WorldWideScience

Sample records for integrated engine control

  1. ADVANCED COMPRESSOR ENGINE CONTROLS TO ENHANCE OPERATION, RELIABILITY AND INTEGRITY

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Bourn; Jess W. Gingrich; Jack A. Smith

    2004-03-01

    This document is the final report for the ''Advanced Compressor Engine Controls to Enhance Operation, Reliability, and Integrity'' project. SwRI conducted this project for DOE in conjunction with Cooper Compression, under DOE contract number DE-FC26-03NT41859. This report addresses an investigation of engine controls for integral compressor engines and the development of control strategies that implement closed-loop NOX emissions feedback.

  2. Integrated Tools for Future Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Thomas, Randy; Saus, Joseph

    2013-01-01

    Turbine engines are highly complex mechanical systems that are becoming increasingly dependent on control technologies to achieve system performance and safety metrics. However, the contribution of controls to these measurable system objectives is difficult to quantify due to a lack of tools capable of informing the decision makers. This shortcoming hinders technology insertion in the engine design process. NASA Glenn Research Center is developing a Hardware-inthe- Loop (HIL) platform and analysis tool set that will serve as a focal point for new control technologies, especially those related to the hardware development and integration of distributed engine control. The HIL platform is intended to enable rapid and detailed evaluation of new engine control applications, from conceptual design through hardware development, in order to quantify their impact on engine systems. This paper discusses the complex interactions of the control system, within the context of the larger engine system, and how new control technologies are changing that paradigm. The conceptual design of the new HIL platform is then described as a primary tool to address those interactions and how it will help feed the insertion of new technologies into future engine systems.

  3. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    Science.gov (United States)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  4. Buried waste integrated demonstration human engineered control station. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.

  5. Buried waste integrated demonstration human engineered control station. Final report

    International Nuclear Information System (INIS)

    1994-09-01

    This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system

  6. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  7. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; van Schijndel, J.; Heemels, W.P.M.H.; Willems, F.

    2017-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  8. Optimal control for integrated emission management in diesel engines

    NARCIS (Netherlands)

    Donkers, M.C.F.; Schijndel, J. van; Heemels, W.P.M.H.; Willems, F.P.T.

    2016-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that minimises operational costs (consisting of fuel and AdBlue) for diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In most work on IEM, a suboptimal heuristic

  9. Analysis of airframe/engine interactions in integrated flight and propulsion control

    Science.gov (United States)

    Schierman, John D.; Schmidt, David K.

    1991-01-01

    An analysis framework for the assessment of dynamic cross-coupling between airframe and engine systems from the perspective of integrated flight/propulsion control is presented. This analysis involves to determining the significance of the interactions with respect to deterioration in stability robustness and performance, as well as critical frequency ranges where problems may occur due to these interactions. The analysis illustrated here investigates both the airframe's effects on the engine control loops and the engine's effects on the airframe control loops in two case studies. The second case study involves a multi-input/multi-output analysis of the airframe. Sensitivity studies are performed on critical interactions to examine the degradations in the system's stability robustness and performance. Magnitudes of the interactions required to cause instabilities, as well as the frequencies at which the instabilities occur are recorded. Finally, the analysis framework is expanded to include control laws which contain cross-feeds between the airframe and engine systems.

  10. Speed limiter integrated fatigue analyzer (SLIFA) for speed and fatigue control on diesel engine truck and bus

    Science.gov (United States)

    Wahyudi, Haris; Pranoto, Hadi; Leman, A. M.; Sebayang, Darwin; Baba, I.

    2017-09-01

    Every second, the number of road traffic deaths is increased globally with millions more sustaining severe injuries and living with long-term adverse health consequences. Jakarta alone in year 2015 had recorded 556 people died due to road accidents, approximately reached 6.231 road accident cases. The identified major contributory factors of such unfortunate events are both driver fatigue and over speeding habit especially related to the driving of truck and bus. This paper presents the idea on how to control the electronic system from input fuel system of injection pump and the combustion chamber engine will control the valve solenoid in injection pump which can lock and fuel will stop for moment, and speed limit can be success, by using sensor heart rate we can input reduce speed limit when fatigue detection driver. Integration process this tool can be relevant when Speed Limiter Integrated Fatigue Analyser (SLIFA) trial in the diesel engine for truck and bus, the result of this research Speed Limiter Integrated Fatigue Analyser (SLIFA) able to control speed of diesel engine for truck and bus almost 30km/h, 60km/h, and until 70 km/h. The installation of the sensor heart rate as the input speed limit SLIFA would work when the driver is detected to be in the fatigue condition. We make Speed Limiter Integrated Fatigue Analyser (SLIFA) for control and monitoring system for diesel engine in truck and bus. Speed Limiter Integrated Fatigue Analyser (SLIFA) system can save the historical of the speed record, fatigue, rpm, and body temperature of the driver.

  11. Dispersion engineering for integrated nanophotonics

    CERN Document Server

    Vanbésien, Olivier

    2014-01-01

    This book shows how dispersion engineering in two dimensional dielectric photonic crystals can provide new effects for the precise control of light propagation for integrated nanophotonics.Dispersion engineering in regular and graded photonic crystals to promote anomalous refraction effects is studied from the concepts to experimental demonstration via nanofabrication considerations. Self collimation, ultra and negative refraction, second harmonic generation, mirage and invisibility effects which lead to an unprecedented control of light propagation at the (sub-)wavelength scale for the

  12. Validation of an Integrated Airframe and Turbofan Engine Simulation for Evaluation of Propulsion Control Modes

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.

  13. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; van de Mortel - Fronczak, J.M.; Rooda, J.E.

    2016-01-01

    Increasing system complexity, time to market and development costs reduction place higher demands on engineering processes. Formal models play an important role here because they enable the use of various model-based analyses and early integration techniques and tools. Engineering processes based on

  14. Recent Technology Advances in Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis

    2017-01-01

    This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.

  15. JPL Contamination Control Engineering

    Science.gov (United States)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  16. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  17. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  18. Systems Engineering and Integration for Advanced Life Support System and HST

    Science.gov (United States)

    Kamarani, Ali K.

    2005-01-01

    Systems engineering (SE) discipline has revolutionized the way engineers and managers think about solving issues related to design of complex systems: With continued development of state-of-the-art technologies, systems are becoming more complex and therefore, a systematic approach is essential to control and manage their integrated design and development. This complexity is driven from integration issues. In this case, subsystems must interact with one another in order to achieve integration objectives, and also achieve the overall system's required performance. Systems engineering process addresses these issues at multiple levels. It is a technology and management process dedicated to controlling all aspects of system life cycle to assure integration at all levels. The Advanced Integration Matrix (AIM) project serves as the systems engineering and integration function for the Human Support Technology (HST) program. AIM provides means for integrated test facilities and personnel for performance trade studies, analyses, integrated models, test results, and validated requirements of the integration of HST. The goal of AIM is to address systems-level integration issues for exploration missions. It will use an incremental systems integration approach to yield technologies, baselines for further development, and possible breakthrough concepts in the areas of technological and organizational interfaces, total information flow, system wide controls, technical synergism, mission operations protocols and procedures, and human-machine interfaces.

  19. Radiological controls integrated into design

    Energy Technology Data Exchange (ETDEWEB)

    Kindred, G.W. [Cleveland Electric Illuminating Co., Perry, OH (United States)

    1995-03-01

    Radiological controls are required by law in the design of commercial nuclear power reactor facilities. These controls can be relatively minor or significant, relative to cost. To ensure that radiological controls are designed into a project, the health physicist (radiological engineer) must be involved from the beginning. This is especially true regarding keeping costs down. For every radiological engineer at a nuclear power plant there must be fifty engineers of other disciplines. The radiological engineer cannot be an expert on every discipline of engineering. However, he must be knowledgeable to the degree of how a design will impact the facility from a radiological perspective. This paper will address how to effectively perform radiological analyses with the goal of radiological controls integrated into the design package.

  20. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  1. Control Design for an Advanced Geared Turbofan Engine

    Science.gov (United States)

    Chapman, Jeffryes W.; Litt, Jonathan S.

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  2. Distributed Engine Control Empirical/Analytical Verification Tools

    Science.gov (United States)

    DeCastro, Jonathan; Hettler, Eric; Yedavalli, Rama; Mitra, Sayan

    2013-01-01

    NASA's vision for an intelligent engine will be realized with the development of a truly distributed control system featuring highly reliable, modular, and dependable components capable of both surviving the harsh engine operating environment and decentralized functionality. A set of control system verification tools was developed and applied to a C-MAPSS40K engine model, and metrics were established to assess the stability and performance of these control systems on the same platform. A software tool was developed that allows designers to assemble easily a distributed control system in software and immediately assess the overall impacts of the system on the target (simulated) platform, allowing control system designers to converge rapidly on acceptable architectures with consideration to all required hardware elements. The software developed in this program will be installed on a distributed hardware-in-the-loop (DHIL) simulation tool to assist NASA and the Distributed Engine Control Working Group (DECWG) in integrating DCS (distributed engine control systems) components onto existing and next-generation engines.The distributed engine control simulator blockset for MATLAB/Simulink and hardware simulator provides the capability to simulate virtual subcomponents, as well as swap actual subcomponents for hardware-in-the-loop (HIL) analysis. Subcomponents can be the communication network, smart sensor or actuator nodes, or a centralized control system. The distributed engine control blockset for MATLAB/Simulink is a software development tool. The software includes an engine simulation, a communication network simulation, control algorithms, and analysis algorithms set up in a modular environment for rapid simulation of different network architectures; the hardware consists of an embedded device running parts of the CMAPSS engine simulator and controlled through Simulink. The distributed engine control simulation, evaluation, and analysis technology provides unique

  3. Integrating design and purchasing [in nuclear engineering] with Ingecad

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Ingecad was developed by the Ingevision division of Framatome to overcome deficiencies in traditional computer-aided design. It was developed for nuclear power project engineering around the principle of the shared management of a common database, thus making it possible to integrate several engineering disciplines. The multiuser database is managed and accessed by the different application softwares, corresponding to particular aspects of the engineering task: electrical and process control schematics; plant piping design; pressurized equipment design etc. The use of a common database ensures coherence between the different engineering disciplines, particularly between the process engineering, the plant layout design, the piping, and the instrumentation and control engineering. (author)

  4. Integrated Control Modeling for Propulsion Systems Using NPSS

    Science.gov (United States)

    Parker, Khary I.; Felder, James L.; Lavelle, Thomas M.; Withrow, Colleen A.; Yu, Albert Y.; Lehmann, William V. A.

    2004-01-01

    The Numerical Propulsion System Simulation (NPSS), an advanced engineering simulation environment used to design and analyze aircraft engines, has been enhanced by integrating control development tools into it. One of these tools is a generic controller interface that allows NPSS to communicate with control development software environments such as MATLAB and EASY5. The other tool is a linear model generator (LMG) that gives NPSS the ability to generate linear, time-invariant state-space models. Integrating these tools into NPSS enables it to be used for control system development. This paper will discuss the development and integration of these tools into NPSS. In addition, it will show a comparison of transient model results of a generic, dual-spool, military-type engine model that has been implemented in NPSS and Simulink. It will also show the linear model generator s ability to approximate the dynamics of a nonlinear NPSS engine model.

  5. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  6. Computer aided control engineering

    DEFF Research Database (Denmark)

    Szymkat, Maciej; Ravn, Ole

    1997-01-01

    Current developments in the field of Computer Aided Control Engineering (CACE) have a visible impact on the design methodologies and the structure of the software tools supporting them. Today control engineers has at their disposal libraries, packages or programming environments that may...... in CACE enhancing efficient flow of information between the tools supporting the following phases of the design process. In principle, this flow has to be two-way, and more or less automated, in order to enable the engineer to observe the propagation of the particular design decisions taken at various...... levels.The major conclusions of the paper are related with identifying the factors affecting the software tool integration in a way needed to facilitate design "inter-phase" communication. These are: standard application interfaces, dynamic data exchange mechanisms, code generation techniques and general...

  7. Elementary Science Teachers' Integration of Engineering Design into Science Instruction: Results from a Randomised Controlled Trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-01-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). "Teaching engineering…

  8. Control technology for integrated circuit fabrication at Micro-Circuit Engineering, Incorporated, West Palm Beach, Florida

    Science.gov (United States)

    Mihlan, G. I.; Mitchell, R. I.; Smith, R. K.

    1984-07-01

    A survey to assess control technology for integrated circuit fabrication was conducted. Engineering controls included local and general exhaust ventilation, shielding, and personal protective equipment. Devices or work stations that contained toxic materials that were potentially dangerous were controlled by local exhaust ventilation. Less hazardous areas were controlled by general exhaust ventilation. Process isolation was used in the plasma etching, low pressure chemical vapor deposition, and metallization operations. Shielding was used in ion implantation units to control X-ray emissions, in contact mask alignes to limit ultraviolet (UV) emissions, and in plasma etching units to control radiofrequency and UV emissions. Most operations were automated. Use of personal protective equipment varied by job function.

  9. Radio-frequency integrated-circuit engineering

    CERN Document Server

    Nguyen, Cam

    2015-01-01

    Radio-Frequency Integrated-Circuit Engineering addresses the theory, analysis and design of passive and active RFIC's using Si-based CMOS and Bi-CMOS technologies, and other non-silicon based technologies. The materials covered are self-contained and presented in such detail that allows readers with only undergraduate electrical engineering knowledge in EM, RF, and circuits to understand and design RFICs. Organized into sixteen chapters, blending analog and microwave engineering, Radio-Frequency Integrated-Circuit Engineering emphasizes the microwave engineering approach for RFICs. Provide

  10. Integrated water resources management using engineering measures

    Science.gov (United States)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  11. Integrated water resources management using engineering measures

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-04-01

    Full Text Available The management process of Integrated Water Resources Management (IWRM consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation, are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  12. Concise Review: Organ Engineering: Design, Technology, and Integration.

    Science.gov (United States)

    Kaushik, Gaurav; Leijten, Jeroen; Khademhosseini, Ali

    2017-01-01

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling technologies including biocompatible biomaterials and biofabrication platforms such as three-dimensional bioprinting. When engineering complex tissues and organs, core design principles must be taken into account, such as the structure-function relationship, biochemical signaling, mechanics, gradients, and spatial constraints. Technological advances in biomaterials, biofabrication, and biomedical imaging allow for in vitro control of these factors to recreate in vivo phenomena. Finally, organ engineering emerges as an integration of biological design and technical rigor. An overall workflow for organ engineering and guiding technology to advance biology as well as a perspective on necessary future iterations in the field is discussed. Stem Cells 2017;35:51-60. © 2016 AlphaMed Press.

  13. Systems engineering and integration as a foundation for mission engineering

    OpenAIRE

    Beam, David F.

    2015-01-01

    Approved for public release; distribution is unlimited This paper investigates the emerging term mission engineering through the framework of systems engineering and systems integration. Systems engineering concepts, processes, and methodologies are extrapolated for use in conjunction with a systems integration, life-cycle based framework to effect mission engineering. The specific systems engineering concepts of measures of effectiveness, performance and suitability are recommended as fou...

  14. Applications of sliding mode control in science and engineering

    CERN Document Server

    Lien, Chang-Hua

    2017-01-01

    Gathering 20 chapters contributed by respected experts, this book reports on the latest advances in and applications of sliding mode control in science and engineering. The respective chapters address applications of sliding mode control in the broad areas of chaos theory, robotics, electrical engineering, physics, chemical engineering, memristors, mechanical engineering, environmental engineering, finance, and biology. Special emphasis has been given to papers that offer practical solutions, and which examine design and modeling involving new types of sliding mode control such as higher order sliding mode control, terminal sliding mode control, super-twisting sliding mode control, and integral sliding mode control. This book serves as a unique reference guide to sliding mode control and its recent applications for graduate students and researchers with a basic knowledge of electrical and control systems engineering.

  15. Contamination Control for Thermal Engineers

    Science.gov (United States)

    Rivera, Rachel B.

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). This course will cover the basics of Contamination Control, including contamination control related failures, the effects of contamination on Flight Hardware, what contamination requirements translate to, design methodology, and implementing contamination control into Integration, Testing and Launch.

  16. Integrating rehabilitation engineering technology with biologics.

    Science.gov (United States)

    Collinger, Jennifer L; Dicianno, Brad E; Weber, Douglas J; Cui, Xinyan Tracy; Wang, Wei; Brienza, David M; Boninger, Michael L

    2011-06-01

    Rehabilitation engineers apply engineering principles to improve function or to solve challenges faced by persons with disabilities. It is critical to integrate the knowledge of biologics into the process of rehabilitation engineering to advance the field and maximize potential benefits to patients. Some applications in particular demonstrate the value of a symbiotic relationship between biologics and rehabilitation engineering. In this review we illustrate how researchers working with neural interfaces and integrated prosthetics, assistive technology, and biologics data collection are currently integrating these 2 fields. We also discuss the potential for further integration of biologics and rehabilitation engineering to deliver the best technologies and treatments to patients. Engineers and clinicians must work together to develop technologies that meet clinical needs and are accessible to the intended patient population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  17. Propulsion Controls Modeling for a Small Turbofan Engine

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy; Franco, Kevin

    2017-01-01

    A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.

  18. Line integral on engineering mathematics

    Science.gov (United States)

    Wiryanto, L. H.

    2018-01-01

    Definite integral is a basic material in studying mathematics. At the level of calculus, calculating of definite integral is based on fundamental theorem of calculus, related to anti-derivative, as the inverse operation of derivative. At the higher level such as engineering mathematics, the definite integral is used as one of the calculating tools of line integral. the purpose of this is to identify if there is a question related to line integral, we can use definite integral as one of the calculating experience. The conclusion of this research says that the teaching experience in introducing the relation between both integrals through the engineer way of thinking can motivate and improve students in understanding the material.

  19. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  20. Palm Power Free-Piston Stirling Engine Control Electronics

    Science.gov (United States)

    Keiter, Douglas E.; Holliday, Ezekiel

    2007-01-01

    A prototype 35We, JP-8 fueled, soldier-wearable power system for the DARPA Palm Power program has been developed and tested by Sunpower. A hermetically-sealed 42We Sunpower Free-Piston Stirling Engine (FPSE) with integral linear alternator is the prime mover for this system. To maximize system efficiency over a broad range of output power, a non-dissipative, highly efficient electronic control system which modulates engine output power by varying piston stroke and converts the AC output voltage of the FPSE into 28Vdc for the Palm Power end user, has been designed and demonstrated as an integral component of the Palm Power system. This paper reviews the current status and progress made in developing the control electronics for the Palm Power system, in addition to describing the operation and demonstrated performance of the engine controller in the context of the current JP-8 fueled Palm Power system.

  1. System Engineering and Integration of Controls for Advanced Life Support

    Science.gov (United States)

    Overland, David; Hoo, Karlene; Ciskowski, Marvin

    2006-01-01

    The Advanced Integration Matrix (AIM) project at the Johnson Space Center (JSC) was chartered to study and solve systems-level integration issues for exploration missions. One of the first issues identified was an inability to conduct trade studies on control system architectures due to the absence of mature evaluation criteria. Such architectures are necessary to enable integration of regenerative life support systems. A team was formed to address issues concerning software and hardware architectures and system controls.. The team has investigated what is required to integrate controls for the types of non-linear dynamic systems encountered in advanced life support. To this end, a water processing bioreactor testbed is being developed which will enable prototyping and testing of integration strategies and technologies. Although systems such as the water bioreactors exhibit the complexities of interactions between control schemes most vividly, it is apparent that this behavior and its attendant risks will manifest itself among any set of interdependent autonomous control systems. A methodology for developing integration requirements for interdependent and autonomous systems is a goal of this team and this testbed. This paper is a high-level summary of the current status of the investigation, the issues encountered, some tentative conclusions, and the direction expected for further research.

  2. The Use of Executive Control Processes in Engineering Design by Engineering Students and Professional Engineers

    Science.gov (United States)

    Dixon, Raymond A.; Johnson, Scott D.

    2012-01-01

    A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…

  3. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  4. Integration of Sustainability in Engineering Education

    DEFF Research Database (Denmark)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies...... used to integrate sustainability in engineering education. However, there is a lack of understanding of the relation between ESD and PBL principles and the ways in which they can be integrated and practised in the engineering curricula. This paper aims to investigate the relation between PBL and ESD...... knowledge and the tacit presence of sustainability. Originality/value: The existence of a PBL curriculum at institutional level, such as at Aalborg University, enables investigation of how the PBL and ESD principles are practised, highlighting the limitations and potentials of integrating sustainability...

  5. Numerical methods for engine-airframe integration

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

  6. Improvement of Engineering Work Efficiency through System Integration

    International Nuclear Information System (INIS)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo

    2016-01-01

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently

  7. Improvement of Engineering Work Efficiency through System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangdae; Jo, Sunghan; Hyun, Jinwoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    This paper presents the concept of developing an integrated engineering system for ER to improve efficiency and utilization of engineering system. Each process including computer system and database was introduced separately by each department at that different time. Each engineering process has a close relation with other engineering processes. The introduction of processes in a different time has caused the several problems such as lack of interrelationship between engineering processes, lack of integration fleet-wide statistical data, lack of the function of data comparison among plants and increase of access time by different access location on internet. These problems have caused inefficiency of engineering system utilization to get proper information and degraded engineering system utilization. KHNP has introduced and conducted advanced engineering processes to maintain equipment effectively in a highly reliable condition since 2000s. But engineering systems for process implementation have been developed in each department at a different time. This has caused the problems of process inefficiency and data discordance. Integrated Engineering System(IES) to integrate dispersed engineering processes will improve work efficiency and utilization of engineering system because integration system would enable engineer to get total engineering information easily and do engineering work efficiently.

  8. Challenges to Cognitive Systems Engineering:Understanding Qualitative Aspects of Control Actions

    DEFF Research Database (Denmark)

    Lind, Morten

    2009-01-01

    The paper discusses the future role of Cognitive Systems Engineering (CSE) in contributing to integrated design of process, automation and human machine systems. Existing concepts and methods of Cognitive Systems Engineering do not integrate well with control theory and industrial automation tools...

  9. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  10. Polymer reaction engineering, an integrated approach

    NARCIS (Netherlands)

    Meyer, T.; Keurentjes, J.T.F.; Meyer, T.; Keurentjes, J.T.F.

    2005-01-01

    Summary This chapter contains sections titled: Polymer Materials A Short History of Polymer Reaction Engineering The Position of Polymer Reaction Engineering Toward Integrated Polymer Reaction Engineering The Disciplines in Polymer Reaction Engineering The Future: Product-inspired Polymer Reaction

  11. The Effect of Faster Engine Response on the Lateral Directional Control of a Damaged Aircraft

    Science.gov (United States)

    May, Ryan D.; Lemon, Kimberly A.; Csank, Jeffrey T.; Litt, Jonathan S.; Guo, Ten-Huei

    2012-01-01

    The integration of flight control and propulsion control has been a much discussed topic, especially for emergencies where the engines may be able to help stabilize and safely land a damaged aircraft. Previous research has shown that for the engines to be effective as flight control actuators, the response time to throttle commands must be improved. Other work has developed control modes that accept a higher risk of engine failure in exchange for improved engine response during an emergency. In this effort, a nonlinear engine model (the Commercial Modular Aero-Propulsion System Simulation 40k) has been integrated with a nonlinear airframe model (the Generic Transport Model) in order to evaluate the use of enhanced-response engines as alternative yaw rate control effectors. Tests of disturbance rejection and command tracking were used to determine the impact of the engines on the aircraft's dynamical behavior. Three engine control enhancements that improve the response time of the engine were implemented and tested in the integrated simulation. The enhancements were shown to increase the engine s effectiveness as a yaw rate control effector when used in an automatic feedback loop. The improvement is highly dependent upon flight condition; the airframe behavior is markedly improved at low altitude, low speed conditions, and relatively unchanged at high altitude, high speed.

  12. Dynamic programming for Integrated Emission Management in diesel engines

    NARCIS (Netherlands)

    Schijndel, J. van; Donkers, M.C.F.; Willems, F.P.T.; Heemels, W.P.M.H.

    2014-01-01

    Integrated Emission Management (IEM) is a supervisory control strategy that aims at minimizing the operational costs of diesel engines with an aftertreatment system, while satisfying emission constraints imposed by legislation. In previous work on IEM, a suboptimal real-time implementable solution

  13. Integrated two-cylinder liquid piston Stirling engine

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd, E-mail: todd.sulchek@me.gatech.edu [George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  14. Integrated two-cylinder liquid piston Stirling engine

    International Nuclear Information System (INIS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-01-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  15. Integrated two-cylinder liquid piston Stirling engine

    Science.gov (United States)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  16. Reverse Engineering Camouflaged Sequential Integrated Circuits Without Scan Access

    OpenAIRE

    Massad, Mohamed El; Garg, Siddharth; Tripunitara, Mahesh

    2017-01-01

    Integrated circuit (IC) camouflaging is a promising technique to protect the design of a chip from reverse engineering. However, recent work has shown that even camouflaged ICs can be reverse engineered from the observed input/output behaviour of a chip using SAT solvers. However, these so-called SAT attacks have so far targeted only camouflaged combinational circuits. For camouflaged sequential circuits, the SAT attack requires that the internal state of the circuit is controllable and obser...

  17. Leveling the Playing Field: Teacher Perception of Integrated STEM, Engineering, and Engineering Practices

    Science.gov (United States)

    Fincher, Bridgette Ann

    The purpose of this study was to describe the perceptions and approaches of 14 third-through-fifth grade Arkansan elementary teachers towards integrative engineering and engineering practices during 80 hours of integrated STEM professional development training in the summer and fall of 2014. This training was known as Project Flight. The purpose of the professional development was to learn integrated STEM content related to aviation and to write grade level curriculum units using Wiggins and McTighe's Understanding by Design curriculum framework. The current study builds upon on the original research. Using a mixed method exploratory, embedded QUAL[quan] case study design and a non-experimental convenience sample derived from original 20 participants of Project Flight, this research sought to answer the following question: Does professional development influence elementary teachers' perceptions of the curriculum and instruction of integrated STEM engineering and engineering practices in a 3-to-5 grade level setting? A series of six qualitative and one quantitative sub-questions informed the research of the mixed method question. Hermeneutic content analysis was applied to archival and current qualitative data sets while descriptive statistics, independent t-tests, and repeated measures ANOVA tests were performed on the quantitative data. Broad themes in the teachers' perceptions and understanding of the nature of integrated engineering and engineering practices emerged through triangulation. After the professional development and the teaching of the integrated STEM units, all 14 teachers sustained higher perceptions of personal self-efficacy in their understanding of Next Generation Science Standards (NGSS). The teachers gained understanding of engineering and engineering practices, excluding engineering habits of mind, throughout the professional development training and unit teaching. The research resulted in four major findings specific to elementary engineering

  18. Integrating ergonomic knowledge into engineering design processes

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg

    Integrating ergonomic knowledge into engineering design processes has been shown to contribute to healthy and effective designs of workplaces. However, it is also well-recognized that, in practice, ergonomists often have difficulties gaining access to and impacting engineering design processes...... employed in the same company, constituted a supporting factor for the possibilities to integrate ergonomic knowledge into the engineering design processes. However, the integration activities remained discrete and only happened in some of the design projects. A major barrier was related to the business...... to the ergonomic ambitions of the clients. The ergonomists’ ability to navigate, act strategically, and compromise on ergonomic inputs is also important in relation to having an impact in the engineering design processes. Familiarity with the engineering design terminology and the setup of design projects seems...

  19. The Effects of Maple Integrated Strategy on Engineering Technology Students' Understanding of Integral Calculus

    Science.gov (United States)

    Salleh, Tuan Salwani; Zakaria, Effandi

    2016-01-01

    The objective of this research is to investigate the effectiveness of a learning strategy using Maple in integral calculus. This research was conducted using a quasi-experimental nonequivalent control group design. One hundred engineering technology students at a technical university were chosen at random. The effectiveness of the learning…

  20. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  1. Human Factors Engineering Aspects of Modifications in Control Room Modernization

    Energy Technology Data Exchange (ETDEWEB)

    Hugo, Jacques [Idaho National Lab. (INL), Idaho Falls, ID (United States); Clefton, Gordon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Joe, Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-01

    This report describes the basic aspects of control room modernization projects in the U.S. nuclear industry and the need for supplementary guidance on the integration of human factors considerations into the licensing and regulatory aspects of digital upgrades. The report pays specific attention to the integration of principles described in NUREG-0711 (Human Factors Engineering Program Review Model) and how supplementary guidance can help to raise general awareness in the industry regarding the complexities of control room modernization projects created by many interdependent regulations, standards and guidelines. The report also describes how human factors engineering principles and methods provided by various resources and international standards can help in navigating through the process of licensing digital upgrades. In particular, the integration of human factors engineering guidance and requirements into the process of licensing digital upgrades can help reduce uncertainty related to development of technical bases for digital upgrades that will avoid the introduction of new failure modes.

  2. A Mathematical Model of Marine Diesel Engine Speed Control System

    Science.gov (United States)

    Sinha, Rajendra Prasad; Balaji, Rajoo

    2018-02-01

    Diesel engine is inherently an unstable machine and requires a reliable control system to regulate its speed for safe and efficient operation. Also, the diesel engine may operate at fixed or variable speeds depending upon user's needs and accordingly the speed control system should have essential features to fulfil these requirements. This paper proposes a mathematical model of a marine diesel engine speed control system with droop governing function. The mathematical model includes static and dynamic characteristics of the control loop components. Model of static characteristic of the rotating fly weights speed sensing element provides an insight into the speed droop features of the speed controller. Because of big size and large time delay, the turbo charged diesel engine is represented as a first order system or sometimes even simplified to a pure integrator with constant gain which is considered acceptable in control literature. The proposed model is mathematically less complex and quick to use for preliminary analysis of the diesel engine speed controller performance.

  3. Combustion control for diesel engines with direct injection

    Energy Technology Data Exchange (ETDEWEB)

    Jeschke, J.; Henn, M.; Lang, T.; Wendt, J.; Nitzke, H.G.; Mannigel, D. [Volkswagen AG (Germany)

    2007-07-01

    This article looks at a new cylinder pressure-based combustion control for DI diesel engines that has been developed by Volkswagen. This cylinder pressure-based control uses cylinder pressure sensors that are integrated in the glow plugs. The description and the evaluation of these sensors form a main part of this article as they are a central element in the new diesel management system. The test and development phase in connection with a rapid prototyping system and the realisation of the combustion control algorithms in a diesel control unit are also described. Finally, results from use of the closed-loop combustion control with different applications on a diesel engine are presented. (orig.)

  4. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  5. Design and control of integrated chromatography column sequences.

    Science.gov (United States)

    Andersson, Niklas; Löfgren, Anton; Olofsson, Marianne; Sellberg, Anton; Nilsson, Bernt; Tiainen, Peter

    2017-07-01

    To increase the productivity in biopharmaceutical production, a natural step is to introduce integrated continuous biomanufacturing which leads to fewer buffer and storage tanks, smaller sizes of integrated unit operations, and full automation of the operation. The main contribution of this work is to illustrate a methodology for design and control of a downstream process based on integrated column sequences. For small scale production, for example, pre-clinical studies, integrated column sequences can be implemented on a single chromatography system. This makes for a very efficient drug development platform. The proposed methodology is composed of four steps and is governed by a set of tools, that is presented, that makes the transition from batch separations to a complete integrated separation sequence as easy as possible. This methodology, its associated tools and the physical implementation is presented and illustrated on a case study where the target protein is separated from impurities through an integrated four column sequence. This article shows that the design and control of an integrated column sequence was successfully implemented for a tertiary protein separation problem. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:923-930, 2017. © 2017 American Institute of Chemical Engineers.

  6. Integrated Emission Management strategy for cost-optimal engine-aftertreatment operation

    NARCIS (Netherlands)

    Cloudt, R.P.M.; Willems, F.P.T.

    2011-01-01

    A new cost-based control strategy is presented that optimizes engine-aftertreatment performance under all operating conditions. This Integrated Emission Management strategy minimizes fuel consumption within the set emission limits by on-line adjustment of air management based on the actual state of

  7. Vertical Integration and Reverse Engineering of Agricultural Enterprises

    Institute of Scientific and Technical Information of China (English)

    Gang; WU; Yong; DU

    2014-01-01

    This paper studies the potential effects of agricultural enterprise’s vertical integration and reverse engineering on downstream firms.Suppliers who invest reverse engineering technology can exploit customer’s information. An integrated supplier can obtain at no cost the information from its subsidiary. Based on repeated game and considered corporate " good" or " bad" type,this paper analysis supplier’s selection and downstream investment in innovation. The results showed that: when the cost is higher than the threshold value no company invest in reverse engineering,when the cost is lower than the threshold value the integration company invest in reverse engineering; in the second period,vertical integration reduce the downstream independent enterprise’s innovation investment and profits,integrated enterprise increase innovation investment and profits; during the first period of the game,the independent downstream firms being " completely foreclosure".

  8. State-of-the-art in control engineering

    Directory of Open Access Journals (Sweden)

    Štefan Kozák

    2014-05-01

    Full Text Available The paper deals with new trends in research, development and applications of advanced control methods and structures based on the principles of optimality, robustness and intelligence. Present trends in the complex process control design demand an increasing degree of integration of numerical mathematics, control engineering methods, new control structures based of distribution, embedded network control structure and new information and communication technologies. Furthermore, increasing problems with interactions, process non-linearities, operating constraints, time delays, uncertainties, and significant dead-times consequently lead to the necessity to develop more sophisticated control strategies. Advanced control methods and new distributed embedded control structures represent the most effective tools for realizing high performance of many technological processes. Main ideas covered in this paper are motivated namely by the development of new advanced control engineering methods (predictive, hybrid predictive, optimal, adaptive, robust, fuzzy logic, and neural network and new possibilities of their SW and HW realizations and successful implementation in industry.

  9. Control and robotics remote laboratory for engineering education

    Directory of Open Access Journals (Sweden)

    Gregor Pačnik

    2005-06-01

    Full Text Available The new tools for education of engineering emerged and one of the most promising is a remote rapid control prototyping (RRCP, which is very useful also for control and robotics development in industry and in education. Examples of introductory remote control and simple robotics courses with integrated hands on experiments are presented in the paper. The aim of integration of remote hands on experiments into control and/or robotics course is to minimize the gap between the theory and practice to teach students the use of RRCP and to decrease the education costs. Developed RRCP experiments are based on MATLAB/Simulink, xPC target, custom developed embedded target

  10. Interdisciplinary Integrated Engineering Development Course in HITACHI

    Science.gov (United States)

    Ojima, Masahiro

    As an example of interdisciplinary education for engineers in private companies, IED (Integrated Engineering Development) course at HITACHI Ltd. is presented. To help 30 years old or so promising engineers create a new product based on a new technology, one year term course is designed for four types of engineers; mechanical, electric & electronic, information software, and digital systems. Each course has core basic technologies plus related supplementary subjects to promote an interdisciplinary integrated engineer. Not only lectures given by university professors but heavy duty home work is also given by senior engineers of HITACHI to make them apply basic theory to practical problems. Furthermore, self development planning, leadership development program and technology-marketing project are introduced to promote human skills and business sense needed for technology leaders in company.

  11. Integrated identification, modeling and control with applications

    Science.gov (United States)

    Shi, Guojun

    This thesis deals with the integration of system design, identification, modeling and control. In particular, six interdisciplinary engineering problems are addressed and investigated. Theoretical results are established and applied to structural vibration reduction and engine control problems. First, the data-based LQG control problem is formulated and solved. It is shown that a state space model is not necessary to solve this problem; rather a finite sequence from the impulse response is the only model data required to synthesize an optimal controller. The new theory avoids unnecessary reliance on a model, required in the conventional design procedure. The infinite horizon model predictive control problem is addressed for multivariable systems. The basic properties of the receding horizon implementation strategy is investigated and the complete framework for solving the problem is established. The new theory allows the accommodation of hard input constraints and time delays. The developed control algorithms guarantee the closed loop stability. A closed loop identification and infinite horizon model predictive control design procedure is established for engine speed regulation. The developed algorithms are tested on the Cummins Engine Simulator and desired results are obtained. A finite signal-to-noise ratio model is considered for noise signals. An information quality index is introduced which measures the essential information precision required for stabilization. The problems of minimum variance control and covariance control are formulated and investigated. Convergent algorithms are developed for solving the problems of interest. The problem of the integrated passive and active control design is addressed in order to improve the overall system performance. A design algorithm is developed, which simultaneously finds: (i) the optimal values of the stiffness and damping ratios for the structure, and (ii) an optimal output variance constrained stabilizing

  12. Definition, technology readiness, and development cost of the orbit transfer vehicle engine integrated control and health monitoring system elements

    Science.gov (United States)

    Cannon, I.; Balcer, S.; Cochran, M.; Klop, J.; Peterson, S.

    1991-01-01

    An Integrated Control and Health Monitoring (ICHM) system was conceived for use on a 20 Klb thrust baseline Orbit Transfer Vehicle (OTV) engine. Considered for space used, the ICHM was defined for reusability requirements for an OTV engine service free life of 20 missions, with 100 starts and a total engine operational time of 4 hours. Functions were derived by flowing down requirements from NASA guidelines, previous OTV engine or ICHM documents, and related contracts. The elements of an ICHM were identified and listed, and these elements were described in sufficient detail to allow estimation of their technology readiness levels. These elements were assessed in terms of technology readiness level, and supporting rationale for these assessments presented. The remaining cost for development of a minimal ICHM system to technology readiness level 6 was estimated. The estimates are within an accuracy range of minus/plus 20 percent. The cost estimates cover what is needed to prepare an ICHM system for use on a focussed testbed for an expander cycle engine, excluding support to the actual test firings.

  13. Optimal Control of Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  14. Optimal control of diesel engines with waste heat recovery systems

    NARCIS (Netherlands)

    Willems, F.P.T.; Donkers, M.C.F.; Kupper, F.; Waschl, H.; Kolmanovsky, I.; Steinbuch, M.; Del Re, L.

    2014-01-01

    This study presents an integrated energy and emission management strategy for a Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO 2 - NO x trade-off by minimizing the operational costs associated with fuel and AdBlue

  15. Advancing Tissue Engineering: A Tale of Nano-, Micro-, and Macroscale Integration

    NARCIS (Netherlands)

    Leijten, Jeroen Christianus Hermanus; Rouwkema, Jeroen; Zhang, Y.S.; Nasajpour, A.; Dokmeci, M.R.; Khademhosseini, A.

    2016-01-01

    Tissue engineering has the potential to revolutionize the health care industry. Delivering on this promise requires the generation of efficient, controllable and predictable implants. The integration of nano- and microtechnologies into macroscale regenerative biomaterials plays an essential role in

  16. Integrated diesel engine NOx reduction technology development

    Energy Technology Data Exchange (ETDEWEB)

    Hoelzer, J.; Zhu, J.; Savonen, C.L. [Detroit Diesel Corp., MI (United States); Kharas, K.C.C.; Bailey, O.H.; Miller, M.; Vuichard, J. [Allied Signal Environmental Catalysts, Tulsa, OK (United States)

    1997-12-31

    The effectiveness of catalyst performance is a function of the inlet exhaust gas temperature, gas flow rate, concentration of NO{sub x} and oxygen, and reductant quantity and species. Given this interrelationship, it becomes immediately clear that an integrated development approach is necessary. Such an approach is taken in this project. As such, the system development path is directed by an engine-catalyst engineering team. Of the tools at the engine engineer`s disposal the real-time aspects of computer assisted subsystem modeling is valuable. It will continue to be the case as ever more subtle improvements are needed to meet competitive performance, durability, and emission challenges. A review of recent prototype engines has shown that considerable improvements to base diesel engine technology are being made. For example, HSDI NO{sub x} has been reduced by a factor of two within the past ten years. However, additional substantial NO{sub x}/PM reduction is still required for the future. A viable lean NO{sub x} catalyst would be an attractive solution to this end. The results of recent high and low temperature catalyst developments were presented. High temperature base metal catalysts have been formulated to produce very good conversion efficiency and good thermal stability, albeit at temperatures near the upper range of diesel engine operation. Low temperature noble metal catalysts have been developed to provide performance of promising 4-way control but need increased NO{sub x} reduction efficiency.

  17. Cell Control Engineering

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1996-01-01

    The engineering process of creating cell control systems is described, and a Cell Control Engineering (CCE) concept is defined. The purpose is to assist people, representing different disciplines in the organisation, to implement cell controllers by addressing the complexity of having many systems...... in physically and logically different and changing manufacturing environments. The defined CCE concept combines state-of-the-art of commercially available enabling technologies for automation system software development, generic cell control models and guidelines for the complete engineering process...

  18. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    Science.gov (United States)

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.

  19. Developing engineering processes through integrated modelling of product and process

    DEFF Research Database (Denmark)

    Nielsen, Jeppe Bjerrum; Hvam, Lars

    2012-01-01

    This article aims at developing an operational tool for integrated modelling of product assortments and engineering processes in companies making customer specific products. Integrating a product model in the design of engineering processes will provide a deeper understanding of the engineering...... activities as well as insight into how product features affect the engineering processes. The article suggests possible ways of integrating models of products with models of engineering processes. The models have been tested and further developed in an action research study carried out in collaboration...... with a major international engineering company....

  20. Stirling Engine Controller

    Science.gov (United States)

    Blaze, Gina M.

    2004-01-01

    and also safely shutdown the engines. The test will last for a period of 8000 to 9000 hours. Other types of tests that have been performed are: performance mapping, controller development, launch environment, and vibration emissions testing. Currently, the thermo-mechanical system branch is housing a RG-350, a stirling convertor. The convertor was used in previous tests such as a Hall Thruster test, world s first integrated test of a dynamic power system with electric propulsion. Another test performed was to conclude if free piston stirling convertors can be synchronized for vibration balancing, with no thermodynamic or electrical connections and not cause both to shutdown if one failed. The ability to reduce vibration by synchronizing convertor operation but still be able to operate when one partner fails is pertinent in space and terrestrial applications. The convertor is now being brought back into operation and a controller is in the process of being developed. This convertor will be used as a testbed for new controllers. I worked with Mary Ellen Roth on the electric engineering aspects of the RG-350. My main goal was to enhance the data collection process. I worked on different aspects of the RG-350, with a main focus on the engine controller. I drew a schematic of the wire connections in the engine controller, using PCB Express, so that a plan could be devised to connect the power meter properly between the output of the engine and the engine controller. I measured the power using two different instruments: Valhalla Scientific power meter and Ohio Semitronics power measurement device. The convertor is connected to an Agilent 34970A Data Acquisition/Switch Unit, which allows the user to measure, record, and monitor voltage, current, frequency, and temperature. I assisted in preparing the Data Acquisition for general operation. I also helped test a panel of transducers, which will be placed in the rack that powers and monitors the convertor.

