WorldWideScience

Sample records for integrate multiple cells

  1. Multiple proviral integration events after virological synapse-mediated HIV-1 spread

    International Nuclear Information System (INIS)

    Russell, Rebecca A.; Martin, Nicola; Mitar, Ivonne; Jones, Emma; Sattentau, Quentin J.

    2013-01-01

    HIV-1 can move directly between T cells via virological synapses (VS). Although aspects of the molecular and cellular mechanisms underlying this mode of spread have been elucidated, the outcomes for infection of the target cell remain incompletely understood. We set out to determine whether HIV-1 transfer via VS results in productive, high-multiplicity HIV-1 infection. We found that HIV-1 cell-to-cell spread resulted in nuclear import of multiple proviruses into target cells as seen by fluorescence in-situ hybridization. Proviral integration into the target cell genome was significantly higher than that seen in a cell-free infection system, and consequent de novo viral DNA and RNA production in the target cell detected by quantitative PCR increased over time. Our data show efficient proviral integration across VS, implying the probability of multiple integration events in target cells that drive productive T cell infection. - Highlights: • Cell-to-cell HIV-1 infection delivers multiple vRNA copies to the target cell. • Cell-to-cell infection results in productive infection of the target cell. • Cell-to-cell transmission is more efficient than cell-free HIV-1 infection. • Suggests a mechanism for recombination in cells infected with multiple viral genomes

  2. Tackling Energy Loss for High-Efficiency Organic Solar Cells with Integrated Multiple Strategies.

    Science.gov (United States)

    Zuo, Lijian; Shi, Xueliang; Jo, Sae Byeok; Liu, Yun; Lin, Fracis; Jen, Alex K-Y

    2018-04-01

    Limited by the various inherent energy losses from multiple channels, organic solar cells show inferior device performance compared to traditional inorganic photovoltaic techniques, such as silicon and CuInGaSe. To alleviate these fundamental limitations, an integrated multiple strategy is implemented including molecular design, interfacial engineering, optical manipulation, and tandem device construction into one cell. Considering the close correlation among these loss channels, a sophisticated quantification of energy-loss reduction is tracked along with each strategy in a perspective to reach rational overall optimum. A novel nonfullerene acceptor, 6TBA, is synthesized to resolve the thermalization and V OC loss, and another small bandgap nonfullerene acceptor, 4TIC, is used in the back sub-cell to alleviate transmission loss. Tandem architecture design significantly reduces the light absorption loss, and compensates carrier dynamics and thermalization loss. Interfacial engineering further reduces energy loss from carrier dynamics in the tandem architecture. As a result of this concerted effort, a very high power conversion efficiency (13.20%) is obtained. A detailed quantitative analysis on the energy losses confirms that the improved device performance stems from these multiple strategies. The results provide a rational way to explore the ultimate device performance through molecular design and device engineering. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Structure of the EGF receptor transactivation circuit integrates multiple signals with cell context

    Energy Technology Data Exchange (ETDEWEB)

    Joslin, Elizabeth J.; Shankaran, Harish; Opresko, Lee K.; Bollinger, Nikki; Lauffenburger, Douglas A.; Wiley, H. S.

    2010-05-10

    Transactivation of the epidermal growth factor receptor (EGFR) has been proposed to be a mechanism by which a variety of cellular inputs can be integrated into a single signaling pathway, but the regulatory topology of this important system is unclear. To understand the transactivation circuit, we first created a “non-binding” reporter for ligand shedding. We then quantitatively defined how signals from multiple agonists were integrated both upstream and downstream of the EGFR into the extracellular signal regulated kinase (ERK) cascade in human mammary epithelial cells. We found that transactivation is mediated by a recursive autocrine circuit where ligand shedding drives EGFR-stimulated ERK that in turn drives further ligand shedding. The time from shedding to ERK activation is fast (<5 min) whereas the recursive feedback is slow (>15 min). Simulations showed that this delay in positive feedback greatly enhanced system stability and robustness. Our results indicate that the transactivation circuit is constructed so that the magnitude of ERK signaling is governed by the sum of multiple direct inputs, while recursive, autocrine ligand shedding controls signal duration.

  4. Integrated QSAR study for inhibitors of Hedgehog Signal Pathway against multiple cell lines:a collaborative filtering method.

    Science.gov (United States)

    Gao, Jun; Che, Dongsheng; Zheng, Vincent W; Zhu, Ruixin; Liu, Qi

    2012-07-31

    The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several

  5. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  6. Automated platform for designing multiple robot work cells

    Science.gov (United States)

    Osman, N. S.; Rahman, M. A. A.; Rahman, A. A. Abdul; Kamsani, S. H.; Bali Mohamad, B. M.; Mohamad, E.; Zaini, Z. A.; Rahman, M. F. Ab; Mohamad Hatta, M. N. H.

    2017-06-01

    Designing the multiple robot work cells is very knowledge-intensive, intricate, and time-consuming process. This paper elaborates the development process of a computer-aided design program for generating the multiple robot work cells which offer a user-friendly interface. The primary purpose of this work is to provide a fast and easy platform for less cost and human involvement with minimum trial and errors adjustments. The automated platform is constructed based on the variant-shaped configuration concept with its mathematical model. A robot work cell layout, system components, and construction procedure of the automated platform are discussed in this paper where integration of these items will be able to automatically provide the optimum robot work cell design according to the information set by the user. This system is implemented on top of CATIA V5 software and utilises its Part Design, Assembly Design, and Macro tool. The current outcomes of this work provide a basis for future investigation in developing a flexible configuration system for the multiple robot work cells.

  7. Integration of multiple determinants in the neuronal computation of economic values.

    Science.gov (United States)

    Raghuraman, Anantha P; Padoa-Schioppa, Camillo

    2014-08-27

    Economic goods may vary on multiple dimensions (determinants). A central conjecture in decision neuroscience is that choices between goods are made by comparing subjective values computed through the integration of all relevant determinants. Previous work identified three groups of neurons in the orbitofrontal cortex (OFC) of monkeys engaged in economic choices: (1) offer value cells, which encode the value of individual offers; (2) chosen value cells, which encode the value of the chosen good; and (3) chosen juice cells, which encode the identity of the chosen good. In principle, these populations could be sufficient to generate a decision. Critically, previous work did not assess whether offer value cells (the putative input to the decision) indeed encode subjective values as opposed to physical properties of the goods, and/or whether offer value cells integrate multiple determinants. To address these issues, we recorded from the OFC while monkeys chose between risky outcomes. Confirming previous observations, three populations of neurons encoded the value of individual offers, the value of the chosen option, and the value-independent choice outcome. The activity of both offer value cells and chosen value cells encoded values defined by the integration of juice quantity and probability. Furthermore, both populations reflected the subjective risk attitude of the animals. We also found additional groups of neurons encoding the risk associated with a particular option, the risky nature of the chosen option, and whether the trial outcome was positive or negative. These results provide substantial support for the conjecture described above and for the involvement of OFC in good-based decisions. Copyright © 2014 the authors 0270-6474/14/3311583-21$15.00/0.

  8. Development of a multiple-gene-loading method by combining multi-integration system-equipped mouse artificial chromosome vector and CRISPR-Cas9.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Honma

    Full Text Available Mouse artificial chromosome (MAC vectors have several advantages as gene delivery vectors, such as stable and independent maintenance in host cells without integration, transferability from donor cells to recipient cells via microcell-mediated chromosome transfer (MMCT, and the potential for loading a megabase-sized DNA fragment. Previously, a MAC containing a multi-integrase platform (MI-MAC was developed to facilitate the transfer of multiple genes into desired cells. Although the MI system can theoretically hold five gene-loading vectors (GLVs, there are a limited number of drugs available for the selection of multiple-GLV integration. To overcome this issue, we attempted to knock out and reuse drug resistance genes (DRGs using the CRISPR-Cas9 system. In this study, we developed new methods for multiple-GLV integration. As a proof of concept, we introduced five GLVs in the MI-MAC by these methods, in which each GLV contained a gene encoding a fluorescent or luminescent protein (EGFP, mCherry, BFP, Eluc, and Cluc. Genes of interest (GOI on the MI-MAC were expressed stably and functionally without silencing in the host cells. Furthermore, the MI-MAC carrying five GLVs was transferred to other cells by MMCT, and the resultant recipient cells exhibited all five fluorescence/luminescence signals. Thus, the MI-MAC was successfully used as a multiple-GLV integration vector using the CRISPR-Cas9 system. The MI-MAC employing these methods may resolve bottlenecks in developing multiple-gene humanized models, multiple-gene monitoring models, disease models, reprogramming, and inducible gene expression systems.

  9. EasyClone: method for iterative chromosomal integration of multiple genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jensen, Niels Bjerg; Strucko, Tomas; Kildegaard, Kanchana Rueksomtawin

    2014-01-01

    of multiple genes with an option of recycling selection markers. The vectors combine the advantage of efficient uracil excision reaction-based cloning and Cre-LoxP-mediated marker recycling system. The episomal and integrative vector sets were tested by inserting genes encoding cyan, yellow, and red...... fluorescent proteins into separate vectors and analyzing for co-expression of proteins by flow cytometry. Cells expressing genes encoding for the three fluorescent proteins from three integrations exhibited a much higher level of simultaneous expression than cells producing fluorescent proteins encoded...... on episomal plasmids, where correspondingly 95% and 6% of the cells were within a fluorescence interval of Log10 mean ± 15% for all three colors. We demonstrate that selective markers can be simultaneously removed using Cre-mediated recombination and all the integrated heterologous genes remain...

  10. Interstitial integrals in the multiple-scattering model

    International Nuclear Information System (INIS)

    Swanson, J.R.; Dill, D.

    1982-01-01

    We present an efficient method for the evaluation of integrals involving multiple-scattering wave functions over the interstitial region. Transformation of the multicenter interstitial wave functions to a single center representation followed by a geometric projection reduces the integrals to products of analytic angular integrals and numerical radial integrals. The projection function, which has the value 1 in the interstitial region and 0 elsewhere, has a closed-form partial-wave expansion. The method is tested by comparing its results with exact normalization and dipole integrals; the differences are 2% at worst and typically less than 1%. By providing an efficient means of calculating Coulomb integrals, the method allows treatment of electron correlations using a multiple scattering basis set

  11. Mechanism for multiplicity of steady states with distinct cell concentration in continuous culture of mammalian cells.

    Science.gov (United States)

    Yongky, Andrew; Lee, Jongchan; Le, Tung; Mulukutla, Bhanu Chandra; Daoutidis, Prodromos; Hu, Wei-Shou

    2015-07-01

    Continuous culture for the production of biopharmaceutical proteins offers the possibility of steady state operations and thus more consistent product quality and increased productivity. Under some conditions, multiplicity of steady states has been observed in continuous cultures of mammalian cells, wherein with the same dilution rate and feed nutrient composition, steady states with very different cell and product concentrations may be reached. At those different steady states, cells may exhibit a high glycolysis flux with high lactate production and low cell concentration, or a low glycolysis flux with low lactate and high cell concentration. These different steady states, with different cell concentration, also have different productivity. Developing a mechanistic understanding of the occurrence of steady state multiplicity and devising a strategy to steer the culture toward the desired steady state is critical. We establish a multi-scale kinetic model that integrates a mechanistic intracellular metabolic model and cell growth model in a continuous bioreactor. We show that steady state multiplicity exists in a range of dilution rate in continuous culture as a result of the bistable behavior in glycolysis. The insights from the model were used to devise strategies to guide the culture to the desired steady state in the multiple steady state region. The model provides a guideline principle in the design of continuous culture processes of mammalian cells. © 2015 Wiley Periodicals, Inc.

  12. Single-event phenomena on recent semiconductor devices. Charge-type multiple-bit upsets in high integrated memories

    International Nuclear Information System (INIS)

    Makihara, Akiko; Shindou, Hiroyuki; Nemoto, Norio; Kuboyama, Satoshi; Matsuda, Sumio; Ohshima, Takeshi; Hirao, Toshio; Itoh, Hisayoshi

    2001-01-01

    High integrated memories are used in solid state data recorder (SSDR) of the satellite for accumulating observation data. Single event upset phenomena which turn over an accumulated data in the memory cells are caused by heavy ion incidence. Studies on single-bit upset and multiple-bit upset phenomena in the high integrated memory cells are in progress recently. 16 Mbit DRAM (Dynamic Random Access Memories) and 64 Mbit DRAM are irradiated by heavy ion species, such as iodine, bromine and nickel, in comparison with the irradiation damage in the cosmic environment. Data written on the memory devices are read out after the irradiation. The memory cells in three kinds of states, all of charged state, all of discharged state, and an alternative state of charge and discharge, are irradiated for sorting out error modes caused by heavy ion incidence. The soft error in a single memory cells is known as a turn over from charged state to discharged state. Electrons in electron-hole pair generated by heavy ion incidence are captured in a diffusion region between capacitor electrodes of semiconductor. The charged states in the capacitor electrodes before the irradiation are neutralized and changed to the discharged states. According to high integration of the memories, many of the cells are affected by a single ion incidence. The multiple-bit upsets, however, are generated in the memory cells of discharged state before the irradiation, also. The charge-type multiple-bit upsets is considered as that error data are written on the DRAM during refresh cycle of a sense-up circuit and a pre-charge circuit which control the DRAM. (M. Suetake)

  13. An Integrated Cell Purification and Genomics Strategy Reveals Multiple Regulators of Pancreas Development

    Science.gov (United States)

    Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.

    2014-01-01

    The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008

  14. An integrated cell purification and genomics strategy reveals multiple regulators of pancreas development.

    Directory of Open Access Journals (Sweden)

    Cecil M Benitez

    2014-10-01

    Full Text Available The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus.

  15. Modulation of C. elegans Touch Sensitivity Is Integrated at Multiple Levels

    Science.gov (United States)

    Chen, Xiaoyin

    2014-01-01

    Sensory systems can adapt to different environmental signals. Here we identify four conditions that modulate anterior touch sensitivity in Caenorhabditis elegans after several hours and demonstrate that such sensory modulation is integrated at multiple levels to produce a single output. Prolonged vibration involving integrin signaling directly sensitizes the touch receptor neurons (TRNs). In contrast, hypoxia, the dauer state, and high salt reduce touch sensitivity by preventing the release of long-range neuroregulators, including two insulin-like proteins. Integration of these latter inputs occurs at upstream neurohormonal cells and at the insulin signaling cascade within the TRNs. These signals and those from integrin signaling converge to modulate touch sensitivity by regulating AKT kinases and DAF-16/FOXO. Thus, activation of either the integrin or insulin pathways can compensate for defects in the other pathway. This modulatory system integrates conflicting signals from different modalities, and adapts touch sensitivity to both mechanical and non-mechanical conditions. PMID:24806678

  16. Smart wheelchair: integration of multiple sensors

    Science.gov (United States)

    Gassara, H. E.; Almuhamed, S.; Moukadem, A.; Schacher, L.; Dieterlen, A.; Adolphe, D.

    2017-10-01

    The aim of the present work is to develop a smart wheelchair by integrating multiple sensors for measuring user’s physiological signals and subsequently transmitting and monitoring the treated signals to the user, a designated person or institution. Among other sensors, force, accelerometer, and temperature sensors are successfully integrated within both the backrest and the seat cushions of the wheelchair; while a pulse sensor is integrated within the armrest. The pulse sensor is connected to an amplification circuit board that is, in turn, placed within the armrest. The force and temperature sensors are integrated into a textile cover of the cushions by means of embroidery and sewing techniques. The signal from accelerometer is transmitted through Wi-Fi connection. The electrical connections needed for power supplying of sensors are made by embroidered conductive threads.

  17. Coordinated learning of grid cell and place cell spatial and temporal properties: multiple scales, attention and oscillations.

    Science.gov (United States)

    Grossberg, Stephen; Pilly, Praveen K

    2014-02-05

    A neural model proposes how entorhinal grid cells and hippocampal place cells may develop as spatial categories in a hierarchy of self-organizing maps (SOMs). The model responds to realistic rat navigational trajectories by learning both grid cells with hexagonal grid firing fields of multiple spatial scales, and place cells with one or more firing fields, that match neurophysiological data about their development in juvenile rats. Both grid and place cells can develop by detecting, learning and remembering the most frequent and energetic co-occurrences of their inputs. The model's parsimonious properties include: similar ring attractor mechanisms process linear and angular path integration inputs that drive map learning; the same SOM mechanisms can learn grid cell and place cell receptive fields; and the learning of the dorsoventral organization of multiple spatial scale modules through medial entorhinal cortex to hippocampus (HC) may use mechanisms homologous to those for temporal learning through lateral entorhinal cortex to HC ('neural relativity'). The model clarifies how top-down HC-to-entorhinal attentional mechanisms may stabilize map learning, simulates how hippocampal inactivation may disrupt grid cells, and explains data about theta, beta and gamma oscillations. The article also compares the three main types of grid cell models in the light of recent data.

  18. Cell-based therapeutic strategies for multiple sclerosis.

    Science.gov (United States)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C; Cohen, Jeffrey A

    2017-11-01

    The availability of multiple disease-modifying medications with regulatory approval to treat multiple sclerosis illustrates the substantial progress made in therapy of the disease. However, all are only partially effective in preventing inflammatory tissue damage in the central nervous system and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved questions. Moreover, clinical trials of cell-based therapies present several unique methodological and ethical issues. We summarize here the status of cell-based therapies to treat multiple sclerosis and make consensus recommendations for future research and clinical trials. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  19. Radiation damage to integrated injection logic cells

    International Nuclear Information System (INIS)

    Pease, R.L.; Galloway, K.F.; Stehlin, R.A.

    1975-01-01

    The effects of neutron and total dose gamma irradiations on the electrical characteristics of an integrated injection logic (l 2 L) cell and an l 2 L multiple inverter circuit were investigated. These units were designed and fabricated to obtain circuit development information and did not have radiation hardness as a goal. The following parameters of the test structures were measured as a function of total dose and neutron fluence: the dc common-base current gain of the lateral pnp transistor; the dc common-emitter current gain of the vertical npn transistor; the forward current-voltage characteristics of the injector-substrate junction, and the propagation delay versus power dissipation per gate for the multiple inverter circuit. The limitations of the present test structures in a radiation environment and possible hardening techniques are discussed

  20. Towards Integration of Biological and Physiological Functions at Multiple Levels

    Directory of Open Access Journals (Sweden)

    Taishin eNomura

    2010-12-01

    Full Text Available An aim of systems physiology today can be stated as to establish logical and quantitative bridges between phenomenological attributes of physiological entities such as cells and organs and physical attributes of biological entities, i.e., biological molecules, allowing us to describe and better understand physiological functions in terms of underlying biological functions. This article illustrates possible schema that can be used for promoting systems physiology by integrating quantitative knowledge of biological and physiological functions at multiple levels of time and space with the use of information technology infrastructure. Emphasis will be made for systematic, modular, hierarchical, and standardized descriptions of mathematical models of the functions and advantages for the use of them.

  1. Unsupervised multiple kernel learning for heterogeneous data integration.

    Science.gov (United States)

    Mariette, Jérôme; Villa-Vialaneix, Nathalie

    2018-03-15

    Recent high-throughput sequencing advances have expanded the breadth of available omics datasets and the integrated analysis of multiple datasets obtained on the same samples has allowed to gain important insights in a wide range of applications. However, the integration of various sources of information remains a challenge for systems biology since produced datasets are often of heterogeneous types, with the need of developing generic methods to take their different specificities into account. We propose a multiple kernel framework that allows to integrate multiple datasets of various types into a single exploratory analysis. Several solutions are provided to learn either a consensus meta-kernel or a meta-kernel that preserves the original topology of the datasets. We applied our framework to analyse two public multi-omics datasets. First, the multiple metagenomic datasets, collected during the TARA Oceans expedition, was explored to demonstrate that our method is able to retrieve previous findings in a single kernel PCA as well as to provide a new image of the sample structures when a larger number of datasets are included in the analysis. To perform this analysis, a generic procedure is also proposed to improve the interpretability of the kernel PCA in regards with the original data. Second, the multi-omics breast cancer datasets, provided by The Cancer Genome Atlas, is analysed using a kernel Self-Organizing Maps with both single and multi-omics strategies. The comparison of these two approaches demonstrates the benefit of our integration method to improve the representation of the studied biological system. Proposed methods are available in the R package mixKernel, released on CRAN. It is fully compatible with the mixOmics package and a tutorial describing the approach can be found on mixOmics web site http://mixomics.org/mixkernel/. jerome.mariette@inra.fr or nathalie.villa-vialaneix@inra.fr. Supplementary data are available at Bioinformatics online.

  2. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles.

    Science.gov (United States)

    Stepanauskas, Ramunas; Fergusson, Elizabeth A; Brown, Joseph; Poulton, Nicole J; Tupper, Ben; Labonté, Jessica M; Becraft, Eric D; Brown, Julia M; Pachiadaki, Maria G; Povilaitis, Tadas; Thompson, Brian P; Mascena, Corianna J; Bellows, Wendy K; Lubys, Arvydas

    2017-07-20

    Microbial single-cell genomics can be used to provide insights into the metabolic potential, interactions, and evolution of uncultured microorganisms. Here we present WGA-X, a method based on multiple displacement amplification of DNA that utilizes a thermostable mutant of the phi29 polymerase. WGA-X enhances genome recovery from individual microbial cells and viral particles while maintaining ease of use and scalability. The greatest improvements are observed when amplifying high G+C content templates, such as those belonging to the predominant bacteria in agricultural soils. By integrating WGA-X with calibrated index-cell sorting and high-throughput genomic sequencing, we are able to analyze genomic sequences and cell sizes of hundreds of individual, uncultured bacteria, archaea, protists, and viral particles, obtained directly from marine and soil samples, in a single experiment. This approach may find diverse applications in microbiology and in biomedical and forensic studies of humans and other multicellular organisms.Single-cell genomics can be used to study uncultured microorganisms. Here, Stepanauskas et al. present a method combining improved multiple displacement amplification and FACS, to obtain genomic sequences and cell size information from uncultivated microbial cells and viral particles in environmental samples.

  3. Integration by cell algorithm for Slater integrals in a spline basis

    International Nuclear Information System (INIS)

    Qiu, Y.; Fischer, C.F.

    1999-01-01

    An algorithm for evaluating Slater integrals in a B-spline basis is introduced. Based on the piecewise property of the B-splines, the algorithm divides the two-dimensional (r 1 , r 2 ) region into a number of rectangular cells according to the chosen grid and implements the two-dimensional integration over each individual cell using Gaussian quadrature. Over the off-diagonal cells, the integrands are separable so that each two-dimensional cell-integral is reduced to a product of two one-dimensional integrals. Furthermore, the scaling invariance of the B-splines in the logarithmic region of the chosen grid is fully exploited such that only some of the cell integrations need to be implemented. The values of given Slater integrals are obtained by assembling the cell integrals. This algorithm significantly improves the efficiency and accuracy of the traditional method that relies on the solution of differential equations and renders the B-spline method more effective when applied to multi-electron atomic systems

  4. Integrating single-cell transcriptomic data across different conditions, technologies, and species.

    Science.gov (United States)

    Butler, Andrew; Hoffman, Paul; Smibert, Peter; Papalexi, Efthymia; Satija, Rahul

    2018-06-01

    Computational single-cell RNA-seq (scRNA-seq) methods have been successfully applied to experiments representing a single condition, technology, or species to discover and define cellular phenotypes. However, identifying subpopulations of cells that are present across multiple data sets remains challenging. Here, we introduce an analytical strategy for integrating scRNA-seq data sets based on common sources of variation, enabling the identification of shared populations across data sets and downstream comparative analysis. We apply this approach, implemented in our R toolkit Seurat (http://satijalab.org/seurat/), to align scRNA-seq data sets of peripheral blood mononuclear cells under resting and stimulated conditions, hematopoietic progenitors sequenced using two profiling technologies, and pancreatic cell 'atlases' generated from human and mouse islets. In each case, we learn distinct or transitional cell states jointly across data sets, while boosting statistical power through integrated analysis. Our approach facilitates general comparisons of scRNA-seq data sets, potentially deepening our understanding of how distinct cell states respond to perturbation, disease, and evolution.

  5. Viability in holder of irradiated cells: distinguish between repair and cell multiplication

    International Nuclear Information System (INIS)

    Araujo, A.C. de.

    1980-01-01

    In experiments in which liquid holding recovery (LHR) was measured, the majority of cellular population is formed by non-viable cells and cell multiplication may be important for LHR expression. In order to distinguish between recuperation of viability (true LHR) and cell multiplication, it was necessary to employ improved plating techniques and a fluctuation test based on Poisson distribution. Our results are an indication that this fluctuation test, used together with the traditional method, is a good tool to distinguish repair from cell multiplication. (author)

  6. A Novel Multiple-Time Scale Integrator for the Hybrid Monte Carlo Algorithm

    International Nuclear Information System (INIS)

    Kamleh, Waseem

    2011-01-01

    Hybrid Monte Carlo simulations that implement the fermion action using multiple terms are commonly used. By the nature of their formulation they involve multiple integration time scales in the evolution of the system through simulation time. These different scales are usually dealt with by the Sexton-Weingarten nested leapfrog integrator. In this scheme the choice of time scales is somewhat restricted as each time step must be an exact multiple of the next smallest scale in the sequence. A novel generalisation of the nested leapfrog integrator is introduced which allows for far greater flexibility in the choice of time scales, as each scale now must only be an exact multiple of the smallest step size.

  7. A Multiple Iterated Integral Inequality and Applications

    Directory of Open Access Journals (Sweden)

    Zongyi Hou

    2014-01-01

    Full Text Available We establish new multiple iterated Volterra-Fredholm type integral inequalities, where the composite function w(u(s of the unknown function u with nonlinear function w in integral functions in [Ma, QH, Pečarić, J: Estimates on solutions of some new nonlinear retarded Volterra-Fredholm type integral inequalities. Nonlinear Anal. 69 (2008 393–407] is changed into the composite functions w1(u(s,w2(u(s,…, wn (u(s of the unknown function u with different nonlinear functions w1,w2,…,wn, respectively. By adopting novel analysis techniques, the upper bounds of the embedded unknown functions are estimated explicitly. The derived results can be applied in the study of solutions of ordinary differential equations and integral equations.

  8. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome.

    Science.gov (United States)

    Suzuki, Teruhiko; Kazuki, Yasuhiro; Oshimura, Mitsuo; Hara, Takahiko

    2014-01-01

    Human artificial chromosomes (HACs) are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV) into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system) via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.

  9. A novel system for simultaneous or sequential integration of multiple gene-loading vectors into a defined site of a human artificial chromosome.

    Directory of Open Access Journals (Sweden)

    Teruhiko Suzuki

    Full Text Available Human artificial chromosomes (HACs are gene-delivery vectors suitable for introducing large DNA fragments into mammalian cells. Although a HAC theoretically incorporates multiple gene expression cassettes of unlimited DNA size, its application has been limited because the conventional gene-loading system accepts only one gene-loading vector (GLV into a HAC. We report a novel method for the simultaneous or sequential integration of multiple GLVs into a HAC vector (designated as the SIM system via combined usage of Cre, FLP, Bxb1, and φC31 recombinase/integrase. As a proof of principle, we first attempted simultaneous integration of three GLVs encoding EGFP, Venus, and TdTomato into a gene-loading site of a HAC in CHO cells. These cells successfully expressed all three fluorescent proteins. Furthermore, microcell-mediated transfer of HACs enabled the expression of those fluorescent proteins in recipient cells. We next demonstrated that GLVs could be introduced into a HAC one-by-one via reciprocal usage of recombinase/integrase. Lastly, we introduced a fourth GLV into a HAC after simultaneous integration of three GLVs by FLP-mediated DNA recombination. The SIM system expands the applicability of HAC vectors and is useful for various biomedical studies, including cell reprogramming.

  10. MBsums. A Mathematica package for the representation of Mellin-Barnes integrals by multiple sums

    International Nuclear Information System (INIS)

    Ochman, Michal; Riemann, Tord

    2015-11-01

    Feynman integrals may be represented by the Mathematica package AMBRE and MB as multiple Mellin-Barnes integrals. With the Mathematica package MBsums we transform these Mellin-Barnes integrals into multiple sums.

  11. Multiple integrals in the calculus of variations

    CERN Document Server

    Morrey, Charles B

    1966-01-01

    From the reviews: "…the book contains a wealth of material essential to the researcher concerned with multiple integral variational problems and with elliptic partial differential equations. The book not only reports the researches of the author but also the contributions of his contemporaries in the same and related fields. The book undoubtedly will become a standard reference for researchers in these areas. …The book is addressed mainly to mature mathematical analysts. However, any student of analysis will be greatly rewarded by a careful study of this book." M. R. Hestenes in Journal of Optimization Theory and Applications "The work intertwines in masterly fashion results of classical analysis, topology, and the theory of manifolds and thus presents a comprehensive treatise of the theory of multiple integral variational problems." L. Schmetterer in Monatshefte für Mathematik "The book is very clearly exposed and contains the last modern theory in this domain. A comprehensive bibliography ends the book...

  12. Multiple injections of electroporated autologous T cells expressing a chimeric antigen receptor mediate regression of human disseminated tumor.

    Science.gov (United States)

    Zhao, Yangbing; Moon, Edmund; Carpenito, Carmine; Paulos, Chrystal M; Liu, Xiaojun; Brennan, Andrea L; Chew, Anne; Carroll, Richard G; Scholler, John; Levine, Bruce L; Albelda, Steven M; June, Carl H

    2010-11-15

    Redirecting T lymphocyte antigen specificity by gene transfer can provide large numbers of tumor-reactive T lymphocytes for adoptive immunotherapy. However, safety concerns associated with viral vector production have limited clinical application of T cells expressing chimeric antigen receptors (CAR). T lymphocytes can be gene modified by RNA electroporation without integration-associated safety concerns. To establish a safe platform for adoptive immunotherapy, we first optimized the vector backbone for RNA in vitro transcription to achieve high-level transgene expression. CAR expression and function of RNA-electroporated T cells could be detected up to a week after electroporation. Multiple injections of RNA CAR-electroporated T cells mediated regression of large vascularized flank mesothelioma tumors in NOD/scid/γc(-/-) mice. Dramatic tumor reduction also occurred when the preexisting intraperitoneal human-derived tumors, which had been growing in vivo for >50 days, were treated by multiple injections of autologous human T cells electroporated with anti-mesothelin CAR mRNA. This is the first report using matched patient tumor and lymphocytes showing that autologous T cells from cancer patients can be engineered to provide an effective therapy for a disseminated tumor in a robust preclinical model. Multiple injections of RNA-engineered T cells are a novel approach for adoptive cell transfer, providing flexible platform for the treatment of cancer that may complement the use of retroviral and lentiviral engineered T cells. This approach may increase the therapeutic index of T cells engineered to express powerful activation domains without the associated safety concerns of integrating viral vectors. Copyright © 2010 AACR.

  13. Integration of thermo-vapor compressor with multiple-effect evaporator

    International Nuclear Information System (INIS)

    Sharan, Prashant; Bandyopadhyay, Santanu

    2016-01-01

    Highlights: • Energy integration of thermo-vapor compressor with multiple-effect evaporator. • Proposed a new methodology for optimal placement of thermo-vapor compressor. • Extended Pinch Analysis for overall energy conservation. • Obtained simultaneous reduction in evaporator area requirement and energy consumption with optimal integration. - Abstract: Thermo-vapor compressor (TVC) is used for compressing the low-pressure vapor with the help of the high-pressure motive steam, to produce the medium pressure vapor. A substantial portion of energy may be conserved by integrating TVC with the multiple-effect evaporator (MEE). The common practice in desalination industry is to compress the vapor produced in the last effect of a MEE using TVC to reduce the overall motive steam requirement. Such integration does not necessarily guarantee energy optimality. The objective of the present work is to optimally integrate TVC with a MEE system to maximize the gain output ratio (GOR). GOR is defined as the ratio of the mass flow rate of vapor produced in MEE to the mass flow rate of the motive steam supplied to TVC. GOR is the measure of the energy efficiency of MEE system. Using the principles of Pinch Analysis and techniques of mathematical optimization, a new methodology for integration of TVC with MEE is proposed in this paper. This is the first analytical methodology to optimally integrate TVC with MEE, avoiding multiple simulations of the overall system. A Theorem is proposed to directly calculate the optimal location of TVC suction position. The proposed methodology gives the designer the freedom to design an MEE-TVC with minimum energy consumption and without carrying out the detailed simulation of the entire system. The methodology is demonstrated through the illustrative case studies for concentrating corn glucose, and freshwater production through thermal desalination. In the case of corn glucose, the optimal integration of TVC with 2-effect MEE resulted in

  14. How entorhinal grid cells may learn multiple spatial scales from a dorsoventral gradient of cell response rates in a self-organizing map.

    Directory of Open Access Journals (Sweden)

    Stephen Grossberg

    Full Text Available Place cells in the hippocampus of higher mammals are critical for spatial navigation. Recent modeling clarifies how this may be achieved by how grid cells in the medial entorhinal cortex (MEC input to place cells. Grid cells exhibit hexagonal grid firing patterns across space in multiple spatial scales along the MEC dorsoventral axis. Signals from grid cells of multiple scales combine adaptively to activate place cells that represent much larger spaces than grid cells. But how do grid cells learn to fire at multiple positions that form a hexagonal grid, and with spatial scales that increase along the dorsoventral axis? In vitro recordings of medial entorhinal layer II stellate cells have revealed subthreshold membrane potential oscillations (MPOs whose temporal periods, and time constants of excitatory postsynaptic potentials (EPSPs, both increase along this axis. Slower (faster subthreshold MPOs and slower (faster EPSPs correlate with larger (smaller grid spacings and field widths. A self-organizing map neural model explains how the anatomical gradient of grid spatial scales can be learned by cells that respond more slowly along the gradient to their inputs from stripe cells of multiple scales, which perform linear velocity path integration. The model cells also exhibit MPO frequencies that covary with their response rates. The gradient in intrinsic rhythmicity is thus not compelling evidence for oscillatory interference as a mechanism of grid cell firing. A response rate gradient combined with input stripe cells that have normalized receptive fields can reproduce all known spatial and temporal properties of grid cells along the MEC dorsoventral axis. This spatial gradient mechanism is homologous to a gradient mechanism for temporal learning in the lateral entorhinal cortex and its hippocampal projections. Spatial and temporal representations may hereby arise from homologous mechanisms, thereby embodying a mechanistic "neural relativity" that

  15. Integration of adeno-associated virus vectors in CD34+ human hematopoietic progenitor cells after transduction.

    Science.gov (United States)

    Fisher-Adams, G; Wong, K K; Podsakoff, G; Forman, S J; Chatterjee, S

    1996-07-15

    Gene transfer vectors based on adeno-associated virus (AAV) appear promising because of their high transduction frequencies regardless of cell cycle status and ability to integrate into chromosomal DNA. We tested AAV-mediated gene transfer into a panel of human bone marrow or umbilical cord-derived CD34+ hematopoietic progenitor cells, using vectors encoding several transgenes under the control of viral and cellular promoters. Gene transfer was evaluated by (1) chromosomal integration of vector sequences and (2) analysis of transgene expression. Southern hybridization and fluorescence in situ hybridization analysis of transduced CD34 genomic DNA showed the presence of integrated vector sequences in chromosomal DNA in a portion of transduced cells and showed that integrated vector sequences were replicated along with cellular DNA during mitosis. Transgene expression in transduced CD34 cells in suspension cultures and in myeloid colonies differentiating in vitro from transduced CD34 cells approximated that predicted by the multiplicity of transduction. This was true in CD34 cells from different donors, regardless of the transgene or selective pressure. Comparisons of CD34 cell transduction either before or after cytokine stimulation showed similar gene transfer frequencies. Our findings suggest that AAV transduction of CD34+ hematopoietic progenitor cells is efficient, can lead to stable integration in a population of transduced cells, and may therefore provide the basis for safe and efficient ex vivo gene therapy of the hematopoietic system.

  16. Direct integration multiple collision integral transport analysis method for high energy fusion neutronics

    International Nuclear Information System (INIS)

    Koch, K.R.

    1985-01-01

    A new analysis method specially suited for the inherent difficulties of fusion neutronics was developed to provide detailed studies of the fusion neutron transport physics. These studies should provide a better understanding of the limitations and accuracies of typical fusion neutronics calculations. The new analysis method is based on the direct integration of the integral form of the neutron transport equation and employs a continuous energy formulation with the exact treatment of the energy angle kinematics of the scattering process. In addition, the overall solution is analyzed in terms of uncollided, once-collided, and multi-collided solution components based on a multiple collision treatment. Furthermore, the numerical evaluations of integrals use quadrature schemes that are based on the actual dependencies exhibited in the integrands. The new DITRAN computer code was developed on the Cyber 205 vector supercomputer to implement this direct integration multiple-collision fusion neutronics analysis. Three representative fusion reactor models were devised and the solutions to these problems were studied to provide suitable choices for the numerical quadrature orders as well as the discretized solution grid and to understand the limitations of the new analysis method. As further verification and as a first step in assessing the accuracy of existing fusion-neutronics calculations, solutions obtained using the new analysis method were compared to typical multigroup discrete ordinates calculations

  17. Integral Methodological Pluralism in Science Education Research: Valuing Multiple Perspectives

    Science.gov (United States)

    Davis, Nancy T.; Callihan, Laurie P.

    2013-01-01

    This article examines the multiple methodologies used in educational research and proposes a model that includes all of them as contributing to understanding educational contexts and research from multiple perspectives. The model, based on integral theory (Wilber in a theory of everything. Shambhala, Boston, 2000) values all forms of research as…

  18. Plasma Cell Neoplasms (Including Multiple Myeloma)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells form cancerous tumors. When there is only one tumor, the disease is called a plasmacytoma. When there are multiple tumors, it is called multiple myeloma. Start here to find information on plasma cell neoplasms treatment, research, and statistics.

  19. Predicting Protein Function via Semantic Integration of Multiple Networks.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  20. Integrated circuit cell library

    Science.gov (United States)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)

    2005-01-01

    According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.

  1. An integral for second-order multiple scattering perturbation theory

    International Nuclear Information System (INIS)

    Hoffman, G.G.

    1997-01-01

    This paper presents the closed form evaluation of a six-dimensional integral. The integral arises in the application to many-electron systems of a multiple scattering perturbation expansion at second order when formulated in fourier space. The resulting function can be used for the calculation of both the electron density and the effective one-electron potential in an SCF calculations. The closed form expression derived here greatly facilitates these calculations. In addition, the evaluated integral can be used for the computation of second-order corrections to the open-quotes optimized Thomas-Fermi theory.close quotes 10 refs., 2 figs

  2. Competitive Stem Cell Recruitment by Multiple Cytotactic Cues

    Science.gov (United States)

    Mendelson, Avital; Cheung, Yukkee; Paluch, Kamila; Chen, Mo; Kong, Kimi; Tan, Jiali; Dong, Ziming; Sia, Samuel K.; Mao, Jeremy J.

    2014-01-01

    A multitude of cytotactic cues direct cell migration in development, cancer metastasis and wound healing. However, our understanding of cell motility remains fragmented partially because current migration devices only allow the study of independent factors. We developed a cell motility assay that allows competitive recruitment of a given cell population simultaneously by gradients of multiple cytotactic cues, observable under real-time imaging. Well-defined uniform gradients of cytotactic cues can be independently generated and sustained in each channel. As a case study, bone marrow mesenchymal stem/stromal cells (MSCs) were exposed to 15 cytokines that are commonly present in arthritis. Cytokines that induced robust recruitment of MSCs in multiple groups were selected to ‘compete’ in a final round to yield the most chemotactic factor(s) based on cell migration numbers, distances, migration indices and motility over time. The potency of a given cytokine in competition frequently differed from its individual action, substantiating the need to test multiple cytokines concurrently due to synergistic or antagonistic effects. This new device has the rare capacity to screen molecules that induce cell migration in cancer therapy, drug development and tissue regeneration. PMID:23364311

  3. Outside-in control -Does plant cell wall integrity regulate cell cycle progression?

    Science.gov (United States)

    Gigli-Bisceglia, Nora; Hamann, Thorsten

    2018-04-13

    During recent years it has become accepted that plant cell walls are not inert objects surrounding all plant cells but are instead highly dynamic, plastic structures. They are involved in a large number of cell biological processes and contribute actively to plant growth, development and interaction with environment. Therefore, it is not surprising that cellular processes can control plant cell wall integrity while, simultaneously, cell wall integrity can influence cellular processes. In yeast and animal cells such a bi-directional relationship also exists between the yeast/animal extra-cellular matrices and the cell cycle. In yeast, the cell wall integrity maintenance mechanism and a dedicated plasmamembrane integrity checkpoint are mediating this relationship. Recent research has yielded insights into the mechanism controlling plant cell wall metabolism during cytokinesis. However, knowledge regarding putative regulatory pathways controlling adaptive modifications in plant cell cycle activity in response to changes in the state of the plant cell wall are not yet identified. In this review, we summarize similarities and differences in regulatory mechanisms coordinating extra cellular matrices and cell cycle activity in animal and yeast cells, discuss the available evidence supporting the existence of such a mechanism in plants and suggest that the plant cell wall integrity maintenance mechanism might also control cell cycle activity in plant cells. This article is protected by copyright. All rights reserved.

  4. Towards Integration of CAx Systems and a Multiple-View Product Modeller in Mechanical Design

    Directory of Open Access Journals (Sweden)

    H. Song

    2005-01-01

    Full Text Available This paper deals with the development of an integration framework and its implementation for the connexion of CAx systems and multiple-view product modelling. The integration framework is presented regarding its conceptual level and the implementation level is described currently with the connexion of a functional modeller, a multiple-view product modeller, an optimisation module and a CAD system. The integration between the multiple-view product modeller and CATIA V5 based on the STEP standard is described in detail. Finally, the presented works are discussed and future research developments are suggested. 

  5. High throughput single-cell and multiple-cell micro-encapsulation.

    Science.gov (United States)

    Lagus, Todd P; Edd, Jon F

    2012-06-15

    ordered encapsulation study demonstrated that over 90% of singly encapsulated HL60 cells under similar flow conditions to those in this study maintained cell membrane integrity. However, the effect of the magnitude and time scales of shear stresses will need to be carefully considered when extrapolating to different cell types and flow parameters. The overlapping of the cell ordering, drop generation, and cell viability aqueous flow rate constraints provides an ideal operational regime for controlled encapsulation of single and multiple cells. Because very few studies address inter-particle train spacing, determining the spacing is most easily done empirically and will depend on channel geometry, flow rate, particle size, and particle concentration. Nonetheless, the equal lateral spacing between trains implies that cells arrive at predictable, consistent time intervals. When drop generation occurs at the same rate at which ordered cells arrive at the nozzle, the cells become encapsulated within the drop in a controlled manner. This technique has been utilized to encapsulate single cells with throughputs on the order of 15 kHz, a significant improvement over previous studies reporting encapsulation rates on the order of 60-160 Hz. In the controlled encapsulation work, over 80% of drops contained one and only one cell, a significant efficiency improvement over Poisson (random) statistics, which predicts less than 40% efficiency on average. In previous controlled encapsulation work, the average number of particles per drop λ was tuned to provide single-cell encapsulation. We hypothesize that through tuning of flow rates, we can efficiently encapsulate any number of cells per drop when λ is equal or close to the number of desired cells per drop. While single-cell encapsulation is valuable in determining individual cell responses from stimuli, multiple-cell encapsulation provides information relating to the interaction of controlled numbers and types of cells. Here we

  6. HMC algorithm with multiple time scale integration and mass preconditioning

    Science.gov (United States)

    Urbach, C.; Jansen, K.; Shindler, A.; Wenger, U.

    2006-01-01

    We present a variant of the HMC algorithm with mass preconditioning (Hasenbusch acceleration) and multiple time scale integration. We have tested this variant for standard Wilson fermions at β=5.6 and at pion masses ranging from 380 to 680 MeV. We show that in this situation its performance is comparable to the recently proposed HMC variant with domain decomposition as preconditioner. We give an update of the "Berlin Wall" figure, comparing the performance of our variant of the HMC algorithm to other published performance data. Advantages of the HMC algorithm with mass preconditioning and multiple time scale integration are that it is straightforward to implement and can be used in combination with a wide variety of lattice Dirac operators.

  7. Systematic identification of yeast cell cycle transcription factors using multiple data sources

    Directory of Open Access Journals (Sweden)

    Li Wen-Hsiung

    2008-12-01

    Full Text Available Abstract Background Eukaryotic cell cycle is a complex process and is precisely regulated at many levels. Many genes specific to the cell cycle are regulated transcriptionally and are expressed just before they are needed. To understand the cell cycle process, it is important to identify the cell cycle transcription factors (TFs that regulate the expression of cell cycle-regulated genes. Results We developed a method to identify cell cycle TFs in yeast by integrating current ChIP-chip, mutant, transcription factor binding site (TFBS, and cell cycle gene expression data. We identified 17 cell cycle TFs, 12 of which are known cell cycle TFs, while the remaining five (Ash1, Rlm1, Ste12, Stp1, Tec1 are putative novel cell cycle TFs. For each cell cycle TF, we assigned specific cell cycle phases in which the TF functions and identified the time lag for the TF to exert regulatory effects on its target genes. We also identified 178 novel cell cycle-regulated genes, among which 59 have unknown functions, but they may now be annotated as cell cycle-regulated genes. Most of our predictions are supported by previous experimental or computational studies. Furthermore, a high confidence TF-gene regulatory matrix is derived as a byproduct of our method. Each TF-gene regulatory relationship in this matrix is supported by at least three data sources: gene expression, TFBS, and ChIP-chip or/and mutant data. We show that our method performs better than four existing methods for identifying yeast cell cycle TFs. Finally, an application of our method to different cell cycle gene expression datasets suggests that our method is robust. Conclusion Our method is effective for identifying yeast cell cycle TFs and cell cycle-regulated genes. Many of our predictions are validated by the literature. Our study shows that integrating multiple data sources is a powerful approach to studying complex biological systems.

  8. Cell-based therapeutic strategies for multiple sclerosis

    DEFF Research Database (Denmark)

    Scolding, Neil J; Pasquini, Marcelo; Reingold, Stephen C

    2017-01-01

    and none directly promotes repair. Cell-based therapies, including immunoablation followed by autologous haematopoietic stem cell transplantation, mesenchymal and related stem cell transplantation, pharmacologic manipulation of endogenous stem cells to enhance their reparative capabilities......, and transplantation of oligodendrocyte progenitor cells, have generated substantial interest as novel therapeutic strategies for immune modulation, neuroprotection, or repair of the damaged central nervous system in multiple sclerosis. Each approach has potential advantages but also safety concerns and unresolved...

