Treatment of Groundwater Impacted with Petroleum Hydrocarbons

    Science.gov (United States)

    Leu, J.

    2012-12-01

    A former natural gas processing station is impacted with TPH and BTEX in groundwater. Air sparging and soil vapor extraction (AS/AVE) remediation systems had previously been operated at the site. Currently, a groundwater extraction and treatment system is operated to remove the chemicals of concern (COC) and contain the groundwater plume from migrating offsite. A remedial process optimization (RPO) was conducted to evaluate the effectiveness of historic and current remedial activities and recommend an approach to optimize the remedial activities. The RPO concluded that both the AS/SVE system and the groundwater extraction system have reached the practical limits of COC mass removal and COC concentration reduction. The RPO recommended an in-situ chemical oxidation (ISCO) study to evaluate the best ISCO oxidant and approach. An ISCO bench test was conducted to evaluate COC removal efficiency and secondary impacts to recommend an application dosage. Ozone was selected among four oxidants based on implementability, effectiveness, safety, and media impacts. The bench test concluded that ozone demand was 8 to 12 mg ozone/mg TPH and secondary groundwater by-products of ISCO include hexavalent chromium and bromate. The pH also increased moderately during ozone sparging and the TDS increased by approximately 20% after 48 hours of ozone treatment. Prior to the ISCO pilot study, a capture zone analysis (CZA) was conducted to ensure containment of the injected oxidant within the existing groundwater extraction system. The CZA was conducted through a groundwater flow modeling using MODFLOW. The model indicated that 85%, 90%, and 95% of an injected oxidant could be captured when a well pair is injecting and extracting at 2, 5, and 10 gallons per minute, respectively. An ISCO pilot test using ozone was conducted to evaluate operation parameters for ozone delivery. The ozone sparging system consisted of an ozone generator capable of delivering 6 lbs/day ozone through two ozone

  12. The healing process of intracorporeally and in situ devitalized distal femur by microwave in a dog model and its mechanical properties in vitro.

    Directory of Open Access Journals (Sweden)

    Zhenwei Ji

    Full Text Available BACKGROUND: Limb-salvage surgery has been well recognized as a standard treatment and alternative to amputation for patients with malignant bone tumors. Various limb-sparing techniques have been developed including tumor prosthesis, allograft, autograft and graft-prosthesis composite. However, each of these methods has short- and long-term disadvantages such as nonunion, mechanical failures and poor limb function. The technique of intracorporeal devitalization of tumor-bearing bone segment in situ by microwave-induced hyperthermia after separating it from surrounding normal tissues with a safe margin is a promising limb-salvage method, which may avoid some shortcomings encountered by the above-mentioned conventional techniques. The purpose of this study is to assess the healing process and revitalization potential of the devitalized bone segment by this method in a dog model. In addition, the immediate effect of microwave on the biomechanical properties of bone tissue was also explored in an in vitro experiment. METHODS: We applied the microwave-induced hyperthermia to devitalize the distal femurs of dogs in situ. Using a monopole microwave antenna, we could produce a necrotic bone of nearly 20 mm in length in distal femur. Radiography, bone scintigraphy, microangiography, histology and functional evaluation were performed at 2 weeks and 1, 2, 3, 6, 9 and 12 months postoperatively to assess the healing process. In a biomechanical study, two kinds of bone specimens, 3 and 6 cm in length, were used for compression and three-point bending test respectively immediately after extracorporeally devitalized by microwave. FINDINGS: An in vivo study showed that intracorporeally and in situ devitalized bone segment by microwave had great revitalization potential. An in vitro study revealed that the initial mechanical strength of the extracorporeally devitalized bone specimen may not be affected by microwave. CONCLUSION: Our results suggest that the

  13. Integrating evolutionary game theory into an agent-based model of ductal carcinoma in situ: Role of gap junctions in cancer progression.

    Science.gov (United States)

    Malekian, Negin; Habibi, Jafar; Zangooei, Mohammad Hossein; Aghakhani, Hojjat

    2016-11-01

    There are many cells with various phenotypic behaviors in cancer interacting with each other. For example, an apoptotic cell may induce apoptosis in adjacent cells. A living cell can also protect cells from undergoing apoptosis and necrosis. These survival and death signals are propagated through interaction pathways between adjacent cells called gap junctions. The function of these signals depends on the cellular context of the cell receiving them. For instance, a receiver cell experiencing a low level of oxygen may interpret a received survival signal as an apoptosis signal. In this study, we examine the effect of these signals on tumor growth. We make an evolutionary game theory component in order to model the signal propagation through gap junctions. The game payoffs are defined as a function of cellular context. Then, the game theory component is integrated into an agent-based model of tumor growth. After that, the integrated model is applied to ductal carcinoma in situ, a type of early stage breast cancer. Different scenarios are explored to observe the impact of the gap junction communication and parameters of the game theory component on cancer progression. We compare these scenarios by using the Wilcoxon signed-rank test. The Wilcoxon signed-rank test succeeds in proving a significant difference between the tumor growth of the model before and after considering the gap junction communication. The Wilcoxon signed-rank test also proves that the tumor growth significantly depends on the oxygen threshold of turning survival signals into apoptosis. In this study, the gap junction communication is modeled by using evolutionary game theory to illustrate its role at early stage cancers such as ductal carcinoma in situ. This work indicates that the gap junction communication and the oxygen threshold of turning survival signals into apoptosis can notably affect cancer progression. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. The Integrated Design Process (IDP)

    DEFF Research Database (Denmark)

    Hansen, Hanne Tine Ring; Knudstrup, Mary-Ann

    2005-01-01

    the different parameters and products can interact, and which consequences this would have on a project. The IDP does not ensure aesthetic or sustainable solutions, but it enables the designer to control the many parameters that must be considered and integrated in the project when creating more holistic...

  15. Dry Sliding Wear Behavior of A356 Alloy/Mg2Sip Functionally Graded in-situ Composites: Effect of Processing Conditions

    Directory of Open Access Journals (Sweden)

    S.C. Ram

    2016-09-01

    Full Text Available In present study, the effect of dry sliding wear conditions of A356 alloy/Mg2Sip functionally graded in-situ composites developed by centrifugal casting method has been studied. A pure commercial A356 alloy (Al–7.5Si–0.3Mg was selected to be the matrix of the composites and primary Mg2Sip reinforcing particles were formed by in-situ chemical reaction with an average grain size of 40-47.8 µm. The Al–(Mg2Sip functionally graded metal matrix composites (FGMMC’s were synthesized by centrifugal casting technique with radial geometry, using two different mould rotating speeds ( 1200 and 1600 rpm. The X-ray diffraction (XRD characterization technique was carried out to confirm the in-situ formed Mg2Si particles in composites. Optical microscopy examination was carried out to reveals the grain refinement of Al-rich grains due to in-situ formed Mg2Si particles. Scanning electron microscope (SEM and Energy dispersive X-ray spectroscopy (EDS techniques were carried out to reveal the distribution of phases, morphological characteristics and confirmation of primary Mg2Si particles in the matrix. The sliding wear behavior was studied using a Pin-on-Disc set-up machine with sliding wear parameters: effect of loads (N, effect of sliding distances (m and effect of Mg on wear at room temperature with a high-carbon chromium steel disc (HRC-64 as counter surfaces. A good correlation was evidenced between the dry sliding behaviour of functionally graded in-situ composites and the distribution of Mg2Si reinforcing particles. Beside the above processing conditions, the dominant wear mechanisms of functionally graded in-situ composites have been correlated with the microstructures. The hardness and wear resistance properties of these composites increase with increasing volume percent of reinforced primary Si/Mg2Si particles toward inner zone of cast cylindrical shapes. The objective of this works was to study the tribological characteristics under dry sliding

  16. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  17. In situ vitrification: application analysis for stabilization of transuranic waste

    International Nuclear Information System (INIS)

    Oma, K.H.; Farnsworth, R.K.; Rusin, J.M.

    1982-09-01

    The in situ vitrification process builds upon the electric melter technology previously developed for high-level waste immobilization. In situ vitrification converts buried wastes and contaminated soil to an extremely durable glass and crystalline waste form by melting the materials, in place, using joule heating. Once the waste materials have been solidified, the high integrity waste form should not cause future ground subsidence. Environmental transport of the waste due to water or wind erosion, and plant or animal intrusion, is minimized. Environmental studies are currently being conducted to determine whether additional stabilization is required for certain in-ground transuranic waste sites. An applications analysis has been performed to identify several in situ vitrification process limitations which may exist at transuranic waste sites. Based on the process limit analysis, in situ vitrification is well suited for solidification of most in-ground transuranic wastes. The process is best suited for liquid disposal sites. A site-specific performance analysis, based on safety, health, environmental, and economic assessments, will be required to determine for which sites in situ vitrification is an acceptable disposal technique. Process economics of in situ vitrification compare favorably with other in-situ solidification processes and are an order of magnitude less than the costs for exhumation and disposal in a repository. Leachability of the vitrified product compares closely with that of Pyrex glass and is significantly better than granite, marble, or bottle glass. Total release to the environment from a vitrified waste site is estimated to be less than 10 -5 parts per year. 32 figures, 30 tables

  18. NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors

    Science.gov (United States)

    Wang, Tao; Guo, Ying; Zhao, Bo; Yu, Shuhui; Yang, Hai-Peng; Lu, Daniel; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-07-01

    Three dimensional interconnected hierarchical porous Ni films are easily fabricated as effective current collectors through hydrogen bubble template electrochemical deposition. The binder-free integrated electrodes of spinel NiCo2O4 nanosheets directly coated the three dimensional porous Ni films are facilely obtained through successively electrochemical co-deposition of Ni/Co alloy layer then followed by subsequent annealing at 350 °C in air. Compared with NiCo2O4 nanosheets on smooth Ni foil or porous NiO/Ni film electrodes, the porous NiCo2O4/Ni integrated film electrodes for supercapacitors demonstrate remarkably higher area specific capacitance. The porous NiCo2O4/Ni film electrodes also exhibit excellent rate capability and cycling stability. The super electrochemical capacitive performances are attributed to the unique integrated architecture of NiCo2O4 nanosheets in-situ grown on three dimensional continuous hierarchical porous Ni collector collectors, which could provide large electrode-electrolyte interface area, high active sites, low contact resistance between current collector and active materials, fast electron conduction and ion/electrolyte diffusion.

  19. Analysis of surface leaching processes in vitrified high-level nuclear wastes using in-situ raman imaging and atomistic modeling. 1998 annual progress report

    International Nuclear Information System (INIS)

    Clark, D.E.; Simmons, J.H.

    1998-01-01

    'The research objective was to test and develop optical methods for real-time, remote and in-situ testing of corrosion processes on the surface of vitrified nuclear wastes. This report summarizes the research conducted in the first 1.5 years of a 3 year grant. At this point, the authors have identified the conditions for optimal tests and demonstrated that both IR reflection and Raman spectroscopies can be used to determine the dealkalization process in the surface of simple glasses in real time.'

  20. The control of H2S in biogas using iron ores as in situ desulfurizers during anaerobic digestion process.

    Science.gov (United States)

    Zhou, Qiying; Jiang, Xia; Li, Xi; Jiang, Wenju

    2016-09-01

    In this study, five kinds of iron ores, limonite, hematite, manganese ore, magnetite and lava rock, were used as the in situ desulfurizers in the anaerobic digestion reactors to investigate their effects on controlling H2S in biogas. The results show that the addition of the five iron ores could significantly control the content of H2S in biogas, with the best performance for limonite. As limonite dosages increase (10-60 g/L), the contents of H2S in biogas were evidently decreased in the digesters with different initial sulfate concentrations (0-1000 mg/L). After the anaerobic digestion, the removed sulfur was mostly deposited on the surface of limonite. A possible mechanism of H2S control in biogas by limonite was proposed preliminarily, including adsorption, FeS precipitation, and Fe (III) oxidation. The results demonstrated that limonite was a promising in situ desulfurizer for controlling H2S in biogas with low cost and high efficiency.

  1. Real-time in situ three-dimensional integral videography and surgical navigation using augmented reality: a pilot study

    Science.gov (United States)

    Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi

    2013-01-01

    To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710

  2. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    the influence of membrane fouling. Previously, the REED and fermentation processes have been modeled and investigated separately (Prado- Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated process design and control structure development has been proposed (Prado...... to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  3. Positive enhancement integral values in dynamic contrast enhanced magnetic resonance imaging of breast carcinoma: Ductal carcinoma in situ vs. invasive ductal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Nadrljanski, Mirjan, E-mail: dr.m.nadrljanski@gmail.com [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Maksimović, Ružica [Center for Radiology and Magnetic Resonance Imaging, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Plešinac-Karapandžić, Vesna; Nikitović, Marina [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Marković-Vasiljković, Biljana [Center for Radiology and Magnetic Resonance Imaging, Clinical Center of Serbia, Pasterova 2, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia); Milošević, Zorica [Clinic for Radiology and Radiation Oncology, Institute of Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade (Serbia); Faculty of Medicine, University of Belgrade, Dr Subotića 8, 11000 Belgrade (Serbia)

    2014-08-15

    Objectives: The aim of this study was to contribute to the standardization of the numeric positive enhancement integral (PEI) values in breast parenchyma, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) and to evaluate the significance of the difference in PEI values between IDC and parenchyma, DCIS and parenchyma and IDC and DCIS. Materials and Methods: In the prospective trial, we analyzed the dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) of 60 consecutive patients with histologically confirmed unilateral DCIS (n = 30) and IDC (n = 30) and defined the PEI values (range; mean ± SD) for the lesions and the breast parenchyma. Tumor-to-non-tumor (T/NT) ratios were calculated for DCIS and IDC and compared. PEI color maps (PEICM) were created. The differences in PEI values between IDC and parenchyma and between DCIS and parenchyma were tested according to t-test. Analysis of variance (ANOVA) was used to test the differences between the mean PEI values of parenchyma, DCIS and IDC. Results: IDC showed highly statistically different PEI numeric values compared to breast parenchyma (748.7 ± 32.2 vs. 74.6 ± 17.0; p < 0.0001). The same applied to the differences in the group of patients with DCIS (428.0 ± 25.0 vs. 66.0 ± 10.6; p < 0.0001). The difference between IDC, DCIS and parenchyma were also considered highly statistically significant (p < 0.0001) and so were the T/NT ratios for IDC and DCIS (10.1 ± 2.4 vs. 6.6 ± 1.4; p < 0.0001). Conclusions: PEI numeric values may contribute to differentiation between invasive and in situ breast carcinoma.

  4. Integrated lunar materials manufacturing process

    Science.gov (United States)

    Gibson, Michael A. (Inventor); Knudsen, Christian W. (Inventor)

    1990-01-01

    A manufacturing plant and process for production of oxygen on the moon uses lunar minerals as feed and a minimum of earth-imported, process materials. Lunar feed stocks are hydrogen-reducible minerals, ilmenite and lunar agglutinates occurring in numerous, explored locations mixed with other minerals in the pulverized surface layer of lunar soil known as regolith. Ilmenite (FeTiO.sub.3) and agglutinates contain ferrous (Fe.sup.+2) iron reducible by hydrogen to yield H.sub.2 O and metallic Fe at about 700.degree.-1,200.degree. C. The H.sub.2 O is electrolyzed in gas phase to yield H.sub.2 for recycle and O.sub.2 for storage and use. Hydrogen losses to lunar vacuum are minimized, with no net hydrogen (or any other earth-derived reagent) consumption except for small leaks. Feed minerals are surface-mined by front shovels and transported in trucks to the processing area. The machines are manned or robotic. Ilmenite and agglutinates occur mixed with silicate minerals which are not hydrogen-reducible at 700.degree.-1,200.degree. C. and consequently are separated and concentrated before feeding to the oxygen generation process. Solids rejected from the separation step and reduced solids from the oxygen process are returned to the mine area. The plant is powered by nuclear or solar power generators. Vapor-phase water electrolysis, a staged, countercurrent, fluidized bed reduction reactor and a radio-frequency-driven ceramic gas heater are used to improve thermal efficiency.

  5. Four Models of In Situ Simulation

    DEFF Research Database (Denmark)

    Musaeus, Peter; Krogh, Kristian; Paltved, Charlotte

    2014-01-01

    Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest that there are f......Introduction In situ simulation is characterized by being situated in the clinical environment as opposed to the simulation laboratory. But in situ simulation bears a family resemblance to other types of on the job training. We explore a typology of in situ simulation and suggest...... that there are four fruitful approaches to in situ simulation: (1) In situ simulation informed by reported critical incidents and adverse events from emergency departments (ED) in which team training is about to be conducted to write scenarios. (2) In situ simulation through ethnographic studies at the ED. (3) Using...... the following processes: Transition processes, Action processes and Interpersonal processes. Design and purpose This abstract suggests four approaches to in situ simulation. A pilot study will evaluate the different approaches in two emergency departments in the Central Region of Denmark. Methods The typology...

  6. Dynamic processes of domain switching in lead zirconate titanate under cyclic mechanical loading by in situ neutron diffraction

    International Nuclear Information System (INIS)

    Pojprapai, Soodkhet; Luo, Zhenhua; Clausen, Bjorn; Vogel, Sven C.; Brown, Donald W.; Russel, Jennifer; Hoffman, Mark

    2010-01-01

    The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are studied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic behavior (i.e. ferroelastic switching, lattice strain).

  7. Construction of Power Receiving Rectenna Using Mars- In-Situ Materials; A Low Energy Materials Processing Approach

    Science.gov (United States)

    Curreri, Peter A.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    It is highly desirable to have a non-nuclear power rich option for the human exploration of Mars. Utilizing a Solar Electric Propulsion, SEP, / Power Beaming architecture for a non-nuclear power option for a human Mars base potentially avoids the weather and dust sensitivities of the surface photovoltaic option. Further from Mars areosynchronous orbit near year round power can be provided. Mission analysis, however, concludes that ultra high (245 GHz) frequencies or laser transmission technologies are required for Mars landed mass competitiveness with the surface photovoltaic option if the receiving rectifying antenna "rectenna" is transported from Earth. It is suggested in this paper that producing rectenna in situ on Mars surface might make a more conventional 5.8 GHz system competitive with surface PV. The premium of a competitive, robust, continuous base power might make the development of a 10 plus MWe class SEP for human Mars mission a more attractive non-nuclear option.

  8. In situ high-frequency UV-Vis spectrometer probes for investigating runoff processes and end member stability.

    Science.gov (United States)

    Schwab, Michael; Weiler, Markus; Pfister, Laurent; Klaus, Julian

    2014-05-01

    In recent years, several limitations as to the application of end member mixing analysis with isotope and geochemical tracers have been revealed: unstable end member solutions, inputs varying in space and time, and unrealistic mixing assumptions. In addition, the necessary high-frequency sampling using conventional methods is time and resources consuming, and hence most sampling rates are not suitable for capturing the response times of the majority of observed headwater catchments. However, high-frequency observations are considered fundamental for gaining new insights into hydrological systems. In our study, we have used two portable, in situ, high-frequency UV-Vis spectrometers (spectro::lyser; scan Messtechnik GmbH) to investigate the variability of several signatures in streamflow and end member stability. The spectro::lyser measures TOC, DOC, nitrate and the light absorption spectrum from 220 to 720 nm with 2.5 nm increment. The Weierbach catchment (0.45 km2) in the Attert basin (297 km2) in Luxemburg is a small headwater research catchment (operated by the CRP Gabriel Lippmann), which is completely forested and underlain by schist bedrock. The catchment is equipped with a dense network of hydrological instruments and for this study, the outlet of the Weierbach catchment was equipped with one spectro::lyser, permanently sensing stream water at a 15 minutes time step over several months. Hydrometric and meteorologic data was compared with the high-frequency spectro::lyser time series of TOC, DOC, nitrate and the light absorption spectrum, to get a first insight into the behaviour of the catchment under different environmental conditions. As a preliminary step for a successful end member mixing analysis, the stability of rainfall, soil water, and groundwater was tested with one spectro::lyser, both temporally and spatially. Thereby, we focused on the investigation of changes and patterns of the light absorption spectrum of the different end members and the

  9. Medium-term experiences with in-situ gamma-spectrometry of the primary loop transport processes at Paks NPP

    International Nuclear Information System (INIS)

    Raics, P.; Sztaricskai, T.; Szabo, J.; Szegedi, S.