  1. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of peformance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays, etc.) and the human operator. In the Remote Control Engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  2. Elements of an advanced integrated operator control station

    International Nuclear Information System (INIS)

    Clarke, M.M.; Kreifeldt, J.G.

    1984-01-01

    One of the critical determinants of performance for any remotely operated maintenance system is the compatibility achieved between elements of the man/machine interface (e.g., master manipulator controller, controls, displays) and the human operator. In the remote control engineering task of the Consolidated Fuel Reprocessing Program, considerable attention has been devoted to optimizing the man/machine interface of the operator control station. This system must be considered an integral element of the overall maintenance work system which includes transporters, manipulators, remote viewing, and other parts. The control station must reflect the integration of the operator team, control/display panels, manipulator master controllers, and remote viewing monitors. Human factors principles and experimentation have been used in the development of an advanced integrated operator control station designed for the advance servomanipulator. Key features of this next-generation design are summarized in this presentation. 7 references, 4 figures

  3. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    Energy Technology Data Exchange (ETDEWEB)

    Kirby S. Chapman; Sarah R. Nuss-Warren

    2007-02-01

    The objective of this project is to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by exploration and production (E&P) operators to significantly lower the cost of environmental compliance and expedite project permitting. The project team takes considerable advantage of the emissions control research and development efforts and practices that have been underway in the gas pipeline industry for the last 12 years. These efforts and practices are expected to closely interface with the E&P industry to develop cost-effective options that apply to widely-used field and gathering engines, and which can be readily commercialized. The project is separated into two phases. Phase 1 work establishes an E&P industry liaison group, develops a frequency distribution of installed E&P field engines, and identifies and assesses commercially available and emerging engine emissions control and monitoring technologies. Current and expected E&P engine emissions and monitoring requirements are reviewed, and priority technologies are identified for further development. The identified promising technologies are tested on a laboratory engine to confirm their generic viability. In addition, a full-scale field test of prototype emissions controls will be conducted on at least ten representative field engine models with challenging emissions profiles. Emissions monitoring systems that are integrated with existing controls packages will be developed. Technology transfer/commercialization is expected to be implemented through compressor fleet leasing operators, engine component suppliers, the industry liaison group, and the Petroleum Technology Transfer Council. This topical report discusses work completed during Phase 1 of the project Cost Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines. In this report information, data, and results are compiled and summarized from quarterly

  4. A multi-landing pad DNA integration platform for mammalian cell engineering

    Science.gov (United States)

    Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron

    2018-01-01

    Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873

  5. Electromotor actuators with integrated electronics for control of modern internal combustion engines; Elektromotorische Steller mit integrierter Elektronik zur Regelung moderner Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Krome, J.; Dorissen, H.T.; Duerkopp, K. [Hella KG Hueck and Co., Lippstadt (Germany)

    2002-07-01

    Combustion and emission specifications make increasing demands on motor car control systems, and pneumatic control elements are getting replaced by specialized electromotor systems. The contribution describes an electromotor actuator with integrated electronics which is suited for the extreme conditions inside motor engines and is already produced in series in turbo-supercharger engines with variable turbine geometries. [German] Durch die gestiegenen Anforderungen an Verbrauch und Emissionen werden auch immer hoehere Ansprueche an Stell- und Regelsysteme im Kraftfahrzeug gestellt. Dies fuehrt unter anderem dazu, dass die heute eingesetzten pneumatischen Stellsysteme zunehmend durch spezialisierte elektromotorische Systeme ersetzt werden. In diesem Beitrag wird ein elektromotorischer Aktuator mit integrierter Elektronik vorgestellt. Der Steller ist fuer die extremen Umgebungsbedingungen von Motoranbauteilen qualifiziert und wird bereits in Serie zur Verstellung von Turboladern mit variabler Turbinengeometrie eingesetzt. (orig.)

  6. A rotorcraft flight/propulsion control integration study

    Science.gov (United States)

    Ruttledge, D. G. C.

    1986-01-01

    An eclectic approach was taken to a study of the integration of digital flight and propulsion controls for helicopters. The basis of the evaluation was the current Gen Hel simulation of the UH-60A Black Hawk helicopter with a model of the GE T700 engine. A list of flight maneuver segments to be used in evaluating the effectiveness of such an integrated control system was composed, based on past experience and an extensive survey of the U.S. Army Air-to-Air Combat Test data. A number of possible features of an integrated system were examined and screened. Those that survived the screening were combined into a design that replaced the T700 fuel control and part of the control system in the UH-60A Gen Hel simulation. This design included portions of an existing pragmatic adaptive fuel control designed by the Chandler-Evans Company and an linear quadratic regulator (LQR) based N(p) governor designed by the GE company, combined with changes in the basic Sikorsky Aircraft designed control system. The integrated system exhibited improved total performance in many areas of the flight envelope.

  7. Integrated engineering increases flexibility

    International Nuclear Information System (INIS)

    Smith, Ray

    1991-01-01

    Integrated Engineering (IE) can be used to describe the best use of increasingly rare good engineering talent in an increasingly competive world. A number of organisations are now moving towards IE without any general agreement on a precise definition. The engineering division of British Nuclear Fuels (BNFL) is one such organisation. This feature covers the reasoning behind the decision, and our experience to date. BNFL engineering division is responsible primarily for the provision of major facilities on BNFL operational sites. This provision includes feasibility, front end and detailed design, procurement, installation and commissioning. Task force working has been used for some of the large projects. But the future workload is expected to comprise many more smaller projects. At the same time, equipment is becoming more complex and the need for mutual understanding and appreciation between disciplines is increasing. To meet this increasing need for flexibility, BNFL has decided to move to the matrix structure of project management and functional departments described in the article. (Author)

  8. Integrated Energy & Emission Management for Heavy-Duty Diesel Engines with Waste Heat Recovery System

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  9. Wärtsilä turbocharger wash and dew point controller integration

    OpenAIRE

    Perälä, Antti

    2013-01-01

    There are two separate control cabinets used in Wärtsilä marine solutions, Turbocharger Wash Control and the Dew Point Control. The cabinets contain similar PLCs with I/O-cards needed in the system and touch screen for monitoring and controlling purposes. The purpose of the thesis was to find and implement a solution for integration of the control cabinets. The advantages of the integration are savings in material, space in the engine room and amount of work. The aim of the project was to cre...

  10. Validation of human factor engineering integrated system

    International Nuclear Information System (INIS)

    Fang Zhou

    2013-01-01

    Apart from hundreds of thousands of human-machine interface resources, the control room of a nuclear power plant is a complex system integrated with many factors such as procedures, operators, environment, organization and management. In the design stage, these factors are considered by different organizations separately. However, whether above factors could corporate with each other well in operation and whether they have good human factors engineering (HFE) design to avoid human error, should be answered in validation of the HFE integrated system before delivery of the plant. This paper addresses the research and implementation of the ISV technology based on case study. After introduction of the background, process and methodology of ISV, the results of the test are discussed. At last, lessons learned from this research are summarized. (authors)

  11. An overview of integrated flight-propulsion controls flight research on the NASA F-15 research airplane

    Science.gov (United States)

    Burcham, Frank W., Jr.; Gatlin, Donald H.; Stewart, James F.

    1995-01-01

    The NASA Dryden Flight Research Center has been conducting integrated flight-propulsion control flight research using the NASA F-15 airplane for the past 12 years. The research began with the digital electronic engine control (DEEC) project, followed by the F100 Engine Model Derivative (EMD). HIDEC (Highly Integrated Digital Electronic Control) became the umbrella name for a series of experiments including: the Advanced Digital Engine Controls System (ADECS), a twin jet acoustics flight experiment, self-repairing flight control system (SRFCS), performance-seeking control (PSC), and propulsion controlled aircraft (PCA). The upcoming F-15 project is ACTIVE (Advanced Control Technology for Integrated Vehicles). This paper provides a brief summary of these activities and provides background for the PCA and PSC papers, and includes a bibliography of all papers and reports from the NASA F-15 project.

  12. Integration of an ion engine on the Communications Technology Satellite.

    Science.gov (United States)

    Payne, W. F.; Finke, R. C.

    1972-01-01

    An ion engine subsystem intended for satellite stationkeeping tasks is described. Ion thrusters are chosen to perform the task because the specific impulse is at least an order of magnitude higher than the commonly used reaction control jets. The higher the value of specific impulse, the greater the total impulse that can be attained for a given weight of propellant, hence cost benefits result. The integration, subsystem testing, and the operating plans for the ion engine experiment to be flown in 1975 on the Canadian Communications Technology Satellite (CTS) are described. The subsystem is designed to demonstrate north-south stationkeeping, attitude control by means of thrust vectoring, long-term space storage and restart capability, and compatibility with a high powered communications transponder.

  13. Structural Control Systems Implemented in Civil Engineering

    Directory of Open Access Journals (Sweden)

    Cristian Pastia

    2005-01-01

    Full Text Available Over the past three decades, a great interest has been generated by the use of protection systems to mitigate the effects of dynamic environmental hazards on civil engineering structures, such as earthquakes and strong wind. These control systems develop controllable forces to add or dissipate energy in a structure, or both, due to specific devices integrated with sensors, controllers and real – time process to operate. The paper includes the advantages of these technologies consisting of the following sections: 1 represents an introduction, 2 deals with passive control system, 3 regards some control techniques, 4 concerns hybrid control techniques, 5 contains semi – active control techniques, and 6 is dedicated to general conclusions.

  14. Perturbing engine performance measurements to determine optimal engine control settings

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  15. Evaluating control displays with the Engineering Control Analysis Tool (ECAT)

    International Nuclear Information System (INIS)

    Plott, B.

    2006-01-01

    In the Nuclear Power Industry increased use of automated sensors and advanced control systems is expected to reduce and/or change manning requirements. However, critical questions remain regarding the extent to which safety will be compromised if the cognitive workload associated with monitoring multiple automated systems is increased. Can operators/engineers maintain an acceptable level of performance if they are required to supervise multiple automated systems and respond appropriately to off-normal conditions? The interface to/from the automated systems must provide the information necessary for making appropriate decisions regarding intervention in the automated process, but be designed so that the cognitive load is neither too high nor too low for the operator who is responsible for the monitoring and decision making. This paper will describe a new tool that was developed to enhance the ability of human systems integration (HSI) professionals and systems engineers to identify operational tasks in which a high potential for human overload and error can be expected. The tool is entitled the Engineering Control Analysis Tool (ECAT). ECAT was designed and developed to assist in the analysis of: Reliability Centered Maintenance (RCM), operator task requirements, human error probabilities, workload prediction, potential control and display problems, and potential panel layout problems. (authors)

  16. Evaluating control displays with the Engineering Control Analysis Tool (ECAT)

    Energy Technology Data Exchange (ETDEWEB)

    Plott, B. [Alion Science and Technology, MA and D Operation, 4949 Pearl E. Circle, 300, Boulder, CO 80301 (United States)

    2006-07-01

    In the Nuclear Power Industry increased use of automated sensors and advanced control systems is expected to reduce and/or change manning requirements. However, critical questions remain regarding the extent to which safety will be compromised if the cognitive workload associated with monitoring multiple automated systems is increased. Can operators/engineers maintain an acceptable level of performance if they are required to supervise multiple automated systems and respond appropriately to off-normal conditions? The interface to/from the automated systems must provide the information necessary for making appropriate decisions regarding intervention in the automated process, but be designed so that the cognitive load is neither too high nor too low for the operator who is responsible for the monitoring and decision making. This paper will describe a new tool that was developed to enhance the ability of human systems integration (HSI) professionals and systems engineers to identify operational tasks in which a high potential for human overload and error can be expected. The tool is entitled the Engineering Control Analysis Tool (ECAT). ECAT was designed and developed to assist in the analysis of: Reliability Centered Maintenance (RCM), operator task requirements, human error probabilities, workload prediction, potential control and display problems, and potential panel layout problems. (authors)

  17. Integrating chemical engineering fundamentals in the capstone process design project

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Woodley, John; Johnsson, Jan Erik

    2010-01-01

    Reaction Engineering. In order to incorporate reactor design into process design in a meaningful way, the teachers of the respective courses need to collaborate (Standard 9 – Enhancement of Faculty CDIO skills). The students also see that different components of the chemical engineering curriculum relate......All B.Eng. courses offered at the Technical University of Denmark (DTU) must now follow CDIO standards. The final “capstone” course in the B.Eng. education is Process Design, which for many years has been typical of chemical engineering curricula worldwide. The course at DTU typically has about 30...... of the CDIO standards – especially standard 3 – Integrated Curriculum - means that the course projects must draw on competences provided in other subjects which the students are taking in parallel with Process Design – specifically Process Control and Reaction Engineering. In each semester of the B...

  18. Advanced Control Engineering

    DEFF Research Database (Denmark)

    Zhou, Jianjun

    1999-01-01

    This book is developed as a textbook for the course Advanced Control Engineering. The book is intended for students in mechanical engineering and its aim is to provide an understanding of modern control theory as well as methodologies and applications for state space modeling and design...

  19. [Eutrophication control in local area by physic-ecological engineering].

    Science.gov (United States)

    Li, Qiu-Hua; Xia, Pin-Hua; Wu, Hong; Lin, Tao; Zhang, You-Chun; Li, Cun-Xiong; Chen, Li-Li; Yang, Fan

    2012-07-01

    An integrated physical and ecological engineering experiment for ecological remediation was performed at the Maixi River bay in Baihua Reservoir Guizhou Province, China. The results show that eutrophic parameters, such as total nitrogen, total phosphorus, chlorophyll a and chemical oxygen demand from the experimental site (enclosed water) were significantly lower than those of the reference site. The largest differences between the sites were 0.61 mg x L(-1), 0.041 mg x L(-1), 23.06 microg x L(-1), 8.4 mg x L(-1) respectively; experimental site transparency was > 1.50 m which was significantly higher than that of the reference site. The eutrophic index of the experimental site was oligo-trophic and mid-trophic, while the control site was mid-trophic state and eutrophic state. Phytoplankton abundance was 2 125.5 x 10(4) cells x L(-1) in June, 2011 at the control site,but phytoplankton abundance was lower at the experimental site with 33 x 10(4) cells x L(-1). Cyanobacteria dominated phytoplankton biomass at both sites, however the experimental site consisted of a higher proportion of diatoms and dinoflagellates. After more than one year of operation, the ecological engineering technology effectively controlled the occurrence of algae blooms, changed phytoplankton community structure, and controlled the negative impacts of eutrophication. Integrating physical and ecological engineering technology could improve water quality for reservoirs on the Guizhou plateau.

  20. System integration and control strategy analysis of PEMFC car

    International Nuclear Information System (INIS)

    Sun, L.; Chen, Y.; Liu, Y.; Shi, P.

    2004-01-01

    A new fuel car was designed according to the prototype LN2000 hydrogen-oxygen fuel cell car. The new prototype consists of a compact fuel cell engine with separated fuel cell stack, nickel metal hydride battery, a motor with power of 30Kw/100Kw and an inverter with high efficiency. With in the powertrain, a two-shift Planet gear transmission was employed. The power performance was greatly improved. New battery with EMS, new self-developed fuel cell engine, the motor propulsion system and electronic controlled transmission make it feasible to control the whole fuel car automatically and efficiently with optimization. The presents the system integration and the control strategy analysis of the fuel cell car prototype. The paper can be used for reference for engineers in the field of fuel cell vehicle. (author)

  1. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Cloudt, R.P.M.

    2012-01-01

    This study presents an integrated energy and emission management strategy for an Euro-VI diesel engine with Waste Heat Recovery (WHR) system. This Integrated Powertrain Control (IPC) strategy optimizes the CO2-NOx trade-off by minimizing the operational costs associated with fuel and AdBlue

  2. A Novel Emergent State Control Law for an Integrated Helicopter/Turboshaft Engine System

    NARCIS (Netherlands)

    Zhang, H.; Li, Y.; Deng, S.

    2014-01-01

    A two-layer robust control scheme is proposed to get a better response ability for emergency maneuvers of helicopter. Note that the power used in ascending flight is the main coupling between helicopter and its turboshaft engines; therefore vertical flight control is separated from conventional

  3. Human Engineering of Space Vehicle Displays and Controls

    Science.gov (United States)

    Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko

    2010-01-01

    Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.

  4. A Plan for Revolutionary Change in Gas Turbine Engine Control System Architecture

    Science.gov (United States)

    Culley, Dennis E.

    2011-01-01

    The implementation of Distributed Engine Control technology on the gas turbine engine has been a vexing challenge for the controls community. A successful implementation requires the resolution of multiple technical issues in areas such as network communications, power distribution, and system integration, but especially in the area of high temperature electronics. Impeding the achievement has been the lack of a clearly articulated message about the importance of the distributed control technology to future turbine engine system goals and objectives. To resolve these issues and bring the technology to fruition has, and will continue to require, a broad coalition of resources from government, industry, and academia. This presentation will describe the broad challenges facing the next generation of advanced control systems and the plan which is being put into action to successfully implement the technology on the next generation of gas turbine engine systems.

  5. An integrated finite-element approach to mechanics, transport and biosynthesis in tissue engineering

    NARCIS (Netherlands)

    Sengers, B.G.; Oomens, C.W.J.; Baaijens, F.P.T.

    2004-01-01

    A finite-element approach was formulated, aimed at enabling an integrated study of mechanical and biochemical factors that control the functional development of tissue engineered constructs. A nonlinear biphasic displacement-velocity-pressure description was combined with adjective and diffusive

  6. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    Randle, D.C.

    2000-01-01

    The primary purpose of this document is to develop a preliminary high-level functional and physical control system architecture for the potential repository at Yucca Mountain. This document outlines an overall control system concept that encompasses and integrates the many diverse process and communication systems being developed for the subsurface repository design. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The Subsurface Repository Integrated Control System design will be composed of a series of diverse process systems and communication networks. The subsurface repository design contains many systems related to instrumentation and control (I andC) for both repository development and waste emplacement operations. These systems include waste emplacement, waste retrieval, ventilation, radiological and air monitoring, rail transportation, construction development, utility systems (electrical, lighting, water, compressed air, etc.), fire protection, backfill emplacement, and performance confirmation. Each of these systems involves some level of I andC and will typically be integrated over a data communications network throughout the subsurface facility. The subsurface I andC systems will also interface with multiple surface-based systems such as site operations, rail transportation, security and safeguards, and electrical/piped utilities. In addition to the I andC systems, the subsurface repository design also contains systems related to voice and video communications. The components for each of these systems will be distributed and linked over voice and video communication networks throughout the subsurface facility. The scope and primary objectives of this design analysis are to: (1) Identify preliminary system-level functions and interfaces (Section 6.2). (2) Examine the overall system complexity and determine how and on what levels the engineered process systems will be monitored

  7. Executive control systems in the engineering design environment

    Science.gov (United States)

    Hurst, P. W.; Pratt, T. W.

    1985-01-01

    Executive Control Systems (ECSs) are software structures for the unification of various engineering design application programs into comprehensive systems with a central user interface (uniform access) method and a data management facility. Attention is presently given to the most significant determinations of a research program conducted for 24 ECSs, used in government and industry engineering design environments to integrate CAD/CAE applications programs. Characterizations are given for the systems' major architectural components and the alternative design approaches considered in their development. Attention is given to ECS development prospects in the areas of interdisciplinary usage, standardization, knowledge utilization, and computer science technology transfer.

  8. Decision-Based Design Integrating Consumer Preferences into Engineering Design

    CERN Document Server

    Chen, Wei; Wassenaar, Henk Jan

    2013-01-01

    Building upon the fundamental principles of decision theory, Decision-Based Design: Integrating Consumer Preferences into Engineering Design presents an analytical approach to enterprise-driven Decision-Based Design (DBD) as a rigorous framework for decision making in engineering design.  Once the related fundamentals of decision theory, economic analysis, and econometrics modelling are established, the remaining chapters describe the entire process, the associated analytical techniques, and the design case studies for integrating consumer preference modeling into the enterprise-driven DBD framework. Methods for identifying key attributes, optimal design of human appraisal experiments, data collection, data analysis, and demand model estimation are presented and illustrated using engineering design case studies. The scope of the chapters also provides: •A rigorous framework of integrating the interests from both producer and consumers in engineering design, •Analytical techniques of consumer choice model...

  9. Human factors in remote control engineering development activities

    International Nuclear Information System (INIS)

    Clarke, M.M.; Hamel, W.R.; Draper, J.V.

    1983-01-01

    Human factors engineering, which is an integral part of the advanced remote control development activities at the Oak Ridge National Laboratory, is described. First, work at the Remote Systems Development Facility (RSDF) has shown that operators can perform a wide variety of tasks, some of which were not specifically designed for remote systems, with a dextrous electronic force-reflecting servomanipulator and good television remote viewing capabilities. Second, the data collected during mock-up remote maintenance experiments at the RSDF have been analyzed to provide guidelines for the design of human interfaces with an integrated advanced remote maintenance system currently under development. Guidelines have been provided for task allocation between operators, remote viewing systems, and operator controls. 6 references, 5 figures, 2 tables

  10. 14 CFR 23.1143 - Engine controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 23.1143 Section 23.1143... Accessories § 23.1143 Engine controls. (a) There must be a separate power or thrust control for each engine... supercharger controls must be arranged to allow— (1) Separate control of each engine and each supercharger; and...

  11. The Application of Hardware in the Loop Testing for Distributed Engine Control

    Science.gov (United States)

    Thomas, George L.; Culley, Dennis E.; Brand, Alex

    2016-01-01

    The essence of a distributed control system is the modular partitioning of control function across a hardware implementation. This type of control architecture requires embedding electronics in a multitude of control element nodes for the execution of those functions, and their integration as a unified system. As the field of distributed aeropropulsion control moves toward reality, questions about building and validating these systems remain. This paper focuses on the development of hardware-in-the-loop (HIL) test techniques for distributed aero engine control, and the application of HIL testing as it pertains to potential advanced engine control applications that may now be possible due to the intelligent capability embedded in the nodes.

  12. Concise Review: Organ Engineering: Design, Technology, and Integration

    NARCIS (Netherlands)

    Kaushik, G.; Leijten, Jeroen Christianus Hermanus; Khademhosseini, A.

    Engineering complex tissues and whole organs has the potential to dramatically impact translational medicine in several avenues. Organ engineering is a discipline that integrates biological knowledge of embryological development, anatomy, physiology, and cellular interactions with enabling

  13. Thermal integrity in mechanics and engineering

    International Nuclear Information System (INIS)

    Shorr, Boris F.

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  14. Thermal integrity in mechanics and engineering

    Energy Technology Data Exchange (ETDEWEB)

    Shorr, Boris F. [Central Institute of Aviation Motors (CIAM), Moscow (Russian Federation)

    2015-07-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.

  15. Integrated engineering system for nuclear facilities building

    International Nuclear Information System (INIS)

    Tomura, H.; Miyamoto, A.; Futami, F.; Yasuda, S.; Ohtomo, T.

    1995-01-01

    In the construction of buildings for nuclear facilities in Japan, construction companies are generally in charge of the building engineering work, coordinating with plant engineering. An integrated system for buildings (PROMOTE: PROductive MOdeling system for Total nuclear Engineering) described here is a building engineering system including the entire life cycle of buildings for nuclear facilities. A Three-dimensional (3D) building model (PRO-model) is to be in the core of the system (PROMOTE). Data sharing in the PROMOTE is also done with plant engineering systems. By providing these basic technical foundations, PROMOTE is oriented toward offering rational, highquality engineering for the projects. The aim of the system is to provide a technical foundation in building engineering. This paper discusses the characteristics of buildings for nuclear facilities and the outline of the PROMOTE. (author)

  16. Mean Value SI Engine Model for Control Studies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Sorenson, Spencer C

    1990-01-01

    This paper presents a mathematically simple nonlinear three state (three differential equation) dynamic model of an SI engine which has the same steady state accuracy as a typical dynamometer measurement of the engine over its entire speed/load operating range (± 2.0%). The model's accuracy...... for large, fast transients is of the same order in the same operating region. Because the model is mathematically compact, it has few adjustable parameters and is thus simple to fit to a given engine either on the basis of measurements or given the steady state results of a larger cycle simulation package....... The model can easily be run on a Personal Computer (PC) using a ordinary differential equation (ODE) integrating routine or package. This makes the model is useful for control system design and evaluation....

  17. Comparison of PBL Curricua within Control Engineering Education

    DEFF Research Database (Denmark)

    Fernandez-Samaca, Liliana; Nielsen, Kirsten M.; Ramirez, Jose Miguel

    2011-01-01

    During the last twenty years, various forms of PBL have been implemented in diverse educational programs and national policy regulations, and to different extents, ranging from a single course level to an integrated PBL curriculum. This has resulted in a variety of PBL curriculum practices....... In this article, a comparison of two PBL cases will be described in order to study the advantages and disadvantages of the two systems. One case presents a single level comprised of two courses and the other one is an integrated PBL curriculum, and both are focused on control engineering courses. The PBL...

  18. Engine Modelling for Control Applications

    DEFF Research Database (Denmark)

    Hendricks, Elbert

    1997-01-01

    In earlier work published by the author and co-authors, a dynamic engine model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. In its newer form, it is easy to fit to many different engines and requires little...... engine data for this purpose. It is especially well suited to embedded model applications in engine controllers, such as nonlinear observer based air/fuel ratio and advanced idle speed control. After a brief review of this model, it will be compared with other similar models which can be found...

  19. Building an Evaluation Strategy for an Integrated Curriculum in Chemical Engineering

    Science.gov (United States)

    McCarthy, Joseph J.; Parker, Robert S.; Abatan, Adetola; Besterfield-Sacre, Mary

    2011-01-01

    Increasing knowledge integration has gained wide-spread support as an important goal in engineering education. The Chemical Engineering Pillars curriculum at the University of Pittsburgh, unique for its use of block scheduling, is one of the first four-year, integrated curricula in engineering, and is specifically designed to facilitate knowledge…

  20. Problems in event based engine control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Jensen, Michael; Chevalier, Alain Marie Roger

    1994-01-01

    Physically a four cycle spark ignition engine operates on the basis of four engine processes or events: intake, compression, ignition (or expansion) and exhaust. These events each occupy approximately 180° of crank angle. In conventional engine controllers, it is an accepted practice to sample...... the engine variables synchronously with these events (or submultiples of them). Such engine controllers are often called event-based systems. Unfortunately the main system noise (or disturbance) is also synchronous with the engine events: the engine pumping fluctuations. Since many electronic engine...... problems on accurate air/fuel ratio control of a spark ignition (SI) engine....

  1. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  2. Feedforward mapping for engine control

    OpenAIRE

    Aran, Volkan; Ünel, Mustafa; Unel, Mustafa

    2016-01-01

    Feedforward control is widely used in electronic control units of internal combustion engines besides feedback controls. However, almost all feedforward control values are used in table form, also called maps, having engine speed and engine torque in their axes. Table approach limits all inte ractions in two input dimensions. This paper focuses on application of Gaussian process modelling of errors of inverse parametric model of the valve position. Validation results based on ...

  3. Optimal control in thermal engineering

    CERN Document Server

    Badescu, Viorel

    2017-01-01

    This book is the first major work covering applications in thermal engineering and offering a comprehensive introduction to optimal control theory, which has applications in mechanical engineering, particularly aircraft and missile trajectory optimization. The book is organized in three parts: The first part includes a brief presentation of function optimization and variational calculus, while the second part presents a summary of the optimal control theory. Lastly, the third part describes several applications of optimal control theory in solving various thermal engineering problems. These applications are grouped in four sections: heat transfer and thermal energy storage, solar thermal engineering, heat engines and lubrication.Clearly presented and easy-to-use, it is a valuable resource for thermal engineers and thermal-system designers as well as postgraduate students.

  4. Effective Integration of Life Cycle Engineering in Education

    NARCIS (Netherlands)

    Oude Luttikhuis, Ellen; Toxopeus, Marten E.; Lutters, Diederick

    2015-01-01

    In practice, applying life cycle engineering in product design and development requires an integrated approach, because of the many stakeholders and variables (e.g. cost, environmental impact, energy, safety, quality) involved in a complete product life cycle. In educating young engineers, the same

  5. Integrated multi-sensory control of space robot hand

    Science.gov (United States)

    Bejczy, A. K.; Kan, E. P.; Killion, R. R.

    1985-01-01

    Dexterous manipulation of a robot hand requires the use of multiple sensors integrated into the mechanical hand under distributed microcomputer control. Where space applications such as construction, assembly, servicing and repair tasks are desired of smart robot arms and robot hands, several critical drives influence the design, engineering and integration of such an electromechanical hand. This paper describes a smart robot hand developed at the Jet Propulsion Laboratory for experimental use and evaluation with the Protoflight Manipulator Arm (PFMA) at the Marshall Space Flight Center (MSFC).

  6. An Integrated Architecture for Engineering Problem Solving

    National Research Council Canada - National Science Library

    Pisan, Yusuf

    1998-01-01

    .... This thesis describes the Integrated Problem Solving Architecture (IPSA) that combines qualitative, quantitative and diagrammatic reasoning skills to produce annotated solutions to engineering problems...

  7. 14 CFR 29.1143 - Engine controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 29.1143 Section 29.1143... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 29.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be arranged...

  8. 14 CFR 27.1143 - Engine controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 27.1143 Section 27.1143... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Powerplant Controls and Accessories § 27.1143 Engine controls. (a) There must be a separate power control for each engine. (b) Power controls must be grouped...

  9. Emerging Engine Control Technologies

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Chevalier, Alain

    1996-01-01

    In earlier work published by the author and co-authors, a dynamic model called a Mean Value Engine Model (MVEM) was developed. This model is physically based and is intended mainly for control applications. It is especially well suited to embedded model applications in engine controllers, susch...

  10. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice.

    Science.gov (United States)

    Shao, Jiawei; Xue, Shuai; Yu, Guiling; Yu, Yuanhuan; Yang, Xueping; Bai, Yu; Zhu, Sucheng; Yang, Linfeng; Yin, Jianli; Wang, Yidan; Liao, Shuyong; Guo, Sanwei; Xie, Mingqi; Fussenegger, Martin; Ye, Haifeng

    2017-04-26

    With the increasingly dominant role of smartphones in our lives, mobile health care systems integrating advanced point-of-care technologies to manage chronic diseases are gaining attention. Using a multidisciplinary design principle coupling electrical engineering, software development, and synthetic biology, we have engineered a technological infrastructure enabling the smartphone-assisted semiautomatic treatment of diabetes in mice. A custom-designed home server SmartController was programmed to process wireless signals, enabling a smartphone to regulate hormone production by optically engineered cells implanted in diabetic mice via a far-red light (FRL)-responsive optogenetic interface. To develop this wireless controller network, we designed and implanted hydrogel capsules carrying both engineered cells and wirelessly powered FRL LEDs (light-emitting diodes). In vivo production of a short variant of human glucagon-like peptide 1 (shGLP-1) or mouse insulin by the engineered cells in the hydrogel could be remotely controlled by smartphone programs or a custom-engineered Bluetooth-active glucometer in a semiautomatic, glucose-dependent manner. By combining electronic device-generated digital signals with optogenetically engineered cells, this study provides a step toward translating cell-based therapies into the clinic. Copyright © 2017, American Association for the Advancement of Science.

  11. Integrating commercial software in accelerator control- case study

    International Nuclear Information System (INIS)

    Pace, Alberto

    1994-01-01

    Using existing commercial software is the dream of any control system engineer for the development cost reduction that can reach one order of magnitude. This dream often vanishes when appears the requirement to have a uniform and consistent architecture through a wide number of components and applications. This makes it difficult to integrate several commercial packages that often impose different user interface and communication standards. This paper will describe the approach and standards that have been chosen for the CERN ISOLDE control system that have allowed several commercial packages to be integrated in the system as-they-are permitting the software development cost to be reduced to a minimum. (author). 10 refs., 2 tabs., 9 figs

  12. Biomedical applications of control engineering

    CERN Document Server

    Hacısalihzade, Selim S

    2013-01-01

    Biomedical Applications of Control Engineering is a lucidly written textbook for graduate control engin­eering and biomedical engineering students as well as for medical prac­ti­tioners who want to get acquainted with quantitative methods. It is based on decades of experience both in control engineering and clinical practice.   The book begins by reviewing basic concepts of system theory and the modeling process. It then goes on to discuss control engineering application areas like ·         Different models for the human operator, ·         Dosage and timing optimization in oral drug administration, ·         Measuring symptoms of and optimal dopaminergic therapy in Parkinson’s disease, ·         Measure­ment and control of blood glucose le­vels both naturally and by means of external controllers in diabetes, and ·         Control of depth of anaesthesia using inhalational anaesthetic agents like sevoflurane using both fuzzy and state feedback controllers....

  13. Introduction to Advanced Engine Control Concepts

    Science.gov (United States)

    Sanjay, Garg

    2007-01-01

    With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet these challenges through the concept of Intelligent Propulsion Systems. The key enabling technologies for an Intelligent Propulsion System are the increased efficiencies of components through active control, advanced diagnostics and prognostics integrated with intelligent engine control to enhance operational reliability and component life, and distributed control with smart sensors and actuators in an adaptive fault tolerant architecture. This presentation describes the current activities of the Controls and Dynamics Branch in the areas of active component control and propulsion system intelligent control, and presents some recent analytical and experimental results in these areas.

  14. Engine control system having speed-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-02-14

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a controller in communication with the actuator. The controller is configured to receive a signal indicative of engine speed and compare the engine speed signal with a desired engine speed. The controller is also configured to selectively regulate the actuator to adjust a timing of the engine valve to control an amount of air/fuel mixture delivered to the cylinder based on the comparison.

  15. Integrating interface slicing into software engineering processes

    Science.gov (United States)

    Beck, Jon

    1993-01-01

    Interface slicing is a tool which was developed to facilitate software engineering. As previously presented, it was described in terms of its techniques and mechanisms. The integration of interface slicing into specific software engineering activities is considered by discussing a number of potential applications of interface slicing. The applications discussed specifically address the problems, issues, or concerns raised in a previous project. Because a complete interface slicer is still under development, these applications must be phrased in future tenses. Nonetheless, the interface slicing techniques which were presented can be implemented using current compiler and static analysis technology. Whether implemented as a standalone tool or as a module in an integrated development or reverse engineering environment, they require analysis no more complex than that required for current system development environments. By contrast, conventional slicing is a methodology which, while showing much promise and intuitive appeal, has yet to be fully implemented in a production language environment despite 12 years of development.

  16. 14 CFR 25.1143 - Engine controls.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engine controls. 25.1143 Section 25.1143... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Powerplant Controls and Accessories § 25.1143 Engine controls. (a) There must be a separate power or thrust control for each engine. (b) Power and thrust...

  17. Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering.

    Science.gov (United States)

    He, Fei; Murabito, Ettore; Westerhoff, Hans V

    2016-04-01

    Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).

  18. Status and development of process control engineering. Stand und Entwicklung der Prozessleittechnik

    Energy Technology Data Exchange (ETDEWEB)

    Gilson, W [ed.

    1986-01-01

    Process control systems are generally accepted in process engineering and power plant engineering. The book attempts to take stock of the overall automation concept, of the system components, and of the trends of development. Particular interest is taken in project management, as this is where modifications have had the strongest effect on job scheduling and operations planning. The book intends to give experts and other interested readers an outline of the structure of process control systems and an idea of how process control systems can be integrated in an overall concept of production automation. All relevant aspects are mentioned, and the state of the art and development trends are outlined.

  19. Advanced nonlinear engine speed control systems

    DEFF Research Database (Denmark)

    Vesterholm, Thomas; Hendricks, Elbert

    1994-01-01

    Several subsidiary control problems have turned out to be important for improving driveability and fuel consumption in modern spark ignition (SI) engine cars. Among these are idle speed control and cruise control. In this paper the idle speed and cruise control problems will be treated as one......: accurately tracking of a desired engine speed in the presence of model uncertainties and severe load disturbances. This is accomplished by using advanced nonlinear control techniques such as input/output-linearization and sliding mode control. These techniques take advantage of a nonlinear model...... of the engine dynamics, a mean value engine model....

  20. Future of Chemical Engineering: Integrating Biology into the Undergraduate ChE Curriculum

    Science.gov (United States)

    Mosto, Patricia; Savelski, Mariano; Farrell, Stephanie H.; Hecht, Gregory B.

    2007-01-01

    Integrating biology in the chemical engineering curriculum seems to be the future for chemical engineering programs nation and worldwide. Rowan University's efforts to address this need include a unique chemical engineering curriculum with an intensive biology component integrated throughout from freshman to senior years. Freshman and Sophomore…

  1. Advanced Development of a Compact 5-15 lbf Lox/Methane Thruster for an Integrated Reaction Control and Main Engine Propulsion System

    Science.gov (United States)

    Hurlbert, Eric A.; McManamen, John Patrick; Sooknanen, Josh; Studak, Joseph W.

    2011-01-01

    This paper describes the advanced development and testing of a compact 5 to 15 lbf LOX/LCH4 thruster for a pressure-fed integrated main engine and RCS propulsion system to be used on a spacecraft "vertical" test bed (VTB). The ability of the RCS thruster and the main engine to operate off the same propellant supply in zero-g reduces mass and improves mission flexibility. This compact RCS engine incorporates several features to dramatically reduce mass and parts count, to ease manufacturing, and to maintain acceptable performance given that specific impulse (Isp) is not the driver. For example, radial injection holes placed on the chamber body for easier drilling, and high temperature Haynes 230 were selected for the chamber over other more expensive options. The valve inlets are rotatable before welding allowing different orientations for vehicle integration. In addition, the engine design effort selected a coil-on-plug ignition system which integrates a relay and coil with the plug electrode, and moves some exciter electronics to avionics driver board. The engine injector design has small dribble volumes to target minimum pulse widths of 20 msec. and an efficient minimum impulse bit of less than 0.05 lbf-sec. The propellants, oxygen and methane, were chosen because together they are a non-toxic, Mars-forward, high density, space storable, and high performance propellant combination that is capable of pressure-fed and pump-fed configurations and integration with life support and power subsystems. This paper will present the results of the advanced development testing to date of the RCS thruster and the integration with a vehicle propulsion system.

  2. Intelligent Control Systems with an Introduction to System of Systems Engineering

    CERN Document Server

    Nanayakkara, Thrishantha

    2009-01-01

    From aeronautics and manufacturing to healthcare and disaster management, systems engineering (SE) focuses on designing applications that ensure performance optimization. This title integrates the fundamentals of artificial intelligence and systems control in a framework applicable to both simple dynamic systems and large-scale system of systems

  3. Thermodynamic Vent System for an On-Orbit Cryogenic Reaction Control Engine

    Science.gov (United States)

    Hurlbert, Eric A.; Romig, Kris A.; Jimenez, Rafael; Flores, Sam

    2012-01-01

    A report discusses a cryogenic reaction control system (RCS) that integrates a Joule-Thompson (JT) device (expansion valve) and thermodynamic vent system (TVS) with a cryogenic distribution system to allow fine control of the propellant quality (subcooled liquid) during operation of the device. It enables zero-venting when coupled with an RCS engine. The proper attachment locations and sizing of the orifice are required with the propellant distribution line to facilitate line conditioning. During operations, system instrumentation was strategically installed along the distribution/TVS line assembly, and temperature control bands were identified. A sub-scale run tank, full-scale distribution line, open-loop TVS, and a combination of procured and custom-fabricated cryogenic components were used in the cryogenic RCS build-up. Simulated on-orbit activation and thruster firing profiles were performed to quantify system heat gain and evaluate the TVS s capability to maintain the required propellant conditions at the inlet to the engine valves. Test data determined that a small control valve, such as a piezoelectric, is optimal to provide continuously the required thermal control. The data obtained from testing has also assisted with the development of fluid and thermal models of an RCS to refine integrated cryogenic propulsion system designs. This system allows a liquid oxygenbased main propulsion and reaction control system for a spacecraft, which improves performance, safety, and cost over conventional hypergolic systems due to higher performance, use of nontoxic propellants, potential for integration with life support and power subsystems, and compatibility with in-situ produced propellants.

  4. Integrated Engineering Information Technology, FY93 accommplishments

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  5. Integrating E-Learning and Classroom Learning for Engineering Quality Control unit - Curtin University Experience

    Directory of Open Access Journals (Sweden)

    Ali M. Darabi Golshani

    2011-08-01

    Full Text Available Engineering employers expect engineering graduates to possess a wide range of skills that goes beyond their technical knowledge. It is vital that graduates have skills which demonstrate that they are responsible for their own development and careers. Some of these skills include; communication abilities, organizational skills, self-promotion, the ability to work as part of a team, be an effective problem solver, be a critical thinker, have good negotiation skills, have the ability to be a leader and being able to network effectively. Department of Civil Engineering at Curtin University of Technology in Perth, Australia offers a Master of Engineering Management degree for Engineers from various disciplines. One of the units taught in this Master degree program is Engineering Quality Control. It was decided to incorporate these non-technical skills in this unit by using an e-learning platform (Blackboard together with an adaptation of the Seven Principles of Good Practice and Dr Meredith Belbin’s team role theory to divide participants into groups. At the end of the unit, most of the participants were showing improvements in their non-technical skills.

  6. Reverse Engineering Integrated Circuits Using Finite State Machine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Oler, Kiri J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Miller, Carl H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-12

    In this paper, we present a methodology for reverse engineering integrated circuits, including a mathematical verification of a scalable algorithm used to generate minimal finite state machine representations of integrated circuits.

  7. An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States

    Science.gov (United States)

    2015-12-22

    AFRL-AFOSR-VA-TR-2016-0037 An Integrated Neuroscience and Engineering Approach to Classifying Human Brain-States Adrian Lee UNIVERSITY OF WASHINGTON...to 14-09-2015 4. TITLE AND SUBTITLE An Integrated Neuroscience and Engineering Approach to Classifying Human Brain- States 5a.  CONTRACT NUMBER 5b...specific cognitive states remains elusive, owing perhaps to limited crosstalk between the fields of neuroscience and engineering. Here, we report a

  8. Reducing acquisition risk through integrated systems of systems engineering

    Science.gov (United States)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  9. The control of a free-piston engine generator. Part 2: Engine dynamics and piston motion control

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-04-15

    Free-piston engines are under investigation by a number of research groups due to potential fuel efficiency and exhaust emissions advantages over conventional technology. The main challenge with such engines is the control of the piston motion, and this has not yet been fully resolved for all types of free-piston engines. This paper builds on the fundamental investigations presented in the accompanying paper and investigates the dynamics of the engine and the feasibility of classical control approaches. The response of the engine to rapid load changes are investigated using decentralised PID, PDF and disturbance feedforward. It is found that the engine is sensitive to rapid load changes but that in constant power applications standard control techniques provide satisfactory performance. The influence of cycle-to-cycle variations in the combustion process are investigated, but not found to be critical for engine operation. (author)

  10. Sophistication and integration of plant engineering CAD-CAE systems

    International Nuclear Information System (INIS)

    Yoshinaga, Toshiaki; Hanyu, Masaharu; Ota, Yoshimi; Kobayashi, Yasuhiro.