  9. Stationary Size Distributions of Growing Cells with Binary and Multiple Cell Division

    Science.gov (United States)

    Rading, M. M.; Engel, T. A.; Lipowsky, R.; Valleriani, A.

    2011-10-01

    Populations of unicellular organisms that grow under constant environmental conditions are considered theoretically. The size distribution of these cells is calculated analytically, both for the usual process of binary division, in which one mother cell produces always two daughter cells, and for the more complex process of multiple division, in which one mother cell can produce 2 n daughter cells with n=1,2,3,… . The latter mode of division is inspired by the unicellular algae Chlamydomonas reinhardtii. The uniform response of the whole population to different environmental conditions is encoded in the individual rates of growth and division of the cells. The analytical treatment of the problem is based on size-dependent rules for cell growth and stochastic transition processes for cell division. The comparison between binary and multiple division shows that these different division processes lead to qualitatively different results for the size distribution and the population growth rates.

  10. A large deviation principle in H\\"older norm for multiple fractional integrals

    OpenAIRE

    Sanz-Solé, Marta; Torrecilla-Tarantino, Iván

    2007-01-01

    For a fractional Brownian motion $B^H$ with Hurst parameter $H\\in]{1/4},{1/2}[\\cup]{1/2},1[$, multiple indefinite integrals on a simplex are constructed and the regularity of their sample paths are studied. Then, it is proved that the family of probability laws of the processes obtained by replacing $B^H$ by $\\epsilon^{{1/2}} B^H$ satisfies a large deviation principle in H\\"older norm. The definition of the multiple integrals relies upon a representation of the fractional Brownian motion in t...

  11. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    Science.gov (United States)

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  12. The essential role of t cells in multiple sclerosis: A reappraisal

    Directory of Open Access Journals (Sweden)

    Cris S Constantinescu

    2014-04-01

    Full Text Available Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system in which destruction of myelin and nerve axons has been shown to be mediated by immune mechanisms. Although the focus of research has been traditionally on T cells as key mediators of the immunopathology, more recent efforts at understanding this complex disorder have been directed increasingly at other cellular and humoral elements of the immune response. This review is a reappraisal of the crucial role of T cells, in particular the CD4+ helper T-cell subset, in multiple sclerosis. Recent evidence is discussed underlining the predominant contribution of T-cell-associated genes to the genome-wide association study results of multiple sclerosis susceptibility, the loss of T-cell quiescence in the conversion from clinically isolated syndrome to clinically definite multiple sclerosis, and the fact that T cells represent the main target of effective immunomodulatory and immunosuppressive treatments in multiple sclerosis.

  13. Integrated Production-Distribution Scheduling Problem with Multiple Independent Manufacturers

    Directory of Open Access Journals (Sweden)

    Jianhong Hao

    2015-01-01

    Full Text Available We consider the nonstandard parts supply chain with a public service platform for machinery integration in China. The platform assigns orders placed by a machinery enterprise to multiple independent manufacturers who produce nonstandard parts and makes production schedule and batch delivery schedule for each manufacturer in a coordinate manner. Each manufacturer has only one plant with parallel machines and is located at a location far away from other manufacturers. Orders are first processed at the plants and then directly shipped from the plants to the enterprise in order to be finished before a given deadline. We study the above integrated production-distribution scheduling problem with multiple manufacturers to maximize a weight sum of the profit of each manufacturer under the constraints that all orders are finished before the deadline and the profit of each manufacturer is not negative. According to the optimal condition analysis, we formulate the problem as a mixed integer programming model and use CPLEX to solve it.

  14. Analogue of Pontryagin's maximum principle for multiple integrals minimization problems

    OpenAIRE

    Mikhail, Zelikin

    2016-01-01

    The theorem like Pontryagin's maximum principle for multiple integrals is proved. Unlike the usual maximum principle, the maximum should be taken not over all matrices, but only on matrices of rank one. Examples are given.

  15. Integrated presentation of ecological risk from multiple stressors

    Science.gov (United States)

    Goussen, Benoit; Price, Oliver R.; Rendal, Cecilie; Ashauer, Roman

    2016-10-01

    Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.

  16. Integrated presentation of ecological risk from multiple stressors.

    Science.gov (United States)

    Goussen, Benoit; Price, Oliver R; Rendal, Cecilie; Ashauer, Roman

    2016-10-26

    Current environmental risk assessments (ERA) do not account explicitly for ecological factors (e.g. species composition, temperature or food availability) and multiple stressors. Assessing mixtures of chemical and ecological stressors is needed as well as accounting for variability in environmental conditions and uncertainty of data and models. Here we propose a novel probabilistic ERA framework to overcome these limitations, which focusses on visualising assessment outcomes by construct-ing and interpreting prevalence plots as a quantitative prediction of risk. Key components include environmental scenarios that integrate exposure and ecology, and ecological modelling of relevant endpoints to assess the effect of a combination of stressors. Our illustrative results demonstrate the importance of regional differences in environmental conditions and the confounding interactions of stressors. Using this framework and prevalence plots provides a risk-based approach that combines risk assessment and risk management in a meaningful way and presents a truly mechanistic alternative to the threshold approach. Even whilst research continues to improve the underlying models and data, regulators and decision makers can already use the framework and prevalence plots. The integration of multiple stressors, environmental conditions and variability makes ERA more relevant and realistic.

  17. Can the meaning of multiple words be integrated unconsciously?

    Science.gov (United States)

    van Gaal, Simon; Naccache, Lionel; Meuwese, Julia D I; van Loon, Anouk M; Leighton, Alexandra H; Cohen, Laurent; Dehaene, Stanislas

    2014-05-05

    What are the limits of unconscious language processing? Can language circuits process simple grammatical constructions unconsciously and integrate the meaning of several unseen words? Using behavioural priming and electroencephalography (EEG), we studied a specific rule-based linguistic operation traditionally thought to require conscious cognitive control: the negation of valence. In a masked priming paradigm, two masked words were successively (Experiment 1) or simultaneously presented (Experiment 2), a modifier ('not'/'very') and an adjective (e.g. 'good'/'bad'), followed by a visible target noun (e.g. 'peace'/'murder'). Subjects indicated whether the target noun had a positive or negative valence. The combination of these three words could either be contextually consistent (e.g. 'very bad - murder') or inconsistent (e.g. 'not bad - murder'). EEG recordings revealed that grammatical negations could unfold partly unconsciously, as reflected in similar occipito-parietal N400 effects for conscious and unconscious three-word sequences forming inconsistent combinations. However, only conscious word sequences elicited P600 effects, later in time. Overall, these results suggest that multiple unconscious words can be rapidly integrated and that an unconscious negation can automatically 'flip the sign' of an unconscious adjective. These findings not only extend the limits of subliminal combinatorial language processes, but also highlight how consciousness modulates the grammatical integration of multiple words.

  18. Involvement of multiple cell lineages in atherogenesis | Ogeng'o ...

    African Journals Online (AJOL)

    Involvement of multiple cell lineages in atherogenesis. ... mast cells, dendritic cells, macrophages and immigrant cells usually found in blood, namely ... which influence inflammation, migration, proliferation and secretory activity of each other in ...

  19. Integration of Signaling Pathways with the Epigenetic Machinery in the Maintenance of Stem Cells

    Directory of Open Access Journals (Sweden)

    Luca Fagnocchi

    2016-01-01

    Full Text Available Stem cells balance their self-renewal and differentiation potential by integrating environmental signals with the transcriptional regulatory network. The maintenance of cell identity and/or cell lineage commitment relies on the interplay of multiple factors including signaling pathways, transcription factors, and the epigenetic machinery. These regulatory modules are strongly interconnected and they influence the pattern of gene expression of stem cells, thus guiding their cellular fate. Embryonic stem cells (ESCs represent an invaluable tool to study this interplay, being able to indefinitely self-renew and to differentiate towards all three embryonic germ layers in response to developmental cues. In this review, we highlight those mechanisms of signaling to chromatin, which regulate chromatin modifying enzymes, histone modifications, and nucleosome occupancy. In addition, we report the molecular mechanisms through which signaling pathways affect both the epigenetic and the transcriptional state of ESCs, thereby influencing their cell identity. We propose that the dynamic nature of oscillating signaling and the different regulatory network topologies through which those signals are encoded determine specific gene expression programs, leading to the fluctuation of ESCs among multiple pluripotent states or to the establishment of the necessary conditions to exit pluripotency.

  20. Multiple giant cell lesions in a patient with Noonan syndrome with multiple lentigines

    NARCIS (Netherlands)

    van den Berg, Henk; Schreuder, Willem Hans; Jongmans, Marjolijn; van Bommel-Slee, Danielle; Witsenburg, Bart; de Lange, Jan

    2016-01-01

    A patient with Noonan syndrome with multiple lentigines (NSML) and multiple giant cell lesions (MGCL) in mandibles and maxillae is described. A mutation p.Thr468Met in the PTPN11-gene was found. This is the second reported NSML patient with MGCL. Our case adds to the assumption that, despite a

  1. Automated patterning and probing with multiple nanoscale tools for single-cell analysis.

    Science.gov (United States)

    Li, Jiayao; Kim, Yeonuk; Liu, Boyin; Qin, Ruwen; Li, Jian; Fu, Jing

    2017-10-01

    The nano-manipulation approach that combines Focused Ion Beam (FIB) milling and various imaging and probing techniques enables researchers to investigate the cellular structures in three dimensions. Such fusion approach, however, requires extensive effort on locating and examining randomly-distributed targets due to limited Field of View (FOV) when high magnification is desired. In the present study, we present the development that automates 'pattern and probe' particularly for single-cell analysis, achieved by computer aided tools including feature recognition and geometric planning algorithms. Scheduling of serial FOVs for imaging and probing of multiple cells was considered as a rectangle covering problem, and optimal or near-optimal solutions were obtained with the heuristics developed. FIB milling was then employed automatically followed by downstream analysis using Atomic Force Microscopy (AFM) to probe the cellular interior. Our strategy was applied to examine bacterial cells (Klebsiella pneumoniae) and achieved high efficiency with limited human interference. The developed algorithms can be easily adapted and integrated with different imaging platforms towards high-throughput imaging analysis of single cells. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Simultaneous Measurement of Multiple Mechanical Properties of Single Cells Using AFM by Indentation and Vibration.

    Science.gov (United States)

    Zhang, Chuang; Shi, Jialin; Wang, Wenxue; Xi, Ning; Wang, Yuechao; Liu, Lianqing

    2017-12-01

    The mechanical properties of cells, which are the main characteristics determining their physical performance and physiological functions, have been actively studied in the fields of cytobiology and biomedical engineering and for the development of medicines. In this study, an indentation-vibration-based method is proposed to simultaneously measure the mechanical properties of cells in situ, including cellular mass (m), elasticity (k), and viscosity (c). The proposed measurement method is implemented based on the principle of forced vibration stimulated by simple harmonic force using an atomic force microscope (AFM) system integrated with a piezoelectric transducer as the substrate vibrator. The corresponding theoretical model containing the three mechanical properties is derived and used to perform simulations and calculations. Living and fixed human embryonic kidney 293 (HEK 293) cells were subjected to indentation and vibration to measure and compare their mechanical parameters and verify the proposed approach. The results that the fixed sample cells are more viscous and elastic than the living sample cells and the measured mechanical properties of cell are consistent within, but not outside of the central region of the cell, are in accordance with the previous studies. This work provides an approach to simultaneous measurement of the multiple mechanical properties of single cells using an integrated AFM system based on the principle force vibration and thickness-corrected Hertz model. This study should contribute to progress in biomedical engineering, cytobiology, medicine, early diagnosis, specific therapy and cell-powered robots.

  3. Trichoepithelioma And Multiple Basal Cell Epithelioma

    Directory of Open Access Journals (Sweden)

    Dey S.K

    1996-01-01

    Full Text Available A combination of multiple trichoepithelioma and basal cell epithelioma is reported. Although malignant degeneration of trichoepithelioma is debated, clinical and histopathological studies, in our case, hint at that. The case is reported for its rarity.

  4. Multiple cell CPV nickel-hydrogen battery

    Science.gov (United States)

    Jones, Ken R.; Zagrodnik, Jeffrey P.

    1991-01-01

    Johnson Controls, Inc. has developed a multiple cell CPV nickel hydrogen battery that offers significant weight, volume, and cost advantages for aerospace applications. The baseline design was successfully demonstrated through the testing of a 26-cell prototype, which completed over 7000 44 percent depth-of-discharge low earth orbit cycles. Prototype designs using both nominal 5 and 10 inch diameter vessels are currently being developed for a variety of customers and applications.

  5. Integral criteria for large-scale multiple fingerprint solutions

    Science.gov (United States)

    Ushmaev, Oleg S.; Novikov, Sergey O.

    2004-08-01

    We propose the definition and analysis of the optimal integral similarity score criterion for large scale multmodal civil ID systems. Firstly, the general properties of score distributions for genuine and impostor matches for different systems and input devices are investigated. The empirical statistics was taken from the real biometric tests. Then we carry out the analysis of simultaneous score distributions for a number of combined biometric tests and primary for ultiple fingerprint solutions. The explicit and approximate relations for optimal integral score, which provides the least value of the FRR while the FAR is predefined, have been obtained. The results of real multiple fingerprint test show good correspondence with the theoretical results in the wide range of the False Acceptance and the False Rejection Rates.

  6. New type of cells with multiple chromosome rearrangements

    Energy Technology Data Exchange (ETDEWEB)

    Aseeva, Elena A. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation); Snigiryova, Galina P. [Russian Scientific Centre of Roentgenology and Radiology, ul. Profsoyuznaya 86, 117997 Moscow (Russian Federation); Neverova, Anna L. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation); Bogomazova, Alexandra N.; Novitskaya, Natalia N.; Khazins, Eva D. [Russian Scientific Centre of Roentgenology and Radiology, ul. Profsoyuznaya 86, 117997 Moscow (Russian Federation); Domracheva, Elena V. [National Research Centre for Hematology, Russian Academy of Medical Sciences, Novozykovsky proezd 4a, 125167 Moscow (Russian Federation)], E-mail: dom@blood.ru

    2010-04-15

    A comparative analysis of the distribution and the frequency of multiaberrant cells (MAC) among lymphocytes in different categories of low dose (up to 0.5 Gy) irradiated people was carried out. The highest MAC frequency was observed in people exposed to {alpha}-radiation (Pu, Rn) and in cosmonauts. This fact allows MAC to be considered as an indicator of a high-energy local exposure. A new type of cells with multiple chromosome rearrangements was discovered in the course of analysis of stable aberrations by the fluorescence in situ hybridization (FISH) method. The biological consequences of MAC formation and possibility of revealing the whole diversity of cells with multiple aberrations by means of modern molecular-cytogenetic methods are discussed.

  7. Integrated fuel cell stack shunt current prevention arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Roche, Robert P. (Cheshire, CT); Nowak, Michael P. (Bolton, CT)

    1992-01-01

    A fuel cell stack includes a plurality of fuel cells juxtaposed with one another in the stack and each including a pair of plate-shaped anode and cathode electrodes that face one another, and a quantity of liquid electrolyte present at least between the electrodes. A separator plate is interposed between each two successive electrodes of adjacent ones of the fuel cells and is unified therewith into an integral separator plate. Each integral separator plate is provided with a circumferentially complete barrier that prevents flow of shunt currents onto and on an outer peripheral surface of the separator plate. This barrier consists of electrolyte-nonwettable barrier members that are accommodated, prior to the formation of the integral separator plate, in corresponding edge recesses situated at the interfaces between the electrodes and the separator plate proper. Each barrier member extends over the entire length of the associated marginal portion and is flush with the outer periphery of the integral separator plate. This barrier also prevents cell-to-cell migration of any electrolyte that may be present at the outer periphery of the integral separator plate while the latter is incorporated in the fuel cell stack.

  8. The Eukaryotic Cell Originated in the Integration and Redistribution of Hyperstructures from Communities of Prokaryotic Cells Based on Molecular Complementarity

    Directory of Open Access Journals (Sweden)

    Vic Norris

    2009-06-01

    Full Text Available In the “ecosystems-first” approach to the origins of life, networks of non-covalent assemblies of molecules (composomes, rather than individual protocells, evolved under the constraints of molecular complementarity. Composomes evolved into the hyperstructures of modern bacteria. We extend the ecosystems-first approach to explain the origin of eukaryotic cells through the integration of mixed populations of bacteria. We suggest that mutualism and symbiosis resulted in cellular mergers entailing the loss of redundant hyperstructures, the uncoupling of transcription and translation, and the emergence of introns and multiple chromosomes. Molecular complementarity also facilitated integration of bacterial hyperstructures to perform cytoskeletal and movement functions.

  9. Polycation-mediated integrated cell death processes

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Andersen, Helene; Wu, Linping

    2014-01-01

    standard. PEIs are highly efficient transfectants, but depending on their architecture and size they induce cytotoxicity through different modes of cell death pathways. Here, we briefly review dynamic and integrated cell death processes and pathways, and discuss considerations in cell death assay design...

  10. Study of the asymptotic expansion of multiple integrals in mathematical physics

    International Nuclear Information System (INIS)

    Chako, N.

    1968-01-01

    We have applied the method of stationary phase to evaluate double and multiple integrals of the type: (A) U(k) = g(x)e ikφ(x) d(x), (x)=(x 1 ,..., x n ) for large values of the parameter k. In the first part we have established in a rigorous manner the stationary phase method to double and multiple integrals of type (A). Furthermore we have obtained an asymptotic expansion of (A), if the amplitude and phase functions can be developed in a canonical form near the vicinity of critical or stationary points of the integral. This development contains as particular cases all those which are important in physical applications, especially, to diffraction and scattering of electromagnetic and corpuscular waves by optical systems, diffracting bodies and potential scatterers. In the second part we have considered the problem of convergence of the expansion of the principal contribution to the integral in the asymptotic sense of Poincare. The proof is based on the increasing method used in mathematical analysis. The third part is devoted to the derivation of various asymptotic series due to different types of critical or stationary points associated with the amplitude and phase functions. In the fourth part we have generalized the method to multiple integrals and to the case where the parameter k enter implicitly in the phase function The latter type of integrals extend the scope of the former type to a number of important physical problems; for instance, to the propagation of waves in dispersive and absorbing media. In the last chapter we have made a study and compared the results obtained by the application of the stationary phase method to the integrals (double) of diffraction and the results derived by using the Young-Rubinowicz method. Result of our analysis shows the equivalence of the two methods of approach to the problems of diffraction based, on one hand, on the Fresnel-Kirchhoff theory and, on the other hand, the Young-Rubinowicz theory, provided one interprets in

  11. Dopamine, T cells and multiple sclerosis (MS).

    Science.gov (United States)

    Levite, Mia; Marino, Franca; Cosentino, Marco

    2017-05-01

    Dopamine is a key neurotransmitter that induces critical effects in the nervous system and in many peripheral organs, via 5 dopamine receptors (DRs): D1R-D5R. Dopamine also induces many direct and very potent effects on many DR-expressing immune cells, primarily T cells and dendritic cells. In this review, we focus only on dopamine receptors, effects and production in T cells. Dopamine by itself (at an optimal concentration of~0.1 nM) induces multiple function of resting normal human T cells, among them: T cell adhesion, chemotactic migration, homing, cytokine secretion and others. Interestingly, dopamine activates resting effector T cells (Teffs), but suppresses regulatory T cells (Tregs), and both effects lead eventually to Teff activation. Dopamine-induced effects on T cells are dynamic, context-sensitive and determined by the: T cell activation state, T cell type, DR type, and dopamine concentration. Dopamine itself, and also few dopaminergic molecules/ drugs that are in clinical use for cardiac, neurological and other non-immune indications, have direct effects on human T cells (summarized in this review). These dopaminergic drugs include: dopamine = intropin, L-DOPA, bromocriptine, pramipexole, pergolide, haloperidol, pimozide, and amantadine. Other dopaminergic drugs were not yet tested for their direct effects on T cells. Extensive evidence in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE) show dopaminergic dysregulations in T cells in these diseases: D1-like DRs are decreased in Teffs of MS patients, and dopamine does not affect these cells. In contrast, D1-like DRs are increased in Tregs of MS patients, possibly causing functional Treg impairment in MS. Treatment of MS patients with interferon β (IFN-β) increases D1-like DRs and decreases D2-like DRs in Teffs, decreases D1-like DRs in Tregs, and most important: restores responsiveness of patient's Teffs to dopamine. DR agonists and antagonists confer some benefits in

  12. INTEGRATED FUSION METHOD FOR MULTIPLE TEMPORAL-SPATIAL-SPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    H. Shen

    2012-08-01

    Full Text Available Data fusion techniques have been widely researched and applied in remote sensing field. In this paper, an integrated fusion method for remotely sensed images is presented. Differently from the existed methods, the proposed method has the performance to integrate the complementary information in multiple temporal-spatial-spectral images. In order to represent and process the images in one unified framework, two general image observation models are firstly presented, and then the maximum a posteriori (MAP framework is used to set up the fusion model. The gradient descent method is employed to solve the fused image. The efficacy of the proposed method is validated using simulated images.

  13. Multiple exciton generation in quantum dot-based solar cells

    Science.gov (United States)

    Goodwin, Heather; Jellicoe, Tom C.; Davis, Nathaniel J. L. K.; Böhm, Marcus L.

    2018-01-01

    Multiple exciton generation (MEG) in quantum-confined semiconductors is the process by which multiple bound charge-carrier pairs are generated after absorption of a single high-energy photon. Such charge-carrier multiplication effects have been highlighted as particularly beneficial for solar cells where they have the potential to increase the photocurrent significantly. Indeed, recent research efforts have proved that more than one charge-carrier pair per incident solar photon can be extracted in photovoltaic devices incorporating quantum-confined semiconductors. While these proof-of-concept applications underline the potential of MEG in solar cells, the impact of the carrier multiplication effect on the device performance remains rather low. This review covers recent advancements in the understanding and application of MEG as a photocurrent-enhancing mechanism in quantum dot-based photovoltaics.

  14. Label-free single-cell separation and imaging of cancer cells using an integrated microfluidic system

    DEFF Research Database (Denmark)

    Antfolk, Maria; Kim, Soo Hyeon; Koizumi, Saori

    2017-01-01

    , an integrated system is presented that efficiently eliminates this risk by integrating label-free separation with single cell arraying of the target cell population, enabling direct on-chip tumor cell identification and enumeration. Prostate cancer cells (DU145) spiked into a sample with whole blood...... a fully integrated system for rapid label-free separation and on-chip phenotypic characterization of circulating tumor cells from peripheral venous blood in clinical practice....

  15. Novel human multiple myeloma cell line UHKT-893

    Czech Academy of Sciences Publication Activity Database

    Uherková, L.; Vančurová, I.; Vyhlídalová, I.; Pleschnerová, M.; Špička, I.; Mihalová, R.; Březinová, J.; Hodný, Zdeněk; Čermáková, K.; Polanská, V.; Marinov, I.; Jedelský, P.L.; Kuželová, K.; Stöckbauer, P.

    2013-01-01

    Roč. 37, č. 3 (2013), s. 320-326 ISSN 0145-2126 Institutional support: RVO:68378050 Keywords : human myeloma cell line * human multiple myeloma * plasma cell * IL-6 dependence * immunoglobulin * free light chain Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.692, year: 2013

  16. New type of cells with multiple chromosome rearrangements

    International Nuclear Information System (INIS)

    Aseeva, E.A.; Domracheva, E.V.; Neverova, A.L; Bogomazova, A.N.; Snigiryova, G.P.; Novitskaya, N.N.; Khazins, E.D.

    2008-01-01

    Full text: A comparative analysis of the distribution and the frequency of multiaberrant cells (MAC) among lymphocytes in different categories of low dose (up to 0.5 Gy) irradiated people was carried out. MAC were found in most of the examined groups and they were absent in the control population. A highest MAC frequency was observed in people exposed to alpha radiation (Pu, Ra). This fact allows MAC to be considered as an indicator of a high-energy local exposure. A new type of cells with multiple chromosome rearrangements was discovered in the course of analysis of stable aberrations by the FISH method. The biological consequences of MAC formation and possibility of revealing the whole diversity of cells with multiple aberrations by means of modern molecular-cytogenetic methods is discussed

  17. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    Science.gov (United States)

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma

  18. Shared mental models of integrated care: aligning multiple stakeholder perspectives.

    Science.gov (United States)

    Evans, Jenna M; Baker, G Ross

    2012-01-01

    Health service organizations and professionals are under increasing pressure to work together to deliver integrated patient care. A common understanding of integration strategies may facilitate the delivery of integrated care across inter-organizational and inter-professional boundaries. This paper aims to build a framework for exploring and potentially aligning multiple stakeholder perspectives of systems integration. The authors draw from the literature on shared mental models, strategic management and change, framing, stakeholder management, and systems theory to develop a new construct, Mental Models of Integrated Care (MMIC), which consists of three types of mental models, i.e. integration-task, system-role, and integration-belief. The MMIC construct encompasses many of the known barriers and enablers to integrating care while also providing a comprehensive, theory-based framework of psychological factors that may influence inter-organizational and inter-professional relations. While the existing literature on integration focuses on optimizing structures and processes, the MMIC construct emphasizes the convergence and divergence of stakeholders' knowledge and beliefs, and how these underlying cognitions influence interactions (or lack thereof) across the continuum of care. MMIC may help to: explain what differentiates effective from ineffective integration initiatives; determine system readiness to integrate; diagnose integration problems; and develop interventions for enhancing integrative processes and ultimately the delivery of integrated care. Global interest and ongoing challenges in integrating care underline the need for research on the mental models that characterize the behaviors of actors within health systems; the proposed framework offers a starting point for applying a cognitive perspective to health systems integration.

  19. Analysis of proviral integration in human mammary epithelial cell lines immortalized by retroviral infection with a temperature-sensitive SV40 T-antigen construct.

    Science.gov (United States)

    Stamps, A C; Davies, S C; Burman, J; O'Hare, M J

    1994-06-15

    A panel of eight conditionally immortal lines derived by infection of human breast epithelial cells with an amphotropic retrovirus transducing a ts mutant of SV40 large T-antigen was analyzed with respect to individual retroviral integration patterns. Each line contained multiple integration sites which were clonal and stable over extended passage. Similar integration patterns were observed between individual lines arising separately from the same stock of pre-immortal cells, suggesting a common progenitor. Retroviral integration analysis of pre-immortal cells at different stages of pre-crisis growth showed changes indicative of a progressive transition from polyclonality to clonality as the cells approached crisis. Each of the immortal lines contained a sub-set of the integration sites of their pre-immortal progenitors, with individual combinations and copy numbers of sites. Since all the cell lines appeared to originate from single foci in separate flasks, it is likely that each set arose from a common clone of pre-immortal cells as the result of separate genetic events. There was no evidence from this analysis to suggest that specific integration sites played any part either in the selection of pre-crisis clones or in the subsequent establishment of immortal lines.

  20. Regulation of Cell Wall Biogenesis in Saccharomyces cerevisiae: The Cell Wall Integrity Signaling Pathway

    Science.gov (United States)

    Levin, David E.

    2011-01-01

    The yeast cell wall is a strong, but elastic, structure that is essential not only for the maintenance of cell shape and integrity, but also for progression through the cell cycle. During growth and morphogenesis, and in response to environmental challenges, the cell wall is remodeled in a highly regulated and polarized manner, a process that is principally under the control of the cell wall integrity (CWI) signaling pathway. This pathway transmits wall stress signals from the cell surface to the Rho1 GTPase, which mobilizes a physiologic response through a variety of effectors. Activation of CWI signaling regulates the production of various carbohydrate polymers of the cell wall, as well as their polarized delivery to the site of cell wall remodeling. This review article centers on CWI signaling in Saccharomyces cerevisiae through the cell cycle and in response to cell wall stress. The interface of this signaling pathway with other pathways that contribute to the maintenance of cell wall integrity is also discussed. PMID:22174182

  1. Rapid development of stable transgene CHO cell lines by CRISPR/Cas9-mediated site-specific integration into C12orf35.

    Science.gov (United States)

    Zhao, Menglin; Wang, Jiaxian; Luo, Manyu; Luo, Han; Zhao, Meiqi; Han, Lei; Zhang, Mengxiao; Yang, Hui; Xie, Yueqing; Jiang, Hua; Feng, Lei; Lu, Huili; Zhu, Jianwei

    2018-07-01

    Chinese hamster ovary (CHO) cells are the most widely used mammalian hosts for recombinant protein production. However, by conventional random integration strategy, development of a high-expressing and stable recombinant CHO cell line has always been a difficult task due to the heterogenic insertion and its caused requirement of multiple rounds of selection. Site-specific integration of transgenes into CHO hot spots is an ideal strategy to overcome these challenges since it can generate isogenic cell lines with consistent productivity and stability. In this study, we investigated three sites with potential high transcriptional activities: C12orf35, HPRT, and GRIK1, to determine the possible transcriptional hot spots in CHO cells, and further construct a reliable site-specific integration strategy to develop recombinant cell lines efficiently. Genes encoding representative proteins mCherry and anti-PD1 monoclonal antibody were targeted into these three loci respectively through CRISPR/Cas9 technology. Stable cell lines were generated successfully after a single round of selection. In comparison with a random integration control, all the targeted integration cell lines showed higher productivity, among which C12orf35 locus was the most advantageous in both productivity and cell line stability. Binding affinity and N-glycan analysis of the antibody revealed that all batches of product were of similar quality independent on integrated sites. Deep sequencing demonstrated that there was low level of off-target mutations caused by CRISPR/Cas9, but none of them contributed to the development process of transgene cell lines. Our results demonstrated the feasibility of C12orf35 as the target site for exogenous gene integration, and strongly suggested that C12orf35 targeted integration mediated by CRISPR/Cas9 is a reliable strategy for the rapid development of recombinant CHO cell lines.

  2. Rationally engineered nanoparticles target multiple myeloma cells, overcome cell-adhesion-mediated drug resistance, and show enhanced efficacy in vivo

    International Nuclear Information System (INIS)

    Kiziltepe, T; Ashley, J D; Stefanick, J F; Qi, Y M; Alves, N J; Handlogten, M W; Suckow, M A; Navari, R M; Bilgicer, B

    2012-01-01

    In the continuing search for effective cancer treatments, we report the rational engineering of a multifunctional nanoparticle that combines traditional chemotherapy with cell targeting and anti-adhesion functionalities. Very late antigen-4 (VLA-4) mediated adhesion of multiple myeloma (MM) cells to bone marrow stroma confers MM cells with cell-adhesion-mediated drug resistance (CAM-DR). In our design, we used micellar nanoparticles as dynamic self-assembling scaffolds to present VLA-4-antagonist peptides and doxorubicin (Dox) conjugates, simultaneously, to selectively target MM cells and to overcome CAM-DR. Dox was conjugated to the nanoparticles through an acid-sensitive hydrazone bond. VLA-4-antagonist peptides were conjugated via a multifaceted synthetic procedure for generating precisely controlled number of targeting functionalities. The nanoparticles were efficiently internalized by MM cells and induced cytotoxicity. Mechanistic studies revealed that nanoparticles induced DNA double-strand breaks and apoptosis in MM cells. Importantly, multifunctional nanoparticles overcame CAM-DR, and were more efficacious than Dox when MM cells were cultured on fibronectin-coated plates. Finally, in a MM xenograft model, nanoparticles preferentially homed to MM tumors with ∼10 fold more drug accumulation and demonstrated dramatic tumor growth inhibition with a reduced overall systemic toxicity. Altogether, we demonstrate the disease driven engineering of a nanoparticle-based drug delivery system, enabling the model of an integrative approach in the treatment of MM

  3. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2009-01-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation

  4. An integrated model of multiple-condition ChIP-Seq data reveals predeterminants of Cdx2 binding.

    Directory of Open Access Journals (Sweden)

    Shaun Mahony

    2014-03-01

    Full Text Available Regulatory proteins can bind to different sets of genomic targets in various cell types or conditions. To reliably characterize such condition-specific regulatory binding we introduce MultiGPS, an integrated machine learning approach for the analysis of multiple related ChIP-seq experiments. MultiGPS is based on a generalized Expectation Maximization framework that shares information across multiple experiments for binding event discovery. We demonstrate that our framework enables the simultaneous modeling of sparse condition-specific binding changes, sequence dependence, and replicate-specific noise sources. MultiGPS encourages consistency in reported binding event locations across multiple-condition ChIP-seq datasets and provides accurate estimation of ChIP enrichment levels at each event. MultiGPS's multi-experiment modeling approach thus provides a reliable platform for detecting differential binding enrichment across experimental conditions. We demonstrate the advantages of MultiGPS with an analysis of Cdx2 binding in three distinct developmental contexts. By accurately characterizing condition-specific Cdx2 binding, MultiGPS enables novel insight into the mechanistic basis of Cdx2 site selectivity. Specifically, the condition-specific Cdx2 sites characterized by MultiGPS are highly associated with pre-existing genomic context, suggesting that such sites are pre-determined by cell-specific regulatory architecture. However, MultiGPS-defined condition-independent sites are not predicted by pre-existing regulatory signals, suggesting that Cdx2 can bind to a subset of locations regardless of genomic environment. A summary of this paper appears in the proceedings of the RECOMB 2014 conference, April 2-5.

  5. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Directory of Open Access Journals (Sweden)

    Scott Cukras

    Full Text Available Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  6. Inactivating UBE2M impacts the DNA damage response and genome integrity involving multiple cullin ligases.

    Science.gov (United States)

    Cukras, Scott; Morffy, Nicholas; Ohn, Takbum; Kee, Younghoon

    2014-01-01

    Protein neddylation is involved in a wide variety of cellular processes. Here we show that the DNA damage response is perturbed in cells inactivated with an E2 Nedd8 conjugating enzyme UBE2M, measured by RAD51 foci formation kinetics and cell based DNA repair assays. UBE2M knockdown increases DNA breakages and cellular sensitivity to DNA damaging agents, further suggesting heightened genomic instability and defective DNA repair activity. Investigating the downstream Cullin targets of UBE2M revealed that silencing of Cullin 1, 2, and 4 ligases incurred significant DNA damage. In particular, UBE2M knockdown, or defective neddylation of Cullin 2, leads to a blockade in the G1 to S progression and is associated with delayed S-phase dependent DNA damage response. Cullin 4 inactivation leads to an aberrantly high DNA damage response that is associated with increased DNA breakages and sensitivity of cells to DNA damaging agents, suggesting a DNA repair defect is associated. siRNA interrogation of key Cullin substrates show that CDT1, p21, and Claspin are involved in elevated DNA damage in the UBE2M knockdown cells. Therefore, UBE2M is required to maintain genome integrity by activating multiple Cullin ligases throughout the cell cycle.

  7. Integrated reconfigurable multiple-input–multiple-output antenna system with an ultra-wideband sensing antenna for cognitive radio platforms

    KAUST Repository

    Hussain, Rifaqat

    2015-06-18

    © The Institution of Engineering and Technology 2015. A compact, novel multi-mode, multi-band frequency reconfigurable multiple-input-multiple-output (MIMO) antenna system, integrated with ultra-wideband (UWB) sensing antenna, is presented. The developed model can be used as a complete antenna platform for cognitive radio applications. The antenna system is developed on a single substrate area of dimensions 65 × 120 mm2. The proposed sensing antenna is used to cover a wide range of frequency bands from 710 to 3600 MHz. The frequency reconfigurable dual-element MIMO antenna is integrated with P-type, intrinsic, N-type (PIN) diodes for frequency agility. Different modes of selection are used for the MIMO antenna system reconfigurability to support different wireless system standards. The proposed MIMO antenna configuration is used to cover various frequency bands from 755 to 3450 MHz. The complete system comprising the multi-band reconfigurable MIMO antennas and UWB sensing antenna for cognitive radio applications is proposed with a compact form factor.

  8. Study of the asymptotic expansion of multiple integrals in mathematical physics; Etudes sur les developpements asymptotiques des integrales multiples de la physique mathematique

    Energy Technology Data Exchange (ETDEWEB)

    Chako, N [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    We have applied the method of stationary phase to evaluate double and multiple integrals of the type: (A) U(k) = g(x)e{sup ik{phi}}{sup (x)} d(x), (x)=(x{sub 1},..., x{sub n}) for large values of the parameter k. In the first part we have established in a rigorous manner the stationary phase method to double and multiple integrals of type (A). Furthermore we have obtained an asymptotic expansion of (A), if the amplitude and phase functions can be developed in a canonical form near the vicinity of critical or stationary points of the integral. This development contains as particular cases all those which are important in physical applications, especially, to diffraction and scattering of electromagnetic and corpuscular waves by optical systems, diffracting bodies and potential scatterers. In the second part we have considered the problem of convergence of the expansion of the principal contribution to the integral in the asymptotic sense of Poincare. The proof is based on the increasing method used in mathematical analysis. The third part is devoted to the derivation of various asymptotic series due to different types of critical or stationary points associated with the amplitude and phase functions. In the fourth part we have generalized the method to multiple integrals and to the case where the parameter k enter implicitly in the phase function The latter type of integrals extend the scope of the former type to a number of important physical problems; for instance, to the propagation of waves in dispersive and absorbing media. In the last chapter we have made a study and compared the results obtained by the application of the stationary phase method to the integrals (double) of diffraction and the results derived by using the Young-Rubinowicz method. Result of our analysis shows the equivalence of the two methods of approach to the problems of diffraction based, on one hand, on the Fresnel-Kirchhoff theory and, on the other hand, the Young-Rubinowicz theory

  9. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  10. Calcium as a signal integrator in developing epithelial tissues.

    Science.gov (United States)

    Brodskiy, Pavel A; Zartman, Jeremiah J

    2018-05-16

    Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.

  11. Integrating Multiple Types of Data for Signaling Research: Challenges and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, H. S.

    2011-02-15

    New technologies promise to provide unprecedented amounts of information that can provide a foundation for creating predictive models of cell signaling pathways. To be useful, however, this information must be integrated into a coherent framework. In addition, the sheer volume of data gathered from the new technologies requires computational approaches for its analysis. Unfortunately, there are many barriers to data integration and analysis, mostly because of a lack of adequate data standards and their inconsistent use by scientists. However, solving the fundamental issues of data sharing will enable the investigation of entirely new areas of cell signaling research.

  12. Integrated Markov-neural reliability computation method: A case for multiple automated guided vehicle system

    International Nuclear Information System (INIS)

    Fazlollahtabar, Hamed; Saidi-Mehrabad, Mohammad; Balakrishnan, Jaydeep

    2015-01-01

    This paper proposes an integrated Markovian and back propagation neural network approaches to compute reliability of a system. While states of failure occurrences are significant elements for accurate reliability computation, Markovian based reliability assessment method is designed. Due to drawbacks shown by Markovian model for steady state reliability computations and neural network for initial training pattern, integration being called Markov-neural is developed and evaluated. To show efficiency of the proposed approach comparative analyses are performed. Also, for managerial implication purpose an application case for multiple automated guided vehicles (AGVs) in manufacturing networks is conducted. - Highlights: • Integrated Markovian and back propagation neural network approach to compute reliability. • Markovian based reliability assessment method. • Managerial implication is shown in an application case for multiple automated guided vehicles (AGVs) in manufacturing networks

  13. B Cells and Autoantibodies in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Anne-Katrin Pröbstel

    2015-07-01

    Full Text Available While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS, it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.

  14. Alpha-particles induce autophagy in multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Joelle Marcelle Gaschet

    2015-10-01

    Full Text Available Objectives: Radiations emitted by the radionuclides in radioimmunotherapy (RIT approaches induce direct killing of the targeted cells as well as indirect killing through bystander effect. Our research group is dedicated to the development of α-RIT, i.e RIT using α-particles especially for the treatment of multiple myeloma (MM. γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by 213Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of 213Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation.Methods: Murine 5T33 and human LP-1 multiple myeloma (MM cell lines were used to study the effects of such α-particles. We first examined the effects of 213Bi on proliferation rate, double strand DNA breaks, cell cycle and cell death. Then, we investigated autophagy after 213Bi irradiation. Finally, a co-culture of dendritic cells (DC with irradiated tumour cells or their culture media was performed to test whether it would induce DC activation.Results: We showed that 213Bi induces DNA double strand breaks, cell cycle arrest and autophagy in both cell lines but we detected only slight levels of early apoptosis within the 120 hours following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented 213Bi induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s, however no increase in membrane or extracellular expression of danger associated molecular patterns (DAMPs was observed after irradiation.Conclusion: This study demonstrates that 213Bi induces mainly necrosis in MM cells, low levels of apoptosis and also autophagy that might be involved in tumor cell death.

  15. T–CELL VACCINE PREPARATION FOR MULTIPLE SCLEROSIS TREATMENT

    Directory of Open Access Journals (Sweden)

    I. P. Ivanova

    2005-01-01

    Full Text Available Abstract. A two–stage technology of preparation of T–cell vaccine designated for multiple sclerosis treatment is described. At the first stage myelin–specific lymphocytes undergoe antigen–dependent cultural selection, whereas at the second stage they are grown by means of non–specific stimulation. The vaccine prepared in this way was found to induce specific anti–idiotypic immune response, directed against myelin–reactive T–lymphocytes. The results of 1–year follow–up of 18 vaccinated patients with a cerebral–spinal type of multiple sclerosis indicated the absence of side effects of T–cell vaccination, and suggest the possibility of effective application of this treatment within early stages of disease. (Med. Immunol., 2005, vol.7, № 1, pp 27532

  16. A retrospective likelihood approach for efficient integration of multiple omics factors in case-control association studies.

    Science.gov (United States)

    Balliu, Brunilda; Tsonaka, Roula; Boehringer, Stefan; Houwing-Duistermaat, Jeanine

    2015-03-01

    Integrative omics, the joint analysis of outcome and multiple types of omics data, such as genomics, epigenomics, and transcriptomics data, constitute a promising approach for powerful and biologically relevant association studies. These studies often employ a case-control design, and often include nonomics covariates, such as age and gender, that may modify the underlying omics risk factors. An open question is how to best integrate multiple omics and nonomics information to maximize statistical power in case-control studies that ascertain individuals based on the phenotype. Recent work on integrative omics have used prospective approaches, modeling case-control status conditional on omics, and nonomics risk factors. Compared to univariate approaches, jointly analyzing multiple risk factors with a prospective approach increases power in nonascertained cohorts. However, these prospective approaches often lose power in case-control studies. In this article, we propose a novel statistical method for integrating multiple omics and nonomics factors in case-control association studies. Our method is based on a retrospective likelihood function that models the joint distribution of omics and nonomics factors conditional on case-control status. The new method provides accurate control of Type I error rate and has increased efficiency over prospective approaches in both simulated and real data. © 2015 Wiley Periodicals, Inc.

  17. Sequential interactions of silver-silica nanocomposite (Ag-SiO2 NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver–silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium. Bacterial sensitivity...

  18. Sequential interactions of silver-silica nanocomposite (Ag-SiO2NC) with cell wall, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple antibiotic-resistant bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Anas, A.; Jiya, J.; Rameez, M.J.; Anand, P.B.; Anantharaman, M.R.; Nair, S.

    The study was carried out to understand the effect of silver-silica nanocomposite (Ag-SiO sub(2)NC) on the cell wall integrity, metabolism and genetic stability of Pseudomonas aeruginosa, a multiple drug-resistant bacterium Bacterial sensitivity...

  19. Concept of multiple-cell cavity for axion dark matter search

    Science.gov (United States)

    Jeong, Junu; Youn, SungWoo; Ahn, Saebyeok; Kim, Jihn E.; Semertzidis, Yannis K.

    2018-02-01

    In cavity-based axion dark matter search experiments exploring high mass regions, multiple-cavity design is under consideration as a method to increase the detection volume within a given magnet bore. We introduce a new idea, referred to as a multiple-cell cavity, which provides various benefits including a larger detection volume, simpler experimental setup, and easier phase-matching mechanism. We present the characteristics of this concept and demonstrate the experimental feasibility with an example of a double-cell cavity.

  20. Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art

    Science.gov (United States)

    Thompson, Geoffrey

    2011-01-01

    This viewpoint appeared in its original form as the catalogue essay that accompanied the exhibition "Multiplicity and Self-Identity: Trauma and Integration in Shirley Mason's Art," curated by the author for Gallery 2110, Sacramento, CA, and the 2010 Annual Conference of the American Art Therapy Association. The exhibition featured 17 artworks by…

  1. A Methodology for Multiple Rule System Integration and Resolution Within a Singular Knowledge Base

    Science.gov (United States)

    Kautzmann, Frank N., III

    1988-01-01

    Expert Systems which support knowledge representation by qualitative modeling techniques experience problems, when called upon to support integrated views embodying description and explanation, especially when other factors such as multiple causality, competing rule model resolution, and multiple uses of knowledge representation are included. A series of prototypes are being developed to demonstrate the feasibility of automating the process of systems engineering, design and configuration, and diagnosis and fault management. A study involves not only a generic knowledge representation; it must also support multiple views at varying levels of description and interaction between physical elements, systems, and subsystems. Moreover, it will involve models of description and explanation for each level. This multiple model feature requires the development of control methods between rule systems and heuristics on a meta-level for each expert system involved in an integrated and larger class of expert system. The broadest possible category of interacting expert systems is described along with a general methodology for the knowledge representation and control of mutually exclusive rule systems.

  2. Feasibility of mesenchymal stem cell culture expansion for a phase I clinical trial in multiple sclerosis.

    Science.gov (United States)

    Planchon, Sarah M; Lingas, Karen T; Reese Koç, Jane; Hooper, Brittney M; Maitra, Basabi; Fox, Robert M; Imrey, Peter B; Drake, Kylie M; Aldred, Micheala A; Lazarus, Hillard M; Cohen, Jeffrey A

    2018-01-01

    Multiple sclerosis is an inflammatory, neurodegenerative disease of the central nervous system for which therapeutic mesenchymal stem cell transplantation is under study. Published experience of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical trials is limited. To determine the feasibility of culture-expanding multiple sclerosis patients' mesenchymal stem cells for clinical use. In a phase I trial, autologous, bone marrow-derived mesenchymal stem cells were isolated from 25 trial participants with multiple sclerosis and eight matched controls, and culture-expanded to a target single dose of 1-2 × 10 6 cells/kg. Viability, cell product identity and sterility were assessed prior to infusion. Cytogenetic stability was assessed by single nucleotide polymorphism analysis of mesenchymal stem cells from 18 multiple sclerosis patients and five controls. One patient failed screening. Mesenchymal stem cell culture expansion was successful for 24 of 25 multiple sclerosis patients and six of eight controls. The target dose was achieved in 16-62 days, requiring two to three cell passages. Growth rate and culture success did not correlate with demographic or multiple sclerosis disease characteristics. Cytogenetic studies identified changes on one chromosome of one control (4.3%) after extended time in culture. Culture expansion of mesenchymal stem cells from multiple sclerosis patients as donors is feasible. However, culture time should be minimized for cell products designated for therapeutic administration.