    2001-01-01

    Surface activity of 15 corrosion/erosion and fission products was determined by in-situ gamma-spectrometry for 2-2 locations on the hot and cold legs of each loop, respectively. Gamma-dosimetry in the assay points was performed. Activity profiles of ion exchange columns were analyzed. Combined measurements along the steam generators completed the characterization of the primary circuits. Most of this technique was regularly included into all maintenance periods. Data evaluation was performed for the surface contaminations as well as coolant activities and reactor operation features for years 1985-2001. Trends and tendencies were investigated in the time behavior of the specific activities. Asymmetry in the surface contamination at the primary loop points, cold-leg activity inversion, water chemistry effects, isotope selectivity were observed. Correlations in different parameters have been calculated and analyzed. (R.P.)

  10. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  11. Integrated durability process in product development

    International Nuclear Information System (INIS)

    Pompetzki, M.; Saadetian, H.

    2002-01-01

    This presentation describes the integrated durability process in product development. Each of the major components of the integrated process are described along with a number of examples of how integrated durability assessment has been used in the ground vehicle industry. The durability process starts with the acquisition of loading information, either physically through loads measurement or virtually through multibody dynamics. The loading information is then processed and characterized for further analysis. Durability assessment was historically test based and completed through field or laboratory evaluation. Today, it is common that both the test and CAE environments are used together in durability assessment. Test based durability assessment is used for final design sign-off but is also critically important for correlating CAE models, in order to investigate design alternatives. There is also a major initiative today to integrate the individual components into a process, by linking applications and providing a framework to communicate information as well as manage all the data involved in the entire process. Although a single process is presented, the details of the process can vary significantly for different products and applications. Recent applications that highlight different parts of the durability process are given. As well as an example of how integration of software tools between different disciplines (MBD, FE and fatigue) not only simplifies the process, but also significantly improves it. (author)

  12. Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds. Integrating Time-Lapse Electrical Resistivity Methods and In Situ Observations of Multiple Oceanographic Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Lutken, Carol [Univ. of Mississippi, Oxford, MS (United States); Macelloni, Leonardo [Univ. of Mississippi, Oxford, MS (United States); D' Emidio, Marco [Univ. of Mississippi, Oxford, MS (United States); Dunbar, John [Univ. of Mississippi, Oxford, MS (United States); Higley, Paul [Univ. of Mississippi, Oxford, MS (United States)

    2015-01-31

    This study was designed to investigate temporal variations in hydrate system dynamics by measuring changes in volumes of hydrate beneath hydrate-bearing mounds on the continental slope of the northern Gulf of Mexico, the landward extreme of hydrate occurrence in this region. Direct Current Resistivity (DCR) measurements were made contemporaneously with measurements of oceanographic parameters at Woolsey Mound, a carbonate-hydrate complex on the mid-continental slope, where formation and dissociation of hydrates are most vulnerable to variations in oceanographic parameters affected by climate change, and where changes in hydrate stability can readily translate to loss of seafloor stability, impacts to benthic ecosystems, and venting of greenhouse gases to the water-column, and eventually, the atmosphere. We focused our study on hydrate within seafloor mounds because the structurally-focused methane flux at these sites likely causes hydrate formation and dissociation processes to occur at higher rates than at sites where the methane flux is less concentrated and we wanted to maximize our chances of witnessing association/dissociation of hydrates. We selected a particularly well-studied hydrate-bearing seafloor mound near the landward extent of the hydrate stability zone, Woolsey Mound (MC118). This mid-slope site has been studied extensively and the project was able to leverage considerable resources from the team’s research experience at MC118. The site exhibits seafloor features associated with gas expulsion, hydrates have been documented at the seafloor, and changes in the outcropping hydrates have been documented, photographically, to have occurred over a period of months. We conducted observatory-based, in situ measurements to 1) characterize, geophysically, the sub-bottom distribution of hydrate and its temporal variability, and 2) contemporaneously record relevant environmental parameters (temperature, pressure, salinity, turbidity, bottom currents) to

  13. Model Identification of Integrated ARMA Processes

    Science.gov (United States)

    Stadnytska, Tetiana; Braun, Simone; Werner, Joachim

    2008-01-01

    This article evaluates the Smallest Canonical Correlation Method (SCAN) and the Extended Sample Autocorrelation Function (ESACF), automated methods for the Autoregressive Integrated Moving-Average (ARIMA) model selection commonly available in current versions of SAS for Windows, as identification tools for integrated processes. SCAN and ESACF can…

  14. Poisson processes and a Bessel function integral

    NARCIS (Netherlands)

    Steutel, F.W.

    1985-01-01

    The probability of winning a simple game of competing Poisson processes turns out to be equal to the well-known Bessel function integral J(x, y) (cf. Y. L. Luke, Integrals of Bessel Functions, McGraw-Hill, New York, 1962). Several properties of J, some of which seem to be new, follow quite easily

  15. Process performance of the pilot-scale in situ vitrification of a simulated waste disposal site at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Carter, J.G.; Koegler, S.S.; Bates, S.O.

    1988-06-01

    Process feasibility studies have been successfully performed on three developmental scales to determine the potential for applying in situ vitrification to intermediate-level (low-level) waste placed in seepage pits and trenches at Oak Ridge National Laboratory (ORNL). In the laboratory, testing was performed in crucibles containing a mixture of 50% ORNL soil and 50% limestone. In an engineering-scale test at Pacific Northwest Laboratory a /1/12/-scale simulation of an ORNL waste trench was constructed and vitrified, resulting in a waste product containing soil and limestone concentrations of 68 wt % and 32 wt %, respectively. In the pilot-scale test a /3/8/-scale simulation of the same trench was constructed and vitrified at ORNL, resulting in soil and limestone concentrations of 80% and 20%, respectively, in the waste product. Results of the three scales of testing indicate that the ORNL intermediate-level (low-level) waste sites can be successfully processed by in situ vitrification; the waste form will retain significant quantities of the cesium and strontium. Because cesium-137 and strontium-90 are the major components of the radionuclide inventory in the ORNL seepage pits and trenches, final field process decontamination factors (i.e., losses to the off-gas system relative to the waste inventory) of 1.0 E + 4 are desired to minimize activity buildup in the off-gas system. 17 refs., 34 figs., 13 tabs

  16. Raspberry Pi in-situ network monitoring system of groundwater flow and temperature integrated with OpenGeoSys

    Science.gov (United States)

    Park, Chan-Hee; Lee, Cholwoo

    2016-04-01

    Raspberry Pi series is a low cost, smaller than credit-card sized computers that various operating systems such as linux and recently even Windows 10 are ported to run on. Thanks to massive production and rapid technology development, the price of various sensors that can be attached to Raspberry Pi has been dropping at an increasing speed. Therefore, the device can be an economic choice as a small portable computer to monitor temporal hydrogeological data in fields. In this study, we present a Raspberry Pi system that measures a flow rate, and temperature of groundwater at sites, stores them into mysql database, and produces interactive figures and tables such as google charts online or bokeh offline for further monitoring and analysis. Since all the data are to be monitored on internet, any computers or mobile devices can be good monitoring tools at convenience. The measured data are further integrated with OpenGeoSys, one of the hydrogeological models that is also ported to the Raspberry Pi series. This leads onsite hydrogeological modeling fed by temporal sensor data to meet various needs.

  17. Path Integral Formulation of Anomalous Diffusion Processes

    OpenAIRE

    Friedrich, Rudolf; Eule, Stephan

    2011-01-01

    We present the path integral formulation of a broad class of generalized diffusion processes. Employing the path integral we derive exact expressions for the path probability densities and joint probability distributions for the class of processes under consideration. We show that Continuous Time Random Walks (CTRWs) are included in our framework. A closed expression for the path probability distribution of CTRWs is found in terms of their waiting time distribution as the solution of a Dyson ...

  18. Integrated annotation and analysis of in situ hybridization images using the ImAnno system: application to the ear and sensory organs of the fetal mouse.

    Science.gov (United States)

    Romand, Raymond; Ripp, Raymond; Poidevin, Laetitia; Boeglin, Marcel; Geffers, Lars; Dollé, Pascal; Poch, Olivier

    2015-01-01

    An in situ hybridization (ISH) study was performed on 2000 murine genes representing around 10% of the protein-coding genes present in the mouse genome using data generated by the EURExpress consortium. This study was carried out in 25 tissues of late gestation embryos (E14.5), with a special emphasis on the developing ear and on five distinct developing sensory organs, including the cochlea, the vestibular receptors, the sensory retina, the olfactory organ, and the vibrissae follicles. The results obtained from an analysis of more than 11,000 micrographs have been integrated in a newly developed knowledgebase, called ImAnno. In addition to managing the multilevel micrograph annotations performed by human experts, ImAnno provides public access to various integrated databases and tools. Thus, it facilitates the analysis of complex ISH gene expression patterns, as well as functional annotation and interaction of gene sets. It also provides direct links to human pathways and diseases. Hierarchical clustering of expression patterns in the 25 tissues revealed three main branches corresponding to tissues with common functions and/or embryonic origins. To illustrate the integrative power of ImAnno, we explored the expression, function and disease traits of the sensory epithelia of the five presumptive sensory organs. The study identified 623 genes (out of 2000) concomitantly expressed in the five embryonic epithelia, among which many (∼12%) were involved in human disorders. Finally, various multilevel interaction networks were characterized, highlighting differential functional enrichments of directly or indirectly interacting genes. These analyses exemplify an under-represention of "sensory" functions in the sensory gene set suggests that E14.5 is a pivotal stage between the developmental stage and the functional phase that will be fully reached only after birth.

  19. In-Situ Measurements of Low Enrichment Uranium Holdup Process Gas Piping at K-25 - Paper for Waste Management Symposia 2010 East Tennessee Technology Park Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Rasmussen, B.

    2010-01-01

    This document is the final version of a paper submitted to the Waste Management Symposia, Phoenix, 2010, abstract BJC/OR-3280. The primary document from which this paper was condensed is In-Situ Measurement of Low Enrichment Uranium Holdup in Process Gas Piping at K-25 Using NaI/HMS4 Gamma Detection Systems, BJC/OR-3355. This work explores the sufficiency and limitations of the Holdup Measurement System 4 (HJVIS4) software algorithms applied to measurements of low enriched uranium holdup in gaseous diffusion process gas piping. HMS4 has been used extensively during the decommissioning and demolition project of the K-25 building for U-235 holdup quantification. The HMS4 software is an integral part of one of the primary nondestructive assay (NDA) systems which was successfully tested and qualified for holdup deposit quantification in the process gas piping of the K-25 building. The initial qualification focused on the measurement of highly enriched UO 2 F 2 deposits. The purpose of this work was to determine if that qualification could be extended to include the quantification of holdup in UO 2 F 2 deposits of lower enrichment. Sample field data are presented to provide evidence in support of the theoretical foundation. The HMS4 algorithms were investigated in detail and found to sufficiently compensate for UO 2 F 2 source self-attenuation effects, over the range of expected enrichment (4-40%), in the North and East Wings of the K-25 building. The limitations of the HMS4 algorithms were explored for a described set of conditions with respect to area source measurements of low enriched UO 2 F 2 deposits when used in conjunction with a 1 inch by 1/2 inch sodium iodide (NaI) scintillation detector. The theoretical limitations of HMS4, based on the expected conditions in the process gas system of the K-25 building, are related back to the required data quality objectives (DQO) for the NBA measurement system established for the K-25 demolition project. The combined

  20. Integrated Monitoring System of Production Processes

    Directory of Open Access Journals (Sweden)

    Oborski Przemysław

    2016-12-01

    Full Text Available Integrated monitoring system for discrete manufacturing processes is presented in the paper. The multilayer hardware and software reference model was developed. Original research are an answer for industry needs of the integration of information flow in production process. Reference model corresponds with proposed data model based on multilayer data tree allowing to describe orders, products, processes and save monitoring data. Elaborated models were implemented in the integrated monitoring system demonstrator developed in the project. It was built on the base of multiagent technology to assure high flexibility and openness on applying intelligent algorithms for data processing. Currently on the base of achieved experience an application integrated monitoring system for real production system is developed. In the article the main problems of monitoring integration are presented, including specificity of discrete production, data processing and future application of Cyber-Physical-Systems. Development of manufacturing systems is based more and more on taking an advantage of applying intelligent solutions into machine and production process control and monitoring. Connection of technical systems, machine tools and manufacturing processes monitoring with advanced information processing seems to be one of the most important areas of near future development. It will play important role in efficient operation and competitiveness of the whole production system. It is also important area of applying in the future Cyber-Physical-Systems that can radically improve functionally of monitoring systems and reduce the cost of its implementation.

  1. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul

    2016-09-09

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  2. Fabrication and properties of multifilamentary MgB 2 wires by in-situ powder-in-tube process

    Science.gov (United States)

    Wang, Q. Y.; Jiao, G. F.; Liu, G. Q.; Xiong, X. M.; Yan, S. C.; Zhang, P. X.; Sulpice, A.; Mossang, E.; Feng, Y.; Yan, G.

    2010-11-01

    We have fabricated the long TiC-doped MgB2 wires with 6 filaments by in-situ powder-in-tube method using Nb as the barrier and copper as the stabilizer. To improve the strength of wires, the Nb-core was used as the central filament. The transport engineering critical current density (Jce) of the samples sintered at different temperature were measured, which reaches 2.5 × 104 A/cm2 at 4.2 K, 5 T. 100 m MgB2 wires with different diameter were wound into coils and the transport critical current (Ic) of the coil were measured at 30 K in self-field. The Jce value 100 m coil achieves 1.1 × 104 A/cm2 in 1.2 mm wire. The reasons leading to the enhancement of high field Jce were discussed. The results show a good potential to fabricate high performance MgB2 wires and tapes at ambient pressure on an industrial scale.

  3. A new system for sodium flux growth of bulk GaN. Part II: in situ investigation of growth processes

    KAUST Repository

    Von Dollen, Paul; Pimputkar, Siddha; Alreesh, Mohammed Abo; Nakamura, Shuji; Speck, James S.

    2016-01-01

    We report recent results of bulk GaN crystal growth using the sodium flux method in a new crucible-free growth system. We observed a (0001) Ga face (+c-plane) growth rate >50 µm/h for growth at a N2 overpressure of ~5 MPa and 860 °C, which is the highest crystal growth rate reported for this technique to date. Omega X-ray rocking curve (ω-XRC) measurements indicated the presence of multiple grains, though full width at half maximum (FWHM) values for individual peaks were <100 arcseconds. Oxygen impurity concentrations as measured by secondary ion mass spectroscopy (SIMS) were >1020 atoms/cm3. By monitoring the nitrogen pressure decay over the course of the crystal growth, we developed an in situ method that correlates gas phase changes with precipitation of GaN from the sodium-gallium melt. Based on this analysis, the growth rate may have actually been as high as 90 µm/h, as it would suggest GaN growth ceased prior to the end of the run. We also observed gas phase behavior identified as likely characteristic of GaN polynucleation.

  4. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    Science.gov (United States)

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Inner hair cell stereocilia movements captured in-situ by a high-speed camera with subpixel image processing

    Science.gov (United States)

    Wang, Yanli; Puria, Sunil; Steele, Charles R.; Ricci, Anthony J.

    2018-05-01

    Mechanical stimulation of the stereocilia hair bundles of the inner and outer hair cells (IHCs and OHCs, respectively) drives IHC synaptic release and OHC electromotility. The modes of hair-bundle motion can have a dramatic influence on the electrophysiological responses of the hair cells. The in vivo modes of motion are, however, unknown for both IHC and OHC bundles. In this work, we are developing technology to investigate the in situ hair-bundle motion in excised mouse cochleae, for which the hair bundles of the OHCs are embedded in the tectorial membrane but those of the IHCs are not. Motion is generated by pushing onto the stapes at 1 kHz with a glass probe coupled to a piezo stack, and recorded using a high-speed camera at 10,000 frames per second. The motions of individual IHC stereocilia and the cell boundary are analyzed using 2D and 1D Gaussian fitting algorithms, respectively. Preliminary results show that the IHC bundle moves mainly in the radial direction and exhibits a small degree of splay, and that the stereocilia in the second row move less than those in the first row, even in the same focal plane.

  6. In-situ studies of the recrystallization process of CuInS2 thin films by energy dispersive X-ray diffraction

    International Nuclear Information System (INIS)

    Thomas, D.; Mainz, R.; Rodriguez-Alvarez, H.; Marsen, B.; Abou-Ras, D.; Klaus, M.; Genzel, Ch.; Schock, H.-W.

    2011-01-01

    Recrystallization processes during the sulfurization of CuInS 2 (CIS) thin films have been studied in-situ using energy dispersive X-ray diffraction (EDXRD) with synchrotron radiation. In order to observe the recrystallization isolated from other reactions occurring during film growth, Cu-poor, small grained CIS layers covered with CuS on top were heated in a vacuum chamber equipped with windows for synchrotron radiation in order to analyze the grain growth mechanism within the CIS layer. In-situ monitoring of the grain size based on diffraction line profile analysis of the CIS-112 reflection was utilized to interrupt the recrystallization process at different points. Ex-situ studies by electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDX) performed on samples of intermediate recrystallization states reveal that during the heat treatment Cu and In interdiffuse inside the layer indicating the importance of the mobility of these two elements during CuInS 2 grain growth.

  7. Numerical Simulation and Optimization of Enhanced Oil Recovery by the In Situ Generated CO2 Huff-n-Puff Process with Compound Surfactant

    Directory of Open Access Journals (Sweden)

    Yong Tang

    2016-01-01

    Full Text Available This paper presents the numerical investigation and optimization of the operating parameters of the in situ generated CO2 Huff-n-Puff method with compound surfactant on the performance of enhanced oil recovery. First, we conducted experiments of in situ generated CO2 and surfactant flooding. Next, we constructed a single-well radial 3D numerical model using a thermal recovery chemical flooding simulator to simulate the process of CO2 Huff-n-Puff. The activation energy and reaction enthalpy were calculated based on the reaction kinetics and thermodynamic models. The interpolation parameters were determined through history matching a series of surfactant core flooding results with the simulation model. The effect of compound surfactant on the Huff-n-Puff CO2 process was demonstrated via a series of sensitivity studies to quantify the effects of a number of operation parameters including the injection volume and mole concentration of the reagent, the injection rate, the well shut-in time, and the oil withdrawal rate. Based on the daily production rate during the period of Huff-n-Puff, a desirable agreement was shown between the field applications and simulated results.