    1995-01-01

    In respective departments in charge of basic planning, design, manufacture, inspection and construction of nuclear power plants, by the positive utilization of CAD/CAE system, efficient workings have been advanced. This time, the plant integrated CAE system wich heightens the function of these individual systems, and can make workings efficient and advanced by unifying and integrating them was developed. This system is composed of the newly developed application system and the data base system which enables the unified management of engineering data and high speed data conversion in addition to the CAD system for three-dimensional plant layout planning. On the basis of the rich experience and the proposal of improvement of designers by the application of the CAD system for three-dimensional plant layout planning to actual machines, the automation, speed increase and the visualization of input and output by graphical user interface (GUI) in the processing of respective applications were made feasible. As the advancement of plant CAE system, scenic engineering system, integrated layout CAE system, electric instrumentation design CAE system and construction planning CAE system are described. As for the integration of plant CAE systems, the integrated engineering data base, the combination of plant CAE systems, and the operation management in the dispersed environment of networks are reported. At present, Hitachi Ltd. exerts efforts for the construction of atomic energy product in formation integrated management system as the second stage of integration. (K.I.)

  11. Introduction to digital instrumentation and control techniques used in nuclear engineering

    International Nuclear Information System (INIS)

    Kurilla, R.G.; Kenney, E.S.

    1988-01-01

    For the past 8 yr, the nuclear engineering department at Pennsylvania State University has been teaching a digital interfacing class at the undergraduate (senior) level. With the ever-increasing use of computers in the nuclear engineering area (such as in the use of automated data acquisition systems) and the complexity of control instrumentation, more than a cursory introduction into electronics and computer controls is needed. Because of the ever-increasing popularity, and hence importance, of IBM-PC compatible microcomputers in the engineering fields, the program has been adapted to the Intel 8086 microprocessor. Courses such as this one are helpful in ensuring the students have an adequate design and practice base as required by accrediting groups. The course, is composed of three parts: (1) machine code/assembly language, (2) interfacing, and (3) final project. Experience demonstrates that a course of this inherent complexity can successfully be taught within a nuclear engineering curriculum without extensive prerequisites. The important ingredient is to treat nuclear engineering students for exactly what they are, engineers. By having them use their creativity and adaptability, they can successfully integrate the digital interfacing techniques now routinely used in the nuclear industry

  12. 13th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

  13. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    International Nuclear Information System (INIS)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance-of-plant is designed and suggested. Thermodynamic analysis shows that a thermal efficiency of 42.4% based on the lower heating value (LHV) can be achieved if all input parameters are selected conservatively. Different parameter studies are performed to analyze the system behavior under different conditions. The analysis shows that the decreasing number of stacks from a design viewpoint, indicating that plant efficiency decreases but power production remains nearly unchanged. Furthermore, the analysis shows that there is an optimum value for the utilization factor of the SOFC for the suggested plant design with the suggested input parameters. This optimum value is approximately 65%, which is a rather modest value for SOFC. In addition, introducing a methanator increases plant efficiency slightly. If SOFC operating temperature decreases due to new technology then plant efficiency will slightly be increased. Decreasing gasifier temperature, which cannot be controlled, causes the plant efficiency to increase also. - Highlights: • Design of integrated gasification with solid oxide fuel and Stirling engine. • Important plant parameters study. • Plant running on biomass with and without methanator. • Thermodynamics of integrated gasification SOFC-Stirling engine plants

  14. Flexible structure control experiments using a real-time workstation for computer-aided control engineering

    Science.gov (United States)

    Stieber, Michael E.

    1989-01-01

    A Real-Time Workstation for Computer-Aided Control Engineering has been developed jointly by the Communications Research Centre (CRC) and Ruhr-Universitaet Bochum (RUB), West Germany. The system is presently used for the development and experimental verification of control techniques for large space systems with significant structural flexibility. The Real-Time Workstation essentially is an implementation of RUB's extensive Computer-Aided Control Engineering package KEDDC on an INTEL micro-computer running under the RMS real-time operating system. The portable system supports system identification, analysis, control design and simulation, as well as the immediate implementation and test of control systems. The Real-Time Workstation is currently being used by CRC to study control/structure interaction on a ground-based structure called DAISY, whose design was inspired by a reflector antenna. DAISY emulates the dynamics of a large flexible spacecraft with the following characteristics: rigid body modes, many clustered vibration modes with low frequencies and extremely low damping. The Real-Time Workstation was found to be a very powerful tool for experimental studies, supporting control design and simulation, and conducting and evaluating tests withn one integrated environment.

  15. Experimental Comparison of Speed : Fuel-flow and Speed-area Controls on a Turbojet Engine for Small Step Disturbances

    Science.gov (United States)

    Wenzel, L M; Hart, C E; Craig, R T

    1957-01-01

    Optimum proportional-plus-integral control settings for speed - fuel-flow control, determined by minimization of integral criteria, correlated well with analytically predicted optimum settings. Engine response data are given for a range of control settings around the optimum. An inherent nonlinearity in the speed-area loop necessitated the use of nonlinear controls. Response data for two such nonlinear control schemes are presented.

  16. Integrating ergonomics into engineering design: The role of objects

    DEFF Research Database (Denmark)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-01-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between...

  17. Integrated engineering increases flexibility. [At BNFL

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ray [British Nuclear Fuels plc, London (UK)

    1991-05-01

    Integrated Engineering (IE) can be used to describe the best use of increasingly rare good engineering talent in an increasingly competive world. A number of organisations are now moving towards IE without any general agreement on a precise definition. The engineering division of British Nuclear Fuels (BNFL) is one such organisation. This feature covers the reasoning behind the decision, and our experience to date. BNFL engineering division is responsible primarily for the provision of major facilities on BNFL operational sites. This provision includes feasibility, front end and detailed design, procurement, installation and commissioning. Task force working has been used for some of the large projects. But the future workload is expected to comprise many more smaller projects. At the same time, equipment is becoming more complex and the need for mutual understanding and appreciation between disciplines is increasing. To meet this increasing need for flexibility, BNFL has decided to move to the matrix structure of project management and functional departments described in the article. (Author).

  18. Integration of Sustainability in Engineering Education: Why Is PBL an Answer?

    Science.gov (United States)

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…

  19. Engine modeling and control modeling and electronic management of internal combustion engines

    CERN Document Server

    Isermann, Rolf

    2014-01-01

    The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software developm...

  20. DATYS integrates piping and supports engineering

    International Nuclear Information System (INIS)

    Rendon, J.G.; Fraile, A.R.

    1990-01-01

    Empresarios Agrupados of Spain has developed an interactive software package which computerizes and integrates the whole range of tasks involved in pipework engineering; including drawing, design, analysis and support calculations. Its strength lies in its modularity and in the ability to re-evaluate and modify existing projects. (author)

  1. Ground Operations Autonomous Control and Integrated Health Management

    Science.gov (United States)

    Daniels, James

    2014-01-01

    The Ground Operations Autonomous Control and Integrated Health Management plays a key role for future ground operations at NASA. The software that is integrated into this system is called G2 2011 Gensym. The purpose of this report is to describe the Ground Operations Autonomous Control and Integrated Health Management with the use of the G2 Gensym software and the G2 NASA toolkit for Integrated System Health Management (ISHM) which is a Computer Software Configuration Item (CSCI). The decision rationale for the use of the G2 platform is to develop a modular capability for ISHM and AC. Toolkit modules include knowledge bases that are generic and can be applied in any application domain module. That way, there's a maximization of reusability, maintainability, and systematic evolution, portability, and scalability. Engine modules are generic, while application modules represent the domain model of a specific application. Furthermore, the NASA toolkit, developed since 2006 (a set of modules), makes it possible to create application domain models quickly, using pre-defined objects that include sensors and components libraries for typical fluid, electrical, and mechanical systems.

  2. Integrated smart control of heating, cooling, ventilation, daylighting and electrical lighting in buildings

    NARCIS (Netherlands)

    Bakker, L.G.; Brouwer, A.H.M.; Babuska, R.

    1998-01-01

    The present energy consumption of European Buildings is higher than necessary, given the developments in control engineering. Optimization and integration of smart control into building systems can save substantial quantities of energy on a European scale while improving the standards for indoor

  3. Engine control techniques to account for fuel effects

    Science.gov (United States)

    Kumar, Shankar; Frazier, Timothy R.; Stanton, Donald W.; Xu, Yi; Bunting, Bruce G.; Wolf, Leslie R.

    2014-08-26

    A technique for engine control to account for fuel effects including providing an internal combustion engine and a controller to regulate operation thereof, the engine being operable to combust a fuel to produce an exhaust gas; establishing a plurality of fuel property inputs; establishing a plurality of engine performance inputs; generating engine control information as a function of the fuel property inputs and the engine performance inputs; and accessing the engine control information with the controller to regulate at least one engine operating parameter.

  4. Integrated, digital experiment transient control and safety protection of an in-pile test

    International Nuclear Information System (INIS)

    Thomas, R.W.; Whitacre, R.F.; Klingler, W.B.

    1982-01-01

    The Sodium Loop Safety Facility experimental program has demonstrated that in-pile loop fuel failure transient tests can be digitally controlled and protected with reliability and precision. This was done in four nuclear experiments conducted in the Engineering Test Reactor operated by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory. Loop sodium flow and reactor power transients can be programmed to sponsor requirements and verified prior to the test. Each controller has redundancy, which reduces the effect of single failures occurring during test transients. Feedback and reject criteria are included in the reactor power control. Timed sequencing integrates the initiation of the controllers, programmed safety set-points, and other experiment actions (e.g., planned scram). Off-line and on-line testing is included. Loss-of-flow, loss-of-piping-integrity, boiling-window, transient-overpower, and local fault tests have been successfully run using this system

  5. Integrated energy and emission management for diesel engines with waste heat recovery using dynamic models

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.C.; Feru, E.

    2015-01-01

    Rankine-cycle Waste Heat Recovery (WHR) systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine and WHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI

  6. Integration of safety engineering into a cost optimized development program.

    Science.gov (United States)

    Ball, L. W.

    1972-01-01

    A six-segment management model is presented, each segment of which represents a major area in a new product development program. The first segment of the model covers integration of specialist engineers into 'systems requirement definition' or the system engineering documentation process. The second covers preparation of five basic types of 'development program plans.' The third segment covers integration of system requirements, scheduling, and funding of specialist engineering activities into 'work breakdown structures,' 'cost accounts,' and 'work packages.' The fourth covers 'requirement communication' by line organizations. The fifth covers 'performance measurement' based on work package data. The sixth covers 'baseline requirements achievement tracking.'

  7. Model Predictive Engine Air-Ratio Control Using Online Sequential Relevance Vector Machine

    Directory of Open Access Journals (Sweden)

    Hang-cheong Wong

    2012-01-01

    Full Text Available Engine power, brake-specific fuel consumption, and emissions relate closely to air ratio (i.e., lambda among all the engine variables. An accurate and adaptive model for lambda prediction is essential to effective lambda control for long term. This paper utilizes an emerging technique, relevance vector machine (RVM, to build a reliable time-dependent lambda model which can be continually updated whenever a sample is added to, or removed from, the estimated lambda model. The paper also presents a new model predictive control (MPC algorithm for air-ratio regulation based on RVM. This study shows that the accuracy, training, and updating time of the RVM model are superior to the latest modelling methods, such as diagonal recurrent neural network (DRNN and decremental least-squares support vector machine (DLSSVM. Moreover, the control algorithm has been implemented on a real car to test. Experimental results reveal that the control performance of the proposed relevance vector machine model predictive controller (RVMMPC is also superior to DRNNMPC, support vector machine-based MPC, and conventional proportional-integral (PI controller in production cars. Therefore, the proposed RVMMPC is a promising scheme to replace conventional PI controller for engine air-ratio control.

  8. The Case for Distributed Engine Control in Turbo-Shaft Engine Systems

    Science.gov (United States)

    Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.

    2009-01-01

    The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.

  9. Supervisory control of a heavy-duty diesel engine with an electrified waste heat recovery system

    NARCIS (Netherlands)

    Feru, E.; Murgovski, N.; de Jager, A.G.; Willems, F.P.T.

    This paper presents an integrated energy and emission management strategy, called Integrated Powertrain Control (IPC), for an Euro-VI diesel engine with an electrified waste heat recovery system. This strategy optimizes the CO2–NOxCO2–NOx trade-off by minimizing the operational costs associated with

  10. HCCI engine control and optimization

    OpenAIRE

    Killingsworth, Nicholas J.

    2007-01-01

    Homogeneous charge compression ignition (HCCI) engines have the benefit of high efficiency with low emissions of nitrogen oxides and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desi...

  11. 46 CFR 121.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Propulsion engine control systems. 121.620 Section 121... Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of shaft rotation, and engine...

  12. Integrated energy and emission management for heavy-duty diesel engines with waste heat recovery system

    NARCIS (Netherlands)

    Willems, F.P.T.; Kupper, F.; Rascanu, G.; Feru, E.

    2015-01-01

    Rankine-cycleWasteHeatRecovery (WHR)systems are promising solutions to reduce fuel consumption for trucks. Due to coupling between engine andWHR system, control of these complex systems is challenging. This study presents an integrated energy and emission management strategy for an Euro-VI Diesel

  13. Thermal integrity in mechanics and engineering

    CERN Document Server

    Shorr, Boris F

    2015-01-01

    The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author’s contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspec...

  14. Integrating computer programs for engineering analysis and design

    Science.gov (United States)

    Wilhite, A. W.; Crisp, V. K.; Johnson, S. C.

    1983-01-01

    The design of a third-generation system for integrating computer programs for engineering and design has been developed for the Aerospace Vehicle Interactive Design (AVID) system. This system consists of an engineering data management system, program interface software, a user interface, and a geometry system. A relational information system (ARIS) was developed specifically for the computer-aided engineering system. It is used for a repository of design data that are communicated between analysis programs, for a dictionary that describes these design data, for a directory that describes the analysis programs, and for other system functions. A method is described for interfacing independent analysis programs into a loosely-coupled design system. This method emphasizes an interactive extension of analysis techniques and manipulation of design data. Also, integrity mechanisms exist to maintain database correctness for multidisciplinary design tasks by an individual or a team of specialists. Finally, a prototype user interface program has been developed to aid in system utilization.

  15. Ion engine auxiliary propulsion applications and integration study

    Science.gov (United States)

    Zafran, S. (Editor)

    1977-01-01

    The benefits derived from application of the 8-cm mercury electron bombardment ion thruster were assessed. Two specific spacecraft missions were studied. A thruster was tested to provide additional needed information on its efflux characteristics and interactive effects. A Users Manual was then prepared describing how to integrate the thruster for auxiliary propulsion on geosynchronous satellites. By incorporating ion engines on an advanced communications mission, the weight available for added payload increases by about 82 kg (181 lb) for a 100 kg (2200 lb) satellite which otherwise uses electrothermal hydrazine. Ion engines can be integrated into a high performance propulsion module that is compatible with the multimission modular spacecraft and can be used for both geosynchronous and low earth orbit applications. The low disturbance torques introduced by the ion engines permit accurate spacecraft pointing with the payload in operation during thrusting periods. The feasibility of using the thruster's neutralizer assembly for neutralization of differentially charged spacecraft surfaces at geosynchronous altitude was demonstrated during the testing program.

  16. Cost-Effective Reciprocating Engine Emissions Control and Monitoring for E&P Field and Gathering Engines

    Energy Technology Data Exchange (ETDEWEB)

    Keith Hohn; Sarah R. Nuss-Warren

    2011-08-31

    This final report describes a project intended to identify, develop, test, and commercialize emissions control and monitoring technologies that can be implemented by E&P operators to significantly lower their cost of environmental compliance and expedite project permitting. Technologies were installed and tested in controlled laboratory situations and then installed and tested on field engines based on the recommendations of an industry-based steering committee, analysis of installed horsepower, analysis of available emissions control and monitoring technologies, and review of technology and market gaps. The industry-recognized solution for lean-burn engines, a low-emissions-retrofit including increased airflow and pre-combustion chambers, was found to successfully control engine emissions of oxides of nitrogen (NO{sub X}) and carbon monoxide (CO). However, the standard non-selective catalytic reduction (NSCR) system recognized by the industry was found to be unable to consistently control both NO{sub X} and CO emissions. The standard NSCR system was observed to produce emissions levels that changed dramatically on a day-to-day or even hour-to-hour basis. Because difficulties with this system seemed to be the result of exhaust gas oxygen (EGO) sensors that produced identical output for very different exhaust gas conditions, models were developed to describe the behavior of the EGO sensor and an alternative, the universal exhaust gas oxygen (UEGO) sensor. Meanwhile, an integrated NSCR system using an advanced, signal-conditioned UEGO sensor was tested and found to control both NO{sub X} and CO emissions. In conjunction with this project, advanced monitoring technologies, such as Ion Sense, and improved sensors for emissions control, such as the AFM1000+ have been developed and commercialized.

  17. First Canadian workshop on engineering structural integrity : CWESI. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The First Canadian Workshop on Engineering Structural Integrity (CWESI) was held on October 16 and 17, 2002, in Toronto, Canada. The purpose of the Workshop was to review strategies for ESI in a number of key industries, and to attempt to plot a course for co-operation in ESI activities and implementation of ESI initiatives in Canadian industry, together with support for appropriate educational, research and development activities. The Workshop consisted of presentations by speakers from a number of industries. Presentations focused on in-service experience under service conditions related to the Canadian environment. This Workshop was attended by practising structural integrity engineers, managers with the responsibility for delivery of safe and reliable operation, and researchers in the structural integrity area

  18. Hybrid Engine Powered City Car: Fuzzy Controlled Approach

    Science.gov (United States)

    Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany

    2017-03-01

    This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.

  19. Fuzzy control in environmental engineering

    CERN Document Server

    Chmielowski, Wojciech Z

    2016-01-01

    This book is intended for engineers, technicians and people who plan to use fuzzy control in more or less developed and advanced control systems for manufacturing processes, or directly for executive equipment. Assuming that the reader possesses elementary knowledge regarding fuzzy sets and fuzzy control, by way of a reminder, the first parts of the book contain a reminder of the theoretical foundations as well as a description of the tools to be found in the Matlab/Simulink environment in the form of a toolbox. The major part of the book presents applications for fuzzy controllers in control systems for various manufacturing and engineering processes. It presents seven processes and problems which have been programmed using fuzzy controllers. The issues discussed concern the field of Environmental Engineering. Examples are the control of a flood wave passing through a hypothetical, and then the real Dobczyce reservoir in the Raba River, which is located in the upper Vistula River basin in Southern Poland, th...

  20. Introduction to Integral Calculus Systematic Studies with Engineering Applications for Beginners

    CERN Document Server

    Rohde, Ulrich L; Poddar, Ajay K; Ghosh, A K

    2011-01-01

    An accessible introduction to the fundamentals of calculus needed to solve current problems in engineering and the physical sciences I ntegration is an important function of calculus, and Introduction to Integral Calculus combines fundamental concepts with scientific problems to develop intuition and skills for solving mathematical problems related to engineering and the physical sciences. The authors provide a solid introduction to integral calculus and feature applications of integration, solutions of differential equations, and evaluation methods. With logical organization coupled with cle

  1. High School Engineering and Technology Education Integration through Design Challenges

    Science.gov (United States)

    Mentzer, Nathan

    2011-01-01

    This study contextualized the use of the engineering design process by providing descriptions of how each element in a design process was integrated in an eleventh grade industry and engineering systems course. The guiding research question for this inquiry was: How do students engage in the engineering design process in a course where technology…

  2. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, P

    2015-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...

  3. A New Turbo-shaft Engine Control Law during Variable Rotor Speed Transient Process

    Science.gov (United States)

    Hua, Wei; Miao, Lizhen; Zhang, Haibo; Huang, Jinquan

    2015-12-01

    A closed-loop control law employing compressor guided vanes is firstly investigated to solve unacceptable fuel flow dynamic change in single fuel control for turbo-shaft engine here, especially for rotorcraft in variable rotor speed process. Based on an Augmented Linear Quadratic Regulator (ALQR) algorithm, a dual-input, single-output robust control scheme is proposed for a turbo-shaft engine, involving not only the closed loop adjustment of fuel flow but also that of compressor guided vanes. Furthermore, compared to single fuel control, some digital simulation cases using this new scheme about variable rotor speed have been implemented on the basis of an integrated system of helicopter and engine model. The results depict that the command tracking performance to the free turbine rotor speed can be asymptotically realized. Moreover, the fuel flow transient process has been significantly improved, and the fuel consumption has been dramatically cut down by more than 2% while keeping the helicopter level fight unchanged.

  4. Engine Torque Control of Spark Ignition Engine using Fuzzy Gain Scheduling

    OpenAIRE

    Aris Triwiyatno

    2012-01-01

    In the spark ignition engine system, driver convenience is very dependent on satisfying engine torque appropriate with the throttle position given by the driver. Unfortunately, sometimes the fulfillment of engine torque is not in line with fuel saving efforts. This requires the development of high performance and robust power train controllers. One way to potentially meet these performance requirements is to introduce a method of controlling engine torque using fuzzy gain scheduling. By using...

  5. Engine control system having pressure-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-10-04

    A control system for an engine having a first cylinder and a second cylinder is disclosed having a first engine valve movable to regulate a fluid flow of the first cylinder and a first actuator associated with the first engine valve. The control system also has a second engine valve movable to regulate a fluid flow of the second cylinder and a sensor configured to generate a signal indicative of a pressure within the first cylinder. The control system also has a controller that is in communication with the first actuator and the sensor. The controller is configured to compare the pressure within the first cylinder with a desired pressure and selectively regulate the first actuator to adjust a timing of the first engine valve independently of the timing of the second engine valve based on the comparison.

  6. Opportunities for Launch Site Integrated System Health Engineering and Management

    Science.gov (United States)

    Waterman, Robert D.; Langwost, Patricia E.; Waterman, Susan J.

    2005-01-01

    The launch site processing flow involves operations such as functional verification, preflight servicing and launch. These operations often include hazards that must be controlled to protect human life and critical space hardware assets. Existing command and control capabilities are limited to simple limit checking durig automated monitoring. Contingency actions are highly dependent on human recognition, decision making, and execution. Many opportunities for Integrated System Health Engineering and Management (ISHEM) exist throughout the processing flow. This paper will present the current human-centered approach to health management as performed today for the shuttle and space station programs. In addition, it will address some of the more critical ISHEM needs, and provide recommendations for future implementation of ISHEM at the launch site.

  7. ELECTRONIC CONTROL FOR FUEL SUPPLY OF DIESEL ENGINE ON THE BASIS OF PROGRAMMABLE PID-REGULATOR

    Directory of Open Access Journals (Sweden)

    A. G. Bakhanovich

    2017-01-01

    Full Text Available The article presents a schematic diagram of the Euro-3 diesel engine electronic control and describes hard- and software platform of the high pressure fuel pump pneumatic actuator control that allows to realize the concept of electronic fuel supply control of diesel engine KamAZ-740. The strategic dependence beetwen the angular position of fuel pump governor lever and the angular position of electronic accelerator pedal were put on the basis of electronic control concept. Implementation of this dependence was carried out by applying a modulated PWM signal with determined duty cycle by the controller to the coil proportional solenoid valve, which is responsible for the amount of air pressure in the working chamber of the power air cylinder, connected by articulated-type to the governor lever of the high pressure fuel pump. In this case, the feedback control by position of governor lever of the high pressure fuel pump was introduced in the control circuit, but engine crankshaft speed control was carried out using a software continuous PID governor. Developed strategy gives possibility to track the deflection  of control parameter from a predetermined value by real-time and almost instantly, to make a control action on actuators to eliminate this deflection, while providing a minimum time of transition. Governor’s setting (proportional, integral and differential component performed empirically using the classical Ziegler – Nichols method, based on the analysis of the safety factor of automatic control system. The results of calculating the coefficients of proportional integral-differential regulator and oscillograms HIL experiment on testing the proposed diesel engine throttle control strategies using visualization CoDeSys V2.3 are given in activity.

  8. Concepts for Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis E.; Thomas, Randy; Saus, Joseph

    2007-01-01

    Gas turbine engines for aero-propulsion systems are found to be highly optimized machines after over 70 years of development. Still, additional performance improvements are sought while reduction in the overall cost is increasingly a driving factor. Control systems play a vitally important part in these metrics but are severely constrained by the operating environment and the consequences of system failure. The considerable challenges facing future engine control system design have been investigated. A preliminary analysis has been conducted of the potential benefits of distributed control architecture when applied to aero-engines. In particular, reductions in size, weight, and cost of the control system are possible. NASA is conducting research to further explore these benefits, with emphasis on the particular benefits enabled by high temperature electronics and an open-systems approach to standardized communications interfaces.

  9. 46 CFR 184.620 - Propulsion engine control systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Propulsion engine control systems. 184.620 Section 184... Communications Systems § 184.620 Propulsion engine control systems. (a) A vessel must have two independent means of controlling each propulsion engine. Control must be provided for the engine speed, direction of...

  10. From Design to Production Control Through the Integration of Engineering Data Management and Workflow Management Systems

    CERN Document Server

    Le Goff, J M; Bityukov, S; Estrella, F; Kovács, Z; Le Flour, T; Lieunard, S; McClatchey, R; Murray, S; Organtini, G; Vialle, J P; Bazan, A; Chevenier, G

    1997-01-01

    At a time when many companies are under pressure to reduce "times-to-market" the management of product information from the early stages of design through assembly to manufacture and production has become increasingly important. Similarly in the construction of high energy physics devices the collection of ( often evolving) engineering data is central to the subsequent physics analysis. Traditionally in industry design engineers have employed Engineering Data Management Systems ( also called Product Data Management Systems) to coordinate and control access to documented versions of product designs. However, these systems provide control only at the collaborative design level and are seldom used beyond design. Workflow management systems, on the other hand, are employed in industry to coordinate and support the more complex and repeatable work processes of the production environment. Commer cial workflow products cannot support the highly dynamic activities found both in the design stages of product developmen...

  11. CONTROL ENGINEERING ON BOARD

    Directory of Open Access Journals (Sweden)

    Serghei RADU

    2012-11-01

    Full Text Available Control engineering embraces instrumentation, alarm systems, control of machinery and plant previously known under the misnomer of automation. Control engineering can be applied not only to propelling and auxiliary machinery but also to electrical installations, refrigeration, cargo handling (especially in tankers and deck machinery, e.g. Windlass control. Opinion still vary on such matters as the relative merits of pneumatic versus electronic system and whether the control center should be in the engine room or adjacent to the navigating bridge. Arguments against the exclusion of the engineer officer from close contact with the machinery are countered by the fact that electronic systems are based on changes other than those of human response. Automated ships (UMS operate closer to prescribed standards and therefore operate with greater efficiency. The closer control of machinery operating conditions, e.g. cooling water temperatures and pressures, permits machinery to be run at its optimum design conditions, making for fuel economy and reduced maintenance. Automation can carry out some tasks far more effectively than men. In other areas it is less effective. For example, the monitoring of machinery operating conditions such as the temperatures and pressures can be carried out by a solid state alarm scanning system at the rate of 400 channels/sec., giving a degree of surveillance which would be impossible by human observation. Conversely, the detection of noisy bearing, a leaky gland or cracked pipe is scarcely possible by automatic means. The balance between the possible and the necessary would be achieved in this case by combining automatic monitoring of all the likely fault conditions, with routine machinery space inspection say twice a day.

  12. Philosophy of integrity assessment of engineering components

    International Nuclear Information System (INIS)

    Chaudhuri, Satyabrata

    2008-01-01

    Integrity assessment of engineering components in power plants and process industries has attracted global attention from the viewpoint of safety and economy for their optimum utilization. This paper describes some aspects of philosophy of component integrity such as life assessment technology, materials used and the factors limiting the serviceability of the components operating at high temperatures and pressures. Numerous investigations have been carried out all over the world to study changes in microstructure and material property due to prolonged service of the components to decide their further serviceability. This paper includes case studies on integrity assessment of service-exposed components carried out in our laboratory as well

  13. Computer-aided-engineering system for modeling and analysis of ECLSS integration testing

    Science.gov (United States)

    Sepahban, Sonbol

    1987-01-01

    The accurate modeling and analysis of two-phase fluid networks found in environmental control and life support systems is presently undertaken by computer-aided engineering (CAE) techniques whose generalized fluid dynamics package can solve arbitrary flow networks. The CAE system for integrated test bed modeling and analysis will also furnish interfaces and subsystem/test-article mathematical models. Three-dimensional diagrams of the test bed are generated by the system after performing the requisite simulation and analysis.

  14. Near-Surface Engineered Environmental Barrier Integrity

    International Nuclear Information System (INIS)

    Piet, S.J.; Breckenridge, R.P.

    2002-01-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined

  15. Propulsion/flight control integration technology (PROFIT) software system definition

    Science.gov (United States)

    Carlin, C. M.; Hastings, W. J.

    1978-01-01

    The Propulsion Flight Control Integration Technology (PROFIT) program is designed to develop a flying testbed dedicated to controls research. The control software for PROFIT is defined. Maximum flexibility, needed for long term use of the flight facility, is achieved through a modular design. The Host program, processes inputs from the telemetry uplink, aircraft central computer, cockpit computer control and plant sensors to form an input data base for use by the control algorithms. The control algorithms, programmed as application modules, process the input data to generate an output data base. The Host program formats the data for output to the telemetry downlink, the cockpit computer control, and the control effectors. Two applications modules are defined - the bill of materials F-100 engine control and the bill of materials F-15 inlet control.

  16. Integration issues of information engineering based I-CASE tools

    OpenAIRE

    Kurbel, Karl; Schnieder, Thomas

    1994-01-01

    Problems and requirements regarding integration of methods and tools across phases of the software-development life cycle are discussed. Information engineering (IE) methodology and I-CASE (integrated CASE) tools supporting IE claim to have an integrated view across major stages of enterprise-wide information-system development: information strategy planning, business area analysis, system design, and construction. In the main part of this paper, two comprehensive I-CASE tools, ADW (Applicati...

  17. Engine control system having fuel-based adjustment

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2011-03-15

    A control system for an engine having a cylinder is disclosed having an engine valve configured to affect a fluid flow of the cylinder, an actuator configured to move the engine valve, and an in-cylinder sensor configured to generate a signal indicative of a characteristic of fuel entering the cylinder. The control system also has a controller in communication with the actuator and the sensor. The controller is configured to determine the characteristic of the fuel based on the signal and selectively regulate the actuator to adjust a timing of the engine valve based on the characteristic of the fuel.

  18. Nuclear plant engineering work and integrated management system

    International Nuclear Information System (INIS)

    Ohkubo, Y.; Obata, T.; Tanaka, K.

    1992-01-01

    The Application of computers to the design, engineering, manufacturing and construction works of nuclear power plants has greatly contributed to improvement of productivity and reliability in the nuclear power plants constructed by Mitsubishi Nuclear Group for more than ten years. However, in most cases, those systems have been developed separately and utilized independently in different computer software and hardware environments and have not been fully utilized to achieve high efficiency and reliability. In order to drastically increase the productivity and efficiency, development of NUclear power plant engineering Work and INtegrated manaGement System (NUWINGS) started in 1987 to unify and integrate various conventional and developing systems using the state-of-the-art computer technology. The NUWINGS is almost completed and is now applied to actual plant construction. (author)

  19. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Science.gov (United States)

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  20. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Bor-Sen Chen

    2013-10-01

    Full Text Available Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

  1. Controlling LPG temperature for SI engine applications

    International Nuclear Information System (INIS)

    Ceviz, Mehmet Akif; Kaleli, Alirıza; Güner, Erdoğan

    2015-01-01

    In this study, the effects of the LPG temperature on the engine performance and the exhaust emission characteristics have been investigated experimentally on an SI engine. In conventional injection systems, the LPG temperature increases excessively during the phase change in pressure regulator, and reduces the engine volumetric efficiency. According to the test results, engine performance and NO emission characteristics can be improved by controlling the LPG temperature before injecting to the engine intake manifold. A new control system taking into account the results of the study has been developed and tested. In order to control the LPG temperature, the coolant flow rate in pressure regulator circuit was arranged by using a control valve activated by a PID controller unit. Results of the study showed that the engine brake power loss can be increased by about 1.85% and NO emissions can be decreased by about 2% as compared to the operation with the original LPG injection system. - Highlights: • Effects of the LPG temperature have been examined. • Engine performance characteristics and exhaust emissions have been studied. • Results reveal that the LPG temperature should be kept in a range. • A prototype LPG temperature control system has been successfully developed

  2. Integration of supervisory control synthesis in model-based systems engineering

    NARCIS (Netherlands)

    Baeten, J.C.M.; Mortel - Fronczak, van de J.M.; Rooda, J.E.

    2011-01-01

    Due to increasing system complexity, time-to-market and development costs reduction, there are higher demands on engineering processes. Model-based engineering can play a role here because it supports system development by enabling the use of various model-based analysis techniques and tools. As a

  3. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  4. Integrated System-Level Optimization for Concurrent Engineering With Parametric Subsystem Modeling

    Science.gov (United States)

    Schuman, Todd; DeWeck, Oliver L.; Sobieski, Jaroslaw

    2005-01-01

    The introduction of concurrent design practices to the aerospace industry has greatly increased the productivity of engineers and teams during design sessions as demonstrated by JPL's Team X. Simultaneously, advances in computing power have given rise to a host of potent numerical optimization methods capable of solving complex multidisciplinary optimization problems containing hundreds of variables, constraints, and governing equations. Unfortunately, such methods are tedious to set up and require significant amounts of time and processor power to execute, thus making them unsuitable for rapid concurrent engineering use. This paper proposes a framework for Integration of System-Level Optimization with Concurrent Engineering (ISLOCE). It uses parametric neural-network approximations of the subsystem models. These approximations are then linked to a system-level optimizer that is capable of reaching a solution quickly due to the reduced complexity of the approximations. The integration structure is described in detail and applied to the multiobjective design of a simplified Space Shuttle external fuel tank model. Further, a comparison is made between the new framework and traditional concurrent engineering (without system optimization) through an experimental trial with two groups of engineers. Each method is evaluated in terms of optimizer accuracy, time to solution, and ease of use. The results suggest that system-level optimization, running as a background process during integrated concurrent engineering sessions, is potentially advantageous as long as it is judiciously implemented.

  5. A Planning Approach of Engineering Characteristics Based on QFD-TRIZ Integrated

    Science.gov (United States)

    Liu, Shang; Shi, Dongyan; Zhang, Ying

    Traditional QFD planning method compromises contradictions between engineering characteristics to achieve higher customer satisfaction. However, this compromise trade-off can not eliminate the contradictions existing among the engineering characteristics which limited the overall customer satisfaction. QFD (Quality function deployment) integrated with TRIZ (the Russian acronym of the Theory of Inventive Problem Solving) becomes hot research recently for TRIZ can be used to solve contradictions between engineering characteristics which construct the roof of HOQ (House of quality). But, the traditional QFD planning approach is not suitable for QFD integrated with TRIZ for that TRIZ requires emphasizing the contradictions between engineering characteristics at problem definition stage instead of compromising trade-off. So, a new planning approach based on QFD / TRIZ integration is proposed in this paper, which based on the consideration of the correlation matrix of engineering characteristics and customer satisfaction on the basis of cost. The proposed approach suggests that TRIZ should be applied to solve contradictions at the first step, and the correlation matrix of engineering characteristics should be amended at the second step, and at next step IFR (ideal final result) must be validated, then planning execute. An example is used to illustrate the proposed approach. The application indicated that higher customer satisfaction can be met and the contradictions between the characteristic parameters are eliminated.

  6. Advanced Control Considerations for Turbofan Engine Design

    Science.gov (United States)

    Connolly, Joseph W.; Csank, Jeffrey T.; Chicatelli, Amy

    2016-01-01

    This paper covers the application of a model-based engine control (MBEC) methodology featuring a self tuning on-board model for an aircraft turbofan engine simulation. The nonlinear engine model is capable of modeling realistic engine performance, allowing for a verification of the advanced control methodology over a wide range of operating points and life cycle conditions. The on-board model is a piece-wise linear model derived from the nonlinear engine model and updated using an optimal tuner Kalman Filter estimation routine, which enables the on-board model to self-tune to account for engine performance variations. MBEC is used here to show how advanced control architectures can improve efficiency during the design phase of a turbofan engine by reducing conservative operability margins. The operability margins that can be reduced, such as stall margin, can expand the engine design space and offer potential for efficiency improvements. Application of MBEC architecture to a nonlinear engine simulation is shown to reduce the thrust specific fuel consumption by approximately 1% over the baseline design, while maintaining safe operation of the engine across the flight envelope.

  7. 14th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Riva, Matteo; Lamberti, Pier; Musolino, Paolo

    2017-01-01

    This contributed volume contains a collection of articles on the most recent advances in integral methods.  The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as: • Integral equations • Homogenization • Duality methods • Optimal design • Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

  8. Controllable molecular motors engineered from myosin and RNA

    Science.gov (United States)

    Omabegho, Tosan; Gurel, Pinar S.; Cheng, Clarence Y.; Kim, Laura Y.; Ruijgrok, Paul V.; Das, Rhiju; Alushin, Gregory M.; Bryant, Zev

    2018-01-01

    Engineering biomolecular motors can provide direct tests of structure-function relationships and customized components for controlling molecular transport in artificial systems1 or in living cells2. Previously, synthetic nucleic acid motors3-5 and modified natural protein motors6-10 have been developed in separate complementary strategies to achieve tunable and controllable motor function. Integrating protein and nucleic-acid components to form engineered nucleoprotein motors may enable additional sophisticated functionalities. However, this potential has only begun to be explored in pioneering work harnessing DNA scaffolds to dictate the spacing, number and composition of tethered protein motors11-15. Here, we describe myosin motors that incorporate RNA lever arms, forming hybrid assemblies in which conformational changes in the protein motor domain are amplified and redirected by nucleic acid structures. The RNA lever arm geometry determines the speed and direction of motor transport and can be dynamically controlled using programmed transitions in the lever arm structure7,9. We have characterized the hybrid motors using in vitro motility assays, single-molecule tracking, cryo-electron microscopy and structural probing16. Our designs include nucleoprotein motors that reversibly change direction in response to oligonucleotides that drive strand-displacement17 reactions. In multimeric assemblies, the controllable motors walk processively along actin filaments at speeds of 10-20 nm s-1. Finally, to illustrate the potential for multiplexed addressable control, we demonstrate sequence-specific responses of RNA variants to oligonucleotide signals.

  9. HCCI Engine Optimization and Control

    Energy Technology Data Exchange (ETDEWEB)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  10. Control systems engineering

    CERN Document Server

    Nise, Norman S

    1995-01-01

    This completely updated new edition shows how to use MATLAB to perform control-system calculations. Designed for the professional or engineering student who needs a quick and readable update on designing control systems, the text features a series of tightly focused examples that clearly illustrate each concept of designing control systems. Most chapters conclude with a detailed application from the two case studies that run throughout the book: an antenna asimuth control system and a submarine. The author also refers to many examples of design methods.

  11. Integrating ergonomics in design processes: a case study within an engineering consultancy firm.

    Science.gov (United States)

    Sørensen, Lene Bjerg; Broberg, Ole

    2012-01-01

    This paper reports on a case study within an engineering consultancy firm, where engineering designers and ergonomists were working together on the design of a new hospital sterile processing plant. The objective of the paper is to gain a better understanding of the premises for integrating ergonomics into engineering design processes and how different factors either promote or limit the integration. Based on a grounded theory approach a model illustrating these factors is developed and different hypotheses about how these factors either promote and/or limit the integration of ergonomics into design processes is presented along with the model.

  12. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  13. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 5. Systems and Control Engineering - Control Systems-Analysis and Design. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 5 May 1999 pp 88-94 ...

  14. Recent advances in electrical engineering and control applications

    CERN Document Server

    Bououden, Sofiane; Zelinka, Ivan

    2017-01-01

    This book of proceedings includes papers presenting the state of art in electrical engineering and control theory as well as their applications. The topics focus on classical as well as modern methods for modeling, control, identification and simulation of complex systems with applications in science and engineering. The papers were selected from the hottest topic areas, such as control and systems engineering, renewable energy, faults diagnosis—faults tolerant control, large-scale systems, fractional order systems, unconventional algorithms in control engineering, signals and communications. The control and design of complex systems dynamics, analysis and modeling of its behavior and structure is vitally important in engineering, economics and in science generally science today. Examples of such systems can be seen in the world around us and are a part of our everyday life. Application of modern methods for control, electronics, signal processing and more can be found in our mobile phones, car engines, hom...

  15. Integrated environmental control and monitoring in the intelligent workplace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This project involved the design and engineering of the control and monitoring of environmental quality - visual, thermal, air - in the Intelligent Workplace. The research objectives were to study the performance of the individual systems, to study the integration issues related to each system, to develop a control plan, and to implement and test the integrated systems in a real setting. In this project, a control strategy with related algorithms for distributed sensors, actuators, and controllers for negotiating central and individual control of HVAC, lighting, and enclosure was developed in order to maximize user comfort, and energy and environmental effectiveness. The goal of the control system design in the Intelligent Workplace is the integration of building systems for optimization of occupant satisfaction, organizational flexibility, energy efficiency and environmental effectiveness. The task of designing this control system involves not only the research, development and demonstration of state-of-the-art mechanical and electrical systems, but also their integration. The ABSIC research team developed functional requirements for the environmental systems considering the needs of both facility manager and the user. There are three levels of control for the environmental systems: scheduled control, sensor control, and user control. The challenges are to achieve the highest possible levels of energy effectiveness simultaneously with the highest levels of user satisfaction. The report describes the components of each system, their implementation in the Intelligent Workplace and related control and monitoring issues.

  16. The INGECAD multidisciplinary integrated computer aided engineering system

    International Nuclear Information System (INIS)

    Kisielewicz, L.T.