  3. Multiple passage cells theory

    International Nuclear Information System (INIS)

    Riva, R.

    1983-01-01

    A review of the main concepts envolved in non astigmatic multiple passes cells is presented. It is shown that these concepts can be extended to ring cavities in which the analysis of the ray propagation (in the paraxial approaching) in two separated plans is accomplished. The concepts developed are applyed to a simple ring cavity (one curve mirror and two plane ones) showing that the acquired pattern of the rays on the mirrors is the one of a Lissajours figure which allows a better use of the mirror's area and consequently a larger number of passes. The cavity has applications in optical delay lines, measurements of mirrors reflectivities and possibly in passive optical gyroscopes. (Author) [pt

  4. Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version

    Science.gov (United States)

    There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.

  5. Identify multiple myeloma stem cells: Utopia?

    Science.gov (United States)

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  6. Dielectrophoretic focusing integrated pulsed laser activated cell sorting

    Science.gov (United States)

    Zhu, Xiongfeng; Kung, Yu-Chun; Wu, Ting-Hsiang; Teitell, Michael A.; Chiou, Pei-Yu

    2017-08-01

    We present a pulsed laser activated cell sorter (PLACS) integrated with novel sheathless size-independent dielectrophoretic (DEP) focusing. Microfluidic fluorescence activated cell sorting (μFACS) systems aim to provide a fully enclosed environment for sterile cell sorting and integration with upstream and downstream microfluidic modules. Among them, PLACS has shown a great potential in achieving comparable performance to commercial aerosol-based FACS (>90% purity at 25,000 cells sec-1). However conventional sheath flow focusing method suffers a severe sample dilution issue. Here we demonstrate a novel dielectrophoresis-integrated pulsed laser activated cell sorter (DEP-PLACS). It consists of a microfluidic channel with 3D electrodes laid out to provide a tunnel-shaped electric field profile along a 4cmlong channel for sheathlessly focusing microparticles/cells into a single stream in high-speed microfluidic flows. All focused particles pass through the fluorescence detection zone along the same streamline regardless of their sizes and types. Upon detection of target fluorescent particles, a nanosecond laser pulse is triggered and focused in a neighboring channel to generate a rapidly expanding cavitation bubble for precise sorting. DEP-PLACS has achieved a sorting purity of 91% for polystyrene beads at a throughput of 1,500 particle/sec.

  7. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Wotzak; Chellappa Balan; Faress Rahman; Nguyen Minh

    2003-08-01

    The pre-baseline configuration for an Integrated Gasification Fuel Cell (IGFC) system has been developed. This case uses current gasification, clean-up, gas turbine, and bottoming cycle technologies together with projected large planar Solid Oxide Fuel Cell (SOFC) technology. This pre-baseline case will be used as a basis for identifying the critical factors impacting system performance and the major technical challenges in implementing such systems. Top-level system requirements were used as the criteria to evaluate and down select alternative sub-systems. The top choice subsystems were subsequently integrated to form the pre-baseline case. The down-selected pre-baseline case includes a British Gas Lurgi (BGL) gasification and cleanup sub-system integrated with a GE Power Systems 6FA+e gas turbine and the Hybrid Power Generation Systems planar Solid Oxide Fuel Cell (SOFC) sub-system. The overall efficiency of this system is estimated to be 43.0%. The system efficiency of the pre-baseline system provides a benchmark level for further optimization efforts in this program.

  8. Prognostic impact of circulating plasma cells in patients with multiple myeloma: implications for plasma cell leukemia definition.

    Science.gov (United States)

    Granell, Miquel; Calvo, Xavier; Garcia-Guiñón, Antoni; Escoda, Lourdes; Abella, Eugènia; Martínez, Clara Mª; Teixidó, Montserrat; Gimenez, Mª Teresa; Senín, Alicia; Sanz, Patricia; Campoy, Desirée; Vicent, Ana; Arenillas, Leonor; Rosiñol, Laura; Sierra, Jorge; Bladé, Joan; de Larrea, Carlos Fernández

    2017-06-01

    The presence of circulating plasma cells in patients with multiple myeloma is considered a marker for highly proliferative disease. In the study herein, the impact of circulating plasma cells assessed by cytology on survival of patients with multiple myeloma was analyzed. Wright-Giemsa stained peripheral blood smears of 482 patients with newly diagnosed myeloma or plasma cell leukemia were reviewed and patients were classified into 4 categories according to the percentage of circulating plasma cells: 0%, 1-4%, 5-20%, and plasma cell leukemia with the following frequencies: 382 (79.2%), 83 (17.2%), 12 (2.5%) and 5 (1.0%), respectively. Median overall survival according to the circulating plasma cells group was 47, 50, 6 and 14 months, respectively. At multivariate analysis, the presence of 5 to 20% circulating plasma cells was associated with a worse overall survival (relative risk 4.9, 95% CI 2.6-9.3) independently of age, creatinine, the Durie-Salmon system stage and the International Staging System (ISS) stage. Patients with ≥5% circulating plasma cells had lower platelet counts (median 86×10 9 /L vs 214×10 9 /L, P <0.0001) and higher bone marrow plasma cells (median 53% vs 36%, P =0.004). The presence of ≥5% circulating plasma cells in patients with multiple myeloma has a similar adverse prognostic impact as plasma cell leukemia. Copyright© Ferrata Storti Foundation.

  9. Secondary components, integral multiplicity factor and coupling coefficients of cosmic rays in the Earth atmosphere and other planets

    International Nuclear Information System (INIS)

    Dorman, L.I.; Yanke, V.G.

    1979-01-01

    Integral multiples of cosmic rays in Earth and other planets atmospheres have been determined. Kinetic equations describing the evolution of hadronic cascade in atmosphere using modern accelerating data have been solved with that end in view. Bond coefficients for nucleonic, muonic and electronic components of secondary cosmic radiation have been built using integral multiples. Normalized bond coefficients for three components obtained for maximum solar activity are presented. Integral muon and nucleon generation and bond coefficients have also been given for Mars

  10. Construction of a food-grade multiple-copy integration system for Lactococcus lactis

    NARCIS (Netherlands)

    Leenhouts, K.; Bolhuis, A.; Venema, G.; Kok, J.

    A food-grade vector system was developed that allows stable integration of multiple plasmid copies in the chromosome of Lactococcus lactis. The vector consists of the plus origin of replication (Ori(+)) of the lactococcal plasmid pWV01, the sucrose genes of the lactic acid bacterium Pediococcus

  11. Integration of fuel cells into residential buildings

    International Nuclear Information System (INIS)

    Bell, J.M.; Entchev, E.; Gusdorf, J.; Szadkowski, F.; Swinton, M.; Kalbfleisch, W.; Marchand, R.

    2004-01-01

    Integration of small combined heat and power systems (CHP) into residential buildings is challenging as the loads are small, the load diversity is limited and there are a number of unresolved issues concerning sizing, control, peak loads, emergency operation, grid connection and export, etc. Natural Resources Canada has undertaken an initiative to investigate and develop techniques for the integration of small CHP systems into residential buildings using a highly instrumented house modified to allow quick installation and thorough monitoring of CHP integration techniques as well determining the performance of the CHP systems themselves when operating in a house. The first CHP system installed was a Stirling engine residential CHP system. It was used to examine the completeness of the CHP modifications to the house, to evaluate various building integration techniques and to measure the performance of the CHP system itself. The testing demonstrated the modified house to be an excellent facility for the development of CHP building integration techniques and the testing of residential CHP systems. The Stirling engine CHP system was found to operate well and produce meaningful input to the house. A second system (residential fuel cell) is presently being installed and building integration techniques and the performance of the fuel cell will be tested over the coming year. (author)

  12. Integrative Analysis of Prognosis Data on Multiple Cancer Subtypes

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Zhang, Yawei; Lan, Qing; Rothman, Nathaniel; Zheng, Tongzhang; Ma, Shuangge

    2014-01-01

    Summary In cancer research, profiling studies have been extensively conducted, searching for genes/SNPs associated with prognosis. Cancer is diverse. Examining the similarity and difference in the genetic basis of multiple subtypes of the same cancer can lead to a better understanding of their connections and distinctions. Classic meta-analysis methods analyze each subtype separately and then compare analysis results across subtypes. Integrative analysis methods, in contrast, analyze the raw data on multiple subtypes simultaneously and can outperform meta-analysis methods. In this study, prognosis data on multiple subtypes of the same cancer are analyzed. An AFT (accelerated failure time) model is adopted to describe survival. The genetic basis of multiple subtypes is described using the heterogeneity model, which allows a gene/SNP to be associated with prognosis of some subtypes but not others. A compound penalization method is developed to identify genes that contain important SNPs associated with prognosis. The proposed method has an intuitive formulation and is realized using an iterative algorithm. Asymptotic properties are rigorously established. Simulation shows that the proposed method has satisfactory performance and outperforms a penalization-based meta-analysis method and a regularized thresholding method. An NHL (non-Hodgkin lymphoma) prognosis study with SNP measurements is analyzed. Genes associated with the three major subtypes, namely DLBCL, FL, and CLL/SLL, are identified. The proposed method identifies genes that are different from alternatives and have important implications and satisfactory prediction performance. PMID:24766212

  13. Efficient cascade multiple heterojunction organic solar cells with inverted structure

    Science.gov (United States)

    Guo, Tingting; Li, Mingtao; Qiao, Zhenfang; Yu, Leiming; Zhao, Jianhong; Feng, Nianjun; Shi, Peiguang; Wang, Xiaoyan; Pu, Xiaoyun; Wang, Hai

    2018-05-01

    In this work, we demonstrate an efficient cascade multiple heterojunction organic solar cell with inverted structure. By using two donor materials, poly(3-hexylthiosphene) (P3HT) and titanyl phthalocyanine (TiOPc), as well as two acceptor materials, [6,6]-phenyl C61 butyric acid methyl ester (PCBM) and C60, the cascade multiple heterojunctions of P3HT:PCBM/TiOPc:C60/C60 have been constructed. Applying the optimized inverted configuration of FTO/Zinc Tin Oxide (ZTO)/C60 (30 nm)/TiOPc:C60 (1:1.5, 25 nm)/P3HT:PCBM (1:0.8, 100 nm)/MoO3 (4 nm)/Ag, the considerably enhanced open circuit voltage (VOC) and short circuit current (JSC) can be harvested together, and the power conversion efficiency (PCE) is three times higher than that of the control cell with conventional structure. The significant improvements of the inverted cell are mostly due to the broadened spectral absorption and high efficient multi-interface exciton dissociation in the cascade multiple heterojunctions, indicating that the optimized cascade heterojunctions match the inverted structure well.

  14. EasyCloneMulti: A Set of Vectors for Simultaneous and Multiple Genomic Integrations in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Maury, Jerome; Germann, Susanne Manuela; Jacobsen, Simo Abdessamad

    2016-01-01

    Saccharomyces cerevisiae is widely used in the biotechnology industry for production of ethanol, recombinant proteins, food ingredients and other chemicals. In order to generate highly producing and stable strains, genome integration of genes encoding metabolic pathway enzymes is the preferred...... of integrative vectors, EasyCloneMulti, that enables multiple and simultaneous integration of genes in S. cerevisiae. By creating vector backbones that combine consensus sequences that aim at targeting subsets of Ty sequences and a quickly degrading selective marker, integrations at multiple genomic loci...... and a range of expression levels were obtained, as assessed with the green fluorescent protein (GFP) reporter system. The EasyCloneMulti vector set was applied to balance the expression of the rate-controlling step in the β-alanine pathway for biosynthesis of 3-hydroxypropionic acid (3HP). The best 3HP...

  15. Fuel Cell Development and Test Laboratory | Energy Systems Integration

    Science.gov (United States)

    Facility | NREL Fuel Cell Development and Test Laboratory Fuel Cell Development and Test Laboratory The Energy System Integration Facility's Fuel Cell Development and Test Laboratory supports fuel cell research and development projects through in-situ fuel cell testing. Photo of a researcher running

  16. Synthetic Biology Platform for Sensing and Integrating Endogenous Transcriptional Inputs in Mammalian Cells.

    Science.gov (United States)

    Angelici, Bartolomeo; Mailand, Erik; Haefliger, Benjamin; Benenson, Yaakov

    2016-08-30

    One of the goals of synthetic biology is to develop programmable artificial gene networks that can transduce multiple endogenous molecular cues to precisely control cell behavior. Realizing this vision requires interfacing natural molecular inputs with synthetic components that generate functional molecular outputs. Interfacing synthetic circuits with endogenous mammalian transcription factors has been particularly difficult. Here, we describe a systematic approach that enables integration and transduction of multiple mammalian transcription factor inputs by a synthetic network. The approach is facilitated by a proportional amplifier sensor based on synergistic positive autoregulation. The circuits efficiently transduce endogenous transcription factor levels into RNAi, transcriptional transactivation, and site-specific recombination. They also enable AND logic between pairs of arbitrary transcription factors. The results establish a framework for developing synthetic gene networks that interface with cellular processes through transcriptional regulators. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Plasma Cell Neoplasms (Including Multiple Myeloma) Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    Plasma cell neoplasms occur when abnormal plasma cells or myeloma cells form tumors in the bones or soft tissues of the body. Multiple myeloma, plasmacytoma, lymphoplasmacytic lymphoma, and monoclonal gammopathy of undetermined significance (MGUS) are different types of plasma cell neoplasms. Find out about risk factors, symptoms, diagnostic tests, prognosis, and treatment for these diseases.

  18. Application of multiple timestep integration method in SSC

    International Nuclear Information System (INIS)

    Guppy, J.G.

    1979-01-01

    The thermohydraulic transient simulation of an entire LMFBR system is, by its very nature, complex. Physically, the entire plant consists of many subsystems which are coupled by various processes and/or components. The characteristic integration timesteps for these processes/components can vary over a wide range. To improve computing efficiency, a multiple timestep scheme (MTS) approach has been used in the development of the Super System Code (SSC). In this paper: (1) the partitioning of the system and the timestep control are described, and (2) results are presented showing a savings in computer running time using the MTS of as much as five times the time required using a single timestep scheme

  19. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    International Nuclear Information System (INIS)

    Huang, Er-Wen; Xue, Sheng-Jiang; Li, Xiao-Yan; Xu, Suo-Wen; Cheng, Jian-Ding; Zheng, Jin-Xiang; Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong; Li, Jie; Liu, Chao

    2014-01-01

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma

  20. EEN regulates the proliferation and survival of multiple myeloma cells by potentiating IGF-1 secretion

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Er-Wen [Guangzhou Institute of Forensic Science, Guangzhou (China); Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Xue, Sheng-Jiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Li, Xiao-Yan [Department of Pharmacy, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Xu, Suo-Wen [Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou (China); Cheng, Jian-Ding; Zheng, Jin-Xiang [Department of Forensic Pathology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou (China); Shi, He; Lv, Guo-Li; Li, Zhi-Gang; Li, Yue; Liu, Chang-Hui; Chen, Xiao-Hui; Liu, Hong [Guangzhou Institute of Forensic Science, Guangzhou (China); Li, Jie, E-mail: mdlijie@sina.com [Department of Anaesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou (China); Liu, Chao, E-mail: liuchaogaj@21cn.com [Guangzhou Institute of Forensic Science, Guangzhou (China)

    2014-05-02

    Highlights: • Levels of EEN expression paralleled with the rate of cell proliferation. • EEN was involved in the proliferation and survival of multiple myeloma (MM) cells. • EEN regulated the activity of IGF-1-Akt/mTOR pathway. • EEN regulated proliferation and survival of MM cells by enhancing IGF-1 secretion. - Abstract: The molecular mechanisms of multiple myeloma are not well defined. EEN is an endocytosis-regulating molecule. Here we report that EEN regulates the proliferation and survival of multiple myeloma cells, by regulating IGF-1 secretion. In the present study, we observed that EEN expression paralleled with cell proliferation, EEN accelerated cell proliferation, facilitated cell cycle transition from G1 to S phase by regulating cyclin-dependent kinases (CDKs) pathway, and delayed cell apoptosis via Bcl2/Bax-mitochondrial pathway. Mechanistically, we found that EEN was indispensable for insulin-like growth factor-1 (IGF-1) secretion and the activation of protein kinase B-mammalian target of rapamycin (Akt-mTOR) pathway. Exogenous IGF-1 overcame the phenotype of EEN depletion, while IGF-1 neutralization overcame that of EEN over-expression. Collectively, these data suggest that EEN may play a pivotal role in excessive cell proliferation and insufficient cell apoptosis of bone marrow plasma cells in multiple myeloma. Therefore, EEN may represent a potential diagnostic marker or therapeutic target for multiple myeloma.

  1. Cell Culture Systems To Study Human Herpesvirus 6A/B Chromosomal Integration.

    Science.gov (United States)

    Gravel, Annie; Dubuc, Isabelle; Wallaschek, Nina; Gilbert-Girard, Shella; Collin, Vanessa; Hall-Sedlak, Ruth; Jerome, Keith R; Mori, Yasuko; Carbonneau, Julie; Boivin, Guy; Kaufer, Benedikt B; Flamand, Louis

    2017-07-15

    Human herpesviruses 6A/B (HHV-6A/B) can integrate their viral genomes in the telomeres of human chromosomes. The viral and cellular factors contributing to HHV-6A/B integration remain largely unknown, mostly due to the lack of efficient and reproducible cell culture models to study HHV-6A/B integration. In this study, we characterized the HHV-6A/B integration efficiencies in several human cell lines using two different approaches. First, after a short-term infection (5 h), cells were processed for single-cell cloning and analyzed for chromosomally integrated HHV-6A/B (ciHHV-6A/B). Second, cells were infected with HHV-6A/B and allowed to grow in bulk for 4 weeks or longer and then analyzed for the presence of ciHHV-6. Using quantitative PCR (qPCR), droplet digital PCR, and fluorescent in situ hybridization, we could demonstrate that HHV-6A/B integrated in most human cell lines tested, including telomerase-positive (HeLa, MCF-7, HCT-116, and HEK293T) and telomerase-negative cell lines (U2OS and GM847). Our results also indicate that inhibition of DNA replication, using phosphonoacetic acid, did not affect HHV-6A/B integration. Certain clones harboring ciHHV-6A/B spontaneously express viral genes and proteins. Treatment of cells with phorbol ester or histone deacetylase inhibitors triggered the expression of many viral genes, including U39 , U90 , and U100 , without the production of infectious virus, suggesting that the tested stimuli were not sufficient to trigger full reactivation. In summary, both integration models yielded comparable results and should enable the identification of viral and cellular factors contributing to HHV-6A/B integration and the screening of drugs influencing viral gene expression, as well as the release of infectious HHV-6A/B from the integrated state. IMPORTANCE The analysis and understanding of HHV-6A/B genome integration into host DNA is currently limited due to the lack of reproducible and efficient viral integration systems. In the

  2. Sparse Group Penalized Integrative Analysis of Multiple Cancer Prognosis Datasets

    Science.gov (United States)

    Liu, Jin; Huang, Jian; Xie, Yang; Ma, Shuangge

    2014-01-01

    SUMMARY In cancer research, high-throughput profiling studies have been extensively conducted, searching for markers associated with prognosis. Because of the “large d, small n” characteristic, results generated from the analysis of a single dataset can be unsatisfactory. Recent studies have shown that integrative analysis, which simultaneously analyzes multiple datasets, can be more effective than single-dataset analysis and classic meta-analysis. In most of existing integrative analysis, the homogeneity model has been assumed, which postulates that different datasets share the same set of markers. Several approaches have been designed to reinforce this assumption. In practice, different datasets may differ in terms of patient selection criteria, profiling techniques, and many other aspects. Such differences may make the homogeneity model too restricted. In this study, we assume the heterogeneity model, under which different datasets are allowed to have different sets of markers. With multiple cancer prognosis datasets, we adopt the AFT (accelerated failure time) model to describe survival. This model may have the lowest computational cost among popular semiparametric survival models. For marker selection, we adopt a sparse group MCP (minimax concave penalty) approach. This approach has an intuitive formulation and can be computed using an effective group coordinate descent algorithm. Simulation study shows that it outperforms the existing approaches under both the homogeneity and heterogeneity models. Data analysis further demonstrates the merit of heterogeneity model and proposed approach. PMID:23938111

  3. Increased T cell expression of CD154 (CD40-ligand) in multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Krakauer, M; Sellebjerg, F

    2001-01-01

    CD154 (CD40-ligand, gp39), expressed on activated T cells, is crucial in T cell-dependent immune responses and may be involved in the pathogenesis of multiple sclerosis (MS). We studied cerebro-spinal fluid and peripheral blood T cell expression of CD154 in MS by flow cytometry. Patients with sec......CD154 (CD40-ligand, gp39), expressed on activated T cells, is crucial in T cell-dependent immune responses and may be involved in the pathogenesis of multiple sclerosis (MS). We studied cerebro-spinal fluid and peripheral blood T cell expression of CD154 in MS by flow cytometry. Patients...

  4. Intracranial Tumor Cell Migration and the Development of Multiple Brain Metastases in Malignant Melanoma

    Directory of Open Access Journals (Sweden)

    Trude G. Simonsen

    2016-06-01

    Full Text Available INTRODUCTION: A majority of patients with melanoma brain metastases develop multiple lesions, and these patients show particularly poor prognosis. To develop improved treatment strategies, detailed insights into the biology of melanoma brain metastases, and particularly the development of multiple lesions, are needed. The purpose of this preclinical investigation was to study melanoma cell migration within the brain after cell injection into a well-defined intracerebral site. METHODS: A-07, D-12, R-18, and U-25 human melanoma cells transfected with green fluorescent protein were injected stereotactically into the right cerebral hemisphere of nude mice. Moribund mice were killed and autopsied, and the brain was evaluated by fluorescence imaging or histological examination. RESULTS: Intracerebral inoculation of melanoma cells produced multiple lesions involving all regions of the brain, suggesting that the cells were able to migrate over substantial distances within the brain. Multiple modes of transport were identified, and all transport modes were observed in all four melanoma lines. Thus, the melanoma cells were passively transported via the flow of cerebrospinal fluid in the meninges and ventricles, they migrated actively along leptomeningeal and brain parenchymal blood vessels, and they migrated actively along the surfaces separating different brain compartments. CONCLUSION: Migration of melanoma cells after initial arrest, extravasation, and growth at a single location within the brain may contribute significantly to the development of multiple melanoma brain metastases.

  5. MSblender: A probabilistic approach for integrating peptide identifications from multiple database search engines.

    Science.gov (United States)

    Kwon, Taejoon; Choi, Hyungwon; Vogel, Christine; Nesvizhskii, Alexey I; Marcotte, Edward M

    2011-07-01

    Shotgun proteomics using mass spectrometry is a powerful method for protein identification but suffers limited sensitivity in complex samples. Integrating peptide identifications from multiple database search engines is a promising strategy to increase the number of peptide identifications and reduce the volume of unassigned tandem mass spectra. Existing methods pool statistical significance scores such as p-values or posterior probabilities of peptide-spectrum matches (PSMs) from multiple search engines after high scoring peptides have been assigned to spectra, but these methods lack reliable control of identification error rates as data are integrated from different search engines. We developed a statistically coherent method for integrative analysis, termed MSblender. MSblender converts raw search scores from search engines into a probability score for every possible PSM and properly accounts for the correlation between search scores. The method reliably estimates false discovery rates and identifies more PSMs than any single search engine at the same false discovery rate. Increased identifications increment spectral counts for most proteins and allow quantification of proteins that would not have been quantified by individual search engines. We also demonstrate that enhanced quantification contributes to improve sensitivity in differential expression analyses.

  6. A critical examination of the numerology of antigen-binding cells: evidence for multiple receptor specificities on single cells.

    Science.gov (United States)

    Miller, A

    1977-01-01

    The data available from other laboratories as well as our own on the frequency of cells recognizing major histocompatibility antigens or conventional protein and hapten antigens is critically evaluated. The frequency of specific binding for a large number of antigens is sufficiently high to support the idea that at least part of the antigen-binding cell population must have multiple specificities. Our results suggest that these multiple specific cells result from single cells synthesizing and displaying as many as 50-100 species of receptor, each at a frequency of 10(4) per cell. A model involving gene expansion of constant-region genes is suggested and some auxilliary evidence consistent with such C-gene expansion is presented.

  7. Accurate path integration in continuous attractor network models of grid cells.

    Science.gov (United States)

    Burak, Yoram; Fiete, Ila R

    2009-02-01

    Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.

  8. Cyclic AMP induces apoptosis in multiple myeloma cells and inhibits tumor development in a mouse myeloma model

    International Nuclear Information System (INIS)

    Follin-Arbelet, Virginie; Hofgaard, Peter O; Hauglin, Harald; Naderi, Soheil; Sundan, Anders; Blomhoff, Rune; Bogen, Bjarne; Blomhoff, Heidi K

    2011-01-01

    Multiple myeloma is an incurable disease requiring the development of effective therapies which can be used clinically. We have elucidated the potential for manipulating the cAMP signaling pathway as a target for inhibiting the growth of multiple myeloma cells. As a model system, we primarily used the murine multiple myeloma cell line MOPC315 which can be grown both in vivo and in vitro. Human multiple myeloma cell lines U266, INA-6 and the B-cell precursor acute lymphoblastic leukemia cell line Reh were used only for in vitro studies. Cell death was assessed by flow cytometry and western blot analysis after treatment with cAMP elevating agents (forskolin, prostaglandin E2 and rolipram) and cAMP analogs. We followed tumor growth in vivo after forskolin treatment by imaging DsRed-labelled MOPC315 cells transplanted subcutaneously in BALB/c nude mice. In contrast to the effect on Reh cells, 50 μM forskolin more than tripled the death of MOPC315 cells after 24 h in vitro. Forskolin induced cell death to a similar extent in the human myeloma cell lines U266 and INA-6. cAMP-mediated cell death had all the typical hallmarks of apoptosis, including changes in the mitochondrial membrane potential and cleavage of caspase 3, caspase 9 and PARP. Forskolin also inhibited the growth of multiple myeloma cells in a mouse model in vivo. Elevation of intracellular levels of cAMP kills multiple myeloma cells in vitro and inhibits development of multiple myeloma in vivo. This strongly suggests that compounds activating the cAMP signaling pathway may be useful in the field of multiple myeloma

  9. Natural killer cell signal integration balances synapse symmetry and migration.

    Directory of Open Access Journals (Sweden)

    Fiona J Culley

    2009-07-01

    Full Text Available Natural killer (NK cells discern the health of other cells by recognising the balance of activating and inhibitory ligands expressed by each target cell. However, how the integration of activating and inhibitory signals relates to formation of the NK cell immune synapse remains a central question in our understanding of NK cell recognition. Here we report that ligation of LFA-1 on NK cells induced asymmetrical cell spreading and migration. In contrast, ligation of the activating receptor NKG2D induced symmetrical spreading of ruffled lamellipodia encompassing a dynamic ring of f-actin, concurrent with polarization towards a target cell and a "stop" signal. Ligation of both LFA-1 and NKG2D together resulted in symmetrical spreading but co-ligation of inhibitory receptors reverted NK cells to an asymmetrical migratory configuration leading to inhibitory synapses being smaller and more rapidly disassembled. Using micropatterned activating and inhibitory ligands, signals were found to be continuously and locally integrated during spreading. Together, these data demonstrate that NK cells spread to form large, stable, symmetrical synapses if activating signals dominate, whereas asymmetrical migratory "kinapses" are favoured if inhibitory signals dominate. This clarifies how the integration of activating and inhibitory receptor signals is translated to an appropriate NK cell response.

  10. An integrated probabilistic risk analysis decision support methodology for systems with multiple state variables

    International Nuclear Information System (INIS)

    Sen, P.; Tan, John K.G.; Spencer, David

    1999-01-01

    Probabilistic risk analysis (PRA) methods have been proven to be valuable in risk and reliability analysis. However, a weak link seems to exist between methods for analysing risks and those for making rational decisions. The integrated decision support system (IDSS) methodology presented in this paper attempts to address this issue in a practical manner. In consists of three phases: a PRA phase, a risk sensitivity analysis (SA) phase and an optimisation phase, which are implemented through an integrated computer software system. In the risk analysis phase the problem is analysed by the Boolean representation method (BRM), a PRA method that can deal with systems with multiple state variables and feedback loops. In the second phase the results obtained from the BRM are utilised directly to perform importance and risk SA. In the third phase, the problem is formulated as a multiple objective decision making problem in the form of multiple objective reliability optimisation. An industrial example is included. The resultant solutions of a five objective reliability optimisation are presented, on the basis of which rational decision making can be explored

  11. ONC201 selectively induces apoptosis in cutaneous T-cell lymphoma cells via activating pro-apoptotic integrated stress response and inactivating JAK/STAT and NF-κB pathways.

    Science.gov (United States)

    Ni, Xiao; Zhang, Xiang; Hu, Cheng-Hui; Langridge, Timothy; Tarapore, Rohinton S; Allen, Joshua E; Oster, Wolfgang; Duvic, Madeleine

    2017-09-22

    Cutaneous T-cell lymphomas (CTCLs) are extremely symptomatic and still incurable, and more effective and less toxic therapies are urgently needed. ONC201, an imipridone compound, has shown efficacy in pre-clinical studies in multiple advanced cancers. This study was to evaluate the anti-tumor activity of ONC201 on CTCL cells. The effect of ONC201 on the cell growth and apoptosis were evaluated in CTCL cell lines (n=8) and primary CD4 + malignant T cells isolated from CTCL patients (n=5). ONC201 showed a time-dependent cell growth inhibition in all treated cell lines with a concentration range of 1.25-10.0 μM. ONC201 also induced apoptosis in tested cells with a narrow concentration range of 2.5-10.0 μM, evidenced by increased Annexin V + cells, accompanied by accumulated sub-G1 portions. ONC201 only induced apoptosis in CD4 + malignant T cells, not in normal CD4 + T cells. The activating transcription factor 4 (ATF4), a hallmark of integrated stress response, was upregulated in response to ONC201 whereas Akt was downregulated. In addition, molecules in JAK/STAT and NF-κB pathways, as well as IL-32β, were downregulated following ONC201 treatment. Thus, ONC201 exerts a potent and selective anti-tumor effect on CTCL cells. Its efficacy may involve activating integrated stress response through ATF4 and inactivating JAK/STAT and NF-κB pathways.

  12. Integrating conflicting information from multiple texts: Effects of prior attitudes and text format

    NARCIS (Netherlands)

    Van Strien, Johan; Brand-Gruwel, Saskia; Boshuizen, Els

    2011-01-01

    Van Strien, J. L. H., Brand-Gruwel, S., & Boshuizen, H. P. A. (2011, August). Integrating conflicting information from multiple texts: Effects of prior attitudes and text format. Round table session presented at the Junior Researchers pre-conference of the biannual meeting of the European

  13. Integrating cell biology and proteomic approaches in plants.

    Science.gov (United States)

    Takáč, Tomáš; Šamajová, Olga; Šamaj, Jozef

    2017-10-03

    Significant improvements of protein extraction, separation, mass spectrometry and bioinformatics nurtured advancements of proteomics during the past years. The usefulness of proteomics in the investigation of biological problems can be enhanced by integration with other experimental methods from cell biology, genetics, biochemistry, pharmacology, molecular biology and other omics approaches including transcriptomics and metabolomics. This review aims to summarize current trends integrating cell biology and proteomics in plant science. Cell biology approaches are most frequently used in proteomic studies investigating subcellular and developmental proteomes, however, they were also employed in proteomic studies exploring abiotic and biotic stress responses, vesicular transport, cytoskeleton and protein posttranslational modifications. They are used either for detailed cellular or ultrastructural characterization of the object subjected to proteomic study, validation of proteomic results or to expand proteomic data. In this respect, a broad spectrum of methods is employed to support proteomic studies including ultrastructural electron microscopy studies, histochemical staining, immunochemical localization, in vivo imaging of fluorescently tagged proteins and visualization of protein-protein interactions. Thus, cell biological observations on fixed or living cell compartments, cells, tissues and organs are feasible, and in some cases fundamental for the validation and complementation of proteomic data. Validation of proteomic data by independent experimental methods requires development of new complementary approaches. Benefits of cell biology methods and techniques are not sufficiently highlighted in current proteomic studies. This encouraged us to review most popular cell biology methods used in proteomic studies and to evaluate their relevance and potential for proteomic data validation and enrichment of purely proteomic analyses. We also provide examples of

  14. Smart Energy Management of Multiple Full Cell Powered Applications

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Alam

    2007-04-23

    In this research project the University of South Alabama research team has been investigating smart energy management and control of multiple fuel cell power sources when subjected to varying demands of electrical and thermal loads together with demands of hydrogen production. This research has focused on finding the optimal schedule of the multiple fuel cell power plants in terms of electric, thermal and hydrogen energy. The optimal schedule is expected to yield the lowest operating cost. Our team is also investigating the possibility of generating hydrogen using photoelectrochemical (PEC) solar cells through finding materials for efficient light harvesting photoanodes. The goal is to develop an efficient and cost effective PEC solar cell system for direct electrolysis of water. In addition, models for hydrogen production, purification, and storage will be developed. The results obtained and the data collected will be then used to develop a smart energy management algorithm whose function is to maximize energy conservation within a managed set of appliances, thereby lowering O/M costs of the Fuel Cell power plant (FCPP), and allowing more hydrogen generation opportunities. The Smart Energy Management and Control (SEMaC) software, developed earlier, controls electrical loads in an individual home to achieve load management objectives such that the total power consumption of a typical residential home remains below the available power generated from a fuel cell. In this project, the research team will leverage the SEMaC algorithm developed earlier to create a neighborhood level control system.

  15. Cell-laden hydrogel/titanium microhybrids: Site-specific cell delivery to metallic implants for improved integration.

    Science.gov (United States)

    Koenig, Geraldine; Ozcelik, Hayriye; Haesler, Lisa; Cihova, Martina; Ciftci, Sait; Dupret-Bories, Agnes; Debry, Christian; Stelzle, Martin; Lavalle, Philippe; Vrana, Nihal Engin

    2016-03-01

    Porous titanium implants are widely used in dental, orthopaedic and otorhinolaryngology fields to improve implant integration to host tissue. A possible step further to improve the integration with the host is the incorporation of autologous cells in porous titanium structures via cell-laden hydrogels. Fast gelling hydrogels have advantageous properties for in situ applications such as localisation of specific cells and growth factors at a target area without dispersion. The ability to control the cell types in different regions of an implant is important in applications where the target tissue (i) has structural heterogeneity (multiple cell types with a defined spatial configuration with respect to each other); (ii) has physical property gradients essential for its function (such as in the case of osteochondral tissue transition). Due to their near immediate gelation, such gels can also be used for site-specific modification of porous titanium structures, particularly for implants which would face different tissues at different locations. Herein, we describe a step by step design of a model system: the model cell-laden gel-containing porous titanium implants in the form of titanium microbead/hydrogel (maleimide-dextran or maleimide-PVA based) microhybrids. These systems enable the determination of the effect of titanium presence on gel properties and encapsulated cell behaviour as a miniaturized version of full-scale implants, providing a system compatible with conventional analysis methods. We used a fibroblast/vascular endothelial cell co-cultures as our model system and by utilising single microbeads we have quantified the effect of gel microenvironment (degradability, presence of RGD peptides within gel formulation) on cell behaviour and the effect of the titanium presence on cell behaviour and gel formation. Titanium presence slightly changed gel properties without hindering gel formation or affecting cell viability. Cells showed a preference to move towards

  16. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines

    Science.gov (United States)

    Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.

    2017-12-01

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.

  17. Adult T-cell leukemia/lymphoma presenting multiple lymphomatous polyposis

    Institute of Scientific and Technical Information of China (English)

    Akira Hokama; Nobuyuki Takasu; Jiro Fujita; Takeaki Tomoyose; Yu-ichi Yamamoto; Takako Watanabe; Tetsuo Hirata; Fukunori Kinjo; Seiya Kato; Koichi Ohshima; Hiroshi Uezato

    2008-01-01

    Multiple lymphomatous polyposis (HLP) is an unusual form of non-Hodgkin's lymphoma characterized by polyps throughout the gastrointestinal tract. It has been reported that most MLP are observed in cases with mantle cell lymphoma of B-cell type. We herein present a case of a 66-year-old man with adult T-cell leukemia/lymphoma (ATLL). Colonoscopy revealed MLP throughout the colon and histopathological findings of ATLL cell infiltration. The patient died despite combination of chemotherapy. The literature of manifestations of colonic involvement of ATLL is reviewed and the importance of endoscopic evaluation to differentiate ATLL intestinal lesions from opportunistic infectious enterocolitis is discussed.

  18. Integrative Radiation Biology

    Energy Technology Data Exchange (ETDEWEB)

    Barcellos-Hoff, Mary Helen [New York University School of Medicine, NY (United States)

    2015-02-27

    We plan to study tissue-level mechanisms important to human breast radiation carcinogenesis. We propose that the cell biology of irradiated tissues reveals a coordinated multicellular damage response program in which individual cell contributions are primarily directed towards suppression of carcinogenesis and reestablishment of homeostasis. We identified transforming growth factor β1 (TGFβ) as a pivotal signal. Notably, we have discovered that TGFβ suppresses genomic instability by controlling the intrinsic DNA damage response and centrosome integrity. However, TGFβ also mediates disruption of microenvironment interactions, which drive epithelial to mesenchymal transition in irradiated human mammary epithelial cells. This apparent paradox of positive and negative controls by TGFβ is the topic of the present proposal. First, we postulate that these phenotypes manifest differentially following fractionated or chronic exposures; second, that the interactions of multiple cell types in tissues modify the responses evident in this single cell type culture models. The goals are to: 1) study the effect of low dose rate and fractionated radiation exposure in combination with TGFβ on the irradiated phenotype and genomic instability of non-malignant human epithelial cells; and 2) determine whether stromal-epithelial interactions suppress the irradiated phenotype in cell culture and the humanized mammary mouse model. These data will be used to 3) develop a systems biology model that integrates radiation effects across multiple levels of tissue organization and time. Modeling multicellular radiation responses coordinated via extracellular signaling could have a significant impact on the extrapolation of human health risks from high dose to low dose/rate radiation exposure.

  19. Multiple cell common pressure vessel nickel hydrogen battery

    Science.gov (United States)

    Zagrodnik, Jeffrey P.; Jones, Kenneth R.

    1991-01-01

    A multiple cell common pressure vessel (CPV) nickel hydrogen battery was developed that offers significant weight, volume, cost, and interfacing advantages over the conventional individual pressure vessel (IPV) nickel hydrogen configuration that is currently used for aerospace applications. The baseline CPV design was successfully demonstrated though the testing of a 26 cell prototype, which completed over 7,000 44 percent depth of discharge LEO cycles. Two-cell boilerplate batteries have now exceeded 12,500 LEO cycles in ongoing laboratory tests. CPV batteries using both nominal 5 and 10 inch diameter vessels are currently available. The flexibility of the design allows these diameters to provide a broad capability for a variety of space applications.

  20. Imaging of multiple myeloma and related monoclonal plasma cell diseases. An update

    International Nuclear Information System (INIS)

    Weber, Marc-Andre; Delorme, Stefan; Hillengass, Jens

    2014-01-01

    Multiple myeloma is a hematologic disorder characterized by the infiltration and proliferation of monoclonal plasma cells mainly in the bone marrow. The main symptoms are hypercalcemia, renal impairment, cytopenia/anemia and bone disease - summarized as CRAB-criteria. Symptomatic multiple myeloma is consistently preceded by asymptomatic premalignant stages called monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Staging of multiple myeloma is based on the measurement of the monoclonal protein in serum and urine as well as the assessment of impairment of hematopoiesis, renal function and mineralized bone. In the last decade the development of novel therapeutic agents has led to an increase in response rates and survival time of patients with multiple myeloma, which further stresses the value of response assessment by imaging. Cross sectional imaging like MRI and CT is currently replacing conventional radiological surveys in the initial work-up and follow-up of patients with monoclonal plasma cell diseases. The added value of MRI is to improve initial staging by unraveling a diffuse infiltration of bone marrow by plasma cells, a focal pattern or a combination of both. Furthermore, a complete remission of myeloma confirmed by MRI and CT goes along with a better prognosis compared to a complete response based only on serological parameters.

  1. Multiple jaw cysts not associated with basal cell nevus syndrome

    International Nuclear Information System (INIS)

    Yoon, Suk Ja; Kang, Byung Cheol

    2003-01-01

    We present two cases of multiple jaw cysts not associated with basal cell nevus syndrome. Case 1 : a nine year-old boy visited CNU Hospital for orthodontic treatment and his radiographs showed cystic lesions surrounding the crowns of teeth 13 and 17 respectively, which were diagnosed as dentigerous cysts. Subsequently, two more cysts were found on his follow-up radiographs in 12 and 15 months. The two cysts were determined to be odontogenic keratocysts. The boy had no skeletal abnormalities and no skin lesions associated with basal cell nevus syndrome. Case 2: a fifty-eight year old man had three impacted third molars with pericoronal radiolucencies, which were diagnosed as dentigerous cysts. He had no additional abnormalities associated with basal cell nevus syndrome. Multiple jaw cysts can occur at any age, and periodic radiographic surveillance may be needed for any cases of impacted tooth.

  2. Multiple jaw cysts not associated with basal cell nevus syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Suk Ja; Kang, Byung Cheol [Chonnam National University College of Medicine, Kwangju (Korea, Republic of)

    2003-09-15

    We present two cases of multiple jaw cysts not associated with basal cell nevus syndrome. Case 1 : a nine year-old boy visited CNU Hospital for orthodontic treatment and his radiographs showed cystic lesions surrounding the crowns of teeth 13 and 17 respectively, which were diagnosed as dentigerous cysts. Subsequently, two more cysts were found on his follow-up radiographs in 12 and 15 months. The two cysts were determined to be odontogenic keratocysts. The boy had no skeletal abnormalities and no skin lesions associated with basal cell nevus syndrome. Case 2: a fifty-eight year old man had three impacted third molars with pericoronal radiolucencies, which were diagnosed as dentigerous cysts. He had no additional abnormalities associated with basal cell nevus syndrome. Multiple jaw cysts can occur at any age, and periodic radiographic surveillance may be needed for any cases of impacted tooth.

  3. Transplantation of Human Embryonic Stem Cells in Patients with Multiple Sclerosis and Lyme Disease

    OpenAIRE

    Shroff, Geeta

    2016-01-01

    Case series Patient: Male, 42 ? Female, 30 Final Diagnosis: Human embryonic stem cells showed good therapeutic potential for treatment of multiple sclerosis with lyme disease Symptoms: Fatigue ? weakness in limbs Medication: ? Clinical Procedure: Human embryonic stem cells transplantation Specialty: Transplantology Objective: Rare disease Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease in which the myelin sheath of nerve cells is damaged. It can cause dela...

  4. Integration of AI-2 Based Cell-Cell Signaling with Metabolic Cues in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    Full Text Available The quorum sensing molecule Autoinducer-2 (AI-2 is generated as a byproduct of activated methyl cycle by the action of LuxS in Escherichia coli. AI-2 is synthesized, released and later internalized in a cell-density dependent manner. Here, by mutational analysis of the genes, uvrY and csrA, we describe a regulatory circuit of accumulation and uptake of AI-2. We constructed a single-copy chromosomal luxS-lacZ fusion in a luxS + merodiploid strain and evaluated its relative expression in uvrY and csrA mutants. At the entry of stationary phase, the expression of the fusion and AI-2 accumulation was positively regulated by uvrY and negatively regulated by csrA respectively. A deletion of csrA altered message stability of the luxS transcript and CsrA protein exhibited weak binding to 5' luxS regulatory region. DNA protein interaction and chromatin immunoprecipitation analysis confirmed direct interaction of UvrY with the luxS promoter. Additionally, reduced expression of the fusion in hfq deletion mutant suggested involvement of small RNA interactions in luxS regulation. In contrast, the expression of lsrA operon involved in AI-2 uptake, is negatively regulated by uvrY and positively by csrA in a cell-density dependent manner. The dual role of csrA in AI-2 synthesis and uptake suggested a regulatory crosstalk of cell signaling with carbon regulation in Escherichia coli. We found that the cAMP-CRP mediated catabolite repression of luxS expression was uvrY dependent. This study suggests that luxS expression is complex and regulated at the level of transcription and translation. The multifactorial regulation supports the notion that cell-cell communication requires interaction and integration of multiple metabolic signals.

  5. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    Science.gov (United States)

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  6. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways.

    Science.gov (United States)

    Yun, Yingzi; Liu, Zunyong; Zhang, Jingze; Shim, Won-Bo; Chen, Yun; Ma, Zhonghua

    2014-07-01

    Mitogen-activated protein (MAP) kinases play crucial roles in regulating fungal development, growth and pathogenicity, and in responses to the environment. In this study, we characterized a MAP kinase kinase FgMkk1 in Fusarium graminearum, the causal agent of wheat head blight. Phenotypic analyses of the FgMKK1 mutant (ΔFgMKK1) showed that FgMkk1 is involved in the regulation of hyphal growth, pigmentation, conidiation, deoxynivalenol biosynthesis and virulence of F. graminearum. ΔFgMKK1 also showed increased sensitivity to cell wall-damaging agents, and to osmotic and oxidative stresses, but exhibited decreased sensitivity to the fungicides iprodione and fludioxonil. In addition, the mutant revealed increased sensitivity to a biocontrol agent, Trichoderma atroviride. Western blot assays revealed that FgMkk1 positively regulates phosphorylation of the MAP kinases Mgv1 and FgOs-2, the key component in the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) signalling pathway respectively. Yeast two-hybrid assay indicated that Mgv1 interacts with a transcription factor FgRlm1. The FgRLM1 mutant (ΔFgRLM1) showed increased sensitivity to cell wall-damaging agents and exhibited decreased virulence. Taken together, our data indicated that FgMkk1 is an upstream component of Mgv1, and regulates vegetative differentiation, multiple stress response and virulence via the CWI and HOG signalling pathways. FgRlm1 may be a downstream component of Mgv1 in the CWI pathway in F. graminearum. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.

  7. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong, E-mail: zddai@nuaa.edu.cn

    2014-08-30

    Highlights: • Cu–Ni alloy open-cell foam integrated with CNTs was used for EMI shielding. • The composite was prepared by electroless, electro-, and electrophoretic deposition. • The main shielding mechanism was multiple reflections and absorptions of microwaves. • The composite had a porous structure, large surface area, and inherent permeability. - Abstract: A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu–Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu–Ni–CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8–12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  8. Radiopeptide internalisation and externalisation assays: Cell viability and radioligand integrity

    International Nuclear Information System (INIS)

    Raza Naqvi, Syed Ali; Sosabowski, Jane K.; Ahamad Nagra, Saeed; Ishfaq, Malik M.; Mather, Stephen J.; Matzow, Torkjel

    2011-01-01

    Various aspects of radiopeptide receptor-mediated cell internalisation and externalisation assays were assessed, including the integrity of externalised peptides and the effect of varying the pH and incubation time of the acid wash step (to remove surface receptor-bound ligand) on efficacy and cell viability. The observed intact proportion of externalised peptide was 5-10%, and acid wash buffers with pH 2.8 or below were found to be detrimental to cell viability and integrity, particularly following prolonged incubation times.