  8. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  9. A Dynamic study of Mantle processes applying In-situ Methods to Compound Xenoliths: implications for small to intermediate scale heterogeneity

    Science.gov (United States)

    Baziotis, Ioannis; Asimow, Paul; Koroneos, Antonios; Ntaflos, Theodoros; Poli, Giampero

    2013-04-01

    The mantle is the major geochemical reservoir of most rock-forming elements in the Earth. Convection and plate-tectonic driven processes act to generate local and regional heterogeneity within the mantle, which in turn through thermal and chemical interactions modulates ongoing geophysical processes; this feedback shapes the dynamics of the deep interior. Consequently, these processes contribute to the evolution of the earth throughout its geological history. Up to now, the heterogeneity of the mantle has been extensively studied in terms of conventional methods using basalt chemistry, bulk rock and mineral major and trace element analysis of isolated xenolith specimens of varying lithology, and massif exposures. The milestone of the present study, part of an ongoing research project, is the application of in-situ analytical methods such as microprobe, LA-ICP-MS and high resolution SEM in order to provide high quality major and trace element analyses as well as elemental distribution of the coexisting phases in the preserved intra-mantle lithologies, Particularly, in the context of the current study we used selected compound xenoliths from San Carlos (Arizona, USA), Kilbourne Hole (New Mexico, USA), Cima Dome and Dish Hill suites (California, USA), San Quintin (Baja California, Mexico) and Chino Valley (Arizona, USA), from the Howard Wilshire collection archived at the Smithsonian Institution. The selection of these compound xenoliths was based upon freshness and integrity of specimens, maximum distance on both sides of lithologic contacts, and rock types thought most likely to represent subsolidus juxtaposition of different lithologies that later partially melted in contact. The San Carlos samples comprise composite xenoliths with websterite, lherzolite and clinopyroxenite layers or clinopyroxenite veins surrounded by lherzolite or orthopyroxenite-rich rims. The Kilbourne Hole suite comprises spinel-(olivine) clinopyroxenite and orthopyroxenite dikes cutting

  10. Integration thermal processes through Pinch technology

    International Nuclear Information System (INIS)

    Rios H, Carlos Mario; Grisales Rincon, Rogelio; Cardona, Carlos Ariel

    2004-01-01

    This paper presents the techniques of heat integration used for process optimization, their fortresses and weaknesses during the implementation in several specific process are also discussed. It is focused to the pinch technology, explaining algorithms for method applications in the industry. The paper provides the concepts and models involved in different types of commercial software applying this method for energy cost reduction, both in design of new plants and improve of old ones. As complement to benefits of the energy cost reduction it is analysed other favorable aspects of process integration, as the emissions waste reduction and the combined heat end power systems

  11. Microbial communities associated with uranium in-situ recovery mining process are related to acid mine drainage assemblages.

    Science.gov (United States)

    Coral, Thomas; Descostes, Michaël; De Boissezon, Hélène; Bernier-Latmani, Rizlan; de Alencastro, Luiz Felippe; Rossi, Pierre

    2018-07-01

    A large fraction (47%) of the world's uranium is mined by a technique called "In Situ Recovery" (ISR). This mining technique involves the injection of a leaching fluid (acidic or alkaline) into a uranium-bearing aquifer and the pumping of the resulting solution through cation exchange columns for the recovery of dissolved uranium. The present study reports the in-depth alterations brought to autochthonous microbial communities during acidic ISR activities. Water samples were collected from a uranium roll-front deposit that is part of an ISR mine in operation (Tortkuduk, Kazakhstan). Water samples were obtained at a depth of ca 500 m below ground level from several zones of the Uyuk aquifer following the natural redox zonation inherited from the roll front deposit, including the native mineralized orebody and both upstream and downstream adjacent locations. Samples were collected equally from both the entrance and the exit of the uranium concentration plant. Next-generation sequencing data showed that the redox gradient shaped the community structures, within the anaerobic, reduced, and oligotrophic habitats of the native aquifer zones. Acid injection induced drastic changes in the structures of these communities, with a large decrease in both cell numbers and diversity. Communities present in the acidified (pH values acid mine drainage, with the dominance of Sulfobacillus sp., Leptospirillum sp. and Acidithiobacillus sp., as well as the archaean Ferroplasma sp. Communities located up- and downstream of the mineralized zone under ISR and affected by acidic fluids were blended with additional facultative anaerobic and acidophilic microorganisms. These mixed biomes may be suitable communities for the natural attenuation of ISR mining-affected subsurface through the reduction of metals and sulfate. Assessing the effect of acidification on the microbial community is critical to evaluating the potential for natural attenuation or active bioremediation strategies

  12. Sustained in situ measurements of dissolved oxygen, methane and water transport processes in the benthic boundary layer at MC118, northern Gulf of Mexico

    Science.gov (United States)

    Martens, Christopher S.; Mendlovitz, Howard P.; Seim, Harvey; Lapham, Laura; D'Emidio, Marco

    2016-07-01

    Within months of the BP Macondo Wellhead blowout, elevated methane concentrations within the water column revealed a significant retention of light hydrocarbons in deep waters plus corresponding dissolved oxygen (DO) deficits. However, chemical plume tracking efforts were hindered by a lack of in situ monitoring capabilities. Here, we describe results from in situ time-series, lander-based investigations of physical and biogeochemical processes controlling dissolved oxygen, and methane at Mississippi Canyon lease block 118 ( 18 km from the oil spill) conducted shortly after the blowout through April 2012. Multiple sensor arrays plus open-cylinder flux chambers (;chimneys;) deployed from a benthic lander collected oxygen, methane, pressure, and current speed and direction data within one meter of the seafloor. The ROVARD lander system was deployed for an initial 21-day test experiment (9/13/2010-10/04/2010) at 882 m depth before a longer 160-day deployment (10/24/2011-4/01/2012) at 884 m depth. Temporal variability in current directions and velocities and water temperatures revealed strong influences of bathymetrically steered currents and overlying along-shelf flows on local and regional water transport processes. DO concentrations and temperature were inversely correlated as a result of water mass mixing processes. Flux chamber measurements during the 160-day deployment revealed total oxygen utilization (TOU) averaging 11.6 mmol/m2 day. Chimney DO concentrations measured during the 21-day deployment exhibited quasi-daily variations apparently resulting from an interaction between near inertial waves and the steep topography of an elevated scarp immediately adjacent to the 21-day deployment site that modulated currents at the top of the chimney. Variability in dissolved methane concentrations suggested significant temporal variability in gas release from nearby hydrocarbon seeps and/or delivery by local water transport processes. Free-vehicle (lander) monitoring

  13. Information Integration; The process of integration, evolution and versioning

    NARCIS (Netherlands)

    de Keijzer, Ander; van Keulen, Maurice

    2005-01-01

    At present, many information sources are available wherever you are. Most of the time, the information needed is spread across several of those information sources. Gathering this information is a tedious and time consuming job. Automating this process would assist the user in its task. Integration

  14. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...... to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...

  15. Application of Hoffman modulation contrast microscopy coupled with three-wavelength two-beam interferometry to the in situ direct observation of the growth process of a crystal in microgravity

    Science.gov (United States)

    Tsukamoto, Katsuo

    1988-01-01

    Direct visualization of three dimensional transfer process of both heat and mass around a growing crystal and mono-molecular growth layers on the surface is possible in situ by means of high resolution Hoffman modulation contrast microscopy coupled with three wavelength two beam Mach-Zehnder interferometry. This in situ observation is very suitable for the verification of the growth mechanism of a crystal in a solution or a melt in microgravity.

  16. Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.

    1991-09-18

    This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

  17. Investigation of the fabrication processes of AlGaN/AlN/GaN HEMTs with in situ Si3N4 passivation

    International Nuclear Information System (INIS)

    Tomosh, K. N.; Pavlov, A. Yu.; Pavlov, V. Yu.; Khabibullin, R. A.; Arutyunyan, S. S.; Maltsev, P. P.

    2016-01-01

    The optimum mode of the in situ plasma-chemical etching of a Si 3 N 4 passivating layer in C 3 F 8 /O 2 medium is chosen for the case of fabricating AlGaN/AlN/GaN HEMTs. It is found that a bias of 40–50 V at a high-frequency electrode provides anisotropic etching of the insulator through a resist mask and introduces no appreciable radiation-induced defects upon overetching of the insulator films in the region of gate-metallization formation. To estimate the effect of in situ Si 3 N 4 growth together with the heterostructure in one process on the AlGaN/AlN/GaN HEMT characteristics, transistors with gates without the insulator and with gates through Si 3 N 4 slits are fabricated. The highest drain current of the AlGaN/AlN/GaN HEMT at 0 V at the gate is shown to be 1.5 times higher in the presence of Si 3 N 4 than without it.

  18. Investigation of the fabrication processes of AlGaN/AlN/GaN HEMTs with in situ Si{sub 3}N{sub 4} passivation

    Energy Technology Data Exchange (ETDEWEB)

    Tomosh, K. N., E-mail: sky77781@mail.ru; Pavlov, A. Yu.; Pavlov, V. Yu.; Khabibullin, R. A.; Arutyunyan, S. S.; Maltsev, P. P. [Russian Academy of Sciences, Institute of Ultra-High-Frequency Semiconductor Electronics (Russian Federation)

    2016-10-15

    The optimum mode of the in situ plasma-chemical etching of a Si{sub 3}N{sub 4} passivating layer in C{sub 3}F{sub 8}/O{sub 2} medium is chosen for the case of fabricating AlGaN/AlN/GaN HEMTs. It is found that a bias of 40–50 V at a high-frequency electrode provides anisotropic etching of the insulator through a resist mask and introduces no appreciable radiation-induced defects upon overetching of the insulator films in the region of gate-metallization formation. To estimate the effect of in situ Si{sub 3}N{sub 4} growth together with the heterostructure in one process on the AlGaN/AlN/GaN HEMT characteristics, transistors with gates without the insulator and with gates through Si{sub 3}N{sub 4} slits are fabricated. The highest drain current of the AlGaN/AlN/GaN HEMT at 0 V at the gate is shown to be 1.5 times higher in the presence of Si{sub 3}N{sub 4} than without it.

  19. In-situ and self-distributed: A new understanding on catalyzed thermal decomposition process of ammonium perchlorate over Nd{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Min, E-mail: zoumin3362765@163.com; Wang, Xin, E-mail: wangx@mail.njust.edu.cn; Jiang, Xiaohong, E-mail: jxh0668@sina.com; Lu, Lude, E-mail: lulude17@yahoo.com

    2014-05-01

    Catalyzed thermal decomposition process of ammonium perchlorate (AP) over neodymium oxide (Nd{sub 2}O{sub 3}) was investigated. Catalytic performances of nanometer-sized Nd{sub 2}O{sub 3} and micrometer-sized Nd{sub 2}O{sub 3} were evaluated by differential scanning calorimetry (DSC). In contrast to universal concepts, catalysts in different sizes have nearly similar catalytic activities. Based on structural and morphological variation of the catalysts during the reaction, combined with mass spectrum analyses and studies of unmixed style, a new understanding of this catalytic process was proposed. We believed that the newly formed chloride neodymium oxide (NdOCl) was the real catalytic species in the overall thermal decomposition of AP over Nd{sub 2}O{sub 3}. Meanwhile, it was the “self-distributed” procedure which occurred within the reaction that also worked for the improvement of overall catalytic activities. This work is of great value in understanding the roles of micrometer-sized catalysts used in heterogeneous reactions, especially the solid–solid reactions which could generate a large quantity of gaseous species. - Graphical abstract: In-situ and self-distributed reaction process in thermal decomposition of AP catalyzed by Nd{sub 2}O{sub 3}. - Highlights: • Micro- and nano-Nd{sub 2}O{sub 3} for catalytic thermal decomposition of AP. • No essential differences on their catalytic performances. • Structural and morphological variation of catalysts digs out catalytic mechanism. • This catalytic process is “in-situ and self-distributed” one.

  20. In situ solution mining technique

    International Nuclear Information System (INIS)

    Learmont, R.P.

    1978-01-01

    A method of in situ solution mining is disclosed in which a primary leaching process employing an array of 5-spot leaching patterns of production and injection wells is converted to a different pattern by converting to injection wells all the production wells in alternate rows

  1. Materials issues in silicon integrated circuit processing

    International Nuclear Information System (INIS)

    Wittmer, M.; Stimmell, J.; Strathman, M.

    1986-01-01

    The symposium on ''Materials Issues in Integrated Circuit Processing'' sought to bring together all of the materials issued pertinent to modern integrated circuit processing. The inherent properties of the materials are becoming an important concern in integrated circuit manufacturing and accordingly research in materials science is vital for the successful implementation of modern integrated circuit technology. The session on Silicon Materials Science revealed the advanced stage of knowledge which topics such as point defects, intrinsic and extrinsic gettering and diffusion kinetics have achieved. Adaption of this knowledge to specific integrated circuit processing technologies is beginning to be addressed. The session on Epitaxy included invited papers on epitaxial insulators and IR detectors. Heteroepitaxy on silicon is receiving great attention and the results presented in this session suggest that 3-d integrated structures are an increasingly realistic possibility. Progress in low temperature silicon epitaxy and epitaxy of thin films with abrupt interfaces was also reported. Diffusion and Ion Implantation were well presented. Regrowth of implant-damaged layers and the nature of the defects which remain after regrowth were discussed in no less than seven papers. Substantial progress was also reported in the understanding of amorphising boron implants and the use of gallium implants for the formation of shallow p/sup +/ -layers

  2. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions

    International Nuclear Information System (INIS)

    Rao, K.P.; Prasad, Y.V.R.K.

    2010-01-01

    Research highlights: Mechanical alloying of Ti and Al with small additions of Si and C was used to synthesize metastable phases, which were incorporated in Ti-Al matrices using powder metallurgy techniques. These metastable phases (or also called as precursors), at higher temperatures, transformed in situ into very fine hard reinforcements that develop coherent interface with the surrounding matrix. Typically, Ti5Si3 and TiC are the end products after the synthesis of composite. In this study, hot working behavior of such composites has been studied using the concepts of processing maps to identify the safe and best processing conditions that should be adopted while forming this composite. Also, kinetic analysis of hot deformation has been performed to identify the dominant deformation mechanism. The results are compared with that of base TiAl matrix. The powder metallurgy route offers the advantage of working the material at much lower temperatures compared to the traditional cast and forge route. - Abstract: A titanium aluminide alloy composite with in situ carbide and silicide dispersions has been synthesized by mixing 90% of matrix with elemental composition of 46Ti-46Al-4Nb-2Cr-2Mn and 10% precursor with composition 55Ti-27Al-12Si-6C prepared by mechanical alloying. The powder mixture was blended for 2 h followed by hot isostatic pressing (HIP) at 1150 deg. C for 4 h under a pressure of 150 MPa. In addition to TiAl alloy matrix, the microstructure of the HIP'ed billet showed a small volume fraction of Nb-rich intermetallic phase along with carbide and silicide dispersions formed in situ during HIP'ing. Cylindrical specimens from the HIP'ed billets were compressed at temperatures and strain rates in the ranges of 800-1050 deg. C and 0.0001-1 s -1 . The flow curves exhibited flow softening leading to a steady-state flow at strain rates lower than 0.01 s -1 while fracture occurred at higher strain rates. The processing map developed on the basis of flow stress at

  3. Pedagogic process modeling: Humanistic-integrative approach

    Directory of Open Access Journals (Sweden)

    Boritko Nikolaj M.

    2007-01-01

    Full Text Available The paper deals with some current problems of modeling the dynamics of the subject-features development of the individual. The term "process" is considered in the context of the humanistic-integrative approach, in which the principles of self education are regarded as criteria for efficient pedagogic activity. Four basic characteristics of the pedagogic process are pointed out: intentionality reflects logicality and regularity of the development of the process; discreteness (stageability in dicates qualitative stages through which the pedagogic phenomenon passes; nonlinearity explains the crisis character of pedagogic processes and reveals inner factors of self-development; situationality requires a selection of pedagogic conditions in accordance with the inner factors, which would enable steering the pedagogic process. Offered are two steps for singling out a particular stage and the algorithm for developing an integrative model for it. The suggested conclusions might be of use for further theoretic research, analyses of educational practices and for realistic predicting of pedagogical phenomena. .

  4. Carbon Nanotube Integration with a CMOS Process

    Science.gov (United States)

    Perez, Maximiliano S.; Lerner, Betiana; Resasco, Daniel E.; Pareja Obregon, Pablo D.; Julian, Pedro M.; Mandolesi, Pablo S.; Buffa, Fabian A.; Boselli, Alfredo; Lamagna, Alberto

    2010-01-01

    This work shows the integration of a sensor based on carbon nanotubes using CMOS technology. A chip sensor (CS) was designed and manufactured using a 0.30 μm CMOS process, leaving a free window on the passivation layer that allowed the deposition of SWCNTs over the electrodes. We successfully investigated with the CS the effect of humidity and temperature on the electrical transport properties of SWCNTs. The possibility of a large scale integration of SWCNTs with CMOS process opens a new route in the design of more efficient, low cost sensors with high reproducibility in their manufacture. PMID:22319330

  5. Modeling in situ vitrification

    International Nuclear Information System (INIS)

    Mecham, D.C.; MacKinnon, R.J.; Murray, P.E.; Johnson, R.W.

    1990-01-01

    In Situ Vitrification (ISV) process is being assessed by the Idaho National Engineering Laboratory (INEL) to determine its applicability to transuranic and mixed wastes buried at INEL'S Subsurface Disposal Area (SDA). This process uses electrical resistance heating to melt waste and contaminated soil in place to produce a durable glasslike material that encapsulates and immobilizes buried wastes. This paper outlines the requirements for the model being developed at the INEL which will provide analytical support for the ISV technology assessment program. The model includes representations of the electric potential field, thermal transport with melting, gas and particulate release, vapor migration, off-gas combustion and process chemistry. The modeling objectives are to help determine the safety of the process by assessing the air and surrounding soil radionuclides and chemical pollution hazards, the nuclear criticality hazard, and the explosion and fire hazards, help determine the suitability of the ISV process for stabilizing the buried wastes involved, and help design laboratory and field tests and interpret results. 3 refs., 2 figs., 1 tab

  6. Process Integration Analysis of an Industrial Hydrogen Production Process

    OpenAIRE

    Stolten, Detlef; Grube, Thomas; Tock, Laurence; Maréchal, François; Metzger, Christian; Arpentinier, Philippe

    2010-01-01

    The energy efficiency of an industrial hydrogen production process using steam methane reforming (SMR) combined with the water gas shift reaction (WGS) is analyzed using process integration techniques based on heat cascade calculation and pinch analysis with the aim of identifying potential measures to enhance the process performance. The challenge is to satisfy the high temperature heat demand of the SMR reaction by minimizing the consumption of natural gas to feed the combustion and to expl...

  7. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  8. Investigation of disposal of nitrate-bearing effluent from in-situ leaching process by natural evaporation in Yining uranium mine

    International Nuclear Information System (INIS)

    Huang Chongyuan; Li Weicai; Zhang Yutai; Gao Xizhen

    2000-01-01

    Experiments indicated, after lime neutralization and precipitation of nitrate-bearing effluent from in-situ leaching process, uranium concentration increase with the increasing of nitrate concentration. Only when nitrate concentration is <0.5 mg/L, uranium concentration can drop from 1.5-2.0 mg/L to about 1.0 mg/L. The permeability coefficient of soil is about 1.0-1.1 m/d in the place which is scheduled for building natural evaporation pool. After lime neutralization of nitrate-bearing effluent, it can drop to 0.03-0.01 m/d. Setting up water-proof layer in natural evaporation pool can reduce pollution of underground water by uranium, nitrate and ammonium

  9. In situ x-ray observations of the diamond formation process in the C-H sub 2 O-MgO system

    CERN Document Server

    Okada, T; Shimomura, O

    2002-01-01

    The diamond formation process in aqueous fluid catalyst under high-pressure and high-temperature conditions has been observed for the first time. Quench experiments and in situ x-ray diffraction experiments using synchrotron radiation have been performed upon a mixture of brucite (Mg(OH) sub 2) and graphite as the starting material. It was confirmed that brucite decomposed into periclase and H sub 2 O at 3.6 GPa and 1050 deg. C while its complete melting occurred at 6.2 GPa and 1150 deg. C, indicating that the solubility of MgO in H sub 2 O greatly increases with increasing pressure. The conversion of carbon from its graphite to its diamond form in aqueous fluid was observed at 7.7 GPa and 1835 deg. C.