    1989-01-01

    The purpose of this paper is to define the key criteria of an integrated CAE system, and to discuss the solution developed by Ingevision to match these criteria. An information flow model of process plant engineering is presented as a background to the key criteria of CAE systems. This model includes multidisciplinary interfaces and project changes up to the as-built stage. The key quality criteria of CAE systems correspond to managerial issues, such as project control, to technical issues, consistency and quality assurance, and to economical issues, such as cost optimization. The INGECAD system answers these criteria with a tripod nucleus underlying a set of specialized applications. The nucleus includes a Data Base Management System, basic Graphical Tools, and a Decision Support System. The paper overviews the different modules of the INGECAD system emphasizing the general architecture and the basic tools. Specific examples are developed in functional design, cost optimized items selection, and semi-automated routing of piping system. These examples are not intended to illustrate exhaustively the capabilities of the INGECAD system, but rather to highlight some of the advantages the multidisciplinary integration of the system provides to the users. (orig./HP)

  17. Concurrently adjusting interrelated control parameters to achieve optimal engine performance

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2015-12-01

    Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.

  18. Systems engineering and integration of control centers in support of multiple programs. [ground control for STS payloads and unmanned vehicles

    Science.gov (United States)

    Miller, David N.

    1989-01-01

    The NASA Johnson Space Center's new Multiprogram Control Center (MPCC) addresses the control requirements of complex STS payloads as well as unmanned vehicles. An account is given of the relationship of the MPCC to the STS Mission Control Center, with a view to significant difficulties that may be encountered and solutions thus far devised for generic problems. Examples of MPCC workstation applications encompass telemetry decommutation, engineering unit conversion, data-base management, trajectory processing, and flight design.

  19. Engine control system having fuel-based timing

    Science.gov (United States)

    Willi, Martin L [Dunlap, IL; Fiveland, Scott B [Metamora, IL; Montgomery, David T [Edelstein, IL; Gong, Weidong [Dunlap, IL

    2012-04-03

    A control system for an engine having a cylinder is disclosed having an engine valve movable to regulate a fluid flow of the cylinder and an actuator associated with the engine valve. The control system also has a sensor configured to generate a signal indicative of an amount of an air/fuel mixture remaining within the cylinder after completion of a first combustion event and a controller in communication with the actuator and the sensor. The controller may be configured to compare the amount with a desired amount, and to selectively regulate the actuator to adjust a timing of the engine valve associated with a subsequent combustion event based on the comparison.

  20. High-Voltage LED Light Engine with Integrated Driver

    Energy Technology Data Exchange (ETDEWEB)

    Soer, Wouter [Lumileds LLC, San Jose, CA (United States)

    2016-02-29

    LED luminaires have seen dramatic changes in cost breakdown over the past few years. The LED component cost, which until recently was the dominant portion of luminaire cost, has fallen to a level of the same order as the other luminaire components, such as the driver, housing, optics etc. With the current state of the technology, further luminaire performance improvement and cost reduction is realized most effectively by optimization of the whole system, rather than a single component. This project focuses on improving the integration between LEDs and drivers. Lumileds has developed a light engine platform based on low-cost high-power LEDs and driver topologies optimized for integration with these LEDs on a single substrate. The integration of driver and LEDs enables an estimated luminaire cost reduction of about 25% for targeted applications, mostly due to significant reductions in driver and housing cost. The high-power LEDs are based on Lumileds’ patterned sapphire substrate flip-chip (PSS-FC) technology, affording reduced die fabrication and packaging cost compared to existing technology. Two general versions of PSS-FC die were developed in order to create the desired voltage and flux increments for driver integration: (i) small single-junction die (0.5 mm2), optimal for distributed lighting applications, and (ii) larger multi-junction die (2 mm2 and 4 mm2) for high-power directional applications. Two driver topologies were developed: a tapped linear driver topology and a single-stage switch-mode topology, taking advantage of the flexible voltage configurations of the new PSS-FC die and the simplification opportunities enabled by integration of LEDs and driver on the same board. A prototype light engine was developed for an outdoor “core module” application based on the multi-junction PSS-FC die and the single-stage switch-mode driver. The light engine meets the project efficacy target of 128 lm/W at a luminous flux

  1. Anomaly Detection for Resilient Control Systems Using Fuzzy-Neural Data Fusion Engine

    Energy Technology Data Exchange (ETDEWEB)

    Ondrej Linda; Milos Manic; Timothy R. McJunkin

    2011-08-01

    Resilient control systems in critical infrastructures require increased cyber-security and state-awareness. One of the necessary conditions for achieving the desired high level of resiliency is timely reporting and understanding of the status and behavioral trends of the control system. This paper describes the design and development of a neural-network based data-fusion system for increased state-awareness of resilient control systems. The proposed system consists of a dedicated data-fusion engine for each component of the control system. Each data-fusion engine implements three-layered alarm system consisting of: (1) conventional threshold-based alarms, (2) anomalous behavior detector using self-organizing maps, and (3) prediction error based alarms using neural network based signal forecasting. The proposed system was integrated with a model of the Idaho National Laboratory Hytest facility, which is a testing facility for hybrid energy systems. Experimental results demonstrate that the implemented data fusion system provides timely plant performance monitoring and cyber-state reporting.

  2. Enhanced Engine Performance During Emergency Operation Using a Model-Based Engine Control Architecture

    Science.gov (United States)

    Csank, Jeffrey T.; Connolly, Joseph W.

    2016-01-01

    This paper discusses the design and application of model-based engine control (MBEC) for use during emergency operation of the aircraft. The MBEC methodology is applied to the Commercial Modular Aero-Propulsion System Simulation 40k (CMAPSS40k) and features an optimal tuner Kalman Filter (OTKF) to estimate unmeasured engine parameters, which can then be used for control. During an emergency scenario, normally-conservative engine operating limits may be relaxed to increase the performance of the engine and overall survivability of the aircraft; this comes at the cost of additional risk of an engine failure. The MBEC architecture offers the advantage of estimating key engine parameters that are not directly measureable. Estimating the unknown parameters allows for tighter control over these parameters, and on the level of risk the engine will operate at. This will allow the engine to achieve better performance than possible when operating to more conservative limits on a related, measurable parameter.

  3. Self adaptive internal combustion engine control for hydrogen mixtures using piezoelectric transducers for dynamic cylinder pressure monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Courteau, R.; Bose, T.K. [Quebec Univ., Trois-Rivieres, PQ (Canada). Institut de recherche sur l' hydrogene

    2004-07-01

    Hydrogen internal combustion engine research at the Hydrogen Research Institute includes the following infrastructure: a 20 square metre test cell, an engine preparation room, a 150 hp dynamometer, exhaust gas analysers and a hydrogen supply. The goal of the research is to develop internal combustion engine technologies that can use hydrogen as a fuel without knocking, backfires, excessive engine wear, and with low emissions. As well as hydrogen, fuels such as biogas are also investigated. Technologies under investigation include adaptive control algorithms, as well as advanced sensors and actuators. The latter include piezolelectrics, optical fibres, nitrogen oxide detectors, and chemical composition detectors. Developments include microprocessor-controlled injection and ignition control systems for both single cylinder and multicylinder engines. Research on the influence of fuel composition on best ignition timing is presented. There is also dynamic cylinder pressure monitoring to prevent knocking make engine state assessments and perform engine calibration. Piezoelectric cylinder pressure sensors are employed, either integrated with the spark plugs, or stand-alone, inserted through separate holes through the cylinder head. tabs, figs.

  4. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos

    2009-01-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  5. Safety, reliability, risk management and human factors: an integrated engineering approach applied to nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Silva, Eliane Magalhaes Pereira da; Costa, Antonio Carlos Lopes da; Reis, Sergio Carneiro dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: vasconv@cdtn.br, e-mail: silvaem@cdtn.br, e-mail: aclc@cdtn.br, e-mail: reissc@cdtn.br

    2009-07-01

    Nuclear energy has an important engineering legacy to share with the conventional industry. Much of the development of the tools related to safety, reliability, risk management, and human factors are associated with nuclear plant processes, mainly because the public concern about nuclear power generation. Despite the close association between these subjects, there are some important different approaches. The reliability engineering approach uses several techniques to minimize the component failures that cause the failure of the complex systems. These techniques include, for instance, redundancy, diversity, standby sparing, safety factors, and reliability centered maintenance. On the other hand system safety is primarily concerned with hazard management, that is, the identification, evaluation and control of hazards. Rather than just look at failure rates or engineering strengths, system safety would examine the interactions among system components. The events that cause accidents may be complex combinations of component failures, faulty maintenance, design errors, human actions, or actuation of instrumentation and control. Then, system safety deals with a broader spectrum of risk management, including: ergonomics, legal requirements, quality control, public acceptance, political considerations, and many other non-technical influences. Taking care of these subjects individually can compromise the completeness of the analysis and the measures associated with both risk reduction, and safety and reliability increasing. Analyzing together the engineering systems and controls of a nuclear facility, their management systems and operational procedures, and the human factors engineering, many benefits can be realized. This paper proposes an integration of these issues based on the application of systems theory. (author)

  6. Stirling engine power control

    Science.gov (United States)

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  7. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  8. Systems and Control Engineering

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 1. Systems and Control Engineering - Notions of Control. A Rama Kalyan J R Vengateswaran. General Article Volume 4 Issue 1 January 1999 pp 45-52. Fulltext. Click here to view fulltext PDF. Permanent link:

  9. Active Engine Mounting Control Algorithm Using Neural Network

    Directory of Open Access Journals (Sweden)

    Fadly Jashi Darsivan

    2009-01-01

    Full Text Available This paper proposes the application of neural network as a controller to isolate engine vibration in an active engine mounting system. It has been shown that the NARMA-L2 neurocontroller has the ability to reject disturbances from a plant. The disturbance is assumed to be both impulse and sinusoidal disturbances that are induced by the engine. The performance of the neural network controller is compared with conventional PD and PID controllers tuned using Ziegler-Nichols. From the result simulated the neural network controller has shown better ability to isolate the engine vibration than the conventional controllers.

  10. Model based development of engine control algorithms

    NARCIS (Netherlands)

    Dekker, H.J.; Sturm, W.L.

    1996-01-01

    Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed

  11. Experiences in Automation and Control in Engineering Education with Real-world Based Educational Kits

    Directory of Open Access Journals (Sweden)

    Filomena SOARES

    2015-10-01

    Full Text Available The well-known paradigm learning by doing is particularly important in engineering courses. Still, in some situations, there is a lack of real-world didactic workbenches due to the absence of financial support, human resources or maintenances restrictions. The authors of this paper have been overcome this difficulty by designing and implementing virtual and remote laboratories in Process Monitoring, Control and Automation teaching applied to Mechanical, Electronics and Biomedical Engineering. The goal of this paper is to present the work developed regarding the real-world workbenches to be used in automation and control practical classes as an integrated virtual and remote laboratory. Some important points include the modelling and control of Discrete Event Systems, Continuous Systems and Real-Time Systems as well as Industrial Control Networks. The physical parts were developed and connected, in a closed-loop configuration, with the respective controllers. The developed kits and systems were geared towards the engineering students’ needs. This integrated approach is very useful for providing students with a global set of skills in this domain. Quantitative and qualitative studies are continuously applied not only for obtaining students feedback but also to gather information to devise strategies for future virtual and remote laboratory applications development suitable for the target public. The positive results achieved so far are very encouraging attesting its efficiency not only in terms of students’ learning but also as a first contact to face real-world problems. The less positive identified point is concerned with technical aspects.

  12. Integrated Control Using the SOFFT Control Structure

    Science.gov (United States)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  13. Integrated software environment dedicated for implementation of control systems based on PLC controllers

    Directory of Open Access Journals (Sweden)

    Szymon SURMA

    2007-01-01

    Full Text Available Industrial processes’ control systems based on PLC controllers play today a very important role in all fields of transport, including also sea transport. Construction of control systems is the field of engineering, which has been continuously evolving towards maximum simplification of system design path. Up to now the time needed forthe system construction from the design to commissioning had to be divided into a few stages. A mistake made in an earlier stage caused that in most cases the next stages had to be restarted. Available debugging systems allows defect detection at an early stage of theproject implementation. The paper presents general characteristic of integrated software for implementation of complex control systems. The issues related to the software use for programming of the visualisation environment, control computer, selection oftransmission medium and transmission protocol as well as PLC controllers’ configuration, software and control have been analysed.

  14. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  15. Automatic Tuning of Control Parameters for Single Speed Engines

    OpenAIRE

    Olsson, Johan

    2004-01-01

    In Scania’s single speed engines for industrial and marine use, the engine speed is controlled by a PI-controller. This controller is tuned independent of engine type and application. This brings certain disadvantages since the engines are used in a wide range of applications where the dynamics may differ. In this thesis, the possibility to tune the controller automatically for a specific engine installation has been investigated. The work shows that automatic tuning is possible. By performin...

  16. INTEGRATING CONTROLS FRAMEWORKS: CONTROL SYSTEMS FOR NA62 LAV DETECTOR TEST BEAMS

    CERN Document Server

    Holme, O; Golonka, P; Gonzalez-Berges, M; Milcent, H

    2011-01-01

    The detector control system for the NA62 experiment at CERN, to be ready for physics data-taking in 2014, is going to be built based on control technologies recommended by the CERN Engineering group. A rich portfolio of the technologies is planned to be showcased and deployed in the final application, and synergy between them is needed. In particular two approaches to building controls application need to play in harmony: the use of the high-level application framework called UNICOS, and a bottom-up approach of development based on the components of the JCOP Framework. The aim of combining the features provided by the two frameworks is to avoid duplication of functionality and minimize the maintenance and development effort for future controls applications. In the paper the result of the integration efforts obtained so far are presented; namely the control applications developed for beam-testing of NA62 detector prototypes. Even though the delivered applications are simple, significant conceptual and developm...

  17. Integrating Controls Frameworks: Control Systems for NA62 LAV Detector Test Beams

    CERN Document Server

    Holme, Oliver; Golonka, Piotr; Gonzalez-Berges, Manuel; Milcent, Hervé

    2011-01-01

    The detector control system for the NA62 experiment at CERN, to be ready for physics data-taking in 2014, is going to be built based on control technologies recommended by the CERN Engineering group. A rich portfolio of the technologies is planned to be showcased and deployed in the final application, and synergy between them is needed. In particular two approaches to building controls application need to play in harmony: the use of the high-level application framework called UNICOS, and a bottom-up approach of development based on the components of the JCOP Framework. The aim of combining the features provided by the two frameworks is to avoid duplication of functionality and minimize the maintenance and development effort for future controls applications. In the paper the result of the integration efforts obtained so far are presented; namely the control applications developed for beam-testing of NA62 detector prototypes. Even though the delivered applications are simple, significant conceptual and developm...

  18. Handbook of smoke control engineering

    CERN Document Server

    Klote, John H; Turnbull, Paul G; Kashef, Ahmed; Ferreira, Michael J

    2012-01-01

    The Handbook of Smoke Control Engineering extends the tradition of the comprehensive treatment of smoke control technology, including fundamental concepts, smoke control systems, and methods of analysis. The handbook provides information needed for the analysis of design fires, including considerations of sprinklers, shielded fires, and transient fuels. It is also extremely useful for practicing engineers, architects, code officials, researchers, and students. Following the success of Principles of Smoke Management in 2002, this new book incorporates the latest research and advances in smoke control practice. New topics in the handbook are: controls, fire and smoke control in transport tunnels, and full-scale fire testing. For those getting started with the computer models CONTAM and CFAST, there are simplified instructions with examples. This is the first smoke control book with climatic data so that users will have easy-to-use weather data specifically for smoke control design for locations in the U.S., Can...

  19. On spacecraft maneuvers control subject to propellant engine modes.

    Science.gov (United States)

    Mazinan, A H

    2015-09-01

    The paper attempts to address a new control approach to spacecraft maneuvers based upon the modes of propellant engine. A realization of control strategy is now presented in engine on mode (high thrusts as well as further low thrusts), which is related to small angle maneuvers and engine off mode (specified low thrusts), which is also related to large angle maneuvers. There is currently a coarse-fine tuning in engine on mode. It is shown that the process of handling the angular velocities are finalized via rate feedback system in engine modes, where the angular rotations are controlled through quaternion based control (QBCL)strategy in engine off mode and these ones are also controlled through an optimum PID (OPIDH) strategy in engine on mode. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Advanced closed loop combustion control of a LTC diesel engine based on in-cylinder pressure signals

    International Nuclear Information System (INIS)

    Carlucci, A.P.; Laforgia, D.; Motz, S.; Saracino, R.; Wenzel, S.P.

    2014-01-01

    Highlights: • We have proposed an in-cylinder pressure-based closed loop combustion control. • We have tested the control on an engine at the test bench. • We have tested the control on the engine equipping a Euro 6-compliant vehicle. • The control is effective in increasing torque stability and reduce engine noise. - Abstract: The adoption of diesel LTC combustion concepts is widely recognised as a practical way to reduce simultaneously nitric oxides and particulate emission levels from diesel internal combustion engines. However, several challenges have to be faced up when implementing diesel LTC concepts in real application vehicles. In particular, achieving acceptable performance concerning the drivability comfort, in terms of output torque stability and combustion noise during engine dynamic transients, is generally a critical point. One of the most promising solutions to improve the LTC combustion operation lays in the exploitation of closed loop combustion control, based on in-cylinder pressure signals. In this work, the application of an in-cylinder pressure-based closed loop combustion control to a Euro 6-compliant demonstrator vehicle has been developed. The main challenges deriving from the control of the LTC combustion, directly affecting the engine/vehicle performance, have been analysed in detail. In order to overcome these drawbacks, a new control function, integrated into the base closed loop system, has been designed. The performance of the new function have been experimentally tested at the engine test bench. Results showed a significant enhancement of the LTC operation, in terms of both combustion stability and noise reduction during engine transients. The new function was also implemented on a real vehicle, thus proving the potential of the new control concept in realistic operating conditions

  1. A SysML-based Integration Framework for the Engineering of Mechatronic Systems

    OpenAIRE

    Chami, Muhammad; Seemüller, Holger; Voos, Holger

    2010-01-01

    The engineering discipline mechatronics is one of the main innovation leader in industry nowadays. With the need for an optimal synergetic integration of the involved disciplines, the engineering process of mechatronic systems is faced with an increasing complexity and the interdisciplinary nature of these systems. New methods and techniques have to be developed to deal with these challenges. This document presents an approach of a SysML-based integration framework that s...

  2. Reaction Control Engine for Space Launch Initiative

    Science.gov (United States)

    2002-01-01

    Engineers at the Marshall Space Flight Center (MSFC) have begun a series of engine tests on a new breed of space propulsion: a Reaction Control Engine developed for the Space Launch Initiative (SLI). The engine, developed by TRW Space and Electronics of Redondo Beach, California, is an auxiliary propulsion engine designed to maneuver vehicles in orbit. It is used for docking, reentry, attitude control, and fine-pointing while the vehicle is in orbit. The engine uses nontoxic chemicals as propellants, a feature that creates a safer environment for ground operators, lowers cost, and increases efficiency with less maintenance and quicker turnaround time between missions. Testing includes 30 hot-firings. This photograph shows the first engine test performed at MSFC that includes SLI technology. Another unique feature of the Reaction Control Engine is that it operates at dual thrust modes, combining two engine functions into one engine. The engine operates at both 25 and 1,000 pounds of force, reducing overall propulsion weight and allowing vehicles to easily maneuver in space. The low-level thrust of 25 pounds of force allows the vehicle to fine-point maneuver and dock while the high-level thrust of 1,000 pounds of force is used for reentry, orbit transfer, and coarse positioning. SLI is a NASA-wide research and development program, managed by the MSFC, designed to improve safety, reliability, and cost effectiveness of space travel for second generation reusable launch vehicles.

  3. Predicted performance of an integrated modular engine system

    Science.gov (United States)

    Binder, Michael; Felder, James L.

    1993-01-01

    Space vehicle propulsion systems are traditionally comprised of a cluster of discrete engines, each with its own set of turbopumps, valves, and a thrust chamber. The Integrated Modular Engine (IME) concept proposes a vehicle propulsion system comprised of multiple turbopumps, valves, and thrust chambers which are all interconnected. The IME concept has potential advantages in fault-tolerance, weight, and operational efficiency compared with the traditional clustered engine configuration. The purpose of this study is to examine the steady-state performance of an IME system with various components removed to simulate fault conditions. An IME configuration for a hydrogen/oxygen expander cycle propulsion system with four sets of turbopumps and eight thrust chambers has been modeled using the Rocket Engine Transient Simulator (ROCETS) program. The nominal steady-state performance is simulated, as well as turbopump thrust chamber and duct failures. The impact of component failures on system performance is discussed in the context of the system's fault tolerant capabilities.

  4. The heat engine cycle, the heat removal cycle, and ergonomics of the control room displays

    International Nuclear Information System (INIS)

    Beltracchi, L.

    1986-01-01

    This paper discusses and illustrates the ergonomics of an integrated display, which will allow operators to monitor the heat engine cycle during normal operation of the plant, and the heat removal cycle during emergency operation of the plant. A computer-based iconic display is discussed as an overview to monitor these cycles. Specific emphasis is placed upon the process variables and process functions within each cycle, and the action of control systems and engineered safeguard systems within each cycle. This paper contains examples of display formats for the heat engine cycle and the heat removal cycle in a pressurized water reactor

  5. Engineering Design of ITER Prototype Fast Plant System Controller

    Science.gov (United States)

    Goncalves, B.; Sousa, J.; Carvalho, B.; Rodrigues, A. P.; Correia, M.; Batista, A.; Vega, J.; Ruiz, M.; Lopez, J. M.; Rojo, R. Castro; Wallander, A.; Utzel, N.; Neto, A.; Alves, D.; Valcarcel, D.

    2011-08-01

    The ITER control, data access and communication (CODAC) design team identified the need for two types of plant systems. A slow control plant system is based on industrial automation technology with maximum sampling rates below 100 Hz, and a fast control plant system is based on embedded technology with higher sampling rates and more stringent real-time requirements than that required for slow controllers. The latter is applicable to diagnostics and plant systems in closed-control loops whose cycle times are below 1 ms. Fast controllers will be dedicated industrial controllers with the ability to supervise other fast and/or slow controllers, interface to actuators and sensors and, if necessary, high performance networks. Two prototypes of a fast plant system controller specialized for data acquisition and constrained by ITER technological choices are being built using two different form factors. This prototyping activity contributes to the Plant Control Design Handbook effort of standardization, specifically regarding fast controller characteristics. Envisaging a general purpose fast controller design, diagnostic use cases with specific requirements were analyzed and will be presented along with the interface with CODAC and sensors. The requirements and constraints that real-time plasma control imposes on the design were also taken into consideration. Functional specifications and technology neutral architecture, together with its implications on the engineering design, were considered. The detailed engineering design compliant with ITER standards was performed and will be discussed in detail. Emphasis will be given to the integration of the controller in the standard CODAC environment. Requirements for the EPICS IOC providing the interface to the outside world, the prototype decisions on form factor, real-time operating system, and high-performance networks will also be discussed, as well as the requirements for data streaming to CODAC for visualization and

  6. Integrating Experimentation into Control Courses

    NARCIS (Netherlands)

    Molengraft, van de M.J.G.; Steinbuch, M.; Kraker, de A.

    2005-01-01

    The Department of Mechanical Engineering at the Technische Universiteit Eindhoven, the Netherlands, aims to provide a stimulating educational environment that emphasizes the role of hands-on experiments. To achieve this goal, the Department integrated an experimentation program with courses in the

  7. Engineering systems reliability, safety, and maintenance an integrated approach

    CERN Document Server

    Dhillon, B S

    2017-01-01

    Today, engineering systems are an important element of the world economy and each year billions of dollars are spent to develop, manufacture, operate, and maintain various types of engineering systems around the globe. Many of these systems are highly sophisticated and contain millions of parts. For example, a Boeing jumbo 747 is made up of approximately 4.5 million parts including fasteners. Needless to say, reliability, safety, and maintenance of systems such as this have become more important than ever before.  Global competition and other factors are forcing manufacturers to produce highly reliable, safe, and maintainable engineering products. Therefore, there is a definite need for the reliability, safety, and maintenance professionals to work closely during design and other phases. Engineering Systems Reliability, Safety, and Maintenance: An Integrated Approach eliminates the need to consult many different and diverse sources in the hunt for the information required to design better engineering syste...

  8. Integrating protein engineering with process design for biocatalysis

    DEFF Research Database (Denmark)

    Woodley, John M.

    2017-01-01

    Biocatalysis uses enzymes for chemical synthesis and production, offering selective, safe and sustainable catalysis. While today the majority of applications are in the pharmaceutical sector, new opportunities are arising every day in other industry sectors, where production costs become a more...... important driver. In the early applications of the technology, it was necessary to design processes to match the properties of the biocatalyst. With the advent of protein engineering, organic chemists started to develop and improve enzymes to suit their needs. Likewise in industry, although not widespread......, a new paradigm was already implemented several years ago to engineer enzymes to suit process needs. Today, a new era is entered, where the effectiveness with which such integrated protein and process engineering is achieved becomes critical to implementation. In this paper, the development of a tool...

  9. Integration of Sustainable Development in Sanitary Engineering Education in Sweden

    Science.gov (United States)

    Rydhagen, B.; Dackman, C.

    2011-01-01

    In the Swedish Act for higher education, as well as in the policies of technical universities, it is stated that sustainable development (SD) should be integrated into engineering education. Researchers argue that SD needs to be integrated into the overall course content rather than added as a specific course. In this paper, six engineering…

  10. Control apparatus for hot gas engine

    Science.gov (United States)

    Stotts, Robert E.

    1986-01-01

    A mean pressure power control system for a hot gas (Stirling) engine utilizing a plurality of supply tanks for storing a working gas at different pressures. During pump down operations gas is bled from the engine by a compressor having a plurality of independent pumping volumes. In one embodiment of the invention, a bypass control valve system allows one or more of the compressor volumes to be connected to the storage tanks. By selectively sequencing the bypass valves, a capacity range can be developed over the compressor that allows for lower engine idle pressures and more rapid pump down rates.

  11. Integrated Control System Engineering Support.

    Science.gov (United States)

    1984-12-01

    Advanced Medium Range Air to Air Missile ASTEC Advanced Speech Technology Experimental Configuration BA Body Axis BCIU Bus Control Interface Unit BMU Bus...support nreeded to tie an ASTEC speech recognition system into the DIGISYN fJcility and support an FIGR experiment designed to investigate the voice...information passed to the PDP computer consisted of integers which represented words or phrases recognized by the ASTEC recognition system. An interface

  12. Development and Application of a Virtual NOx Sensor for Robust Heavy Duty Diesel Engine Emission Control

    NARCIS (Netherlands)

    Mentink, P.; Seykens, X.; Escobar Valdivieso, D.

    2017-01-01

    To meet future emission targets, it becomes increasingly important to optimize the synergy between engine and aftertreatment system. By using an integrated control approach minimal fluid (fuel and DEF) consumption is targeted within the constraints of emission legislation during real-world

  13. Software engineering practices for control system reliability

    International Nuclear Information System (INIS)

    S. K. Schaffner; K. S White

    1999-01-01

    This paper will discuss software engineering practices used to improve Control System reliability. The authors begin with a brief discussion of the Software Engineering Institute's Capability Maturity Model (CMM) which is a framework for evaluating and improving key practices used to enhance software development and maintenance capabilities. The software engineering processes developed and used by the Controls Group at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), using the Experimental Physics and Industrial Control System (EPICS) for accelerator control, are described. Examples are given of how their procedures have been used to minimized control system downtime and improve reliability. While their examples are primarily drawn from their experience with EPICS, these practices are equally applicable to any control system. Specific issues addressed include resource allocation, developing reliable software lifecycle processes and risk management

  14. The Need for Integrated Approaches in Metabolic Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Lechner, Anna; Brunk, Elizabeth; Keasling, Jay D.

    2016-08-15

    This review highlights state-of-the-art procedures for heterologous small-molecule biosynthesis, the associated bottlenecks, and new strategies that have the potential to accelerate future accomplishments in metabolic engineering. We emphasize that a combination of different approaches over multiple time and size scales must b e considered for successful pathway engineering in a heterologous host. We have classified these optimization procedures based on the "system" that is being manipulated: transcriptome, translatome, proteome, or reactome. By bridging multiple disciplines, including molecular biology, biochemistry, biophysics, and computational sciences, we can create an integral framework for the discovery and implementation of novel biosynthetic production routes.

  15. Use of Soft Computing Technologies For Rocket Engine Control

    Science.gov (United States)

    Trevino, Luis C.; Olcmen, Semih; Polites, Michael

    2003-01-01

    The problem to be addressed in this paper is to explore how the use of Soft Computing Technologies (SCT) could be employed to further improve overall engine system reliability and performance. Specifically, this will be presented by enhancing rocket engine control and engine health management (EHM) using SCT coupled with conventional control technologies, and sound software engineering practices used in Marshall s Flight Software Group. The principle goals are to improve software management, software development time and maintenance, processor execution, fault tolerance and mitigation, and nonlinear control in power level transitions. The intent is not to discuss any shortcomings of existing engine control and EHM methodologies, but to provide alternative design choices for control, EHM, implementation, performance, and sustaining engineering. The approaches outlined in this paper will require knowledge in the fields of rocket engine propulsion, software engineering for embedded systems, and soft computing technologies (i.e., neural networks, fuzzy logic, and Bayesian belief networks), much of which is presented in this paper. The first targeted demonstration rocket engine platform is the MC-1 (formerly FASTRAC Engine) which is simulated with hardware and software in the Marshall Avionics & Software Testbed laboratory that

  16. Fuel cycle facility control system for the Integral Fast Reactor Program

    International Nuclear Information System (INIS)

    Benedict, R.W.; Tate, D.A.

    1993-01-01

    As part of the Integral Fast Reactor (IFR) Fuel Demonstration, a new distributed control system designed, implemented and installed. The Fuel processes are a combination of chemical and machining processes operated remotely. To meet this special requirement, the new control system provides complete sequential logic control motion and positioning control and continuous PID loop control. Also, a centralized computer system provides near-real time nuclear material tracking, product quality control data archiving and a centralized reporting function. The control system was configured to use programmable logic controllers, small logic controllers, personal computers with touch screens, engineering work stations and interconnecting networks. By following a structured software development method the operator interface was standardized. The system has been installed and is presently being tested for operations

  17. The Need and Challenges for Distributed Engine Control

    Science.gov (United States)

    Culley, Dennis E.

    2013-01-01

    The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.

  18. Tickover speed controller for car engines

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, R L

    1980-05-22

    In general, the tickover speed of a car engine is made sufficiently high, in order to permit an assumed maximum load to be taken from the engine at tickover. This setting of the tickover speed is usually done by stops in the fuel supply. Matching the actual load would lead to lower fuel consumption, without any danger of the engine stalling. The purpose of the invention is to provide a tickover speed controller, so that the tickover speed is adjusted by electronic control equipment, independently of the machine load. The fuel consumption on tickover is reduced and the emission of noxious substances is decreased. The electro-magnetic control of the throttle valve tickover setting is explained by extensive section drawings of the system. This process dispenses with the special tickover cams for a cold start.

  19. Engineering Process Monitoring for Control Room Operation

    CERN Document Server

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close collaboration of control room teams, exploitation personnel and process specialists. In this paper some principles for the engineering of monitoring information for control room operation are developed at the example of the exploitation of a particle accelerator at the European Laboratory for Nuclear Research (CERN).

  20. Constant speed control of four-stroke micro internal combustion swing engine

    Science.gov (United States)

    Gao, Dedong; Lei, Yong; Zhu, Honghai; Ni, Jun

    2015-09-01

    The increasing demands on safety, emission and fuel consumption require more accurate control models of micro internal combustion swing engine (MICSE). The objective of this paper is to investigate the constant speed control models of four-stroke MICSE. The operation principle of the four-stroke MICSE is presented based on the description of MICSE prototype. A two-level Petri net based hybrid model is proposed to model the four-stroke MICSE engine cycle. The Petri net subsystem at the upper level controls and synchronizes the four Petri net subsystems at the lower level. The continuous sub-models, including breathing dynamics of intake manifold, thermodynamics of the chamber and dynamics of the torque generation, are investigated and integrated with the discrete model in MATLAB Simulink. Through the comparison of experimental data and simulated DC voltage output, it is demonstrated that the hybrid model is valid for the four-stroke MICSE system. A nonlinear model is obtained from the cycle average data via the regression method, and it is linearized around a given nominal equilibrium point for the controller design. The feedback controller of the spark timing and valve duration timing is designed with a sequential loop closing design approach. The simulation of the sequential loop closure control design applied to the hybrid model is implemented in MATLAB. The simulation results show that the system is able to reach its desired operating point within 0.2 s, and the designed controller shows good MICSE engine performance with a constant speed. This paper presents the constant speed control models of four-stroke MICSE and carries out the simulation tests, the models and the simulation results can be used for further study on the precision control of four-stroke MICSE.

  1. Rapid Response Command and Control (R2C2): a systems engineering analysis of scaleable communications for Regional Combatant Commanders

    OpenAIRE

    Sullivan, Lisa; Cannon, Lennard; Reyes, Ronel; Bae, Kitan; Colgary, James; Minerowicz, Nick; Leong, Chris; Lim, Harry; Lim, Hang Sheng; Ng, Chin Chin; Neo, Tiong Tien; Tan, Guan Chye; Ng, Yu Loon; Wong, Eric; Wong, Heng Yue

    2006-01-01

    Includes supplementary material. Disaster relief operations, such as the 2005 Tsunami and Hurricane Katrina, and wartime operations, such as Operation Enduring Freedom and Operation Iraqi Freedom, have identified the need for a standardized command and control system interoperable among Joint, Coalition, and Interagency entities. The Systems Engineering Analysis Cohort 9 (SEA-9) Rapid Response Command and Control (R2C2) integrated project team completed a systems engineering (SE) ...

  2. Dedicated EGR engine with dynamic load control

    Science.gov (United States)

    Hayman, Alan W.; McAlpine, Robert S.; Keating, Edward J.

    2016-09-06

    An internal combustion engine comprises a first engine bank and a second engine bank. A first intake valve is disposed in an intake port of a cylinder of the first engine bank, and is configured for metering the first flow of combustion air by periodically opening and closing according to a first intake valve lift and duration characteristic. A variable valve train control mechanism is configured for affecting the first intake valve lift and duration characteristic. Either a lift or duration of the first intake valve is modulated so as to satisfy an EGR control criterion.

  3. Integrated Computational Material Engineering Technologies for Additive Manufacturing, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — QuesTek Innovations, a pioneer in Integrated Computational Materials Engineering (ICME) and a Tibbetts Award recipient, is teaming with University of Pittsburgh,...

  4. Dynamic control of a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Mehresh, Parag [Peoria, IL; Schuh, David [Peoria, IL; Kieser, Andrew J [Morton, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL

    2008-06-03

    A homogenous charge compression ignition engine is operated by compressing a charge mixture of air, exhaust and fuel in a combustion chamber to an autoignition condition of the fuel. The engine may facilitate a transition from a first combination of speed and load to a second combination of speed and load by changing the charge mixture and compression ratio. This may be accomplished in a consecutive engine cycle by adjusting both a fuel injector control signal and a variable valve control signal away from a nominal variable valve control signal. Thereafter in one or more subsequent engine cycles, more sluggish adjustments are made to at least one of a geometric compression ratio control signal and an exhaust gas recirculation control signal to allow the variable valve control signal to be readjusted back toward its nominal variable valve control signal setting. By readjusting the variable valve control signal back toward its nominal setting, the engine will be ready for another transition to a new combination of engine speed and load.

  5. Modification site localization scoring integrated into a search engine.

    Science.gov (United States)

    Baker, Peter R; Trinidad, Jonathan C; Chalkley, Robert J

    2011-07-01

    Large proteomic data sets identifying hundreds or thousands of modified peptides are becoming increasingly common in the literature. Several methods for assessing the reliability of peptide identifications both at the individual peptide or data set level have become established. However, tools for measuring the confidence of modification site assignments are sparse and are not often employed. A few tools for estimating phosphorylation site assignment reliabilities have been developed, but these are not integral to a search engine, so require a particular search engine output for a second step of processing. They may also require use of a particular fragmentation method and are mostly only applicable for phosphorylation analysis, rather than post-translational modifications analysis in general. In this study, we present the performance of site assignment scoring that is directly integrated into the search engine Protein Prospector, which allows site assignment reliability to be automatically reported for all modifications present in an identified peptide. It clearly indicates when a site assignment is ambiguous (and if so, between which residues), and reports an assignment score that can be translated into a reliability measure for individual site assignments.

  6. Alternatives for Jet Engine Control. Volume 1: Modelling and Control Design with Jet Engine Data

    Science.gov (United States)

    Sain, M. K.

    1985-01-01

    This document compiles a comprehensive list of publications supported by, or related to, National Aeronautics and Space Administration Grant NSG-3048, entitled "Alternatives for Jet Engine Control". Dr. Kurt Seldner was the original Technical Officer for the grant, at Lewis Research Center. Dr. Bruce Lehtinen was the final Technical Officer. At the University of Notre Dame, Drs. Michael K. Sain and R. Jeffrey Leake were the original Project Directors, with Dr. Sain becoming the final Project Director. Publications cover work over a ten-year period. The Final Report is divided into two parts. Volume i, "Modelling and Control Design with Jet Engine Data", follows in this report. Volume 2, "Modelling and Control Design with Tensors", has been bound separately.

  7. Control of internal combustion engines and hybrid engines; Regelung von Verbrennungsmotoren und Hybridantrieben

    Energy Technology Data Exchange (ETDEWEB)

    Isermann, R. [TU Darmstadt (Germany). Forschungsgruppe Regelungstechnik und Prozessautomatisierung

    2007-07-15

    In the development of internal combustion engines, there are increasingly rigid specifications for further reduction of consumption, exhaust and noise emissions, better specific performance, lower weight, and good driving characteristics. The contributions in this special issue provide an insight into the many aspects of internal combustion engine and hybrid engine control. The editors of at journal took care to select interesting papers presented at the 3. VDI/VDE-GMA conference AUTOREG 2006. They show how control and mechatronics support the high demands on functionality in motor car engineering. (orig.)

  8. Linear parameter-varying control for engineering applications

    CERN Document Server

    White, Andrew P; Choi, Jongeun

    2013-01-01

    The objective of this brief is to carefully illustrate a procedure of applying linear parameter-varying (LPV) control to a class of dynamic systems via a systematic synthesis of gain-scheduling controllers with guaranteed stability and performance. The existing LPV control theories rely on the use of either H-infinity or H2 norm to specify the performance of the LPV system.  The challenge that arises with LPV control for engineers is twofold. First, there is no systematic procedure for applying existing LPV control system theory to solve practical engineering problems from modeling to control design. Second, there exists no LPV control synthesis theory to design LPV controllers with hard constraints. For example, physical systems usually have hard constraints on their required performance outputs along with their sensors and actuators. Furthermore, the H-infinity and H2 performance criteria cannot provide hard constraints on system outputs. As a result, engineers in industry could find it difficult to utiliz...

  9. Role of measurement in feedback-controlled quantum engines

    Science.gov (United States)

    Yi, Juyeon; Kim, Yong Woon

    2018-01-01

    In feedback controls, measurement is an essential step in designing protocols according to outcomes. For quantum mechanical systems, measurement has another effect; to supply energy to the measured system. We verify that in feedback-controlled quantum engines, measurement plays a dual role; not only as an auxiliary to perform feedback control but also as an energy supply to drive the engines. We consider a specific engine cycle exploiting feedback control followed by projective measurement and show that the maximum bound of the extractable work is set by both the efficacy of the feedback control and the energy change caused by projective measurement. We take a concrete example of an engine using an immobile spin-1/2 particle as a working substance and suggest two possible scenarios for work extraction.

  10. Internal combustion engines - Modelling, estimation and control issues

    Energy Technology Data Exchange (ETDEWEB)

    Vigild, C.W.

    2001-12-01

    Alternative power-trains have become buzz words in the automotive industry in the recent past. New technologies like Lithium-Ion batteries or fuel cells combined with high efficient electrical motors show promising results. However both technologies are extremely expensive and important questions like 'How are we going to supply fuel-cells with hydrogen in an environmentally friendly way?', 'How are we going to improve the range - and recharging speed - of electrical vehicles?' and 'How will our existing infrastructure cope with such changes?' are still left unanswered. Hence, the internal combustion engine with all its shortcomings is to stay with us for the next many years. What the future will really bring in this area is uncertain, but one thing can be said for sure; the time of the pipe in - pipe out engine concept is over. Modem engines, Diesel or gasoline, have in the recent past been provided with many new technologies to improve both performance and handling and to cope with the tightening emission legislations. However, as new devices are included, the number of control inputs is also gradually increased. Hence, the control matrix dimension has grown to a considerably size, and the typical table and regression based engine calibration procedures currently in use today contain both challenging and time-consuming tasks. One way to improve understanding of engines and provide a more comprehensive picture of the control problem is by use of simplified physical modelling - one of the main thrusts of this dissertation. The application of simplified physical modelling as a foundation for engine estimation and control design is first motivated by two control applications. The control problem concerns Air/Fuel ratio control of Spark Ignition engines. Two different ways of control are presented; one based on. a model based Extended Kalman Filter updated predictor, and one based on robust H {infinity} techniques. Both controllers are

  11. Enhanced Engine Control for Emergency Operation

    Science.gov (United States)

    Litt, Jonathan S.

    2012-01-01

    C-MAPSS40k engine simulation has been developed and is available to the public. The authenticity of the engine performance and controller enabled the development of realistic enhanced control modes through controller modification alone. Use of enhanced control modes improved stability and control of an impaired aircraft. - Fast Response is useful for manual manipulation of the throttles - Use of Fast Response improved stability as part of a yaw rate feedback system. - Use of Overthrust shortened takeoff distance, but was generally useful in flight, too. Initial lack of pilot familiarity resulted in discomfort, especially with yaw rate feedback, but that was the only drawback, overall the pilot found the enhanced modes very helpful.

  12. Cascade fuzzy control for gas engine driven heat pump

    International Nuclear Information System (INIS)

    Li Shuze; Zhang Wugao; Zhang Rongrong; Lv Dexu; Huang Zhen

    2005-01-01

    In addition to absorption chillers, today's gas cooling technology includes gas engine driven heat pump systems (GEHP) in a range of capacities and temperature capacities suitable for most commercial air conditioning and refrigeration applications. Much is expected from GEHPs as a product that would help satisfy the air conditioning system demand from medium and small sized buildings, restrict electric power demand peaks in summer and save energy in general. This article describes a kind of control strategy for a GEHP, a cascade fuzzy control. GEHPs have large and varying time constants and their dynamic modeling cannot be easily achieved. A cascade control strategy is effective for systems that have large time constants and disturbances, and a fuzzy control strategy is fit for a system that lacks an accurate model. This cascade fuzzy control structure brings together the best merits of fuzzy control and cascade control structures. The performance of the cascade fuzzy control is compared to that of a cascade PI (proportional and integral) control strategy, and it is shown by example that the cascade fuzzy control strategy gives a better performance, reduced reaction time and smaller overshoot temperature

  13. Integrated controls

    International Nuclear Information System (INIS)

    Hollaway, F.W.