  9. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Directory of Open Access Journals (Sweden)

    Lena Simone Fohrmann

    2017-09-01

    Full Text Available Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  10. Integrating cell on chip—Novel waveguide platform employing ultra-long optical paths

    Science.gov (United States)

    Fohrmann, Lena Simone; Sommer, Gerrit; Pitruzzello, Giampaolo; Krauss, Thomas F.; Petrov, Alexander Yu.; Eich, Manfred

    2017-09-01

    Optical waveguides are the most fundamental building blocks of integrated optical circuits. They are extremely well understood, yet there is still room for surprises. Here, we introduce a novel 2D waveguide platform which affords a strong interaction of the evanescent tail of a guided optical wave with an external medium while only employing a very small geometrical footprint. The key feature of the platform is its ability to integrate the ultra-long path lengths by combining low propagation losses in a silicon slab with multiple reflections of the guided wave from photonic crystal (PhC) mirrors. With a reflectivity of 99.1% of our tailored PhC-mirrors, we achieve interaction paths of 25 cm within an area of less than 10 mm2. This corresponds to 0.17 dB/cm effective propagation which is much lower than the state-of-the-art loss of approximately 1 dB/cm of single mode silicon channel waveguides. In contrast to conventional waveguides, our 2D-approach leads to a decay of the guided wave power only inversely proportional to the optical path length. This entirely different characteristic is the major advantage of the 2D integrating cell waveguide platform over the conventional channel waveguide concepts that obey the Beer-Lambert law.

  11. Discovering perturbation of modular structure in HIV progression by integrating multiple data sources through non-negative matrix factorization.

    Science.gov (United States)

    Ray, Sumanta; Maulik, Ujjwal

    2016-12-20

    Detecting perturbation in modular structure during HIV-1 disease progression is an important step to understand stage specific infection pattern of HIV-1 virus in human cell. In this article, we proposed a novel methodology on integration of multiple biological information to identify such disruption in human gene module during different stages of HIV-1 infection. We integrate three different biological information: gene expression information, protein-protein interaction information and gene ontology information in single gene meta-module, through non negative matrix factorization (NMF). As the identified metamodules inherit those information so, detecting perturbation of these, reflects the changes in expression pattern, in PPI structure and in functional similarity of genes during the infection progression. To integrate modules of different data sources into strong meta-modules, NMF based clustering is utilized here. Perturbation in meta-modular structure is identified by investigating the topological and intramodular properties and putting rank to those meta-modules using a rank aggregation algorithm. We have also analyzed the preservation structure of significant GO terms in which the human proteins of the meta-modules participate. Moreover, we have performed an analysis to show the change of coregulation pattern of identified transcription factors (TFs) over the HIV progression stages.

  12. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  13. Indigenous development of system integration for proton exchange membrane fuel cell operation

    International Nuclear Information System (INIS)

    Hussain, S.; Arshad, M.; Anjum, A.R.

    2011-01-01

    System integration was developed for fuel cell to control various parameters including voltage, current, power, temperature, pressure of gas (H/sub 2/), humidification, etc. The compact software has also been developed for monitoring different parameters of fuel cell system. System integrated was installed on fuel cell stack to manipulate these parameters. The compact software has been linked with the integrated system for visual monitoring of different parameters of fuel cell system during operation on PC. The installation of software and integrated system on fuel cell stack is the key achievement for the safe operation of fuel cell stack and for the provision of requisite power to any electric device for optimum performance. The compact software was developed for micro controller in KIEL. Control card and driver card are controlled by software-driven micro controller. A communication protocol was designed and developed. PC software has been developed to control and watch the values of all parameters of fuel cell such as voltage, current, power, temperature, pressure of hydrogen, pressure of oxygen, operational times and performance of the system on computer screen. (author)

  14. Assessing District Energy Systems Performance Integrated with Multiple Thermal Energy Storages

    Science.gov (United States)

    Rezaie, Behnaz

    The goal of this study is to examine various energy resources in district energy (DE) systems and then DE system performance development by means of multiple thermal energy storages (TES) application. This study sheds light on areas not yet investigated precisely in detail. Throughout the research, major components of the heat plant, energy suppliers of the DE systems, and TES characteristics are separately examined; integration of various configurations of the multiple TESs in the DE system is then analysed. In the first part of the study, various sources of energy are compared, in a consistent manner, financially and environmentally. The TES performance is then assessed from various aspects. Then, TES(s) and DE systems with several sources of energy are integrated, and are investigated as a heat process centre. The most efficient configurations of the multiple TESs integrated with the DE system are investigated. Some of the findings of this study are applied on an actual DE system. The outcomes of this study provide insight for researchers and engineers who work in this field, as well as policy makers and project managers who are decision-makers. The accomplishments of the study are original developments TESs and DE systems. As an original development the Enviro-Economic Function, to balance the economic and environmental aspects of energy resources technologies in DE systems, is developed; various configurations of multiple TESs, including series, parallel, and general grid, are developed. The developed related functions are discharge temperature and energy of the TES, and energy and exergy efficiencies of the TES. The TES charging and discharging behavior of TES instantaneously is also investigated to obtain the charging temperature, the maximum charging temperature, the charging energy flow, maximum heat flow capacity, the discharging temperature, the minimum charging temperature, the discharging energy flow, the maximum heat flow capacity, and performance

  15. Integration and Assessment of Multiple Mobile Manipulators in a Real-World Industrial Production Facility

    DEFF Research Database (Denmark)

    Bøgh, Simon; Schou, Casper; Rühr, Thomas

    2014-01-01

    This paper presents a large-scale research experiment carried out within the TAPAS project, where multiple mobile manipulators were integrated and assessed in an industrial context. We consider an industrial scenario in which mobile manipulators naturally extend automation of logistic tasks towar...

  16. T helper 17.1 cells associate with multiple sclerosis disease activity: perspectives for early intervention.

    Science.gov (United States)

    van Langelaar, Jamie; van der Vuurst de Vries, Roos M; Janssen, Malou; Wierenga-Wolf, Annet F; Spilt, Isis M; Siepman, Theodora A; Dankers, Wendy; Verjans, Georges M G M; de Vries, Helga E; Lubberts, Erik; Hintzen, Rogier Q; van Luijn, Marvin M

    2018-05-01

    Interleukin-17-expressing CD4+ T helper 17 (Th17) cells are considered as critical regulators of multiple sclerosis disease activity. However, depending on the species and pro-inflammatory milieu, Th17 cells are functionally heterogeneous, consisting of subpopulations that differentially produce interleukin-17, interferon-gamma and granulocyte macrophage colony-stimulating factor. In the current study, we studied distinct effector phenotypes of human Th17 cells and their correlation with disease activity in multiple sclerosis patients. T helper memory populations single- and double-positive for C-C chemokine receptor 6 (CCR6) and CXC chemokine receptor 3 (CXCR3) were functionally assessed in blood and/or cerebrospinal fluid from a total of 59 patients with clinically isolated syndrome, 35 untreated patients and 24 natalizumab-treated patients with relapsing-remitting multiple sclerosis, and nine patients with end-stage multiple sclerosis. Within the clinically isolated syndrome group, 23 patients had a second attack within 1 year and 26 patients did not experience subsequent attacks during a follow-up of >5 years. Low frequencies of T helper 1 (Th1)-like Th17 (CCR6+CXCR3+), and not Th17 (CCR6+CXCR3-) effector memory populations in blood strongly associated with a rapid diagnosis of clinically definite multiple sclerosis. In cerebrospinal fluid of clinically isolated syndrome and relapsing-remitting multiple sclerosis patients, Th1-like Th17 effector memory cells were abundant and showed increased production of interferon-gamma and granulocyte macrophage colony-stimulating factor compared to paired CCR6+ and CCR6-CD8+ T cell populations and their blood equivalents after short-term culturing. Their local enrichment was confirmed ex vivo using cerebrospinal fluid and brain single-cell suspensions. Across all pro-inflammatory T helper cells analysed in relapsing-remitting multiple sclerosis blood, Th1-like Th17 subpopulation T helper 17.1 (Th17.1; CCR6+CXCR3+CCR4

  17. New Recursive Representations for the Favard Constants with Application to Multiple Singular Integrals and Summation of Series

    Directory of Open Access Journals (Sweden)

    Snezhana Georgieva Gocheva-Ilieva

    2013-01-01

    Full Text Available There are obtained integral form and recurrence representations for some Fourier series and connected with them Favard constants. The method is based on preliminary integration of Fourier series which permits to establish general recursion formulas for Favard constants. This gives the opportunity for effective summation of infinite series and calculation of some classes of multiple singular integrals by the Favard constants.

  18. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line.

    Science.gov (United States)

    Malik, P; McQuiston, S A; Yu, X J; Pepper, K A; Krall, W J; Podsakoff, G M; Kurtzman, G J; Kohn, D B

    1997-03-01

    We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate

  19. Integrating Multiple Teaching Methods into a General Chemistry Classroom

    Science.gov (United States)

    Francisco, Joseph S.; Nicoll, Gayle; Trautmann, Marcella

    1998-02-01

    In addition to the traditional lecture format, three other teaching strategies (class discussions, concept maps, and cooperative learning) were incorporated into a freshman level general chemistry course. Student perceptions of their involvement in each of the teaching methods, as well as their perceptions of the utility of each method were used to assess the effectiveness of the integration of the teaching strategies as received by the students. Results suggest that each strategy serves a unique purpose for the students and increased student involvement in the course. These results indicate that the multiple teaching strategies were well received by the students and that all teaching strategies are necessary for students to get the most out of the course.

  20. Radiopeptide internalisation and externalization assays: cell viability and radioligand integrity.

    Science.gov (United States)

    Naqvi, Syed Ali Raza; Sosabowski, Jane K; Nagra, Saeed Ahamad; Ishfaq, Malik M; Mather, Stephen J; Matzow, Torkjel

    2011-01-01

    Various aspects of radiopeptide receptor-mediated cell internalisation and externalization assays were assessed, including the integrity of externalized peptides and the effect of varying the pH and incubation time of the acid wash step (to remove surface receptor-bound ligand) on efficacy and cell viability. The observed intact proportion of externalized peptide was 5-10%, and acid wash buffers with pH 2.8 or below were found to be detrimental to cell viability and integrity, particularly following prolonged incubation times. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. MULTI-SCALE SEGMENTATION OF HIGH RESOLUTION REMOTE SENSING IMAGES BY INTEGRATING MULTIPLE FEATURES

    Directory of Open Access Journals (Sweden)

    Y. Di

    2017-05-01

    Full Text Available Most of multi-scale segmentation algorithms are not aiming at high resolution remote sensing images and have difficulty to communicate and use layers’ information. In view of them, we proposes a method of multi-scale segmentation of high resolution remote sensing images by integrating multiple features. First, Canny operator is used to extract edge information, and then band weighted distance function is built to obtain the edge weight. According to the criterion, the initial segmentation objects of color images can be gained by Kruskal minimum spanning tree algorithm. Finally segmentation images are got by the adaptive rule of Mumford–Shah region merging combination with spectral and texture information. The proposed method is evaluated precisely using analog images and ZY-3 satellite images through quantitative and qualitative analysis. The experimental results show that the multi-scale segmentation of high resolution remote sensing images by integrating multiple features outperformed the software eCognition fractal network evolution algorithm (highest-resolution network evolution that FNEA on the accuracy and slightly inferior to FNEA on the efficiency.

  2. Related B cell clones populate the meninges and parenchyma of patients with multiple sclerosis.

    Science.gov (United States)

    Lovato, Laura; Willis, Simon N; Rodig, Scott J; Caron, Tyler; Almendinger, Stefany E; Howell, Owain W; Reynolds, Richard; O'Connor, Kevin C; Hafler, David A

    2011-02-01

    In the central nervous system of patients with multiple sclerosis, B cell aggregates populate the meninges, raising the central question as to whether these structures relate to the B cell infiltrates found in parenchymal lesions or instead, represent a separate central nervous system immune compartment. We characterized the repertoires derived from meningeal B cell aggregates and the corresponding parenchymal infiltrates from brain tissue derived primarily from patients with progressive multiple sclerosis. The majority of expanded antigen-experienced B cell clones derived from meningeal aggregates were also present in the parenchyma. We extended this investigation to include 20 grey matter specimens containing meninges, 26 inflammatory plaques, 19 areas of normal appearing white matter and cerebral spinal fluid. Analysis of 1833 B cell receptor heavy chain variable region sequences demonstrated that antigen-experienced clones were consistently shared among these distinct compartments. This study establishes a relationship between extraparenchymal lymphoid tissue and parenchymal infiltrates and defines the arrangement of B cell clones that populate the central nervous system of patients with multiple sclerosis.

  3. Integrated cascade of photovoltaic cells as a power supply for integrated circuits

    NARCIS (Netherlands)

    Mouthaan, A.J.

    1984-01-01

    ICs can be powered directly when a supply voltage source capable of generating a multiple of the open circuit voltage of one pn-junction is available on a chip. Two schemes have been investigated for cascading photovoltaic cells on the chip. The structures can be made compatible with standard

  4. The plant cell wall integrity maintenance mechanism--a case study of a cell wall plasma membrane signaling network.

    Science.gov (United States)

    Hamann, Thorsten

    2015-04-01

    Some of the most important functions of plant cell walls are protection against biotic/abiotic stress and structural support during growth and development. A prerequisite for plant cell walls to perform these functions is the ability to perceive different types of stimuli in both qualitative and quantitative manners and initiate appropriate responses. The responses in turn involve adaptive changes in cellular and cell wall metabolism leading to modifications in the structures originally required for perception. While our knowledge about the underlying plant mechanisms is limited, results from Saccharomyces cerevisiae suggest the cell wall integrity maintenance mechanism represents an excellent example to illustrate how the molecular mechanisms responsible for stimulus perception, signal transduction and integration can function. Here I will review the available knowledge about the yeast cell wall integrity maintenance system for illustration purposes, summarize the limited knowledge available about the corresponding plant mechanism and discuss the relevance of the plant cell wall integrity maintenance mechanism in biotic stress responses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Integration of Solar Cells on Top of CMOS Chips Part I: a-Si Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Kovalgin, Alexeij Y.; van der Werf, Karine H.M.; Schropp, Ruud E.I.; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with a-Si:H solar cells. Solar cells are manufactured directly on the CMOS chips. The microchips maintain comparable electronic performance, and the solar cells show efficiency values

  6. Collective synchronization of self/non-self discrimination in T cell activation, across multiple spatio-temporal scales

    Science.gov (United States)

    Altan-Bonnet, Gregoire

    The immune system is a collection of cells whose function is to eradicate pathogenic infections and malignant tumors while protecting healthy tissues. Recent work has delineated key molecular and cellular mechanisms associated with the ability to discriminate self from non-self agents. For example, structural studies have quantified the biophysical characteristics of antigenic molecules (those prone to trigger lymphocyte activation and a subsequent immune response). However, such molecular mechanisms were found to be highly unreliable at the individual cellular level. We will present recent efforts to build experimentally validated computational models of the immune responses at the collective cell level. Such models have become critical to delineate how higher-level integration through nonlinear amplification in signal transduction, dynamic feedback in lymphocyte differentiation and cell-to-cell communication allows the immune system to enforce reliable self/non-self discrimination at the organism level. In particular, we will present recent results demonstrating how T cells tune their antigen discrimination according to cytokine cues, and how competition for cytokine within polyclonal populations of cells shape the repertoire of responding clones. Additionally, we will present recent theoretical and experimental results demonstrating how competition between diffusion and consumption of cytokines determine the range of cell-cell communications within lymphoid organs. Finally, we will discuss how biochemically explicit models, combined with quantitative experimental validation, unravel the relevance of new feedbacks for immune regulations across multiple spatial and temporal scales.

  7. Multiple co morbid conditions in patient with Mast Cell Activation Syndrome

    Science.gov (United States)

    2017-10-26

    conditions in patient \\\\·ith Mast Cell Activation Syndron1e Sb. GRANT NUMBER Sc. PROGRAM.ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Maj Sofia...13. SUPPLEMENTARY NOTES 14. ABSTRACT Multiple co-n1orhid conditions in patient \\Vith Mast Cell Activation Syndrotne Sofia M. Szari.MD. and James...Defense. !NTR()D{JCT!ON: Mast cell activation disorders {MCAD) have been associated \\Vilh Connective Tissue Disorders (CTD) and orthostatic

  8. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration

    OpenAIRE

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-01-01

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with ?9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggest...

  9. Different aspects of thalidomide treatment and stem cell transplantation in multiple myeloma patients

    NARCIS (Netherlands)

    Marion, A.M.W. van

    2006-01-01

    Multiple myeloma (MM) is an haematological malignancy caused by an unrestrained proliferation of plasma cells (monoclonally differentiated B-cells), and part of the white blood cell count. This proliferation infiltrates the blood forming skeletal bone marrow, producing osteoclastic factors, causing

  10. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  11. Integrated modulation of phorbol ester-induced Raf activation in EL4 lymphoma cells.

    Science.gov (United States)

    Han, Shujie; Meier, Kathryn E

    2009-05-01

    The EL4 murine lymphoma cell line exists in variant phenotypes that differ with respect to responses to the tumor promoter phorbol 12-myristate 13-acetate (PMA1). Previous work showed that "PMA-sensitive" cells, characterized by a high magnitude of PMA-induced Erk activation, express RasGRP, a phorbol ester receptor that directly activates Ras. In "PMA-resistant" and "intermediate" EL4 cell lines, PMA induces Erk activation to lesser extents, but with a greater response in intermediate cells. In the current study, these cell lines were used to examine mechanisms of Raf-1 modulation. Phospho-specific antibodies were utilized to define patterns and kinetics of Raf-1 phosphorylation on several sites. Further studies showed that Akt is constitutively activated to a greater extent in PMA-resistant than in PMA-sensitive cells, and also to a greater extent in resistant than intermediate cells. Akt negatively regulates Raf-1 activation (Ser259), partially explaining the difference between resistant and intermediate cells. Erk activation exerts negative feedback on Raf-1 (Ser289/296/301), thus resulting in earlier termination of the signal in cells with a higher level of Erk activation. RKIP, a Raf inhibitory protein, is expressed at higher levels in resistant cells than in sensitive or intermediate cells. Knockdown of RKIP increases Erk activation and also negative feedback. In conclusion, this study delineates Raf-1 phosphorylation events occurring in response to PMA in cell lines with different extents of Erk activation. Variations in the levels of expression and activation of multiple signaling proteins work in an integrated fashion to modulate the extent and duration of Erk activation.

  12. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan

    2009-10-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.

  13. KRE5 Suppression Induces Cell Wall Stress and Alternative ER Stress Response Required for Maintaining Cell Wall Integrity in Candida glabrata

    Science.gov (United States)

    Sasaki, Masato; Ito, Fumie; Aoyama, Toshio; Sato-Okamoto, Michiyo; Takahashi-Nakaguchi, Azusa; Chibana, Hiroji; Shibata, Nobuyuki

    2016-01-01

    The maintenance of cell wall integrity in fungi is required for normal cell growth, division, hyphae formation, and antifungal tolerance. We observed that endoplasmic reticulum stress regulated cell wall integrity in Candida glabrata, which possesses uniquely evolved mechanisms for unfolded protein response mechanisms. Tetracycline-mediated suppression of KRE5, which encodes a predicted UDP-glucose:glycoprotein glucosyltransferase localized in the endoplasmic reticulum, significantly increased cell wall chitin content and decreased cell wall β-1,6-glucan content. KRE5 repression induced endoplasmic reticulum stress-related gene expression and MAP kinase pathway activation, including Slt2p and Hog1p phosphorylation, through the cell wall integrity signaling pathway. Moreover, the calcineurin pathway negatively regulated cell wall integrity, but not the reduction of β-1,6-glucan content. These results indicate that KRE5 is required for maintaining both endoplasmic reticulum homeostasis and cell wall integrity, and that the calcineurin pathway acts as a regulator of chitin-glucan balance in the cell wall and as an alternative mediator of endoplasmic reticulum stress in C. glabrata. PMID:27548283

  14. Tools and Models for Integrating Multiple Cellular Networks

    Energy Technology Data Exchange (ETDEWEB)

    Gerstein, Mark [Yale Univ., New Haven, CT (United States). Gerstein Lab.

    2015-11-06

    In this grant, we have systematically investigated the integrated networks, which are responsible for the coordination of activity between metabolic pathways in prokaryotes. We have developed several computational tools to analyze the topology of the integrated networks consisting of metabolic, regulatory, and physical interaction networks. The tools are all open-source, and they are available to download from Github, and can be incorporated in the Knowledgebase. Here, we summarize our work as follow. Understanding the topology of the integrated networks is the first step toward understanding its dynamics and evolution. For Aim 1 of this grant, we have developed a novel algorithm to determine and measure the hierarchical structure of transcriptional regulatory networks [1]. The hierarchy captures the direction of information flow in the network. The algorithm is generally applicable to regulatory networks in prokaryotes, yeast and higher organisms. Integrated datasets are extremely beneficial in understanding the biology of a system in a compact manner due to the conflation of multiple layers of information. Therefore for Aim 2 of this grant, we have developed several tools and carried out analysis for integrating system-wide genomic information. To make use of the structural data, we have developed DynaSIN for protein-protein interactions networks with various dynamical interfaces [2]. We then examined the association between network topology with phenotypic effects such as gene essentiality. In particular, we have organized E. coli and S. cerevisiae transcriptional regulatory networks into hierarchies. We then correlated gene phenotypic effects by tinkering with different layers to elucidate which layers were more tolerant to perturbations [3]. In the context of evolution, we also developed a workflow to guide the comparison between different types of biological networks across various species using the concept of rewiring [4], and Furthermore, we have developed

  15. Multiple mesodermal lineage differentiation of Apodemus sylvaticus embryonic stem cells in vitro

    Directory of Open Access Journals (Sweden)

    Yu Weihua

    2010-06-01

    Full Text Available Abstract Background Embryonic stem (ES cells have attracted significant attention from researchers around the world because of their ability to undergo indefinite self-renewal and produce derivatives from the three cell lineages, which has enormous value in research and clinical applications. Until now, many ES cell lines of different mammals have been established and studied. In addition, recently, AS-ES1 cells derived from Apodemus sylvaticus were established and identified by our laboratory as a new mammalian ES cell line. Hence further research, in the application of AS-ES1 cells, is warranted. Results Herein we report the generation of multiple mesodermal AS-ES1 lineages via embryoid body (EB formation by the hanging drop method and the addition of particular reagents and factors for induction at the stage of EB attachment. The AS-ES1 cells generated separately in vitro included: adipocytes, osteoblasts, chondrocytes and cardiomyocytes. Histochemical staining, immunofluorescent staining and RT-PCR were carried out to confirm the formation of multiple mesodermal lineage cells. Conclusions The appropriate reagents and culture milieu used in mesodermal differentiation of mouse ES cells also guide the differentiation of in vitro AS-ES1 cells into distinct mesoderm-derived cells. This study provides a better understanding of the characteristics of AS-ES1 cells, a new species ES cell line and promotes the use of Apodemus ES cells as a complement to mouse ES cells in future studies.

  16. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.

    LENUS (Irish Health Repository)

    Fletcher, J M

    2012-02-01

    Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting gammadelta T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, gammadelta, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes.

  17. On-chip integrated labelling, transport and detection of tumour cells.

    Science.gov (United States)

    Woods, Jane; Docker, Peter T; Dyer, Charlotte E; Haswell, Stephen J; Greenman, John

    2011-11-01

    Microflow cytometry represents a promising tool for the investigation of diagnostic and prognostic cellular cancer markers, particularly if integrated within a device that allows primary cells to be freshly isolated from the solid tumour biopsies that more accurately reflect patient-specific in vivo tissue microenvironments at the time of staining. However, current tissue processing techniques involve several sequential stages with concomitant cell losses, and as such are inappropriate for use with small biopsies. Accordingly, we present a simple method for combined antibody-labelling and dissociation of heterogeneous cells from a tumour mass, which reduces the number of processing steps. Perfusion of ex vivo tissue at 4°C with antibodies and enzymes slows cellular activity while allowing sufficient time for the diffusion of minimally active enzymes. In situ antibody-labelled cells are then dissociated at 37°C from the tumour mass, whereupon hydrogel-filled channels allow the release of relatively low cell numbers (<1000) into a biomimetic microenvironment. This novel approach to sample processing is then further integrated with hydrogel-based electrokinetic transport of the freshly liberated fluorescent cells for downstream detection. It is anticipated that this integrated microfluidic methodology will have wide-ranging biomedical and clinical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. INTEGRATING MULTIPLE CRITERIA EVALUATION AND GIS IN ECOTOURISM: A REVIEW

    Directory of Open Access Journals (Sweden)

    Z. H. Mohd

    2016-09-01

    Full Text Available The concept of 'Eco-tourism' is increasingly heard in recent decades. Ecotourism is one adventure that environmentally responsible intended to appreciate the nature experiences and cultures. Ecotourism should have low impact on environment and must contribute to the prosperity of local residents. This article reviews the use of Multiple Criteria Evaluation (MCE and Geographic Information System (GIS in ecotourism. Multiple criteria evaluation mostly used to land suitability analysis or fulfill specific objectives based on various attributes that exist in the selected area. To support the process of environmental decision making, the application of GIS is used to display and analysis the data through Analytic Hierarchy Process (AHP. Integration between MCE and GIS tool is important to determine the relative weight for the criteria used objectively. With the MCE method, it can resolve the conflict between recreation and conservation which is to minimize the environmental and human impact. Most studies evidences that the GIS-based AHP as a multi criteria evaluation is a strong and effective in tourism planning which can aid in the development of ecotourism industry effectively.

  19. Integrating Multiple Criteria Evaluation and GIS in Ecotourism: a Review

    Science.gov (United States)

    Mohd, Z. H.; Ujang, U.

    2016-09-01

    The concept of 'Eco-tourism' is increasingly heard in recent decades. Ecotourism is one adventure that environmentally responsible intended to appreciate the nature experiences and cultures. Ecotourism should have low impact on environment and must contribute to the prosperity of local residents. This article reviews the use of Multiple Criteria Evaluation (MCE) and Geographic Information System (GIS) in ecotourism. Multiple criteria evaluation mostly used to land suitability analysis or fulfill specific objectives based on various attributes that exist in the selected area. To support the process of environmental decision making, the application of GIS is used to display and analysis the data through Analytic Hierarchy Process (AHP). Integration between MCE and GIS tool is important to determine the relative weight for the criteria used objectively. With the MCE method, it can resolve the conflict between recreation and conservation which is to minimize the environmental and human impact. Most studies evidences that the GIS-based AHP as a multi criteria evaluation is a strong and effective in tourism planning which can aid in the development of ecotourism industry effectively.

  20. Cell characteristics of a multiple alloy nano-dots memory structure

    International Nuclear Information System (INIS)

    Bea, Ji Chel; Lee, Kang-Wook; Tanaka, Tetsu; Koyanagi, Mitsumasa; Song, Yun Heub; Lee, Gae-Hun

    2009-01-01

    A multiple alloy metal nano-dots memory using FN tunneling was investigated in order to confirm its structural possibility for future flash memory. In this work, a multiple FePt nano-dots device with a high work function (∼5.2 eV) and extremely high dot density (∼1.2 × 10 13 cm −2 ) was fabricated. Its structural effect for multiple layers was evaluated and compared to the one with a single layer in terms of the cell characteristics and reliability. We confirm that MOS capacitor structures with two to four multiple FePt nano-dot layers provide a larger threshold voltage window and better retention characteristics. Furthermore, it was also revealed that several process parameters for block oxide and inter-tunnel oxide between the nano-dot layers are very important to improve the efficiency of electron injection into multiple nano-dots. From these results, it is expected that a multiple FePt nano-dots memory using Fowler–Nordheim (FN) tunneling could be a candidate structure for future flash memory

  1. A Nonparametric, Multiple Imputation-Based Method for the Retrospective Integration of Data Sets

    Science.gov (United States)

    Carrig, Madeline M.; Manrique-Vallier, Daniel; Ranby, Krista W.; Reiter, Jerome P.; Hoyle, Rick H.

    2015-01-01

    Complex research questions often cannot be addressed adequately with a single data set. One sensible alternative to the high cost and effort associated with the creation of large new data sets is to combine existing data sets containing variables related to the constructs of interest. The goal of the present research was to develop a flexible, broadly applicable approach to the integration of disparate data sets that is based on nonparametric multiple imputation and the collection of data from a convenient, de novo calibration sample. We demonstrate proof of concept for the approach by integrating three existing data sets containing items related to the extent of problematic alcohol use and associations with deviant peers. We discuss both necessary conditions for the approach to work well and potential strengths and weaknesses of the method compared to other data set integration approaches. PMID:26257437

  2. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation.

    Directory of Open Access Journals (Sweden)

    Alexander Zhyvoloup

    2017-07-01

    Full Text Available HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation.

  3. Digoxin reveals a functional connection between HIV-1 integration preference and T-cell activation.

    Science.gov (United States)

    Zhyvoloup, Alexander; Melamed, Anat; Anderson, Ian; Planas, Delphine; Lee, Chen-Hsuin; Kriston-Vizi, Janos; Ketteler, Robin; Merritt, Andy; Routy, Jean-Pierre; Ancuta, Petronela; Bangham, Charles R M; Fassati, Ariberto

    2017-07-01

    HIV-1 integrates more frequently into transcribed genes, however the biological significance of HIV-1 integration targeting has remained elusive. Using a selective high-throughput chemical screen, we discovered that the cardiac glycoside digoxin inhibits wild-type HIV-1 infection more potently than HIV-1 bearing a single point mutation (N74D) in the capsid protein. We confirmed that digoxin repressed viral gene expression by targeting the cellular Na+/K+ ATPase, but this did not explain its selectivity. Parallel RNAseq and integration mapping in infected cells demonstrated that digoxin inhibited expression of genes involved in T-cell activation and cell metabolism. Analysis of >400,000 unique integration sites showed that WT virus integrated more frequently than N74D mutant within or near genes susceptible to repression by digoxin and involved in T-cell activation and cell metabolism. Two main gene networks down-regulated by the drug were CD40L and CD38. Blocking CD40L by neutralizing antibodies selectively inhibited WT virus infection, phenocopying digoxin. Thus the selectivity of digoxin depends on a combination of integration targeting and repression of specific gene networks. The drug unmasked a functional connection between HIV-1 integration and T-cell activation. Our results suggest that HIV-1 evolved integration site selection to couple its early gene expression with the status of target CD4+ T-cells, which may affect latency and viral reactivation.

  4. Multiple constant multiplication optimizations for field programmable gate arrays

    CERN Document Server

    Kumm, Martin

    2016-01-01

    This work covers field programmable gate array (FPGA)-specific optimizations of circuits computing the multiplication of a variable by several constants, commonly denoted as multiple constant multiplication (MCM). These optimizations focus on low resource usage but high performance. They comprise the use of fast carry-chains in adder-based constant multiplications including ternary (3-input) adders as well as the integration of look-up table-based constant multipliers and embedded multipliers to get the optimal mapping to modern FPGAs. The proposed methods can be used for the efficient implementation of digital filters, discrete transforms and many other circuits in the domain of digital signal processing, communication and image processing. Contents Heuristic and ILP-Based Optimal Solutions for the Pipelined Multiple Constant Multiplication Problem Methods to Integrate Embedded Multipliers, LUT-Based Constant Multipliers and Ternary (3-Input) Adders An Optimized Multiple Constant Multiplication Architecture ...

  5. Alpha Particles Induce Autophagy in Multiple Myeloma Cells.

    Science.gov (United States)

    Gorin, Jean-Baptiste; Gouard, Sébastien; Ménager, Jérémie; Morgenstern, Alfred; Bruchertseifer, Frank; Faivre-Chauvet, Alain; Guilloux, Yannick; Chérel, Michel; Davodeau, François; Gaschet, Joëlle

    2015-01-01

    Radiation emitted by the radionuclides in radioimmunotherapy (RIT) approaches induce direct killing of the targeted cells as well as indirect killing through the bystander effect. Our research group is dedicated to the development of α-RIT, i.e., RIT using α-particles especially for the treatment of multiple myeloma (MM). γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by (213)Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of (213)Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation. Murine 5T33 and human LP-1 MM cell lines were used to study the effects of such α-particles. We first examined the effects of (213)Bi on proliferation rate, double-strand DNA breaks, cell cycle, and cell death. Then, we investigated autophagy after (213)Bi irradiation. Finally, a coculture of dendritic cells (DCs) with irradiated tumor cells or their culture media was performed to test whether it would induce DC activation. We showed that (213)Bi induces DNA double-strand breaks, cell cycle arrest, and autophagy in both cell lines, but we detected only slight levels of early apoptosis within the 120 h following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented (213)Bi-induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s); however, no increase in membrane or extracellular expression of danger-associated molecular patterns was observed after irradiation. This study demonstrates that (213)Bi induces mainly necrosis in MM cells, low levels of apoptosis, and autophagy that might be involved in tumor cell death.

  6. Multiple growth hormone-binding proteins are expressed on insulin-producing cells

    DEFF Research Database (Denmark)

    Møldrup, A; Billestrup, N; Thorn, N A

    1989-01-01

    The insulin-producing rat islet tumor cell line, RIN-5AH, expresses somatogen binding sites and responds to GH by increased proliferation and insulin production. Affinity cross-linking shows that RIN-5AH cells contain two major GH-binding subunits of Mr 100-130K (110K), which appear to exist as d....... It is concluded that the RIN-5AH cells have multiple GH-binding proteins which may mediate signals for either proliferation and/or insulin production....

  7. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Carol F., E-mail: carol-webb@omrf.org [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Ratliff, Michelle L., E-mail: michelle-ratliff@omrf.org [Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK (United States); Powell, Rebecca, E-mail: rebeccapowell@gmail.com [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Wirsig-Wiechmann, Celeste R., E-mail: celeste-wirsig@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Lakiza, Olga, E-mail: olga-lakiza@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States); Obara, Tomoko, E-mail: tomoko-obara@ouhsc.edu [Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2015-08-07

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.

  8. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    International Nuclear Information System (INIS)

    Webb, Carol F.; Ratliff, Michelle L.; Powell, Rebecca; Wirsig-Wiechmann, Celeste R.; Lakiza, Olga; Obara, Tomoko

    2015-01-01

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights: • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development

  9. Tuning Cell and Tissue Development by Combining Multiple Mechanical Signals.

    Science.gov (United States)

    Sinha, Ravi; Verdonschot, Nico; Koopman, Bart; Rouwkema, Jeroen

    2017-10-01

    Mechanical signals offer a promising way to control cell and tissue development. It has been established that cells constantly probe their mechanical microenvironment and employ force feedback mechanisms to modify themselves and when possible, their environment, to reach a homeostatic state. Thus, a correct mechanical microenvironment (external forces and mechanical properties and shapes of cellular surroundings) is necessary for the proper functioning of cells. In vitro or in the case of nonbiological implants in vivo, where cells are in an artificial environment, addition of the adequate mechanical signals can, therefore, enable the cells to function normally as in vivo. Hence, a wide variety of approaches have been developed to apply mechanical stimuli (such as substrate stretch, flow-induced shear stress, substrate stiffness, topography, and modulation of attachment area) to cells in vitro. These approaches have not just revealed the effects of the mechanical signals on cells but also provided ways for probing cellular molecules and structures that can provide a mechanistic understanding of the effects. However, they remain lower in complexity compared with the in vivo conditions, where the cellular mechanical microenvironment is the result of a combination of multiple mechanical signals. Therefore, combinations of mechanical stimuli have also been applied to cells in vitro. These studies have had varying focus-developing novel platforms to apply complex combinations of mechanical stimuli, observing the co-operation/competition between stimuli, combining benefits of multiple stimuli toward an application, or uncovering the underlying mechanisms of their action. In general, they provided new insights that could not have been predicted from previous knowledge. We present here a review of several such studies and the insights gained from them, thereby making a case for such studies to be continued and further developed.

  10. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  11. Cell cycle regulation of human immunodeficiency virus type 1 integration in T cells: antagonistic effects of nuclear envelope breakdown and chromatin condensation

    International Nuclear Information System (INIS)

    Mannioui, Abdelkrim; Schiffer, Cecile; Felix, Nathalie

    2004-01-01

    We examined the influence of mitosis on the kinetics of human immunodeficiency virus type 1 integration in T cells. Single-round infection of cells arrested in G1b or allowed to synchronously proceed through division showed that mitosis delays virus integration until 18-24 h postinfection, whereas integration reaches maximum levels by 15 h in G1b-arrested cells. Subcellular fractionation of metaphase-arrested cells indicated that, while nuclear envelope disassembly facilitates docking of viral DNA to chromatin, chromosome condensation directly antagonizes and therefore delays integration. As a result of the balance between the two effects, virus integration efficiency is eventually up to threefold greater in dividing cells. At the single-cell level, using a green fluorescent protein-expressing reporter virus, we found that passage through mitosis leads to prominent asymmetric segregation of the viral genome in daughter cells without interfering with provirus expression

  12. Bortezomib consolidation after autologous stem cell transplantation in multiple myeloma

    DEFF Research Database (Denmark)

    Mellqvist, Ulf-Henrik; Gimsing, Peter; Hjertner, Oyvind

    2013-01-01

    The Nordic Myeloma Study Group conducted an open randomized trial to compare bortezomib as consolidation therapy given after high-dose therapy and autologous stem cell transplantation (ASCT) with no consolidation in bortezomib-naive patients with newly diagnosed multiple myeloma. Overall, 370...

  13. High-Throughput Multiple Dies-to-Wafer Bonding Technology and III/V-on-Si Hybrid Lasers for Heterogeneous Integration of Optoelectronic Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Xianshu eLuo

    2015-04-01

    Full Text Available Integrated optical light source on silicon is one of the key building blocks for optical interconnect technology. Great research efforts have been devoting worldwide to explore various approaches to integrate optical light source onto the silicon substrate. The achievements so far include the successful demonstration of III/V-on-Si hybrid lasers through III/V-gain material to silicon wafer bonding technology. However, for potential large-scale integration, leveraging on mature silicon complementary metal oxide semiconductor (CMOS fabrication technology and infrastructure, more effective bonding scheme with high bonding yield is in great demand considering manufacturing needs. In this paper, we propose and demonstrate a high-throughput multiple dies-to-wafer (D2W bonding technology which is then applied for the demonstration of hybrid silicon lasers. By temporarily bonding III/V dies to a handle silicon wafer for simultaneous batch processing, it is expected to bond unlimited III/V dies to silicon device wafer with high yield. As proof-of-concept, more than 100 III/V dies bonding to 200 mm silicon wafer is demonstrated. The high performance of the bonding interface is examined with various characterization techniques. Repeatable demonstrations of 16-III/V-die bonding to pre-patterned 200 mm silicon wafers have been performed for various hybrid silicon lasers, in which device library including Fabry-Perot (FP laser, lateral-coupled distributed feedback (LC-DFB laser with side wall grating, and mode-locked laser (MLL. From these results, the presented multiple D2W bonding technology can be a key enabler towards the large-scale heterogeneous integration of optoelectronic integrated circuits (H-OEIC.

  14. Functional Stem Cell Integration into Neural Networks Assessed by Organotypic Slice Cultures.

    Science.gov (United States)

    Forsberg, David; Thonabulsombat, Charoensri; Jäderstad, Johan; Jäderstad, Linda Maria; Olivius, Petri; Herlenius, Eric

    2017-08-14

    Re-formation or preservation of functional, electrically active neural networks has been proffered as one of the goals of stem cell-mediated neural therapeutics. A primary issue for a cell therapy approach is the formation of functional contacts between the implanted cells and the host tissue. Therefore, it is of fundamental interest to establish protocols that allow us to delineate a detailed time course of grafted stem cell survival, migration, differentiation, integration, and functional interaction with the host. One option for in vitro studies is to examine the integration of exogenous stem cells into an existing active neural network in ex vivo organotypic cultures. Organotypic cultures leave the structural integrity essentially intact while still allowing the microenvironment to be carefully controlled. This allows detailed studies over time of cellular responses and cell-cell interactions, which are not readily performed in vivo. This unit describes procedures for using organotypic slice cultures as ex vivo model systems for studying neural stem cell and embryonic stem cell engraftment and communication with CNS host tissue. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  15. SAHA-induced TRAIL-sensitisation of Multiple Myeloma cells is enhanced in 3D cell culture.

    Science.gov (United States)

    Arhoma, A; Chantry, A D; Haywood-Small, S L; Cross, N A

    2017-11-15

    Multiple Myeloma (MM) is currently incurable despite many novel therapies. Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) is a potential anti-tumour agent although effects as a single agent are limited. In this study, we investigated whether the Histone Deacetylase (HDAC) inhibitor SAHA can enhance TRAIL-induced apoptosis and target TRAIL resistance in both suspension culture, and 3D cell culture as a model of disseminated MM lesions that form in bone. The effects of SAHA and/or TRAIL in 6 Multiple Myeloma cell lines were assessed in both suspension cultures and in an Alginate-based 3D cell culture model. The effect of SAHA and/or TRAIL was assessed on apoptosis by assessment of nuclear morphology using Hoechst 33342/Propidium Iodide staining. Viable cell number was assessed by CellTiter-Glo luminescence assay, Caspase-8 and -9 activities were measured by Caspase-Glo™ assay kit. TRAIL-resistant cells were generated by culture of RPMI 8226 and NCI-H929 by acute exposure to TRAIL followed by selection of TRAIL-resistant cells. TRAIL significantly induced apoptosis in a dose-dependent manner in OPM-2, RPMI 8226, NCI-H929, U266, JJN-3 MM cell lines and ADC-1 plasma cell leukaemia cells. SAHA amplified TRAIL responses in all lines except OPM-2, and enhanced TRAIL responses were both via Caspase-8 and -9. SAHA treatment induced growth inhibition that further increased in the combination treatment with TRAIL in MM cells. The co-treatment of TRAIL and SAHA reduced viable cell numbers all cell lines. TRAIL responses were further potentiated by SAHA in 3D cell culture in NCI-H929, RPMI 8226 and U266 at lower TRAIL + SAHA doses than in suspension culture. However TRAIL responses in cells that had been selected for TRAIL resistance were not further enhanced by SAHA treatment. SAHA is a potent sensitizer of TRAIL responses in both TRAIL sensitive and resistant cell lines, in both suspension and 3D culture, however SAHA did not sensitise TRAIL-sensitive cell

  16. Autologous hematopoietic stem cell transplantation in relapsing-remitting multiple sclerosis: comparison with secondary progressive multiple sclerosis.

    Science.gov (United States)

    Casanova, Bonaventura; Jarque, Isidro; Gascón, Francisco; Hernández-Boluda, Juan Carlos; Pérez-Miralles, Francisco; de la Rubia, Javier; Alcalá, Carmen; Sanz, Jaime; Mallada, Javier; Cervelló, Angeles; Navarré, Arantxa; Carcelén-Gadea, María; Boscá, Isabel; Gil-Perotin, Sara; Solano, Carlos; Sanz, Miguel Angel; Coret, Francisco

    2017-07-01

    The main objective of our work is to describe the long-term results of myeloablative autologous hematopoietic stem cell transplant (AHSCT) in multiple sclerosis patients. Patients that failed to conventional therapies for multiple sclerosis (MS) underwent an approved protocol for AHSCT, which consisted of peripheral blood stem cell mobilization with cyclophosphamide and granulocyte colony-stimulating factor (G-CSF), followed by a conditioning regimen of BCNU, Etoposide, Ara-C, Melphalan IV, plus Rabbit Thymoglobulin. Thirty-eight MS patients have been transplanted since 1999. Thirty-one patients have been followed for more than 2 years (mean 8.4 years). There were 22 relapsing-remitting multiple sclerosis (RRMS) patients and 9 secondary progressive multiple sclerosis (SPMS) patients. No death related to AHSCT. A total of 10 patients (32.3%) had at least one relapse during post-AHSCT evolution, 6 patients in the RRMS group (27.2%) and 4 in the SPMS group (44.4%). After AHSCT, 7 patients (22.6%) experienced progression of disability, all within SP form. By contrast, no patients with RRMS experienced worsening of disability after a median follow-up of 5.4 years, 60% of them showed a sustained reduction in disability (SRD), defined as the improvement of 1.0 point in the expanded disability status scale (EDSS) sustains for 6 months (0.5 in cases of EDSS ≥ 5.5). The only clinical variable that predicted a poor response to AHSCT was a high EDSS in the year before transplant. AHSCT using the BEAM-ATG scheme is safe and efficacious to control the aggressive forms of RRMS.

  17. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S. [Institute of Genetics, Taipei (Taiwan, Province of China)

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viral DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.

  18. Distorted secretory granule composition in mast cells with multiple protease deficiency.

    Science.gov (United States)

    Grujic, Mirjana; Calounova, Gabriela; Eriksson, Inger; Feyerabend, Thorsten; Rodewald, Hans-Reimer; Tchougounova, Elena; Kjellén, Lena; Pejler, Gunnar

    2013-10-01

    Mast cells are characterized by an abundance of secretory granules densely packed with inflammatory mediators such as bioactive amines, cytokines, serglycin proteoglycans with negatively charged glycosaminoglycan side chains of either heparin or chondroitin sulfate type, and large amounts of positively charged proteases. Despite the large biological impact of mast cell granules and their contents on various pathologies, the mechanisms that regulate granule composition are incompletely understood. In this study, we hypothesized that granule composition is dependent on a dynamic electrostatic interrelationship between different granule compounds. As a tool to evaluate this possibility, we generated mice in which mast cells are multideficient in a panel of positively charged proteases: the chymase mouse mast cell protease-4, the tryptase mouse mast cell protease-6, and carboxypeptidase A3. Through a posttranslational effect, mast cells from these mice additionally lack mouse mast cell protease-5 protein. Mast cells from mice deficient in individual proteases showed normal morphology. In contrast, mast cells with combined protease deficiency displayed a profound distortion of granule integrity, as seen both by conventional morphological criteria and by transmission electron microscopy. An assessment of granule content revealed that the distorted granule integrity in multiprotease-deficient mast cells was associated with a profound reduction of highly negatively charged heparin, whereas no reduction in chondroitin sulfate storage was observed. Taken together with previous findings showing that the storage of basic proteases conversely is regulated by anionic proteoglycans, these data suggest that secretory granule composition in mast cells is dependent on a dynamic interrelationship between granule compounds of opposite electrical charge.