  10. Performance evaluation of a green process for microalgal CO2 sequestration in closed photobioreactor using flue gas generated in-situ.

    Science.gov (United States)

    Yadav, Geetanjali; Karemore, Ankush; Dash, Sukanta Kumar; Sen, Ramkrishna

    2015-09-01

    In the present study, carbon-dioxide capture from in situ generated flue gas was carried out using Chlorella sp. in bubble column photobioreactors to develop a cost effective process for concomitant carbon sequestration and biomass production. Firstly, a comparative analysis of CO2 sequestration with varying concentrations of CO2 in air-CO2 and air-flue gas mixtures was performed. Chlorella sp. was found to be tolerant to 5% CO2 concentration. Subsequently, inhibitory effect of pure flue gas was minimized using various strategies like use of high initial cell density and photobioreactors in series. The final biofixation efficiency was improved by 54% using the adopted strategies. Further, sequestered microalgal biomass was analyzed for various biochemical constituents for their use in food, feed or biofuel applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Maximum likelihood estimation for integrated diffusion processes

    DEFF Research Database (Denmark)

    Baltazar-Larios, Fernando; Sørensen, Michael

    We propose a method for obtaining maximum likelihood estimates of parameters in diffusion models when the data is a discrete time sample of the integral of the process, while no direct observations of the process itself are available. The data are, moreover, assumed to be contaminated...... EM-algorithm to obtain maximum likelihood estimates of the parameters in the diffusion model. As part of the algorithm, we use a recent simple method for approximate simulation of diffusion bridges. In simulation studies for the Ornstein-Uhlenbeck process and the CIR process the proposed method works...... by measurement errors. Integrated volatility is an example of this type of observations. Another example is ice-core data on oxygen isotopes used to investigate paleo-temperatures. The data can be viewed as incomplete observations of a model with a tractable likelihood function. Therefore we propose a simulated...

  12. Integration Process for the Habitat Demonstration Unit

    Science.gov (United States)

    Gill, Tracy; Merbitz, Jerad; Kennedy, Kriss; Tri, Terry; Howe, A. Scott

    2010-01-01

    The Habitat Demonstration Unit (HDU) is an experimental exploration habitat technology and architecture test platform designed for analog demonstration activities The HDU project has required a team to integrate a variety of contributions from NASA centers and outside collaborators and poses a challenge in integrating these disparate efforts into a cohesive architecture To complete the development of the HDU from conception in June 2009 to rollout for operations in July 2010, a cohesive integration strategy has been developed to integrate the various systems of HDU and the payloads, such as the Geology Lab, that those systems will support The utilization of interface design standards and uniquely tailored reviews have allowed for an accelerated design process Scheduled activities include early fit-checks and the utilization of a Habitat avionics test bed prior to equipment installation into HDU A coordinated effort to utilize modeling and simulation systems has aided in design and integration concept development Modeling tools have been effective in hardware systems layout, cable routing and length estimation, and human factors analysis Decision processes on the shell development including the assembly sequence and the transportation have been fleshed out early on HDU to maximize the efficiency of both integration and field operations Incremental test operations leading up to an integrated systems test allows for an orderly systems test program The HDU will begin its journey as an emulation of a Pressurized Excursion Module (PEM) for 2010 field testing and then may evolve to a Pressurized Core Module (PCM) for 2011 and later field tests, depending on agency architecture decisions The HDU deployment will vary slightly from current lunar architecture plans to include developmental hardware and software items and additional systems called opportunities for technology demonstration One of the HDU challenges has been designing to be prepared for the integration of

  13. Gravity driven and in situ fractional crystallization processes in the Centre Hill complex, Abitibi Subprovince, Canada: Evidence from bilaterally-paired cyclic units

    Science.gov (United States)

    Thériault, R. D.; Fowler, A. D.

    1996-12-01

    The formation of layers in mafic intrusions has been explained by various processes, making it the subject of much controversy. The concept that layering originates from gravitational settling of crystals has been superseded in recent years by models involving in situ fractional crystallization. Here we present evidence from the Centre Hill complex that both processes may be operative simultaneously within the same intrusion. The Centre Hill complex is part of the Munro Lake sill, an Archean layered mafic intrusion emplaced in volcanic rocks of the Abitibi Subprovince. The Centre Hill complex comprises the following lithostratigraphic units: six lower cyclic units of peridotite and clinopyroxenite; a middle unit of leucogabbro; six upper cyclic units of branching-textured gabbro (BTG) and clotted-textured gabbro (CTG), the uppermost of these units being overlain by a marginal zone of fine-grained gabbro. The cyclic units of peridotite/clinopyroxenite and BTG/CTG are interpreted to have formed concurrently through fractional crystallization, associated with periodic replenishment of magma to the chamber. The units of peridotite and clinopyroxenite formed by gravitational accumulation of crystals that grew under the roof. The cyclic units of BTG and CTG formed along the upper margin of the sill by two different mechanisms: (1) layers of BTG crystallized in situ along an inward-growing roof and (2) layers of CTG formed by accumulation of buoyant plagioclase crystals. The layers of BTG are characterized by branching pseudomorphs after fayalite up to 50 cm in length that extend away from the upper margin. The original branching crystals are interpreted to have grown from stagnant intercumulus melt in a high thermal gradient resulting from the injection of new magma to the chamber.

  14. Integrated biological, chemical and physical processes kinetic ...

    African Journals Online (AJOL)

    ... for C and N removal, only gas and liquid phase processes were considered for this integrated model. ... kLA value for the aeration system, which affects the pH in the anoxic and aerobic reactors through CO2 gas exchange. ... Water SA Vol.

  15. Integrating Leadership Processes: Redefining the Principles Course.

    Science.gov (United States)

    Neff, Bonita Dostal

    2002-01-01

    Revamps the principles of a public relations course, the first professional course in the public relations sequence, by integrating a leadership process and a service-learning component. Finds that more students are reflecting the interpersonal and team skills desired in the 1998 national study on public relations. (SG)

  16. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  17. The Integration Order of Vector Autoregressive Processes

    DEFF Research Database (Denmark)

    Franchi, Massimo

    We show that the order of integration of a vector autoregressive process is equal to the difference between the multiplicity of the unit root in the characteristic equation and the multiplicity of the unit root in the adjoint matrix polynomial. The equivalence with the standard I(1) and I(2...

  18. Process integration of organic Rankine cycle

    International Nuclear Information System (INIS)

    Desai, Nishith B.; Bandyopadhyay, Santanu

    2009-01-01

    An organic Rankine cycle (ORC) uses an organic fluid as a working medium within a Rankine cycle power plant. ORC offers advantages over conventional Rankine cycle with water as the working medium, as ORC generates shaft-work from low to medium temperature heat sources with higher thermodynamic efficiency. The dry and the isentropic fluids are most preferred working fluid for the ORC. The basic ORC can be modified by incorporating both regeneration and turbine bleeding to improve its thermal efficiency. In this paper, 16 different organic fluids have been analyzed as a working medium for the basic as well as modified ORCs. A methodology is also proposed for appropriate integration and optimization of an ORC as a cogeneration process with the background process to generate shaft-work. It has been illustrated that the choice of cycle configuration for appropriate integration with the background process depends on the heat rejection profile of the background process (i.e., the shape of the below pinch portion of the process grand composite curve). The benefits of integrating ORC with the background process and the applicability of the proposed methodology have been demonstrated through illustrative examples.

  19. Microstructure and wear of in-situ Ti/(TiN + TiB) hybrid composite layers produced using liquid phase process

    Energy Technology Data Exchange (ETDEWEB)

    Yazdi, R., E-mail: ryazdi@ut.ac.ir; Kashani-Bozorg, S.F.

    2015-02-15

    Tungsten inert gas (TIG) technique was conducted on commercially pure (CP)-Ti substrate, which was coated with h-BN-based powder mixture prior to the treatment. The treated surfaces were evaluated and characterized by means of scanning electron microscope (SEM), X-ray diffraction analysis, and electron dispersive spectrometry (EDS). The microhardness and wear experiment were also performed by using a microhardness machine and pin-on-disk tribometer. As h-BN reacted with titanium, an in-situ hybrid composite layer was formed showing near stoichiometric dendrites of TiN, platelets of TiB and interdendritic regions of α′-Ti martensite crystal structures. The population level of TiN and TiB regions were found to increase using a pre-placed powder mixture with greater h-BN content. However, the fabricated layers exhibited cracking and porosity; these were minimized by adjusting arc energy density and h-BN content of powder mixture. The microhardness value of the fabricated hybrid composite layers was found to be in the range of ∼650 HV{sub 0.2}–1000 HV{sub 0.2}; this is three to five times higher than that of the untreated CP-Ti substrate. In addition, the in-situ hybrid composite layers exhibited superior wear behavior over CP-Ti substrate; this is attributed to the formation of newly formed ceramic phases in the solidified surface layers and good coherent interface between the composite layer and CP-substrate. Meanwhile, severe adhesive wear mechanism of CP-titanium surface changed to mild abrasive one as a result of surface treatment. - Highlights: • In-situ Ti/(TiN + TiB) hybrid composite layers were synthesized by TIG processing on commercially pure titanium. • The microstructure features were characterized by several methods. • Microhardness enhanced three to five times higher than that of the CP-Ti substrate after surface modification. • The fabricated composite layers improved wear resistance of CP-titanium. • Severe adhesive wear mechanism of

  20. Integrating Data Streams from in-situ Measurements, Social Networks and Satellite Earth Observation to Augment Operational Flood Monitoring and Forecasting: the 2017 Hurricane Season in the Americas as a Large-scale Test Case

    Science.gov (United States)

    Matgen, P.; Pelich, R.; Brangbour, E.; Bruneau, P.; Chini, M.; Hostache, R.; Schumann, G.; Tamisier, T.

    2017-12-01

    Hurricanes Harvey, Irma and Maria generated large streams of heterogeneous data, coming notably from three main sources: imagery (satellite and aircraft), in-situ measurement stations and social media. Interpreting these data streams brings critical information to develop, validate and update prediction models. The study addresses existing gaps in the joint extraction of disaster risk information from multiple data sources and their usefulness for reducing the predictive uncertainty of large-scale flood inundation models. Satellite EO data, most notably the free-of-charge data streams generated by the Copernicus program, provided a wealth of high-resolution imagery covering the large areas affected. Our study is focussing on the mapping of flooded areas from a sequence of Sentinel-1 SAR imagery using a classification algorithm recently implemented on the European Space Agency's Grid Processing On Demand environment. The end-to-end-processing chain provided a fast access to all relevant imagery and an effective processing for near-real time analyses. The classification algorithm was applied on pairs of images to rapidly and automatically detect, record and disseminate all observable changes of water bodies. Disaster information was also retrieved from photos as well as texts contributed on social networks and the study shows how this information may complement EO and in-situ data and augment information content. As social media data are noisy and difficult to geo-localize, different techniques are being developed to automatically infer associated semantics and geotags. The presentation provides a cross-comparison between the hazard information obtained from the three data sources. We provide examples of how the generated database of geo-localized disaster information was finally integrated into a large-scale hydrodynamic model of the Colorado River emptying into the Matagorda Bay on the Gulf of Mexico in order to reduce its predictive uncertainty. We describe the

  1. Effects of Processing Parameters on the Fabrication of in-situ Al/TiC Composites by Thermally Activated Combustion Reaction Process in an Aluminium Melt using Al-TiO_2-C Powder Mixtures

    International Nuclear Information System (INIS)

    Kim, Hwa-Jung; Lee, Jung-Moo; Cho, Young-Hee; Kim, Jong-Jin; Kim, Su-Hyeon; Lee, Jae-Chul

    2012-01-01

    A feasible way to fabricate in-situ Al/TiC composites was investigated. An elemental mixture of Al-TiO_2-C pellet was directly added into an Al melt at 800-920°C to form TiC by self-combustion reaction. The addition of CuO initiates the self-combustion reaction to form TiC in 1-2 um at the melt temperature above 850°C. Besides the CuO addition, a diluent element of excess Al plays a significant role in the TiC formation by forming a precursor phase, Al_3Ti. Processing parameters such as CuO content, the amount of excess Al and the melt temperature, have affected the combustion reaction and formation of TiC, and their influences on the microstructures of in-situ Al/TiC composites are examined.

  2. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  3. [Data processing and QA/QC of atmosphere CO2 and CH4 concentrations by a method of GC-FID in-situ measurement at Waliguan station].

    Science.gov (United States)

    Zhang, Fang; Zhou, Ling-Xi; Liu, Li-Xin; Fang, Shuang-Xi; Yao, Bo; Xu, Lin; Zhang, Xiao-Chun; Masarie, Kenneth A; Conway, Thomas J; Worthy, Douglas E J; Ernst, Michele

    2010-10-01

    To strengthen scientific management and sharing of greenhouse gas data obtained from atmospheric background stations in China, it is important to ensure the standardization of observations and establish the data treatment and quality control procedure so as to maintain consistency in atmospheric carbon dioxide (CO2) and methane (CH4) measurements from different background stations. An automated gas chromatographic system (Hewlett Packard 5890GC employing flame ionization detection) for in situ measurements of atmospheric CO2 and CH4 has been developed since 1994 at the China Global Atmosphere Watch Baseline Observatory at Mt. Waliguan, in Qinhai. In this study, processing and quality control flow of CO2 and CH4 data acquired by HP ChemStation are discussed in detail, including raw data acquisition, data merge, time series inspection, operator flag, principal investigator flag, and the comparison of the GC measurement with the flask method. Atmosphere CO2 and CH4 mixing ratios were separated as background and non-background data using a robust local regression method, approximately 72% and 44% observed values had been filtered as background data for CO2 and CH4, respectively. Comparison of the CO1 and CH, in situ data to the flask sampling data were in good agreement, the relative deviations are within +/- 0.5% for CO2 and for CH4. The data has been assimilated into global database (Globalview-CO2, Globalview-CH4), submitted to the World Data Centre for Greenhouse Gases (WDCGG), and applied to World Meteorological Organization (WMO) Greenhouse Gas Bulletin and assessment reports of the United Nations Intergovernmental Panel on Climate Change (IPCC).

  4. Operations Support of Phase 2 Integrated Demonstration In Situ Bioremediation. Volume 1, Final report: Final report text data in tabular form, Disk 1

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1993-09-01

    This project was designed to demonstrate in situ bioremediation of ground water and sediment contaminated with chlorinated solvents. Indigenous microorganisms were stimulated to degrade trichlorethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated aquifer and adjacent vadose zone. The principle carbon/energy source nutrient used in this demonstration was methane (natural gas). In situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency, safety, and public and regulatory acceptability. This report describes the preliminary results of the demonstration and provides conclusions only for those measures that the Bioremediation Technical Support Group felt were so overwhelmingly convincing that they do not require further analyses. Though this report is necessarily superficial it does intend to provide a basis for further evaluating the technology and for practitioners to immediately apply some parts of the technology.

  5. Thermally conductive, electrically insulating and melt-processable polystyrene/boron nitride nanocomposites prepared by in situ reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Huang, Xingyi; Wang, Shen; Zhu, Ming; Yang, Ke; Jiang, Pingkai; Bando, Yoshio; Golberg, Dmitri; Zhi, Chunyi

    2015-01-01

    Thermally conductive and electrically insulating polymer/boron nitride (BN) nanocomposites are highly attractive for various applications in many thermal management fields. However, so far most of the preparation methods for polymer/BN nanocomposites have usually caused difficulties in the material post processing. Here, an in situ grafting approach is designed to fabricate thermally conductive, electrically insulating and post-melt processable polystyrene (PS)/BN nanosphere (BNNS) nanocomposites by initiating styrene (St) on the surface functionalized BNNSs via reversible addition fragmentation chain transfer polymerization. The nanocomposites exhibit significantly enhanced thermal conductivity. For example, at a St/BN feeding ratio of 5:1, an enhancement ratio of 1375% is achieved in comparison with pure PS. Moreover, the dielectric properties of the nanocomposites show a desirable weak dependence on frequency, and the dielectric loss tangent of the nanocomposites remains at a very low level. More importantly, the nanocomposites can be subjected to multiple melt processing to form different shapes. Our method can become a universal approach to prepare thermally conductive, electrically insulating and melt-processable polymer nanocomposites with diverse monomers and nanofillers. (paper)

  6. InGaN nanocolumn growth self-induced by in-situ annealing and ion irradiation during growth process with molecular beam epitaxy method

    Science.gov (United States)

    Xue, Junjun; Cai, Qing; Zhang, Baohua; Ge, Mei; Chen, Dunjun; Zheng, Jianguo; Zhi, Ting; Tao, Zhikuo; Chen, Jiangwei; Wang, Lianhui; Zhang, Rong; Zheng, Youdou

    2017-11-01

    Incubation and shape transition are considered as two essential processes for nucleating of self-assembly InGaN nanocolumns (NCs) in traditional way. We propose a new approach for nuclei forming directly by in-situ annealing and ion irradiating the InGaN template during growing process. The nanoislands, considered as the nuclei of NCs, were formed by a combinational effect of thermal and ion etching (TIE), which made the gaps of the V-pits deeper and wider. On account of the decomposition of InGaN during TIE process, more nitride-rich amorphous alloys would intent to accumulate in the corroded V-pits. The amorphous alloys played a key role to promote the following growth from 2D regime into Volmer-Weber growth regime so that the NC morphology took place, rather than a compact film. As growth continued, the subsequently epitaxial InGaN alloys on the annealed NC nuclei were suffered in biaxial compressive stress for losing part of indium content from the NC nuclei during the TIE process. Strain relaxation, accompanied by thread dislocations, came up and made the lattice planes misoriented, which prevented the NCs from coalescence into a compact film at later period of growing.

  7. An integrated methodology for characterizing flow and transport processes in fractured rock

    International Nuclear Information System (INIS)

    Wu, Yu-Shu

    2007-01-01

    To investigate the coupled processes involved in fluid and heat flow and chemical transport in the highly heterogeneous, unsaturated-zone (UZ) fractured rock of Yucca Mountain, we present an integrated modeling methodology. This approach integrates a wide variety of moisture, pneumatic, thermal, and geochemical isotopic field data into a comprehensive three-dimensional numerical model for modeling analyses. The results of field applications of the methodology show that moisture data, such as water potential and liquid saturation, are not sufficient to determine in situ percolation flux, whereas temperature and geochemical isotopic data provide better constraints to net infiltration rates and flow patterns. In addition, pneumatic data are found to be extremely valuable in estimating large-scale fracture permeability. The integration of hydrologic, pneumatic, temperature, and geochemical data into modeling analyses is thereby demonstrated to provide a practical modeling approach for characterizing flow and transport processes in complex fractured formations

  8. Integrating ergonomics into the product development process

    DEFF Research Database (Denmark)

    Broberg, Ole

    1997-01-01

    and production engineers regarding information sources in problem solving, communication pattern, perception of ergonomics, motivation and requests to support tools and methods. These differences and the social and organizational contexts of the development process must be taken into account when considering......A cross-sectional case study was performed in a large company producing electro-mechanical products for industrial application. The purpose was to elucidate conditions and strategies for integrating ergonomics into the product development process thereby preventing ergonomic problems at the time...... of manufacture of new products. In reality the product development process is not a rational problem solving process and does not proceed in a sequential manner as decribed in engineering models. Instead it is a complex organizational process involving uncertainties, iterative elements and negotiation between...