    1985-01-01

    During 1984, all portions of the Nova control system that were necessary for the support of laser activation and completion of the Nova project were finished and placed in service on time. The Nova control system has been unique in providing, on schedule, the capabilities required in the central control room and in various local control areas throughout the facility. The ambitious goal of deploying this system early enough to use it as an aid in the activation of the laser was accomplished; thus the control system made a major contribution to the completion of Nova activation on schedule. Support and enhancement activities continued during the year on the VAX computer systems, central control room, operator consoles and displays, Novanet data communications network, system-level software for both the VAX and LSI-11 computers, Praxis control system computer language, software management tools, and the development system, which includes office terminals. Computational support was also supplied for a wide variety of test fixtures required by the optical and mechanical subsystems. Significant new advancements were made in four areas in integrated controls this year: the integration software (which includes the shot scheduler), the Praxis language, software quality assurance audit, and software development and data handling. A description of the accomplishments in each of these areas follows

  14. Control Scheme Formulation for the Production of Hydrogen on Demand to Feed an Internal Combustion Engine

    Directory of Open Access Journals (Sweden)

    Jarniel García Morales

    2016-12-01

    Full Text Available In this work, a control strategy is presented to produce hydrogen on demand to feed an internal combustion (IC engine. For this purpose, the modeling of the IC engine fueled by gasoline blended with 10 % v/v of anhydrous ethanol (E10 and hydrogen as an additive is developed. It is considered that the hydrogen gas is produced according to the IC engine demand, and that the hydrogen gas is obtained by an alkaline electrolyzer. The gasoline–ethanol blend added into the combustion chamber is determined according to the stoichiometric ratio and the production of hydrogen gas is regulated by a proportional and integral controller (P.I.. The controller reference is varying according to the mass flow air induced into the cylinder, in order to ensure an adequate production of hydrogen gas for any operating condition of the IC engine. The main contribution of this work is the control scheme developed, through simulation, in order to produce hydrogen on demand for any operating point of an internal combustion engine fueled by an E10 blend. The simulation results showed that the use of hydrogen gas as an additive in an E10 blend decreases the E10 fuel consumption 23 % on average, and the thermal efficiency is increased approximately 2.13 % , without brake power loss in the IC engine.

  15. Development of the environmental management integrated baseline at the Idaho National Engineering Laboratory using systems engineering

    International Nuclear Information System (INIS)

    Murphy, J.A.; Caliva, R.M.; Wixson, J.R.

    1997-01-01

    The Idaho National Engineering Laboratory (INEL) is one of many Department of Energy (DOE) national laboratories that has been performing environmental cleanup and stabilization, which was accelerated upon the end of the cold war. In fact, the INEL currently receives two-thirds of its scope to perform these functions. However, the cleanup is a highly interactive system that creates an opportunity for systems engineering methodology to be employed. At the INEL, a group called EM (Environmental Management) Integration has been given this charter along with a small core of systems engineers. This paper discusses the progress to date of converting the INEL legacy system into one that uses the systems engineering discipline as the method to ensure that external requirements are met

  16. Systems and Control Engineering

    Indian Academy of Sciences (India)

    design of civil engineering structures has been noted. Protecting ci vil ... R despite disturbing forces such as wind gusts, changes in ambient temperature, etc .. Brief History of ... frequency regulation, boiler control for steam generation, electric.

  17. Controlled drug release for tissue engineering.

    Science.gov (United States)

    Rambhia, Kunal J; Ma, Peter X

    2015-12-10

    Tissue engineering is often referred to as a three-pronged discipline, with each prong corresponding to 1) a 3D material matrix (scaffold), 2) drugs that act on molecular signaling, and 3) regenerative living cells. Herein we focus on reviewing advances in controlled release of drugs from tissue engineering platforms. This review addresses advances in hydrogels and porous scaffolds that are synthesized from natural materials and synthetic polymers for the purposes of controlled release in tissue engineering. We pay special attention to efforts to reduce the burst release effect and to provide sustained and long-term release. Finally, novel approaches to controlled release are described, including devices that allow for pulsatile and sequential delivery. In addition to recent advances, limitations of current approaches and areas of further research are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. 14 CFR 125.177 - Control of engine rotation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 125.177 Section... Requirements § 125.177 Control of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in...

  19. Tracing And Control Of Engineering Requirements

    Science.gov (United States)

    Turner, Philip R.; Stoller, Richard L.; Neville, Ted; Boyle, Karen A.

    1991-01-01

    TRACER (Tracing and Control of Engineering Requirements) is data-base/word-processing software system created to document and maintain order of both requirements and descriptions associated with engineering project. Implemented on IBM PC under PC-DOS. Written with CLIPPER.

  20. Zero to Integration in Eight Months, the Dawn Ground Data System Engineering Challange

    Science.gov (United States)

    Dubon, Lydia P.

    2006-01-01

    The Dawn Project has presented the Ground Data System (GDS) with technical challenges driven by cost and schedule constraints commonly associated with National Aeronautics and Space Administration (NASA) Discovery Projects. The Dawn mission consists of a new and exciting Deep Space partnership among: the Jet Propulsion Laboratory (JPL), responsible for project management and flight operations; Orbital Sciences Corporation (OSC), spacecraft builder and responsible for flight system test and integration; and the University of California, at Los Angeles (UCLA), responsible for science planning and operations. As a cost-capped mission, one of Dawn s implementation strategies is to leverage from both flight and ground heritage. OSC's ground data system is used for flight system test and integration as part of the flight heritage strategy. Mission operations, however, are to be conducted with JPL s ground system. The system engineering challenge of dealing with two heterogeneous ground systems emerged immediately. During the first technical interchange meeting between the JPL s GDS Team and OSC's Flight Software Team, August 2003, the need to integrate the ground system with the flight software was brought to the table. This need was driven by the project s commitment to enable instrument engineering model integration in a spacecraft simulator environment, for both demonstration and risk mitigation purposes, by April 2004. This paper will describe the system engineering approach that was undertaken by JPL's GDS Team in order to meet the technical challenge within a non-negotiable eight-month schedule. Key to the success was adherence to an overall systems engineering process and fundamental systems engineering practices: decomposition of the project request into manageable requirements; definition of a structured yet flexible development process; integration of multiple ground disciplines and experts into a focused team effort; in-process risk management; and aggregation

  1. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  2. Towards constrained optimal control of spark-ignition engines

    NARCIS (Netherlands)

    Feru, E.; Luo, X.

    2015-01-01

    In this paper, the torque control problem for spark-ignition engines is considered. The objective is to provide good output torque tracking with minimum fuel consumption, while avoiding engine knock and misre. To this end, three control strategies are proposed: a feed-forward controller with

  3. Changing the Engineering Student Culture with Respect to Academic Integrity and Ethics.

    Science.gov (United States)

    VanDeGrift, Tammy; Dillon, Heather; Camp, Loreal

    2017-08-01

    Engineers create airplanes, buildings, medical devices, and software, amongst many other things. Engineers abide by a professional code of ethics to uphold people's safety and the reputation of the profession. Likewise, students abide by a code of academic integrity while learning the knowledge and necessary skills to prepare them for the engineering and computing professions. This paper reports on studies designed to improve the engineering student culture with respect to academic integrity and ethics. To understand the existing culture at a university in the USA, a survey based on a national survey about cheating was administered to students. The incidences of self-reported cheating and incidences of not reporting others who cheat show the culture is similar to other institutions. Two interventions were designed and tested in an introduction to an engineering course: two case studies that students discussed in teams and the whole class, and a letter of recommendation assignment in which students wrote about themselves (character, strengths, examples of ethical decisions) three years into the future. Students were surveyed after the two interventions. Results show that first-year engineering students appreciate having a code of academic integrity and they want to earn their degree without cheating, yet less than half of the students would report on another cheating student. The letter of recommendation assignment had some impact on getting students to think about ethics, their character, and their actions. Future work in changing the student culture will continue in both a top-down (course interventions) and bottom-up (student-driven interventions) manner.

  4. Non-ideal Stirling engine thermodynamic model suitable for the integration into overall energy systems

    International Nuclear Information System (INIS)

    Araoz, Joseph A.; Salomon, Marianne; Alejo, Lucio; Fransson, Torsten H.

    2014-01-01

    The reliability of modelling and simulation of energy systems strongly depends on the prediction accuracy of each system component. This is the case of Stirling engine-based systems, where an accurate modelling of the engine performance is very important to understand the overall system behaviour. In this sense, many Stirling engine analyses with different approaches have been already developed. However, there is a lack of Stirling engine models suitable for the integration into overall system simulations. In this context, this paper aims to develop a rigorous Stirling engine model that could be easily integrated into combined heat and power schemes for the overall techno-economic analysis of these systems. The model developed considers a Stirling engine with adiabatic working spaces, isothermal heat exchangers, dead volumes, and imperfect regeneration. Additionally, it considers mechanical pumping losses due to friction, limited heat transfer and thermal losses on the heat exchangers. The model is suitable for different engine configurations (alpha beta and gamma engines). It was developed using Aspen Custom Modeller ® (ACM®) as modelling software. The set of equations were solved using ACM ® equation solver for steady-state operation. However, due to the dynamic behaviour of the cycle, a C++ code was integrated to solve iteratively a set of differential equations. This resulted in a cyclic steady-state model that calculates the power output and thermal requirements of the system. The predicted efficiency and power output were compared with the numerical model and the experimental work reported by the NASA Lewis Research Centre for the GPU-3 Stirling engine. This showed average absolute errors around ±4% for the brake power, and ±5% for the brake efficiency at different frequencies. However, the model also showed large errors (±15%) for these calculations at higher frequencies and low pressures. Additional results include the calculation of the cyclic

  5. Engineering Assessment and Certification of Integrity of the Building 943 Tank System

    Energy Technology Data Exchange (ETDEWEB)

    Abri Environmental Engineering Inc.

    2015-01-01

    This Engineering Assessment and Certification of Integrity of Building 943 (B943) Tank System has been prepared using the guidelines of 40 CFR 265.192(a) and 22 CCR 66265.192(a) for tank systems* that manage hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer. This technical assessment has been reviewed by an independent, qualified, California-registered professional engineer, who has certified the tank system for the following: • sufficient structural integrity, • acceptability for storing of hazardous waste, • compatibility with the waste, and • suitability of tank and containment system design to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  6. Capability Maturity Model Integration (CMMISM), Version 1.1 CMMISM for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1). Staged Representation

    National Research Council Canada - National Science Library

    2002-01-01

    .... Concepts covered by this model include systems engineering, software engineering, integrated product and process development, and supplier sourcing as well as traditional CMM concepts such as process...

  7. Dynamic Systems and Control Engineering

    International Nuclear Information System (INIS)

    Kim, Jong Seok

    1994-02-01

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  8. Dynamic Systems and Control Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Seok

    1994-02-15

    This book deals with introduction of dynamic system and control engineering, frequency domain modeling of dynamic system, temporal modeling of dynamic system, typical dynamic system and automatic control device, performance and stability of control system, root locus analysis, analysis of frequency domain dynamic system, design of frequency domain dynamic system, design and analysis of space, space of control system and digital control system such as control system design of direct digital and digitalization of consecutive control system.

  9. Nuclear thermal rocket engine operation and control

    International Nuclear Information System (INIS)

    Gunn, S.V.; Savoie, M.T.; Hundal, R.

    1993-06-01

    The operation of a typical Rover/Nerva-derived nuclear thermal rocket (NTR) engine is characterized and the control requirements of the NTR are defined. A rationale for the selection of a candidate diverse redundant NTR engine control system is presented and the projected component operating requirements are related to the state of the art of candidate components and subsystems. The projected operational capabilities of the candidate system are delineated for the startup, full-thrust, shutdown, and decay heat removal phases of the engine operation. 9 refs

  10. Control system integration

    CERN Document Server

    Shea, T J

    2008-01-01

    This lecture begins with a definition of an accelerator control system, and then reviews the control system architectures that have been deployed at the larger accelerator facilities. This discussion naturally leads to identification of the major subsystems and their interfaces. We shall explore general strategies for integrating intelligent devices and signal processing subsystems based on gate arrays and programmable DSPs. The following topics will also be covered: physical packaging; timing and synchronization; local and global communication technologies; interfacing to machine protection systems; remote debugging; configuration management and source code control; and integration of commercial software tools. Several practical realizations will be presented.

  11. Modeling and fuzzy control of the engine coolant conditioning system in an IC engine test bed

    International Nuclear Information System (INIS)

    Mohtasebi, Seyed Saeid; Shirazi, Farzad A.; Javaheri, Ahmad; Nava, Ghodrat Hamze

    2010-01-01

    Mechanical and thermodynamical performance of internal combustion engines is significantly affected by the engine working temperature. In an engine test bed, the internal combustion engines are tested in different operating conditions using a dynamometer. It is required that the engine temperature be controlled precisely, particularly in transient states. This precise control can be achieved by an engine coolant conditioning system mainly consisting of a heat exchanger, a control valve, and a controller. In this study, constitutive equations of the system are derived first. These differential equations show the second- order nonlinear time-varying dynamics of the system. The model is validated with the experimental data providing satisfactory results. After presenting the dynamic equations of the system, a fuzzy controller is designed based on our prior knowledge of the system. The fuzzy rules and the membership functions are derived by a trial and error and heuristic method. Because of the nonlinear nature of the system the fuzzy rules are set to satisfy the requirements of the temperature control for different operating conditions of the engine. The performance of the fuzzy controller is compared with a PI one for different transient conditions. The results of the simulation show the better performance of the fuzzy controller. The main advantages of the fuzzy controller are the shorter settling time, smaller overshoot, and improved performance especially in the transient states of the system

  12. Integrated control rod monitoring device

    International Nuclear Information System (INIS)

    Saito, Katsuhiro

    1997-01-01

    The present invention provides a device in which an entire control rod driving time measuring device and a control rod position support device in a reactor building and a central control chamber are integrated systematically to save hardwares such as a signal input/output device and signal cables between boards. Namely, (1) functions of the entire control rod driving time measuring device for monitoring control rods which control the reactor power and a control rod position indication device are integrated into one identical system. Then, the entire devices can be made compact by the integration of the functions. (2) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated in a central operation board and a board in the site. Then, the place for the installation of them can be used in common in any of the cases. (3) The functions of the entire control rod driving time measuring device and the control rod position indication device are integrated to one identical system to save hardware to be used. Then, signal input/output devices and drift branching panel boards in the site and the central operation board can be saved, and cables for connecting both of the boards is no more necessary. (I.S.)

  13. How an Integrative STEM Curriculum Can Benefit Students in Engineering Design Practices

    Science.gov (United States)

    Fan, Szu-Chun; Yu, Kuang-Chao

    2017-01-01

    STEM-oriented engineering design practice has become recognized increasingly by technology education professionals in Taiwan. This study sought to examine the effectiveness of the application of an integrative STEM approach within engineering design practices in high school technology education in Taiwan. A quasi-experimental study was conducted…

  14. Nonlinear control of a spark ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Bidan, P [Centre National de la Recherche Scientifique (CNRS), 31 - Toulouse (France); Boverie, S; Chaumerliac, V [Siemens AutomotiveSA, MIRGAS Laboratory, 31 - Toulouse (France)

    1994-12-31

    This paper describes the improvements which can be made to spark ignition engine by extensive use of automatic control. Particular emphasis is placed on fast transient phases produced by simultaneous action on the throttle and the electronic fuel injection device. The aim is to achieve better performance for the fuel/air ratio regulation system, thereby improving engine efficiency and exhaust emission during these transient phases. The authors begin by presenting an average dynamic model of the intake manifold validated on an engine test bench and goes on to develop a closed-loop system controlling average pressure in the intake manifold using the reference tracking model method. The air supply control system is combined with a predictor to compensate for delays in the injection procedure. The paper concludes with a comparison between the results obtained using simulation and those obtained experimentally from the engine. (author) 10 refs.

  15. Biological Systems Thinking for Control Engineering Design

    Directory of Open Access Journals (Sweden)

    D. J. Murray-Smith

    2004-01-01

    Full Text Available Artificial neural networks and genetic algorithms are often quoted in discussions about the contribution of biological systems thinking to engineering design. This paper reviews work on the neuromuscular system, a field in which biological systems thinking could make specific contributions to the development and design of automatic control systems for mechatronics and robotics applications. The paper suggests some specific areas in which a better understanding of this biological control system could be expected to contribute to control engineering design methods in the future. Particular emphasis is given to the nonlinear nature of elements within the neuromuscular system and to processes of neural signal processing, sensing and system adaptivity. Aspects of the biological system that are of particular significance for engineering control systems include sensor fusion, sensor redundancy and parallelism, together with advanced forms of signal processing for adaptive and learning control

  16. Communication Needs Assessment for Distributed Turbine Engine Control

    Science.gov (United States)

    Culley, Dennis E.; Behbahani, Alireza R.

    2008-01-01

    Control system architecture is a major contributor to future propulsion engine performance enhancement and life cycle cost reduction. The control system architecture can be a means to effect net weight reduction in future engine systems, provide a streamlined approach to system design and implementation, and enable new opportunities for performance optimization and increased awareness about system health. The transition from a centralized, point-to-point analog control topology to a modular, networked, distributed system is paramount to extracting these system improvements. However, distributed engine control systems are only possible through the successful design and implementation of a suitable communication system. In a networked system, understanding the data flow between control elements is a fundamental requirement for specifying the communication architecture which, itself, is dependent on the functional capability of electronics in the engine environment. This paper presents an assessment of the communication needs for distributed control using strawman designs and relates how system design decisions relate to overall goals as we progress from the baseline centralized architecture, through partially distributed and fully distributed control systems.

  17. Fuel Saving Strategy in Spark Ignition Engine Using Fuzzy Logic Engine Torque Control

    OpenAIRE

    Aris Triwiyatno; Sumardi

    2012-01-01

    In the case of injection gasoline engine, or better known as spark ignition engines, an effort to improve engine performance as well as to reduce fuel consumption is a fairly complex problem. Generally, engine performance improvement efforts will lead to increase in fuel consumption. However, this problem can be solved by implementing engine torque control based on intelligent regulation such as the fuzzy logic inference system. In this study, fuzzy logic engine torque regulation is used to c...

  18. Distributed Control Architecture for Gas Turbine Engine. Chapter 4

    Science.gov (United States)

    Culley, Dennis; Garg, Sanjay

    2009-01-01

    The transformation of engine control systems from centralized to distributed architecture is both necessary and enabling for future aeropropulsion applications. The continued growth of adaptive control applications and the trend to smaller, light weight cores is a counter influence on the weight and volume of control system hardware. A distributed engine control system using high temperature electronics and open systems communications will reverse the growing trend of control system weight ratio to total engine weight and also be a major factor in decreasing overall cost of ownership for aeropropulsion systems. The implementation of distributed engine control is not without significant challenges. There are the needs for high temperature electronics, development of simple, robust communications, and power supply for the on-board electronics.

  19. Sound engineering for diesel engines; Sound Engineering an Dieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Enderich, A.; Fischer, R. [MAHLE Filtersysteme GmbH, Stuttgart (Germany)

    2006-07-01

    The strong acceptance for vehicles powered by turbo-charged diesel engines encourages several manufacturers to think about sportive diesel concepts. The approach of suppressing unpleasant noise by the application of distinctive insulation steps is not adequate to satisfy sportive needs. The acoustics cannot follow the engine's performance. This report documents, that it is possible to give diesel-powered vehicles a sportive sound characteristic by using an advanced MAHLE motor-sound-system with a pressure-resistant membrane and an integrated load controlled flap. With this the specific acoustic disadvantages of the diesel engine, like the ''diesel knock'' or a rough engine running can be masked. However, by the application of a motor-sound-system you must not negate the original character of the diesel engine concept, but accentuate its strong torque characteristic in the middle engine speed range. (orig.)

  20. The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology: Capabilities and Applications

    Science.gov (United States)

    Evers, Ken H.; Bachert, Robert F.

    1987-01-01

    The IDEAL (Integrated Design and Engineering Analysis Languages) modeling methodology has been formulated and applied over a five-year period. It has proven to be a unique, integrated approach utilizing a top-down, structured technique to define and document the system of interest; a knowledge engineering technique to collect and organize system descriptive information; a rapid prototyping technique to perform preliminary system performance analysis; and a sophisticated simulation technique to perform in-depth system performance analysis.

  1. Tracking and Control of Gas Turbine Engine Component Damage/Life

    Science.gov (United States)

    Jaw, Link C.; Wu, Dong N.; Bryg, David J.

    2003-01-01

    This paper describes damage mechanisms and the methods of controlling damages to extend the on-wing life of critical gas turbine engine components. Particularly, two types of damage mechanisms are discussed: creep/rupture and thermo-mechanical fatigue. To control these damages and extend the life of engine hot-section components, we have investigated two methodologies to be implemented as additional control logic for the on-board electronic control unit. This new logic, the life-extending control (LEC), interacts with the engine control and monitoring unit and modifies the fuel flow to reduce component damages in a flight mission. The LEC methodologies were demonstrated in a real-time, hardware-in-the-loop simulation. The results show that LEC is not only a new paradigm for engine control design, but also a promising technology for extending the service life of engine components, hence reducing the life cycle cost of the engine.

  2. SWITCH: a dynamic CRISPR tool for genome engineering and metabolic pathway control for cell factory construction in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Garcia Vanegas, Katherina; Lehka, Beata Joanna; Mortensen, Uffe Hasbro

    2017-01-01

    to the pathway control state where production was optimized by downregulating an essential gene TSC13, hence, reducing formation of a byproduct. Conclusions We have successfully integrated two CRISPR tools, one for genetic engineering and one for pathway control, into one system and successfully used it for cell...

  3. Functional integration of vertical flight path and speed control using energy principles

    Science.gov (United States)

    Lambregts, A. A.

    1984-01-01

    A generalized automatic flight control system was developed which integrates all longitudinal flight path and speed control functions previously provided by a pitch autopilot and autothrottle. In this design, a net thrust command is computed based on total energy demand arising from both flight path and speed targets. The elevator command is computed based on the energy distribution error between flight path and speed. The engine control is configured to produce the commanded net thrust. The design incorporates control strategies and hierarchy to deal systematically and effectively with all aircraft operational requirements, control nonlinearities, and performance limits. Consistent decoupled maneuver control is achieved for all modes and flight conditions without outer loop gain schedules, control law submodes, or control function duplication.

  4. GLobal Integrated Design Environment (GLIDE): A Concurrent Engineering Application

    Science.gov (United States)

    McGuire, Melissa L.; Kunkel, Matthew R.; Smith, David A.

    2010-01-01

    The GLobal Integrated Design Environment (GLIDE) is a client-server software application purpose-built to mitigate issues associated with real time data sharing in concurrent engineering environments and to facilitate discipline-to-discipline interaction between multiple engineers and researchers. GLIDE is implemented in multiple programming languages utilizing standardized web protocols to enable secure parameter data sharing between engineers and researchers across the Internet in closed and/or widely distributed working environments. A well defined, HyperText Transfer Protocol (HTTP) based Application Programming Interface (API) to the GLIDE client/server environment enables users to interact with GLIDE, and each other, within common and familiar tools. One such common tool, Microsoft Excel (Microsoft Corporation), paired with its add-in API for GLIDE, is discussed in this paper. The top-level examples given demonstrate how this interface improves the efficiency of the design process of a concurrent engineering study while reducing potential errors associated with manually sharing information between study participants.

  5. Optimal Vibration Control of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Thesbjerg, Leo

    In designing large civil engineering structures, an important consideration is prospective dynamic loadings which may include earthquake ground motion, wind gusts, severe sea states and moving vehicles, rotating and reciprocating machinery and others. successful design of such structures requires...... providing for the safety and integrity of the structure, and in some cases also providing for a measure of comfort for the occupants during such loading which the structure and its occupants must endure. Due to these uncertainties, the civil engineering community has traditionally adopted a very...

  6. Improving Construction Process through Integration and Concurrent Engineering

    Directory of Open Access Journals (Sweden)

    Malik Khalfan

    2012-11-01

    Full Text Available In an increasingly competitive business environment, improvedtime-to-market, reduced production cost, quality of the productand customer involvement are rapidly becoming the key successfactors for any product development process. Consequently, mostorganisations are moving towards the adoption of latest technologyand new management concepts and philosophies such as totalquality management and concurrent engineering (CE to bringimprovement in their product development process. This paperdiscusses the adoption of integrated processes and CE withinthe construction industry to enable construction organisations toimprove their project development process. It also discusses aproposed integrated database model for the construction projects,which should enable the construction process to improve, becomemore effective and more efficient.

  7. Experimental Evaluation of Integral Transformations for Engineering Drawings Vectorization

    Directory of Open Access Journals (Sweden)

    Vaský Jozef

    2014-12-01

    Full Text Available The concept of digital manufacturing supposes application of digital technologies in the whole product life cycle. Direct digital manufacturing includes such information technology processes, where products are directly manufactured from 3D CAD model. In digital manufacturing, engineering drawing is replaced by CAD product model. In the contemporary practice, lots of engineering paper-based drawings are still archived. They could be digitalized by scanner and stored to one of the raster graphics format and after that vectorized for interactive editing in the specific software system for technical drawing or for archiving in some of the standard vector graphics file format. The vector format is suitable for 3D model generating, too.The article deals with using of selected integral transformations (Fourier, Hough in the phase of digitalized raster engineering drawings vectorization.

  8. Engineering Documentation and Data Control

    Science.gov (United States)

    Matteson, Michael J.; Bramley, Craig; Ciaruffoli, Veronica

    2001-01-01

    Mississippi Space Services (MSS) the facility services contractor for NASA's John C. Stennis Space Center (SSC), is utilizing technology to improve engineering documentation and data control. Two identified improvement areas, labor intensive documentation research and outdated drafting standards, were targeted as top priority. MSS selected AutoManager(R) WorkFlow from Cyco software to manage engineering documentation. The software is currently installed on over 150 desctops. The outdated SSC drafting standard was written for pre-CADD drafting methods, in other words, board drafting. Implementation of COTS software solutions to manage engineering documentation and update the drafting standard resulted in significant increases in productivity by reducing the time spent searching for documents.

  9. An analytical method for PID controller tuning with specified gain and phase margins for integral plus time delay processes.

    Science.gov (United States)

    Hu, Wuhua; Xiao, Gaoxi; Li, Xiumin

    2011-04-01

    In this paper, an analytical method is proposed for proportional-integral/proportional-derivative/proportional-integral-derivative (PI/PD/PID) controller tuning with specified gain and phase margins (GPMs) for integral plus time delay (IPTD) processes. Explicit formulas are also obtained for estimating the GPMs resulting from given PI/PD/PID controllers. The proposed method indicates a general form of the PID parameters and unifies a large number of existing rules as PI/PD/PID controller tuning with various GPM specifications. The GPMs realized by existing PID tuning rules are computed and documented as a reference for control engineers to tune the PID controllers. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  10. Telecommunications networks, home integrated systems and remote control applications; Reseaux de telecommunications, domotique et teleaction

    Energy Technology Data Exchange (ETDEWEB)

    Cregut, F.; Treheux, M.

    1996-12-31

    Energy savings in residential sector can be performed by home integrated control systems. Remote controlled interfaces allow electric appliances consumption matching effective needs. Nevertheless, the uses of those techniques are stagnating since several years. The first reason is an awkward human factors engineering, that is now improving. The second reason is an lack of definition of the needs, that lead to commercialization problems. (D.L.)

  11. Three-dimensional CaP/gelatin lattice scaffolds with integrated osteoinductive surface topographies for bone tissue engineering

    International Nuclear Information System (INIS)

    Nadeem, Danish; Su, Bo; Smith, Carol-Anne; Dalby, Matthew J; Dominic Meek, R M; Lin, Sien; Li, Gang

    2015-01-01

    Surface topography is known to influence stem cells and has been widely used as physical stimuli to modulate cellular behaviour including adhesion, proliferation and differentiation on 2D surfaces. Integration of well-defined surface topography into three-dimensional (3D) scaffolds for tissue engineering would be useful to direct the cell fate for intended applications. Technical challenges are remaining as how to fabricate such 3D scaffolds with controlled surface topography from a range of biodegradable and biocompatible materials. In this paper, a novel fabrication process using computer numerically controlled machining and lamination is reported to make 3D calcium phosphate/gelatin composite scaffolds with integrated surface micropatterns that are introduced by embossing prior to machining. Geometric analysis shows that this method is versatile and can be used to make a wide range of lattices with porosities that meet the basic requirements for bone tissue engineering. Both in vitro and in vivo studies show that micropatterned composite scaffolds with surfaces comprising 40 μm pits and 50 μm grooves were optimal for improved osteogenesis. The results have demonstrated the potential of a novel fabrication process for producing cell-instructive scaffolds with designed surface topographies to induce specific tissue regeneration. (paper)

  12. Engineering models and methods for industrial cell control

    DEFF Research Database (Denmark)

    Lynggaard, Hans Jørgen Birk; Alting, Leo

    1997-01-01

    This paper is concerned with the engineering, i.e. the designing and making, of industrial cell control systems. The focus is on automated robot welding cells in the shipbuilding industry. The industrial research project defines models and methods for design and implemen-tation of computer based...... SHIPYARD.It is concluded that cell control technology provides for increased performance in production systems, and that the Cell Control Engineering concept reduces the effort for providing and operating high quality and high functionality cell control solutions for the industry....... control and monitor-ing systems for production cells. The project participants are The Danish Academy of Technical Sciences, the Institute of Manufacturing Engineering at the Technical University of Denmark and ODENSE STEEL SHIPYARD Ltd.The manufacturing environment and the current practice...

  13. Wideband SI Engine Lambda Control

    DEFF Research Database (Denmark)

    Jensen, Per Buchbjerg; Olsen, Mads Bruun; Poulsen, Jannik

    1998-01-01

    Long term control of the AFR (Air/Fuel Ratio) of spark ignition engines is currently accomplished with a self-oscialling PI control loop. Because of the intake/exhaust time delay, the oscillation frequency and hence bandwidth of this loop is small. This paper describes a new approach to the desig...

  14. Hierarchical hybrid control of manipulators: Artificial intelligence in large scale integrated circuits

    Science.gov (United States)

    Greene, P. H.

    1972-01-01

    Both in practical engineering and in control of muscular systems, low level subsystems automatically provide crude approximations to the proper response. Through low level tuning of these approximations, the proper response variant can emerge from standardized high level commands. Such systems are expressly suited to emerging large scale integrated circuit technology. A computer, using symbolic descriptions of subsystem responses, can select and shape responses of low level digital or analog microcircuits. A mathematical theory that reveals significant informational units in this style of control and software for realizing such information structures are formulated.

  15. Engineering Physics Division integral experiments and their analyses

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Integral experiments are performed as part of the Engineering Physics Division's on-going research in the development and application of radiation shielding methods. Integral experiments performed at the Oak Ridge Electron Linear Accelerator (ORELA) under the Division's Magnetic Fusion program are designed to provide data against which ORNL and all other organizations involved in shielding calculations for fusion devices can test their calculational methods and interaction data. The Tower Shielding Facility (TSF) continues to be the primary source of integral data for fission reactor shielding design. The experiments performed at the TSF during the last few years have been sponsored by the Gas Cooled Fast Reactor (GCFR) program. During this report period final documentation was also prepared for the remaining LMFBR shielding experiments, including an examination of streaming through annular slits and measurement of secondary gamma-ray production in reinforced concrete

  16. Mechatronics engineering : New requirements on cross-functional integration

    OpenAIRE

    Adamsson, Niklas

    2005-01-01

    Several industrial sectors experience an increased reliance on mechatronic systems as electronics and software are being embedded into the traditional mechanical systems of these industries. Important challenges within mechatronics engineering comes from management of multi-disciplinary development project teams and the highly complex scope of problems, which in turn require extensive coordination and integration, both in terms of technical and organisational matters. The concept of cross-fun...

  17. The fully integrated engineer combining technical ability and leadership prowess

    CERN Document Server

    Cerri, Steven T

    2016-01-01

    College teaches you to be a good engineer. But it's likely that your college engineering courses didn't have time to teach you how to effectively contribute your ideas or how to transition to management or leadership. This book provides you with those missing tools. This book addresses the differences between being proficient as a technical individual and effectively contributing to and leading a team to effectively contribute to various projects. The Fully Integrated Engineer: Combining Technical Ability and Leadership Prowess shines a light on how the habits learned in school, while contributing to individual short-term success, actually become hindrances in the modern engineering workplace if your goal is to achieve long-term success as either an engineer, a team lead, manager, or leader. The author offers specific ways to address those limiting habits, turning you into an effective team contributor and leader building toward long-term career succes . The author’s approach to retooling less-than-op...

  18. Engineering and material aspects of impurity control systems

    International Nuclear Information System (INIS)

    Koski, J.A.

    1985-01-01

    The design of impurity control devices for fusion energy devices is discussed from the engineering and materials viewpoint. First, examples of impurity control devices are presented, and the plasma edge environment for which they are designed is briefly described. Materials concerns related to the design of the components are discussed and some currently proposed designs presented. Engineering tools available to the designer are listed, and some commonly encountered engineering analysis problems described

  19. Toyota's new single-chip microcomputer based engine and transmission control system

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, T.; Kawai, M.; Aoki, K.; Tamaki, K.; Sugawara, M.

    1985-01-01

    Toyota succeeded in the fall of 1984 in manufacturing a complex engine and transmission control system using a newly developed single-chip microcomputer. This microcomputer, equipped with an 8K-byte ROM (Read Only Memory) and a 256-byte RAM (Random Access Memory), a powerful real time processing function, and a high-speed optimum instruction set, is better suited for automobiles. Application of the latest CMOS technology has enabled lower power consumption and improved noise immunity. The new system, which includes a new function; the electronic spark advance with knock control in addition to the conventional sophisticated system, has greatly improved the performance and driveability of vehicles. The newly designed electronic control unit (ECU) has been greatly improved in reliability and has not changed in its size with the adoption of the highly integrated new microcomputer, which is due to the fact that it uses fewer LSIs (Large Scale Integrated circuits) than the conventional ECU, although it includes the great additional function.

  20. A Triangular Approach to Integrate Research, Education and Practice in Higher Engineering Education

    Science.gov (United States)

    Heikkinen, Eetu-Pekka; Jaako, Juha; Hiltunen, Jukka

    2017-01-01

    Separate approaches in engineering education, research and practice are not very useful when preparing students for working life; instead, integration of education, research and industrial practices is needed. A triangular approach (TA) as a method to accomplish this integration and as a method to provide students with integrated expertise is…

  1. Characterisation, control, and energy management of electrified turbocharged diesel engines

    International Nuclear Information System (INIS)

    Zhao, Dezong; Winward, Edward; Yang, Zhijia; Stobart, Richard; Steffen, Thomas

    2017-01-01

    Highlights: • A real-time energy management framework for electrified engines is proposed. • A multi-variable robust controller is designed. • Characterisation on the air system of electrified diesel engines is given. • Reliable for engine downsizing because of the promising transient performance. - Abstract: The electrification of engine components offers significant opportunities for fuel efficiency improvements. The electrified turbocharger is one of the most attractive options since it recovers part of the engine exhaust gas mechanical energy to assist boosting. Therefore, the engine can be downsized through improved transient responsiveness. In the electrified turbocharger, an electric machine is mounted on the turbine shaft and changes the air system dynamics, so characterisation of the new layout is essential. A systematic control solution is required to manage energy flows in the hybrid system. In this paper, a framework for characterisation, control, and energy management for an electrified turbocharged diesel engine is proposed. The impacts of the electric machine on fuel economy and air system variables are analysed. Based on the characterisation, a two-level control structure is proposed. A real-time energy management strategy is employed as the supervisory level controller to generate the optimal values of critical variables, while a model-based multi-variable controller is designed as the low level controller to track the values. The two controllers work together in a cascade to address both fuel economy optimisation and battery state-of-charge maintenance. The proposed control strategy is validated on a high fidelity physical engine model. The tracking performance shows the proposed framework is a promising solution in regulating the behavior of electrified engines.

  2. Department of Energy environmental management complex-wide integration using systems engineering

    International Nuclear Information System (INIS)

    Fairbourn, P.

    1997-01-01

    A systems engineering approach was successfully used to recommend changes to environmental management activities across the DOE Complex. A team of technical experts and systems engineers developed alternatives that could save tax payers billions of dollars if the barriers are removed to allow complete implementation. The alternatives are technically-based and defensible, and are being worked through the stakeholder review process. The integration process and implementing project structure are both discussed

  3. Advances in Integrated Computational Materials Engineering "ICME"

    Science.gov (United States)

    Hirsch, Jürgen

    The methods of Integrated Computational Materials Engineering that were developed and successfully applied for Aluminium have been constantly improved. The main aspects and recent advances of integrated material and process modeling are simulations of material properties like strength and forming properties and for the specific microstructure evolution during processing (rolling, extrusion, annealing) under the influence of material constitution and process variations through the production process down to the final application. Examples are discussed for the through-process simulation of microstructures and related properties of Aluminium sheet, including DC ingot casting, pre-heating and homogenization, hot and cold rolling, final annealing. New results are included of simulation solution annealing and age hardening of 6xxx alloys for automotive applications. Physically based quantitative descriptions and computer assisted evaluation methods are new ICME methods of integrating new simulation tools also for customer applications, like heat affected zones in welding of age hardening alloys. The aspects of estimating the effect of specific elements due to growing recycling volumes requested also for high end Aluminium products are also discussed, being of special interest in the Aluminium producing industries.

  4. Study concerning the power plant control and safety equipment by integrated distributed systems

    International Nuclear Information System (INIS)

    Optea, I.; Oprea, M.; Stanescu, P.

    1995-01-01

    The paper deals with the trends existing in the field of nuclear control and safety equipment and systems, proposing a high-efficiency integrated system. In order to enhance the safety of the plant and reliability of the structure system and components, we present a concept based on the latest computer technology with an open, distributed system, connected by a local area network with high redundancy. A modern conception for the control and safety system is to integrate all the information related to the reactor protection, active engineered safeguard and auxiliary systems parameters, offering a fast flow of information between all the agencies concerned so that situations can be quickly assessed. The integrated distributed control is based on a high performance operating system for realtime applications, flexible enough for transparent networking and modular for demanding configurations. The general design considerations for nuclear reactors instrumentation reliability and testing methods for real-time functions under dynamic regime are presented. Taking into account the fast progress in information technology, we consider the replacement of the old instrumentation of Cernavoda-1 NPP by a modern integrated system as an economical and efficient solution for the next units. (Author) 20 Refs

  5. Advanced, Integrated Control for Building Operations to Achieve 40% Energy Saving

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yan; Song, Zhen; Loftness, Vivian; Ji, Kun; Zheng, Sam; Lasternas, Bertrand; Marion, Flore; Yuebin, Yu

    2012-10-15

    We developed and demonstrated a software based integrated advanced building control platform called Smart Energy Box (SEB), which can coordinate building subsystem controls, integrate variety of energy optimization algorithms and provide proactive and collaborative energy management and control for building operations using weather and occupancy information. The integrated control system is a low cost solution and also features: Scalable component based architecture allows to build a solution for different building control system configurations with needed components; Open Architecture with a central data repository for data exchange among runtime components; Extendible to accommodate variety of communication protocols. Optimal building control for central loads, distributed loads and onsite energy resource; uses web server as a loosely coupled way to engage both building operators and building occupants in collaboration for energy conservation. Based on the open platform of SEB, we have investigated and evaluated a variety of operation and energy saving control strategies on Carnegie Mellon University Intelligent Work place which is equipped with alternative cooling/heating/ventilation/lighting methods, including radiant mullions, radiant cooling/heating ceiling panels, cool waves, dedicated ventilation unit, motorized window and blinds, and external louvers. Based on the validation results of these control strategies, they were integrated in SEB in a collaborative and dynamic way. This advanced control system was programmed and computer tested with a model of the Intelligent Workplace's northern section (IWn). The advanced control program was then installed in the IWn control system; the performance was measured and compared with that of the state of the art control system to verify the overall energy savings great than 40%. In addition advanced human machine interfaces (HMI's) were developed to communicate both with building

  6. Integrated Computing, Communication, and Distributed Control of Deregulated Electric Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Bajura, Richard; Feliachi, Ali

    2008-09-24

    Restructuring of the electricity market has affected all aspects of the power industry from generation to transmission, distribution, and consumption. Transmission circuits, in particular, are stressed often exceeding their stability limits because of the difficulty in building new transmission lines due to environmental concerns and financial risk. Deregulation has resulted in the need for tighter control strategies to maintain reliability even in the event of considerable structural changes, such as loss of a large generating unit or a transmission line, and changes in loading conditions due to the continuously varying power consumption. Our research efforts under the DOE EPSCoR Grant focused on Integrated Computing, Communication and Distributed Control of Deregulated Electric Power Systems. This research is applicable to operating and controlling modern electric energy systems. The controls developed by APERC provide for a more efficient, economical, reliable, and secure operation of these systems. Under this program, we developed distributed control algorithms suitable for large-scale geographically dispersed power systems and also economic tools to evaluate their effectiveness and impact on power markets. Progress was made in the development of distributed intelligent control agents for reliable and automated operation of integrated electric power systems. The methodologies employed combine information technology, control and communication, agent technology, and power systems engineering in the development of intelligent control agents for reliable and automated operation of integrated electric power systems. In the event of scheduled load changes or unforeseen disturbances, the power system is expected to minimize the effects and costs of disturbances and to maintain critical infrastructure operational.

  7. Optimal control for chemical engineers

    CERN Document Server

    Upreti, Simant Ranjan

    2013-01-01

    Optimal Control for Chemical Engineers gives a detailed treatment of optimal control theory that enables readers to formulate and solve optimal control problems. With a strong emphasis on problem solving, the book provides all the necessary mathematical analyses and derivations of important results, including multiplier theorems and Pontryagin's principle.The text begins by introducing various examples of optimal control, such as batch distillation and chemotherapy, and the basic concepts of optimal control, including functionals and differentials. It then analyzes the notion of optimality, de

  8. Integration and the hold-up problem in the design organization for engineering projects

    NARCIS (Netherlands)

    Zerjav, Vedran; Hartmann, Timo; Javernick-Will, A.; Chinowsky, P.