  19. A multiple index integrating different levels of organization.

    Science.gov (United States)

    Cortes, Rui; Hughes, Samantha; Coimbra, Ana; Monteiro, Sandra; Pereira, Vítor; Lopes, Marisa; Pereira, Sandra; Pinto, Ana; Sampaio, Ana; Santos, Cátia; Carrola, João; de Jesus, Joaquim; Varandas, Simone

    2016-10-01

    Many methods in freshwater biomonitoring tend to be restricted to a few levels of biological organization, limiting the potential spectrum of measurable of cause-effect responses to different anthropogenic impacts. We combined distinct organisational levels, covering biological biomarkers (histopathological and biochemical reactions in liver and fish gills), community based bioindicators (fish guilds, invertebrate metrics/traits and chironomid pupal exuviae) and ecosystem functional indicators (decomposition rates) to assess ecological status at designated Water Framework Directive monitoring sites, covering a gradient of human impact across several rivers in northern Portugal. We used Random Forest to rank the variables that contributed more significantly to successfully predict the different classes of ecological status and also to provide specific cut levels to discriminate each WFD class based on reference condition. A total of 59 Biological Quality Elements and functional indicators were determined using this procedure and subsequently applied to develop the integrated Multiple Ecological Level Index (MELI Index), a potentially powerful bioassessment tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    The epidermis is an integral part of our largest organ, the skin, and protects us against the hostile environment. It is a highly dynamic tissue that, during normal steady-state conditions, undergoes constant turnover. Multiple stem cell populations residing in autonomously maintained compartments...... facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...... of the pilosebaceous unit, encompassing the heterogeneity and plasticity of multiple discrete stem cell populations that are strongly influenced by external cues to maintain their identity and function....

  1. Spontaneous squamous cell carcinoma of the tongue and multiple bronchioloalveolar carcinomas in a Virginia opossum (Didelphis virginiana).

    Science.gov (United States)

    Kim, D Y; Mitchell, M A; De las Heras, M; Taylor, H W; Cho, D-Y

    2002-01-01

    Two primary tumours, squamous cell carcinoma of the tongue and multiple bronchioloalveolar carcinomas, were diagnosed in a Virginia opossum (Didelphis virginiana). Two oral masses were located in the right ventrolateral surface of the tongue, near the frenulum, and the lungs contained multiple, widely distributed, nodular masses. Microscopically, the oral masses were composed of invasive cords of pleomorphic, polyhedral cells, typical of squamous cells. The multiple pulmonary masses consisted of non-ciliated, cuboidal, columnar, or occasionally polyhedral cells arranged in an alveolar pattern with multifocal areas of necrosis. This is the first report of spontaneous oropharyngeal squamous cell carcinoma in the Virginia opossum. However, multiple pulmonary adenomas have been reported previously in this species, the lesions being similar to those in sheep pulmonary adenomatosis (jaagsiekte). In the present study, immunohistochemical examination of the pulmonary tumours with a rabbit polyclonal antiserum to jaagsiekte retroviral capsid protein proved negative. Copyright Harcourt Publishers Ltd.

  2. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  3. Stem Cell Physics. Multiple-Laser-Beam Treatment of Parkinson's Disease

    Science.gov (United States)

    Stefan, V.

    2013-03-01

    A novel method for the treatment of Parkinson's disease is proposed. Pluripotent stem cells are laser cultured, using ultrashort wavelength, (around 0.1 micron-ultraviolet radiation-with intensities of a few mW/cm2) , multiple laser beams.[2] The multiple-energy laser photons[3] interact with the neuron DNA molecules to be cloned. The laser created dopaminergic substantia nigra neurons can be, (theoretically), laser transplanted, (a higher focusing precision as compared to a syringe method), into the striatum or substantia nigra regions of the brain, or both. Supported by Nikola Tesla Labs, Stefan University.

  4. Synaptic integration of transplanted interneuron progenitor cells into native cortical networks.

    Science.gov (United States)

    Howard, MacKenzie A; Baraban, Scott C

    2016-08-01

    Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation. Copyright © 2016 the American Physiological Society.

  5. CLASS-PAIR-GUIDED MULTIPLE KERNEL LEARNING OF INTEGRATING HETEROGENEOUS FEATURES FOR CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    Q. Wang

    2017-10-01

    Full Text Available In recent years, many studies on remote sensing image classification have shown that using multiple features from different data sources can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL can conveniently be embedded in a variety of characteristics. The conventional combined kernel learned by MKL can be regarded as the compromise of all basic kernels for all classes in classification. It is the best of the whole, but not optimal for each specific class. For this problem, this paper proposes a class-pair-guided MKL method to integrate the heterogeneous features (HFs from multispectral image (MSI and light detection and ranging (LiDAR data. In particular, the one-against-one strategy is adopted, which converts multiclass classification problem to a plurality of two-class classification problem. Then, we select the best kernel from pre-constructed basic kernels set for each class-pair by kernel alignment (KA in the process of classification. The advantage of the proposed method is that only the best kernel for the classification of any two classes can be retained, which leads to greatly enhanced discriminability. Experiments are conducted on two real data sets, and the experimental results show that the proposed method achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms.

  6. Significance of adipose tissue-derived stem cells regulate CD4+ T cell immune in the treatment of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Yong-lin XIE

    2014-10-01

    Full Text Available Adipose tissue-derived stem cells (ADSCs are genetically engineered seed cells with immunomodulatory effects, widely used in the treatment of autoimmune diseases. This article focuses on the immunomodulatory effects of adipose tissue-derived stem cells on CD4+ T cell subsets, including T helper cell (Th 1, 2, 17 and regulatory T cell (Treg, and its clinical significance in the treatment of multiple sclerosis. doi: 10.3969/j.issn.1672-6731.2014.10.005

  7. Apoptotic effects of non-edible parts of Punica granatum on human multiple myeloma cells.

    Science.gov (United States)

    Kiraz, Yağmur; Neergheen-Bhujun, Vidushi S; Rummun, Nawraj; Baran, Yusuf

    2016-02-01

    Multiple myeloma is of great concern since existing therapies are unable to cure this clinical condition. Alternative therapeutic approaches are mandatory, and the use of plant extracts is considered interesting. Punica granatum and its derived products were suggested as potential anticancer agents due to the presence of bioactive compounds. Thus, polypenolic-rich extracts of the non-edible parts of P. granatum were investigated for their antiproliferative and apoptotic effects on U266 multiple myeloma cells. We demonstrated that there were dose-dependent decreases in the proliferation of U266 cells in response to P. granatum extracts. Also, exposure to the extracts triggered apoptosis with significant increases in loss of mitochondrial membrane potential in U266 cells exposed to the leaves and stem extracts, while the flower extract resulted in slight increases in loss of MMP. These results were confirmed by Annexin-V analysis. These results documented the cytotoxic and apoptotic effects of P. granatum extracts on human U266 multiple myeloma cells via disruption of mitochondrial membrane potential and increasing cell cycle arrest. The data suggest that the extracts can be envisaged in cancer chemoprevention and call for further exploration into the potential application of these plant parts.

  8. Incorporating Multiple Energy Relay Dyes in Liquid Dye-Sensitized Solar Cells

    KAUST Repository

    Yum, Jun-Ho; Hardin, Brian E.; Hoke, Eric T.; Baranoff, Etienne; Zakeeruddin, Shaik M.; Nazeeruddin, Mohammad K.; Torres, Tomas; McGehee, Michael D.; Grä tzel, Michael

    2011-01-01

    Panchromatic response is essential to increase the light-harvesting efficiency in solar conversion systems. Herein we show increased light harvesting from using multiple energy relay dyes inside dye-sensitized solar cells. Additional photoresponse

  9. Application of fuel cells with heat recovery for integrated utility systems

    Science.gov (United States)

    Shields, V.; King, J. M., Jr.

    1975-01-01

    This paper presents the results of a study of fuel cell powerplants with heat recovery for use in an integrated utility system. Such a design provides for a low pollution, noise-free, highly efficient integrated utility. Use of the waste heat from the fuel cell powerplant in an integrated utility system for the village center complex of a new community results in a reduction in resource consumption of 42 percent compared to conventional methods. In addition, the system has the potential of operating on fuels produced from waste materials (pyrolysis and digester gases); this would provide further reduction in energy consumption.

  10. Managing multimorbidity: profiles of integrated care approaches targeting people with multiple chronic conditions in Europe.

    NARCIS (Netherlands)

    Rijken, M.; Hujala, A.; Ginneken, E. van; Melchiorre, M.G.; Groenewegen, P.; Schellevis, F.

    2018-01-01

    In response to the growing populations of people with multiple chronic diseases, new models of care are currently being developed in European countries to better meet the needs of these people. This paper aims to describe the occurrence and characteristics of various types of integrated care

  11. Dendritic cell, monocyte and T cell activation and response to glatiramer acetate in multiple sclerosis

    DEFF Research Database (Denmark)

    Sellebjerg, F; Hesse, D; Limborg, S

    2012-01-01

    , monocytes and dendritic cells (DC) in relation to disease activity in MS patients treated with GA. Methods: Flow cytometry was used to study the activation of CD4+ T cells and T cell subsets (CD25high and CD26high cells), monocytes and DCs in a cross-sectional study of 39 untreated and 29 GA-treated MS......Background: Treatment with glatiramer acetate (GA) modestly decreases disease activity in multiple sclerosis (MS). The mechanism of action is incompletely understood and differences in the response to treatment between individuals may exist. Objective: To study the activation of CD4+ T cells...... (Bonferroni-corrected p=0.0005). The hazard ratio of relapse was 1.32 (95% confidence interval 1.05–1.64) per 1% increase in CD40+ DCs. Patients treated with GA had fewer CD4+ T cells expressing surface markers associated with T helper type 1 effector responses and more CD4+ T cells expressing surface markers...

  12. Human placenta-derived cells (PDA-001) for the treatment of adults with multiple sclerosis: a randomized, placebo-controlled, multiple-dose study.

    Science.gov (United States)

    Lublin, Fred D; Bowen, James D; Huddlestone, John; Kremenchutzky, Marcelo; Carpenter, Adam; Corboy, John R; Freedman, Mark S; Krupp, Lauren; Paulo, Corri; Hariri, Robert J; Fischkoff, Steven A

    2014-11-01

    Infusion of PDA-001, a preparation of mesenchymal-like cells derived from full-term human placenta, is a new approach in the treatment of patients with multiple sclerosis. This safety study aimed to rule out the possibility of paradoxical exacerbation of disease activity by PDA-001 in patients with multiple sclerosis. This was a phase 1b, multicenter, randomized, double-blind, placebo-controlled, 2-dose ranging study including patients with relapsing-remitting multiple sclerosis or secondary progressive multiple sclerosis. The study was conducted at 6 sites in the United States and 2 sites in Canada. Patients were randomized 3:1 to receive 2 low-dose infusions of PDA-001 (150×10(6) cells) or placebo, given 1 week apart. After completing this cohort, subsequent patients received high-dose PDA-001 (600×10(6) cells) or placebo. Monthly brain magnetic resonance imaging scans were performed. The primary end point was ruling out the possibility of paradoxical worsening of MS disease activity. This was monitored using Cutter׳s rule (≥5 new gadolinium lesions on 2 consecutive scans) by brain magnetic resonance imaging on a monthly basis for six months and also the frequency of multiple sclerosis relapse. Ten patients with relapsing-remitting multiple sclerosis and 6 with secondary progressive multiple sclerosis were randomly assigned to treatment: 6 to low-dose PDA-001, 6 to high-dose PDA-001, and 4 to placebo. No patient met Cutter׳s rule. One patient receiving high-dose PDA-001 had an increase in T2 and gadolinium lesions and in Expanded Disability Status Scale score during a multiple sclerosis flare 5 months after receiving PDA-001. No other patient had an increase in Expanded Disability Status Scale score>0.5, and most had stable or decreasing Expanded Disability Status Scale scores. With high-dose PDA-001, 1 patient experienced a grade 1 anaphylactoid reaction and 1 had grade 2 superficial thrombophlebitis. Other adverse events were mild to moderate and included

  13. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma

    DEFF Research Database (Denmark)

    Drent, Esther; Groen, Richard W. J.; Noort, Willy A. Noort

    2016-01-01

    Adoptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody...... sequences to generate second-generation retroviral CD38- chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence......, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite...

  14. [Lentivirus-mediated shRNA silencing of LAMP2A inhibits the proliferation of multiple myeloma cells].

    Science.gov (United States)

    Li, Lixuan; Li, Jia

    2015-05-01

    To study the effects of lentivirus-mediated short hairpin RNA (shRNA) silencing of lysosome-associated membrane protein type 2A (LAMP2A) expression on the proliferation of multiple myeloma cells. The constructed shRNA lentiviral vector was applied to infect human multiple myeloma cell line MM.1S, and stable expression cell line was obtained by puromycin screening. Western blotting was used to verify the inhibitory effect on LAMP2A protein expression. MTT assay was conducted to detect the effect of knocked-down LAMP2A on MM.1S cell proliferation, and the anti-tumor potency of suberoylanilide hydroxamic acid (SAHA) against the obtained MM.1S LAMP2A(shRNA) stable cell line. Lactate assay was performed to observe the impact of low LAMP2A expression on cell glycolysis. The stable cell line with low LAMP2A expression were obtained with the constructed human LAMP2A-shRNA lentiviral vector. Down-regulation of LAMP2A expression significantly inhibited MM.1S cell proliferation and enhanced the anti-tumor activity of SAHA. Interestingly, decreased LAMP2A expression also inhibited MM.1S cell lactic acid secretion. Down-regulation of LAMP2A expression could inhibit cell proliferation in multiple myeloma cells.

  15. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells

    Science.gov (United States)

    Derksen, Patrick W. B.; Tjin, Esther; Meijer, Helen P.; Klok, Melanie D.; Mac Gillavry, Harold D.; van Oers, Marinus H. J.; Lokhorst, Henk M.; Bloem, Andries C.; Clevers, Hans; Nusse, Roel; van der Neut, Ronald; Spaargaren, Marcel; Pals, Steven T.

    2004-01-01

    The unrestrained growth of tumor cells is generally attributed to mutations in essential growth control genes, but tumor cells are also influenced by signals from the environment. In multiple myeloma (MM), the factors and signals coming from the bone marrow microenvironment are possibly even essential for the growth of the tumor cells. As targets for intervention, these signals may be equally important as mutated oncogenes. Given their oncogenic potential, WNT signals form a class of paracrine growth factors that could act to influence MM cell growth. In this paper, we report that MM cells have hallmarks of active WNT signaling, whereas the cells have not undergone detectable mutations in WNT signaling genes such as adenomatous polyposis coli and β-catenin (CTNNB1). We show that the malignant MM plasma cells overexpress β-catenin, including its N-terminally unphosphorylated form, suggesting active β-catenin/T cell factor-mediated transcription. Further accumulation and nuclear localization of β-catenin, and/or increased cell proliferation, was achieved by stimulation of WNT signaling with either Wnt3a, LiCl, or the constitutively active S33Y mutant of β-catenin. In contrast, by blocking WNT signaling by dominant-negative T cell factor, we can interfere with the growth of MM cells. We therefore suggest that MM cells are dependent on an active WNT signal, which may have important implications for the management of this incurable form of cancer. PMID:15067127

  16. Mixed-integrator-based bi-quad cell for designing a continuous time filter

    International Nuclear Information System (INIS)

    Chen Yong; Zhou Yumei

    2010-01-01

    A new mixed-integrator-based bi-quad cell is proposed. An alternative synthesis mechanism of complex poles is proposed compared with source-follower-based bi-quad cells which is designed applying the positive feedback technique. Using the negative feedback technique to combine different integrators, the proposed bi-quad cell synthesizes complex poles for designing a continuous time filter. It exhibits various advantages including compact topology, high gain, no parasitic pole, no CMFB circuit, and high capability. The fourth-order Butterworth lowpass filter using the proposed cells has been fabricated in 0.18 μm CMOS technology. The active area occupied by the filter with test buffer is only 200 x 170 μm 2 . The proposed filter consumes a low power of 201 μW and achieves a 68.5 dB dynamic range. (semiconductor integrated circuits)

  17. Presence of multiple sites containing polar material in spherical Escherichia coli cells that lack MreB.

    Science.gov (United States)

    Nilsen, Trine; Yan, Arthur W; Gale, Gregory; Goldberg, Marcia B

    2005-09-01

    In rod-shaped bacteria, certain proteins are specifically localized to the cell poles. The nature of the positional information that leads to the proper localization of these proteins is unclear. In a screen for factors required for the localization of the Shigella sp. actin assembly protein IcsA to the bacterial pole, a mutant carrying a transposon insertion in mreB displayed altered targeting of IcsA. The phenotype of cells containing a transposon insertion in mreB was indistinguishable from that of cells containing a nonpolar mutation in mreB or that of wild-type cells treated with the MreB inhibitor A22. In cells lacking MreB, a green fluorescent protein (GFP) fusion to a cytoplasmic derivative of IcsA localized to multiple sites. Secreted full-length native IcsA was present in multiple faint patches on the surfaces of these cells in a pattern similar to that seen for the cytoplasmic IcsA-GFP fusion. EpsM, the polar Vibrio cholerae inner membrane protein, also localized to multiple sites in mreB cells and colocalized with IcsA, indicating that localization to multiple sites is not unique to IcsA. Our results are consistent with the requirement, either direct or indirect, for MreB in the restriction of certain polar material to defined sites within the cell and, in the absence of MreB, with the formation of ectopic sites containing polar material.

  18. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation

    Directory of Open Access Journals (Sweden)

    Rafael A. Magris

    2017-07-01

    Full Text Available Decision-makers focus on representing biodiversity pattern, maintaining connectivity, and strengthening resilience to global warming when designing marine protected area (MPA systems, especially in coral reef ecosystems. The achievement of these broad conservation objectives will likely require large areas, and stretch limited funds for MPA implementation. We undertook a spatial prioritisation of Brazilian coral reefs that considered two types of conservation zones (i.e. no-take and multiple use areas and integrated multiple conservation objectives into MPA planning, while assessing the potential impact of different sets of objectives on implementation costs. We devised objectives for biodiversity, connectivity, and resilience to global warming, determined the extent to which existing MPAs achieved them, and designed complementary zoning to achieve all objectives combined in expanded MPA systems. In doing so, we explored interactions between different sets of objectives, determined whether refinements to the existing spatial arrangement of MPAs were necessary, and tested the utility of existing MPAs by comparing their cost effectiveness with an MPA system designed from scratch. We found that MPAs in Brazil protect some aspects of coral reef biodiversity pattern (e.g. threatened fauna and ecosystem types more effectively than connectivity or resilience to global warming. Expanding the existing MPA system was as cost-effective as designing one from scratch only when multiple objectives were considered and management costs were accounted for. Our approach provides a comprehensive assessment of the benefits of integrating multiple objectives in the initial stages of conservation planning, and yields insights for planners of MPAs tackling multiple objectives in other regions.

  19. Amelioration of NK cell function driven by Vα24+ invariant NKT cell activation in multiple myeloma.

    Science.gov (United States)

    Iyoda, Tomonori; Yamasaki, Satoru; Hidaka, Michihiro; Kawano, Fumio; Abe, Yu; Suzuki, Kenshi; Kadowaki, Norimitsu; Shimizu, Kanako; Fujii, Shin-Ichiro

    2018-02-01

    NK cells represent a first line of immune defense, but are progressively dysregulated in multiple myeloma (MM) patients. To restore and facilitate their antitumor effect, NK cells are required in sufficient quantities and must be stimulated. We initially assessed the proportions of NKT and NK cells in 34 MM patients. The frequencies of both in PBMC populations correlated with those in BMMNCs irrespective of low BMMNC numbers. We then assessed the adjunctive effect of stimulating NKT cells with CD1d and α-GalCer complexes on the NK cells. The expression of NKG2D on CD56 dim CD16 + NK cells and DNAM-1 on CD56 bright CD16 - NK cells increased after NKT cell activation. Apparently, NK cell-mediated anti-tumor effects were dependent on NKG2D and DNAM-1 ligands on myeloma cells. Thus, NK cell function in patients could be ameliorated, beyond the effect of immunosuppression, by NKT cell activation. This NKT-driven NK cell therapy could represent a potential new treatment modality. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Antitumoral Effect of Hibiscus sabdariffa on Human Squamous Cell Carcinoma and Multiple Myeloma Cells.

    Science.gov (United States)

    Malacrida, Alessio; Maggioni, Daniele; Cassetti, Arianna; Nicolini, Gabriella; Cavaletti, Guido; Miloso, Mariarosaria

    2016-10-01

    Cancer is a leading cause of death worldwide. Despite therapeutic improvements, some cancers are still untreatable. Recently there has been an increasing interest in the use of natural substances for cancer prevention and treatment. Hibiscus sabdariffa (HS) is a plant, belonging to Malvaceae family, widespread in South Asia and Central Africa. HS extract (HSE) used in folk medicine, gained researchers' interest thanks to its antioxidant, anti-inflammatory, and chemopreventive properties. In the present study, we initially assessed HSE effect on a panel of human tumor cell lines. Then we focused our study on the following that are most sensitive to HSE action cell lines: Multiple Myeloma (MM) cells (RPMI 8226) and Oral Squamous Cell Carcinoma (OSCC) cells (SCC-25). In both RPMI 8226 and SCC-25 cells, HSE impaired cell growth, exerted a reversible cytostatic effect, and reduced cell motility and invasiveness. We evaluated the involvement of MAPKs ERK1/2 and p38 in HSE effects by using specific inhibitors, U0126 and SB203580, respectively. For both SCC-25 and RPMI 8226, HSE cytostatic effect depends on p38 activation, whereas ERK1/2 modulation is crucial for cell motility and invasiveness. Our results suggest that HSE may be a potential therapeutic agent against MM and OSCC.

  1. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections per Cell.

    Directory of Open Access Journals (Sweden)

    Mikaël Boullé

    2016-11-01

    Full Text Available Cell-to-cell spread of HIV, a directed mode of viral transmission, has been observed to be more rapid than cell-free infection. However, a mechanism for earlier onset of viral gene expression in cell-to-cell spread was previously uncharacterized. Here we used time-lapse microscopy combined with automated image analysis to quantify the timing of the onset of HIV gene expression in a fluorescent reporter cell line, as well as single cell staining for infection over time in primary cells. We compared cell-to-cell spread of HIV to cell-free infection, and limited both types of transmission to a two-hour window to minimize differences due to virus transit time to the cell. The mean time to detectable onset of viral gene expression in cell-to-cell spread was accelerated by 19% in the reporter cell line and by 35% in peripheral blood mononuclear cells relative to cell-free HIV infection. Neither factors secreted by infected cells, nor contact with infected cells in the absence of transmission, detectably changed onset. We recapitulated the earlier onset by infecting with multiple cell-free viruses per cell. Surprisingly, the acceleration in onset of viral gene expression was not explained by cooperativity between infecting virions. Instead, more rapid onset was consistent with a model where the fastest expressing virus out of the infecting virus pool sets the time for infection independently of the other co-infecting viruses.

  2. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  3. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    Science.gov (United States)

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. T-cell libraries allow simple parallel generation of multiple peptide-specific human T-cell clones.

    Science.gov (United States)

    Theaker, Sarah M; Rius, Cristina; Greenshields-Watson, Alexander; Lloyd, Angharad; Trimby, Andrew; Fuller, Anna; Miles, John J; Cole, David K; Peakman, Mark; Sewell, Andrew K; Dolton, Garry

    2016-03-01

    Isolation of peptide-specific T-cell clones is highly desirable for determining the role of T-cells in human disease, as well as for the development of therapies and diagnostics. However, generation of monoclonal T-cells with the required specificity is challenging and time-consuming. Here we describe a library-based strategy for the simple parallel detection and isolation of multiple peptide-specific human T-cell clones from CD8(+) or CD4(+) polyclonal T-cell populations. T-cells were first amplified by CD3/CD28 microbeads in a 96U-well library format, prior to screening for desired peptide recognition. T-cells from peptide-reactive wells were then subjected to cytokine-mediated enrichment followed by single-cell cloning, with the entire process from sample to validated clone taking as little as 6 weeks. Overall, T-cell libraries represent an efficient and relatively rapid tool for the generation of peptide-specific T-cell clones, with applications shown here in infectious disease (Epstein-Barr virus, influenza A, and Ebola virus), autoimmunity (type 1 diabetes) and cancer. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  5. Practical Integration-Free Episomal Methods for Generating Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Kime, Cody; Rand, Tim A; Ivey, Kathryn N; Srivastava, Deepak; Yamanaka, Shinya; Tomoda, Kiichiro

    2015-10-06

    The advent of induced pluripotent stem (iPS) cell technology has revolutionized biomedicine and basic research by yielding cells with embryonic stem (ES) cell-like properties. The use of iPS-derived cells for cell-based therapies and modeling of human disease holds great potential. While the initial description of iPS cells involved overexpression of four transcription factors via viral vectors that integrated within genomic DNA, advances in recent years by our group and others have led to safer and higher quality iPS cells with greater efficiency. Here, we describe commonly practiced methods for non-integrating induced pluripotent stem cell generation using nucleofection of episomal reprogramming plasmids. These methods are adapted from recent studies that demonstrate increased hiPS cell reprogramming efficacy with the application of three powerful episomal hiPS cell reprogramming factor vectors and the inclusion of an accessory vector expressing EBNA1. Copyright © 2015 John Wiley & Sons, Inc.

  6. Parvovirus B19 integration into human CD36+ erythroid progenitor cells.

    Science.gov (United States)

    Janovitz, Tyler; Wong, Susan; Young, Neal S; Oliveira, Thiago; Falck-Pedersen, Erik

    2017-11-01

    The pathogenic autonomous human parvovirus B19 (B19V) productively infects erythroid progenitor cells (EPCs). Functional similarities between B19V nonstructural protein (NS1), a DNA binding endonuclease, and the Rep proteins of Adeno-Associated Virus (AAV) led us to hypothesize that NS1 may facilitate targeted nicking of the human genome and B19 vDNA integration. We adapted an integration capture sequencing protocol (IC-Seq) to screen B19V infected human CD36+ EPCs for viral integrants, and discovered 40,000 unique B19V integration events distributed throughout the human genome. Computational analysis of integration patterns revealed strong correlations with gene intronic regions, H3K9me3 sites, and the identification of 41 base pair consensus sequence with an octanucleotide core motif. The octanucleotide core has homology to a single region of B19V, adjacent to the P6 promoter TATA box. We present the first direct evidence that B19V infection of erythroid progenitor cells disrupts the human genome and facilitates viral DNA integration. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells

    International Nuclear Information System (INIS)

    Hou, Shiqiang; Fang, Ming; Zhu, Qian; Liu, Ying; Liu, Liang; Li, Xinming

    2017-01-01

    Coronary collateral circulation (CCC) functions as a natural bypass in the event of coronary obstruction, which markedly improves prognosis in patients with coronary artery disease (CAD). MicroRNAs (miRNAs) have been implicated in multiple physiological and pathological processes, including angiogenesis involved in CCC growth. The roles that miRNA-939 (miR-939) plays in angiogenesis remain largely unknown. We conducted this study to explore the expression of miR-939 in CAD patients and its role in angiogenesis. For the first time, our results indicated that the expression of circulating miR-939 was down-regulated in patients with sufficient CCC compared with patients with poor CCC. Overexpression of miR-939 in primary human umbilical vein endothelial cells (HUVECs) significantly inhibited the proliferation, adhesion and tube formation, but promoted the migration of cells. In contrast, miR-939 knockdown exerted reverse effects. We further identified that γ-catenin was a novel target of miR-939 by translational repression, which could rescue the effects of miR-939 in HUVECs. In summary, this study revealed that the expression of circulating miR-939 was down-regulated in CAD patients with sufficient CCC. MiR-939 abolished vascular integrity and repressed angiogenesis through directly targeting γ-catenin. It provided a potential biomarker and a therapeutic target for CAD. - Highlights: • Circulating miR-939 is decreased in sufficient coronary collateral circulation. • MiR-939 abolishes vascular integrity in endothelial cells. • MiR-939 represses angiogenesis. • γ-catenin is a novel target of miR-939.

  8. Transient GFP expression in Nicotiana plumbaginifolia suspension cells: the role of gene silencing, cell death and T-DNA loss.

    Science.gov (United States)

    Weld, R; Heinemann, J; Eady, C

    2001-03-01

    The transient nature of T-DNA expression was studied with a gfp reporter gene transferred to Nicotiana plumbaginifolia suspension cells from Agrobacterium tumefaciens. Individual GFP-expressing protoplasts were isolated after 4 days' co-cultivation. The protoplasts were cultured without selection and 4 weeks later the surviving proto-calluses were again screened for GFP expression. Of the proto-calluses initially expressing GFP, 50% had lost detectable GFP activity during the first 4 weeks of culture. Multiple T-DNA copies of the gfp gene were detected in 10 of 17 proto-calluses lacking visible GFP activity. The remaining 7 cell lines contained no gfp sequences. Our results confirm that transiently expressed T-DNAs can be lost during growth of somatic cells and demonstrate that transiently expressing cells frequently integrate multiple T-DNAs that become silenced. In cells competent for DNA uptake, cell death and gene silencing were more important barriers to the recovery of stably expressing transformants than lack of T-DNA integration.

  9. Different cell moieties and white blood cell (WBC) integrity in In-111 labeled WBC preparations

    International Nuclear Information System (INIS)

    Saha, G.B.; Feiglin, D.H.I.; McMahon, J.T.; Go, R.T.; O'Donnell, J.K.; MacIntyre, W.J.

    1985-01-01

    Indium-111 labeled white blood cells (WBC) have become very popular in detecting inflammatory diseases. The purpose of this paper is to determine the distribution of different types of cells in WBC preparation for In-111 oxine labeling, and also to assess the histological integrity of WBC's after labeling with In-111 oxine. Forty to fifty cc of blood was collected from each patient and WBC's were separated by sedimentation and centrifugation. After labeling with In-111 oxine, an aliquot of the WBC sample was used for cell counting and a second aliquot was used for electron microscopic (EM) examination. The different cell moieties were counted, and the mean and standard deviation of twelve determinations calculated. Cells were prepared by the standard technique for electron microscopic examination and images of the cells were obtained at different magnifications (X8,000-25,000). The EM images revealed that although minimal cytoplasmic vacuolization occurred in the WBC's due to the labeling process, the overall histological integrity of the cells remained intact. The relative labeling efficiency of WBC's is greater than those of RBC's and platelets (J Nuc) Med 25:p98, 1984) and, therefore, even a comparatively low population of WBC's gives optimal imaging due to their increased tracer uptake

  10. The integration of occupational therapy into primary care: a multiple case study design

    Science.gov (United States)

    2013-01-01

    Background For over two decades occupational therapists have been encouraged to enhance their roles within primary care and focus on health promotion and prevention activities. While there is a clear fit between occupational therapy and primary care, there have been few practice examples, despite a growing body of evidence to support the role. In 2010, the province of Ontario, Canada provided funding to include occupational therapists as members of Family Health Teams, an interprofessional model of primary care. The integration of occupational therapists into this model of primary care is one of the first large scale initiatives of its kind in North America. The objective of the study was to examine how occupational therapy services are being integrated into primary care teams and understand the structures supporting the integration. Methods A multiple case study design was used to provide an in-depth description of the integration of occupational therapy. Four Family Health Teams with occupational therapists as part of the team were identified. Data collection included in-depth interviews, document analyses, and questionnaires. Results Each Family Health Team had a unique organizational structure that contributed to the integration of occupational therapy. Communication, trust and understanding of occupational therapy were key elements in the integration of occupational therapy into Family Health Teams, and were supported by a number of strategies including co-location, electronic medical records and team meetings. An understanding of occupational therapy was critical for integration into the team and physicians were less likely to understand the occupational therapy role than other health providers. Conclusion With an increased emphasis on interprofessional primary care, new professions will be integrated into primary healthcare teams. The study found that explicit strategies and structures are required to facilitate the integration of a new professional group

  11. Boost Converter with Three-State Switching Cell and Integrated Magnetics

    DEFF Research Database (Denmark)

    Klimczak, Pawel; Munk-Nielsen, Stig

    2009-01-01

    Fuel cell systems often require high voltage gain and dc-dc step-up converter is a critical part. Scope of this paper is integration of inductor and transformer on a single core. Usage of integrated magnetics improves utilization of magnetic core and thus size and weight of the converter may...

  12. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology.

    Science.gov (United States)

    Xu, Tao; Zhao, Weixin; Zhu, Jian-Ming; Albanna, Mohammad Z; Yoo, James J; Atala, Anthony

    2013-01-01

    This study was designed to develop a versatile method for fabricating complex and heterogeneous three-dimensional (3D) tissue constructs using simultaneous ink-jetting of multiple cell types. Human amniotic fluid-derived stem cells (hAFSCs), canine smooth muscle cells (dSMCs), and bovine aortic endothelial cells (bECs), were separately mixed with ionic cross-linker calcium chloride (CaCl(2)), loaded into separate ink cartridges and printed using a modified thermal inkjet printer. The three cell types were delivered layer-by-layer to pre-determined locations in a sodium alginate-collagen composite located in a chamber under the printer. The reaction between CaCl(2) and sodium alginate resulted in a rapid formation of a solid composite gel and the printed cells were anchored in designated areas within the gel. The printing process was repeated for several cycles leading to a complex 3D multi-cell hybrid construct. The biological functions of the 3D printed constructs were evaluated in vitro and in vivo. Each of the printed cell types maintained their viability and normal proliferation rates, phenotypic expression, and physiological functions within the heterogeneous constructs. The bioprinted constructs were able to survive and mature into functional tissues with adequate vascularization in vivo. These findings demonstrate the feasibility of fabricating complex heterogeneous tissue constructs containing multiple cell types using inkjet printing technology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Safe genetic modification of cardiac stem cells using a site-specific integration technique.

    Science.gov (United States)

    Lan, Feng; Liu, Junwei; Narsinh, Kazim H; Hu, Shijun; Han, Leng; Lee, Andrew S; Karow, Marisa; Nguyen, Patricia K; Nag, Divya; Calos, Michele P; Robbins, Robert C; Wu, Joseph C

    2012-09-11

    Human cardiac progenitor cells (hCPCs) are a promising cell source for regenerative repair after myocardial infarction. Exploitation of their full therapeutic potential may require stable genetic modification of the cells ex vivo. Safe genetic engineering of stem cells, using facile methods for site-specific integration of transgenes into known genomic contexts, would significantly enhance the overall safety and efficacy of cellular therapy in a variety of clinical contexts. We used the phiC31 site-specific recombinase to achieve targeted integration of a triple fusion reporter gene into a known chromosomal context in hCPCs and human endothelial cells. Stable expression of the reporter gene from its unique chromosomal integration site resulted in no discernible genomic instability or adverse changes in cell phenotype. Namely, phiC31-modified hCPCs were unchanged in their differentiation propensity, cellular proliferative rate, and global gene expression profile when compared with unaltered control hCPCs. Expression of the triple fusion reporter gene enabled multimodal assessment of cell fate in vitro and in vivo using fluorescence microscopy, bioluminescence imaging, and positron emission tomography. Intramyocardial transplantation of genetically modified hCPCs resulted in significant improvement in myocardial function 2 weeks after cell delivery, as assessed by echocardiography (P=0.002) and MRI (P=0.001). We also demonstrated the feasibility and therapeutic efficacy of genetically modifying differentiated human endothelial cells, which enhanced hind limb perfusion (Pmodification system is a safe, efficient tool to enable site-specific integration of reporter transgenes in progenitor and differentiated cell types.

  14. Phosphoinositide protein kinase PDPK1 is a crucial cell signaling mediator in multiple myeloma.

    Science.gov (United States)

    Chinen, Yoshiaki; Kuroda, Junya; Shimura, Yuji; Nagoshi, Hisao; Kiyota, Miki; Yamamoto-Sugitani, Mio; Mizutani, Shinsuke; Sakamoto, Natsumi; Ri, Masaki; Kawata, Eri; Kobayashi, Tsutomu; Matsumoto, Yosuke; Horiike, Shigeo; Iida, Shinsuke; Taniwaki, Masafumi

    2014-12-15

    Multiple myeloma is a cytogenetically/molecularly heterogeneous hematologic malignancy that remains mostly incurable, and the identification of a universal and relevant therapeutic target molecule is essential for the further development of therapeutic strategy. Herein, we identified that 3-phosphoinositide-dependent protein kinase 1 (PDPK1), a serine threonine kinase, is expressed and active in all eleven multiple myeloma-derived cell lines examined regardless of the type of cytogenetic abnormality, the mutation state of RAS and FGFR3 genes, or the activation state of ERK and AKT. Our results revealed that PDPK1 is a pivotal regulator of molecules that are essential for myelomagenesis, such as RSK2, AKT, c-MYC, IRF4, or cyclin Ds, and that PDPK1 inhibition caused the growth inhibition and the induction of apoptosis with the activation of BIM and BAD, and augmented the in vitro cytotoxic effects of antimyeloma agents in myeloma cells. In the clinical setting, PDPK1 was active in myeloma cells of approximately 90% of symptomatic patients at diagnosis, and the smaller population of patients with multiple myeloma exhibiting myeloma cells without active PDPK1 showed a significantly less frequent proportion of the disease stage III by the International Staging System and a significantly more favorable prognosis, including the longer overall survival period and the longer progression-free survival period by bortezomib treatment, than patients with active PDPK1, suggesting that PDPK1 activation accelerates the disease progression and the resistance to treatment in multiple myeloma. Our study demonstrates that PDPK1 is a potent and a universally targetable signaling mediator in multiple myeloma regardless of the types of cytogenetic/molecular profiles. ©2014 American Association for Cancer Research.

  15. A Case of Mature Natural Killer-Cell Neoplasm Manifesting Multiple Choroidal Lesions: Primary Intraocular Natural Killer-Cell Lymphoma

    Directory of Open Access Journals (Sweden)

    Yoshiaki Tagawa

    2015-11-01

    Full Text Available Purpose: Natural killer (NK cell neoplasm is a rare disease that follows an acute course and has a poor prognosis. It usually emerges from the nose and appears in the ocular tissue as a metastasis. Herein, we describe a case of NK-cell neoplasm in which the eye was considered to be the primary organ. Case: A 50-year-old female displayed bilateral anterior chamber cells, vitreous opacity, bullous retinal detachment, and multiple white choroidal mass lesions. Although malignant lymphoma or metastatic tumor was suspected, various systemic examinations failed to detect any positive results. A vitrectomy was performed OS; however, histocytological analyses from the vitreous sample showed no definite evidence of malignancy, and IL-10 concentration was low. Enlarged choroidal masses were fused together. Three weeks after the first visit, the patient suddenly developed an attack of fever, night sweat, and hepatic dysfunction, and 5 days later, she passed away due to multiple organ failure. Immunohistochemisty and in situ hybridization revealed the presence of atypical cells positive for CD3, CD56, and Epstein-Barr virus-encoded RNAs, resulting in the diagnosis of NK-cell neoplasm. With the characteristic clinical course, we concluded that this neoplasm was a primary intraocular NK-cell lymphoma. Conclusions: This is the first report to describe primary intraocular NK-cell neoplasm. When we encounter atypical choroidal lesions, we should consider the possibility of NK-cell lymphoma, even though it is a rare disease.

  16. An investigation of multidisciplinary complex health care interventions - steps towards an integrative treatment model in the rehabilitation of People with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Skovgaard Lasse

    2012-04-01

    Full Text Available Abstract Background The Danish Multiple Sclerosis Society initiated a large-scale bridge building and integrative treatment project to take place from 2004–2010 at a specialized Multiple Sclerosis (MS hospital. In this project, a team of five conventional health care practitioners and five alternative practitioners was set up to work together in developing and offering individualized treatments to 200 people with MS. The purpose of this paper is to present results from the six year treatment collaboration process regarding the development of an integrative treatment model. Discussion The collaborative work towards an integrative treatment model for people with MS, involved six steps: 1 Working with an initial model 2 Unfolding the different treatment philosophies 3 Discussing the elements of the Intervention-Mechanism-Context-Outcome-scheme (the IMCO-scheme 4 Phrasing the common assumptions for an integrative MS program theory 5 Developing the integrative MS program theory 6 Building the integrative MS treatment model. The model includes important elements of the different treatment philosophies represented in the team and thereby describes a common understanding of the complexity of the courses of treatment. Summary An integrative team of practitioners has developed an integrative model for combined treatments of People with Multiple Sclerosis. The model unites different treatment philosophies and focuses on process-oriented factors and the strengthening of the patients’ resources and competences on a physical, an emotional and a cognitive level.

  17. The blackboard model - A framework for integrating multiple cooperating expert systems

    Science.gov (United States)

    Erickson, W. K.

    1985-01-01

    The use of an artificial intelligence (AI) architecture known as the blackboard model is examined as a framework for designing and building distributed systems requiring the integration of multiple cooperating expert systems (MCXS). Aerospace vehicles provide many examples of potential systems, ranging from commercial and military aircraft to spacecraft such as satellites, the Space Shuttle, and the Space Station. One such system, free-flying, spaceborne telerobots to be used in construction, servicing, inspection, and repair tasks around NASA's Space Station, is examined. The major difficulties found in designing and integrating the individual expert system components necessary to implement such a robot are outlined. The blackboard model, a general expert system architecture which seems to address many of the problems found in designing and building such a system, is discussed. A progress report on a prototype system under development called DBB (Distributed BlackBoard model) is given. The prototype will act as a testbed for investigating the feasibility, utility, and efficiency of MCXS-based designs developed under the blackboard model.

  18. Immunological circumvention of multiple organ metastases of multidrug resistant human small cell lung cancer cells by mouse-human chimeric anti-ganglioside GM2 antibody KM966.

    Science.gov (United States)

    Hanibuchi, M; Yano, S; Nishioka, Y; Yanagawa, H; Miki, T; Sone, S

    2000-01-01

    serum against SBC-3/DOX cells to a similar extent compared with parental SBC-3 cells. Pretreatment of human effector cells with various cytokines induced further enhancement of the KM966-dependent ADCC against SBC-3/DOX cells. Intravenous injection of SBC-3 or SBC-3/DOX cells into natural killer (NK) cell-depleted severe combined immunodeficient (SCID) mice developed metastases in multiple organs (liver, kidneys and lymph nodes). Interestingly, SBC-3/DOX cells produced metastases more rapidly than SBC-3 cells, suggesting more aggressive phenotype of SBC-3/DOX cells than their parental cells in vivo. Systemic treatment with KM966, given on days 2 and 7, drastically inhibited the formation of multiple-organ metastases produced by both SBC-3 and SBC-3/DOX cells, indicating that KM966 can eradicate metastasis by SCLC cells irrespective of MDR phenotype. These findings suggest that the mouse-human chimeric KM966 targets the GM2 antigen, and might be useful for the immunological circumvention of multiple-organ metastases of refractory SCLC.

  19. Applied immuno-epidemiological research: an approach for integrating existing knowledge into the statistical analysis of multiple immune markers.

    Science.gov (United States)

    Genser, Bernd; Fischer, Joachim E; Figueiredo, Camila A; Alcântara-Neves, Neuza; Barreto, Mauricio L; Cooper, Philip J; Amorim, Leila D; Saemann, Marcus D; Weichhart, Thomas; Rodrigues, Laura C

    2016-05-20

    Immunologists often measure several correlated immunological markers, such as concentrations of different cytokines produced by different immune cells and/or measured under different conditions, to draw insights from complex immunological mechanisms. Although there have been recent methodological efforts to improve the statistical analysis of immunological data, a framework is still needed for the simultaneous analysis of multiple, often correlated, immune markers. This framework would allow the immunologists' hypotheses about the underlying biological mechanisms to be integrated. We present an analytical approach for statistical analysis of correlated immune markers, such as those commonly collected in modern immuno-epidemiological studies. We demonstrate i) how to deal with interdependencies among multiple measurements of the same immune marker, ii) how to analyse association patterns among different markers, iii) how to aggregate different measures and/or markers to immunological summary scores, iv) how to model the inter-relationships among these scores, and v) how to use these scores in epidemiological association analyses. We illustrate the application of our approach to multiple cytokine measurements from 818 children enrolled in a large immuno-epidemiological study (SCAALA Salvador), which aimed to quantify the major immunological mechanisms underlying atopic diseases or asthma. We demonstrate how to aggregate systematically the information captured in multiple cytokine measurements to immunological summary scores aimed at reflecting the presumed underlying immunological mechanisms (Th1/Th2 balance and immune regulatory network). We show how these aggregated immune scores can be used as predictors in regression models with outcomes of immunological studies (e.g. specific IgE) and compare the results to those obtained by a traditional multivariate regression approach. The proposed analytical approach may be especially useful to quantify complex immune

  20. Nestin Reporter Transgene Labels Multiple Central Nervous System Precursor Cells

    Directory of Open Access Journals (Sweden)

    Avery S. Walker

    2010-01-01

    Full Text Available Embryonic neuroepithelia and adult subventricular zone (SVZ stem and progenitor cells express nestin. We characterized a transgenic line that expresses enhanced green fluorescent protein (eGFP specified to neural tissue by the second intronic enhancer of the nestin promoter that had several novel features. During embryogenesis, the dorsal telencephalon contained many and the ventral telencephalon few eGFP+ cells. eGFP+ cells were found in postnatal and adult neurogenic regions. eGFP+ cells in the SVZ expressed multiple phenotype markers, glial fibrillary acidic protein, Dlx, and neuroblast-specific molecules suggesting the transgene is expressed through the lineage. eGFP+ cell numbers increased in the SVZ after cortical injury, suggesting this line will be useful in probing postinjury neurogenesis. In non-neurogenic regions, eGFP was strongly expressed in oligodendrocyte progenitors, but not in astrocytes, even when they were reactive. This eGFP+ mouse will facilitate studies of proliferative neuroepithelia and adult neurogenesis, as well as of parenchymal oligodendrocytes.

  1. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation

    NARCIS (Netherlands)

    Groen, Richard W. J.; de Rooij, Martin F. M.; Kocemba, Kinga A.; Reijmers, Rogier M.; de Haan-Kramer, Anneke; Overdijk, Marije B.; Aalders, Linda; Rozemuller, Henk; Martens, Anton C. M.; Bergsagel, P. Leif; Kersten, Marie José; Pals, Steven T.; Spaargaren, Marcel

    2011-01-01

    Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow microenvironment plays

  2. N-cadherin-mediated interaction with multiple myeloma cells inhibits osteoblast differentiation

    NARCIS (Netherlands)

    Groen, R.W.J.; de Rooij, M.F.M.; Kocemba, K.A.; Reijmers, R.M.; de Haan-Kramer, A.; Overdijk, M.B.; Aalders, L.; Rozemuller, H.; Martens, A.C.M.; Bergsagel, P.L.; Kersten, M.J.; Pals, S.T.; Spaargaren, M.