  9. Integrated Process Modeling-A Process Validation Life Cycle Companion.

    Science.gov (United States)

    Zahel, Thomas; Hauer, Stefan; Mueller, Eric M; Murphy, Patrick; Abad, Sandra; Vasilieva, Elena; Maurer, Daniel; Brocard, Cécile; Reinisch, Daniela; Sagmeister, Patrick; Herwig, Christoph

    2017-10-17

    During the regulatory requested process validation of pharmaceutical manufacturing processes, companies aim to identify, control, and continuously monitor process variation and its impact on critical quality attributes (CQAs) of the final product. It is difficult to directly connect the impact of single process parameters (PPs) to final product CQAs, especially in biopharmaceutical process development and production, where multiple unit operations are stacked together and interact with each other. Therefore, we want to present the application of Monte Carlo (MC) simulation using an integrated process model (IPM) that enables estimation of process capability even in early stages of process validation. Once the IPM is established, its capability in risk and criticality assessment is furthermore demonstrated. IPMs can be used to enable holistic production control strategies that take interactions of process parameters of multiple unit operations into account. Moreover, IPMs can be trained with development data, refined with qualification runs, and maintained with routine manufacturing data which underlines the lifecycle concept. These applications will be shown by means of a process characterization study recently conducted at a world-leading contract manufacturing organization (CMO). The new IPM methodology therefore allows anticipation of out of specification (OOS) events, identify critical process parameters, and take risk-based decisions on counteractions that increase process robustness and decrease the likelihood of OOS events.

  10. Laboratory scale electroplating and processing of long lengths of an in situ Cu-Nb3Sn superconductors

    International Nuclear Information System (INIS)

    LeHuy, H.; Germain, L.; Roberge, R.; Foner, S.; Massachusetts Inst. of Tech., Cambridge

    1984-01-01

    A laboratory scale continuous tin electroplating system is described and used to evaluate the effect of various parameters of the alkaline and acid baths plating process. Tin electroplating is shown to be simple and reliable. With an 8 m immersion length production speeds of the order of 1 m min -1 are possible in an alkaline bath at 80degC. An acid bath gives satisfactory tinning deposits with a production speed of up to 3 m min -1 at room temperature. (author)

  11. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  12. An instrument for in situ time-resolved X-ray imaging and diffraction of laser powder bed fusion additive manufacturing processes

    Science.gov (United States)

    Calta, Nicholas P.; Wang, Jenny; Kiss, Andrew M.; Martin, Aiden A.; Depond, Philip J.; Guss, Gabriel M.; Thampy, Vivek; Fong, Anthony Y.; Weker, Johanna Nelson; Stone, Kevin H.; Tassone, Christopher J.; Kramer, Matthew J.; Toney, Michael F.; Van Buuren, Anthony; Matthews, Manyalibo J.

    2018-05-01

    In situ X-ray-based measurements of the laser powder bed fusion (LPBF) additive manufacturing process produce unique data for model validation and improved process understanding. Synchrotron X-ray imaging and diffraction provide high resolution, bulk sensitive information with sufficient sampling rates to probe melt pool dynamics as well as phase and microstructure evolution. Here, we describe a laboratory-scale LPBF test bed designed to accommodate diffraction and imaging experiments at a synchrotron X-ray source during LPBF operation. We also present experimental results using Ti-6Al-4V, a widely used aerospace alloy, as a model system. Both imaging and diffraction experiments were carried out at the Stanford Synchrotron Radiation Lightsource. Melt pool dynamics were imaged at frame rates up to 4 kHz with a ˜1.1 μm effective pixel size and revealed the formation of keyhole pores along the melt track due to vapor recoil forces. Diffraction experiments at sampling rates of 1 kHz captured phase evolution and lattice contraction during the rapid cooling present in LPBF within a ˜50 × 100 μm area. We also discuss the utility of these measurements for model validation and process improvement.

  13. Hybrid perovskite solar cells: In situ investigation of solution-processed PbI2 reveals metastable precursors and a pathway to producing porous thin films

    KAUST Repository

    Barrit, Dounya

    2017-04-17

    The successful and widely used two-step process of producing the hybrid organic-inorganic perovskite CH3NH3PbI3, consists of converting a solution deposited PbI2 film by reacting it with CH3NH3I. Here, we investigate the solidification of PbI2 films from a DMF solution by performing in situ grazing incidence wide angle X-ray scattering (GIWAXS) measurements. The measurements reveal an elaborate sol–gel process involving three PbI2⋅DMF solvate complexes—including disordered and ordered ones—prior to PbI2 formation. The ordered solvates appear to be metastable as they transform into the PbI2 phase in air within minutes without annealing. Morphological analysis of air-dried and annealed films reveals that the air-dried PbI2 is substantially more porous when the coating process produces one of the intermediate solvates, making this more suitable for subsequent conversion into the perovskite phase. The observation of metastable solvates on the pathway to PbI2 formation open up new opportunities for influencing the two-step conversion of metal halides into efficient light harvesting or emitting perovskite semiconductors.

  14. In situ detection of the Zn(2+) release process of ZnO NPs in tumour cells by confocal laser scanning fluorescence microscopy.

    Science.gov (United States)

    Song, Wenshuang; Tang, Xiaoling; Li, Yong; Sun, Yang; Kong, Jilie; Qingguang, Ren

    2016-08-01

    The use of zinc oxide (ZnO) nanoparticles (NPs) for cancer is not yet clear for human clinical applications, which is primarily due to the lack of a better understanding of the action mechanisms and cellular consequences of the direct exposure of cells to these NPs. In this work, the authors have selected zinquin ethyl ester, a Zn(2+)-specific fluorescent molecular probe, to efficiently differentiate ZnO NPs and Zn(2+), and combined with confocal laser scanning microscopy (CLSM) to in situ study the Zn(2+) release process of ZnO NPs in cancer cell system through detecting the change of Zn(2+) level over time. During the experiments, the authors have designed the test group ZnO-2 in addition to assess the influence of a long-term storage on the characteristics of ZnO NPs in aqueous solution, and the Zn(2+) release process of ZnO NPs in cancer cell system. After three-month storage at room temperature, the release process became earlier and faster, which was consistent with previous results of transmission electron microscope, UV-Vis and PL spectra. It is a good detection method that combination of Zn(2+)-specific fluorescent molecular probe and CLSM, which will be helpful for ZnO NPs using in clinical research.

  15. A novel metal-to-metal bonding process through in-situ formation of Ag nanoparticles using Ag2O microparticles

    International Nuclear Information System (INIS)

    Hirose, Akio; Tatsumi, Hiroaki; Takeda, Naoya; Akada, Yusuke; Ogura, Tomo; Ide, Eiichi; Morita, Toshiaki

    2009-01-01

    The metal-to-metal bonding has been successfully achieved via the bonding process using Ag metallo-organic nanoparticles at a bonding temperature of around 300-, which can be alternative to the current microsoldering in electronics assembly using high-temperature solders. However, further reduction of bonding temperature and/or bonding pressure is needed. In the present research, a novel bonding process through in-situ formation of Ag nanoparticles instead of the filler material of the Ag metallo-organic nanoparticles has been developed. The Ag nanoparticles can form by the reduction of Ag 2 O particles. In this study, the Ag 2 O particles were mixed with triethylene glycol as a reducing agent to form a paste for bonding. The Au coated cylindrical specimens were bonded using the paste. The Ag nanoparticles formed at around 130 to 160 through the reduction process of Ag2O particles with triethylene glycol. The Ag nanoparticles were immediately sintered each other due to a great surface energy per volume. A transmission electron microscope observation revealed that the sintered Ag metallurgically bonded to the Au substrate at around 160 and a dense Ag layer formed after further heating. The tensile strength of the joint bonded at 250 under a bonding pressure of 5MPa was around 60MPa

  16. In situ monitoring of molecular changes during cell differentiation processes in marine macroalgae through mass spectrometric imaging.

    Science.gov (United States)

    Kessler, Ralf W; Crecelius, Anna C; Schubert, Ulrich S; Wichard, Thomas

    2017-08-01

    Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) was employed to discriminate between cell differentiation processes in macroalgae. One of the key developmental processes in the algal life cycle is the production of germ cells (gametes and zoids). The gametogenesis of the marine green macroalga Ulva mutabilis (Chlorophyta) was monitored by metabolomic snapshots of the surface, when blade cells differentiate synchronously into gametangia and giving rise to gametes. To establish MSI for macroalgae, dimethylsulfoniopropionate (DMSP), a known algal osmolyte, was determined. MSI of the surface of U. mutabilis followed by chemometric data analysis revealed dynamic metabolomic changes during cell differentiation. DMSP and a total of 55 specific molecular biomarkers, which could be assigned to important stages of the gametogenesis, were detected. Our research contributes to the understanding of molecular mechanisms underlying macroalgal cell differentiation. Graphical abstract Molecular changes during cell differentiation of the marine macroalga Ulva were visualized by matrix assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI).

  17. Cost effectiveness of in situ bioremediation at Savannah River

    International Nuclear Information System (INIS)

    Saaty, R.P.; Showalter, W.E.; Booth, S.R.

    1995-01-01

    In situ bioremediation (ISBR) is an innovative new remediation technology for the removal of chlorinated solvents from contaminated soils and groundwater. The principal contaminant at the Savannah River Integrated Demonstration is tricloroethylene (TCE) a volatile organic compound (VOC). A 384-day test run at Savannah River, sponsored by the US Department of Energy (DOE), Office of Technology Development (EM-50), furnished information about the performance and applications of ISBR. In situ bioremediation, as tested, is based on two distinct processes occurring simultaneously; the physical process of in situ air stripping and the biological process of bioremediation. Both processes have the potential to remediate some amount of contamination. A quantity of VOCs, directly measured from the extracted airstream, was removed from the test area by the physical process of air stripping. The biological process is difficult to examine. However, the results of several tests performed at the SRID and independent numerical modeling determined that the biological process remediated an additional 40% above the physical process. Given these data, the cost effectiveness of this new technology can be evaluated

  18. Audiovisual integration in speech perception: a multi-stage process

    DEFF Research Database (Denmark)

    Eskelund, Kasper; Tuomainen, Jyrki; Andersen, Tobias

    2011-01-01

    investigate whether the integration of auditory and visual speech observed in these two audiovisual integration effects are specific traits of speech perception. We further ask whether audiovisual integration is undertaken in a single processing stage or multiple processing stages....

  19. An integrated model for supplier selection process

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    In today's highly competitive manufacturing environment, the supplier selection process becomes one of crucial activities in supply chain management. In order to select the best supplier(s) it is not only necessary to continuously tracking and benchmarking performance of suppliers but also to make a tradeoff between tangible and intangible factors some of which may conflict. In this paper an integration of case-based reasoning (CBR), analytical network process (ANP) and linear programming (LP) is proposed to solve the supplier selection problem.

  20. The Efficient Separations and Processing Integrated Program

    International Nuclear Information System (INIS)

    Kuhn, W.L.; Gephart, J.M.

    1994-08-01

    The Efficient Separations and Processing Integrated Program (ESPIP) was created in 1991 to identify, develop, and perfect separations technologies and processes to treat wastes and address environmental problems throughout the US Department of Energy (DOE) complex. The ESPIP funds several multiyear tasks that address high-priority waste remediation problems involving high-level, low-level, transuranic, hazardous, and mixed (radioactive and hazardous) wastes. The ESPIP supports applied R ampersand D leading to demonstration or use of these separations technologies by other organizations within DOE's Office of Environmental Restoration and Waste Management. Examples of current ESPIP-funded separations technologies are described here

  1. Evaluation of the performance degradation at PAFC investigation of dealloying process of electrocatalysts with in-situ XRD

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Noriyuki; Uchida, Hiroyuki; Watanabe, Masahiro [Yamanashi Univ., Kofu (Japan)] [and others

    1996-12-31

    As a complementary research project to the demonstration project of 5MW and 1 MW PAFC plants, the mechanism and rate of deterioration of the cells and stacks have been studied from 1995 FY, with the objective of establishing an estimation method for the service life-time of the cell stacks. This work has been performed in the Basic Research Project, as part of that project on PAFC`s, selecting four subjects (Electrocatalysts degradation, Electrolyte fill-level, Cell material corrosion, Electrolyte loss) as the essential factors relating to the life-time. In this study, the effect of temperature and potential on the dealloying process of electrocatalysts was examined in H{sub 3}PO{sub 4} electrolyte with X-ray diffraction measurement.

  2. Data on the optimized sulphate electrolyte zinc rich coating produced through in-situ variation of process parameters.

    Science.gov (United States)

    Fayomi, Ojo Sunday Isaac

    2018-02-01

    In this study, a comprehensive effect of particle loading and optimised process parameter on the developed zinc electrolyte was presented. The depositions were performed between 10-30 min at a stirring rate of 200 rpm at room temperature of 30 °C. The effect of coating difference on the properties and interfacial surface was acquired, at a voltage interval between 0.6 and 1.0 V for the coating duration. The framework of bath condition as it influences the coating thickness was put into consideration. Hence, the electrodeposition data for coating thickness, and coating per unit area at constant distance between the anode and cathode with depth of immersion were acquired. The weight gained under varying coating parameter were acquired and could be used for designing and given typical direction to multifunctional performance of developed multifacetal coatings in surface engineering application.

  3. The perceptual cognitive processes underpinning skilled performance in volleyball: evidence from eye-movements and verbal reports of thinking involving an in situ representative task.

    Science.gov (United States)

    Afonso, José; Garganta, Jêlio; McRobert, Allistair; Williams, Andrew M; Mesquita, Isabel

    2012-01-01

    An extensive body of work has focused on the processes underpinning perceptual-cognitive expertise. The majority of researchers have used film-based simulations to capture superior performance. We combined eye movement recording and verbal reports of thinking to explore the processes underpinning skilled performance in a complex, dynamic, and externally paced representative volleyball task involving in situ data collection. Altogether, 27 female volleyball players performed as centre backcourt defenders in simulated sessions while wearing an eye-tracking device. After each sequence, athletes were questioned concerning their perception of the situation. The visual search strategies employed by the highly-skilled players were more exploratory than those used by skilled players, involving more fixations to a greater number of locations. Highly-skilled participants spent more time fixating on functional spaces between two or more display areas, while the skilled participants fixated on the ball trajectory and specific players. Moreover, highly-skilled players generated more condition concepts with higher levels of sophistication than their skilled counterparts. Findings highlight the value of using representative task designs to capture performance in situ. Key pointsDecision-making in complex sports relies deeply on perceptual-cognitive expertise. In turn, the effect of expertise is highly dependent on the nature and complexity of the task.Nonetheless, most researchers use simple tasks in their research designs, risking not capturing performance in a meaningful way. We proposed to use a live action setting with a complex task design, representative of real world situations.We combined eye movement registration with collection of immediate retrospective verbal reports. Although the two data sets are not directly comparable, they may be used in a complementary manner, providing a deeper and fuller understanding of the processes underpinning superior performance

  4. Understanding Nearshore Processes Of a Large Arctic Delta Using Combined Seabed Mapping, In Situ Observations, Remote Sensing and Modeling

    Science.gov (United States)

    Solomon, S. M.; Couture, N. J.; Forbes, D. L.; Hoque, A.; Jenner, K. A.; Lintern, G.; Mulligan, R. P.; Perrie, W. A.; Stevens, C. W.; Toulany, B.; Whalen, D.

    2009-12-01

    The Mackenzie River Delta and the adjacent continental shelf in the southeastern Beaufort Sea are known to host significant quantities of hydrocarbons. Recent environmental reviews of proposed hydrocarbon development have highlighted the need for a better understanding of the processes that control sediment transport and coastal stability. Over the past several years field surveys have been undertaken in winter, spring and summer to acquire data on seabed morphology, sediment properties, sea ice, river-ocean interaction and nearshore oceanography. These data are being used to improve conceptual models of nearshore processes and to develop and validate numerical models of waves, circulation and sediment transport. The timing and location of sediment erosion, transport and deposition is complex, driven by a combination of open water season storms and spring floods. Unlike temperate counterparts, the interaction between the Mackenzie River and the Beaufort Sea during spring freshet is mediated by the presence of ice cover. Increasing discharge exceeds the under-ice flow capacity leading to flooding of the ice surface, followed by vortex drainage through the ice and scour of the seabed below (“strudel” drainage and scour). During winter months, nearshore circulation slows beneath a thickening ice canopy. Recent surveys have shown that the low gradient inner shelf is composed of extensive shoals where ice freezes to the seabed and intervening zones which are slightly deeper than the ice is thick. The duration of ice contact with the bed determines the thermal characteristics of the seabed. Analysis of cores shows that the silts comprising the shoals are up to 6 m thick. The predominantly well sorted and cross-laminated nature of the silts at the top of the cores suggests an active delta front environment. Measurements of waves, currents, conductivity, temperature and sediment concentration during spring and late summer have been acquired. During moderate August

  5. Nonlinear optical and multiphoton processes for in situ manipulation and conversion of photons: applications to energy and healthcare (Conference Presentation)

    Science.gov (United States)

    Prasad, Paras N.

    2017-02-01

    Chiral control of nonlinear optical functions holds a great promise for a wide range of applications including optical signal processing, bio-sensing and chiral bio-imaging. In chiral polyfluorene thin films, we demonstrated extremely large chiral nonlinearity. The physics of manipulating excitation dynamics for photon transformation will be discussed, along with nanochemistry control of upconversion in hierarchically built organic chromophore coupled-core-multiple shell nanostructures which enable introduce new, organic-inorganic energy transfer routes for broadband light harvesting and increased upconversion efficiency via multistep cascaded energy transfer. We are pursuing the applications of photon conversion technology in IR harvesting for photovoltaics, high contrast bioimaging, photoacoustic imaging, photodynamic therapy, and optogenetics. An important application is in Brain research and Neurophotonics for functional mapping and modulation of brain activities. Another new direction pursued is magnetic field control of light in in a chiral polymer nanocomposite to achieve large magneto-optic coefficient which can enable sensing of extremely weak magnetic field due to brain waves. Finally, we will consider the thought provoking concept of utilizing photons to quantify, through magneto-optics, and augment - through nanoptogenetics, the cognitive states, thus paving the path way to a quantified human paradigm.