    2012-01-01

    The paper presents a perspective of the design organization in engineering projects based on the economic concept of the hold-up problem. By integrating the economic theories on the boundaries of organizations into the existing knowledge on design in engineering projects, the paper hypothesizes a

  9. An Optimal Augmented Monotonic Tracking Controller for Aircraft Engines with Output Constraints

    Directory of Open Access Journals (Sweden)

    Jiakun Qin

    2017-01-01

    Full Text Available This paper proposes a novel min-max control scheme for aircraft engines, with the aim of transferring a set of regulated outputs between two set-points, while ensuring a set of auxiliary outputs remain within prescribed constraints. In view of this, an optimal augmented monotonic tracking controller (OAMTC is proposed, by considering a linear plant with input integration, to enhance the ability of the control system to reject uncertainty in system parameters and ensure no crossing limits. The key idea is to use the eigenvalue and eigenvector placement method and genetic algorithms to shape the output responses. The approach is validated by numerical simulation. The results show that the designed OAMTC controller can achieve a satisfactory dynamic and steady performance and keep the auxiliary outputs within constraints in the transient regime.

  10. The fully integrated biomedical engineering programme at Eindhoven University of Technology.

    Science.gov (United States)

    Slaaf, D W; van Genderen, M H P

    2009-05-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a bachelor-master's programme with two different master's degrees: Master's Degree in Biomedical Engineering and Master's Degree in Medical Engineering. Recently, the programme has adopted semester programming, has included a major and minor in the bachelor's degree phase, and a true bachelor's degree final project. Details about the programme and data about where graduates find jobs are provided in this paper.

  11. Engineering applications of discrete-time optimal control

    DEFF Research Database (Denmark)

    Vidal, Rene Victor Valqui; Ravn, Hans V.

    1990-01-01

    Many problems of design and operation of engineering systems can be formulated as optimal control problems where time has been discretisized. This is also true even if 'time' is not involved in the formulation of the problem, but rather another one-dimensional parameter. This paper gives a review...... of some well-known and new results in discrete time optimal control methods applicable to practical problem solving within engineering. Emphasis is placed on dynamic programming, the classical maximum principle and generalized versions of the maximum principle for optimal control of discrete time systems...

  12. Integrating standardization into engineering education: the case of forerunner Korea

    NARCIS (Netherlands)

    D.G. Choi (Dong Geun); H.J. de Vries (Henk)

    2013-01-01

    textabstractThe Republic of Korea is a forerunner in integrating the topic of standardization into engineering education at the academic level. This study investigates developments and evolutions in the planning and operating of the University Education Promotion on Standardization (UEPS) in Korea.

  13. Research and development of turbofan engine for supersonic aircraft. Choonsokukiyo turbofan engine no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yashima, S [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1992-01-01

    This paper described the researched results of the demonstrator of a turbofan engine for supersonic aircraft (IHI-17). A turbofan engine with an afterburner was experimentally fabricated and various engine tests have been carried out since 1988. Although the engine size is small, the fighter engine specifications were applied to its design and the prior or simultaneous research on each component was carried out. As a result, the system integration technique by which an engine was assembled by integrating each component could be established. New materials and new manufacturing techniques such as turbine blades of single crystal, turbine disks of powder metallurgy and deep chemical milling for a duct were developed to use for the long term engine test and the prospect to commercialization could be obtained. The following techniques have been established and the results satisfying target specifications could be achieved: the three dimensional aerodynamic design of compressor and turbine, the adoption of air blast fuel atomizer to suppress the smoke generation, an afterburner of spray bar system and the mounting type FADEC (full authority digital electronic control) to control the engine with the afterburner. 4 refs., 15 figs., 4 tabs.

  14. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    Science.gov (United States)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  15. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  16. Dual-fuel engine with cylinder pressure based control

    Energy Technology Data Exchange (ETDEWEB)

    Ritscher, Bert [Caterpillar Motoren GmbH und Co. KG, Kiel (Germany). Large Power Systems Div.

    2013-10-15

    Cylinder pressure sensors were initially used to detect knocking and misfiring on spark ignited gas engines. On its latest MaK brand dual-fuel engine, Caterpillar Motoren is harnessing the deep insights into combustion and engine condition that can be derived direct from the origin of engine power in sophisticated control, monitoring and diagnostic systems. (orig.)

  17. Development of engineering program for integrity evaluation of pipes with local wall thinned defects

    International Nuclear Information System (INIS)

    Park, Chi Yong; Lee, Sung Ho; Kim, Tae Ryong; Park, Sang Kyu

    2008-01-01

    Integrity evaluation of pipes with local wall thinning by erosion and corrosion is increasingly important in maintenance of wall thinned carbon steel pipes in nuclear power plants. Though a few program for integrity assessment of wall thinned pipes have been developed in domestic nuclear field, however those are limited to straight pipes and methodology proposed in ASME Sec.XI Code Case N-597. Recently, the engineering program for integrity evaluation of pipes with all kinds of local wall defects such as straight, elbow, reducer and branch pipes was developed successfully. The program was designated as PiTEP (Pipe Thinning Evaluation Program), which name was registered as a trademark in the Korea Intellectual Property Office. A developed program is carried out by sequential step of four integrity evaluation methodologies, which are composed of construction code, code case N-597, its engineering method and two developed owner evaluation method. As PiTEP program will be performed through GUI (Graphic User Interface) with user's familiarity, it would be conveniently used by plant engineers with only measured thickness data, basic operation conditions and pipe data

  18. Integration of Bass Enhancement and Active Noise Control System in Automobile Cabin

    Directory of Open Access Journals (Sweden)

    Liang Wang

    2008-01-01

    Full Text Available With the advancement of digital signal processing technologies, consumers are more concerned with the quality of multimedia entertainment in automobiles. In order to meet this demand, an audio enhancement system is needed to improve bass reproduction and cancel engine noise in the cabins. This paper presents an integrated active noise control system that is based on frequency-sampling filters to track and extract the bass information from the audio signal, and a multifrequency active noise equalizer to tune the low-frequency engine harmonics to enhance the bass reproduction. In the noise cancellation mode, a maximum of 3 dB bass enhancement can be achieved with significant noise suppression, while higher bass enhancement can be achieved in the bass enhance mode. The results show that the proposed system is effective for solving both the bass audio reproduction and the noise control problems in automobile cabins.

  19. Design of Distributed Engine Control Systems with Uncertain Delay.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    Full Text Available Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS. Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  20. Design of Distributed Engine Control Systems with Uncertain Delay.

    Science.gov (United States)

    Liu, Xiaofeng; Li, Yanxi; Sun, Xu

    Future gas turbine engine control systems will be based on distributed architecture, in which, the sensors and actuators will be connected to the controllers via a communication network. The performance of the distributed engine control (DEC) is dependent on the network performance. This study introduces a distributed control system architecture based on a networked cascade control system (NCCS). Typical turboshaft engine-distributed controllers are designed based on the NCCS framework with a H∞ output feedback under network-induced time delays and uncertain disturbances. The sufficient conditions for robust stability are derived via the Lyapunov stability theory and linear matrix inequality approach. Both numerical and hardware-in-loop simulations illustrate the effectiveness of the presented method.

  1. System engineering approach in the EU Test Blanket Systems Design Integration

    International Nuclear Information System (INIS)

    Panayotov, D.; Sardain, P.; Boccaccini, L.V.; Salavy, J.-F.; Cismondi, F.; Jourd'Heuil, L.

    2011-01-01

    The complexity of the Test Blanket Systems demands diverse and comprehensive integration activities. Test Blanket Modules - Consortia of Associates (TBM-CA) applies the system engineering methods in all stages of the Test Blanket System (TBS) design integration. Completed so far integration engineering tasks cover among others status and initial set of TBS operating parameters; list of codes, standards and regulations related to TBS; planning of the TBS interfaces and baseline documentation. Most of the attention is devoted to the establishment the Helium-Cooled Lithium Lead (HCLL) and Helium-Cooled Pebble Bed Lead (HCPB) TBS configuration baseline, TBS break down into sub-systems, identification, definition and management of the internal and external interfaces, development of the TBS plant break down structure (PBS), establishment and management of the required TBS baseline documentation infrastructure. Break down of the TBS into sub-systems that is crucial for the further design and interfaces' management has been selected considering several options and using specific evaluation criteria. Process of the TBS interfaces management covers the planning, definition and description, verification and review, non-conformances and deviations, and modification and improvement processes. Process of interfaces review is developed, identifying the actors, input, activities and output of the review. Finally the relations and interactions of system engineering processes with TBM configuration management and TBM-CA Quality Management System are discussed.

  2. CEA engineering studies and integration of the ITER diagnostic port plugs

    International Nuclear Information System (INIS)

    Doceul, L.; Walker, C.; Ingesson, C.; Ciattaglia, E.; Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C.

    2007-01-01

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel

  3. CEA engineering studies and integration of the ITER diagnostic port plugs

    Energy Technology Data Exchange (ETDEWEB)

    Doceul, L. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)], E-mail: louis.doceul@cea.fr; Walker, C. [ITER International Team, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Ingesson, C.; Ciattaglia, E. [EFDA CSU - Garching, Boltzmannstr. 2, D-85748 Garching bei Muenchen (Germany); Chappuis, P.; Portafaix, C.; Salasca, S.; Thomas, E.; Tremblay, G.; Bruyere, C. [Association Euratom-CEA sur la Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance Cedex (France)

    2007-10-15

    Most of the ITER diagnostic system is integrated in port plugs, which are water cooled stainless steel structures inserted into the vacuum-vessel ports. The port plug must perform basic functions such as providing neutron and gamma shielding, supporting the first wall armour and shielding blanket material, closing the vacuum vessel ports, while supporting the diagnostic equipment. CEA has contributed to the engineering activities on the port plugs and has more particularly focused on the design and diagnostic integration in the representative equatorial port plug Eq no. 01. The specific CEA contributions have been the engineering, structural and thermal analysis. These detailed analyses have highlighted some design issues which were worked out through different solutions. This paper contains a description of the engineering activities performed such as: the conceptual design of the Eq no. 01 port plug, the static mechanical calculations, the dynamic calculation to estimate the dynamic amplification factor due to the resonance phenomenon, the thermal assessment under the neutronic load and the seismic response of the port plug inside the vacuum vessel.

  4. Systems engineering applied to integrated safety management for high consequence facilities

    International Nuclear Information System (INIS)

    Barter, R; Morais, B.

    1998-01-01

    Integrated Safety Management is a concept that is being actively promoted by the U.S. Department of Energy as a means of assuring safe operation of its facilities. The concept involves the integration of safety precepts into work planning rather than adjusting for safe operations after defining the work activity. The system engineering techniques used to design an integrated safety management system for a high consequence research facility are described. An example is given to show how the concepts evolved with the system design

  5. Engineering Process Monitoring for Control Room Operation

    OpenAIRE

    Bätz, M

    2001-01-01

    A major challenge in process operation is to reduce costs and increase system efficiency whereas the complexity of automated process engineering, control and monitoring systems increases continuously. To cope with this challenge the design, implementation and operation of process monitoring systems for control room operation have to be treated as an ensemble. This is only possible if the engineering of the monitoring information is focused on the production objective and is lead in close coll...

  6. State of the Art : Integrated Management of Requirements in Model-Based Software Engineering

    OpenAIRE

    Thörn, Christer

    2006-01-01

    This report describes the background and future of research concerning integrated management of requirements in model-based software engineering. The focus is on describing the relevant topics and existing theoretical backgrounds that form the basis for the research. The report describes the fundamental difficulties of requirements engineering for software projects, and proposes that the results and methods of models in software engineering can help leverage those problems. Taking inspiration...

  7. Design of a microprocessor-based Control, Interface and Monitoring (CIM unit for turbine engine controls research

    Science.gov (United States)

    Delaat, J. C.; Soeder, J. F.

    1983-01-01

    High speed minicomputers were used in the past to implement advanced digital control algorithms for turbine engines. These minicomputers are typically large and expensive. It is desirable for a number of reasons to use microprocessor-based systems for future controls research. They are relatively compact, inexpensive, and are representative of the hardware that would be used for actual engine-mounted controls. The Control, Interface, and Monitoring Unit (CIM) contains a microprocessor-based controls computer, necessary interface hardware and a system to monitor while it is running an engine. It is presently being used to evaluate an advanced turbofan engine control algorithm.

  8. INVOLVING STUDENTS IN RESEARCH AS A FORM OF INTEGRATION OF ENGINEERING WITH MATHEMATICAL EDUCATION

    Directory of Open Access Journals (Sweden)

    Viktor M. Fedoseyev

    2016-03-01

    Full Text Available Introduction: questions of integration of mathematical with engineering training in educational process of higher education institution are explored. The existing technologies of the integrated training are analyzed, and the project-oriented direction is distinguished. Research involving students as an organisational and methodical form of training bachelors of the technical speciali sations is discussed. Materials and Methods: results of article are based on researches of tendencies of development of technical and mathematical education, works on the theory and methodology of pedagogical integration, methodology of mathematics and technical science. Methods of historical and pedagogical research, analytical, a method of mathematical modeling were used. Results: the main content of the paper is to make discussion of experience in developing and using integrated educational tasks in real educational process. Discussion is based on a specific technological assignment including a number of mathematical tasks used as a subject of research for students. In the assignment a special place is allocated to the questions reflecting the interplay of a technical task with a mathematical method of research highlighting the objective significance of mathematics as a method to solve engineering problems. Discussion and Conclusions: the paper gives reasons to conditions for using research work with students as an organisational and methodical form of integrated training in mathematics. In realisation of educational technology it is logical to apply the method of projects. It is necessary to formulate a task as an engineering project: to set an engineering objective of research, to formulate specifications; to differentiate between engineering and mathematical tasks of the project, to make actual interrelations between them; the mathematical part of the project has to be a body of research; assessment of the project must be carried out not only accounting for

  9. 10 CFR 20.1701 - Use of process or other engineering controls.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Use of process or other engineering controls. 20.1701... or other engineering controls. The licensee shall use, to the extent practical, process or other engineering controls (e.g., containment, decontamination, or ventilation) to control the concentration of...

  10. Integrated modelling of near field and engineered barrier system processes

    International Nuclear Information System (INIS)

    Lamont, A.; Gansemer, J.

    1994-01-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the Engineered barrier System has been developed to assist project managers at LLNL in identifying areas where research emphasis should be placed. The model was designed to be highly modular so that a model of an individual process could be easily modified or replaced without interfering with the models of other processes. The modules modelling container failure and the dissolution of nuclides include particularly detailed, temperature dependent models of their corresponding processes

  11. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  12. Comparison of Engine Simulation Software for Development of Control System

    Directory of Open Access Journals (Sweden)

    KinYip Chan

    2013-01-01

    Full Text Available Most commonly used commercial engine simulation packages generate detailed estimation of the combustion and gas flow parameters. These parameters are required for advanced research on fluid flow and heat transfer and development of geometries of engine components. However, engine control involves different operating parameters. Various sensors are installed into the engine, the combustion performance is recorded, and data is sent to engine control unit (ECU. ECU computes the new set of parameters to make fine adjustments to actuators providing better engine performance. Such techniques include variable valve timing, variable ignition timing, variable air to fuel ratio, and variable compression ratio. In the present study, two of the commercial packages, Ricardo Wave and Lotus Engine Simulation, have been tested on the capabilities for engine control purposes. These packages are compared with an in-house developed package and with reference results available from the literature. Different numerical experiments have been carried out from which it can be concluded that all packages predict similar profiles of pressure and temperature in the engine cylinder. Moreover, those are in reasonable agreement with the reference results while in-house developed package is possible to run simulations with changing speed for engine control purpose.

  13. Optimization and control methods in industrial engineering and construction

    CERN Document Server

    Wang, Xiangyu

    2014-01-01

    This book presents recent advances in optimization and control methods with applications to industrial engineering and construction management. It consists of 15 chapters authored by recognized experts in a variety of fields including control and operation research, industrial engineering, and project management. Topics include numerical methods in unconstrained optimization, robust optimal control problems, set splitting problems, optimum confidence interval analysis, a monitoring networks optimization survey, distributed fault detection, nonferrous industrial optimization approaches, neural networks in traffic flows, economic scheduling of CCHP systems, a project scheduling optimization survey, lean and agile construction project management, practical construction projects in Hong Kong, dynamic project management, production control in PC4P, and target contracts optimization.   The book offers a valuable reference work for scientists, engineers, researchers and practitioners in industrial engineering and c...

  14. Machining the Integral Impeller and Blisk of Aero-Engines: A Review of Surface Finishing and Strengthening Technologies

    Science.gov (United States)

    Fu, Youzhi; Gao, Hang; Wang, Xuanping; Guo, Dongming

    2017-05-01

    The integral impeller and blisk of an aero-engine are high performance parts with complex structure and made of difficult-to-cut materials. The blade surfaces of the integral impeller and blisk are functional surfaces for power transmission, and their surface integrity has significant effects on the aerodynamic efficiency and service life of an aero-engine. Thus, it is indispensable to finish and strengthen the blades before use. This paper presents a comprehensive literature review of studies on finishing and strengthening technologies for the impeller and blisk of aero-engines. The review includes independent and integrated finishing and strengthening technologies and discusses advanced rotational abrasive flow machining with back-pressure used for finishing the integral impeller and blisk. A brief assessment of future research problems and directions is also presented.

  15. Aircraft dual-shaft jet engine with indirect action fuel flow controller

    Science.gov (United States)

    Tudosie, Alexandru-Nicolae

    2017-06-01

    The paper deals with an aircraft single-jet engine's control system, based on a fuel flow controller. Considering the engine as controlled object and its thrust the most important operation effect, from the multitude of engine's parameters only its rotational speed n is measurable and proportional to its thrust, so engine's speed has become the most important controlled parameter. Engine's control system is based on fuel injection Qi dosage, while the output is engine's speed n. Based on embedded system's main parts' mathematical models, the author has described the system by its block diagram with transfer functions; furthermore, some Simulink-Matlab simulations are performed, concerning embedded system quality (its output parameters time behavior) and, meanwhile, some conclusions concerning engine's parameters mutual influences are revealed. Quantitative determinations are based on author's previous research results and contributions, as well as on existing models (taken from technical literature). The method can be extended for any multi-spool engine, single- or twin-jet.

  16. The KNOMAD Methodology for Integration of Multi-Disciplinary Engineering Knowledge within Aerospace Production

    NARCIS (Netherlands)

    Curran, R.; Verhagen, W.J.C.; Van Tooren, M.J.L.

    2010-01-01

    The paper is associated with the integration of multi-disciplinary knowledge within a Knowledge Based Engineering (KBE)-enabled design framework. To support this integration effort, the KNOMAD methodology has been devised. KNOMAD stands for Knowledge Optimized Manufacture And Design and is a

  17. Integrated management tool for controls software problems, requests and project tasking at SLAC

    International Nuclear Information System (INIS)

    Rogind, D.; Allen, W.; Colocho, W.; DeContreras, G.; Gordon, J.; Pandey, P.; Shoaee, H.

    2012-01-01

    The Accelerator Directorate (AD) Instrumentation and Controls (ICD) Software (SW) Department at SLAC, with its service center model, continuously receives engineering requests to design, build and support controls for accelerator systems lab-wide. Each customer request can vary in complexity from a small software engineering change to a major enhancement. SLAC's Accelerator Improvement Projects (AIPs), along with DOE Construction projects, also contribute heavily to the work load. The various customer requests and projects, paired with the ongoing operational maintenance and problem reports, place a demand on the department that consistently exceeds the capacity of available resources. A centralized repository - comprised of all requests, project tasks, and problems - available to physicists, operators, managers, and engineers alike, is essential to capture, communicate, prioritize, assign, schedule, track, and finally, commission all work components. The Software Department has recently integrated request / project tasking into SLAC's custom online problem tracking 'Comprehensive Accelerator Tool for Enhancing Reliability' (CATER) tool. This paper discusses the newly implemented software request management tool - the workload it helps to track, its structure, features, reports, work-flow and its many usages. (authors)

  18. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-01

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  19. Selective Dirac voltage engineering of individual graphene field-effect transistors for digital inverter and frequency multiplier integrations.

    Science.gov (United States)

    Sul, Onejae; Kim, Kyumin; Jung, Yungwoo; Choi, Eunsuk; Lee, Seung-Beck

    2017-09-15

    The ambipolar band structure of graphene presents unique opportunities for novel electronic device applications. A cycle of gate voltage sweep in a conventional graphene transistor produces a frequency-doubled output current. To increase the frequency further, we used various graphene doping control techniques to produce Dirac voltage engineered graphene channels. The various surface treatments and substrate conditions produced differently doped graphene channels that were integrated on a single substrate and multiple Dirac voltages were observed by applying a single gate voltage sweep. We applied the Dirac voltage engineering techniques to graphene field-effect transistors on a single chip for the fabrication of a frequency multiplier and a logic inverter demonstrating analog and digital circuit application possibilities.

  20. Integrating the protein and metabolic engineering toolkits for next-generation chemical biosynthesis.

    Science.gov (United States)

    Pirie, Christopher M; De Mey, Marjan; Jones Prather, Kristala L; Ajikumar, Parayil Kumaran

    2013-04-19

    Through microbial engineering, biosynthesis has the potential to produce thousands of chemicals used in everyday life. Metabolic engineering and synthetic biology are fields driven by the manipulation of genes, genetic regulatory systems, and enzymatic pathways for developing highly productive microbial strains. Fundamentally, it is the biochemical characteristics of the enzymes themselves that dictate flux through a biosynthetic pathway toward the product of interest. As metabolic engineers target sophisticated secondary metabolites, there has been little recognition of the reduced catalytic activity and increased substrate/product promiscuity of the corresponding enzymes compared to those of central metabolism. Thus, fine-tuning these enzymatic characteristics through protein engineering is paramount for developing high-productivity microbial strains for secondary metabolites. Here, we describe the importance of protein engineering for advancing metabolic engineering of secondary metabolism pathways. This pathway integrated enzyme optimization can enhance the collective toolkit of microbial engineering to shape the future of chemical manufacturing.

  1. Backup control airstart performance on a digital electronic engine control-equipped F100-engine

    Science.gov (United States)

    Johnson, J. B.

    1984-01-01

    The air start capability of a backup control (BUC) was tested for a digital electronic engine control (DEEC) equipped F100 engine, which was installed in an F-15 aircraft. Two air start schedules were tested. Using the group 1 start schedule, based on a 40 sec timer, an air speed of 300 knots was required to ensure successful 40 and 25% BUC mode spooldown airstarts. If core rotor speed (N2) was less than 40% a stall would occur when the start bleed closed, 40 sec after initiation of the air start. All jet fuel starter (JFS) assisted air starts were successful with the group 1 start schedule. For the group 2 schedule, the time between pressurization and start bleed closure ranged between 50 sec and 72 sec. Idle rps was lower than the desired 65% for air starts at higher altitudes and lower air speeds.

  2. The control of a free-piston engine generator. Part 1: Fundamental analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU, England (United Kingdom)

    2010-04-15

    Free-piston engines are under investigation by a number of research groups due to potential fuel efficiency and exhaust emissions advantages over conventional technology. The main challenge with such engines is the control of the piston motion, and this has not yet been fully resolved for all types of free-piston engines. This paper discusses the basic features of a single piston free-piston engine generator under development at Newcastle University and investigates engine control issues using a full-cycle simulation model. Control variables and disturbances are identified, and a control strategy is proposed. It is found that the control of the free-piston engine is a challenge, but that the proposed control strategy is feasible. Engine speed control does, however, represent a challenge in the current design. (author)

  3. Glass-based integrated optical splitters: engineering oriented research

    Science.gov (United States)

    Hao, Yinlei; Zheng, Weiwei; Yang, Jianyi; Jiang, Xiaoqing; Wang, Minghua

    2010-10-01

    Optical splitter is one of most typical device heavily demanded in implementation of Fiber To The Home (FTTH) system. Due to its compatibility with optical fibers, low propagation loss, flexibility, and most distinguishingly, potentially costeffectiveness, glass-based integrated optical splitters made by ion-exchange technology promise to be very attractive in application of optical communication networks. Aiming at integrated optical splitters applied in optical communication network, glass ion-exchange waveguide process is developed, which includes two steps: thermal salts ion-exchange and field-assisted ion-diffusion. By this process, high performance optical splitters are fabricated in specially melted glass substrate. Main performance parameters of these splitters, including maximum insertion loss (IL), polarization dependence loss (PDL), and IL uniformity are all in accordance with corresponding specifications in generic requirements for optic branching components (GR-1209-CORE). In this paper, glass based integrated optical splitters manufacturing is demonstrated, after which, engineering-oriented research work results on glass-based optical splitter are presented.

  4. KIT/KPS of Qinshan phase-II and a discussion on integrated information management and automatic control

    International Nuclear Information System (INIS)

    Yan Changhui

    2001-01-01

    Centralized Data Processing and Safety Panel (KIT/KPS) of Qinshan Phase-II power project is described, and the necessity and engineering scheme is presented of integrated information management and automatic control that would achieve in power plant according to the technology scheme and technology trait of KIT/KPS

  5. Integrated multi-resource planning and scheduling in engineering project

    Directory of Open Access Journals (Sweden)

    Samer Ben Issa

    2017-01-01

    Full Text Available Planning and scheduling processes in project management are carried out sequentially in prac-tice, i.e. planning project activities first without visibility of resource limitation, and then schedul-ing the project according to these pre-planned activities. This is a need to integrate these two pro-cesses. In this paper, we use Branch and Bound approach for generating all the feasible and non-feasible project schedules with/without activity splitting, and with a new criterion called “the Minimum Moments of Resources Required around X-Y axes (MMORR”, we select the best feasible project schedule to integrate plan processing and schedule processing for engineering projects. The results illustrate that this integrated approach can effectively select the best feasible project schedule among alternatives, improves the resource utilization, and shortens the project lead time.

  6. Integrating ergonomics in design processes: a case study within an engineering consultancy firm

    DEFF Research Database (Denmark)

    Sørensen, Lene Bjerg; Broberg, Ole

    2012-01-01

    ergonomics into engineering design processes and how different factors either promote or limit the integration. Based on a grounded theory approach a model illustrating these factors is developed and different hypotheses about how these factors either promote and/or limit the integration of ergonomics...

  7. Integrated Proteomic Pipeline Using Multiple Search Engines for a Proteogenomic Study with a Controlled Protein False Discovery Rate.

    Science.gov (United States)

    Park, Gun Wook; Hwang, Heeyoun; Kim, Kwang Hoe; Lee, Ju Yeon; Lee, Hyun Kyoung; Park, Ji Yeong; Ji, Eun Sun; Park, Sung-Kyu Robin; Yates, John R; Kwon, Kyung-Hoon; Park, Young Mok; Lee, Hyoung-Joo; Paik, Young-Ki; Kim, Jin Young; Yoo, Jong Shin

    2016-11-04

    In the Chromosome-Centric Human Proteome Project (C-HPP), false-positive identification by peptide spectrum matches (PSMs) after database searches is a major issue for proteogenomic studies using liquid-chromatography and mass-spectrometry-based large proteomic profiling. Here we developed a simple strategy for protein identification, with a controlled false discovery rate (FDR) at the protein level, using an integrated proteomic pipeline (IPP) that consists of four engrailed steps as follows. First, using three different search engines, SEQUEST, MASCOT, and MS-GF+, individual proteomic searches were performed against the neXtProt database. Second, the search results from the PSMs were combined using statistical evaluation tools including DTASelect and Percolator. Third, the peptide search scores were converted into E-scores normalized using an in-house program. Last, ProteinInferencer was used to filter the proteins containing two or more peptides with a controlled FDR of 1.0% at the protein level. Finally, we compared the performance of the IPP to a conventional proteomic pipeline (CPP) for protein identification using a controlled FDR of <1% at the protein level. Using the IPP, a total of 5756 proteins (vs 4453 using the CPP) including 477 alternative splicing variants (vs 182 using the CPP) were identified from human hippocampal tissue. In addition, a total of 10 missing proteins (vs 7 using the CPP) were identified with two or more unique peptides, and their tryptic peptides were validated using MS/MS spectral pattern from a repository database or their corresponding synthetic peptides. This study shows that the IPP effectively improved the identification of proteins, including alternative splicing variants and missing proteins, in human hippocampal tissues for the C-HPP. All RAW files used in this study were deposited in ProteomeXchange (PXD000395).

  8. Self-Control and Academic Performance in Engineering

    Science.gov (United States)

    Honken, Nora; Ralston, Patricia A.; Tretter, Thomas R.

    2016-01-01

    Self-control has been related to positive student outcomes including academic performance of college students. Because of the critical nature of the first semester academic performance for engineering students in terms of retention and persistence in pursuing an engineering degree, this study investigated the relationship between freshmen…

  9. Vehicle Systems Engineering and Integration Activities - Phase 5

    Science.gov (United States)

    2012-08-31

    payload, 10,300 lb gross vehicle weight. The Expanded Capacity Vehicle (ECV, 1993-present) has a 6.5 liter turbo diesel Bolt on armor required...installed by the maintenance unit. A proposed ECV2 (not currently in production) has an improved 6.5 liter turbo diesel engine, a new transmission...frame (3 piece welded), integral “A” armor with attachment points for “B” armor kit, increased cab space (14 cubic feet), enhanced 6500 turbo diesel

  10. Experiment-Based Teaching in Advanced Control Engineering

    Science.gov (United States)

    Precup, R.-E.; Preitl, S.; Radac, M.-B.; Petriu, E. M.; Dragos, C.-A.; Tar, J. K.

    2011-01-01

    This paper discusses an experiment-based approach to teaching an advanced control engineering syllabus involving controlled plant analysis and modeling, control structures and algorithms, real-time laboratory experiments, and their assessment. These experiments are structured around the representative case of the longitudinal slip control of an…

  11. Integration of a wood pellet burner and a Stirling engine to produce residential heat and power

    International Nuclear Information System (INIS)

    Cardozo, Evelyn; Erlich, Catharina; Malmquist, Anders; Alejo, Lucio

    2014-01-01

    The integration a Stirling engine with a pellet burner is a promising alternative to produce heat and power for residential use. In this context, this study is focused on the experimental evaluation of the integration of a 20 kW th wood pellet burner and a 1 kW e Stirling engine. The thermal power not absorbed by the engine is used to produce hot water. The evaluation highlights the effects of pellet type, combustion chamber length and cycling operation on the Stirling engine temperatures and thermal power absorbed. The results show that the position of the Stirling engine is highly relevant in order to utilize as much as possible of the radiative heat from the burner. Within this study, only a 5 cm distance change between the Stirling engine and the pellet burner could result in an increase of almost 100 °C in the hot side of the engine. However, at a larger distance, the temperature of the hot side is almost unchanged suggesting dominating convective heat transfer from the hot flue gas. Ash accumulation decreases the temperature of the hot side of the engine after some cycles of operation when a commercial pellet burner is integrated. The temperature ratio, which is the relation between the minimum and maximum temperatures of the engine, decreases when using Ø8 mm wood pellets in comparison to Ø6 mm pellets due to higher measured temperatures on the hot side of the engine. Therefore, the amount of heat supplied to the engine is increased for Ø8 mm wood pellets. The effectiveness of the engine regenerator is increased at higher pressures. The relation between temperature of the hot side end and thermal power absorbed by the Stirling engine is nearly linear between 500 °C and 660 °C. Higher pressure inside the Stirling engine has a positive effect on the thermal power output. Both the chemical and thermal losses increase somewhat when integrating a Stirling engine in comparison to a stand-alone boiler for only heat production. The overall efficiency

  12. The fully integrated biomedical engineering programme at Eindhoven University of Technology

    NARCIS (Netherlands)

    Slaaf, D.W.; Genderen, van M.H.P.

    2009-01-01

    The development of a fully integrated biomedical engineering programme (life sciences included from the start) is described. Details are provided about background, implementation, and didactic concept: design centred learning combined with courses. The curriculum has developed into a

  13. 14 CFR 121.279 - Control of engine rotation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Control of engine rotation. 121.279 Section... of engine rotation. (a) Except as provided in paragraph (b) of this section, each airplane must have a means of individually stopping and restarting the rotation of any engine in flight. (b) In the...

  14. Design and Demonstration of Emergency Control Modes for Enhanced Engine Performance

    Science.gov (United States)

    Liu, Yuan; Litt, Jonathan S.; Guo, Ten-Huei

    2013-01-01

    A design concept is presented for developing control modes that enhance aircraft engine performance during emergency flight scenarios. The benefits of increased engine performance to overall vehicle survivability during these situations may outweigh the accompanied elevated risk of engine failure. The objective involves building control logic that can consistently increase engine performance beyond designed maximum levels based on an allowable heightened probability of failure. This concept is applied to two previously developed control modes: an overthrust mode that increases maximum engine thrust output and a faster response mode that improves thrust response to dynamic throttle commands. This paper describes the redesign of these control modes and presents simulation results demonstrating both enhanced engine performance and robust maintenance of the desired elevated risk level.

  15. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    Science.gov (United States)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  16. From integrated control to integrated farming, an experimental approach

    NARCIS (Netherlands)

    Vereijken, P.H.

    1989-01-01

    Integrated control or integrated pest management (IPM), as envisaged originally, is not being practised to any large extent in arable farming, notwithstanding considerable research efforts. The reasons for this are discussed. A more basic approach called integrated farming is suggested. Preliminary

  17. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    Science.gov (United States)

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  18. Integrated Design and Implementation of Embedded Control Systems with Scilab.

    Science.gov (United States)

    Ma, Longhua; Xia, Feng; Peng, Zhe

    2008-09-05

    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  19. Integrated Design and Implementation of Embedded Control Systems with Scilab

    Directory of Open Access Journals (Sweden)

    Zhe Peng

    2008-09-01

    Full Text Available Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly timeconsuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.

  20. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    Science.gov (United States)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  1. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  2. Systems engineering and integrated for the SSC

    International Nuclear Information System (INIS)

    Laintz, D.J.; Crosby, B.; Davis, M.; Eben, D.; Gliozzi, J.; Kientz, E.; Knafelc, J.; Phelps, J.; Rider, M.; Shearer, K.

    1989-01-01

    Experience in high technology projects of scale and scope similar to the SSC, leads the authors to propose utilization of a Systems Engineering and Integration (SE and I) process tailored specifically to the SSC project. They begin by giving an overview of SE and I. This overview includes the purpose, history, definition, and a discussion of when to use it. They then proceeded to give a description of a formalized SE and I process. They discuss tailoring the process to a project and close by recommending an early commitment to an SE and I methodology for the SSC. 2 refs., 2 figs

  3. Proportional-integral controller based small-signal analysis of hybrid distributed generation systems

    International Nuclear Information System (INIS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2011-01-01

    Research highlights: → We aim to minimize the deviation of frequency in an integrated energy resources like offshore wind, photovoltaic (PV), fuel cell (FC) and diesel engine generator (DEG) along with the energy storage elements like flywheel energy storage system (FESS) and battery energy storage system (BESS). → Further ultracapacitor (UC) as an alternative energy storage element and proportional-integral (PI) controller is addressed in order to achieve improvements in the deviation of frequency profiles. → A comparative assessment of frequency deviation for different hybrid systems is also carried out in the presence of high voltage direct current (HVDC) link and high voltage alternating current (HVAC) line. → In the study both qualitative and quantitative analysis reflects the improvements in frequency deviation profiles with use of ultracapacitor (UC) as energy storage element. -- Abstract: The large band variation in the wind speed and unpredictable solar radiation causes remarkable fluctuations of output power in offshore wind and photovoltaic system respectively, which leads to large deviation in the system frequency. In this context, to minimize the deviation in frequency, this paper presents integration of different energy resources like offshore wind, photovoltaic (PV), fuel cell (FC) and diesel engine generator (DEG) along with the energy storage elements like flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitor (UC) as an alternative energy storage element and proportional-integral (PI) controller is addressed in order to achieve improvements in the deviation of frequency profiles. A comparative assessment of frequency deviation for different hybrid systems is also carried out in the presence of high-voltage direct current (HVDC) link and high-voltage alternating current (HVAC) line. Frequency deviation for different isolated hybrid systems are presented graphically as well as in terms of

  4. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    International Nuclear Information System (INIS)

    C.J. Fernado

    1998-01-01

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I andC) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I andC and will typically be integrated over a data communication network. The subsurface I andC systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures

  5. SUBSURFACE REPOSITORY INTEGRATED CONTROL SYSTEM DESIGN

    Energy Technology Data Exchange (ETDEWEB)

    C.J. Fernado

    1998-09-17

    The purpose of this document is to develop preliminary high-level functional and physical control system architectures for the proposed subsurface repository at Yucca Mountain. This document outlines overall control system concepts that encompass and integrate the many diverse systems being considered for use within the subsurface repository. This document presents integrated design concepts for monitoring and controlling the diverse set of subsurface operations. The subsurface repository design will be composed of a series of diverse systems that will be integrated to accomplish a set of overall functions and objectives. The subsurface repository contains several Instrumentation and Control (I&C) related systems including: waste emplacement systems, ventilation systems, communication systems, radiation monitoring systems, rail transportation systems, ground control monitoring systems, utility monitoring systems (electrical, lighting, water, compressed air, etc.), fire detection and protection systems, retrieval systems, and performance confirmation systems. Each of these systems involve some level of I&C and will typically be integrated over a data communication network. The subsurface I&C systems will also integrate with multiple surface-based site-wide systems such as emergency response, health physics, security and safeguards, communications, utilities and others. The scope and primary objectives of this analysis are to: (1) Identify preliminary system level functions and interface needs (Presented in the functional diagrams in Section 7.2). (2) Examine the overall system complexity and determine how and on what levels these control systems will be controlled and integrated (Presented in Section 7.2). (3) Develop a preliminary subsurface facility-wide design for an overall control system architecture, and depict this design by a series of control system functional block diagrams (Presented in Section 7.2). (4) Develop a series of physical architectures that

  6. Biomass gasification integrated with a solid oxide fuel cell and Stirling engine

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2014-01-01

    An integrated gasification solid oxide fuel cell (SOFC) and Stirling engine for combined heat and power application is analyzed. The target for electricity production is 120 kW. Woodchips are used as gasification feedstock to produce syngas, which is then used to feed the SOFC stacks...... for electricity production. Unreacted hydrocarbons remaining after the SOFC are burned in a catalytic burner, and the hot off-gases from the burner are recovered in a Stirling engine for electricity and heat production. Domestic hot water is used as a heat sink for the Stirling engine. A complete balance...

  7. [Comparison Analysis of Economic and Engineering Control of Industrial VOCs].

    Science.gov (United States)

    Wang, Yu-fei; Liu, Chang-xin; Cheng, Jie; Hao, Zheng-ping; Wang, Zheng

    2015-04-01

    Volatile organic compounds (VOCs) pollutant has become China's major air pollutant in key urban areas like sulfur dioxide, nitrogen oxides and particulate matter. It is mainly produced from industry sectors, and engineering control is one of the most important reduction measures. During the 12th Five-Year Plan, China decides to invest 40 billion RMB to build pollution control projects in key industry sectors with annual emission reduction of 605 000 t x a(-1). It shows that China attaches a great importance to emission reduction by engineering projects and highlights the awareness of engineering reduction technologies. In this paper, a macroeconomic model, namely computable general equilibrium model, (CGE model) was employed to simulate engineering control and economic control (imposing environmental tax). We aim to compare the pros and cons of the two reduction policies. Considering the economic loss of the whole country, the environmental tax has more impacts on the economy system than engineering reduction measures. We suggest that the central government provides 7 500 RMB x t(-1) as subsidy for enterprises in industry sectors to encourage engineering reduction.

  8. Integration of emergency action levels with Combustion Engineering Emergency Operating Procedures

    International Nuclear Information System (INIS)

    Faletti, D.W.; Jamison, J.D.

    1985-09-01

    This report documents the development of a method for integrating Emergency Action Levels (EALs) with plant-specific Emergency Operating Procedures (EOPs) using the Combustion Engineering Owners' Group Emergency Operating Procedure Technical Guidelines (CEOG EOPTFs). EALs are discrete conditions or values of plant operating parameters which, if exceeded, require declaration of an appropriate level of emergency. At most operating plants, the EALs and event classification procedures are totally separate from the Emergency Operating Procedures used by the plant staff to control the plant during abnormal conditions. Control room personnel using the EOPs to deal with abnormal plant conditions must recognize when plant safety is sufficiently degraded that an emergency declaration may be warranted, and then enter a separate classification procedure containing EALs for a number of plant conditions and parameters. The operator then compares the existing plant conditions to the EALs and makes an emergency declaration accordingly. Using the Combustion Engineering Owners' Group Technical Guidelines document, a set of emergency class definitions and criteria were developed based on the status of the three main fission product barriers (fuel cladding, primary coolant system and containment). The EOPTGs were then annotated with suggested guidance to a procedure writer. The proposed method was tested by applying it to the reactor accident sequences that were shown in the reactor safety study to dominate accident risk. The object of the test was to determine if an EAL set linked to the EOP annotations would produce timely and accurate classification of the risk-dominant sequences. 6 refs., 13 figs., 31 tabs

  9. Experimental Investigation of Embedded Controlled Diesel Engine

    OpenAIRE

    R.Govindaraju; M.Bharathiraja; Dr. K.Ramani; Dr.K.R.Govindan

    2012-01-01

    Diesel engines are widely used in Automobiles, Agriculture and Power generation sectors in a large scale. The modern techniques have contributed a lot in the saving of fuel in these diesel engines. However, from 1970 onwards the fuel consumption becomes a serious concern because of a manifold increase of automobiles and fast depletion of non renewable sources of energy. Since the fuel injection system plays a major role in the consumption of fuel in diesel engines, various control measures we...

  10. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    Directory of Open Access Journals (Sweden)

    Feifei Yan

    2014-03-01

    Full Text Available The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  11. Simple control law structure for the control of airplanes by means of their engines

    OpenAIRE

    Fezans, Nicolas

    2011-01-01

    In this paper a simple control law structure is presented for the control of airplanes using only the engines' thrust. For the design of such a propulsion controlled aircraft control law, the approach followed in this work is to look for the right level of performance in order to avoid both excessive engines activity and reduction of robustness properties. Another goal is to keep the control law and its tuning as simple as possible: for this a control law structure whose terms can easily be i...

  12. Transcription control engineering and applications in synthetic biology

    Directory of Open Access Journals (Sweden)

    Michael D. Engstrom

    2017-09-01

    Full Text Available In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein, a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators (cis-factors were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators (trans-factors, giving examples of how cis- and trans-acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli, we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  13. Transcription control engineering and applications in synthetic biology.