    2011-01-01

    Background Multiple myeloma is a hematologic malignancy characterized by a clonal expansion of malignant plasma cells in the bone marrow, which is accompanied by the development of osteolytic lesions and/or diffuse osteopenia. The intricate bi-directional interaction with the bone marrow

  3. Hydrogen and fuel cell research: Institute for Integrated Energy Systems (IESVic)

    International Nuclear Information System (INIS)

    Pitt, L.

    2006-01-01

    Vision: IESVic's mission is to chart feasible paths to sustainable energy. Current research areas of investigation: 1. Energy system analysis 2. Computational fuel cell engineering; Fuel cell parameter measurement; Microscale fuel cells 3. Hydrogen dispersion studies for safety codes 4. Active magnetic refrigeration for hydrogen liquifaction and heat transfer in metal hydrides 5. Hydrogen and fuel cell system integration (author)

  4. Dynamic Response Genes in CD4+ T Cells Reveal a Network of Interactive Proteins that Classifies Disease Activity in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Sandra Hellberg

    2016-09-01

    Full Text Available Multiple sclerosis (MS is a chronic inflammatory disease of the CNS and has a varying disease course as well as variable response to treatment. Biomarkers may therefore aid personalized treatment. We tested whether in vitro activation of MS patient-derived CD4+ T cells could reveal potential biomarkers. The dynamic gene expression response to activation was dysregulated in patient-derived CD4+ T cells. By integrating our findings with genome-wide association studies, we constructed a highly connected MS gene module, disclosing cell activation and chemotaxis as central components. Changes in several module genes were associated with differences in protein levels, which were measurable in cerebrospinal fluid and were used to classify patients from control individuals. In addition, these measurements could predict disease activity after 2 years and distinguish low and high responders to treatment in two additional, independent cohorts. While further validation is needed in larger cohorts prior to clinical implementation, we have uncovered a set of potentially promising biomarkers.

  5. A flow-through cell with integrated coulometric pH actuator

    NARCIS (Netherlands)

    Bohm, S.; Olthuis, Wouter; Bergveld, Piet

    1998-01-01

    A flow-through cell with integrated coulometric actuator capable of controlling the pH of a flowing liquid is presented. The cell, consisting of a rectangular channel with a noble metal actuator electrode deposited on the bottom, enables the titration of a moving liquid without the need for pumps

  6. Cumulative health risk assessment: integrated approaches for multiple contaminants, exposures, and effects

    International Nuclear Information System (INIS)

    Rice, Glenn; Teuschler, Linda; MacDonel, Margaret; Butler, Jim; Finster, Molly; Hertzberg, Rick; Harou, Lynne

    2007-01-01

    Available in abstract form only. Full text of publication follows: As information about environmental contamination has increased in recent years, so has public interest in the combined effects of multiple contaminants. This interest has been highlighted by recent tragedies such as the World Trade Center disaster and hurricane Katrina. In fact, assessing multiple contaminants, exposures, and effects has long been an issue for contaminated sites, including U.S. Department of Energy (DOE) legacy waste sites. Local citizens have explicitly asked the federal government to account for cumulative risks, with contaminants moving offsite via groundwater flow, surface runoff, and air dispersal being a common emphasis. Multiple exposures range from ingestion and inhalation to dermal absorption and external gamma irradiation. Three types of concerns can lead to cumulative assessments: (1) specific sources or releases - e.g., industrial facilities or accidental discharges; (2) contaminant levels - in environmental media or human tissues; and (3) elevated rates of disease - e.g., asthma or cancer. The specific initiator frames the assessment strategy, including a determination of appropriate models to be used. Approaches are being developed to better integrate a variety of data, extending from environmental to internal co-location of contaminants and combined effects, to support more practical assessments of cumulative health risks. (authors)

  7. Lentivector Integration Sites in Ependymal Cells From a Model of Metachromatic Leukodystrophy: Non-B DNA as a New Factor Influencing Integration

    Science.gov (United States)

    McAllister, Robert G; Liu, Jiahui; Woods, Matthew W; Tom, Sean K; Rupar, C Anthony; Barr, Stephen D

    2014-01-01

    The blood–brain barrier controls the passage of molecules from the blood into the central nervous system (CNS) and is a major challenge for treatment of neurological diseases. Metachromatic leukodystrophy is a neurodegenerative lysosomal storage disease caused by loss of arylsulfatase A (ARSA) activity. Gene therapy via intraventricular injection of a lentiviral vector is a potential approach to rapidly and permanently deliver therapeutic levels of ARSA to the CNS. We present the distribution of integration sites of a lentiviral vector encoding human ARSA (LV-ARSA) in murine brain choroid plexus and ependymal cells, administered via a single intracranial injection into the CNS. LV-ARSA did not exhibit a strong preference for integration in or near actively transcribed genes, but exhibited a strong preference for integration in or near satellite DNA. We identified several genomic hotspots for LV-ARSA integration and identified a consensus target site sequence characterized by two G-quadruplex-forming motifs flanking the integration site. In addition, our analysis identified several other non-B DNA motifs as new factors that potentially influence lentivirus integration, including human immunodeficiency virus type-1 in human cells. Together, our data demonstrate a clinically favorable integration site profile in the murine brain and identify non-B DNA as a potential new host factor that influences lentiviral integration in murine and human cells. PMID:25158091

  8. Cortical mechanisms for trans-saccadic memory and integration of multiple object features

    Science.gov (United States)

    Prime, Steven L.; Vesia, Michael; Crawford, J. Douglas

    2011-01-01

    Constructing an internal representation of the world from successive visual fixations, i.e. separated by saccadic eye movements, is known as trans-saccadic perception. Research on trans-saccadic perception (TSP) has been traditionally aimed at resolving the problems of memory capacity and visual integration across saccades. In this paper, we review this literature on TSP with a focus on research showing that egocentric measures of the saccadic eye movement can be used to integrate simple object features across saccades, and that the memory capacity for items retained across saccades, like visual working memory, is restricted to about three to four items. We also review recent transcranial magnetic stimulation experiments which suggest that the right parietal eye field and frontal eye fields play a key functional role in spatial updating of objects in TSP. We conclude by speculating on possible cortical mechanisms for governing egocentric spatial updating of multiple objects in TSP. PMID:21242142

  9. Effect of failures and repairs on multiple cell production lines

    Energy Technology Data Exchange (ETDEWEB)

    Legato, P.; Bobbio, A.; Roberti, L.

    1989-01-01

    This paper examines a production line composed of multiple stages, or cells, which are passed in sequential order to arrive to the final product. Two possible coordination disciplines are considered, namely: the classical tandem arrangement of sequential working centers with input buffer and the kanban scheme, considered the Japanese shop floor realization of the Just-In-Time (JIT) manifacturing approach. The production line is modelled and analysed by means of Stochastic Petri Nets (SPN). Finally an analysis is made of the possibility that the working cells can incur failure/repair cycles perturbing the production flow of the line and thus reduce performance indices.

  10. Production of Multiple Growth Factors by a Newly Established Human Thyroid Carcinoma Cell Line

    Science.gov (United States)

    Yoshida, Yataro; Ohashi, Kensaku; Sano, Emiko; Kobayashi, Hisataka; Endo, Keigo; Naruto, Masanobu; Nakamura, Toru

    1992-01-01

    A multiple growth factor‐producing tumor cell line (NIM‐1) was newly established from a patient with thyroid cancer and remarkable neutrophilia. NIM‐1 cells also caused severe neutrophilia in nude mice bearing tumors. NIM‐1‐conditioned medium (NIM‐1CM) contained activities that supported not only granulocyte, macrophage and eosinophil colony formation of human bone marrow cells but also the growth of colony‐stimulating factor (CSF)‐dependent cell lines, NFS60‐KX and TF‐1. Northern blot hybridization analysis revealed the constitutive expression of granulocyte‐CSF (G‐CSF), granulocyte/macrophage‐CSF (GM‐CSF) and interleukin(IL)‐6 mRNAs in NIM‐1 cells. Enzyme‐linked immunosorbent assays (ELISA) using NIM‐1CM also confirmed the production of IL‐la and a small amount of IL‐1β besides G‐CSF, GM‐CSF and IL‐6 in NIM‐1 cells. In addition, unexpected production of IL‐11 in NIM‐1 cells was detected by northern blot hybridization analysis and by bioassay using an IL‐11‐dependent cell line. Therefore, NIM‐1 cell line is shown to produce multiple cytokines including potentially megakaryopoietic growth factors such as GM‐CSF, IL‐6 and IL‐11. PMID:1372885

  11. Protecting genomic integrity in somatic cells and embryonic stem cells

    International Nuclear Information System (INIS)

    Hong, Y.; Cervantes, R.B.; Tichy, E.; Tischfield, J.A.; Stambrook, P.J.

    2007-01-01

    Mutation frequencies at some loci in mammalian somatic cells in vivo approach 10 -4 . The majority of these events occur as a consequence of loss of heterozygosity (LOH) due to mitotic recombination. Such high levels of DNA damage in somatic cells, which can accumulate with age, will cause injury and, after a latency period, may lead to somatic disease and ultimately death. This high level of DNA damage is untenable for germ cells, and by extrapolation for embryonic stem (ES) cells, that must recreate the organism. ES cells cannot tolerate such a high frequency of damage since mutations will immediately impact the altered cell, and subsequently the entire organism. Most importantly, the mutations may be passed on to future generations. ES cells, therefore, must have robust mechanisms to protect the integrity of their genomes. We have examined two such mechanisms. Firstly, we have shown that mutation frequencies and frequencies of mitotic recombination in ES cells are about 100-fold lower than in adult somatic cells or in isogenic mouse embryonic fibroblasts (MEFs). A second complementary protective mechanism eliminates those ES cells that have acquired a mutational burden, thereby maintaining a pristine population. Consistent with this hypothesis, ES cells lack a G1 checkpoint, and the two known signaling pathways that mediate the checkpoint are compromised. The checkpoint kinase, Chk2, which participates in both pathways is sequestered at centrosomes in ES cells and does not phosphorylate its substrates (i.e. p53 and Cdc25A) that must be modified to produce a G1 arrest. Ectopic expression of Chk2 does not rescue the p53-mediated pathway, but does restore the pathway mediated by Cdc25A. Wild type ES cells exposed to ionizing radiation do not accumulate in G1 but do so in S-phase and in G2. ES cells that ectopically express Chk2 undergo cell cycle arrest in G1 as well as G2, and appear to be protected from apoptosis

  12. Integrative harm reduction psychotherapy: a case of substance use, multiple trauma, and suicidality.

    Science.gov (United States)

    Tatarsky, Andrew; Kellogg, Scott

    2010-02-01

    Harm reduction is a new paradigm that seeks to reduce the harmful consequences of substance use and other risky behaviors without requiring abstinence. This article discusses integrative harm reduction psychotherapy, one application of harm reduction principles to psychotherapy. Seven therapeutic tasks are described with attention to clinical process, skills, and strategies. A case is presented that illustrates the application of this approach with life-threatening substance use that was related to multiple trauma and suicidal depression. (c) 2010 Wiley Periodicals, Inc.

  13. Integrating Multiple Data Sources for Combinatorial Marker Discovery: A Study in Tumorigenesis.

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Mallik, Saurav

    2018-01-01

    Identification of combinatorial markers from multiple data sources is a challenging task in bioinformatics. Here, we propose a novel computational framework for identifying significant combinatorial markers ( s) using both gene expression and methylation data. The gene expression and methylation data are integrated into a single continuous data as well as a (post-discretized) boolean data based on their intrinsic (i.e., inverse) relationship. A novel combined score of methylation and expression data (viz., ) is introduced which is computed on the integrated continuous data for identifying initial non-redundant set of genes. Thereafter, (maximal) frequent closed homogeneous genesets are identified using a well-known biclustering algorithm applied on the integrated boolean data of the determined non-redundant set of genes. A novel sample-based weighted support ( ) is then proposed that is consecutively calculated on the integrated boolean data of the determined non-redundant set of genes in order to identify the non-redundant significant genesets. The top few resulting genesets are identified as potential s. Since our proposed method generates a smaller number of significant non-redundant genesets than those by other popular methods, the method is much faster than the others. Application of the proposed technique on an expression and a methylation data for Uterine tumor or Prostate Carcinoma produces a set of significant combination of markers. We expect that such a combination of markers will produce lower false positives than individual markers.

  14. Unraveling the High Open Circuit Voltage and High Performance of Integrated Perovskite/Organic Bulk-Heterojunction Solar Cells.

    Science.gov (United States)

    Dong, Shiqi; Liu, Yongsheng; Hong, Ziruo; Yao, Enping; Sun, Pengyu; Meng, Lei; Lin, Yuze; Huang, Jinsong; Li, Gang; Yang, Yang

    2017-08-09

    We have demonstrated high-performance integrated perovskite/bulk-heterojunction (BHJ) solar cells due to the low carrier recombination velocity, high open circuit voltage (V OC ), and increased light absorption ability in near-infrared (NIR) region of integrated devices. In particular, we find that the V OC of the integrated devices is dominated by (or pinned to) the perovskite cells, not the organic photovoltaic cells. A Quasi-Fermi Level Pinning Model was proposed to understand the working mechanism and the origin of the V OC of the integrated perovskite/BHJ solar cell, which following that of the perovskite solar cell and is much higher than that of the low bandgap polymer based organic BHJ solar cell. Evidence for the model was enhanced by examining the charge carrier behavior and photovoltaic behavior of the integrated devices under illumination of monochromatic light-emitting diodes at different characteristic wavelength. This finding shall pave an interesting possibility for integrated photovoltaic devices to harvest low energy photons in NIR region and further improve the current density without sacrificing V OC , thus providing new opportunities and significant implications for future industry applications of this kind of integrated solar cells.

  15. A CASE REPORT OF MULTIPLE PRIMARY SQUAMOUS CELL CARCINOMAS OF THE OVARY AND SIGMOID COLON

    Directory of Open Access Journals (Sweden)

    A. B. Villert

    2016-01-01

    Full Text Available Squamous cell ovarian and sigmoid colon carcinomas are extremely rare malignancies. Because of their rarity, it is difficult to investigate the clinical characteristics and prognosis of patients with theses malignancies, and therefore, the increased interest in each clinical case report is highly relevant. Multiple primary squamous cell ovarian and sigmoid colon carcinomas are the subject of discussion and differential diagnosis of sigmoid colon cancer with secondary ovarian cancer. Histopathological and clinical characteristics of the tumors were present and evidences in favor of the multiple primary malignancies were given. The association of squamous cell ovarian and sigmoid colon carcinomas with human papilloma virus type 16 was shown.

  16. Statistics and methodology of multiple cell upset characterization under heavy ion irradiation

    International Nuclear Information System (INIS)

    Zebrev, G.I.; Gorbunov, M.S.; Useinov, R.G.; Emeliyanov, V.V.; Ozerov, A.I.; Anashin, V.S.; Kozyukov, A.E.; Zemtsov, K.S.

    2015-01-01

    Mean and partial cross-section concepts and their connections to multiplicity and statistics of multiple cell upsets (MCUs) in highly-scaled digital memories are introduced and discussed. The important role of the experimental determination of the upset statistics is emphasized. It was found that MCU may lead to quasi-linear dependence of cross-sections on linear energy transfer (LET). A new form of function for interpolation of mean cross-section dependences on LET has been proposed

  17. Coal Integrated Gasification Fuel Cell System Study

    Energy Technology Data Exchange (ETDEWEB)

    Chellappa Balan; Debashis Dey; Sukru-Alper Eker; Max Peter; Pavel Sokolov; Greg Wotzak

    2004-01-31

    This study analyzes the performance and economics of power generation systems based on Solid Oxide Fuel Cell (SOFC) technology and fueled by gasified coal. System concepts that integrate a coal gasifier with a SOFC, a gas turbine, and a steam turbine were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems. The initial cost of both selected configurations was found to be comparable with the IGCC system costs at approximately $1700/kW. An absorption-based CO2 isolation scheme was developed, and its penalty on the system performance and cost was estimated to be less approximately 2.7% and $370/kW. Technology gaps and required engineering development efforts were identified and evaluated.

  18. Optimization of carrier multiplication for more effcient solar cells: the case of Sn quantum dots.

    Science.gov (United States)

    Allan, Guy; Delerue, Christophe

    2011-09-27

    We present calculations of impact ionization rates, carrier multiplication yields, and solar-power conversion efficiencies in solar cells based on quantum dots (QDs) of a semimetal, α-Sn. Using these results and previous ones on PbSe and PbS QDs, we discuss a strategy to select QDs with the highest carrier multiplication rate for more efficient solar cells. We suggest using QDs of materials with a close to zero band gap and a high multiplicity of the bands in order to favor the relaxation of photoexcited carriers by impact ionization. Even in that case, the improvement of the maximum solar-power conversion efficiency appears to be a challenging task. © 2011 American Chemical Society

  19. Integrated packaging of multiple double sided cooling planar bond power modules

    Science.gov (United States)

    Liang, Zhenxian

    2018-04-10

    An integrated double sided cooled power module has one or multiple phase legs configuration including one or more planar power packages, each planar power package having an upper power switch unit and a lower power switch unit directly bonded and interconnected between two insulated power substrates, and further sandwiched between two heat exchangers via direct bonds. A segmented coolant manifold is interposed with the one or more planar power packages and creates a sealed enclosure that defines a coolant inlet, a coolant outlet and a coolant flow path between the inlet and the outlet. A coolant circulates along the flow path to remove heat and increase the power density of the power module.

  20. Chaos Synchronization Based on Unknown Input Proportional Multiple-Integral Fuzzy Observer

    Directory of Open Access Journals (Sweden)

    T. Youssef

    2013-01-01

    Full Text Available This paper presents an unknown input Proportional Multiple-Integral Observer (PIO for synchronization of chaotic systems based on Takagi-Sugeno (TS fuzzy chaotic models subject to unmeasurable decision variables and unknown input. In a secure communication configuration, this unknown input is regarded as a message encoded in the chaotic system and recovered by the proposed PIO. Both states and outputs of the fuzzy chaotic models are subject to polynomial unknown input with kth derivative zero. Using Lyapunov stability theory, sufficient design conditions for synchronization are proposed. The PIO gains matrices are obtained by resolving linear matrix inequalities (LMIs constraints. Simulation results show through two TS fuzzy chaotic models the validity of the proposed method.

  1. Validation of interphase fluorescence in situ hybridization (iFISH for multiple myeloma using CD138 positive cells

    Directory of Open Access Journals (Sweden)

    Renata Kiyomi Kishimoto

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: Multiple myeloma is a plasma cell neoplasm with acquired genetic abnormalities of clinical and prognostic importance. Multiple myeloma differs from other hematologic malignancies due to a high fraction of low proliferating malignant plasma cells and the paucity of plasma cells in bone marrow aspiration samples, making cytogenetic analysis a challenge. An abnormal karyotype is found in only one-third of patients with multiple myeloma and interphase fluorescence in situ hybridization is the most useful test for studying the chromosomal abnormalities present in almost 90% of cases. However, it is necessary to study the genetic abnormalities in plasma cells after their identification or selection by morphology, immunophenotyping or sorting. Other challenges are the selection of the most informative FISH panel and determining cut-off levels for FISH probes. This study reports the validation of interphase fluorescence in situ hybridization using CD138 positive cells, according to proposed guidelines published by the European Myeloma Network (EMN in 2012. METHOD: Bone marrow samples from patients with multiple myeloma were used to standardize a panel of five probes [1q amplification, 13q14 deletion, 17p deletion, t(4;14, and t(14;16] in CD138+ cells purified by magnetic cell sorting. RESULTS: This test was validated with a low turnaround time and good reproducibility. Five of six samples showed genetic abnormalities. Monosomy/deletion 13 plus t(4;14 were found in two cases. CONCLUSION: This technique together with magnetic cell sorting is effective and can be used in the routine laboratory practice. In addition, magnetic cell sorting provides a pure plasma cell population that allows other molecular and genomic studies.

  2. A Miniaturized Optical Sensor with Integrated Gas Cell

    NARCIS (Netherlands)

    Ayerden, N.P.; Ghaderi, M.; De Graaf, G.; Wolffenbuttel, R.F.

    2015-01-01

    The design, fabrication and characterization of a highly integrated optical gas sensor is presented. The gas cell takes up most of the space in a microspectrometer and is the only component that has so far not been miniaturized. Using the tapered resonator cavity of a linear variable optical filter

  3. A multi-landing pad DNA integration platform for mammalian cell engineering

    Science.gov (United States)

    Gaidukov, Leonid; Wroblewska, Liliana; Teague, Brian; Nelson, Tom; Zhang, Xin; Liu, Yan; Jagtap, Kalpana; Mamo, Selamawit; Tseng, Wen Allen; Lowe, Alexis; Das, Jishnu; Bandara, Kalpanie; Baijuraj, Swetha; Summers, Nevin M; Zhang, Lin; Weiss, Ron

    2018-01-01

    Abstract Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three ‘landing pad’ recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing. PMID:29617873

  4. Community integration outcomes of people with spinal cord injury and multiple matched controls: A pilot study.

    Science.gov (United States)

    Callaway, Libby; Enticott, Joanne; Farnworth, Louise; McDonald, Rachael; Migliorini, Christine; Willer, Barry

    2017-06-01

    Australia's National Disability Insurance Scheme (NDIS) is designed to influence home, social and economic participation for Scheme participants. Given the major disability reform underway, this pilot study aimed to: (i) examine community integration outcomes of people with spinal cord injury (SCI); (ii) compare findings with multiple matched controls and (iii) consider findings within the context of Australia's NDIS. Setting: Victoria, Australia. Matched analysis (people with and without SCI). Community Integration Questionnaire (CIQ). n = 40 adults with SCI (M age = 52.8 years; 61% male; 77% traumatic SCI). Matched analyses from each SCI subject aged integration (ρ = 0.02). Relative risk of low home integration was significant in the SCI cohort (conditional RR (95% CI) = 3.1 (1.5-6.3), ρ = 0.001). Relative risk of low CIQ total, social integration and productivity scores did not reach significance. This cohort of SCI participants was less integrated into home and productive occupations than matched norms, holding implications for planning and allocation of supports to influence outcomes within an NDIS. Further research is necessary to understand community integration outcomes in larger matched samples. © 2016 Occupational Therapy Australia.

  5. The hematopoietic chemokine CXCL12 promotes integration of human endothelial colony forming cell-derived cells into immature vessel networks.

    Science.gov (United States)

    Newey, Sarah E; Tsaknakis, Grigorios; Khoo, Cheen P; Athanassopoulos, Thanassi; Camicia, Rosalba; Zhang, Youyi; Grabowska, Rita; Harris, Adrian L; Roubelakis, Maria G; Watt, Suzanne M

    2014-11-15

    Proangiogenic factors, vascular endothelial growth factor (VEGF), and fibroblast growth factor-2 (FGF-2) prime endothelial cells to respond to "hematopoietic" chemokines and cytokines by inducing/upregulating expression of the respective chemokine/cytokine receptors. Coculture of human endothelial colony forming cell (ECFC)-derived cells with human stromal cells in the presence of VEGF and FGF-2 for 14 days resulted in upregulation of the "hematopoietic" chemokine CXCL12 and its CXCR4 receptor by day 3 of coculture. Chronic exposure to the CXCR4 antagonist AMD3100 in this vasculo/angiogenesis assay significantly reduced vascular tubule formation, an observation recapitulated by delayed AMD3100 addition. While AMD3100 did not affect ECFC-derived cell proliferation, it did demonstrate a dual action. First, over the later stages of the 14-day cocultures, AMD3100 delayed tubule organization into maturing vessel networks, resulting in enhanced endothelial cell retraction and loss of complexity as defined by live cell imaging. Second, at earlier stages of cocultures, we observed that AMD3100 significantly inhibited the integration of exogenous ECFC-derived cells into established, but immature, vascular networks. Comparative proteome profiler array analyses of ECFC-derived cells treated with AMD3100 identified changes in expression of potential candidate molecules involved in adhesion and/or migration. Blocking antibodies to CD31, but not CD146 or CD166, reduced the ECFC-derived cell integration into these extant vascular networks. Thus, CXCL12 plays a key role not only in endothelial cell sensing and guidance, but also in promoting the integration of ECFC-derived cells into developing vascular networks.

  6. The Energy Integration Strategies in the Great Caribbean: Multiple Processes and Regional Leadership in Dispute

    Directory of Open Access Journals (Sweden)

    María Camila Moncada Guevara

    2016-01-01

    Full Text Available The purpose of this article is to demonstrate, through the paradigm of the complex interdependency that the energy integration processes in the Caribbean during the 21st Century have been multiple, given the integrationist traditions and the strategic regional leadership interests displayed by Venezuela, Mexico and the United States. Therefore, gendas proposed to supply the energy demand in the region deepen the existence of hegemonic projects in dispute. In the first part, political, economic and military aspects of the integration processes in the Caribbean are defined. Then, energy agendas of the 90’s with the Hemisphere Integration Strategy are characterized. Finally, the most recent experience of CARICOM on the matter is analyzed and it is concluded that the region is going through a period of recomposition of the regional powers.

  7. Move to learn: Integrating spatial information from multiple viewpoints.

    Science.gov (United States)

    Holmes, Corinne A; Newcombe, Nora S; Shipley, Thomas F

    2018-05-11

    Recalling a spatial layout from multiple orientations - spatial flexibility - is challenging, even when the global configuration can be viewed from a single vantage point, but more so when it must be viewed piecemeal. In the current study, we examined whether experiencing the transition between multiple viewpoints enhances spatial memory and flexible recall for a spatial configuration viewed simultaneously (Exp. 1) and sequentially (Exp. 2), whether the type of transition matters, and whether action provides an additional advantage over passive experience. In Experiment 1, participants viewed an array of dollhouse furniture from four viewpoints, but with all furniture simultaneously visible. In Experiment 2, participants viewed the same array piecemeal, from four partitioned viewpoints that allowed for viewing only a segment at a time. The transition between viewpoints involved rotation of the array or participant movement around it. Rotation and participant movement were passively experienced or actively generated. The control condition presented the dollhouse as a series of static views. Across both experiments, participant movement significantly enhanced spatial memory relative to array rotation or static views. However, in Exp. 2, there was a further advantage for actively walking around the array compared to being passively pushed. These findings suggest that movement around a stable environment is key to spatial memory and flexible recall, with action providing an additional boost to the integration of temporally segmented spatial events. Thus, spatial memory may be more flexible than prior data indicate, when studied under more natural acquisition conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Autologous bone marrow Th cells can support multiple myeloma cell proliferation in vitro and in xenografted mice.

    Science.gov (United States)

    Wang, D; Fløisand, Y; Myklebust, C V; Bürgler, S; Parente-Ribes, A; Hofgaard, P O; Bogen, B; Taskén, K; Tjønnfjord, G E; Schjesvold, F; Dalgaard, J; Tveita, A; Munthe, L A

    2017-10-01

    Multiple myeloma (MM) is a plasma cell malignancy where MM cell growth is supported by the bone marrow (BM) microenvironment with poorly defined cellular and molecular mechanisms. MM cells express CD40, a receptor known to activate autocrine secretion of cytokines and elicit proliferation. Activated T helper (Th) cells express CD40 ligand (CD40L) and BM Th cells are significantly increased in MM patients. We hypothesized that activated BM Th cells could support MM cell growth. We here found that activated autologous BM Th cells supported MM cell growth in a contact- and CD40L-dependent manner in vitro. MM cells had retained the ability to activate Th cells that reciprocated and stimulated MM cell proliferation. Autologous BM Th cells supported MM cell growth in xenografted mice and were found in close contact with MM cells. MM cells secreted chemokines that attracted Th cells, secretion was augmented by CD40-stimulation. Within 14 days of culture of whole BM aspirates in autologous serum, MM cells and Th cells mutually stimulated each other, and MM cells required Th cells for further expansion in vitro and in mice. The results suggest that Th cells may support the expansion of MM cells in patients.

  9. Characterisation of cellular adhesion reinforcement by multiple bond force spectroscopy in alveolar epithelial cells.

    Science.gov (United States)

    Nguyen, Ngoc-Minh; Angely, Christelle; Andre Dias, Sofia; Planus, Emmanuelle; Filoche, Marcel; Pelle, Gabriel; Louis, Bruno; Isabey, Daniel

    2017-07-01

    Integrin-mediated adhesion is a key process by which cells physically connect with their environment, and express sensitivity and adaptation through mechanotransduction. A critical step of cell adhesion is the formation of the first bonds which individually generate weak contacts (∼tens pN) but can sustain thousand times higher forces (∼tens nN) when associated. We propose an experimental validation by multiple bond force spectroscopy (MFS) of a stochastic model predicting adhesion reinforcement permitted by non-cooperative, multiple bonds on which force is homogeneously distributed (called parallel bond configuration). To do so, spherical probes (diameter: 6.6 μm), specifically coated by RGD-peptide to bind integrins, are used to statically indent and homogenously stretch the multiple bonds created for short contact times (2 s) between the bead and the surface of epithelial cells (A549). Using different separation speeds (v = 2, 5, 10 μm/s) and measuring cellular Young's modulus as well as the local stiffness preceding local rupture events, we obtain cell-by-cell the effective loading rates both at the global cell level and at the local level of individual constitutive bonds. Local rupture forces are in the range: f*=60-115 pN , whereas global rupture (detachment) forces reach F*=0.8-1.7 nN . Global and local rupture forces both exhibit linear dependencies with the effective loading rate, the slopes of these two linear relationships providing an estimate of the number of independent integrin bonds constituting the tested multiple bond structure (∼12). The MFS method enables to validate the reinforcement of integrin-mediated adhesion induced by the multiple bond configuration in which force is homogeneously distributed amongst parallel bonds. Local rupture events observed in the course of a spectroscopy manoeuver (MFS) lead to rupture force values considered in the literature as single-integrin bonds. Adhesion reinforcement permitted by the parallel

  10. Exergy analysis of components of integrated wind energy / hydrogen / fuel cell

    International Nuclear Information System (INIS)

    Hernandez Galvez, G.; Pathiyamattom, J.S.; Sanchez Gamboa, S.

    2009-01-01

    Exergy analysis is made of three components of an integrated wind energy to hydrogen fuel cell: wind turbine, fuel cell (PEMFC) and electrolyzer (PEM). The methodology used to assess how affect the second law efficiency of the electrolyzer and the FC parameters as temperature and operating pressure and membrane thickness. It develop methods to evaluate the influence of changes in the air density and height of the tower on the second law efficiency of the turbine. This work represents a starting point for developing the global availability analysis of an integrated wind / hydrogen / fuel cells, which can be used as a tool to achieve the optimum design of the same. The use of this system contribute to protect the environment

  11. Regulation of hTERT by BCR-ABL at multiple levels in K562 cells

    International Nuclear Information System (INIS)

    Chai, Juin Hsien; Zhang, Yong; Tan, Wei Han; Chng, Wee Joo; Li, Baojie; Wang, Xueying

    2011-01-01

    The cytogenetic characteristic of Chronic Myeloid Leukemia (CML) is the formation of the Philadelphia chromosome gene product, BCR-ABL. Given that BCR-ABL is the specific target of Gleevec in CML treatment, we investigated the regulation of the catalytic component of telomerase, hTERT, by BCR-ABL at multiple levels in K562 cells. Molecular techniques such as over expression, knockdown, real-time PCR, immunoprecipitation, western blotting, reporter assay, confocal microscopy, telomerase assays and microarray were used to suggest that hTERT expression and activity is modulated by BCR-ABL at multiple levels. Our results suggest that BCR-ABL plays an important role in regulating hTERT in K562 (BCR-ABL positive human leukemia) cells. When Gleevec inhibited the tyrosine kinase activity of BCR-ABL, phosphorylation of hTERT was downregulated, therefore suggesting a positive correlation between BCR-ABL and hTERT. Gleevec treatment inhibited hTERT at mRNA level and significantly reduced telomerase activity (TA) in K562 cells, but not in HL60 or Jurkat cells (BCR-ABL negative cells). We also demonstrated that the transcription factor STAT5a plays a critical role in hTERT gene regulation in K562 cells. Knockdown of STAT5a, but not STAT5b, resulted in a marked downregulation of hTERT mRNA level, TA and hTERT protein level in K562 cells. Furthermore, translocation of hTERT from nucleoli to nucleoplasm was observed in K562 cells induced by Gleevec. Our data reveal that BCR-ABL can regulate TA at multiple levels, including transcription, post-translational level, and proper localization. Thus, suppression of cell growth and induction of apoptosis by Gleevec treatment may be partially due to TA inhibition. Additionally, we have identified STAT5a as critical mediator of the hTERT gene expression in BCR-ABL positive CML cells, suggesting that targeting STAT5a may be a promising therapeutic strategy for BCR-ABL positive CML patients

  12. Impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach.

    Science.gov (United States)

    Chandrasekar, A; Rakkiyappan, R; Cao, Jinde

    2015-10-01

    This paper studies the impulsive synchronization of Markovian jumping randomly coupled neural networks with partly unknown transition probabilities via multiple integral approach. The array of neural networks are coupled in a random fashion which is governed by Bernoulli random variable. The aim of this paper is to obtain the synchronization criteria, which is suitable for both exactly known and partly unknown transition probabilities such that the coupled neural network is synchronized with mixed time-delay. The considered impulsive effects can be synchronized at partly unknown transition probabilities. Besides, a multiple integral approach is also proposed to strengthen the Markovian jumping randomly coupled neural networks with partly unknown transition probabilities. By making use of Kronecker product and some useful integral inequalities, a novel Lyapunov-Krasovskii functional was designed for handling the coupled neural network with mixed delay and then impulsive synchronization criteria are solvable in a set of linear matrix inequalities. Finally, numerical examples are presented to illustrate the effectiveness and advantages of the theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. CD4 T cell activation and disease activity at onset of multiple sclerosis

    DEFF Research Database (Denmark)

    Jensen, J; Langkilde, Annika Reynberg; Fenst, C

    2004-01-01

    We studied CD4 T cell activation in patients with clinically isolated syndromes (CIS) suggesting an initial attack of multiple sclerosis. The percentage of blood CD26+ CD4 T cells was increased in these patients, and correlated with magnetic resonance imaging disease activity and clinical disease...... severity. In contrast, the percentage of CD25+ CD4 T cells in cerebrospinal fluid correlated negatively with the cerebrospinal fluid concentration of myelin basic protein and the presence of IgG oligoclonal bands. These results suggest that distinct systemic and intrathecal T cell activation states...

  14. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration.

    Science.gov (United States)

    Hu, Jiang; Wang, Yongyu; Jiao, Jiao; Liu, Zhongning; Zhao, Chao; Zhou, Zhou; Zhang, Zhanpeng; Forde, Kaitlynn; Wang, Lunchang; Wang, Jiangang; Baylink, David J; Zhang, Xiao-Bing; Gao, Shaorong; Yang, Bo; Chen, Y Eugene; Ma, Peter X

    2015-12-01

    Tissue-engineered blood vessels (TEBVs) are promising in regenerating a live vascular replacement. However, the vascular cell source is limited, and it is crucial to develop a scaffold that accommodates new type of vascular progenitor cells and facilitates in vivo lineage specification of the cells into functional vascular smooth muscle cells (VSMCs) to regenerate vascular tissue. In the present study, integration-free human induced pluripotent stem cells (hiPSCs) were established from patient peripheral blood mononuclear cells through episomal vector nucleofection of reprogramming factors. The established hiPSCs were then induced into mesoderm-originated cardiovascular progenitor cells (CVPCs) with a highly efficient directed lineage specification method. The derived CVPCs were demonstrated to be able to differentiate into functional VSMCs. Subcutaneous implantation of CVPCs seeded on macroporous nanofibrous poly(l-lactide) scaffolds led to in vivo VSMC lineage specification and matrix deposition inside the scaffolds. In summary, we established integration-free patient-specific hiPSCs from peripheral blood mononuclear cells, derived CVPCs through directed lineage specification, and developed an advanced scaffold for these progenitor cells to further differentiate in vivo into VSMCs and regenerate vascular tissue in a subcutaneous implantation model. This study has established an efficient patient-specific approach towards in vivo regeneration of vascular tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A Promising Approach to Integrally Evaluate the Disease Outcome of Cerebral Ischemic Rats Based on Multiple-Biomarker Crosstalk

    Directory of Open Access Journals (Sweden)

    Guimei Ran

    2017-01-01

    Full Text Available Purpose. The study was designed to evaluate the disease outcome based on multiple biomarkers related to cerebral ischemia. Methods. Rats were randomly divided into sham, permanent middle cerebral artery occlusion, and edaravone-treated groups. Cerebral ischemia was induced by permanent middle cerebral artery occlusion surgery in rats. To form a simplified crosstalk network, the related multiple biomarkers were chosen as S100β, HIF-1α, IL-1β, PGI2, TXA2, and GSH-Px. The levels or activities of these biomarkers in plasma were detected before and after ischemia. Concurrently, neurological deficit scores and cerebral infarct volumes were assessed. Based on a mathematic model, network balance maps and three integral disruption parameters (k, φ, and u of the simplified crosstalk network were achieved. Results. The levels or activities of the related biomarkers and neurological deficit scores were significantly impacted by cerebral ischemia. The balance maps intuitively displayed the network disruption, and the integral disruption parameters quantitatively depicted the disruption state of the simplified network after cerebral ischemia. The integral disruption parameter u values correlated significantly with neurological deficit scores and infarct volumes. Conclusion. Our results indicate that the approach based on crosstalk network may provide a new promising way to integrally evaluate the outcome of cerebral ischemia.

  16. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  17. N-way FRET microscopy of multiple protein-protein interactions in live cells.

    Directory of Open Access Journals (Sweden)

    Adam D Hoppe

    Full Text Available Fluorescence Resonance Energy Transfer (FRET microscopy has emerged as a powerful tool to visualize nanoscale protein-protein interactions while capturing their microscale organization and millisecond dynamics. Recently, FRET microscopy was extended to imaging of multiple donor-acceptor pairs, thereby enabling visualization of multiple biochemical events within a single living cell. These methods require numerous equations that must be defined on a case-by-case basis. Here, we present a universal multispectral microscopy method (N-Way FRET to enable quantitative imaging for any number of interacting and non-interacting FRET pairs. This approach redefines linear unmixing to incorporate the excitation and emission couplings created by FRET, which cannot be accounted for in conventional linear unmixing. Experiments on a three-fluorophore system using blue, yellow and red fluorescent proteins validate the method in living cells. In addition, we propose a simple linear algebra scheme for error propagation from input data to estimate the uncertainty in the computed FRET images. We demonstrate the strength of this approach by monitoring the oligomerization of three FP-tagged HIV Gag proteins whose tight association in the viral capsid is readily observed. Replacement of one FP-Gag molecule with a lipid raft-targeted FP allowed direct observation of Gag oligomerization with no association between FP-Gag and raft-targeted FP. The N-Way FRET method provides a new toolbox for capturing multiple molecular processes with high spatial and temporal resolution in living cells.

  18. Integrative Analysis of Transcription Factor Combinatorial Interactions Using a Bayesian Tensor Factorization Approach

    Science.gov (United States)

    Ye, Yusen; Gao, Lin; Zhang, Shihua

    2017-01-01

    Transcription factors play a key role in transcriptional regulation of genes and determination of cellular identity through combinatorial interactions. However, current studies about combinatorial regulation is deficient due to lack of experimental data in the same cellular environment and extensive existence of data noise. Here, we adopt a Bayesian CANDECOMP/PARAFAC (CP) factorization approach (BCPF) to integrate multiple datasets in a network paradigm for determining precise TF interaction landscapes. In our first application, we apply BCPF to integrate three networks built based on diverse datasets of multiple cell lines from ENCODE respectively to predict a global and precise TF interaction network. This network gives 38 novel TF interactions with distinct biological functions. In our second application, we apply BCPF to seven types of cell type TF regulatory networks and predict seven cell lineage TF interaction networks, respectively. By further exploring the dynamics and modularity of them, we find cell lineage-specific hub TFs participate in cell type or lineage-specific regulation by interacting with non-specific TFs. Furthermore, we illustrate the biological function of hub TFs by taking those of cancer lineage and blood lineage as examples. Taken together, our integrative analysis can reveal more precise and extensive description about human TF combinatorial interactions. PMID:29033978

  19. An integrated on-line irradiation and in situ live cell imaging system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen, E-mail: gen.yang@pku.edu.cn; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO{sub 2}, O{sub 2} concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  20. An integrated on-line irradiation and in situ live cell imaging system

    International Nuclear Information System (INIS)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-01-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO 2 , O 2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia

  1. An integrated on-line irradiation and in situ live cell imaging system

    Science.gov (United States)

    Liang, Ying; Fu, Qibin; Wang, Weikang; Liu, Yu; Liu, Feng; Yang, Gen; Wang, Yugang

    2015-09-01

    Ionizing radiation poses a threat to genome integrity by introducing DNA damages, particularly DNA double-strand breaks (DSB) in cells. Understanding how cells react to DSB and maintain genome integrity is of major importance, since increasing evidences indicate the links of DSB with genome instability and cancer predispositions. However, tracking the dynamics of DNA damages and repair response to ionizing radiation in individual cell is difficult. Here we describe the development of an on-line irradiation and in situ live cell imaging system based on isotopic sources at Institute of Heavy Ion Physics, Peking University. The system was designed to irradiate cells and in situ observe the cellular responses to ionizing radiation in real time. On-line irradiation was achieved by mounting a metal framework that hold an isotopic γ source above the cell culture dish for γ irradiation; or by integrating an isotopic α source to an objective lens under the specialized cell culture dish for α irradiation. Live cell imaging was performed on a confocal microscope with an environmental chamber installed on the microscope stage. Culture conditions in the environment chamber such as CO2, O2 concentration as well as temperature are adjustable, which further extends the capacity of the system and allows more flexible experimental design. We demonstrate the use of this system by tracking the DSB foci formation and disappearance in individual cells after exposure to irradiation. On-line irradiation together with in situ live cell imaging in adjustable culture conditions, the system overall provides a powerful tool for investigation of cellular and subcellular response to ionizing radiation under different physiological conditions such as hyperthermia or hypoxia.

  2. Mantle cell lymphoma of the gastrointestinal tract presenting with multiple intussusceptions – case report and review of literature

    Directory of Open Access Journals (Sweden)

    Abo Stephen M

    2009-07-01

    Full Text Available Abstract Background Mantle cell lymphoma (MCL is an aggressive type of B-cell non-Hodgkin's lymphoma that originates from small to medium sized lymphocytes located in the mantle zone of the lymph node. Extra nodal involvement is present in the majority of cases, with a peculiar tendency to invade the gastro-intestinal tract in the form of multiple lymphomatous polyposis. MCL can be accurately diagnosed with the use of the highly specific marker Cyclin D1. Few cases of mantle cell lymphoma presenting with intussuception have been reported. Here we present a rare case of multiple intussusceptions caused by mantle cell lymphoma and review the literature of this disease. Case presentation A 68-year-old male presented with pain, tenderness in the right lower abdomen, associated with nausea and non-bilious vomiting. CT scan of abdomen revealed ileo-colic intussusception. Laparoscopy confirmed multiple intussusceptions involving ileo-colic and ileo-ileal segments of gastrointestinal tract. A laparoscopically assisted right hemicolectomy and extended ileal resection was performed. Postoperative recovery was uneventful. The histology and immuno-histochemistry of the excised small and large bowel revealed mantle cell lymphoma with multiple lymphomatous polyposis and positivity to Cyclin D1 marker. The patient was successfully treated with Rituximab-CHOP chemotherapy and remains in complete remission at one-year follow-up. Conclusion This is a rare case of intestinal lymphomatous polyposis due to mantle cell lymphoma presenting with multiple small bowel intussusceptions. Our case highlights laparoscopic-assisted bowel resection as a potential and feasible option in the multi-disciplinary treatment of mantle cell lymphoma.

  3. Correlation of proliferative and clonogenic tumor cells in multiple myeloma

    International Nuclear Information System (INIS)

    Karp, J.E.; Burke, P.J.; Saylor, P.L.; Humphrey, R.L.

    1984-01-01

    To expand on the findings from previous clinical trials that the growth of residual tumor is increased at a predictable time following initial drug administration, malignant plasma cells from bone marrows of patients with multiple myeloma (MM) were examined for changes in proliferation and clonogenicity induced in vivo by cyclophosphamide and in vitro by drug-induced humoral stimulatory activity. Peak plasma cell [ 3 H]thymidine labeling index (LI) occurred predictably following drug and paralleled changes in agar colony formation by marrow cells obtained during therapy. Colony-forming capacity of pretreatment MM marrow populations was enhanced when those cells were cultured with humoral stimulatory activity, similar to the increased colony formation detected in Day 9 postcyclophosphamide marrows at the time of peak plasma cell LI. To further define a relationship between proliferative plasma cells and colony-forming tumor cells, MM marrows were fractionated by sedimentation on an isokinetic gradient. Enrichment of a proliferative tumor cell cohort was achieved, evidenced by [ 3 H]thymidine LI. Colony-forming cells were also enriched by isokinetic gradient sedimentation, and agar colony formation by MM marrow cell fractions correlated with the kinetic characteristics of the isolated subpopulations. These studies of whole and fractionated human MM marrow cell populations suggest that the kinetically active cells which are induced to proliferate in vivo and in vitro are closely related to the clonogenic tumor cells which produce colonies in agar and which, like those cells measured by [ 3 H]thymidine LI, respond to growth stimulation by drug-induced humoral stimulatory activity

  4. POOR HEMOPOIETIC STEM CELL MOBILIZERS IN MULTIPLE MYELOMA : A SINGLE INSTITUTION EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Guillermo Jose Ruiz-Delgado

    2010-06-01

    Full Text Available In a single institution, in a group of 28 myeloma patients deemed eligible for autologous transplant, stem cell mobilization was attempted using filgrastim: 26 individuals were given 31 autografts employing 1-4 (median three apheresis sessions, to obtain a target stem cell dose of 1 x 106 CD34 viable cells / Kg of the recipient. The median number of grafted CD34 cells was 7.56 x 106  / Kg of the recipient; the range being 0.92 to 14.8.  By defining as poor mobilizers individuals in which a cell collection of 1 x 106 CD34 viable cells / Kg was better (80% at 80 months than those grafted with < 1 x 106 CD34 viable cells / Kg (67% at 76 months. Methods to improve stem cell mobilization are needed and may result in obtaining better results when autografting multiple myeloma patients.