  6. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  7. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    Science.gov (United States)

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. In-situ X-ray photoelectron spectroscopy characterization of Si interlayer based surface passivation process for AlGaAs/GaAs quantum wire transistors

    Energy Technology Data Exchange (ETDEWEB)

    Akazawa, Masamichi; Hasegawa, Hideki; Jia, Rui [Research Center for Integrated Quantum Electronics and Graduate School of Information Science and Technology, Hokkaido University, N-13, W-8, Sapporo 060-8628 (Japan)

    2007-04-15

    Detailed properties of the Si interface control layer (Si ICL)-based surface passivation structure are characterized by in-situ X-ray photoelectron spectroscopy (XPS) in an ultra-high vacuum multi-chamber system. Si ICLs were grown by molecular beam epitaxy (MBE) on GaAs and AlGaAs(001) and (111)B surfaces, and were partially converted to SiN{sub x} by nitrogen radical beam. Freshly MBE-grown clean GaAs and AlGaAs surfaces showed strong Fermi level pinning. Large shifts of the surface Fermi level position corresponding to reduction of pinning took place after Si ICL growth, particularly on (111)B surface (around 500 meV). However, subsequent surface nitridation increased pinning again. Then, a significant reduction of pinning was obtained by changing SiN{sub x} to silicon oxynitride by intentional air-exposure and subsequent annealing. This has led to realization of a stable passivation structure with an ultrathin oxynitride/Si ICL structure which prevented subcutaneous oxidation during further device processing under air-exposure. The Si-ICL-based passivation process was applied to surface passivation of quantum wire (QWR) transistors where anomalously large side-gating phenomenon was completely eliminated. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. In situ high-temperature gas sensors: continuous monitoring of the combustion quality of different wood combustion systems and optimization of combustion process

    Directory of Open Access Journals (Sweden)

    H. Kohler

    2018-03-01

    Full Text Available The sensing characteristics and long-term stability of different kinds of CO ∕ HC gas sensors (non-Nernstian mixed potential type during in situ operation in flue gas from different types of low-power combustion systems (wood-log- and wood-chip-fuelled were investigated. The sensors showed representative but individual sensing behaviour with respect to characteristically varying flue gas composition over the combustion process. The long-term sensor signal stability evaluated by repeated exposure to CO ∕ H2 ∕ N2 ∕ synthetic air mixtures showed no sensitivity loss after operation in the flue gas. Particularly for one of the sensors (Heraeus GmbH, this high signal stability was observed in a field test experiment even during continuous operation in the flue gas of the wood-chip firing system over 4 months. Furthermore, it was experimentally shown that the signals of these CO ∕ HC sensing elements yield important additional information about the wood combustion process. This was demonstrated by the adaptation of an advanced combustion airstream control algorithm on a wood-log-fed fireplace and by the development of a combustion quality monitoring system for wood-chip-fed central heaters.

  10. In-situ X-Ray Analysis of Rapid Thermal Processing for Thin-Film Solar Cells: Closing the Gap between Production and Laboratory Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Toney, Michael F. [SLAC National Accelerator Lab., Menlo Park, CA (United States); van Hest, Maikel F. A. M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-21

    For materials synthesis, it is well known that the material final state may not reach equilibrium and depends on the synthetic process. In particular, processes that quickly remove the available energy from the material may leave it in a metastable state and the metastability may actually impart desirable functional properties. By its very nature, Rapid thermal processing (RTP) is ideally suited to produce such metastable materials. However, metastability and the dynamics of reaching a metastable state are poorly understood, since this is best accomplished through in situ monitoring. In this regard, RTP is particularly challenging as the processing time are very short (seconds to minutes). As a result, there is only poor understanding, and hence use, of RTP in industry. This is potentially a cost-increasing limitation, because RTP can decrease cost by decreasing processing time, and as such, increase throughput and decrease the total thermal budget of processing - a significant cost. RTP is already being used for key processing steps in PV technologies. With silicon wafer PV, it is used for establishing electrical contact between the Ag metal grid and the silicon (known as firing). In this process, a silicon wafer with deposited metal/frit in a grid pattern is heated rapidly to temperatures between 750 and 800 ºC. The processing time when the temperature is held above 600ºC is short (<5 seconds). This process has historically been optimized empirically and it is unclear how the thermal processing affects formation of the final contact between the metal and the silicon. In the case of thin-film PV, RTP has been demonstrated in the process of making absorber layers, i.e. CIGS and CZTS. Use of RTP can reduce the processing time from 10s of minutes to seconds, reducing the thermal budget and increasing the throughput significantly. The conversion from precursor material to final PV material is not well understood, and most of the process optimization is done

  11. Integrated system for automated financial document processing

    Science.gov (United States)

    Hassanein, Khaled S.; Wesolkowski, Slawo; Higgins, Ray; Crabtree, Ralph; Peng, Antai

    1997-02-01

    A system was developed that integrates intelligent document analysis with multiple character/numeral recognition engines in order to achieve high accuracy automated financial document processing. In this system, images are accepted in both their grayscale and binary formats. A document analysis module starts by extracting essential features from the document to help identify its type (e.g. personal check, business check, etc.). These features are also utilized to conduct a full analysis of the image to determine the location of interesting zones such as the courtesy amount and the legal amount. These fields are then made available to several recognition knowledge sources such as courtesy amount recognition engines and legal amount recognition engines through a blackboard architecture. This architecture allows all the available knowledge sources to contribute incrementally and opportunistically to the solution of the given recognition query. Performance results on a test set of machine printed business checks using the integrated system are also reported.

  12. Energy optimization of integrated process plants

    Energy Technology Data Exchange (ETDEWEB)

    Sandvig Nielsen, J

    1996-10-01

    A general approach for viewing the process synthesis as an evolutionary process is proposed. Each step is taken according to the present level of information and knowledge. This is formulated in a Process Synthesis Cycle. Initially the synthesis is conducted at a high abstraction level maximizing use of heuristics (prior experience, rules of thumbs etc). When further knowledge and information are available, heuristics will gradually be replaced by exact problem formulations. The principles in the Process Synthesis Cycle, is used to develop a general procedure for energy synthesis, based on available tools. The procedure is based on efficient use of process simulators with integrated Pinch capabilities (energy targeting). The proposed general procedure is tailored to three specific problems (Humid Air Turbine power plant synthesis, Nitric Acid process synthesis and Sulphuric Acid synthesis). Using the procedure reduces the problem dimension considerable and thus allows for faster evaluation of more alternatives. At more detailed level a new framework for the Heat Exchanger Network synthesis problem is proposed. The new framework is object oriented based on a general functional description of all elements potentially present in the heat exchanger network (streams, exchangers, pumps, furnaces etc.). (LN) 116 refs.

  13. Microwave plasmatrons for giant integrated circuit processing

    Energy Technology Data Exchange (ETDEWEB)

    Petrin, A.B.

    2000-02-01

    A method for calculating the interaction of a powerful microwave with a plane layer of magnetoactive low-pressure plasma under conditions of electron cyclotron resonance is presented. In this paper, the plasma layer is situated between a plane dielectric layer and a plane metal screen. The calculation model contains the microwave energy balance, particle balance, and electron energy balance. The equation that expressed microwave properties of nonuniform magnetoactive plasma is found. The numerical calculations of the microwave-plasma interaction for a one-dimensional model of the problem are considered. Applications of the results for microwave plasmatrons designed for processing giant integrated circuits are suggested.

  14. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  15. Long-Term Trends, Variability and Extremes of In Situ Sea Surface Temperature Measured Along the Eastern Adriatic Coast and its Relationship to Hemispheric Processes

    Science.gov (United States)

    Grbec, Branka; Matić, Frano; Beg Paklar, Gordana; Morović, Mira; Popović, Ružica; Vilibić, Ivica

    2018-02-01

    This paper examines long-term series of in situ sea surface temperature (SST) data measured at nine coastal and one open sea stations along the eastern Adriatic Sea for the period 1959-2015. Monthly and yearly averages were used to document SST trends and variability, while clustering and connections to hemispheric indices were achieved by applying the Principal Component Analysis (PCA) and Self-Organizing Maps (SOM) method. Both PCA and SOM revealed the dominance of temporal changes with respect to the effects of spatial differences in SST anomalies, indicating the prevalence of hemispheric processes over local dynamics, such as bora wind spatial inhomogeneity. SST extremes were connected with blocking atmospheric patterns. A substantial warming between 1979 and 2015, in total exceeding 1 °C, was preceded by a period with a negative SST trend, implying strong multidecadal variability in the Adriatic. The strongest connection was found between yearly SST and the East Atlantic (EA) pattern, while North Atlantic Oscillation (NAO) and East Atlantic/West Russia (EAWR) patterns were found to also affect February SST values. Quantification of the Adriatic SST and their connection to hemispheric indices allow for more precise projections of future SST, considered to be rather important for Adriatic thermohaline circulation, biogeochemistry and fisheries, and sensitive to ongoing climate change.

  16. The “Bringing into Cultivation” Phase of the Plant Domestication Process and Its Contributions to In Situ Conservation of Genetic Resources in Benin

    Directory of Open Access Journals (Sweden)

    R. Vodouhè

    2012-01-01

    Full Text Available All over the world, plant domestication is continually being carried out by local communities to support their needs for food, fibre, medicine, building materials, etc. Using participatory rapid appraisal approach, 150 households were surveyed in 5 villages selected in five ethnic groups of Benin, to investigate the local communities’ motivations for plant domestication and the contributions of this process to in situ conservation of genetic resources. The results indicated differences in plant domestication between agroecological zones and among ethnic groups. People in the humid zones give priority to herbs mainly for their leaves while those in dry area prefer trees mostly for their fruits. Local communities were motivated to undertake plant domestication for foods (80% of respondents, medicinal use (40% of respondents, income generation (20% of respondents and cultural reasons (5% of respondents. 45% of the species recorded are still at early stage in domestication and only 2% are fully domesticated. Eleven factors related to the households surveyed and to the head of the household interviewed affect farmers’ decision making in domesticating plant species. There is gender influence on the domestication: Women are keen in domesticating herbs while men give priority to trees.

  17. Effect of ensiling process of total mixed ration on fermentation profile, nutrient loss and in situ ruminal degradation characteristics of diet.

    Science.gov (United States)

    Miyaji, Makoto; Matsuyama, Hiroki; Nonaka, Kazuhisa

    2017-01-01

    This experiment aimed to determine the changes in chemical composition, fermentation profile, in situ disappearance characteristics, and nutrient losses of ensiled total mixed ration (TMR) containing steam-flaked corn or brown rice (BR) during storage. TMRs for dairy cows, containing either steam-flaked corn or BR at 31.9% with 15.2% rye silage, 40.5% alfalfa silage, 5.0% beet pulp and 7.0% soybean meal, were prepared (dry matter (DM) basis). Each TMR was placed in a plastic drum silo, stored at 23°C in an air-conditioned room and sampled 0, 7, 14, 30, 90 and 210 days after preparation. In both grain sources, the fermentation products increased, while DM and starch storage losses increased and starch content greatly decreased during storage. The rapidly degradable fraction and effective ruminal degradability of DM, crude protein and starch increased during storage. These changes of dietary characteristics were large during 30 days of storage, but small after 90 days of storage. Replacing corn with BR led to increased fermentation products, starch loss and effective ruminal degradability of the ensiled TMR. These results indicate that the ensiling process of TMR changes the dietary characteristics and replacing corn with BR in TMR had a large impact on these dietary characteristics. © 2016 Japanese Society of Animal Science.

  18. Co-digestion of manure and whey for in situ biogas upgrading by the addition of H2: process performance and microbial insights

    DEFF Research Database (Denmark)

    Luo, Gang; Angelidaki, Irini

    2013-01-01

    composition. The best biogas composition (75:6.6:18.4) was obtained at stirring speed 150 rpmand using ceramic diffuser, while the biogas in the control reactor consisted of CH4 and CO2 at a ratio of 55:45. The consumed hydrogen was almost completely converted to CH4, and there was no significant accumulation......In situ biogas upgrading was conducted by introducing H2 directly to the anaerobic reactor. As H2 addition is associated with consumption of the CO2 in the biogas reactor, pH increased to higher than 8.0 when manure alone was used as substrate. By co-digestion of manure with acidic whey, the p......H in the anaerobic reactor with the addition of hydrogen could be maintained below 8.0, which did not have inhibition to the anaerobic process. The H2 distribution systems (diffusers with different pore sizes) and liquid mixing intensities were demonstrated to affect the gas-liquid mass transfer of H2 and the biogas...

  19. In situ bioremediation using horizontal wells. Innovative technology summary report

    International Nuclear Information System (INIS)

    1995-04-01

    In Situ Bioremediation (ISB) is the term used in this report for Gaseous Nutrient Injection for In Situ Bioremediation. This process (ISB) involves injection of air and nutrients (sparging and biostimulation) into the ground water and vacuum extraction to remove Volatile Organic Compounds (VOCs) from the vadose zone concomitant with biodegradation of the VOCs. This process is effective for remediation of soils and ground water contaminated with VOCs both above and below the water table. A full-scale demonstration of ISB was conducted as part of the Savannah River Integrated Demonstration: VOCs in Soils and Ground Water at Nonarid Sites. This demonstration was performed at the Savannah River Site from February 1992 to April 1993

  20. Influence of particle size of Mg powder on the microstructure and critical currents of in situ powder-in-tube processed MgB_2 wires

    International Nuclear Information System (INIS)

    Kumakura, Hiroaki; Ye, Shujun; Matsumoto, Akiyoshi; Nitta, Ryuji

    2016-01-01

    We fabricated in situ powder-in-tube(PIT) MgB_2 wires using three kinds of Mg powders with particle size of ∼45 μm, ∼150 μm and 212∼600 μm. Mg particles were elongated to filamentary structure in the wires during cold drawing process. Especially, long Mg filamentary structure was obtained for large Mg particle size of 212∼600 μm. Critical current density, J_c, increased with increasing Mg particle size for 1 mm diameter wires. This is due to the development of filamentary structure of high density MgB_2 superconducting layer along the wires. This MgB_2 structure is similar to that of the internal Mg diffusion (IMD) processed MgB_2 wires. However, J_c of the wires fabricated with 212∼600 μm Mg particle size decreased and the scattering of J_c increased with decreasing wire diameter, while the J_c of the wires with ∼45 μm Mg particle was almost independent of the wire diameter. The cross sectional area reduction of the Mg particles during the wire drawing is smaller than that of the wire. When using large size Mg particle, the number of Mg filaments in the wire cross section is small. These two facts statistically lead to the larger scattering of Mg areal fraction in the wire cross section with proceeding of wire drawing process, resulting in smaller volume fraction of MgB_2 in the wire and lower J_c with larger scattering along the wire. SiC nano powder addition is effective in increasing J_c for all Mg particle sizes. (author)

  1. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  2. An integrated approach for prioritized process improvement.

    Science.gov (United States)

    Vanteddu, Gangaraju; McAllister, Charles D

    2014-01-01

    The purpose of this paper is to propose an integrated framework to simultaneously identify and improve healthcare processes that are important from the healthcare provider's and patient's perspectives. A modified quality function deployment (QFD) chart is introduced to the field of healthcare quality assurance. A healthcare service example is used to demonstrate the utility of the proposed chart. The proposed framework is versatile and can be used in a wide variety of healthcare quality improvement contexts, wherein, two different perspectives are needed to be considered for identifying and improving critical healthcare processes. The modified QFD chart used in conjunction with the stacked Pareto chart will facilitate the identification of key performance metrics from the patient's and the hospital's perspectives. Subsequently, the chief contributory factors at different levels are identified in a very efficient manner. Healthcare quality improvement professionals will be able to use the proposed modified QFD chart in association with stacked Pareto chart for effective quality assurance.

  3. Globalization and Integration Processes in Europe

    Directory of Open Access Journals (Sweden)

    Beti Godnič

    2017-03-01

    Full Text Available Research Question (RQ: In the article we highlight the issue of whether Integration processes in the European Union are only a manifestation of these Globalization processes and if there are differences in the the old member States EU (15 and the new EU member states in changed micro and macro environment? Purpose: We wanted to determine how the old member States EU (15 and the new EU member states adapt to the new circumstances and other changes in the micro and macro environment. Method: Analysing complexity of the changes of the state of economic system, and complex fundamental global processes, which have been occurred in long period of time, need to supplement the pure scientific approach with other types of research work, more holistic approach, which is commonly used in Comparative economics. We have taken such an approach in this article. Results: In the article we studied the geopolitical changes in the micro and macro environment. We found that the development in the old EU member states EU-15 and in the new EU member states is different. EU havent addopted the harmonised economic policy which will solve the »North-South« problem and cross-state cultural consensus and find a way to operate systemically in global environment. Organization: The findings can be used to support undestanding of micro and macro envirnment of the companys and contribute for better strategic planning and design of the entire supply chain. Society: The findings can contribute to better understanding of integrative processes in the EU. Limitations/Future Research: The complexity of the problem and the dynamic changes in the functioning of the global market requires in-depth studiying of changes in the micro and macro environment of logistics companie

  4. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  5. An Integrated Membrane Process for Butenes Production

    Directory of Open Access Journals (Sweden)

    Leonardo Melone

    2016-11-01

    Full Text Available Iso-butene is an important material for the production of chemicals and polymers. It can take part in various chemical reactions, such as hydrogenation, oxidation and other additions owing to the presence of a reactive double bond. It is usually obtained as a by-product of a petroleum refinery, by Fluidized Catalytic Cracking (FCC of naphtha or gas-oil. However, an interesting alternative to iso-butene production is n-butane dehydroisomerization, which allows the direct conversion of n-butane via dehydrogenation and successive isomerization. In this work, a simulation analysis of an integrated membrane system is proposed for the production and recovery of butenes. The dehydroisomerization of n-butane to iso-butene takes place in a membrane reactor where the hydrogen is removed from the reaction side with a Pd/Ag alloys membrane. Afterwards, the retentate and permeate post-processing is performed in membrane separation units for butenes concentration and recovery. Four different process schemes are developed. The performance of each membrane unit is analyzed by appropriately developed performance maps, to identify the operating conditions windows and the membrane permeation properties required to maximize the recovery of the iso-butene produced. An analysis of integrated systems showed a yield of butenes higher than the other reaction products with high butenes recovery in the gas separation section, with values of molar concentration between 75% and 80%.

  6. Manufacturing Process for OLED Integrated Substrate

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Cheng-Hung [Vitro Flat Glass LLC, Cheswick, PA (United States). Glass Technology Center

    2017-03-31

    The main objective of this project was to develop a low-cost integrated substrate for rigid OLED solid-state lighting produced at a manufacturing scale. The integrated substrates could include combinations of soda lime glass substrate, light extraction layer, and an anode layer (i.e., Transparent Conductive Oxide, TCO). Over the 3+ year course of the project, the scope of work was revised to focus on the development of a glass substrates with an internal light extraction (IEL) layer. A manufacturing-scale float glass on-line particle embedding process capable of producing an IEL glass substrate having a thickness of less than 1.7mm and an area larger than 500mm x 400mm was demonstrated. Substrates measuring 470mm x 370mm were used in the OLED manufacturing process for fabricating OLED lighting panels in single pixel devices as large as 120.5mm x 120.5mm. The measured light extraction efficiency (calculated as external quantum efficiency, EQE) for on-line produced IEL samples (>50%) met the project’s initial goal.

  7. Development of an integrated, in-situ remediation technology. Draft topical report for task No. 9. Part II. Entitled: TCE degradation using non-biological methods, September 26, 1994--May 25, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Orth, R.G.; McKenzie, D.E.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The use of zero valence iron for reductive dechlorination of aliphatic chlorinated hydrocarbons is currently under investigation by a number of research groups as a potential method of in-situ treatment of contaminated ground water. The reaction appears to involve the transfer of electrons to chloro-aliphatic compounds by the oxidation of zero valence iron to ferrous iron (Fe{sup +2}). Our studies have indicated that this reaction is consistent with those of corrosion, and as such, can be influenced or increased by the presence of small amounts of metals (5% by weight) such as copper, tin, silver, gold and palladium coated on the iron surface. Incomplete coverage of the iron surface with a more electropositive metal results in an open galvanic cell, which increases the oxidation of iron and facilitates and increases the concurrent reduction of trichloroethylene and other chlorinated aliphatic compounds to the corresponding alkenes and alkanes. Our results show that plating more electropositive metals onto certain iron surfaces results in approximately a factor of ten increase in the dechlorination rate of small organochlorine compounds such as TCE.