    Science.gov (United States)

    Engstrom, Michael D; Pfleger, Brian F

    2017-09-01

    In synthetic biology, researchers assemble biological components in new ways to produce systems with practical applications. One of these practical applications is control of the flow of genetic information (from nucleic acid to protein), a.k.a. gene regulation. Regulation is critical for optimizing protein (and therefore activity) levels and the subsequent levels of metabolites and other cellular properties. The central dogma of molecular biology posits that information flow commences with transcription, and accordingly, regulatory tools targeting transcription have received the most attention in synthetic biology. In this mini-review, we highlight many past successes and summarize the lessons learned in developing tools for controlling transcription. In particular, we focus on engineering studies where promoters and transcription terminators ( cis -factors) were directly engineered and/or isolated from DNA libraries. We also review several well-characterized transcription regulators ( trans- factors), giving examples of how cis- and trans -acting factors have been combined to create digital and analogue switches for regulating transcription in response to various signals. Last, we provide examples of how engineered transcription control systems have been used in metabolic engineering and more complicated genetic circuits. While most of our mini-review focuses on the well-characterized bacterium Escherichia coli , we also provide several examples of the use of transcription control engineering in non-model organisms. Similar approaches have been applied outside the bacterial kingdom indicating that the lessons learned from bacterial studies may be generalized for other organisms.

  14. Integrator element as a promoter of active learning in engineering teaching

    Science.gov (United States)

    Oliveira, Paulo C.; Oliveira, Cristina G.

    2014-03-01

    In this paper, we present a teaching proposal used in an Introductory Physics course to civil engineering students from Porto's Engineering Institute/Instituto Superior de Engenharia do Porto (ISEP). The proposal was born from the need to change students' perception and motivation for learning physics. It consists in the use of an integrator element, called the physics elevator project. This integrator element allows us to use, in a single project, all the content taught in the course and uses several active learning strategies. In this paper, we analyse this project as: (i) a clarifying element of the contents covered in the course; (ii) a promoter element of motivation and active participation in class and finally and (iii) a link between the contents covered in the course and the 'real world'. The data were collected by a questionnaire and interviews to students. From the data collected, it seems that the integrator element improves students' motivation towards physics and develops several skills that they consider to be important to their professional future. It also acts as a clarifying element and makes the connection between the physics that is taught and the 'real world'.

  15. Software for Collaborative Engineering of Launch Rockets

    Science.gov (United States)

    Stanley, Thomas Troy

    2003-01-01

    The Rocket Evaluation and Cost Integration for Propulsion and Engineering software enables collaborative computing with automated exchange of information in the design and analysis of launch rockets and other complex systems. RECIPE can interact with and incorporate a variety of programs, including legacy codes, that model aspects of a system from the perspectives of different technological disciplines (e.g., aerodynamics, structures, propulsion, trajectory, aeroheating, controls, and operations) and that are used by different engineers on different computers running different operating systems. RECIPE consists mainly of (1) ISCRM a file-transfer subprogram that makes it possible for legacy codes executed in their original operating systems on their original computers to exchange data and (2) CONES an easy-to-use filewrapper subprogram that enables the integration of legacy codes. RECIPE provides a tightly integrated conceptual framework that emphasizes connectivity among the programs used by the collaborators, linking these programs in a manner that provides some configuration control while facilitating collaborative engineering tradeoff studies, including design to cost studies. In comparison with prior collaborative-engineering schemes, one based on the use of RECIPE enables fewer engineers to do more in less time.

  16. Model-Based Control of an Aircraft Engine using an Optimal Tuner Approach

    Science.gov (United States)

    Connolly, Joseph W.; Chicatelli, Amy; Garg, Sanjay

    2012-01-01

    This paper covers the development of a model-based engine control (MBEC) method- ology applied to an aircraft turbofan engine. Here, a linear model extracted from the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS40k) at a cruise operating point serves as the engine and the on-board model. The on-board model is up- dated using an optimal tuner Kalman Filter (OTKF) estimation routine, which enables the on-board model to self-tune to account for engine performance variations. The focus here is on developing a methodology for MBEC with direct control of estimated parameters of interest such as thrust and stall margins. MBEC provides the ability for a tighter control bound of thrust over the entire life cycle of the engine that is not achievable using traditional control feedback, which uses engine pressure ratio or fan speed. CMAPSS40k is capable of modeling realistic engine performance, allowing for a verification of the MBEC tighter thrust control. In addition, investigations of using the MBEC to provide a surge limit for the controller limit logic are presented that could provide benefits over a simple acceleration schedule that is currently used in engine control architectures.

  17. An engineering approach to an integrated value proposition design framework

    Directory of Open Access Journals (Sweden)

    Van Der Merwe, Carmen

    2015-05-01

    Full Text Available Numerous problems with product quality and time-to-market launches can be traced back to how the product lifecycle process is managed within the organisation. This article provides insight into how an integrated value proposition design framework shifts product lifecycle management from a product-centric view to a customer-centric view, through the use of good engineering practices as found in the systems engineering discipline. Combining this with methods and tools such as the Refined Kano model, Blue Ocean strategy, and the Generalised Bass model enables the organisation to enhance product and service quality while reducing the time-to-market for new value proposition launches.

  18. Integral control for population management.

    Science.gov (United States)

    Guiver, Chris; Logemann, Hartmut; Rebarber, Richard; Bill, Adam; Tenhumberg, Brigitte; Hodgson, Dave; Townley, Stuart

    2015-04-01

    We present a novel management methodology for restocking a declining population. The strategy uses integral control, a concept ubiquitous in control theory which has not been applied to population dynamics. Integral control is based on dynamic feedback-using measurements of the population to inform management strategies and is robust to model uncertainty, an important consideration for ecological models. We demonstrate from first principles why such an approach to population management is suitable via theory and examples.

  19. Value-Engineering Review for Numerical Control

    Science.gov (United States)

    Warner, J. L.

    1984-01-01

    Selecting parts for conversion from conventional machining to numerical control, value-engineering review performed for every part to identify potential changes to part design that result in increased production efficiency.

  20. Adaptive Gas Turbine Engine Control for Deterioration Compensation Due to Aging

    Science.gov (United States)

    Litt, Jonathan S.; Parker, Khary I.; Chatterjee, Santanu

    2003-01-01

    This paper presents an ad hoc adaptive, multivariable controller tuning rule that compensates for a thrust response variation in an engine whose performance has been degraded though use and wear. The upset appears when a large throttle transient is performed such that the engine controller switches from low-speed to high-speed mode. A relationship was observed between the level of engine degradation and the overshoot in engine temperature ratio, which was determined to cause the thrust response variation. This relationship was used to adapt the controller. The method is shown to work very well up to the operability limits of the engine. Additionally, since the level of degradation can be estimated from sensor data, it would be feasible to implement the adaptive control algorithm on-line.

  1. Development of remote control integrator system on Tokamak

    International Nuclear Information System (INIS)

    Wu Yichun; Wang Lingzhi; Shu Shuangbao

    2014-01-01

    In order to meet with the requirement of electromagnetic diagnosis to the J-TEXT Tokamak, a remote control integrator system was developed. With modular design method, the integrator system is composed of the integrator cards, a control card, a linear power card and the BNC interface cards, and it uses the PC control soft- ware to conduct network control. An integrator system provides 32 integrator channels, and all integral channels have four kinds of integral time constants for remote selection and provide three kinds of integrator running control methods. According to laboratory and J-TEXT field testing, it shows that the output voltage range is -10-10 V, output noise is not more than 5 mV, and for the four kinds of integral time constants, the integral output drifts are all less than 5 mV within 100 s for each integrator channel. (authors)

  2. Implementing an integrated engineering data base system: A developer's experience and the application to IPAD

    Science.gov (United States)

    Bruce, E. A.

    1980-01-01

    The software developed by the IPAD project, a new and very powerful tool for the implementation of integrated Computer Aided Design (CAD) systems in the aerospace engineering community, is discussed. The IPAD software is a tool and, as such, can be well applied or misapplied in any particular environment. The many benefits of an integrated CAD system are well documented, but there are few such systems in existence, especially in the mechanical engineering disciplines, and therefore little available experience to guide the implementor.

  3. HPT Clearance Control: Intelligent Engine Systems-Phase 1

    Science.gov (United States)

    2005-01-01

    The following work has been completed to satisfy the Phase I Deliverables for the "HPT Clearance Control" project under NASA GRC's "Intelligent Engine Systems" program: (1) Need for the development of an advanced HPT ACC system has been very clearly laid out, (2) Several existing and potential clearance control systems have been reviewed, (3) A scorecard has been developed to document the system, performance (fuel burn, range, payload, etc.), thermal, and mechanical characteristics of the existing clearance control systems, (4) Engine size and flight cycle selection for the advanced HPT ACC system has been reviewed with "large engine"/"long range mission" combination showing the most benefit, (5) A scoring criteria has been developed to tie together performance parameters for an objective, data driven comparison of competing systems, and (6) The existing HPT ACC systems have been scored based on this scoring system.

  4. Adjusting the specificity of an engine map based on the sensitivity of an engine control parameter relative to a performance variable

    Science.gov (United States)

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-10-28

    Methods and systems for engine control optimization are provided. A first and a second operating condition of a vehicle engine are detected. An initial value is identified for a first and a second engine control parameter corresponding to a combination of the detected operating conditions according to a first and a second engine map look-up table. The initial values for the engine control parameters are adjusted based on a detected engine performance variable to cause the engine performance variable to approach a target value. A first and a second sensitivity of the engine performance variable are determined in response to changes in the engine control parameters. The first engine map look-up table is adjusted when the first sensitivity is greater than a threshold, and the second engine map look-up table is adjusted when the second sensitivity is greater than a threshold.

  5. PENERAPAN ENGINEERING CONTROL DAN ADMINISTRATIVE CONTROL SEBAGAI BENTUK INTERVENSI ERGONOMI DI PT GANDING TOOLSINDO

    Directory of Open Access Journals (Sweden)

    Nataya Charoonsri Rizani

    2012-02-01

    Full Text Available PT. Ganding Toolsindo,sebuah perusahaan  manufaktur yang bergerak di bidang industri otomotif, mengalami permasalahan ergonomi berdasarkan tanda-tanda umum terjadinya permasalahan ergonomi yaitu apparent trend in accidents and injuries, incidence of CTD (cumulative trauma disorder, absenteeism & high turnover rates, employee complaints, poor quality,dan  manual material handling. Permasalahan  yang menjadi focus untuk diselesaikan oleh perusahaan adalah CTD. Penelitian  pada dua stasiun kerja utama  yang bermasalah  yaitu mesin chinfong dan ada yang menggunakan tiga tools yaitu Rapid Upper Limb Assessment (RULA, Nordic Body Map dan pengukuran momen tubuh dengan software Mannequin Pro 7. Hasil dari ketiga tools ini menunjukkan perlu dilakukan intervensi ergonomi dengan pendekatan engineering control maupun administrative control. Intervensi dengan pendekatan engineering control dilakukan dengan meninggikan area kerja dan modifikasi bangku kerja, sedangkan pendekatan administrative control dilakukan dengan menerapkan rotasi kerja dan pemanasan tubuh sebelum bekerja. Hasil implementasi intervensi ergonomic menunjukkan adalanya penurunan pada skor RULA, persentasi keluhan tubuh dan penggunaan momen tubuh. Kata Kunci: CTD, intervensi ergonomi, engineering control, administrative control     PT. Ganding Toolsindo, a manufacturing company engaged in the automotive industry, ergonomics problems experienced by general signs of ergonomics problems are apparent trend in accidents and injuries, incidence of CTD (cumulative trauma disorder, high absenteeism & turnover rates, employee complaints, poor quality, and manual material handling. The problems to be resolved by the company's focus for the CTD. Research on the two main work stations that are problematic and aida chinfong machine uses three tools namely Rapid Upper Limb Assessment (Rula, Nordic Body Map and measurement of body moments with Mannequin Pro 7 software. The results of all three

  6. Engineering Integration: Building a Quick and Effective Faculty Seminar

    Directory of Open Access Journals (Sweden)

    Kate Peterson

    2012-12-01

    Full Text Available In the spring of 2010, the Science & Engineering Library of the University of Minnesota-Twin Cities partnered with the Information Literacy Librarian and offered a faculty seminar to the College of Science and Engineering. The seminar’s goals included 1. refreshing and expanding faculty’s knowledge of information and 21st century literacies and 2. creating a community of faculty committed to developing student skills in finding, evaluating and synthesizing information in their academic coursework and into their professional careers. Overall, the seminar increased faculty understanding of services and expertise of the libraries, and 21st century literacies. It also developed and strengthened ties between individual faculty members and their subject librarians, leading to a mix of outcomes from a faculty member partnering on a grant the Libraries applied for to course integrated instruction sessions to faculty participating in an e-textbook pilot. This seminar provides a strong model for re-framing information literacy in the context of teaching and learning in science and engineering, giving librarians an opportunity to strengthen relationships and increase liaison effectiveness.

  7. Engineering Assessment and Certification of Integrity of the 490-Q1 tank system

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, W.W. [Lawrence Livermore National Lab., CA (United States); Gee, C.W.; Graser, D.A. [Science Applications International Corp., San Diego, CA (US)

    1993-07-01

    This Engineering Assessment and Certification of Integrity of used freon storage tanks 490-Q1A1 and 490-Q1A2 has been prepared in response to 40 CFR 265.192(a) and 22 CCR 66265.192(a) for new tank systems that store hazardous waste and have secondary containment. The regulations require that this assessment be completed and certified by an independent, qualified, California-registered professional engineer before the tank system is placed in use as a hazardous waste storage tank system. The technical assessments for the 490-Q1A1 and 490-Q1A2 tank systems have been reviewed by an independent, qualified, California-registered professional engineer, who has certified that the tank systems have sufficient structural integrity, are acceptable for transferring and storing hazardous waste, are compatible with the stored waste, and the tanks and containment system are suitably designed to achieve the requirements of the applicable regulations so they will not collapse, rupture, or fail.

  8. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  9. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  10. Jet Engine Control Using Ethernet with a BRAIN (Postprint)

    National Research Council Canada - National Science Library

    Hall, Brendan; Paulitsch, Michael; Benson, Dewey; Behbahani, Alireza

    2008-01-01

    .... However, achieving a distributed architecture that supports the increasing computational demands of engine control and prognostics strategies whilst surviving in the harsh on-engine environment...

  11. INCORPORATION OF HUMAN FACTORS ENGINEERING ANALYSES AND TOOLS INTO THE DESIGN PROCESS FOR DIGITAL CONTROL ROOM UPGRADES

    International Nuclear Information System (INIS)

    O'HARA, J.M.; BROWN, W.

    2004-01-01

    Many nuclear power plants are modernizing with digital instrumentation and control systems and computer-based human-system interfaces (HSIs). The purpose of this paper is to summarize the human factors engineering (HFE) activities that can help to ensure that the design meets personnel needs. HFE activities should be integrated into the design process as a regular part of the engineering effort of a plant modification. The HFE activities will help ensure that human performance issues are addressed, that new technology supports task performance, and that the HSIs are designed in a manner that is compatible with human physiological, cognitive and social characteristics

  12. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    Science.gov (United States)

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-08-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.

  13. Model-based Engineering for the Integration of Manufacturing Systems with Advanced Analytics

    OpenAIRE

    Lechevalier , David; Narayanan , Anantha; Rachuri , Sudarsan; Foufou , Sebti; Lee , Y Tina

    2016-01-01

    Part 3: Interoperability and Systems Integration; International audience; To employ data analytics effectively and efficiently on manufacturing systems, engineers and data scientists need to collaborate closely to bring their domain knowledge together. In this paper, we introduce a domain-specific modeling approach to integrate a manufacturing system model with advanced analytics, in particular neural networks, to model predictions. Our approach combines a set of meta-models and transformatio...

  14. Single-temperature quantum engine without feedback control.

    Science.gov (United States)

    Yi, Juyeon; Talkner, Peter; Kim, Yong Woon

    2017-08-01

    A cyclically working quantum-mechanical engine that operates at a single temperature is proposed. Its energy input is delivered by a quantum measurement. The functioning of the engine does not require any feedback control. We analyze work, heat, and the efficiency of the engine for the case of a working substance that is governed by the laws of quantum mechanics and that can be adiabatically compressed and expanded. The obtained general expressions are exemplified for a spin in an adiabatically changing magnetic field and a particle moving in a potential with slowly changing shape.

  15. Neuro-fuzzy Control of Integrating Processes

    Directory of Open Access Journals (Sweden)

    Anna Vasičkaninová

    2011-11-01

    Full Text Available Fuzzy technology is adaptive and easily applicable in different areas.Fuzzy logic provides powerful tools to capture the perceptionof natural phenomena. The paper deals with tuning of neuro-fuzzy controllers for integrating plant and for integrating plantswith time delay. The designed approach is verified on three examples by simulations and compared plants with classical PID control.Designed fuzzy controllers lead to better closed-loop control responses then classical PID controllers.

  16. Double acting stirling engine phase control

    Science.gov (United States)

    Berchowitz, David M.

    1983-01-01

    A mechanical device for effecting a phase change between the expansion and compression volumes of a double-acting Stirling engine uses helical elements which produce opposite rotation of a pair of crankpins when a control rod is moved, so the phase between two pairs of pistons is changed by +.psi. and the phase between the other two pairs of pistons is changed by -.psi.. The phase can change beyond .psi.=90.degree. at which regenerative braking and then reversal of engine rotation occurs.

  17. Status, Vision, and Challenges of an Intelligent Distributed Engine Control Architecture

    Science.gov (United States)

    Behbahani, Alireza; Culley, Dennis; Garg, Sanjay; Millar, Richard; Smith, Bert; Wood, Jim; Mahoney, Tim; Quinn, Ronald; Carpenter, Sheldon; Mailander, Bill; hide

    2007-01-01

    A Distributed Engine Control Working Group (DECWG) consisting of the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) and industry has been formed to examine the current and future requirements of propulsion engine systems. The scope of this study will include an assessment of the paradigm shift from centralized engine control architecture to an architecture based on distributed control utilizing open system standards. Included will be a description of the work begun in the 1990's, which continues today, followed by the identification of the remaining technical challenges which present barriers to on-engine distributed control.

  18. LEAN-GREEN MANUFACTURING: COLLABORATIVE CONTENT AND LANGUAGE INTEGRATED LEARNING IN HIGHER EDUCATION AND ENGINEERING COURSES

    Directory of Open Access Journals (Sweden)

    MARCELO RUDOLFO CALVETE GASPAR

    2017-09-01

    Full Text Available Lean and Green manufacturing processes aim at achieving lower material and labour costs, while reducing impacts on the environment, and promoting sustainability as a whole. This paper reports on a pilot experiment with higher education and engineering students, exploring the full potential of a collaborative approach on courses integrating the Portuguese Polytechnic of Castelo Branco engineering studies curricula, while simultaneously improving their proficiency in English. Content and Language Integrated Learning (CLIL has become a key area of curricular innovation since it is known for improving both language and content teacher and student motivation. In this context, instructional design for CLIL entailed tandem work of content (engineering and language (English teacher to design learning sequences and strategies. This allowed students to improve not only their language skills in English but also their knowledge in the specific engineering domain content on green and lean manufacturing processes.

  19. The Case for Intelligent Propulsion Control for Fast Engine Response

    Science.gov (United States)

    Litt, Jonathan S.; Frederick, Dean K.; Guo, Ten-Huei

    2009-01-01

    Damaged aircraft have occasionally had to rely solely on thrust to maneuver as a consequence of losing hydraulic power needed to operate flight control surfaces. The lack of successful landings in these cases inspired research into more effective methods of utilizing propulsion-only control. That research demonstrated that one of the major contributors to the difficulty in landing is the slow response of the engines as compared to using traditional flight control. To address this, research is being conducted into ways of making the engine more responsive under emergency conditions. This can be achieved by relaxing controller limits, adjusting schedules, and/or redesigning the regulators to increase bandwidth. Any of these methods can enable faster response at the potential expense of engine life and increased likelihood of stall. However, an example sensitivity analysis revealed a complex interaction of the limits and the difficulty in predicting the way to achieve the fastest response. The sensitivity analysis was performed on a realistic engine model, and demonstrated that significantly faster engine response can be achieved compared to standard Bill of Material control. However, the example indicates the need for an intelligent approach to controller limit adjustment in order for the potential to be fulfilled.

  20. Control Engineering as a Part of Undergraduate Curriculum for Mechanical Engineering in India

    Science.gov (United States)

    Akhtar, Shagil; Iqbal, Syed Muneeb; Bajpai, Shrish

    2016-01-01

    In this present study we have traced the genesis of control engineering in the scope of mechanical engineering and then some analysis on its recent developments, their increasing need and how this particular subject has evolved machines functioning nowadays specifically its standard of education in India. We have probed this field right from its…

  1. Common Rail System for GDI Engines Modelling, Identification, and Control

    CERN Document Server

    Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero

    2013-01-01

    Progressive reductions in vehicle emission requirements have forced the automotive industry to invest in research and development of alternative control strategies. Continual control action exerted by a dedicated electronic control unit ensures that best performance in terms of pollutant emissions and power density is married with driveability and diagnostics. Gasoline direct injection (GDI) engine technology is a way to attain these goals. This brief describes the functioning of a GDI engine equipped with a common rail (CR) system, and the devices necessary to run test-bench experiments in detail. The text should prove instructive to researchers in engine control and students are recommended to this brief as their first approach to this technology. Later chapters of the brief relate an innovative strategy designed to assist with the engine management system; injection pressure regulation for fuel pressure stabilization in the CR fuel line is proposed and validated by experiment. The resulting control scheme ...

  2. Integral Engine Inlet Particle Separator. Volume 2. Design Guide

    Science.gov (United States)

    1975-08-01

    herein will be used in the design of integral inlet particle separators for future Army aircraft gas turbine engines. Apprupriate technical personnel...into the comprensor at some future date. 5. A typical scavenge vane design Js; shown in Figures 85 and 86. The important features of the scavenge...service passageweys, for cooling of oil, and for directing sand and air into the scroll. Orientetion of the vanes is set by collection efficiency

  3. Easy digital engineering

    International Nuclear Information System (INIS)

    Jin, Dal Bok

    2002-02-01

    This book lists basic of digital engineering, number system and digital code, Boolean algebra and basic logic circuit, simplify of logical expression, combinational circuit, arithmetic circuit, multivibrator circuit, sequential circuit, memory unit of semiconductor and logical element for program, D/A converter and A/D converter, logic element and integrated circuit and logic circuit and micro controller. It has exercises and answers about digital engineering and summary in the end of each chapter.

  4. Experimental investigation of integrated refrigeration system (IRS) with gas engine, compression chiller and absorption chiller

    International Nuclear Information System (INIS)

    Sun, Z.G.

    2008-01-01

    An integrated refrigeration system (IRS) with a gas engine, a vapor-compression chiller and an absorption chiller is set up and tested. The vapor-compression refrigeration cycle is operated directly by the gas engine. The waste heat from the gas engine operates the absorption refrigeration cycle, which provides additional cooling. The performance of the IRS is described. The cooling capacity of the IRS is about 596 kW, and primary energy ratio (PER) reaches 1.84 at air-conditioning rated conditions. The refrigerating capacity of the prototype increased and PER of prototype decreased with the increase of the gas engine speed. The gas engine speed was preferably regulated at part load condition in order to operate the prototype at high-energy efficiency. The refrigerating capacity and PER of the prototype increased with the increase of the outlet temperature of chilled water or the decrease of the inlet temperature of cooling water. The integrated refrigeration chiller in this work saves running costs as compared to the conventional refrigeration system by using the waste heat

  5. A Comparison of Flood Control Standards for Reservoir Engineering for Different Countries

    Directory of Open Access Journals (Sweden)

    Minglei Ren

    2017-02-01

    Full Text Available Across the globe, flood control standards for reservoir engineering appear different due to various deciding factors such as flood features, society, economy, culture, morality, politics, and technology resources, etc. This study introduces an in-depth comparison of flood control standards for reservoir engineering for different countries. After the comparison and analysis, it is concluded that the determination of flood control standards is related to engineering grade, dam type, dam height, and the hazard to downstream after dam-breaking, etc. Each country should adopt practical flood control standards according to the characteristics of local reservoir engineering. The constitutive flood control standards should retain certain flexibility in the basis of constraint force. This review could offer a reference for developing countries in the enactment of flood control standards for reservoir engineering.

  6. Optimizing the human engineering design of control panels in nuclear power plant control rooms

    International Nuclear Information System (INIS)

    Behrendt, V.; Krehbiehl, T.; Hartfiel, H.D.; Mannhaupt, H.R.

    1986-12-01

    The study contains two parts. In the first part an analytical procedure is developed to logically and reproducibly subdivide the control room personnel tasks resulting in a list of the elements (operations) and the structure (operations scheme) of a task. The second part lists together all knowledge of and influences on human engineering which are known at this time and which should be taken into account in designing control rooms. The content of this catalogue can best be used and presented by using a personal computer. Two fundamental different ways are possible to use the catalogue. Designing new control rooms or new parts of control rooms the results of the task analysis which should be done first, should guide the search in the catalogue to find the right human engineering factors. For assessing existing control room panels the performance shaping factors which are establishing the table of content, permit a quick access to the catalogue. Both the specific procedure of the task analysis and the different ways of access to the catalogue of human engineering knowledge for designing nuclear power plant control rooms have been proven by experienced system engineers and safety experts. The results are presented. They have been considered in this version of the study. (orig.) [de

  7. Combustion Model and Control Parameter Optimization Methods for Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    Bambang Wahono

    2014-01-01

    Full Text Available This research presents a method to construct a combustion model and a method to optimize some control parameters of diesel engine in order to develop a model-based control system. The construction purpose of the model is to appropriately manage some control parameters to obtain the values of fuel consumption and emission as the engine output objectives. Stepwise method considering multicollinearity was applied to construct combustion model with the polynomial model. Using the experimental data of a single cylinder diesel engine, the model of power, BSFC, NOx, and soot on multiple injection diesel engines was built. The proposed method succesfully developed the model that describes control parameters in relation to the engine outputs. Although many control devices can be mounted to diesel engine, optimization technique is required to utilize this method in finding optimal engine operating conditions efficiently beside the existing development of individual emission control methods. Particle swarm optimization (PSO was used to calculate control parameters to optimize fuel consumption and emission based on the model. The proposed method is able to calculate control parameters efficiently to optimize evaluation item based on the model. Finally, the model which added PSO then was compiled in a microcontroller.

  8. Andromeda - a peptide search engine integrated into the MaxQuant environment

    DEFF Research Database (Denmark)

    Cox, Jurgen; Neuhauser, Nadin; Michalski, Annette

    2011-01-01

    A key step in mass spectrometry (MS)-based proteomics is the identification of peptides in sequence databases by their fragmentation spectra. Here we describe Andromeda, a novel peptide search engine using a probabilistic scoring model. On proteome data Andromeda performs as well as Mascot......, a widely used commercial search engine, as judged by sensitivity and specificity analysis based on target decoy searches. Furthermore, it can handle data with arbitrarily high fragment mass accuracy, is able to assign and score complex patterns of post-translational modifications, such as highly...... phosphorylated peptides and accommodates extremely large databases. The algorithms of Andromeda are provided. Andromeda can function independently or as an integrated search engine of the widely used MaxQuant computational proteomics platform and both are freely available at www.maxquant.org. The combination...

  9. Methanator fueled engines for pollution control

    Science.gov (United States)

    Cagliostro, D. E.; Winkler, E. L.

    1973-01-01

    A methanator fueled Otto-cycle engine is compared with other methods proposed to control pollution due to automobile exhaust emissions. The comparison is made with respect to state of development, emission factors, capital cost, operational and maintenance costs, performance, operational limitations, and impact on the automotive industries. The methanator fueled Otto-cycle engine is projected to meet 1975 emission standards and operate at a lower relative total cost compared to the catalytic muffler system and to have low impact. Additional study is required for system development.

  10. Improvement of diesel engine performance by hydraulically powered electronic control (mechatronics) system. Hakuyo diesel kikan no mechatronics system ni yoru seino kojo

    Energy Technology Data Exchange (ETDEWEB)

    Sonoda, K.; Nakamura, Y.; Kajima, T.; Sato, S.; Fujii, T.; Tobe, Y. (Kawasaki Heavy Industries, Ltd., Tokyo (Japan))

    1992-07-20

    This paper describes new hydraulically-actuated mechanisms for both fuel injection and inlet/exhaust valve operation of diesel engines through solenoid valves, which obviate the conventional cam-driven system. These mechanisms were integrated with an electronic control unit also developed in this study and they were mounted as a mechatronics system'' on a power-increased single-cylinder engine. This mechatronics system was mainly composed of an injection control. boost and accumulation component, an inlet and exhaust valve control component, a solenoid valve, an electronic control equipment, a hydraulic power unit, and a maneuvering unit. The verification test was carried out for the improvement of diesel engine performance by the hydraulically powered mechatronics system. As a result, it was proved not only that these mechanisms provide stable operating characteristics over a wide range of conditions, but also that the electronic control system allows accurate, smooth response. 3 refs., 23 figs., 2 tabs.

  11. Alternative Observers for SI Engine Air/Fuel Ratio Control

    DEFF Research Database (Denmark)

    Hendricks, Elbert; Poulsen, Jannik; Olsen, Mads Bruun

    1996-01-01

    In earlier work it has been shown that a nonlinear observer based on the use of the manifold pressure state equation and a nonlinear fuel film compensator can maintain accurate A/F ratio control during both steady state and transient operation. This observer may be called a manifold absolute pres...... engine control system designer with a variety of robust control systems which can easily be made redundant in order to satisfy newer engine emissions and diagnosis requirements and legislation...

  12. Control Engineering Embraces Instrumentation and Alarm Systems Of Navy

    Directory of Open Access Journals (Sweden)

    Gheorghe Samoilescu

    2008-10-01

    Full Text Available Control engineering can be applied not only to propelling and auxiliary machinery but also to electrical installations, refrigeration, cargo handling (especially in tankers and deck machinery, e.g. Windlass control. Opinion still vary on such matters as the relative merits of pneumatic versus electronic system and whether the control center should be in the engine room or adjacent to the navigating bridge. Arguments against the exclusion of the engineer officer from close contact with the machinery are countered by the fact that electronic systems are based on changes other than those of human response. Automated ships (UMS operate closer to prescribed standards and therefore operate with greater efficiency. The closer control of machinery operating conditions (cooling water temperatures and pressures, permits machinery to be run at its optimum design conditions, making for fuel economy and reduced maintenance.

  13. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    International Nuclear Information System (INIS)

    Kim, Seonguk; Min, Kyoungdoug

    2008-01-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NO x emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion

  14. Detection of combustion start in the controlled auto ignition engine by wavelet transform of the engine block vibration signal

    Science.gov (United States)

    Kim, Seonguk; Min, Kyoungdoug

    2008-08-01

    The CAI (controlled auto ignition) engine ignites fuel and air mixture by trapping high temperature burnt gas using a negative valve overlap. Due to auto ignition in CAI combustion, efficiency improvements and low level NOx emission can be obtained. Meanwhile, the CAI combustion regime is restricted and control parameters are limited. The start of combustion data in the compressed ignition engine are most critical for controlling the overall combustion. In this research, the engine block vibration signal is transformed by the Meyer wavelet to analyze CAI combustion more easily and accurately. Signal acquisition of the engine block vibration is a more suitable method for practical use than measurement of in-cylinder pressure. A new method for detecting combustion start in CAI engines through wavelet transformation of the engine block vibration signal was developed and results indicate that it is accurate enough to analyze the start of combustion. Experimental results show that wavelet transformation of engine block vibration can track the start of combustion in each cycle. From this newly developed method, the start of combustion data in CAI engines can be detected more easily and used as input data for controlling CAI combustion.

  15. Using Engine Thrust for Emergency Flight Control: MD-11 and B-747 Results

    Science.gov (United States)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Burken, John J.; Bull, John

    1998-01-01

    With modern digital control systems, using engine thrust for emergency flight control to supplement or replace failed aircraft normal flight controls has become a practical consideration. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control. An F-15 and an MD-11 airplane have been landed without using any flight control surfaces. Preliminary studies have also been conducted that show that engines on only one wing can provide some flight control capability if the lateral center of gravity can be shifted toward the side of the airplane that has the operating engine(s). Simulator tests of several airplanes with no flight control surfaces operating and all engines out on the left wing have all shown positive control capability within the available range of lateral center-of-gravity offset. Propulsion-controlled aircraft systems that can operate without modifications to engine control systems, thus allowing PCA technology to be installed on less capable airplanes or at low cost, are also desirable. Further studies have examined simplified 'PCA Lite' and 'PCA Ultralite' concepts in which thrust control is provided by existing systems such as auto-throttles or a combination of existing systems and manual pilot control.

  16. Engineering Task Plan for the Integrity Assessment Examination of Double-Contained Receiver Tanks (DCRT), Catch Tanks and Ancillary facilities

    International Nuclear Information System (INIS)

    BECKER, D.L.

    2000-01-01

    This Engineering Task Plan (ETP) presents the integrity assessment examination of three DCRTs, seven catch tanks, and two ancillary facilities located in the 200 East and West Areas of the Hanford Site. The integrity assessment examinations, as described in this ETP, will provide the necessary information to enable the independently qualified registered professional engineer (IQRPE) to assess the condition and integrity of these facilities. The plan is consistent with the Double-Shell Tank Waste Transfer Facilities Integrity Assessment Plan

  17. Linear Dynamics and Control of a Kinematic Wobble–Yoke Stirling Engine

    NARCIS (Netherlands)

    Alvarez–Aguirre, Alejandro; García–Canseco, Eloísa; Scherpen, Jacquelien M.A.

    2010-01-01

    This paper presents a control systems approach for the modeling and control of a kinematic wobble–yoke Stirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by these authors. We show that the Stirling engine can be viewed as a

  18. Linear dynamics and control of a kinematic wobble-yoke Stirling engine

    NARCIS (Netherlands)

    Alvarez Aguirre, A.; Garcia Canseco, E.; Scherpen, J.M.A.

    2010-01-01

    This paper presents a control systems approachfor the modeling and control of a kinematic wobbleyokeStirling engine. The linear dynamics of the Stirling engine are analyzed based on the dynamical model of the system, developed by the authors in [1]. We show that the Stirling engine can be viewed as

  19. An Approach to Integrating Health Disparities within Undergraduate Biomedical Engineering Education.

    Science.gov (United States)

    Vazquez, Maribel; Marte, Otto; Barba, Joseph; Hubbard, Karen

    2017-11-01

    Health disparities are preventable differences in the incidence, prevalence and burden of disease among communities targeted by gender, geographic location, ethnicity and/or socio-economic status. While biomedical research has identified partial origin(s) of divergent burden and impact of disease, the innovation needed to eradicate health disparities in the United States requires unique engagement from biomedical engineers. Increasing awareness of the prevalence and consequences of health disparities is particularly attractive to today's undergraduates, who have undauntedly challenged paradigms believed to foster inequality. Here, the Department of Biomedical Engineering at The City College of New York (CCNY) has leveraged its historical mission of access-and-excellence to integrate the study of health disparities into undergraduate BME curricula. This article describes our novel approach in a multiyear study that: (i) Integrated health disparities modules at all levels of the required undergraduate BME curriculum; (ii) Developed opportunities to include impacts of health disparities into undergraduate BME research projects and mentored High School summer STEM training; and (iii) Established health disparities-based challenges as BME capstone design and/or independent entrepreneurship projects. Results illustrate the rising awareness of health disparities among the youngest BMEs-to-be, as well as abundant undergraduate desire to integrate health disparities within BME education and training.

  20. Integrated Community Energy Systems: engineering analysis and design bibliography. [368 citations

    Energy Technology Data Exchange (ETDEWEB)

    Calm, J.M.; Sapienza, G.R.

    1979-05-01

    This bibliography cites 368 documents that may be helpful in the planning, analysis, and design of Integrated Community Energy Systems. It has been prepared for use primarily by engineers and others involved in the development and implementation of ICES concepts. These documents include products of a number of Government research, development, demonstration, and commercialization programs; selected studies and references from the literature of various technical societies and institutions; and other selected material. The key programs which have produced cited reports are the Department of Energy Community Systems Program (DOE/CSP), the Department of Housing and Urban Development Modular Integrated Utility Systems Program (HUD/MIUS), and the Department of Health, Education, and Welfare Integrated Utility Systems Program (HEW/IUS). The cited documents address experience gained both in the U.S. and in other countries. Several general engineering references and bibliographies pertaining to technologies or analytical methods that may be helpful in the analysis and design of ICES are also included. The body of relevant literature is rapidly growing and future updates are therefore planned. Each citation includes identifying information, a source, descriptive information, and an abstract. The citations are indexed both by subjects and authors, and the subject index is extensively cross-referenced to simplify its use.

  1. Acceleration of Blender Cycles Path-Tracing Engine Using Intel Many Integrated Core Architecture

    OpenAIRE

    Jaroš , Milan; Říha , Lubomír; Strakoš , Petr; Karásek , Tomáš; Vašatová , Alena; Jarošová , Marta; Kozubek , Tomáš

    2015-01-01

    Part 2: Algorithms; International audience; This paper describes the acceleration of the most computationally intensive kernels of the Blender rendering engine, Blender Cycles, using Intel Many Integrated Core architecture (MIC). The proposed parallelization, which uses OpenMP technology, also improves the performance of the rendering engine when running on multi-core CPUs and multi-socket servers. Although the GPU acceleration is already implemented in Cycles, its functionality is limited. O...

  2. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  3. CMMI for Systems Engineering, Software Engineering, Integrated Product and Process Development, and Supplier Sourcing, Version 1.1 (CMMI-SE/SW/IPPD/SS, V1.1) Continuous Representation

    National Research Council Canada - National Science Library

    2002-01-01

    .... Concepts covered by this model include systems engineering, software engineering, integrated product and process development, and supplier sourcing as well as traditional CMM concepts such as process...

  4. On-Board Real-Time Optimization Control for Turbo-Fan Engine Life Extending

    Science.gov (United States)

    Zheng, Qiangang; Zhang, Haibo; Miao, Lizhen; Sun, Fengyong

    2017-11-01

    A real-time optimization control method is proposed to extend turbo-fan engine service life. This real-time optimization control is based on an on-board engine mode, which is devised by a MRR-LSSVR (multi-input multi-output recursive reduced least squares support vector regression method). To solve the optimization problem, a FSQP (feasible sequential quadratic programming) algorithm is utilized. The thermal mechanical fatigue is taken into account during the optimization process. Furthermore, to describe the engine life decaying, a thermal mechanical fatigue model of engine acceleration process is established. The optimization objective function not only contains the sub-item which can get fast response of the engine, but also concludes the sub-item of the total mechanical strain range which has positive relationship to engine fatigue life. Finally, the simulations of the conventional optimization control which just consider engine acceleration performance or the proposed optimization method have been conducted. The simulations demonstrate that the time of the two control methods from idle to 99.5 % of the maximum power are equal. However, the engine life using the proposed optimization method could be surprisingly increased by 36.17 % compared with that using conventional optimization control.

  5. A preliminary study on the integral relationship between critical thinking and mathematical thinking among practicing civil engineers

    Science.gov (United States)

    Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh

    2015-05-01

    Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of

  6. A control-oriented real-time semi-empirical model for the prediction of NOx emissions in diesel engines

    International Nuclear Information System (INIS)

    D’Ambrosio, Stefano; Finesso, Roberto; Fu, Lezhong; Mittica, Antonio; Spessa, Ezio

    2014-01-01

    Highlights: • New semi-empirical correlation to predict NOx emissions in diesel engines. • Based on a real-time three-zone diagnostic combustion model. • The model is of fast application, and is therefore suitable for control-oriented applications. - Abstract: The present work describes the development of a fast control-oriented semi-empirical model that is capable of predicting NOx emissions in diesel engines under steady state and transient conditions. The model takes into account the maximum in-cylinder burned gas temperature of the main injection, the ambient gas-to-fuel ratio, the mass of injected fuel, the engine speed and the injection pressure. The evaluation of the temperature of the burned gas is based on a three-zone real-time diagnostic thermodynamic model that has recently been developed by the authors. Two correlations have also been developed in the present study, in order to evaluate the maximum burned gas temperature during the main combustion phase (derived from the three-zone diagnostic model) on the basis of significant engine parameters. The model has been tuned and applied to two diesel engines that feature different injection systems of the indirect acting piezoelectric, direct acting piezoelectric and solenoid type, respectively, over a wide range of steady-state operating conditions. The model has also been validated in transient operation conditions, over the urban and extra-urban phases of an NEDC. It has been shown that the proposed approach is capable of improving the predictive capability of NOx emissions, compared to previous approaches, and is characterized by a very low computational effort, as it is based on a single-equation correlation. It is therefore suitable for real-time applications, and could also be integrated in the engine control unit for closed-loop or feed-forward control tasks

  7. Wind energy systems control engineering design

    CERN Document Server

    Garcia-Sanz, Mario

    2012-01-01

    IntroductionBroad Context and MotivationConcurrent Engineering: A Road Map for EnergyQuantitative Robust ControlNovel CAD Toolbox for QFT Controller DesignOutline Part I: Advanced Robust Control Techniques: QFT and Nonlinear SwitchingIntroduction to QFTQuantitative Feedback TheoryWhy Feedback? QFT OverviewInsight into the QFT TechniqueBenefits of QFTMISO Analog QFT Control SystemIntroductionQFT Method (Single-Loop MISO System)Design Procedure OutlineMinimum-Phase System Performance SpecificationsJ LTI Plant ModelsPlant Templates of P?(s), P( j_i )Nominal PlantU-Contour (Stability Bound)Trackin

  8. Optimal control of a double integrator a primer on maximum principle

    CERN Document Server

    Locatelli, Arturo

    2017-01-01

    This book provides an introductory yet rigorous treatment of Pontryagin’s Maximum Principle and its application to optimal control problems when simple and complex constraints act on state and control variables, the two classes of variable in such problems. The achievements resulting from first-order variational methods are illustrated with reference to a large number of problems that, almost universally, relate to a particular second-order, linear and time-invariant dynamical system, referred to as the double integrator. The book is ideal for students who have some knowledge of the basics of system and control theory and possess the calculus background typically taught in undergraduate curricula in engineering. Optimal control theory, of which the Maximum Principle must be considered a cornerstone, has been very popular ever since the late 1950s. However, the possibly excessive initial enthusiasm engendered by its perceived capability to solve any kind of problem gave way to its equally unjustified rejecti...