  5. Th17 cells in the pathogenesis of multiple sclerosis

    Directory of Open Access Journals (Sweden)

    Marek Juszczak

    2009-10-01

    Full Text Available Th17 cells are a recently described subset of T helper lymphocytes characterized by the production of IL-17 (IL-17A. Since their discovery in 2003, studies on Th17 cells have become increasingly popular among immunologists and they have emerged as key players in the pathogenesis of multiple sclerosis (MS and other autoimmune disorders traditionally attributed to Th1 cells. Murine Th17 lymphocytes differentiate from naive CD4 cells in a specific cytokine environment, which includes TGF- and IL-6 or IL-21, whereas human Th17 cell development requires TGF-, IL-1, and IL-2 in combination with IL-6, IL-21, or IL-23. Th17-related response is additionally enhanced by osteopontin, TNF, and PGE2 and suppressed by IL-25, IL-27, IL-35, and IL-10. Apart from their main cytokine, Th17 cells can also express IL-17F, IL-21, IL-22, TNF, CCL20, and, in humans, IL-26. All of these mediators may contribute to the proinflammatory action of Th17 .cells both in the clearance of various pathogens and in autoimmunity. At least some of these functions are exerted through the induction of neutrophil-recruiting chemokines (CXCL1, CXCL2, CXCL8 by IL-17. Accumulating evidence from studies on mice and humans indicates an important role of Th17 cells in mediating autoimmune neuroinflammation. This has led some immunologists to question the previously exhibited importance of Th1 cells in MS pathology. However, more recent data suggest that both these T-cell subsets are capable of inducing and promoting the disease. Further investigation is required to clarify the role of Th17 cells in the pathogenesis of MS since some of the Th17-related molecules appear as attractive targets for future therapeutic strategies

  6. Development of a solenoid actuated planar valveless micropump with single and multiple inlet-outlet arrangements

    Science.gov (United States)

    Kumar, N.; George, D.; Sajeesh, P.; Manivannan, P. V.; Sen, A. K.

    2016-07-01

    We report a planar solenoid actuated valveless micropump with multiple inlet-outlet configurations. The self-priming characteristics of the multiple inlet-multiple outlet micropump are studied. The filling dynamics of the micropump chamber during start-up and the effects of fluid viscosity, voltage and frequency on the dynamics are investigated. Numerical simulations for multiple inlet-multiple outlet micropumps are carried out using fluid structure algorithm. With DI water and at 5.0 Vp-p, 20 Hz frequency, the two inlet-two outlet micropump provides a maximum flow rate of 336 μl min-1 and maximum back pressure of 441 Pa. Performance characteristics of the two inlet-two outlet micropump are studied for aqueous fluids of different viscosity. Transport of biological cell lines and diluted blood samples are demonstrated; the flow rate-frequency characteristics are studied. Viability of cells during pumping with multiple inlet multiple outlet configuration is also studied in this work, which shows 100% of cells are viable. Application of the proposed micropump for simultaneous pumping, mixing and distribution of fluids is demonstrated. The proposed integrated, standalone and portable micropump is suitable for drug delivery, lab-on-chip and micro-total-analysis applications.

  7. Economic competitiveness of fuel cell onsite integrated energy systems

    Science.gov (United States)

    Bollenbacher, G.

    1983-01-01

    The economic competitiveness of fuel cell onsite integrated energy systems (OS/IES) in residential and commercial buildings is examined. The analysis is carried out for three different buildings with each building assumed to be at three geographic locations spanning a range of climatic conditions. Numerous design options and operating strategies are evaluated and two economic criteria are used to measure economic performance. In general the results show that fuel cell OS/IES's are competitive in most regions of the country if the OS/IES is properly designed. The preferred design is grid connected, makes effective use of the fuel cell's thermal output, and has a fuel cell powerplant sized for the building's base electrical load.

  8. Murine leukemia virus vector integration favors promoter regions and regional hot spots in a human T-cell line

    International Nuclear Information System (INIS)

    Tsukahara, Tomonori; Agawa, Hideyuki; Matsumoto, Sayori; Matsuda, Mizuho; Ueno, Shuichi; Yamashita, Yuki; Yamada, Koichiro; Tanaka, Nobuyuki; Kojima, Katsuhiko; Takeshita, Toshikazu

    2006-01-01

    Genomic analysis of integration will be important in evaluating the safety of human gene therapy with retroviral vectors. Here, we investigated MLV vector integration sites in human T-cells, since they are amenable to gene transfer studies, and have been used therapeutically in clinical trials. We mapped 340 MLV vector integration sites in the infected human T-cell clones we established. The data showed that MLV preferred integration near the transcription start sites (±5 kb), near CpG islands (±1 kb), and within the first intron of RefSeq genes. We also identified MLV integration hot spots that contained three or more integrations within a 100 kb region. RT-PCR revealed that mRNA-levels of T-cell clones that contained MLV integrations near transcription start sites or introns were dysregulated compared to the uninfected cells. These studies help define the profile of MLV integration in T-cells and the risks associated with MLV-based gene therapy

  9. FogBank: a single cell segmentation across multiple cell lines and image modalities.

    Science.gov (United States)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Stuelten, Christina; Peskin, Adele; Brady, Mary

    2014-12-30

    sheets with high accuracy. It can be applied to microscopy images of multiple cell lines and a variety of imaging modalities. The code for the segmentation method is available as open-source and includes a Graphical User Interface for user friendly execution.

  10. Integrating physiological regulation with stem cell and tissue homeostasis

    Science.gov (United States)

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  11. Histatin 1 Enhances Cell Adhesion to Titanium in an Implant Integration Model.

    Science.gov (United States)

    van Dijk, I A; Beker, A F; Jellema, W; Nazmi, K; Wu, G; Wismeijer, D; Krawczyk, P M; Bolscher, J G M; Veerman, E C I; Stap, J

    2017-04-01

    Cellular adhesion is essential for successful integration of dental implants. Rapid soft tissue integration is important to create a seal around the implant and prevent infections, which commonly cause implant failure and can result in bone loss. In addition, soft tissue management is important to obtain good dental aesthetics. We previously demonstrated that the salivary peptide histatin 1 (Hst1) causes a more than 2-fold increase in the ability of human adherent cells to attach and spread on a glass surface. Cells treated with Hst1 attached more rapidly and firmly to the substrate and to each other. In the current study, we examine the potential application of Hst1 for promotion of dental implant integration. Our results show that Hst1 enhances the attachment and spreading of soft tissue cell types (oral epithelial cells and fibroblasts) to titanium (Ti) and hydroxyapatite (HAP), biomaterials that have found wide applications as implant material in dentistry and orthopedics. For improved visualization of cell adhesion to Ti, we developed a novel technique that uses sputtering to deposit a thin, transparent layer of Ti onto glass slides. This approach allows detailed, high-resolution analysis of cell adherence to Ti in real time. Furthermore, our results suggest that Hst1 has no negative effects on cell survival. Given its natural occurrence in the oral cavity, Hst1 could be an attractive agent for clinical application. Importantly, even though Hst1 is specific for saliva of humans and higher primates, it stimulated the attachment and spreading of canine cells, paving the way for preclinical studies in canine models.

  12. Increased level of both CD4+FOXP3+ regulatory T cells and CD14+HLA-DR⁻/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma

    DEFF Research Database (Denmark)

    Brimnes, M K; Vangsted, Annette Juul; Knudsen, L M

    2010-01-01

    Patients with multiple myeloma (MM) suffer from a general impaired immunity comprising deficiencies in humoral responses, T-cell responses as well as dendritic cell (DC) function. Thus, to achieve control of tumour growth through immune therapy constitutes a challenge. Careful evaluation of the i......Patients with multiple myeloma (MM) suffer from a general impaired immunity comprising deficiencies in humoral responses, T-cell responses as well as dendritic cell (DC) function. Thus, to achieve control of tumour growth through immune therapy constitutes a challenge. Careful evaluation...

  13. Design of all-optical high-order temporal integrators based on multiple-phase-shifted Bragg gratings.

    Science.gov (United States)

    Asghari, Mohammad H; Azaña, José

    2008-07-21

    In exact analogy with their electronic counterparts, photonic temporal integrators are fundamental building blocks for constructing all-optical circuits for ultrafast information processing and computing. In this work, we introduce a simple and general approach for realizing all-optical arbitrary-order temporal integrators. We demonstrate that the N(th) cumulative time integral of the complex field envelope of an input optical waveform can be obtained by simply propagating this waveform through a single uniform fiber/waveguide Bragg grating (BG) incorporating N pi-phase shifts along its axial profile. We derive here the design specifications of photonic integrators based on multiple-phase-shifted BGs. We show that the phase shifts in the BG structure can be arbitrarily located along the grating length provided that each uniform grating section (sections separated by the phase shifts) is sufficiently long so that its associated peak reflectivity reaches nearly 100%. The resulting designs are demonstrated by numerical simulations assuming all-fiber implementations. Our simulations show that the proposed approach can provide optical operation bandwidths in the tens-of-GHz regime using readily feasible photo-induced fiber BG structures.

  14. Scheduling of Power System Cells Integrating Stochastic Power Generation

    International Nuclear Information System (INIS)

    Costa, L.M.

    2008-12-01

    Energy supply and climate change are nowadays two of the most outstanding problems which societies have to cope with under a context of increasing energy needs. Public awareness of these problems is driving political willingness to take actions for tackling them in a swift and efficient manner. Such actions mainly focus in increasing energy efficiency, in decreasing dependence on fossil fuels, and in reducing greenhouse gas emissions. In this context, power systems are undergoing important changes in the way they are planned and managed. On the one hand, vertically integrated structures are being replaced by market structures in which power systems are un-bundled. On the other, power systems that once relied on large power generation facilities are witnessing the end of these facilities' life-cycle and, consequently, their decommissioning. The role of distributed energy resources such as wind and solar power generators is becoming increasingly important in this context. However, the large-scale integration of such type of generation presents many challenges due, for instance, to the uncertainty associated to the variability of their production. Nevertheless, advanced forecasting tools may be combined with more controllable elements such as energy storage devices, gas turbines, and controllable loads to form systems that aim to reduce the impacts that may be caused by these uncertainties. This thesis addresses the management under market conditions of these types of systems that act like independent societies and which are herewith named power system cells. From the available literature, a unified view of power system scheduling problems is also proposed as a first step for managing sets of power system cells in a multi-cell management framework. Then, methodologies for performing the optimal day-ahead scheduling of single power system cells are proposed, discussed and evaluated under both a deterministic and a stochastic framework that directly integrates the

  15. Life cycle assessment of roof integrated solar cell systems

    International Nuclear Information System (INIS)

    Van Brummelen, M.; Nieuwlaar, E.

    1994-01-01

    The research protocol, applied in this report, is designed for use within the energy R and D-context: it provides a framework for finding bottlenecks and opportunities for (new) energy technologies in the context of (energy) resource scarcity and environmental issues. Finding and analyzing these bottlenecks and opportunities is a major objective of this study. A derived objective of this study is to gain experience in using the LCA-framework and the research protocol described earlier, and to evaluate the usefulness of these instruments in helping to find and analyze bottlenecks and opportunities in energy technologies. Photovoltaic solar cell systems (PV systems) are comprised of solar cell modules and a Balance-of-System (BOS): a support structure and power conditioning equipment. In this LCA amorphous silicon cells (a-Si) are considered. For the Netherlands roof-integrated, grid-connected systems are assumed to be the major application of PV in the future. Two cases will be studied. In case 1 a system of 30 m 2 of modules which are connected to the grid via a single inverter are studied. The modules are comprised of a-Si cells and have a conversion efficiency of 10%. Integration into the roof is done with aluminium profiles. In case 2 a system of 30 m 2 a-Si cell modules integrated in the roof with plastic 'tiles' is studied. The modules have an efficiency of 15% and connection to the grid is more or less centralized: 25 systems share an inverter which is connected to the grid. The goal and scope of the LCA and the functional unit are described in chapter 2. In chapter 3 the process tree and descriptions of the distinguished processes are given and the inventory table is drawn up. In chapter 4 the impact assessment is dealt with, followed by a discussion of improvement options in chapter 5. Conclusions and recommendations are given in the chapters 6 and 7 only regarding the environmental aspects. 9 figs., 13 tabs., 4 appendices, 13 refs

  16. Single-cell axotomy of cultured hippocampal neurons integrated in neuronal circuits.

    Science.gov (United States)

    Gomis-Rüth, Susana; Stiess, Michael; Wierenga, Corette J; Meyn, Liane; Bradke, Frank

    2014-05-01

    An understanding of the molecular mechanisms of axon regeneration after injury is key for the development of potential therapies. Single-cell axotomy of dissociated neurons enables the study of the intrinsic regenerative capacities of injured axons. This protocol describes how to perform single-cell axotomy on dissociated hippocampal neurons containing synapses. Furthermore, to axotomize hippocampal neurons integrated in neuronal circuits, we describe how to set up coculture with a few fluorescently labeled neurons. This approach allows axotomy of single cells in a complex neuronal network and the observation of morphological and molecular changes during axon regeneration. Thus, single-cell axotomy of mature neurons is a valuable tool for gaining insights into cell intrinsic axon regeneration and the plasticity of neuronal polarity of mature neurons. Dissociation of the hippocampus and plating of hippocampal neurons takes ∼2 h. Neurons are then left to grow for 2 weeks, during which time they integrate into neuronal circuits. Subsequent axotomy takes 10 min per neuron and further imaging takes 10 min per neuron.

  17. 77 FR 33486 - Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products...

    Science.gov (United States)

    2012-06-06

    ...Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Integrated Circuit Packages Provided With Multiple Heat-Conducting Paths and Products Containing Same, DN 2899; the Commission is soliciting comments on any public interest issues raised by the complaint or complainant's filing under section 210.8(b) of the Commission's Rules of Practice and Procedure (19 CFR 210.8(b)).

  18. Deficient Fas expression by CD4+ CCR5+ T cells in multiple sclerosis

    DEFF Research Database (Denmark)

    Julià, Eva; Montalban, Xavier; Al-Zayat, Hammad

    2006-01-01

    OBJECTIVE: To evaluate whether T cells expressing CCR5 and CXCR3 from multiple sclerosis (MS) patients are more resistant to apoptosis. METHODS: Expression of CD69, TNF-R1, Fas, FasL, bcl-2, and bax was investigated in 41 MS patients and 12 healthy controls by flow cytometry in CD4+ and CD8+ T...... cells expressing CCR5 and CXCR3. RESULTS: In MS patients, the percentage of CD69 was increased and Fas expression decreased in CD4+ CCR5+ T cells. INTERPRETATION: The lower Fas expression in activated CD4+ CCR5+ T cells might contribute to disease pathogenesis by prolonging cell survival and favoring...

  19. Integrated hydrogen production process from cellulose by combining dark fermentation, microbial fuel cells, and a microbial electrolysis cell

    KAUST Repository

    Wang, Aijie; Sun, Dan; Cao, Guangli; Wang, Haoyu; Ren, Nanqi; Wu, Wei-Min; Logan, Bruce E.

    2011-01-01

    Hydrogen gas production from cellulose was investigated using an integrated hydrogen production process consisting of a dark fermentation reactor and microbial fuel cells (MFCs) as power sources for a microbial electrolysis cell (MEC). Two MFCs

  20. Using Images, Metaphor, and Hypnosis in Integrating Multiple Personality and Dissociative States: A Review of the Literature.

    Science.gov (United States)

    Crawford, Carrie L.

    1990-01-01

    Reviews literature on hypnosis, imagery, and metaphor as applied to the treatment and integration of those with multiple personality disorder (MPD) and dissociative states. Considers diagnostic criteria of MPD; explores current theories of etiology and treatment; and suggests specific examples of various clinical methods of treatment using…

  1. Transactivation domain of p53 regulates DNA repair and integrity in human iPS cells.

    Science.gov (United States)

    Kannappan, Ramaswamy; Mattapally, Saidulu; Wagle, Pooja A; Zhang, Jianyi

    2018-05-18

    The role of p53 transactivation domain (p53-TAD), a multifunctional and dynamic domain, on DNA repair and retaining DNA integrity in human iPS cells has never been studied. p53-TAD was knocked out in iPS cells using CRISPR/Cas9 and was confirmed by DNA sequencing. p53-TAD KO cells were characterized by: accelerated proliferation, decreased population doubling time, and unaltered Bcl2, BBC3, IGF1R, Bax and altered Mdm2, p21, and PIDD transcripts expression. In p53-TAD KO cells p53 regulated DNA repair proteins XPA, DNA polH and DDB2 expression were found to be reduced compared to p53-WT cells. Exposure to low dose of doxorubicin (Doxo) induced similar DNA damage and DNA damage response (DDR) measured by RAD50 and MRE11 expression, Checkpoint kinase 2 activation and γH2A.X recruitment at DNA strand breaks in both the cell groups indicating silencing p53-TAD do not affect DDR mechanism upstream of p53. Following removal of Doxo p53-WT hiPS cells underwent DNA repair, corrected their damaged DNA and restored DNA integrity. Conversely, p53-TAD KO hiPS cells did not undergo complete DNA repair and failed to restore DNA integrity. More importantly continuous culture of p53-TAD KO hiPS cells underwent G2/M cell cycle arrest and expressed cellular senescent marker p16 INK4a . Our data clearly shows that silencing transactivation domain of p53 did not affect DDR but affected the DNA repair process implying the crucial role of p53 transactivation domain in maintaining DNA integrity. Therefore, activating p53-TAD domain using small molecules may promote DNA repair and integrity of cells and prevent senescence.

  2. Coexisting multiple myeloma, lymphoma, and non-small cell lung cancer: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Khade P

    2017-11-01

    Full Text Available Parth Khade, Srinivas Devarakonda Department of Internal Medicine, Louisiana State University Health, Shreveport, LA, USA Abstract: Multiple myeloma is a plasma cell dyscrasia characterized by neoplastic proliferation of plasma cells, producing a monoclonal immunoglobulin. Small lymphocytic lymphoma (SLL is a neoplasm consisting of monoclonal B-cell lymphocyte proliferation. We present an extremely rare case of coexisting multiple myeloma, SLL, and squamous cell carcinoma of the lung in a 74-year-old female patient. She initially presented with a midline mass with pain in the lumbar area. Debulking surgery was performed, and pathology showed plasmacytoma. Further evaluation revealed coexistent IgG kappa myeloma. Imaging revealed extensive abdominal lymphadenopathy, and mesenteric lymph node biopsy confirmed the presence of SLL. The patient was also found to have a mass in the left lower lobe of the lung; biopsy showed squamous cell carcinoma. This patient was treated with lenalidomide and dexamethasone for multiple myeloma, and stereotactic body radiotherapy for limited stage lung cancer. Due to the more indolent course of SLL, watchful waiting was applied. Keywords: coexisting, multiple myeloma, lung cancer, non-Hodgkin’s lymphoma

  3. Monolithic integration of InGaAs/InP multiple quantum wells on SOI substrates for photonic devices

    Science.gov (United States)

    Li, Zhibo; Wang, Mengqi; Fang, Xin; Li, Yajie; Zhou, Xuliang; Yu, Hongyan; Wang, Pengfei; Wang, Wei; Pan, Jiaoqing

    2018-02-01

    A direct epitaxy of III-V nanowires with InGaAs/InP multiple quantum wells on v-shaped trenches patterned silicon on insulator (SOI) substrates was realized by combining the standard semiconductor fabrication process with the aspect ratio trapping growth technique. Silicon thickness as well as the width and gap of each nanowire were carefully designed to accommodate essential optical properties and appropriate growth conditions. The III-V element ingredient, crystalline quality, and surface topography of the grown nanowires were characterized by X-ray diffraction spectroscopy, photoluminescence, and scanning electron microscope. Geometrical details and chemical information of multiple quantum wells were revealed by transmission electron microscopy and energy dispersive spectroscopy. Numerical simulations confirmed that the optical guided mode supported by one single nanowire was able to propagate 50 μm with ˜30% optical loss. This proposed integration scheme opens up an alternative pathway for future photonic integrations of III-V devices on the SOI platform at nanoscale.

  4. Cost-effective master cell bank validation of multiple clinical-grade human pluripotent stem cell lines from a single donor.

    Science.gov (United States)

    Devito, Liani; Petrova, Anastasia; Miere, Cristian; Codognotto, Stefano; Blakely, Nicola; Lovatt, Archie; Ogilvie, Caroline; Khalaf, Yacoub; Ilic, Dusko

    2014-10-01

    Standardization guidelines for human pluripotent stem cells are still very broadly defined, despite ongoing clinical trials in the U.S., U.K., and Japan. The requirements for validation of human embryonic (hESCs) and induced pluripotent stem cells (iPSCs) in general follow the regulations for other clinically compliant biologics already in place but without addressing key differences between cell types or final products. In order to realize the full potential of stem cell therapy, validation criteria, methodology, and, most importantly, strategy, should address the shortfalls and efficiency of current approaches; without this, hESC- and, especially, iPSC-based therapy will not be able to compete with other technologies in a cost-efficient way. We addressed the protocols for testing cell lines for human viral pathogens and propose a novel strategy that would significantly reduce costs. It is highly unlikely that the multiple cell lines derived in parallel from a tissue sample taken from one donor would have different profiles of endogenous viral pathogens; we therefore argue that samples from the Master Cell Banks of sibling lines could be safely pooled for validation. We illustrate this approach with tiered validation of two sibling clinical-grade hESC lines, KCL033 and KCL034 (stage 1, sterility; stage 2, specific human pathogens; and stage 3, nonspecific human pathogens). The results of all tests were negative. This cost-effective strategy could also be applied for validation of Master Cell Banks of multiple clinical-grade iPSC lines derived from a single donor. ©AlphaMed Press.

  5. Yessotoxin as a Tool to Study Induction of Multiple Cell Death Pathways

    Directory of Open Access Journals (Sweden)

    Mónica Suárez Korsnes

    2012-07-01

    Full Text Available This work proposes to use the marine algal toxin yessotoxin (YTX to establish reference model experiments to explore medically valuable effects from induction of multiple cell death pathways. YTX is one of few toxins reported to make such induction. It is a small molecule compound which at low concentrations can induce apoptosis in primary cultures, many types of cells and cell lines. It can also induce a non-apoptotic form of programmed cell death in BC3H1 myoblast cell lines. The present contribution reviews arguments that this type of induction may have principal interest outside this particular example. One principal effect of medical interest may be that cancer cells will not so easily adapt to the synergistic effects from induction of more than one death pathway as compared to induction of only apoptosis.

  6. An emerging role of pectic rhamnogalacturonanII for cell wall integrity

    OpenAIRE

    Reboul, Rebecca; Tenhaken, Raimund

    2012-01-01

    The plant cell wall is a complex network of different polysaccharides and glycoproteins, showing high diversity in nature. The essential components, tethering cell wall are under debate, as novel mutants challenge established models. The mutant ugd2,3 with a reduced supply of the important wall precursor UDP-glucuronic acid reveals the critical role of the pectic compound rhamnogalacturonanII for cell wall stability. This polymer seems to be more important for cell wall integrity than the pre...

  7. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    Science.gov (United States)

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo; Giavaresi, Gianluca; Alessandro, Riccardo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs differentiation. We show that MM cells produce exosomes which are actively internalized by Raw264.7 cell line, a cellular model of osteoclast formation. MM cell-derived exosomes positively modulate pre-osteoclast migration, through the increasing of CXCR4 expression and trigger a survival pathway. MM cell-derived exosomes play a significant pro-differentiative role in murine Raw264.7 cells and human primary osteoclasts, inducing the expression of osteoclast markers such as Cathepsin K (CTSK), Matrix Metalloproteinases 9 (MMP9) and Tartrate-resistant Acid Phosphatase (TRAP). Pre-osteoclast treated with MM cell-derived exosomes differentiate in multinuclear OCs able to excavate authentic resorption lacunae. Similar results were obtained with exosomes derived from MM patient's sera. Our data indicate that MM-exosomes modulate OCs function and differentiation. Further studies are needed to identify the OCs activating factors transported by MM cell-derived exosomes. PMID:25944696

  8. Cell kinetics, DNA integrity, differentiation, and lipid fingerprinting analysis of rabbit adipose-derived stem cells.

    Science.gov (United States)

    Barretto, Letícia Siqueira de Sá; Lessio, Camila; Sawaki e Nakamura, Ahy Natally; Lo Turco, Edson Guimarães; da Silva, Camila Gonzaga; Zambon, João Paulo; Gozzo, Fábio César; Pilau, Eduardo Jorge; de Almeida, Fernando Gonçalves

    2014-10-01

    Human adipose tissue has been described as a potential alternative reservoir for stem cells. Although studies have been performed in rabbits using autologous adipose-derived stem cells (ADSC), these cells have not been well characterized. The primary objectives of this study were to demonstrate the presence of adipose-derived stem cells isolated from rabbit inguinal fat pads and to characterize them through osteogenic and adipogenic in vitro differentiation and lipid fingerprinting analysis. The secondary objective was to evaluate cell behavior through growth kinetics, cell viability, and DNA integrity. Rabbit ADSCs were isolated to determine the in vitro growth kinetics and cell viability. DNA integrity was assessed by an alkaline Comet assay in passages 0 and 5. The osteogenic differentiation was evaluated by Von Kossa, and Alizarin Red S staining and adipogenic differentiation were assessed by Oil Red O staining. Lipid fingerprinting analyses of control, adipogenic, and osteogenic differentiated cells were performed by MALDI-TOF/MS. We demonstrate that rabbit ADSC have a constant growth rate at the early passages, with increased DNA fragmentation at or after passage 5. Rabbit ADSC viability was similar in passages 2 and 5 (90.7% and 86.6%, respectively), but there was a tendency to decreased cellular growth rate after passage 3. The ADSC were characterized by the expression of surface markers such as CD29 (67.4%) and CD44 (89.4%), using CD 45 (0.77%) as a negative control. ADSC from rabbits were successfully isolated form the inguinal region. These cells were capable to differentiate into osteogenic and adipogenic tissue when they were placed in inductive media. After each passage, there was a trend towards decreased cell growth. On the other hand, DNA fragmentation increased at each passage. ADSC had a different lipid profile when placed in control, adipogenic, or osteogenic media.

  9. Lignocellulosic sugar management for xylitol and ethanol fermentation with multiple cell recycling by Kluyveromyces marxianus IIPE453.

    Science.gov (United States)

    Dasgupta, Diptarka; Ghosh, Debashish; Bandhu, Sheetal; Adhikari, Dilip K

    2017-07-01

    Optimum utilization of fermentable sugars from lignocellulosic biomass to deliver multiple products under biorefinery concept has been reported in this work. Alcohol fermentation has been carried out with multiple cell recycling of Kluyveromyces marxianus IIPE453. The yeast utilized xylose-rich fraction from acid and steam treated biomass for cell generation and xylitol production with an average yield of 0.315±0.01g/g while the entire glucose rich saccharified fraction had been fermented to ethanol with high productivity of 0.9±0.08g/L/h. A detailed insight into its genome illustrated the strain's complete set of genes associated with sugar transport and metabolism for high-temperature fermentation. A set flocculation proteins were identified that aided in high cell recovery in successive fermentation cycles to achieve alcohols with high productivity. We have brought biomass derived sugars, yeast cell biomass generation, and ethanol and xylitol fermentation in one platform and validated the overall material balance. 2kg sugarcane bagasse yielded 193.4g yeast cell, and with multiple times cell recycling generated 125.56g xylitol and 289.2g ethanol (366mL). Copyright © 2017 Elsevier GmbH. All rights reserved.

  10. An integrated modeling approach to support management decisions of coupled groundwater-agricultural systems under multiple uncertainties

    Science.gov (United States)

    Hagos Subagadis, Yohannes; Schütze, Niels; Grundmann, Jens

    2015-04-01

    The planning and implementation of effective water resources management strategies need an assessment of multiple (physical, environmental, and socio-economic) issues, and often requires new research in which knowledge of diverse disciplines are combined in a unified methodological and operational frameworks. Such integrative research to link different knowledge domains faces several practical challenges. Such complexities are further compounded by multiple actors frequently with conflicting interests and multiple uncertainties about the consequences of potential management decisions. A fuzzy-stochastic multiple criteria decision analysis tool was developed in this study to systematically quantify both probabilistic and fuzzy uncertainties associated with complex hydrosystems management. It integrated physical process-based models, fuzzy logic, expert involvement and stochastic simulation within a general framework. Subsequently, the proposed new approach is applied to a water-scarce coastal arid region water management problem in northern Oman, where saltwater intrusion into a coastal aquifer due to excessive groundwater extraction for irrigated agriculture has affected the aquifer sustainability, endangering associated socio-economic conditions as well as traditional social structure. Results from the developed method have provided key decision alternatives which can serve as a platform for negotiation and further exploration. In addition, this approach has enabled to systematically quantify both probabilistic and fuzzy uncertainties associated with the decision problem. Sensitivity analysis applied within the developed tool has shown that the decision makers' risk aversion and risk taking attitude may yield in different ranking of decision alternatives. The developed approach can be applied to address the complexities and uncertainties inherent in water resources systems to support management decisions, while serving as a platform for stakeholder participation.

  11. Multiscale sampling model for motion integration.

    Science.gov (United States)

    Sherbakov, Lena; Yazdanbakhsh, Arash

    2013-09-30

    Biologically plausible strategies for visual scene integration across spatial and temporal domains continues to be a challenging topic. The fundamental question we address is whether classical problems in motion integration, such as the aperture problem, can be solved in a model that samples the visual scene at multiple spatial and temporal scales in parallel. We hypothesize that fast interareal connections that allow feedback of information between cortical layers are the key processes that disambiguate motion direction. We developed a neural model showing how the aperture problem can be solved using different spatial sampling scales between LGN, V1 layer 4, V1 layer 6, and area MT. Our results suggest that multiscale sampling, rather than feedback explicitly, is the key process that gives rise to end-stopped cells in V1 and enables area MT to solve the aperture problem without the need for calculating intersecting constraints or crafting intricate patterns of spatiotemporal receptive fields. Furthermore, the model explains why end-stopped cells no longer emerge in the absence of V1 layer 6 activity (Bolz & Gilbert, 1986), why V1 layer 4 cells are significantly more end-stopped than V1 layer 6 cells (Pack, Livingstone, Duffy, & Born, 2003), and how it is possible to have a solution to the aperture problem in area MT with no solution in V1 in the presence of driving feedback. In summary, while much research in the field focuses on how a laminar architecture can give rise to complicated spatiotemporal receptive fields to solve problems in the motion domain, we show that one can reframe motion integration as an emergent property of multiscale sampling achieved concurrently within lamina and across multiple visual areas.

  12. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    Science.gov (United States)

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  13. Experimental and computational tools for analysis of signaling networks in primary cells

    DEFF Research Database (Denmark)

    Schoof, Erwin M; Linding, Rune

    2014-01-01

    Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis, or differ......Cellular information processing in signaling networks forms the basis of responses to environmental stimuli. At any given time, cells receive multiple simultaneous input cues, which are processed and integrated to determine cellular responses such as migration, proliferation, apoptosis......; this information is critical when trying to elucidate key proteins involved in specific cellular responses. Here, methods to generate high-quality quantitative phosphorylation data from cell lysates originating from primary cells, and how to analyze the generated data to construct quantitative signaling network...

  14. A Web-Based Integration Procedure for the Development of Reconfigurable Robotic Work-Cells

    Directory of Open Access Journals (Sweden)

    Paulo Ferreira

    2013-07-01

    Full Text Available Concepts related to the development of reconfigurable manufacturing systems (RMS and methodologies to provide the best practices in the processing industry and factory automation, such as system integration and web-based technology, are major issues in designing next-generation manufacturing systems (NGMS. Adaptable and integrable devices are crucial for the success of NGMS. In robotic cells the integration of manufacturing components is essential to accelerate system adaptability. Sensors, control architectures and communication technologies have contributed to achieving further agility in reconfigurable factories. In this work a web-based robotic cell integration procedure is proposed to aid the identification of reconfigurable issues and requirements. This methodology is applied to an industrial robot manipulator to enhance system flexibility towards the development of a reconfigurable robotic platform.

  15. Quantifying multiple telecouplings using an integrated suite of spatially-explicit tools

    Science.gov (United States)

    Tonini, F.; Liu, J.

    2016-12-01

    Telecoupling is an interdisciplinary research umbrella concept that enables natural and social scientists to understand and generate information for managing how humans and nature can sustainably coexist worldwide. To systematically study telecoupling, it is essential to build a comprehensive set of spatially-explicit tools for describing and quantifying multiple reciprocal socioeconomic and environmental interactions between a focal area and other areas. Here we introduce the Telecoupling Toolbox, a new free and open-source set of tools developed to map and identify the five major interrelated components of the telecoupling framework: systems, flows, agents, causes, and effects. The modular design of the toolbox allows the integration of existing tools and software (e.g. InVEST) to assess synergies and tradeoffs associated with policies and other local to global interventions. We show applications of the toolbox using a number of representative studies that address a variety of scientific and management issues related to telecouplings throughout the world. The results suggest that the toolbox can thoroughly map and quantify multiple telecouplings under various contexts while providing users with an easy-to-use interface. It provides a powerful platform to address globally important issues, such as land use and land cover change, species invasion, migration, flows of ecosystem services, and international trade of goods and products.

  16. Data Integration against Multiple Evolving Autonomous Schemata

    CERN Document Server

    Koch, Christoph

    Research in the area of data integration has resulted in approaches such as federated and multidatabases, mediation, data warehousing, global information systems, and the model management/schema matching approach. Architecturally, approaches can be categorized into those that integrate against a single global schema and those that do not, while on the level of inter-schema constraints, most work can be classied either as so-called global-as-view or as local-as-view integration. These approaches dier widely in their strengths and weaknesses. Federated databases have been found applicable in environments in which several autonomous information systems coexist { each with their individual schemata { and need to share data. However, this approach does not provide sucient support for dealing with change of schemata and requirements. Other approaches to data integration which are centered around a single \\global" integration schema, on the other hand, cannot handle design autonomy of information systems. Under evol...

  17. Assessment of bone marrow plasma cell infiltrates in multiple myeloma: the added value of CD138 immunohistochemistry

    Science.gov (United States)

    Al-Quran, Samer Z.; Yang, Lijun; Magill, James M.; Braylan, Raul C.; Douglas-Nikitin, Vonda K.

    2012-01-01

    Summary Assessment of bone marrow involvement by malignant plasma cells is an important element in the diagnosis and follow-up of patients with multiple myeloma and other plasma cell dyscrasias. Microscope-based differential counts of bone marrow aspirates are used as the primary method to evaluate bone marrow plasma cell percentages. However, multiple myeloma is often a focal process, a fact that impacts the accuracy and reliability of the results of bone marrow plasma cell percentages obtained by differential counts of bone marrow aspirate smears. Moreover, the interobserver and intraobserver reproducibility of counting bone marrow plasma cells microscopically has not been adequately tested. CD138 allows excellent assessment of plasma cell numbers and distribution in bone marrow biopsies. We compared estimates of plasma cell percentages in bone marrow aspirates and in hematoxylin-eosin– and CD138-stained bone marrow biopsy sections (CD138 sections) in 79 bone marrows from patients with multiple myeloma. There was a notable discrepancy in bone marrow plasma cell percentages using the different methods of observation. In particular, there was a relatively poor concordance of plasma cell percentage estimation between aspirate smears and CD138 sections. Estimates of plasma cell percentage using CD138 sections demonstrated the highest interobserver concordance. This observation was supported by computer-assisted image analysis. In addition, CD138 expression highlighted patterns of plasma cell infiltration indicative of neoplasia even in the absence of plasmacytosis. We conclude that examination of CD138 sections should be considered for routine use in the estimation of plasma cell load in the bone marrow. PMID:17714757

  18. Integral reactor system and method for fuel cells

    Science.gov (United States)

    Fernandes, Neil Edward; Brown, Michael S; Cheekatamarla, Praveen; Deng, Thomas; Dimitrakopoulos, James; Litka, Anthony F

    2013-11-19

    A reactor system is integrated internally within an anode-side cavity of a fuel cell. The reactor system is configured to convert hydrocarbons to smaller species while mitigating the lower production of solid carbon. The reactor system may incorporate one or more of a pre-reforming section, an anode exhaust gas recirculation device, and a reforming section.

  19. Investigation of interference in multiple-input multiple-output wireless transmission at W band for an optical wireless integration system.

    Science.gov (United States)

    Li, Xinying; Yu, Jianjun; Dong, Ze; Zhang, Junwen; Chi, Nan; Yu, Jianguo

    2013-03-01

    We experimentally investigate the interference in multiple-input multiple-output (MIMO) wireless transmission by adjusting the relative locations of horn antennas (HAs) in a 100 GHz optical wireless integration system, which can deliver a 50 Gb/s polarization-division-multiplexing quadrature-phase-shift-keying signal over 80 km single-mode fiber-28 and a 2×2 MIMO wireless link. For the parallel 2×2 MIMO wireless link, each receiver HA can only get wireless power from the corresponding transmitter HA, while for the crossover ones, the receiver HA can get wireless power from two transmitter HAs. At the wireless receiver, polarization demultiplexing is realized by the constant modulus algorithm (CMA) in the digital-signal-processing part. Compared to the parallel case, wireless interference causes about 2 dB optical signal-to-noise ratio penalty at a bit-error ratio (BER) of 3.8×10(-3) for the crossover cases if similar CMA taps are employed. The increase in CMA tap length can reduce wireless interference and improve BER performance. Furthermore, more CMA taps should be adopted to overcome the severe wireless interference when two pairs of transmitter and receiver HAs have different wireless distances.

  20. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Science.gov (United States)

    Watanabe, Kazuhide; Biesinger, Jacob; Salmans, Michael L; Roberts, Brian S; Arthur, William T; Cleary, Michele; Andersen, Bogi; Xie, Xiaohui; Dai, Xing

    2014-01-01

    Deregulation of canonical Wnt/CTNNB1 (beta-catenin) pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells. We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis. Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  1. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    Science.gov (United States)

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  2. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders.

    Science.gov (United States)

    Lange-Consiglio, A; Meucci, A; Cremonesi, F

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5',6,6'-tetrachloro-1,1',3,3' tetraethylbenzimidazolyl-carbocyanine iodide (JC-1) and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA). The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r(2)>0.9) irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05). FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage.

  3. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Kim, Donghern; Dai, Jin [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Asha, Padmaja [National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin (India); Zhang, Zhuo [Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Wang, Yitao [State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau (China); Shi, Xianglin, E-mail: xshi5@email.uky.edu [Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536 (United States)

    2014-12-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  4. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways

    International Nuclear Information System (INIS)

    Pratheeshkumar, Poyil; Son, Young-Ok; Divya, Sasidharan Padmaja; Roy, Ram Vinod; Hitron, John Andrew; Wang, Lei; Kim, Donghern; Dai, Jin; Asha, Padmaja; Zhang, Zhuo; Wang, Yitao; Shi, Xianglin

    2014-01-01

    Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5 μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis. - Highlights: • Luteolin inhibited Cr(VI)-induced oxidative stress. • Luteolin inhibited chronic Cr(VI)-induced malignant transformation.

  5. Thermodynamic analysis and optimization of IT-SOFC-based integrated coal gasification fuel cell power plants

    NARCIS (Netherlands)

    Romano, M.C.; Campanari, S.; Spallina, V.; Lozza, G.

    2011-01-01

    This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming

  6. High-definition mapping of retroviral integration sites defines the fate of allogeneic T cells after donor lymphocyte infusion.

    Directory of Open Access Journals (Sweden)

    Claudia Cattoglio

    2010-12-01

    Full Text Available The infusion of donor lymphocytes transduced with a retroviral vector expressing the HSV-TK suicide gene in patients undergoing hematopoietic stem cell transplantation for leukemia/lymphoma promotes immune reconstitution and prevents infections and graft-versus-host disease. Analysis of the clonal dynamics of genetically modified lymphocytes in vivo is of crucial importance to understand the potential genotoxic risk of this therapeutic approach. We used linear amplification-mediated PCR and pyrosequencing to build a genome-wide, high-definition map of retroviral integration sites in the genome of peripheral blood T cells from two different donors and used gene expression profiling and bioinformatics to associate integration clusters to transcriptional activity and to genetic and epigenetic features of the T cell genome. Comparison with matched random controls and with integrations obtained from CD34(+ hematopoietic stem/progenitor cells showed that integration clusters occur within chromatin regions bearing epigenetic marks associated with active promoters and regulatory elements in a cell-specific fashion. Analysis of integration sites in T cells obtained ex vivo two months after infusion showed no evidence of integration-related clonal expansion or dominance, but rather loss of cells harboring integration events interfering with RNA post-transcriptional processing. The study shows that high-definition maps of retroviral integration sites are a powerful tool to analyze the fate of genetically modified T cells in patients and the biological consequences of retroviral transduction.

  7. The ROCK inhibitor Y-27632 improves recovery of human embryonic stem cells after fluorescence-activated cell sorting with multiple cell surface markers.

    Directory of Open Access Journals (Sweden)

    Nil Emre

    Full Text Available BACKGROUND: Due to the inherent sensitivity of human embryonic stem cells (hESCs to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions. METHODOLOGY/PRINCIPAL FINDINGS: HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions. CONCLUSIONS/SIGNIFICANCE: The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types

  8. Integration of genomics, proteomics, and imaging for cardiac stem cell therapy

    International Nuclear Information System (INIS)

    Chun, Hyung J.; Wilson, Kitch O.; Huang, Mei; Wu, Joseph C.

    2007-01-01

    Cardiac stem cell therapy is beginning to mature as a valid treatment for heart disease. As more clinical trials utilizing stem cells emerge, it is imperative to establish the mechanisms by which stem cells confer benefit in cardiac diseases. In this paper, we review three methods - molecular cellular imaging, gene expression profiling, and proteomic analysis - that can be integrated to provide further insights into the role of this emerging therapy. (orig.)

  9. Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors.

    Science.gov (United States)

    Piao, Yulan; Hung, Sandy Shen-Chi; Lim, Shiang Y; Wong, Raymond Ching-Bong; Ko, Minoru S H

    2014-07-01

    Keratinocytes represent an easily accessible cell source for derivation of human induced pluripotent stem (hiPS) cells, reportedly achieving higher reprogramming efficiency than fibroblasts. However, most studies utilized a retroviral or lentiviral method for reprogramming of keratinocytes, which introduces undesirable transgene integrations into the host genome. Moreover, current protocols of generating integration-free hiPS cells from keratinocytes are mostly inefficient. In this paper, we describe a more efficient, simple-to-use, and cost-effective method for generating integration-free hiPS cells from keratinocytes. Our improved method using lipid-mediated transfection achieved a reprogramming efficiency of ∼0.14% on average. Keratinocyte-derived hiPS cells showed no integration of episomal vectors, expressed stem cell-specific markers and possessed potentials to differentiate into all three germ layers by in vitro embryoid body formation as well as in vivo teratoma formation. To our knowledge, this represents the most efficient method to generate integration-free hiPS cells from keratinocytes. ©AlphaMed Press.

  10. Semi-industrial experimental study on bauxite separation using a cell-column integration process

    Science.gov (United States)

    Zhang, Ning-ning; Zhou, Chang-chun; Cong, Long-fei; Cao, Wen-long; Zhou, You

    2016-01-01

    The cyclonic-static micro-bubble flotation column (FCSMC) is a highly efficient mineral processing equipment. In this study, a cell-column (FCSMC) integration process was investigated for the separation of bauxite and its feasibility was analyzed on a theoretical basis. The properties of low-grade bauxite ore from Henan Province, China were analyzed. Parameters such as reagent dosage, scraping bubble time, and pressure of the circulating pump during the sorting process were investigated and optimized to improve the flotation efficiency. On the basis of these parameters, continuous separation experiments were conducted. Bauxite concentrate with an aluminum-to-silicon (A/S) mass ratio of 6.37 and a 77.63wt% recovery rate were achieved via a flow sheet consisting of "fast flotation using a flotation cell, one roughing flotation and one cleaning flotation using flotation columns". Compared with the full-flotation-cells process, the cell-column integration process resulted in an increase of the A/S ratio by 0.41 and the recovery rate by 17.58wt%. Cell-column integration separation technology represents a new approach for the separation of middle-to-low-grade bauxite ore.

  11. Osteoprotegerin is bound, internalized, and degraded by multiple myeloma cells

    DEFF Research Database (Denmark)

    Standal, Therese; Seidel, Carina; Hjertner, Øyvind

    2002-01-01

    Multiple myeloma (MM) is a hematologic malignancy characterized by accumulation of plasma cells in the bone marrow (BM). Bone destruction is a complication of the disease and is usually associated with severe morbidity. The balance between receptor activator of nuclear factor-kappaB (NF-kappaB......) ligand and osteoprotegerin (OPG) is of major importance in bone homeostasis. We have recently shown that serum OPG levels are lower in patients with myeloma than in healthy individuals. Here we show that myeloma cells can bind, internalize, and degrade OPG, thereby providing a possible explanation...... for the lower levels of OPG in the BM of patients with MM. This process is dependent on interaction of OPG with heparan sulfates on the myeloma cells. The results suggest a novel biologic mechanism for the bone disease associated with MM and that treatment of the bone disease with OPG lacking the heparin...

  12. HIF-1α inhibition blocks the cross talk between multiple myeloma plasma cells and tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Borsi, Enrica, E-mail: enrica.borsi2@unibo.it [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy); Perrone, Giulia [Fondazione IRCCS Istituto Nazionale dei Tumori, Hematology Department, Via Venezian 1, 20133 Milano (Italy); Terragna, Carolina; Martello, Marina; Zamagni, Elena; Tacchetti, Paola; Pantani, Lucia; Brioli, Annamaria; Dico, Angela Flores; Zannetti, Beatrice Anna; Rocchi, Serena; Cavo, Michele [Department of Experimental Diagnostic and Specialty Medicine (DIMES), “L. and A. Seràgnoli”, Bologna University School of Medicine, S. Orsola' s University Hospital (Italy)

    2014-11-01

    Multiple myeloma (MM) is a malignant disorder of post-germinal center B cells, characterized by the clonal proliferation of malignant plasma cells (PCs) within the bone marrow (BM). The reciprocal and complex interactions that take place between the different compartments of BM and the MM cells result in tumor growth, angiogenesis, bone disease, and drug resistance. Given the importance of the BM microenvironment in MM pathogenesis, we investigated the possible involvement of Hypoxia-Inducible transcription Factor-1 alpha (HIF-1α) in the PCs-bone marrow stromal cells interplay. To test this hypothesis, we used EZN-2968, a 3rd generation antisense oligonucleotide against HIF-1α, to inhibit HIF-1α functions. Herein, we provide evidence that the interaction between MM cells and BM stromal cells is drastically reduced upon HIF-1α down-modulation. Notably, we showed that upon exposure to HIF-1α inhibitor, neither the incubation with IL-6 nor the co-culture with BM stromal cells were able to revert the anti-proliferative effect induced by EZN-2968. Moreover, we observed a down-modulation of cytokine-induced signaling cascades and a reduction of MM cells adhesion capability to the extracellular matrix proteins in EZN-2968-treated samples. Taken together, these results strongly support the concept that HIF-1α plays a critical role in the interactions between bone BM cells and PCs in Multiple Myeloma. - Highlights: • HIF-1α inhibition induces a mild apoptotic cell death. • Down-modulation of cytokine-induced signaling cascades upon HIF-1α inhibition. • Reduced interaction between MM cells and BMSCs upon HIF-1α down-modulation. • Reduced PCs adhesion to the extracellular matrix protein induced by EZN-2968. • HIF-1α inhibition may be an attractive therapeutic strategy for Multiple Myeloma.