  8. Development of an integrated, in-situ remediation technology. Draft topical report for task No. 9. Part II. Entitled: TCE degradation using non-biological methods, September 26, 1994--May 25, 1996

    International Nuclear Information System (INIS)

    Orth, R.G.; McKenzie, D.E.

    1997-01-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The use of zero valence iron for reductive dechlorination of aliphatic chlorinated hydrocarbons is currently under investigation by a number of research groups as a potential method of in-situ treatment of contaminated ground water. The reaction appears to involve the transfer of electrons to chloro-aliphatic compounds by the oxidation of zero valence iron to ferrous iron (Fe +2 ). Our studies have indicated that this reaction is consistent with those of corrosion, and as such, can be influenced or increased by the presence of small amounts of metals (5% by weight) such as copper, tin, silver, gold and palladium coated on the iron surface. Incomplete coverage of the iron surface with a more electropositive metal results in an open galvanic cell, which increases the oxidation of iron and facilitates and increases the concurrent reduction of trichloroethylene and other chlorinated aliphatic compounds to the corresponding alkenes and alkanes. Our results show that plating more electropositive metals onto certain iron surfaces results in approximately a factor of ten increase in the dechlorination rate of small organochlorine compounds such as TCE

  9. Electrokinetic remediation - a new process for in-situ remediation of polluted land used as construction terrain; Elektrokinetische Bodensanierung - Ein neues Verfahren fuer die in-situ Sanierung bebauter Altlaststandorte

    Energy Technology Data Exchange (ETDEWEB)

    Haus, R. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie

    1998-12-31

    Electrokinetic Remediation is a coming up technology for the clean up of contaminated sites based on the electrokinetic phenomena in fine grained sediments. The following investigations offer theoretical and experimental consideration about the dependence of electrokinetic remediation techniques on the clay mineralogical composition of various clays. Finally, laboratory tests on the electroosmotic remediation of a chromate contaminated loess loam are presented. Different voltages applied led to important changes in the direction of chromate transport. When using low voltage (1 V) chromate transport was in the direction of water flow, and an increase of chromate in the effluent of the cathode could be measured. In contrast the application of high voltages up to 30 V changed the transport mechanism and high concentrations of chromate chould be detected in the anode reservoir. The results show that the clay mineral composition and the applied electric field controls the electroosmotic permeability, removal efficiency as well as the transport mechanism of the electrokinetic remediation technology in fine grained sediments. (orig.) [Deutsch] Elektrokinetische Verfahren werden in der Geotechnik zur Entwaesserung, Boeschungsstabilisierung und Bodenverbesserung von bindigen Sedimenten eingesetzt. Unter dem sanierungstechnischen Aspekt von kontaminierten Altlaststandorten ermoeglichen elektrokinetische Prozesse erstmals eine gezielte Mobilisierung von Schadstoffen (Schwermetalle, organische Verbindungen) auch in feinkoernigen Gesteinen. Entscheidend ist hierbei die Moeglichkeit eines in situ-Einsatzes unter Vermeidung des Bodenaushubes. Die vorliegenden Untersuchungen vertiefen in theoretischen und versuchstechnischen Betrachtungen die Abhaengigkeit elektrokinetischer Sanierungsverfahren von der tonmineralogischen Zusammensetzung bindiger Gesteine. Oberflaechenladung und Oberflaechenpotential ausgewaehlter Tonminerale werden quantifiziert und den Ergebnissen aus

  10. Design and Synthesis of novel CuxGeOy/Cu/C nanowires by in situ chemical reduction process with highly reversible capacity for Lithium Batteries

    International Nuclear Information System (INIS)

    Wang, Linlin; Zhang, Xiaozhu; Peng, Xia; Tang, Kaibin

    2015-01-01

    The synthesis and use of ternary metal oxides/metal particles/carbon hybrids, especially 1D naowires composed of MGeO 3 /M/C hybrids for energy storage, remains very few reports. In this work, 1D Cu x GeO y /Cu/C NWs (x < 1, y < 3) were successfully prepared by a simple method involving chemical reduction process and simultaneous carbon coating. It was found that through the polydopamine(PDA)-assisted chemical reduction process performed on the CuGeO 3 NWs, the phase partially transformed to a mixture of crystalline Cu (∼70 nm) and amorphous Cu x GeO y NWs with carbon coating, but the nanowire-shaped morphology was maintained. Electrochemical measurements showed that the Cu x GeO y /Cu/C NWs exhibited a stable reversible capacity of ∼900 mA h g −1 after 100 cycles. Even at 800 mA g −1 , it also exhibited excellent high rate capacity of 350 mA h g −1 . The newly generated Cu x GeO y @Cu@CNWs exhibit enhanced cycle stability with high lithium-storage capability compared to that of the as-preparedCuGeO 3 NWs. (*) The in situ-synthesized Cu nanoparticles, amorphous state and carbon coating might play an important role in activating and enhancing the reversibility of the conversion reaction of Cu x GeO y . In addition, this effective synthetic method might provide the methodology for the development of other ternary metal oxides/metal particles/carbon hybrids materials for energy storage.

  11. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subrata Kumar, E-mail: subratagh82@gmail.com [Department of Mechanical Engineering, National Institute of Technology Agartala, Tripura 799055 (India); Bandyopadhyay, Kaushik; Saha, Partha [Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2014-07-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO{sub 2} and B{sub 4}C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al{sub 2}O{sub 3}, TiC, and TiB{sub 2} were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB{sub 2} and Al{sub 2}O{sub 3} in the composite.

  12. Development of an in-situ multi-component reinforced Al-based metal matrix composite by direct metal laser sintering technique — Optimization of process parameters

    International Nuclear Information System (INIS)

    Ghosh, Subrata Kumar; Bandyopadhyay, Kaushik; Saha, Partha

    2014-01-01

    In the present investigation, an in-situ multi-component reinforced aluminum based metal matrix composite was fabricated by the combination of self-propagating high-temperature synthesis and direct metal laser sintering process. The different mixtures of Al, TiO 2 and B 4 C powders were used to initiate and maintain the self-propagating high-temperature synthesis by laser during the sintering process. It was found from the X-ray diffraction analysis and scanning electron microscopy that the reinforcements like Al 2 O 3 , TiC, and TiB 2 were formed in the composite. The scanning electron microscopy revealed the distribution of the reinforcement phases in the composite and phase identities. The variable parameters such as powder layer thickness, laser power, scanning speed, hatching distance and composition of the powder mixture were optimized for higher density, lower porosity and higher microhardness using Taguchi method. Experimental investigation shows that the density of the specimen mainly depends upon the hatching distance, composition and layer thickness. On the other hand, hatching distance, layer thickness and laser power are the significant parameters which influence the porosity. The composition, laser power and layer thickness are the key influencing parameters for microhardness. - Highlights: • The reinforcements such as Al 2 O 3 , TiC, and TiB 2 were produced in Al-MMC through SHS. • The density is mainly influenced by the material composition and hatching distance. • Hatching distance is the major influencing parameter on porosity. • The material composition is the significant parameter to enhance the microhardness. • The SEM micrographs reveal the distribution of TiC, TiB 2 and Al 2 O 3 in the composite

  13. In situ synchrotron X-ray diffraction studies of the effect of microstructure on tensile behavior and retained austenite stability of thermo-mechanically processed transformation induced plasticity steel

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Kun [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Liss, Klaus-Dieter [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia); Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234 (Australia); Timokhina, Ilana B. [Institute for Frontier Materials, Deakin University, Geelong, VIC 3217 (Australia); Pereloma, Elena V., E-mail: elenap@uow.edu.au [School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong, NSW 2522 (Australia)

    2016-04-26

    Transmission electron microscopy and in situ synchrotron high-energy X-ray diffraction were used to investigate the martensitic transformation and lattice strains under uniaxial tensile loading of Fe-Mn-Si-C-Nb-Mo-Al Transformation Induced Plasticity (TRIP) steel subjected to different thermo-mechanical processing schedules. In contrast with most of the diffraction analysis of TRIP steels reported previously, the diffraction peaks from the martensite phase were separated from the peaks of the ferrite-bainite α-matrix. The volume fraction of retained γ-austenite, as well as the lattice strain, were determined from the diffraction patterns recorded during tensile deformation. Although significant austenite to martensite transformation starts around the macroscopic yield stress, some austenite grains had already experienced martensitic transformation. Hooke’s Law was used to calculate the phase stress of each phase from their lattice strain. The ferrite-bainite α-matrix was observed to yield earlier than austenite and martensite. The discrepancy between integrated phase stresses and experimental macroscopic stress is about 300 MPa. A small increase in carbon concentration in retained austenite at the early stage of deformation was detected, but with further straining a continuous slight decrease in carbon content occurred, indicating that mechanical stability factors, such as grain size, morphology and orientation of the retained austenite, played an important role during the retained austenite to martensite transformation.

  14. Site-Specific Growth and in Situ Integration of Different Nanowire Material Networks on a Single Chip: Toward a Nanowire-Based Electronic Nose for Gas Detection.

    Science.gov (United States)

    Hrachowina, Lukas; Domènech-Gil, Guillem; Pardo, Antonio; Seifner, Michael S; Gràcia, Isabel; Cané, Carles; Romano-Rodríguez, Albert; Barth, Sven

    2018-03-23

    A new method for the site-selective synthesis of nanowires has been developed to enable material growth with defined morphology and, at the same time, different composition on the same chip surface. The chemical vapor deposition approach for the growth of these nanowire-based resistive devices using micromembranes can be easily modified and represents a simple, adjustable fabrication process for the direct integration of nanowire meshes in multifunctional devices. This proof-of-concept study includes the deposition of SnO 2 , WO 3 , and Ge nanowires on the same chip. The individual resistors exhibit adequate gas sensing responses toward changing gas concentrations of CO, NO 2 , and humidity diluted in synthetic air. The data have been processed by principal component analysis with cluster responses that can be easily separated, and thus, the devices described herein are in principle suitable for environmental monitoring.

  15. Observatory Magnetometer In-Situ Calibration

    Directory of Open Access Journals (Sweden)

    A Marusenkov

    2011-07-01

    Full Text Available An experimental validation of the in-situ calibration procedure, which allows estimating parameters of observatory magnetometers (scale factors, sensor misalignment without its operation interruption, is presented. In order to control the validity of the procedure, the records provided by two magnetometers calibrated independently in a coil system have been processed. The in-situ estimations of the parameters are in very good agreement with the values provided by the coil system calibration.

  16. Sex in situ

    DEFF Research Database (Denmark)

    Krøgholt, Ida

    2017-01-01

    Sex er en del af vores sociale praksis og centralt for det, vi hver især er. Men bortset fra pornoindustrien, har vi ikke mange muligheder for at få adgang til billeder af sex. Teater Nordkrafts forestilling Sex in situ vil gøre seksuelle billeder til noget, der kan deles, udveksles og tales om, og...

  17. International Political Processes of Integration of Education

    Directory of Open Access Journals (Sweden)

    Marina M. Lebedeva

    2017-09-01

    Full Text Available Introduction: the study of the international dimension of education is usually reduced to a comparative analysis of the characteristics of education in different countries. The situation began to change at the end of 20th – beginning of 21st centuries due to the rapid development of globalisation processes (the formation of a transparency of national borders and integration (deepening the cooperation between countries based on intergovernmental agreements. It had an impact on education, which was intensively internationalised (to acquire a wide international dimension. Despite the possible setbacks the process of internationalisation of education, the general vector of development is that this process will increase. The purpose of this article is to analyse what new challenges and opportunities are opened due to internationalisation of education (Russian education in particular. Materials and Methods: the study is based on the principles according to which education, on the one hand, depends on the transformation of the global political organisation of the world, on another hand – it is contributing to this transformation. Materials for the study are based on international agreements, which in particular are adopted in the framework of the Bologna process, and the results of scientific works of Russian and foreign scholars. Descriptive and comparative metho ds of analysis are widely used. Results: the analysis of the processes of internationalisation of education in the world has shown that, along with its traditional directions and aspects. It was noted that university begins to play a special role in the current world. It is shown that the specificity of education in Russia, which took shape due to a large terri¬tory and historical traditions, should be taken into account when forming a strategy for the development of the internationalisation of education in the country. Discussion and Conclusions: the specificity of Russia creates a risk

  18. The communication process in Telenursing: integrative review.

    Science.gov (United States)

    Barbosa, Ingrid de Almeida; Silva, Karen Cristina da Conceição Dias da; Silva, Vladimir Araújo da; Silva, Maria Júlia Paes da

    2016-01-01

    to identify scientific evidence about the communication process in Telenursing and analyze them. integrative review performed in March 2014. The search strategy, structured with the descriptors "telenursing" and "communication", was implemented in the databases Medline, Bireme, Cinahl, Scopus, Web of Science, Scielo, and Cochrane. ten studies were selected after inclusion and exclusion criteria. The main challenges were: the clinical condition of patients, the possibility for inadequate communication to cause misconduct, the absence of visual references in interactions without video, and difficulty understanding nonverbal communication. distance imposes communicative barriers in all elements: sender, recipient and message; and in both ways of transmission, verbal and nonverbal. The main difficulty is to understand nonverbal communication. To properly behave in this context, nurses must receive specific training to develop abilities and communication skills.

  19. Integrated Circuits for Analog Signal Processing

    CERN Document Server

    2013-01-01

      This book presents theory, design methods and novel applications for integrated circuits for analog signal processing.  The discussion covers a wide variety of active devices, active elements and amplifiers, working in voltage mode, current mode and mixed mode.  This includes voltage operational amplifiers, current operational amplifiers, operational transconductance amplifiers, operational transresistance amplifiers, current conveyors, current differencing transconductance amplifiers, etc.  Design methods and challenges posed by nanometer technology are discussed and applications described, including signal amplification, filtering, data acquisition systems such as neural recording, sensor conditioning such as biomedical implants, actuator conditioning, noise generators, oscillators, mixers, etc.   Presents analysis and synthesis methods to generate all circuit topologies from which the designer can select the best one for the desired application; Includes design guidelines for active devices/elements...

  20. In Situ Analysis of Metabolic Characteristics Reveals the Key Yeast in the Spontaneous and Solid-State Fermentation Process of Chinese Light-Style Liquor

    Science.gov (United States)

    Kong, Yu; Wu, Qun; Zhang, Yan

    2014-01-01

    The in situ metabolic characteristics of the yeasts involved in spontaneous fermentation process of Chinese light-style liquor are poorly understood. The covariation between metabolic profiles and yeast communities in Chinese light-style liquor was modeled using the partial least square (PLS) regression method. The diversity of yeast species was evaluated by sequence analysis of the 26S ribosomal DNA (rDNA) D1/D2 domains of cultivable yeasts, and the volatile compounds in fermented grains were analyzed by gas chromatography (GC)-mass spectrometry (MS). Eight yeast species and 58 volatile compounds were identified, respectively. The modulation of 16 of these volatile compounds was associated with variations in the yeast population (goodness of prediction [Q2] > 20%). The results showed that Pichia anomala was responsible for the characteristic aroma of Chinese liquor, through the regulation of several important volatile compounds, such as ethyl lactate, octanoic acid, and ethyl tetradecanoate. Correspondingly, almost all of the compounds associated with P. anomala were detected in a pure culture of this yeast. In contrast to the PLS regression results, however, ethyl lactate and ethyl isobutyrate were not detected in the same pure culture, which indicated that some metabolites could be generated by P. anomala only when it existed in a community with other yeast species. Furthermore, different yeast communities provided different volatile patterns in the fermented grains, which resulted in distinct flavor profiles in the resulting liquors. This study could help identify the key yeast species involved in spontaneous fermentation and provide a deeper understanding of the role of individual yeast species in the community. PMID:24727269

  1. Quality-by-Design (QbD): An integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and process design space development.

    Science.gov (United States)

    Wu, Huiquan; White, Maury; Khan, Mansoor A

    2011-02-28

    The aim of this work was to develop an integrated process analytical technology (PAT) approach for a dynamic pharmaceutical co-precipitation process characterization and design space development. A dynamic co-precipitation process by gradually introducing water to the ternary system of naproxen-Eudragit L100-alcohol was monitored at real-time in situ via Lasentec FBRM and PVM. 3D map of count-time-chord length revealed three distinguishable process stages: incubation, transition, and steady-state. The effects of high risk process variables (slurry temperature, stirring rate, and water addition rate) on both derived co-precipitation process rates and final chord-length-distribution were evaluated systematically using a 3(3) full factorial design. Critical process variables were identified via ANOVA for both transition and steady state. General linear models (GLM) were then used for parameter estimation for each critical variable. Clear trends about effects of each critical variable during transition and steady state were found by GLM and were interpreted using fundamental process principles and Nyvlt's transfer model. Neural network models were able to link process variables with response variables at transition and steady state with R(2) of 0.88-0.98. PVM images evidenced nucleation and crystal growth. Contour plots illustrated design space via critical process variables' ranges. It demonstrated the utility of integrated PAT approach for QbD development. Published by Elsevier B.V.

  2. Microcapsules Containing pH-Responsive, Fluorescent Polymer-Integrated MoS2: An Effective Platform for in Situ pH Sensing and Photothermal Heating.

    Science.gov (United States)

    Park, Chan Ho; Lee, Sangmin; Pornnoppadol, Ghasidit; Nam, Yoon Sung; Kim, Shin-Hyun; Kim, Bumjoon J

    2018-03-14

    We report the design of a novel microcapsule platform for in situ pH sensing and photothermal heating, which involves the encapsulation of pH-responsive polymer-coated molybdenum disulfide (MoS 2 ) nanosheets (NSs) in microcapsules with an aqueous core and a semipermeable polymeric shell. The MoS 2 NSs were functionalized with pH-responsive polymers having fluorescent groups at the distal end to provide pH-sensitive Förster resonance energy transfer (FRET) effect. The pH-responsive polymers were carefully designed to produce a dramatic change in the polymer conformation, which translated to a change in the FRET efficiency near pH 7.0 in response to subtle pH changes, enabling the detection of cancer cells. The pH-sensitive MoS 2 NSs were microfluidically encapsulated within semipermeable membranes to yield microcapsules with a uniform size and composition. The microcapsules retained the MoS 2 NSs without leakage while allowing the diffusion of small ions and water through the membrane. At the same time, the membranes excluded adhesive proteins and lipids in the surrounding media, protecting the encapsulated MoS 2 NSs from deactivation and enabling in situ pH monitoring. Moreover, the encapsulated MoS 2 NSs showed high-performance photothermal heating, rendering the dual-functional microcapsules highly suitable for cancer diagnosis and treatment.