  9. Factors controlling nanoparticle pharmacokinetics: an integrated analysis and perspective.

    Science.gov (United States)

    Moghimi, S M; Hunter, A C; Andresen, T L

    2012-01-01

    Intravenously injected nanoparticulate drug carriers provide a wide range of unique opportunities for site-specific targeting of therapeutic agents to many areas within the vasculature and beyond. Pharmacokinetics and biodistribution of these carriers are controlled by a complex array of interrelated core and interfacial physicochemical and biological factors. Pertinent to realizing therapeutic goals, definitive maps that establish the interdependency of nanoparticle size, shape, and surface characteristics in relation to interfacial forces, biodistribution, controlled drug release, excretion, and adverse effects must be outlined. These concepts are critically evaluated and an integrated perspective is provided on the basis of the recent application of nanoscience approaches to nanocarrier design and engineering. The future of this exciting field is bright; some regulatory-approved products are already on the market and many are in late-phase clinical trials. With concomitant advances in extensive computational knowledge of the genomics and epigenomics of interindividual variations in drug responses, the boundaries toward development of personalized nanomedicines can be pushed further.

  10. Integrating ergonomics into engineering design: the role of objects.

    Science.gov (United States)

    Hall-Andersen, Lene Bjerg; Broberg, Ole

    2014-05-01

    The objective of this study was to explore the role of objects in integrating ergonomic knowledge in engineering design processes. An engineering design case was analyzed using the theoretical concepts of boundary objects and intermediary objects: Boundary objects facilitate collaboration between different knowledge domains, while the aim of an intermediary object is to circulate knowledge and thus produce a distant effect. Adjustable layout drawings served as boundary objects and had a positive impact on the dialog between an ergonomist and designers. An ergonomic guideline document was identified as an intermediary object. However, when the ergonomic guidelines were circulated in the design process, only some of the guidelines were transferred to the design of the sterile processing plant. Based on these findings, recommendations for working with objects in design processes are included. Copyright © 2013 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  11. Physical and engineering aspects of a fusion engineering test facility based on mirror confinement

    International Nuclear Information System (INIS)

    Kawabe, T.; Hirayama, S.; Hojo, H.; Kozaki, Y.; Yoshikawa, K.

    1986-01-01

    Controlled fusion research has accomplished great progress in the field of confinement of high-density and high-temperature plasmas and breakeven experiments are expected before the end of the 1980s. Many experiments have been proposed as the next step for fusion research. Among them is the study of ignited plasmas and another is the study of fusion engineering. Some of the important studies in fusion engineering are the integrated test in a fusion reactor environment as well as tests of first-wall materials and of the reactor structures, and test for tritium breeding and blanket modules or submodules. An ideal neutron source for the study of fusion engineering is the deuterium-tritium (D-T) fusion plasma itself. A neutron facility based on a D-T-burning plasma consists of all of the components that a real fusion power reactor would have, so eventually the integrated test for fusion reactor engineering can be done as well as the tests for each engineering component

  12. Human factors evaluation of the engineering test reactor control room

    International Nuclear Information System (INIS)

    Banks, W.W.; Boone, M.P.

    1981-03-01

    The Reactor and Process Control Rooms at the Engineering Test Reactor were evaluated by a team of human factors engineers using available human factors design criteria. During the evaluation, ETR, equipment and facilities were compared with MIL-STD-1472-B, Human Engineering design Criteria for Military Systems. The focus of recommendations centered on: (a) displays and controls; placing displays and controls in functional groups; (b) establishing a consistent color coding (in compliance with a standard if possible); (c) systematizing annunciator alarms and reducing their number; (d) organizing equipment in functional groups; and (e) modifying labeling and lines of demarcation

  13. Predictive piston motion control in a free-piston internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Mikalsen, R.; Jones, E.; Roskilly, A.P. [Sir Joseph Swan Institute for Energy Research, Newcastle University, Newcastle upon Tyne, NE1 7RU England (United Kingdom)

    2010-05-15

    A piston motion controller for a free-piston internal combustion engine is presented. To improve dynamic performance in the control of the piston motion and engine compression ratio, the controller response is determined from a prediction of engine top dead centre error rather than the measured value from the previous cycle. The proposed control approach showed superior performance compared with that of standard PI feedback control known from the literature due to a reduced control action time delay. The manipulation of fuel injection timing to reduce in-cylinder pressure peaks and cycle-to-cycle variations was also studied, indicating that with the piston motion estimation, the injection timing is a powerful control variable for this purpose. (author)

  14. Power control system for a hot gas engine

    Science.gov (United States)

    Berntell, John O.

    1986-01-01

    A power control system for a hot gas engine of the type in which the power output is controlled by varying the mean pressure of the working gas charge in the engine has according to the present invention been provided with two working gas reservoirs at substantially different pressure levels. At working gas pressures below the lower of said levels the high pressure gas reservoir is cut out from the control system, and at higher pressures the low pressure gas reservoir is cut out from the system, thereby enabling a single one-stage compressor to handle gas within a wide pressure range at a low compression ratio.

  15. Nanoscale tissue engineering: spatial control over cell-materials interactions

    International Nuclear Information System (INIS)

    Wheeldon, Ian; Farhadi, Arash; Bick, Alexander G; Khademhosseini, Ali; Jabbari, Esmaiel

    2011-01-01

    Cells interact with the surrounding environment by making tens to hundreds of thousands of nanoscale interactions with extracellular signals and features. The goal of nanoscale tissue engineering is to harness these interactions through nanoscale biomaterials engineering in order to study and direct cellular behavior. Here, we review two- and three-dimensional (2- and 3D) nanoscale tissue engineering technologies, and provide a holistic overview of the field. Techniques that can control the average spacing and clustering of cell adhesion ligands are well established and have been highly successful in describing cell adhesion and migration in 2D. Extension of these engineering tools to 3D biomaterials has created many new hydrogel and nanofiber scaffold technologies that are being used to design in vitro experiments with more physiologically relevant conditions. Researchers are beginning to study complex cell functions in 3D. However, there is a need for biomaterials systems that provide fine control over the nanoscale presentation of bioactive ligands in 3D. Additionally, there is a need for 2- and 3D techniques that can control the nanoscale presentation of multiple bioactive ligands and that can control the temporal changes in the cellular microenvironment. (topical review)

  16. Engine Cylinder Temperature Control

    Science.gov (United States)

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  17. Mechatronics Engineering Education

    OpenAIRE

    Grimheden, Martin

    2006-01-01

    Since its emergence in the late 1960s, mechatronics has become well-established as an academic subject, and is now researched and taught at a large number of universities worldwide. The most widely-used definition of the subject today is centered on the synergistic integration of mechanical engineering, electronics, and intelligent computer control. The aim of this thesis is to work between the disciplines of engineering education and mechatronics to address both the question of the identity ...

  18. Engineering-scale dust control experiments

    International Nuclear Information System (INIS)

    Winberg, M.R.; Pawelko, R.J.; Jacobs, N.C.; Thompson, D.N.

    1990-12-01

    This report presents the results of engineering scale dust-control experiments relating to contamination control during handling of transuranic waste. These experiments focused on controlling dust during retrieval operations of buried waste where waste and soil are intimately mixed. Sources of dust generation during retrieval operations include digging, dumping, and vehicle traffic. Because contaminants are expected to attach to soil particles and move with the generated dust, control of the dust spread may be the key to contamination control. Dust control techniques examined in these experiments include the use of misting systems, soil fixatives, and dust suppression agents. The Dryfog Ultrasonic Misting Head, manufactured by Sonics, Incorporated, and ENTAC, an organic resin derived from tree sap manufactured by ENTAC Corporation, were tested. The results of the experiments include product performance and recommended application methods. 19 figs., 7 refs., 6 tabs

  19. Statistical Engine Knock Control

    DEFF Research Database (Denmark)

    Stotsky, Alexander A.

    2008-01-01

    A new statistical concept of the knock control of a spark ignition automotive engine is proposed . The control aim is associated with the statistical hy pothesis test which compares the threshold value to the average value of the max imal amplitud e of the knock sensor signal at a given freq uency....... C ontrol algorithm which is used for minimization of the regulation error realizes a simple count-up-count-d own logic. A new ad aptation algorithm for the knock d etection threshold is also d eveloped . C onfi d ence interval method is used as the b asis for ad aptation. A simple statistical mod el...... which includ es generation of the amplitud e signals, a threshold value d etermination and a knock sound mod el is d eveloped for evaluation of the control concept....

  20. Knowledge Management tools integration within DLR's concurrent engineering facility

    Science.gov (United States)

    Lopez, R. P.; Soragavi, G.; Deshmukh, M.; Ludtke, D.

    The complexity of space endeavors has increased the need for Knowledge Management (KM) tools. The concept of KM involves not only the electronic storage of knowledge, but also the process of making this knowledge available, reusable and traceable. Establishing a KM concept within the Concurrent Engineering Facility (CEF) has been a research topic of the German Aerospace Centre (DLR). This paper presents the current KM tools of the CEF: the Software Platform for Organizing and Capturing Knowledge (S.P.O.C.K.), the data model Virtual Satellite (VirSat), and the Simulation Model Library (SimMoLib), and how their usage improved the Concurrent Engineering (CE) process. This paper also exposes the lessons learned from the introduction of KM practices into the CEF and elaborates a roadmap for the further development of KM in CE activities at DLR. The results of the application of the Knowledge Management tools have shown the potential of merging the three software platforms with their functionalities, as the next step towards the fully integration of KM practices into the CE process. VirSat will stay as the main software platform used within a CE study, and S.P.O.C.K. and SimMoLib will be integrated into VirSat. These tools will support the data model as a reference and documentation source, and as an access to simulation and calculation models. The use of KM tools in the CEF aims to become a basic practice during the CE process. The settlement of this practice will result in a much more extended knowledge and experience exchange within the Concurrent Engineering environment and, consequently, the outcome of the studies will comprise higher quality in the design of space systems.

  1. Interdisciplinarity to Integrate Knowledge in Engineering

    Directory of Open Access Journals (Sweden)

    Stella Abreu

    2017-06-01

    Full Text Available This paper is an extension of work originally presented at the 2nd International Conference of the Portuguese Society for Engineering Education and aims to describe an interdisciplinarity teaching experiment involving three subjects of the scientific area of Mathematics and a fourth one in the area of Management. Using only one project, the students developed skills, in an integrated way, in the fields of the subjects involved. The structure of the project is described in detail. It is shown how the knowledge obtained in the different subjects is needed and how it connects together to answer the proposed challenges. We report the progress of the students’ work, the main difficulties and the skills developed during this process. We conclude with a reflection on the main problems and gains that may arise in similar projects.

  2. An integrator final exam at the end of the engineering degrees to evaluate the acquired competences

    Science.gov (United States)

    Perdigones, A.; Sánchez, E.; Valiño, V.; Tarquis, A. M.

    2010-05-01

    In the last decade strong changes in the design of university degrees have occurred in Spain, affecting real competences acquired by graduates. The new degrees often provide students greater freedom in shaping their curriculum which results in many cases in a problem for their training. In engineering degrees of Spain, the final project, that allows to know the integrated skills of the students in engineering subjects, is not compulsory anymore; it can be substituted for other specific types of work that often do not involve skills valued by the companies of the industrial sector. This situation may create doubts about the real competences of the graduates. In the present study, a final exam (voluntary) has been carried out during three years to assess competences in engineering students in the last course of the degree in agricultural engineering (diploma of five years) and agricultural technical engineering (diploma of three years) at the Polytechnic University of Madrid (Spain). They took part 132 students in the years 2006, 2007 and 2008. The exam had a common format, with three parts assessing skills in construction, machinery and electrical installations. The results showed the evolution in the training of students, and the relationship between skills acquired and late differences in the learning process. The most important conclusions were that the attainment levels was lower than expected, but generally consistent with the training received by each group of students. In particular, the low number of hours of subjects in electrical installations in certain groups of students was evident when evaluating the skills acquired. The results indicated that they aim to increase the number of hours in certain subjects and groups of students, if a graduate is to get qualified. The authors recommend an examination similar to the raised, integrator type, in all programs that do not have any overall final assessment in order to conduct a quality control of graduates

  3. Integrated System Validation of Barakah Nuclear Power Plant in UAE for The Human Factor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Munsoo [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    APR1400 simulator has been developed based on the state-of-the-art object-oriented simulation technology of TH(Thermo-Hydraulic) and Reactor Core model, which is applied for the first time in the our country and for the exportation, to well simulate characteristics of APR1400. Barakah unit 1,2 simulator are constructed and supplied with this type simulator model. Integrated system validation was performed using a simulator to verify the HFE(Human Factor Engineering) design of the MCR(Maim Control Room) for instrumentation and control system validation of the UAE nuclear power plant. APR1400 for the Barakah unit 1,2 has many specific features such as digital I and C, and digitalized main control room (MCR) design. From January 2016 to February, during six weeks, the tests carried out three times repeatedly and the various proposals for ergonomical satisfactation were derived. However, the HFE errors that cause significant change of validation target for APR1400 MCR design safety fidelity wasn't found. This has resulted in the conclusion to prove the stability of the basic design of APR1400 MCR. In the future, using the simulator derives the HFE requirements of the MCR systems and continually improve the simulator will be built in close to real high-fidelity power plant. These Integrated system validations are likely to be a great help in operating safety and preventing human errors by operators. Therefore successful completion of the Integrated System Validation for BNPP simulation will be effective to promotion the distinction of our simulator and APR1400 NPP.

  4. The application of human engineering in control room of HFETR

    International Nuclear Information System (INIS)

    Yang Shuchun; Shan Songlin

    2003-01-01

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  5. The application of human engineering in control room of HFETR

    Energy Technology Data Exchange (ETDEWEB)

    Shuchun, Yang; Songlin, Shan [Nuclear Power Inst. of China, Chengdu (China)

    2003-07-01

    The human-machine system for improving the working environment in the control room of HFETR is described. The reliability of the equipment, instruments and operation by human engineering is increased. The relations between human engineering and lowering human failure in HFETR are also discussed. It is concluded that the further application of human engineering can increase interaction of the human and machine in the control room and provide assurances for the safe and reliable operation of reactor. (authors)

  6. Perceived leader integrity and employee job satisfaction: A quantitative study of U.S. aerospace engineers

    Science.gov (United States)

    Harper, Kay E.

    The goal of this quantitative study was to determine if there is a significant relationship between perceived leader integrity and employee job satisfaction. The population selected to be analyzed was U.S. Aerospace engineers. Two existing valid and reliable survey instruments were used to collect data. One of the surveys was the Perceived Leader Integrity Scale developed by Craig and Gustafson. The second survey was the Minnesota Satisfaction Questionnaire created by Weiss, Dawis, England, and Lofquist. The public professional networking site LinkedIn was used to invite U.S. Aerospace engineers to participate. The survey results were monitored by Survey Monkey and the sample data was analyzed using SPSS software. 184 responses were collected and of those, 96 were incomplete. 91 usable survey responses were left to be analyzed. When the results were plotted on an x-y plot, the data line had a slight negative slope. The plotted data showed a very small negative relationship between perceived leader integrity and employee job satisfaction. This relationship could be interpreted to mean that as perceived leader integrity improved, employee job satisfaction decreased only slightly. One explanation for this result could be that employees focused on their negative feelings about their current job assignment when they did not have to be concerned about the level of integrity with which their leader acted. The findings of this study reinforce the importance of employee's perception of a critical leader quality - integrity. For future research, a longitudinal study utilizing another sampling method other than convenience sampling may better statistically capture the relationship between perceived leader integrity and employee job satisfaction for U.S. aerospace engineers.

  7. Methods of Si based ceramic components volatilization control in a gas turbine engine

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John; Dion Ouellet, Noemie

    2016-09-06

    A method of controlling volatilization of silicon based components in a gas turbine engine includes measuring, estimating and/or predicting a variable related to operation of the gas turbine engine; correlating the variable to determine an amount of silicon to control volatilization of the silicon based components in the gas turbine engine; and injecting silicon into the gas turbine engine to control volatilization of the silicon based components. A gas turbine with a compressor, combustion system, turbine section and silicon injection system may be controlled by a controller that implements the control method.

  8. RAGE Reusable Game Software Components and Their Integration into Serious Game Engines

    NARCIS (Netherlands)

    Van der Vegt, Wim; Nyamsuren, Enkhbold; Westera, Wim

    2016-01-01

    This paper presents and validates a methodology for integrating reusable software components in diverse game engines. While conforming to the RAGE com-ponent-based architecture described elsewhere, the paper explains how the interac-tions and data exchange processes between a reusable software

  9. On Integrating Student Empirical Software Engineering Studies with Research and Teaching Goals

    NARCIS (Netherlands)

    Galster, Matthias; Tofan, Dan; Avgeriou, Paris

    2012-01-01

    Background: Many empirical software engineering studies use students as subjects and are conducted as part of university courses. Aim: We aim at reporting our experiences with using guidelines for integrating empirical studies with our research and teaching goals. Method: We document our experience

  10. A Reactive Blended Learning Proposal for an Introductory Control Engineering Course

    Science.gov (United States)

    Mendez, Juan A.; Gonzalez, Evelio J.

    2010-01-01

    As it happens in other fields of engineering, blended learning is widely used to teach process control topics. In this paper, the inclusion of a reactive element--a Fuzzy Logic based controller--is proposed for a blended learning approach in an introductory control engineering course. This controller has been designed in order to regulate the…

  11. Strengthening, modification and repair techniques’ prioritization for structural integrity control of ageing offshore structures

    International Nuclear Information System (INIS)

    Samarakoon, Samindi M.K.; Ratnayake, R.M. Chandima

    2015-01-01

    Structural integrity control is vital for existing ageing as well as newly built offshore and onshore structures. Structural integrity control becomes highly sensitive to interventions under a potential loss of structural integrity when it comes to offshore oil and gas production and process facilities. This is mainly due to the inherent constraints present in carrying out engineering work in the offshore atmosphere. It has been further exacerbated by the ageing offshore structures and the necessity of carrying out life extension toward the end of their design service lives. Local and international regulations demand the implementation of appropriate strengthening, modification and repair plans when significant changes in the structural integrity are revealed. In this context, strengthening, modification and repair techniques such as welding, member removal/reduction of loading, mechanical clamping and grouted repairs play a vital role. This manuscript presents an approach for prioritizing the strengthening, modification and repair techniques using a multi-criteria analysis approach. An analytic hierarchy process has been selected for the analysis via an illustrative case. It also provides a comprehensive overview of currently existing; strengthening, modification and repair techniques and their comparative pros and cons. - Highlights: • Structural integrity control (SIC) of ageing and intact offshore structures. • Strengthening, modification and/or repair (SMR) techniques have been explained. • Application of multi-criteria analysis conserving SI has been illustrated. • SMR techniques prioritization and sensitivity analysis has been performed

  12. Creating the integral engineer : Combining development education, sustainability, entrepreneurship and technology at Delft University of Technology

    NARCIS (Netherlands)

    Zwarteveen, J.W.; Blom, E.M.; Vastbinder, B.; Brezet, J.C.

    2010-01-01

    A modern engineer is more than a technical specialist. Training an integral engineer requires education in non-technical skills, including social and ethical aspects. Therefore, Delft University of Technology (DUT) introduced sustainable development and entrepreneurship into its bachelor and master

  13. Modeling, simulation, parametric study and economic assessment of reciprocating internal combustion engine integrated with multi-effect desalination unit

    International Nuclear Information System (INIS)

    Salimi, Mohsen; Amidpour, Majid

    2017-01-01

    Highlights: • Integration of small MED unit with gas engine power cycle is studied in this paper. • Modeling, simulation, parametric study and sensitivity analysis were performed. • A thermodynamic model for heat recovery and power generation of the gas engine has been presented. • Annualized Cost of System (ACS) has been employed for economic assessment. • Economic feasibilty dependence of integrated system on natural gas and water prices has been investigated. - Abstract: Due to thermal nature of multi-effect desalination (MED), its integration with a suitable power cycle is highly desirable for waste heat recovery. One of the proper power cycle for proposed integration is internal combustion engine (ICE). The exhaust gas heat of ICE is used to produce motive steam for the required heat for the first effect of MED system. Also, the water jacket heat is utilized in a heat exchanger to pre-heat the seawater. This paper studies a thermodynamic model for a tri-generation system composed of ICE integrated with MED. The ICE thermodynamic model has been used in place of different empirical efficiency relations to estimate performance – load curves reasonably. The entire system performance has been coded in MATLAB, and the results of proposed thermodynamic model for the engine have been verified by manufacturer catalogue. By increasing the engine load from 40% to 100%, the water production of MED unit will increase from 4.38 cubic meters per day to 26.78 cubic meters per day and the tri-generation efficiency from 31% to 56%. Economic analyses of the MED unit integrated with ICE was performed based on Annualized Cost of System method. This integration makes the system more economical. It has been determined that in higher market prices for fresh water (more than 7 US$ per cubic meter), the increase in effects number is more significant to the period of return decrement.

  14. Assessment of post-implantation integration of engineered tissues using fluorescence lifetime spectroscopy

    Science.gov (United States)

    Elahi, Sakib F.; Lee, Seung Y.; Lloyd, William R.; Chen, Leng-Chun; Kuo, Shiuhyang; Zhou, Ying; Kim, Hyungjin M.; Kennedy, Robert; Marcelo, Cynthia; Feinberg, Stephen E.; Mycek, Mary-Ann

    2018-02-01

    Clinical translation of engineered tissue constructs requires noninvasive methods to assess construct health and viability after implantation in patients. However, current practices to monitor post-implantation construct integration are either qualitative (visual assessment) or destructive (tissue histology). As label-free fluorescence lifetime sensing can noninvasively characterize pre-implantation construct viability, we employed a handheld fluorescence lifetime spectroscopy probe to quantitatively and noninvasively assess tissue constructs that were implanted in a murine model. We designed the system to be suitable for intravital measurements: portability, localization with precise maneuverability, and rapid data acquisition. Our model tissue constructs were manufactured from primary human cells to simulate patient variability and were stressed to create a range of health states. Secreted amounts of three cytokines that relate to cellular viability were measured in vitro to assess pre-implantation construct health. In vivo optical sensing assessed tissue integration of constructs at one-week and three-weeks post-implantation. At one-week post-implantation, optical parameters correlated with in vitro pre-implantation secretion levels of all three cytokines (p clinical optical diagnostic tools based on label-free fluorescence lifetime sensing of endogenous tissue fluorophores could noninvasively monitor post-implantation integration of engineered tissues.

  15. Integrating Global Hydrology Into Graduate Engineering Education and Research

    Science.gov (United States)

    Griffis, V. W.

    2007-12-01

    Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical

  16. Integration of Engineering Education by High School Teachers to Meet Standards in the Physics Classroom

    Science.gov (United States)

    Kersten, Jennifer Anna

    In recent years there has been increasing interest in engineering education at the K-12 level, which has resulted in states adopting engineering standards as a part of their academic science standards. From a national perspective, the basis for research into engineering education at the K-12 level is the belief that it is of benefit to student learning, including to "improve student learning and achievement in science and mathematics; increase awareness of engineering and the work of engineers; boost youth interest in pursuing engineering as a career; and increase the technological literacy of all students" (National Research Council, 2009a, p. 1). The above has led to a need to understand how teachers are currently implementing engineering education in their classrooms. High school physics teachers have a history of implementing engineering design projects in their classrooms, thus providing an appropriate setting to look for evidence of quality engineering education at the high school level. Understanding the characteristics of quality engineering integration can inform curricular and professional development efforts for teachers asked to implement engineering in their classrooms. Thus, the question that guided this study is: How, and to what extent, do physics teachers represent quality engineering in a physics unit focused on engineering? A case study research design was implemented for this project. Three high school physics teachers were participants in this study focused on the integration of engineering education into the physics classroom. The data collected included observations, interviews, and classroom documents that were analyzed using the Framework for Quality K-12 Engineering Education (Moore, Glancy et al., 2013). The results provided information about the areas of the K-12 engineering framework addressed during these engineering design projects, and detailed the quality of these lesson components. The results indicate that all of the design

  17. An integrated gyrotron controller

    Energy Technology Data Exchange (ETDEWEB)

    Michel, Georg, E-mail: michel@ipp.mpg.de; Sachtleben, Juergen

    2011-10-15

    The ECRH system of W7-X is composed of 10 independent gyrotron modules. Each module consists of one gyrotron and its peripherals such as power supplies, cooling plants and distributed PLC systems. The fast real-time control functions such as the timing of the two high voltage supplies, trigger pulses, protection, modulation and communication with the central control of W7-X, is implemented in an integrated controller which is described in this paper. As long-term maintainability and sustainability are important for nuclear fusion experiments, the choice fell on an FPGA-based design which is exclusively based on free (as in 'freedom') software and configuration code. The core of the controller consists of a real-time Java virtual machine (JVM) that provides the TCP-IP connectivity as well as more complicated control functions, and which interacts with the gyrotron-specific hardware. Both the gyrotron-specific hardware and the JVM are implemented on the same FPGA, which is the main component of the controller. All 10 controllers are currently completed and operational. All parameters and functions are accessible via Ethernet. Due to the open, FPGA-based design, most hardware modifications can be made via the network as well. This paper discusses the capabilities of the controllers and their integration into the central W7-X control.

  18. Using the Discipline of Agricultural Engineering to Integrate Math and Science

    Science.gov (United States)

    Foutz, Tim; Navarro, Maria; Hill, Roger B.; Thompson, Sidney A.; Miller, Kathy; Riddleberger, Deborah

    2011-01-01

    An outcome of a 1998 forum sponsored by the National Research Council was a recognition that topics related to food production and agriculture are excellent mechanisms for integrating science topics taught in the K-12 education system and for providing many avenues for inquiry based and project based learning. The engineering design process is…

  19. Fuzzy logic applications to control engineering

    Science.gov (United States)

    Langari, Reza

    1993-12-01

    This paper presents the results of a project presently under way at Texas A&M which focuses on the use of fuzzy logic in integrated control of manufacturing systems. The specific problems investigated here include diagnosis of critical tool wear in machining of metals via a neuro-fuzzy algorithm, as well as compensation of friction in mechanical positioning systems via an adaptive fuzzy logic algorithm. The results indicate that fuzzy logic in conjunction with conventional algorithmic based approaches or neural nets can prove useful in dealing with the intricacies of control/monitoring of manufacturing systems and can potentially play an active role in multi-modal integrated control systems of the future.

  20. Applications of human factors engineering in the digital HMI

    International Nuclear Information System (INIS)

    Zhou Bingjian

    2014-01-01

    In order to prevent and minimize human errors in the digital main control room, the principles of human factors engineering must be complied strictly in the design process of digital human-machine interface. This paper briefly describes the basic human factors engineering principles of designing main control room, introduces the main steps to implement the human factors engineering verification and validation of main control room, including HSI task support verification, human factors engineering design verification and integrated system validation. Meanwhile, according to the new digital human-machine interface characteristics, the development models of human error are analyzed. (author)

  1. Integration of a free-piston Stirling engine and a moving grate incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Y.C.; Hsu, T.C.; Chiou, J.S. [Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101 (China)

    2008-01-15

    The feasibility of recovering the waste heat from a small-scale incinerator (designed by Industrial Technology Research Institute) and generating electric power by a linear free-piston Stirling engine is investigated in this study. A heat-transfer model is used to simulate the integration system of the Stirling engine and the incinerator. In this model, the external irreversibility is modeled by the finite temperature difference and by the actual heat transfer area, while the internal irreversibility is considered by an internal heat leakage. At a fixed source temperature and a fixed sink temperature, the optimal engine performance can be obtained by the method of Lagrange multipliers. From the energy and mass balances for the interesting incinerator with the feeding rate at 16 t/d, there is enough otherwise wasted energy for powering the Stirling engine and generate more than 50 kW of electricity. (author)

  2. Gas Turbine Engine Control Design Using Fuzzy Logic and Neural Networks

    Directory of Open Access Journals (Sweden)

    M. Bazazzadeh

    2011-01-01

    Full Text Available This paper presents a successful approach in designing a Fuzzy Logic Controller (FLC for a specific Jet Engine. At first, a suitable mathematical model for the jet engine is presented by the aid of SIMULINK. Then by applying different reasonable fuel flow functions via the engine model, some important engine-transient operation parameters (such as thrust, compressor surge margin, turbine inlet temperature, etc. are obtained. These parameters provide a precious database, which train a neural network. At the second step, by designing and training a feedforward multilayer perceptron neural network according to this available database; a number of different reasonable fuel flow functions for various engine acceleration operations are determined. These functions are used to define the desired fuzzy fuel functions. Indeed, the neural networks are used as an effective method to define the optimum fuzzy fuel functions. At the next step, we propose a FLC by using the engine simulation model and the neural network results. The proposed control scheme is proved by computer simulation using the designed engine model. The simulation results of engine model with FLC illustrate that the proposed controller achieves the desired performance and stability.

  3. Mechanical engineers' handbook, design, instrumentation, and controls

    CERN Document Server

    Kutz, Myer

    2015-01-01

    Full coverage of electronics, MEMS, and instrumentation andcontrol in mechanical engineering This second volume of Mechanical Engineers' Handbookcovers electronics, MEMS, and instrumentation and control, givingyou accessible and in-depth access to the topics you'll encounterin the discipline: computer-aided design, product design formanufacturing and assembly, design optimization, total qualitymanagement in mechanical system design, reliability in themechanical design process for sustainability, life-cycle design,design for remanufacturing processes, signal processing, dataacquisition and dis

  4. Use of university research reactors to teach control engineering

    International Nuclear Information System (INIS)

    Bernard, J.A.

    1991-01-01

    University research reactors (URRs) have provided generations of students with the opportunity to receive instruction and do hands-on work in reactor dynamics, neutron scattering, health physics, and neutron activation analysis. Given that many URRs are currently converting to programmable control systems, the opportunity now exists to provide a similar learning experience to those studying systems control engineering. That possibility is examined here with emphasis on the need for the inclusion of experiment in control engineering curricula, the type of activities that could be performed, and safety considerations

  5. GIGGLE: a search engine for large-scale integrated genome analysis.

    Science.gov (United States)

    Layer, Ryan M; Pedersen, Brent S; DiSera, Tonya; Marth, Gabor T; Gertz, Jason; Quinlan, Aaron R

    2018-02-01

    GIGGLE is a genomics search engine that identifies and ranks the significance of genomic loci shared between query features and thousands of genome interval files. GIGGLE (https://github.com/ryanlayer/giggle) scales to billions of intervals and is over three orders of magnitude faster than existing methods. Its speed extends the accessibility and utility of resources such as ENCODE, Roadmap Epigenomics, and GTEx by facilitating data integration and hypothesis generation.

  6. 78 FR 721 - California State Nonroad Engine Pollution Control Standards; Transport Refrigeration Units...

    Science.gov (United States)

    2013-01-04

    ... ENVIRONMENTAL PROTECTION AGENCY California State Nonroad Engine Pollution Control Standards... requirements related to the control of emissions from non-new nonroad engines or vehicles. Section 209(e)(2... requirements relating to the control of emissions from new nonroad spark-ignition engines smaller than 50...

  7. Regenerative Engineering and Bionic Limbs.

    Science.gov (United States)

    James, Roshan; Laurencin, Cato T

    2015-03-01

    Amputations of the upper extremity are severely debilitating, current treatments support very basic limb movement, and patients undergo extensive physiotherapy and psychological counselling. There is no prosthesis that allows the amputees near-normal function. With increasing number of amputees due to injuries sustained in accidents, natural calamities and international conflicts, there is a growing requirement for novel strategies and new discoveries. Advances have been made in technological, material and in prosthesis integration where researchers are now exploring artificial prosthesis that integrate with the residual tissues and function based on signal impulses received from the residual nerves. Efforts are focused on challenging experts in different disciplines to integrate ideas and technologies to allow for the regeneration of injured tissues, recording on tissue signals and feed-back to facilitate responsive movements and gradations of muscle force. A fully functional replacement and regenerative or integrated prosthesis will rely on interface of biological process with robotic systems to allow individual control of movement such as at the elbow, forearm, digits and thumb in the upper extremity. Regenerative engineering focused on the regeneration of complex tissue and organ systems will be realized by the cross-fertilization of advances over the past thirty years in the fields of tissue engineering, nanotechnology, stem cell science, and developmental biology. The convergence of toolboxes crated within each discipline will allow interdisciplinary teams from engineering, science, and medicine to realize new strategies, mergers of disparate technologies, such as biophysics, smart bionics, and the healing power of the mind. Tackling the clinical challenges, interfacing the biological process with bionic technologies, engineering biological control of the electronic systems, and feed-back will be the important goals in regenerative engineering over the next

  8. Integrated plant information technology design support functionality

    International Nuclear Information System (INIS)

    Kim, Yeon Seung; Kim, Dae Jin; Barber, P. W.; Goland, D.

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author)

  9. Integrated plant information technology design support functionality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeon Seung; Kim, Dae Jin [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Barber, P W; Goland, D [Atomic Energy Canada Ltd., (Canada)

    1996-06-01

    This technical report was written as a result of Integrated Plant Information System (IPIS) feasibility study on CANDU 9 project which had been carried out from January, 1994 to March, 1994 at AECL (Atomic Energy Canada Limited) in Canada. From 1987, AECL had done endeavour to change engineering work process from paper based work process to computer based work process through CANDU 3 project. Even though AECL had a lot of good results form computerizing the Process Engineering, Instrumentation Control and Electrical Engineering, Mechanical Engineering, Computer Aided Design and Drafting, and Document Management System, but there remains the problem of information isolation and integration. On this feasibility study, IPIS design support functionality guideline was suggested by evaluating current AECL CAE tools, analyzing computer aided engineering task and work flow, investigating request for implementing integrated computer aided engineering and describing Korean request for future CANDU design including CANDU 9. 6 figs. (Author).

  10. AN ALGORITHM OF ADAPTIVE TORQUE CONTROL IN INJECTOR INTERNAL COMBUSTION ENGINE

    Directory of Open Access Journals (Sweden)

    D. N. Gerasimov

    2015-07-01

    Full Text Available Subject of Research. Internal combustion engine as a plant is a highly nonlinear complex system that works mostly in dynamic regimes in the presence of noise and disturbances. A number of engine characteristics and parameters is not known or known approximately due to the complex structure and multimode operating of the engine. In this regard the problem of torque control is not trivial and motivates the use of modern techniques of control theory that give the possibility to overcome the mentioned problems. As a consequence, a relatively simple algorithm of adaptive torque control of injector engine is proposed in the paper. Method. Proposed method is based on nonlinear dynamic model with parametric and functional uncertainties (static characteristics which are suppressed by means of adaptive control algorithm with single adjustable parameter. The algorithm is presented by proportional control law with adjustable feedback gain and provides the exponential convergence of the control error to the neighborhood of zero equilibrium. It is shown that the radius of the neighborhood can be arbitrary reduced by the change of controller design parameters. Main Results. A dynamical nonlinear model of the engine has been designed for the purpose of control synthesis and simulation of the closed-loop system. The parameters and static functions of the model are identified with the use of data aquired during Federal Test Procedure (USA of Chevrolet Tahoe vehicle with eight cylinders 5,7L engine. The algorithm of adaptive torque control is designed, and the properties of the closed-loop system are analyzed with the use of Lyapunov functions approach. The closed-loop system operating is verified by means of simulation in the MatLab/Simulink environment. Simulation results show that the controller provides the boundedness of all signals and convergence of the control error to the neighborhood of zero equilibrium despite significant variations of engine speed. The

  11. Accelerometer method and apparatus for integral display and control functions

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1992-06-01

    Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily

  12. Introduction to modeling and control of internal combustion engine systems

    Energy Technology Data Exchange (ETDEWEB)

    Guzzella, Lino; Onder, Christopher H. [ETH Zuerich (Switzerland). Institute for Dynamic Systems and Control

    2010-07-01

    Internal combustion engines (ICE) still have potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. In order to fully exploit the remaining margins, increasingly sophisticated control systems have to be applied. This book offers an introduction to cost-effective model-based control-system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed and solutions for selected feedforward and feedback control-problems are presented. The discussions concerning pollutant emissions and fuel economy of ICE in automotive applications constantly intensified since the first edition of this book was published. Concerns about the air quality, the limited resources of fossil fuels and the detrimental effects of greenhouse gases exceedingly spurred the interest of both the industry and academia in further improvements. The most important changes and additions included in this second edition are: - restructured and slightly extended section on superchargers; - short subsection on rotational oscillations and their treatment on engine test-benches; - complete section on modeling, detection, and control of engine knock; - improved physical and chemical model for the three-way catalytic converter; - new methodology for the design of an air-to-fuel ratio controller; - short introduction to thermodynamic engine-cycle calculation and corresponding control-oriented aspects. (orig.)

  13. Macromodels of digital integrated circuits for program packages of circuit engineering design

    Science.gov (United States)

    Petrenko, A. I.; Sliusar, P. B.; Timchenko, A. P.

    1984-04-01

    Various aspects of the generation of macromodels of digital integrated circuits are examined, and their effective application in program packages of circuit engineering design is considered. Three levels of macromodels are identified, and the application of such models to the simulation of circuit outputs is discussed.

  14. [An object-oriented intelligent engineering design approach for lake pollution control].

    Science.gov (United States)

    Zou, Rui; Zhou, Jing; Liu, Yong; Zhu, Xiang; Zhao, Lei; Yang, Ping-Jian; Guo, Huai-Cheng

    2013-03-01

    Regarding the shortage and deficiency of traditional lake pollution control engineering techniques, a new lake pollution control engineering approach was proposed in this study, based on object-oriented intelligent design (OOID) from the perspective of intelligence. It can provide a new methodology and framework for effectively controlling lake pollution and improving water quality. The differences between the traditional engineering techniques and the OOID approach were compared. The key points for OOID were described as object perspective, cause and effect foundation, set points into surface, and temporal and spatial optimization. The blue algae control in lake was taken as an example in this study. The effect of algae control and water quality improvement were analyzed in details from the perspective of object-oriented intelligent design based on two engineering techniques (vertical hydrodynamic mixer and pumping algaecide recharge). The modeling results showed that the traditional engineering design paradigm cannot provide scientific and effective guidance for engineering design and decision-making regarding lake pollution. Intelligent design approach is based on the object perspective and quantitative causal analysis in this case. This approach identified that the efficiency of mixers was much higher than pumps in achieving the goal of low to moderate water quality improvement. However, when the objective of water quality exceeded a certain value (such as the control objective of peak Chla concentration exceeded 100 microg x L(-1) in this experimental water), the mixer cannot achieve this goal. The pump technique can achieve the goal but with higher cost. The efficiency of combining the two techniques was higher than using one of the two techniques alone. Moreover, the quantitative scale control of the two engineering techniques has a significant impact on the actual project benefits and costs.

  15. 75 FR 11880 - California State Nonroad Engine Pollution Control Standards; California Nonroad Compression...

    Science.gov (United States)

    2010-03-12

    ... ENVIRONMENTAL PROTECTION AGENCY [AMS-FRL-9126-4] California State Nonroad Engine Pollution Control... to the control of emissions from either of the following new nonroad engines or nonroad vehicles... other requirements relating to emissions control of new engines not listed under section 209(e)(1). The...

  16. True Concurrent Thermal Engineering Integrating CAD Model Building with Finite Element and Finite Difference Methods

    Science.gov (United States)

    Panczak, Tim; Ring, Steve; Welch, Mark

    1999-01-01

    Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.

  17. Applications of human factors engineering to LNG release prevention and control

    Energy Technology Data Exchange (ETDEWEB)

    Shikiar, R.; Rankin, W.L.; Rideout, T.B.

    1982-06-01

    The results of an investigation of human factors engineering and human reliability applications to LNG release prevention and control are reported. The report includes a discussion of possible human error contributions to previous LNG accidents and incidents, and a discussion of generic HF considerations for peakshaving plants. More specific recommendations for improving HF practices at peakshaving plants are offered based on visits to six facilities. The HF aspects of the recently promulgated DOT regulations are reviewed, and recommendations are made concerning how these regulations can be implemented utilizing standard HF practices. Finally, the integration of HF considerations into overall system safety is illustrated by a presentation of human error probabilities applicable to LNG operations and by an expanded fault tree analysis which explicitly recognizes man-machine interfaces.

  18. Integrating environmental control for coal plant efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, M

    1986-01-01

    As emission control requirements for power plants have grown more stringent, utilities have added new environmental protection technology. As environmental controls have been added one after another, plant designers have rarely had the opportunity to integrate these components with each other and the balance of the plant. Consequently they often cost more to build and operate and can reduce power plant efficiency and availability. With the aim of lowering the cost of environmental systems, a design approach known as integrated environmental control (IEC) has emerged. This is based on the premise that environmental controls can function most economically if they are designed integrally with other power generation equipment. EPRI has established an IEC progam to develop integrated design strategies and evaluate their net worth to utilities. Various aspects of this program are described. (3 refs.)

  19. Optical Beam Deflection Based AFM with Integrated Hardware and Software Platform for an Undergraduate Engineering Laboratory

    Directory of Open Access Journals (Sweden)

    Siu Hong Loh

    2017-02-01

    Full Text Available Atomic force microscopy (AFM has been used extensively in nanoscience research since its invention. Recently, many teaching laboratories in colleges, undergraduate institutions, and even high schools incorporate AFM as an effective teaching tool for nanoscience education. This paper presents an optical beam deflection (OBD based atomic force microscope, designed specifically for the undergraduate engineering laboratory as a teaching instrument. An electronic module for signal conditioning was built with components that are commonly available in an undergraduate electronic laboratory. In addition to off-the-shelf mechanical parts and optics, the design of custom-built mechanical parts waskept as simple as possible. Hence, the overall cost for the setup is greatly reduced. The AFM controller was developed using National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS, an integrated hardware and software platform which can be programmed in LabVIEW. A simple yet effective control algorithm for scanning and feedback control was developed. Despite the use of an educational platform and low-cost components from the undergraduate laboratory, the developed AFM is capable of performing imaging in constant-force mode with submicron resolution and at reasonable scanning speed (approximately 18 min per image. Therefore, the AFM is suitable to be used as an educational tool for nanoscience. Moreover, the construction of the system can be a valuable educational experience for electronic and mechanical engineering students.

  20. Integrating Ethics into Engineering Education

    DEFF Research Database (Denmark)

    Zhou, Chunfang; Otrel-Cass, Kathrin; Børsen, Tom

    2015-01-01

    In this chapter, the authors aim to explore the necessity of teaching ethics as part of engineering education based on the gaps between learning “hard” knowledge and “soft” skills in the current educational system. They discuss why the nature of engineering practices makes it difficult to look...... products are not value neutral. With a focus on Problem-Based Learning (PBL), the authors examine why engineers need to incorporate ethical codes in their decision-making process and professional tasks. Finally, they discuss how to build creative learning environments that can support attaining...... the objectives of engineering education....