  3. In-situ databases and comparison of ESA Ocean Colour Climate Change Initiative (OC-CCI) products with precursor data, towards an integrated approach for ocean colour validation and climate studies

    Science.gov (United States)

    Brotas, Vanda; Valente, André; Couto, André B.; Grant, Mike; Chuprin, Andrei; Jackson, Thomas; Groom, Steve; Sathyendranath, Shubha

    2014-05-01

    Ocean colour (OC) is an Oceanic Essential Climate Variable, which is used by climate modellers and researchers. The European Space Agency (ESA) Climate Change Initiative project, is the ESA response for the need of climate-quality satellite data, with the goal of providing stable, long-term, satellite-based ECV data products. The ESA Ocean Colour CCI focuses on the production of Ocean Colour ECV uses remote sensing reflectances to derive inherent optical properties and chlorophyll a concentration from ESA's MERIS (2002-2012) and NASA's SeaWiFS (1997 - 2010) and MODIS (2002-2012) sensor archives. This work presents an integrated approach by setting up a global database of in situ measurements and by inter-comparing OC-CCI products with pre-cursor datasets. The availability of in situ databases is fundamental for the validation of satellite derived ocean colour products. A global distribution in situ database was assembled, from several pre-existing datasets, with data spanning between 1997 and 2012. It includes in-situ measurements of remote sensing reflectances, concentration of chlorophyll-a, inherent optical properties and diffuse attenuation coefficient. The database is composed from observations of the following datasets: NOMAD, SeaBASS, MERMAID, AERONET-OC, BOUSSOLE and HOTS. The result was a merged dataset tuned for the validation of satellite-derived ocean colour products. This was an attempt to gather, homogenize and merge, a large high-quality bio-optical marine in situ data, as using all datasets in a single validation exercise increases the number of matchups and enhances the representativeness of different marine regimes. An inter-comparison analysis between OC-CCI chlorophyll-a product and satellite pre-cursor datasets was done with single missions and merged single mission products. Single mission datasets considered were SeaWiFS, MODIS-Aqua and MERIS; merged mission datasets were obtained from the GlobColour (GC) as well as the Making Earth Science

  4. Unintended and in situ amorphisation of pharmaceuticals.

    Science.gov (United States)

    Priemel, P A; Grohganz, H; Rades, T

    2016-05-01

    Amorphisation of poorly water-soluble drugs is one approach that can be applied to improve their solubility and thus their bioavailability. Amorphisation is a process that usually requires deliberate external energy input. However, amorphisation can happen both unintentionally, as in process-induced amorphisation during manufacturing, or in situ during dissolution, vaporisation, or lipolysis. The systems in which unintended and in situ amorphisation has been observed normally contain a drug and a carrier. Common carriers include polymers and mesoporous silica particles. However, the precise mechanisms by which in situ amorphisation occurs are often not fully understood. In situ amorphisation can be exploited and performed before administration of the drug or possibly even within the gastrointestinal tract, as can be inferred from in situ amorphisation observed during in vitro lipolysis. The use of in situ amorphisation can thus confer the advantages of the amorphous form, such as higher apparent solubility and faster dissolution rate, without the disadvantage of its physical instability. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Integrated Site Model Process Model Report

    International Nuclear Information System (INIS)

    Booth, T.

    2000-01-01

    The Integrated Site Model (ISM) provides a framework for discussing the geologic features and properties of Yucca Mountain, which is being evaluated as a potential site for a geologic repository for the disposal of nuclear waste. The ISM is important to the evaluation of the site because it provides 3-D portrayals of site geologic, rock property, and mineralogic characteristics and their spatial variabilities. The ISM is not a single discrete model; rather, it is a set of static representations that provide three-dimensional (3-D), computer representations of site geology, selected hydrologic and rock properties, and mineralogic-characteristics data. These representations are manifested in three separate model components of the ISM: the Geologic Framework Model (GFM), the Rock Properties Model (RPM), and the Mineralogic Model (MM). The GFM provides a representation of the 3-D stratigraphy and geologic structure. Based on the framework provided by the GFM, the RPM and MM provide spatial simulations of the rock and hydrologic properties, and mineralogy, respectively. Functional summaries of the component models and their respective output are provided in Section 1.4. Each of the component models of the ISM considers different specific aspects of the site geologic setting. Each model was developed using unique methodologies and inputs, and the determination of the modeled units for each of the components is dependent on the requirements of that component. Therefore, while the ISM represents the integration of the rock properties and mineralogy into a geologic framework, the discussion of ISM construction and results is most appropriately presented in terms of the three separate components. This Process Model Report (PMR) summarizes the individual component models of the ISM (the GFM, RPM, and MM) and describes how the three components are constructed and combined to form the ISM

  6. In situ reactor

    Science.gov (United States)

    Radtke, Corey William; Blackwelder, David Bradley

    2004-01-27

    An in situ reactor for use in a geological strata, is described and which includes a liner defining a centrally disposed passageway and which is placed in a borehole formed in the geological strata; and a sampling conduit is received within the passageway defined by the liner and which receives a geological specimen which is derived from the geological strata, and wherein the sampling conduit is in fluid communication with the passageway defined by the liner.

  7. In Situ TEM Creation of Nanowire Devices

    DEFF Research Database (Denmark)

    Alam, Sardar Bilal

    Integration of silicon nanowires (SiNWs) as active components in devices requires that desired mechanical, thermal and electrical interfaces can be established between the nanoscale geometry of the SiNW and the microscale architecture of the device. In situ transmission electron microscopy (TEM),...

  8. Characterization of PZT Capacitor Structures with Various Electrode Materials Processed In-Situ Using AN Automated, Rotating Elemental Target, Ion Beam Deposition System

    Science.gov (United States)

    Gifford, Kenneth Douglas

    Ferroelectric thin film capacitor structures containing lead zirconate titanate (PZT) as the dielectric, with the chemical formula Pb(rm Zr_{x }Ti_{1-x})O_3, were synthesized in-situ with an automated ion beam sputter deposition system. Platinum (Pt), conductive ruthenium oxide (RuO_2), and two types of Pt-RuO_2 hybrid electrodes were used as the electrode materials. The capacitor structures are characterized in terms of microstructure and electrical characteristics. Reduction or elimination of non-ferroelectric phases, that nucleate during PZT processing on Pt/TiO _2/MgO and RuO_2/MgO substrates, is achieved by reducing the thickness of the individually deposited layers and by interposing a buffer layer (~100-200A) of PbTiO _3 (PT) between the bottom electrode and the PZT film. Capacitor structures containing a Pt electrode exhibit poor fatigue resistance, irregardless of the PZT microstructure or the use of a PT buffer layer. From these results, and results from similar capacitors synthesized with sol-gel and laser ablation, PZT-based capacitor structures containing Pt electrodes are considered to be unsuitable for use in memory devices. Using a PT buffer layer, in capacitor structures containing RuO_2 top and bottom electrodes and polycrystalline, highly (101) oriented PZT, reduces or eliminates the nucleation of zirconium-titanium oxide, non-ferroelectric species at the bottom electrode interface during processing. This results in good fatigue resistance up to ~2times10^ {10} switching cycles. DC leakage current density vs. time measurements follow the Curie-von Schweidler law, J(t) ~ t^ {rm -n}. Identification of the high electric field current conduction mechanism is inconclusive. The good fatigue resistance, low dc leakage current, and excellent retention, qualifies the use of these capacitor structures in non-volatile random access (NVRAM) and dynamic random access (DRAM) memory devices. Excellent fatigue resistance (10% loss in remanent polarization up to

  9. The integration of process monitoring for safeguards

    International Nuclear Information System (INIS)

    Cipiti, Benjamin B.; Zinaman, Owen R.

    2010-01-01

    The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

  10. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO{sub 2} nanopowders by a simple coprecipitation process without adding surfactant

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Shang-Wei [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Ko, Horng-Huey [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Chiang, Hsiu-Mei [Department of Cosmeceutics, China Medical University, 91 Hsueh-Shih Road, Taichung 40402, Taiwan (China); Chen, Yen-Ling, E-mail: yelichen@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China); Lee, Jian-Hong [Clean Energy and Eco-Technology Center, Industrial Technology Research Institute, 8 Gongyan Road, Tainan 734, Taiwan (China); Wen, Chiu-Ming [Department of Life Science, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80782, Taiwan (China)

    2014-11-15

    Highlights: • The TiO{sub 2} precursor powder contained anatase and 19.5% NH{sub 4}Cl. • Mesoporous anatase TiO{sub 2} nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH{sub 4}Cl and anatase TiO{sub 2}. • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO{sub 2} nanopowders using titanium tetrachloride (TiCl{sub 4}) and NH{sub 4}OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO{sub 2} nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH{sub 4}Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO{sub 2} only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO{sub 2} coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO{sub 2} was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH{sub 4}Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m{sup 2}/g and 0.392 cm{sup 3}/g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively.

  11. Characteristics and properties of a novel in situ method of synthesizing mesoporous TiO2 nanopowders by a simple coprecipitation process without adding surfactant

    International Nuclear Information System (INIS)

    Yeh, Shang-Wei; Ko, Horng-Huey; Chiang, Hsiu-Mei; Chen, Yen-Ling; Lee, Jian-Hong; Wen, Chiu-Ming; Wang, Moo-Chin

    2014-01-01

    Highlights: • The TiO 2 precursor powder contained anatase and 19.5% NH 4 Cl. • Mesoporous anatase TiO 2 nanopowders were successfully synthesized. • Uncalcined precursor powder contained the phases of type I NH 4 Cl and anatase TiO 2 . • Anatase size increases from 3.3 to 14.3 nm when calcined at 473–773 K for 2 h. • The average pore size between 3.80 and 14.0 nm when calcined between 473 and 773 K. - Abstract: In situ synthesis of mesoporous TiO 2 nanopowders using titanium tetrachloride (TiCl 4 ) and NH 4 OH as initial materials has been successfully fabricated by a coprecipitation process without the addition of surfactant. Characteristics and properties of the mesoporous TiO 2 nanopowders were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) and Barrent–Joyner–Halenda (BJH) analyses, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and high resolution TEM (HRTEM). The results of TG and XRD showed that the NH 4 Cl decomposed between 513 and 673 K. XRD results showed that the anatase TiO 2 only contained a single phase when the calcination temperature of the precursor powder was less than 673 K. Whereas phases of anatase and rutile TiO 2 coexist after calcining at 773 K for 2 h. The crystalline size of the anatase and rutile TiO 2 was 14.3 and 26.6 nm, respectively, when the precursor powder was calcined at 773 K for 2 h. The BET and BJH results showed a significant increase in surface area and pore volumes when the NH 4 Cl was completely decomposed. The maximum values of BET specific surface area and volume were 172.8 m 2 /g and 0.392 cm 3 /g, respectively. The average pore sizes when calcination was at 473 and 773 K for 2 h were 3.8 and 14.0 nm, respectively

  12. Preparation and Loading Process of Single Crystalline Samples into a Gas Environmental Cell Holder for In Situ Atomic Resolution Scanning Transmission Electron Microscopic Observation.

    Science.gov (United States)

    Straubinger, Rainer; Beyer, Andreas; Volz, Kerstin

    2016-06-01

    A reproducible way to transfer a single crystalline sample into a gas environmental cell holder for in situ transmission electron microscopic (TEM) analysis is shown in this study. As in situ holders have only single-tilt capability, it is necessary to prepare the sample precisely along a specific zone axis. This can be achieved by a very accurate focused ion beam lift-out preparation. We show a step-by-step procedure to prepare the sample and transfer it into the gas environmental cell. The sample material is a GaP/Ga(NAsP)/GaP multi-quantum well structure on Si. Scanning TEM observations prove that it is possible to achieve atomic resolution at very high temperatures in a nitrogen environment of 100,000 Pa.

  13. Report of the results of the fiscal 1997 regional consortium R and D project. Regional consortium energy field / Development of the plasma use surface treatment process by in-situ control (first fiscal year); 1997 nendo chiiki consortium kenkyu kaihatsu jigyo. Chiiki consortium energy bun`ya / in-situ seigyo ni yoru plasma riyo hyohi shori process no kaihatsu (daiichi nendo) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper described the fiscal 1997 result of the development. To know of in-plasma phenomena such as carburization and nitriding, a basic plasma experimental device was fabricated for quantitative measurement of reaction activity species. For the study of reaction control between plasma and substrate, a rotary analyzer type ellipsometer was fabricated as a method to detect composition and thickness of the deposit on the substrate surface. For He gas cooling after carburization and hardening, basic specifications for He gas refining/circulating system were confirmed. For perfect non-hazardous processing of exhaust gas from plasma carburization furnace, conducted was the thermodynamic computation of the process. Priority in order of the functions to be possessed as specifications for basic design of mini plant is plasma carburization, He gas cooling, and in-situ measurement. To make the most of the plasma use surface treatment as substitutes for expensive alloy elements, sliding parts/die-cast mold raw materials were carburized to measure the hardness. The Cr carbide coating technology by plasma CVD is also under study as an application example except carburization. 47 refs., 59 figs., 31 tabs.

  14. In situ vitrification: Application to buried waste

    International Nuclear Information System (INIS)

    Callow, R.A.; Thompson, L.E.

    1991-01-01

    Two in situ vitrification field tests were conducted in June and July 1990 at Idaho National Engineering Laboratory. In situ vitrification is a technology for in-place conversion of contaminated soils into a durable glass and crystalline waste form and is being investigated as a potential remediation technology for buried waste. The overall objective of the two tests was to assess the general suitability of the process to remediate buried waste structures found at Idaho National Engineering Laboratory. In particular, these tests were designed as part of a treatability study to provide essential information on field performance of the process under conditions of significant combustible and metal wastes, and to test a newly developed electrode feed technology. The tests were successfully completed, and the electrode feed technology provided valuable operational control for successfully processing the high metal content waste. The results indicate that in situ vitrification is a feasible technology for application to buried waste. 2 refs., 5 figs., 2 tabs

  15. Malignant mesothelioma in situ.

    Science.gov (United States)

    Churg, Andrew; Hwang, Harry; Tan, Larry; Qing, Gefei; Taher, Altaf; Tong, Amy; Bilawich, Ana M; Dacic, Sanja

    2018-05-01

    The existence of malignant mesothelioma in situ (MIS) is often postulated, but there are no accepted morphological criteria for making such a diagnosis. Here we report two cases that appear to be true MIS on the basis of in-situ genomic analysis. In one case the patient had repeated unexplained pleural unilateral effusions. Two thoracoscopies 9 months apart revealed only visually normal pleura. Biopsies from both thoracoscopies showed only a single layer of mildly reactive mesothelial cells. However, these cells had lost BRCA1-associated protein 1 (BAP1) and showed loss of cyclin-dependent kinase inhibitor 2 (CDKN2A) (p16) by fluorescence in-situ hybridisation (FISH). NF2 was not deleted by FISH but 28% of the mesothelial cells showed hyperploidy. Six months after the second biopsy the patient has persisting effusions but no evidence of pleural malignancy on imaging. The second patient presented with ascites and minimal omental thickening on imaging, but no visual evidence of tumour at laparoscopy. Omental biopsy showed a single layer of minimally atypical mesothelial cells with rare tiny foci of superficial invasion of fat. BAP1 immunostain showed loss of nuclear BAP1 in all the surface mesothelial cells and the invasive cells. There was CDKN2A deletion, but no deletion of NF2 by FISH. These cases show that morphologically bland single-layered surface mesothelial proliferations with molecular alterations seen previously only in invasive malignant mesotheliomas exist, and presumably represent malignant MIS. More cases are need to understand the frequency of such changes and the time-course over which invasive tumour develops. © 2018 John Wiley & Sons Ltd.

  16. Integrating conceptualizations of experience into the interaction design process

    DEFF Research Database (Denmark)

    Dalsgaard, Peter

    2010-01-01

    From a design perspective, the increasing awareness of experiential aspects of interactive systems prompts the question of how conceptualizations of experience can inform and potentially be integrated into the interaction design process. This paper presents one approach to integrating theoretical...

  17. The evaluation of GCMs and a new cloud parameterisation using satellite and in-situ data as part of a Climate Process Team

    Science.gov (United States)

    Grosvenor, D. P.; Wood, R.

    2012-12-01

    As part of one of the Climate Process Teams (CPTs) we have been testing the implementation of a new cloud parameterization into the CAM5 and AM3 GCMs. The CLUBB parameterization replaces all but the deep convection cloud scheme and uses an innovative PDF based approach to diagnose cloud water content and turbulence. We have evaluated the base models and the CLUBB parameterization in the SE Pacific stratocumulus region using a suite of satellite observation metrics including: Liquid Water Path (LWP) measurements from AMSRE; cloud fractions from CloudSat/CALIPSO; droplet concentrations (Nd) and Cloud Top Temperatures from MODIS; CloudSat precipitation; and relationships between Estimated Inversion Strength (calculated from AMSRE SSTs, Cloud Top Temperatures from MODIS and ECMWF re-analysis fields) and cloud fraction. This region has the advantage of an abundance of in-situ aircraft observations taken during the VOCALS campaign, which is facilitating the diagnosis of the model problems highlighted by the model evaluation. This data has also been recently used to demonstrate the reliability of MODIS Nd estimates. The satellite data needs to be filtered to ensure accurate retrievals and we have been careful to apply the same screenings to the model fields. For example, scenes with high cloud fractions and with output times near to the satellite overpass times can be extracted from the model for a fair comparison with MODIS Nd estimates. To facilitate this we have been supplied with instantaneous model output since screening would not be possible based on time averaged data. We also have COSP satellite simulator output, which allows a fairer comparison between satellite and model. For example, COSP cloud fraction is based upon the detection threshold of the satellite instrument in question. These COSP fields are also used for the model output filtering just described. The results have revealed problems with both the base models and the versions with the CLUBB

  18. In situ breast cancer

    International Nuclear Information System (INIS)

    Pacheco, Luis

    2004-01-01

    In situ breast cancer, particularly the ductal type, is increasing in frequency in the developed countries as well as in Ecuador, most probably. These lesions carry a higher risk of developing a subsequent invasive cancer. Treatment has changed recently due to results of randomized studies, from classical mastectomy to conservative surgery associated to radiotherapy. The Van Nuys Prognostic Index is currently the most usual instrument to guide diagnosis and treatment. Tamoxifen seems to decrease significantly the risk of tumor recurrence after initial treatment. (The author)

  19. Integration of In Situ Radon Modeling with High Resolution Aerial Remote Sensing for Mapping and Quantifying Local to Regional Flow and Transport of Submarine Groundwater Discharge from Coastal Aquifers

    Science.gov (United States)

    Glenn, C. R.; Kennedy, J. J.; Dulaiova, H.; Kelly, J. L.; Lucey, P. G.; Lee, E.; Fackrell, J.

    2015-12-01

    Submarine groundwater discharge (SGD) is a principal conduit for huge volumes of fresh groundwater loss and is a key transport mechanism for nutrient and contaminant pollution to coastal zones worldwide. However, the volumes and spatially and temporally variable nature of SGD is poorly known and requires rapid and high-resolution data acquisition at the scales in which it is commonly observed. Airborne thermal infrared (TIR) remote sensing, using high-altitude manned aircraft and low-altitude remote-controlled unmanned aerial vehicles (UAVs or "Drones") are uniquely qualified for this task, and applicable wherever 0.1°C temperature contrasts exist between discharging and receiving waters. We report on the use of these technologies in combination with in situ radon model studies of SGD volume and nutrient flux from three of the largest Hawaiian Islands. High altitude manned aircraft results produce regional (~300m wide x 100s km coastline) 0.5 to 3.2 m-resolution sea-surface temperature maps accurate to 0.7°C that show point-source and diffuse flow in exquisite detail. Using UAVs offers cost-effective advantages of higher spatial and temporal resolution and instantaneous deployments that can be coordinated simultaneously with any ground-based effort. We demonstrate how TIR-mapped groundwater discharge plume areas may be linearly and highly correlated to in situ groundwater fluxes. We also illustrate how in situ nutrient data may be incorporated into infrared imagery to produce nutrient distribution maps of regional worth. These results illustrate the potential for volumetric quantification and up-scaling of small- to regional-scale SGD. These methodologies provide a tremendous advantage for identifying and differentiating spring-fed, point-sourced, and/or diffuse groundwater discharge into oceans, estuaries, and streams. The integrative techniques are also important precursors for developing best-use and cost-effective strategies for otherwise time-consuming in

  20. An integrated approach to process control

    NARCIS (Netherlands)

    Schippers, W.A.J.

    2001-01-01

    The control of production processes is the subject of several disciplines, such as statistical process control (SPC), total productive maintenance (TPM), and automated process control (APC). Although these disciplines are traditionally separated (both in science and in business practice), their