  13. Mouse androgenetic embryonic stem cells differentiated to multiple cell lineages in three embryonic germ layers in vitro.

    Science.gov (United States)

    Teramura, Takeshi; Onodera, Yuta; Murakami, Hideki; Ito, Syunsuke; Mihara, Toshihiro; Takehara, Toshiyuki; Kato, Hiromi; Mitani, Tasuku; Anzai, Masayuki; Matsumoto, Kazuya; Saeki, Kazuhiro; Fukuda, Kanji; Sagawa, Norimasa; Osoi, Yoshihiko

    2009-06-01

    The embryos of some rodents and primates can precede early development without the process of fertilization; however, they cease to develop after implantation because of restricted expressions of imprinting genes. Asexually developed embryos are classified into parthenote/gynogenote and androgenote by their genomic origins. Embryonic stem cells (ESCs) derived from asexual origins have also been reported. To date, ESCs derived from parthenogenetic embryos (PgESCs) have been established in some species, including humans, and the possibility to be alternative sources for autologous cell transplantation in regenerative medicine has been proposed. However, some developmental characteristics, which might be important for therapeutic applications, such as multiple differentiation capacity and transplantability of the ESCs of androgenetic origin (AgESCs) are uncertain. Here, we induced differentiation of mouse AgESCs and observed derivation of neural cells, cardiomyocytes and hepatocytes in vitro. Following differentiated embryoid body (EB) transplantation in various mouse strains including the strain of origin, we found that the EBs could engraft in theoretically MHC-matched strains. Our results indicate that AgESCs possess at least two important characteristics, multiple differentiation properties in vitro and transplantability after differentiation, and suggest that they can also serve as a source of histocompatible tissues for transplantation.

  14. Treatment of multiple unresectable basal cell carcinomas from Gorlin-Goltz syndrome: a case report.

    Science.gov (United States)

    Ojevwe, Fidelis O; Ojevwe, Cindy D; Zacny, James P; Dudek, Arkadiusz Z; Lin, Amy; Kohlitz, Patrick

    2015-03-01

    Nevoid basal cell carcinoma syndrome (NBCCS), which is also known by other names, including Gorlin-Goltz syndrome and multiple basal-cell carcinoma (BCC) syndrome, is a rare multi-systemic disease inherited in a dominant autosomal manner with complete penetrance and variable expressivity. The main clinical manifestations include multiple BCCs, odontogenic keratocysts of the jaw, hyperkeratosis of the palms and soles, skeletal abnormalities, intracranial calcifications and facial deformities. A 31-year-old male diagnosed with Gorlin-Goltz syndrome with multiple unresectable facial BCCs was treated with the Hedgehog inhibitor vismodegib. After one month of therapy on vismodegib, there were significant reductions in the size of multiple BCCs on the patient's face. The patient remains on this therapy. Hedgehog pathway inhibition is an effective strategy to treat unresectable BCCs from Gorlin-Goltz syndrome. Although vismodegib shows some promising clinical results in the early phase of its use, there are concerns of possible resistance developing within months. Duration of therapy, role of maintenance treatment and drug modification to reduce resistance need to be explored in future case studies. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. A novel Multiple-Marker Method for the Early Diagnosis of Oral Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Jutta Ries

    2009-01-01

    Full Text Available Objective: Melanoma associated antigens-A (MAGE-A expression is highly specific to cancer cells. Thus, they can be the most suitable targets for the diagnosis of malignancy. The aim of this study was to evaluate the sensitivity of multiple MAGE-A expression analysis for the diagnosis of oral squamous cell carcinoma (OSCC.

  16. Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide

    DEFF Research Database (Denmark)

    Nijhof, I. S.; Lammerts van Bueren, J. J.; van Kessel, B.

    2015-01-01

    Despite recent treatment improvements, multiple myeloma remains an incurable disease. Since antibody-dependent cell-mediated cytotoxicity is an important effector mechanism of daratumumab, we explored the possibility of improving daratumumab-mediated cell-mediated cytotoxicity by blocking natural...... killer cell inhibitory receptors with the human monoclonal anti-KIR antibody IPH2102, next to activation of natural killer cells with the immune modulatory drug lenalidomide. In 4-hour antibody-dependent cell-mediated cytotoxicity assays, IPH2102 did not induce lysis of multiple myeloma cell lines...... effective treatment strategies can be designed for multiple myeloma by combining daratumumab with agents that independently modulate natural killer cell function....

  17. Online unsupervised formation of cell assemblies for the encoding of multiple cognitive maps.

    Science.gov (United States)

    Salihoglu, Utku; Bersini, Hugues; Yamaguchi, Yoko; Molter, Colin

    2009-01-01

    Since their introduction sixty years ago, cell assemblies have proved to be a powerful paradigm for brain information processing. After their introduction in artificial intelligence, cell assemblies became commonly used in computational neuroscience as a neural substrate for content addressable memories. However, the mechanisms underlying their formation are poorly understood and, so far, there is no biologically plausible algorithms which can explain how external stimuli can be online stored in cell assemblies. We addressed this question in a previous paper [Salihoglu, U., Bersini, H., Yamaguchi, Y., Molter, C., (2009). A model for the cognitive map formation: Application of the retroaxonal theory. In Proc. IEEE international joint conference on neural networks], were, based on biologically plausible mechanisms, a novel unsupervised algorithm for online cell assemblies' creation was developed. The procedure involved simultaneously, a fast Hebbian/anti-Hebbian learning of the network's recurrent connections for the creation of new cell assemblies, and a slower feedback signal which stabilized the cell assemblies by learning the feedforward input connections. Here, we first quantify the role played by the retroaxonal feedback mechanism. Then, we show how multiple cognitive maps, composed by a set of orthogonal input stimuli, can be encoded in the network. As a result, when facing a previously learned input, the system is able to retrieve the cognitive map it belongs to. As a consequence, ambiguous inputs which could belong to multiple cognitive maps can be disambiguated by the knowledge of the context, i.e. the cognitive map.

  18. Localized extramedullary relapse after autologous hematopoietic stem cell transplantation in multiple myeloma

    International Nuclear Information System (INIS)

    Erkus, Muhan; Meteoglu, Ibrahim; Bolaman, Zahit; Kadikoylu, Gurhan

    2005-01-01

    Extramedullary plasmacytomas are rare manifestation of plasma cell malignancies. After hematopoietic stem cell transplantation HSCT, presentation of localized plasmacytoma with extramedullary growth is very unusual. We report a case of a 56-year-old woman with Dune-Salmon stage IIIA immunoglobulin A-kappa multiple myeloma, which presented 120 days after autologous HSCT with extramedullary plasmacytoma arising from a lymph node in supraclavicular region. The patient had no pretransplant-history related with extramedullary disease. There was no increase of plasma cells in bone marrow or monoclonal protein in urine or serum. Aspiration smears of lymph node revealed a population of plasmacytoid cells at various stages of maturation. The patient was successfully treated with local radiotherapy and has remained progression-free for more than 20 months. (author)

  19. Multiple modes of proepicardial cell migration require heartbeat.

    Science.gov (United States)

    Plavicki, Jessica S; Hofsteen, Peter; Yue, Monica S; Lanham, Kevin A; Peterson, Richard E; Heideman, Warren

    2014-05-15

    The outermost layer of the vertebrate heart, the epicardium, forms from a cluster of progenitor cells termed the proepicardium (PE). PE cells migrate onto the myocardium to give rise to the epicardium. Impaired epicardial development has been associated with defects in valve development, cardiomyocyte proliferation and alignment, cardiac conduction system maturation and adult heart regeneration. Zebrafish are an excellent model for studying cardiac development and regeneration; however, little is known about how the zebrafish epicardium forms. We report that PE migration occurs through multiple mechanisms and that the zebrafish epicardium is composed of a heterogeneous population of cells. Heterogeneity is first observed within the PE and persists through epicardium formation. Using in vivo imaging, histology and confocal microscopy, we show that PE cells migrate through a cellular bridge that forms between the pericardial mesothelium and the heart. We also observed the formation of PE aggregates on the pericardial surface, which were released into the pericardial cavity. It was previously reported that heartbeat-induced pericardiac fluid advections are necessary for PE cluster formation and subsequent epicardium development. We manipulated heartbeat genetically and pharmacologically and found that PE clusters clearly form in the absence of heartbeat. However, when heartbeat was inhibited the PE failed to migrate to the myocardium and the epicardium did not form. We isolated and cultured hearts with only a few epicardial progenitor cells and found a complete epicardial layer formed. However, pharmacologically inhibiting contraction in culture prevented epicardium formation. Furthermore, we isolated control and silent heart (sih) morpholino (MO) injected hearts prior to epicardium formation (60 hpf) and co-cultured these hearts with "donor" hearts that had an epicardium forming (108 hpf). Epicardial cells from donor hearts migrated on to control but not sih MO

  20. Gemcitabine radiosensitizes multiple myeloma cells to low let, but not high let, irradiation

    International Nuclear Information System (INIS)

    Supiot, Stephane; Thillays, Francois; Rio, Emmanuel; Gouard, Sebastien; Morgenstern, Alfred; Bruchertseifer, Frank; Mahe, Marc-Andre; Chatal, Jean-Francois; Davodeau, Francois; Cherel, Michel

    2007-01-01

    The radiosensitizing properties of gemcitabine in relation to low Linear Energy Transfer (LET) particles (Cobalt 60) and high-LET particles (alpha-RIT 213 Bi-radiolabeled CHX-DTPA-B-B4) were analyzed. Three multiple myeloma cell lines (LP1, RPMI 8226, U266) were irradiated with or without 10 nM gemcitabine 24 h prior to radiation. Gemcitabine led to radiosensitization of LP1 and U266 cells with low-LET (Radiation Enhancement Ratio: 1.55 and 1.49, respectively) but did not radiosensitize any cell line when combined with high-LET

  1. Multiple kinase pathways involved in the different de novo sensitivity of pancreatic cancer cell lines to 17-AAG.

    Science.gov (United States)

    Liu, Heping; Zhang, Ti; Chen, Rong; McConkey, David J; Ward, John F; Curley, Steven A

    2012-07-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) specifically targets heat shock protein (HSP)90 and inhibits its chaperoning functions for multiple kinases involved in cancer cell growth and survival. To select responsive patients, the molecular mechanisms underlying the sensitivity of cancer cells to 17-AAG must be elucidated. We used cytotoxicity assays and Western blotting to explore the effects of 17-AAG and sorafenib on cell survival and expression of multiple kinases in the pancreatic cancer cell lines AsPC-1 and Panc-1. Gene cloning and transfection, siRNA silencing, and immunohistochemistry were used to evaluate the effects of mutant p53 protein on 17-AAG sensitivity. AsPC-1 and Panc-1 responded differently to 17-AAG, with half maximal inhibitory concentration (IC(50)) values of 0.12 and 3.18 μM, respectively. Comparable expression of HSP90, HSP70, and HSP27 was induced by 17-AAG in AsPC-1 and Panc-1 cells. P-glycoprotein and mutant p53 did not affect 17-AAG sensitivity in these cell lines. Multiple kinases are more sensitive to HSP90 inhibition in AsPC-1 than in Panc-1 cells. After 17-AAG treatment, p-Bad (S112) decreased in AsPC-1 cells and increased in Panc-1 cells. Sorafenib markedly increased p-Akt, p-ERK1/2, p-GSK-3β, and p-S6 in both cell lines. Accordingly, 17-AAG and sorafenib acted antagonistically in AsPC-1 and Panc-1 cells, except at high concentrations in AsPC-1 cells. Differential inhibition of multiple kinases is responsible for the different de novo sensitivity of AsPC-1 and Panc-1 cells to HSP90 inhibition. P-glycoprotein and mutant p53 protein did not play a role in the sensitivity of pancreatic cancer cells to 17-AAG. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. West-Life, Tools for Integrative Structural Biology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Structural biology is part of molecular biology focusing on determining structure of macromolecules inside living cells and cell membranes. As macromolecules determines most of the functions of cells the structural knowledge is very useful for further research in metabolism, physiology to application in pharmacology etc. As macromolecules are too small to be observed directly by light microscope, there are other methods used to determine the structure including nuclear magnetic resonance (NMR), X-Ray crystalography, cryo electron microscopy and others. Each method has it's advantages and disadvantages in the terms of availability, sample preparation, resolution. West-Life project has ambition to facilitate integrative approach using multiple techniques mentioned above. As there are already lot of software tools to process data produced by the techniques above, the challenge is to integrate them together in a way they can be used by experts in one technique but not experts in other techniques. One product ...

  3. [HSP90 Inhibitor 17-AAG Inhibits Multiple Myeloma Cell Proliferation by Down-regulating Wnt/β-Catenin Signaling Pathway].

    Science.gov (United States)

    Chen, Kan-Kan; He, Zheng-Mei; Ding, Bang-He; Chen, Yue; Zhang, Li-Juan; Yu, Liang; Gao, Jian

    2016-02-01

    To investigate the inhibitory effect of HSP90 inhibitory 17-AAG on proliferation of multiple myeloma cells and its main mechanism. The multiple myeloma cells U266 were treated with 17-AAG of different concentrations (200, 400, 600 and 800 nmol/L) for 24, 48, and 72 hours respectively, then the proliferation rate, expression levels of β-catenin and C-MYC protein, as well as cell cycle of U266 cells were treated with 17-AAG and were detected by MTT method, Western blot and flow cytometry, respectively. The 17-AAG showed inhibitory effect on the proliferation of U266 cells in dose- and time-depetent manners (r = -0.518, P AAG displayed no inhibitory effect on proliferation of U266 cells (P > 0.05). The result of culturing U266 cells for 72 hours by 17-AAG of different concentrations showed that the more high of 17-AAG concentration, the more low level of β-catenin and C-MYC proteins (P AAG concentration, the more high of cell ratio in G1 phase (P AAG, the more long time of culture, the more high of cell ratio in G1 phase (P AAG can inhibit the proliferation of multiple myeloma cells, the down-regulation of Wnt/β-catenin signaling pathway and inhibition of HSP90 expression may be the main mechnisms of 17-AAG effect.

  4. Integrating Wind And Solar With Hydrogen Producing Fuel Cells

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The often proposed solution for the fluctuating wind energy supply is the conversion of the surplus of wind energy into hydrogen by means of electrolysis. In this paper a patented alternative is proposed consisting of the integration of wind turbines with internal reforming fuel-cells, capable of

  5. Strategy for signaling molecule detection by using an integrated microfluidic device coupled with mass spectrometry to study cell-to-cell communication.

    Science.gov (United States)

    Mao, Sifeng; Zhang, Jie; Li, Haifang; Lin, Jin-Ming

    2013-01-15

    Cell-to-cell communication is a very important physiological behavior in life entity, and most of human behaviors are related to it. Although cell-to-cell communications are attracting much attention and financial support, rare methods have been successfully developed for in vitro cell-to-cell communication study. In this work, we developed a novel method for cell-to-cell communication study on an integrated microdevice, and signaling molecule and metabolites were online-detected by an electrospray ionization-quadrupole-time-of-flight-mass spectrometer (ESI-Q-TOF-MS) after on-chip solid-phase extraction. Moreover, we presented a "Surface Tension Plug" on a microchip to control cell-to-cell communication. The microdevice consists of three functional sections: cell coculture channel, targets pretreatment, and targets detection sections. To verify the feasibility of cell-to-cell communications on the integrated microdevice, we studied the communication between the 293 and the L-02 cells. Epinephrine and glucose were successfully detected using an ESI-Q-TOF-MS with short analysis time (communication study.

  6. Involvement of multiple myeloma cell-derived exosomes in osteoclast differentiation

    OpenAIRE

    Raimondi, Lavinia; De Luca, Angela; Amodio, Nicola; Manno, Mauro; Raccosta, Samuele; Taverna, Simona; Bellavia, Daniele; Naselli, Flores; Fontana, Simona; Schillaci, Odessa; Giardino, Roberto; Fini, Milena; Tassone, Pierfrancesco; Santoro, Alessandra; De Leo, Giacomo

    2015-01-01

    Bone disease is the most frequent complication in multiple myeloma (MM) resulting in osteolytic lesions, bone pain, hypercalcemia and renal failure. In MM bone disease the perfect balance between bone-resorbing osteoclasts (OCs) and bone-forming osteoblasts (OBs) activity is lost in favour of OCs, thus resulting in skeletal disorders. Since exosomes have been described for their functional role in cancer progression, we here investigate whether MM cell-derived exosomes may be involved in OCs ...

  7. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation

    Directory of Open Access Journals (Sweden)

    Brian G. Ballios

    2015-06-01

    Full Text Available The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs. The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability.

  8. Comparing apples and oranges: fold-change detection of multiple simultaneous inputs.

    Directory of Open Access Journals (Sweden)

    Yuval Hart

    Full Text Available Sensory systems often detect multiple types of inputs. For example, a receptor in a cell-signaling system often binds multiple kinds of ligands, and sensory neurons can respond to different types of stimuli. How do sensory systems compare these different kinds of signals? Here, we consider this question in a class of sensory systems - including bacterial chemotaxis- which have a property known as fold-change detection: their output dynamics, including amplitude and response time, depends only on the relative changes in signal, rather than absolute changes, over a range of several decades of signal. We analyze how fold-change detection systems respond to multiple signals, using mathematical models. Suppose that a step of fold F1 is made in input 1, together with a step of F2 in input 2. What total response does the system provide? We show that when both input signals impact the same receptor with equal number of binding sites, the integrated response is multiplicative: the response dynamics depend only on the product of the two fold changes, F1F2. When the inputs bind the same receptor with different number of sites n1 and n2, the dynamics depend on a product of power laws, [Formula: see text]. Thus, two input signals which vary over time in an inverse way can lead to no response. When the two inputs affect two different receptors, other types of integration may be found and generally the system is not constrained to respond according to the product of the fold-change of each signal. These predictions can be readily tested experimentally, by providing cells with two simultaneously varying input signals. The present study suggests how cells can compare apples and oranges, namely by comparing each to its own background level, and then multiplying these two fold-changes.

  9. Integrating fuel cell power systems into building physical plants

    Energy Technology Data Exchange (ETDEWEB)

    Carson, J. [KCI Technologies, Inc., Hunt Valley, MD (United States)

    1996-12-31

    This paper discusses the integration of fuel cell power plants and absorption chillers to cogenerate chilled water or hot water/steam for all weather air conditioning as one possible approach to building system applications. Absorption chillers utilize thermal energy in an absorption based cycle to chill water. It is feasible to use waste heat from fuel cells to provide hydronic heating and cooling. Performance regimes will vary as a function of the supply and quality of waste heat. Respective performance characteristics of fuel cells, absorption chillers and air conditioning systems will define relationships between thermal and electrical load capacities for the combined systems. Specifically, this paper develops thermodynamic relationships between bulk electrical power and cooling/heating capacities for combined fuel cell and absorption chiller system in building applications.

  10. NF-kappa B modulation is involved in celastrol induced human multiple myeloma cell apoptosis.

    Directory of Open Access Journals (Sweden)

    Haiwen Ni

    Full Text Available Celastrol is an active compound extracted from the root bark of the traditional Chinese medicine Tripterygium wilfordii Hook F. To investigate the effect of celastrol on human multiple myeloma cell cycle arrest and apoptosis and explore its molecular mechanism of action. The activity of celastrol on LP-1 cell proliferation was detected by WST-8 assay. The celastrol-induced cell cycle arrest was analyzed by flow cytometry after propidium iodide staining. Nuclear translocation of the nuclear factor kappa B (NF-κB was observed by fluorescence microscope. Celastrol inhibited cell proliferation of LP-1 myeloma cell in a dose-dependent manner with IC50 values of 0.8817 µM, which was mediated through G1 cell cycle arrest and p27 induction. Celastrol induced apoptosis in LP-1 and RPMI 8226 myeloma cells in a time and dose dependent manner, and it involved Caspase-3 activation and NF-κB pathway. Celastrol down-modulated antiapoptotic proteins including Bcl-2 and survivin expression. The expression of NF-κB and IKKa were decreased after celastrol treatment. Celastrol effectively blocked the nuclear translocation of the p65 subunit and induced human multiple myeloma cell cycle arrest and apoptosis by p27 upregulation and NF-kB modulation. It has been demonstrated that the effect of celastrol on NF-kB was HO-1-independent by using zinc protoporphyrin-9 (ZnPPIX, a selective heme oxygenase inhibitor. From the results, it could be inferred that celastrol may be used as a NF-kB inhibitor to inhibit myeloma cell proliferation.

  11. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    International Nuclear Information System (INIS)

    Lam, Alan Tin-Lun; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng; Reuveny, Shaul; Oh, Steve Kah-Weng

    2016-01-01

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles of such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.

  12. Integrated processes for expansion and differentiation of human pluripotent stem cells in suspended microcarriers cultures

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Alan Tin-Lun, E-mail: alan_lam@bti.a-star.edu.sg; Chen, Allen Kuan-Liang; Ting, Sherwin Qi-Peng; Reuveny, Shaul; Oh, Steve Kah-Weng, E-mail: steve_oh@bti.a-star.edu.sg

    2016-05-06

    Current methods for human pluripotent stem cells (hPSC) expansion and differentiation can be limited in scalability and costly (due to their labor intensive nature). This can limit their use in cell therapy, drug screening and toxicity assays. One of the approaches that can overcome these limitations is microcarrier (MC) based cultures in which cells are expanded as cell/MC aggregates and then directly differentiated as embryoid bodies (EBs) in the same agitated reactor. This integrated process can be scaled up and eliminate the need for some culture manipulation used in common monolayer and EBs cultures. This review describes the principles of such microcarriers based integrated hPSC expansion and differentiation process, and parameters that can affect its efficiency (such as MC type and extracellular matrix proteins coatings, cell/MC aggregates size, and agitation). Finally examples of integrated process for generation cardiomyocytes (CM) and neural progenitor cells (NPC) as well as challenges to be solved are described. - Highlights: • Expansion of hPSC on microcarriers. • Differentiation of hPSC on microcarriers. • Parameters that can affect the expansion and differentiation of hPSC on microcarriers. • Integration of expansion and differentiation of hPSC on microcarriers in one unit operation.

  13. AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION IN CHILDREN WITH SEVERE RESISTANT MULTIPLE SCLEROSIS

    Directory of Open Access Journals (Sweden)

    K. I. Kirgizov

    2013-01-01

    Full Text Available Unique experience of high-dose chemotherapy with consequent autologous hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis (n=7 is shown in this article. At present time there is enough data on chemotherapy with consequent hematopoietic stem cell transplantation in children with severe resistant multiple sclerosis. This method was proved to be efficient and safe with immunoablative conditioning chemotherapy regimen. In patients included in this study the mean rate according to the Expanded Disability Status Scale was 5,94±0,2 (from 3 to 9 points. All the patients had disseminated demyelination loci, accumulating the contrast substance, in the brain and the spinal cord. After cyclophosphamide treatment in combination with anti-monocytes globulin the fast stabilization of the condition and prolonged (the observation period was 3-36 moths clinical and radiologic as well as immunophenotypic remission with marked positive dynamics according to the Expanded Disability Status Scale were noted. No pronounced side-effects and infectious complications were mentioned. The maximal improvement according to the Expanded Disability Status Scale (EDSS was 5,5 points, the mean — 2,7±0,1 (from 2 to 5,5 points accompanied with positive dynamics on the magneto-resonance imaging.  The efficacy of the treatment was also proved by the positive changes in the lymphocytes subpopulation status in peripheral blood. The timely performed high-dose chemotherapy with consequent hematopoietic stem cell transplantation is an effective and safe method to slowdown the autoimmune inflammatory process. This method can be recommended to use in treatment of children with severe resistant multiple sclerosis. 

  14. Wnt6 maintains anterior escort cells as an integral component of the germline stem cell niche.

    Science.gov (United States)

    Wang, Xiaoxi; Page-McCaw, Andrea

    2018-02-07

    Stem cells reside in a niche, a local environment whose cellular and molecular complexity is still being elucidated. In Drosophila ovaries, germline stem cells depend on cap cells for self-renewing signals and physical attachment. Germline stem cells also contact the anterior escort cells, and here we report that anterior escort cells are absolutely required for germline stem cell maintenance. When escort cells die from impaired Wnt signaling or hid expression, the loss of anterior escort cells causes loss of germline stem cells. Anterior escort cells function as an integral niche component by promoting DE-cadherin anchorage and by transiently expressing the Dpp ligand to promote full-strength BMP signaling in germline stem cells. Anterior escort cells are maintained by Wnt6 ligands produced by cap cells; without Wnt6 signaling, anterior escort cells die leaving vacancies in the niche, leading to loss of germline stem cells. Our data identify anterior escort cells as constituents of the germline stem cell niche, maintained by a cap cell-produced Wnt6 survival signal. © 2018. Published by The Company of Biologists Ltd.

  15. Label-free morphology-based prediction of multiple differentiation potentials of human mesenchymal stem cells for early evaluation of intact cells.

    Directory of Open Access Journals (Sweden)

    Hiroto Sasaki

    Full Text Available Precise quantification of cellular potential of stem cells, such as human bone marrow-derived mesenchymal stem cells (hBMSCs, is important for achieving stable and effective outcomes in clinical stem cell therapy. Here, we report a method for image-based prediction of the multiple differentiation potentials of hBMSCs. This method has four major advantages: (1 the cells used for potential prediction are fully intact, and therefore directly usable for clinical applications; (2 predictions of potentials are generated before differentiation cultures are initiated; (3 prediction of multiple potentials can be provided simultaneously for each sample; and (4 predictions of potentials yield quantitative values that correlate strongly with the experimental data. Our results show that the collapse of hBMSC differentiation potentials, triggered by in vitro expansion, can be quantitatively predicted far in advance by predicting multiple potentials, multi-lineage differentiation potentials (osteogenic, adipogenic, and chondrogenic and population doubling potential using morphological features apparent during the first 4 days of expansion culture. In order to understand how such morphological features can be effective for advance predictions, we measured gene-expression profiles of the same early undifferentiated cells. Both senescence-related genes (p16 and p21 and cytoskeleton-related genes (PTK2, CD146, and CD49 already correlated to the decrease of potentials at this stage. To objectively compare the performance of morphology and gene expression for such early prediction, we tested a range of models using various combinations of features. Such comparison of predictive performances revealed that morphological features performed better overall than gene-expression profiles, balancing the predictive accuracy with the effort required for model construction. This benchmark list of various prediction models not only identifies the best morphological feature

  16. Network analysis of epidermal growth factor signaling using integrated genomic, proteomic and phosphorylation data.

    Directory of Open Access Journals (Sweden)

    Katrina M Waters

    Full Text Available To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  17. Network Analysis of Epidermal Growth Factor Signaling using Integrated Genomic, Proteomic and Phosphorylation Data

    Energy Technology Data Exchange (ETDEWEB)

    Waters, Katrina M.; Liu, Tao; Quesenberry, Ryan D.; Willse, Alan R.; Bandyopadhyay, Somnath; Kathmann, Loel E.; Weber, Thomas J.; Smith, Richard D.; Wiley, H. S.; Thrall, Brian D.

    2012-03-29

    To understand how integration of multiple data types can help decipher cellular responses at the systems level, we analyzed the mitogenic response of human mammary epithelial cells to epidermal growth factor (EGF) using whole genome microarrays, mass spectrometry-based proteomics and large-scale western blots with over 1000 antibodies. A time course analysis revealed significant differences in the expression of 3172 genes and 596 proteins, including protein phosphorylation changes measured by western blot. Integration of these disparate data types showed that each contributed qualitatively different components to the observed cell response to EGF and that varying degrees of concordance in gene expression and protein abundance measurements could be linked to specific biological processes. Networks inferred from individual data types were relatively limited, whereas networks derived from the integrated data recapitulated the known major cellular responses to EGF and exhibited more highly connected signaling nodes than networks derived from any individual dataset. While cell cycle regulatory pathways were altered as anticipated, we found the most robust response to mitogenic concentrations of EGF was induction of matrix metalloprotease cascades, highlighting the importance of the EGFR system as a regulator of the extracellular environment. These results demonstrate the value of integrating multiple levels of biological information to more accurately reconstruct networks of cellular response.

  18. Stem cell mobilization with cyclophosphamide overcomes the suppressive effect of lenalidomide therapy on stem cell collection in multiple myeloma.

    Science.gov (United States)

    Mark, Tomer; Stern, Jessica; Furst, Jessica R; Jayabalan, David; Zafar, Faiza; LaRow, April; Pearse, Roger N; Harpel, John; Shore, Tsiporah; Schuster, Michael W; Leonard, John P; Christos, Paul J; Coleman, Morton; Niesvizky, Ruben

    2008-07-01

    A total of 28 treatment-naïve patients with stage II or III multiple myeloma (MM) were treated with the combination of clarithromycin, lenalidomide, and dexamethasone (BiRD). Stem cells were collected following granulocyte-colony stimulating factor (G-CSF) or cyclophosphamide (Cy) plus G-CSF mobilization at maximum response. Sufficient stem cells for 2 autologous stem cell transplants were collected from all patients mobilized with Cy plus G-CSF, versus 33% mobilized with G-CSF alone (P < .0001). The duration of prior lenalidomide therapy did not correlate with success of stem cell harvests (P = .91). In conclusion, Cy can be added to G-CSF for stem cell mobilization to successfully overcome the suppressive effect of prior treatment with lenalidomide.

  19. Nanoliter reactors improve multiple displacement amplification of genomes from single cells.

    Directory of Open Access Journals (Sweden)

    Yann Marcy

    2007-09-01

    Full Text Available Since only a small fraction of environmental bacteria are amenable to laboratory culture, there is great interest in genomic sequencing directly from single cells. Sufficient DNA for sequencing can be obtained from one cell by the Multiple Displacement Amplification (MDA method, thereby eliminating the need to develop culture methods. Here we used a microfluidic device to isolate individual Escherichia coli and amplify genomic DNA by MDA in 60-nl reactions. Our results confirm a report that reduced MDA reaction volume lowers nonspecific synthesis that can result from contaminant DNA templates and unfavourable interaction between primers. The quality of the genome amplification was assessed by qPCR and compared favourably to single-cell amplifications performed in standard 50-microl volumes. Amplification bias was greatly reduced in nanoliter volumes, thereby providing a more even representation of all sequences. Single-cell amplicons from both microliter and nanoliter volumes provided high-quality sequence data by high-throughput pyrosequencing, thereby demonstrating a straightforward route to sequencing genomes from single cells.

  20. Multiple growths of epitaxial lift-off solar cells from a single InP substrate

    International Nuclear Information System (INIS)

    Lee, Kyusang; Shiu, Kuen-Ting; Zimmerman, Jeramy D.; Forrest, Stephen R.; Renshaw, Christopher K.

    2010-01-01

    We demonstrate multiple growths of flexible, thin-film indium tin oxide-InP Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect the InP parent wafer surface during the ELO process are subsequently removed by selective wet-chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit no performance degradation under simulated Atmospheric Mass 1.5 Global (AM 1.5G) illumination, and have a power conversion efficiency of η p =14.4±0.4% and η p =14.8±0.2%, respectively. The current-voltage characteristics for the solar cells and atomic force microscope images of the substrate indicate that the parent wafer is undamaged, and is suitable for reuse after ELO and the protection-layer removal processes. X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation, and three-dimensional surface profiling show a surface that is comparable or improved to the original epiready wafer following ELO. Wafer reuse over multiple cycles suggests that high-efficiency; single-crystal thin-film solar cells may provide a practical path to low-cost solar-to-electrical energy conversion.

  1. Distribution of dendritic cells expressing dendritic cell-specific ICAM-3-grabbing non-integrin (DC-SIGN, CD209): Morphological analysis using a novel Photoshop-aided multiple immunohistochemistry technique.

    Science.gov (United States)

    Masuda, Akihiro; Nishikawa, Toshio

    2014-08-01

    The distribution of dendritic cells (DCs) expressing DC-specific ICAM-3-grabbing non-integrin (DC-SIGN, CD209) and the morphological interaction of DC-SIGN⁺ DCs with other cells, especially B cells, in tonsillar and other lymphoid tissues were investigated by multiple immunohistochemistry (IHC) using the graphics editing program Photoshop, which enabled staining with 4 or more antibodies in formalin-fixed paraffin sections. Images obtained by repetition of conventional IHC using diaminobenzidine color development in a tissue section were processed on Photoshop for multiple staining. DC-SIGN⁺ DCs were present in the area around the lymphoid follicles and formed a DC-SIGN⁺ DC-rich area, and these cells contacted not only T cells, fascin⁺ DCs, and blood vessels but also several subsets of B cells simultaneously, including naïve and memory B cells. DC-SIGN⁺ DCs may play an important role in the regulation of the immune response mediated by not only T cells but also B cells. The multiple IHC method introduced in the present study is a simple and useful method for analyzing details of complex structures. Because this method can be applied to routinely processed paraffin sections with conventional IHC with diaminobenzidine, it can be applied to a wide variety of archival specimens.

  2. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    KAUST Repository

    Perozziello, Gerardo

    2015-12-11

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562). © 2015 Optical Society of America.

  3. Establishment and characterization of a novel Hodgkin lymphoma cell line, AM-HLH, carrying the Epstein-Barr virus genome integrated into the host chromosome.

    Science.gov (United States)

    Hayashida, Masahiko; Daibata, Masanori; Tagami, Erika; Taguchi, Takahiro; Maekawa, Fumiyo; Takeoka, Kayo; Fukutsuka, Katsuhiro; Shimomura, Daiki; Hayashi, Takamasa; Iwatani, Yoshinori; Ohno, Hitoshi

    2017-12-01

    We describe the establishment and characterization of a cell line, AM-HLH, obtained from a patient with Epstein-Barr virus-positive (EBV + ) nodular sclerosis-type Hodgkin lymphoma (HL). The cells were positive for CD2 and CD30 and negative for CD15. The immunoglobulin heavy- and κ light-chain genes were rearranged. The karyotype was of the triploid range. Southern blotting using the EBV terminal repeat probe detected 3 hybridizing bands that were identical to those of the parental HL material. The cells expressed EBV-encoded RNAs as well as latent genes (EBNA1, EBNA2, LMP1, and LMP2A) and lytic genes (BZLF1 and BALF2). Fluorescence in situ hybridization (FISH) with the cosmid pJB8 clone containing a fragment of EBV DNA as a probe revealed multiple hybridization signals at a marker chromosome. Additional FISH using whole chromosome painting and centromere probes in combination with multicolor FISH determined that multiple EBV copies were clustered within the chromosome 20 materials of the marker chromosome. Culture supernatants of AM-HLH contained IL-10 as measured by the bead-based immunoassay. It is possible that an integrated EBV genome and cellular genes on chromosome 20 were coamplified, leading to the enhanced expression of genes involved in cell growth control. The AM-HLH cell line will be useful to clarify the role of cytokines in the development of EBV + HL. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Effects of Voltage-Gated K+ Channel on Cell Proliferation in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Wei Wang

    2014-01-01

    Full Text Available Objective. To study the effects and underlying mechanisms of voltage-gated K+ channels on the proliferation of multiple myeloma cells. Methods. RPMI-8226 MM cell line was used for the experiments. Voltage-gated K+ currents and the resting potential were recorded by whole-cell patch-clamp technique. RT-PCR detected Kv channel mRNA expression. Cell viability was analyzed with MTT assay. Cell counting system was employed to monitor cell proliferation. DNA contents and cell volume were analyzed by flow cytometry. Results. Currents recorded in RPMI-8226 cells were confirmed to be voltage-gated K+ channels. A high level of Kv1.3 mRNA was detected but no Kv3.1 mRNA was detected in RPMI-8226 cells. Voltage-gated K+ channel blocker 4-aminopyridine (4-AP (2 mM depolarized the resting potential from −42 ± 1.7 mV to −31.8 ± 2.8 mV (P0.05. Conclusions. In RPMI-8226, voltage-gated K+ channels are involved in proliferation and cell cycle progression its influence on the resting potential and cell volume may be responsible for this process; the inhibitory effect of the voltage-gated K+ channel blocker on RPMI-8226 cell proliferation is a phase-specific event.

  5. Merkel cell carcinoma with fingolimod treatment for multiple sclerosis: A case report.

    Science.gov (United States)

    Mahajan, Kedar R; Ko, Jennifer S; Tetzlaff, Michael T; Hudgens, Courtney W; Billings, Steven D; Cohen, Jeffrey A

    2017-10-01

    Neoplasms and reactivation of latent viruses have been observed in individuals taking fingolimod. Merkel cell carcinoma (MCC), a rare neuroendocrine skin cancer, is associated with immunosuppression and can be triggered by the oncogenic Merkel cell polyoma virus (MCPyV). We report a case of a 61-year-old man with multiple sclerosis who developed MCPyV-positive MCC 4 years after starting fingolimod. This is the second report of MCC associated with MCPyV in an individual on fingolimod. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Pectic arabinan side chains are essential for pollen cell wall integrity during pollen development

    DEFF Research Database (Denmark)

    Cankar, Katarina; Kortstee, Anne; Toonen, Marcel A.J.

    2014-01-01

    Pectin is a complex polysaccharide and an integral part of the primary plant cell wall and middle lamella, contributing to cell wall mechanical strength and cell adhesion. To understand the structure-function relationships of pectin in the cell wall, a set of transgenic potato lines with altered...

  7. Modulation of cell metabolic pathways and oxidative stress signaling contribute to acquired melphalan resistance in multiple myeloma cells

    DEFF Research Database (Denmark)

    Zub, Kamila Anna; Sousa, Mirta Mittelstedt Leal de; Sarno, Antonio

    2015-01-01

    of the AKR1C family involved in prostaglandin synthesis contribute to the resistant phenotype. Finally, selected metabolic and oxidative stress response enzymes were targeted by inhibitors, several of which displayed a selective cytotoxicity against the melphalan-resistant cells and should be further...... and pathways not previously associated with melphalan resistance in multiple myeloma cells, including a metabolic switch conforming to the Warburg effect (aerobic glycolysis), and an elevated oxidative stress response mediated by VEGF/IL8-signaling. In addition, up-regulated aldo-keto reductase levels...

  8. Lysophosphatidic Acid Disrupts Junctional Integrity and Epithelial Cohesion in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yueying Liu

    2012-01-01

    Full Text Available Ovarian cancer metastasizes via exfoliation of free-floating cells and multicellular aggregates from the primary tumor to the peritoneal cavity. A key event in EOC metastasis is disruption of cell-cell contacts via modulation of intercellular junctional components including cadherins. Ascites is rich in lysophosphatidic acid (LPA, a bioactive lipid that may promote early events in ovarian cancer dissemination. The objective of this paper was to assess the effect of LPA on E-cadherin junctional integrity. We report a loss of junctional E-cadherin in OVCAR3, OVCA429, and OVCA433 cells exposed to LPA. LPA-induced loss of E-cadherin was concentration and time dependent. LPA increased MMP-9 expression and promoted MMP-9-catalyzed E-cadherin ectodomain shedding. Blocking LPA receptor signaling inhibited MMP-9 expression and restored junctional E-cadherin staining. LPA-treated cells demonstrated a significant decrease in epithelial cohesion. Together these data support a model wherein LPA induces MMP-9 expression and MMP-9-catalyzed E-cadherin ectodomain shedding, resulting in loss of E-cadherin junctional integrity and epithelial cohesion, facilitating metastatic dissemination of ovarian cancer cells.

  9. Multiple squamous cell carcinomas within the head and neck region

    International Nuclear Information System (INIS)

    Sato, Katsuro; Hanazawa, Hideyuki; Sato, Yuichiro; Takahashi, Sugata

    2004-01-01

    Clinical features of multiple squamous cell carcinoma (SCC) cases within the head and neck that were treated in our department during the recent 10 years are discussed. Multiple SCCs arose in 6.6% of the cases with primary SCC; 67% of the cases had two carcinomas, and 33% had more than three carcinomas. The most common site of the multiple SCCs was the oral cavity (54%). The most frequent interval between treatment of previous carcinoma and diagnosis of subsequent carcinoma was simultaneous, but more than 5 years' interval was observed in 36% of the patients. The most common initial treatment of the carcinoma was irradiation, but the ratio of surgery increased for subsequent carcinomas. Prognosis of the patients with more than three carcinomas was not worse than that of patients with two carcinomas. Therefore, early diagnosis of the subsequent carcinomas based on careful long-term observation in the head and neck is necessary for follow-up of the patients with SCC of the head and neck. Treatment strategies considering the treatment of subsequent carcinomas are needed for the patients with primary head and neck SCC. (author)

  10. Isolation and Multiple Differentiation Potential Assessment of Human Gingival Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2014-11-01

    Full Text Available The aim of this study was to isolate human mesenchymal stem cells (MSCs from the gingiva (GMSCs and confirm their multiple differentiation potentials, including the odontogenic lineage. GMSCs, periodontal ligament stem cells (PDLSCs and dermal stem cells (DSCs cultures were analyzed for cell shape, cell cycle, colony-forming unit-fibroblast (CFU-F and stem cell markers. Cells were then induced for osteogenic and adipogenic differentiation and analyzed for differentiation markers (alkaline phosphatase (ALP activity, mineralization nodule formation and Runx2, ALP, osteocalcin (OCN and collagen I expressions for the osteogenic differentiation, and lipid vacuole formation and PPARγ-2 expression for the adipogenic differentiation. Besides, the odontogenic differentiation potential of GMSCs induced with embryonic tooth germ cell-conditioned medium (ETGC-CM was observed. GMSCs, PDLSCs and DSCs were all stromal origin. PDLSCs showed much higher osteogenic differentiation ability but lower adipogenic differentiation potential than DSCs. GMSCs showed the medial osteogenic and adipogenic differentiation potentials between those of PDLSCs and DSCs. GMSCs were capable of expressing the odontogenic genes after ETGC-CM induction. This study provides evidence that GMSCs can be used in tissue engineering/regeneration protocols as an approachable stem cell source.

  11. The continuous end-state comfort effect: weighted integration of multiple biases.

    Science.gov (United States)

    Herbort, Oliver; Butz, Martin V

    2012-05-01

    The grasp orientation when grasping an object is frequently aligned in anticipation of the intended rotation of the object (end-state comfort effect). We analyzed grasp orientation selection in a continuous task to determine the mechanisms underlying the end-state comfort effect. Participants had to grasp a box by a circular handle-which allowed for arbitrary grasp orientations-and then had to rotate the box by various angles. Experiments 1 and 2 revealed both that the rotation's direction considerably determined grasp orientations and that end-postures varied considerably. Experiments 3 and 4 further showed that visual stimuli and initial arm postures biased grasp orientations if the intended rotation could be easily achieved. The data show that end-state comfort but also other factors determine grasp orientation selection. A simple mechanism that integrates multiple weighted biases can account for the data.

  12. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for......-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.......Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used...... for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels...

  13. A Fuzzy Logic Framework for Integrating Multiple Learned Models

    Energy Technology Data Exchange (ETDEWEB)

    Hartog, Bobi Kai Den [Univ. of Nebraska, Lincoln, NE (United States)

    1999-03-01

    The Artificial Intelligence field of Integrating Multiple Learned Models (IMLM) explores ways to combine results from sets of trained programs. Aroclor Interpretation is an ill-conditioned problem in which trained programs must operate in scenarios outside their training ranges because it is intractable to train them completely. Consequently, they fail in ways related to the scenarios. We developed a general-purpose IMLM solution, the Combiner, and applied it to Aroclor Interpretation. The Combiner's first step, Scenario Identification (M), learns rules from very sparse, synthetic training data consisting of results from a suite of trained programs called Methods. S1 produces fuzzy belief weights for each scenario by approximately matching the rules. The Combiner's second step, Aroclor Presence Detection (AP), classifies each of three Aroclors as present or absent in a sample. The third step, Aroclor Quantification (AQ), produces quantitative values for the concentration of each Aroclor in a sample. AP and AQ use automatically learned empirical biases for each of the Methods in each scenario. Through fuzzy logic, AP and AQ combine scenario weights, automatically learned biases for each of the Methods in each scenario, and Methods' results to determine results for a sample.

  14. Integrative set enrichment testing for multiple omics platforms

    Directory of Open Access Journals (Sweden)

    Poisson Laila M

    2011-11-01

    Full Text Available Abstract Background Enrichment testing assesses the overall evidence of differential expression behavior of the elements within a defined set. When we have measured many molecular aspects, e.g. gene expression, metabolites, proteins, it is desirable to assess their differential tendencies jointly across platforms using an integrated set enrichment test. In this work we explore the properties of several methods for performing a combined enrichment test using gene expression and metabolomics as the motivating platforms. Results Using two simulation models we explored the properties of several enrichment methods including two novel methods: the logistic regression 2-degree of freedom Wald test and the 2-dimensional permutation p-value for the sum-of-squared statistics test. In relation to their univariate counterparts we find that the joint tests can improve our ability to detect results that are marginal univariately. We also find that joint tests improve the ranking of associated pathways compared to their univariate counterparts. However, there is a risk of Type I error inflation with some methods and self-contained methods lose specificity when the sets are not representative of underlying association. Conclusions In this work we show that consideration of data from multiple platforms, in conjunction with summarization via a priori pathway information, leads to increased power in detection of genomic associations with phenotypes.

  15. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-06-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease manage‐ ment and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluores‐ cence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasi‐ bility of the assay was established by testing blood samples from a small cohort of patients, where we detected popu‐ lations of both CD138pos and CD138neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  16. Detection and Characterization of Circulating Tumour Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Liangxuan Zhang

    2016-01-01

    Full Text Available Multiple myeloma (MM remains an incurable disease despite recent therapeutic improvements. The ability to detect and characterize MM circulating tumour cells (CTCs in peripheral blood provides an alternative to replace or augment invasive bone marrow (BM biopsies with a simple blood draw, providing real-time, clinically relevant information leading to improved disease management and therapy selection. Here we have developed and qualified an enrichment-free, cell-based immunofluorescence MM CTC assay that utilizes an automated digital pathology algorithm to distinguish MM CTCs from white blood cells (WBCs on the basis of CD138 and CD45 expression levels, as well as a number of morphological parameters. These MM CTCs were further characterized for expression of phospho-ribosomal protein S6 (pS6 as a readout for PI3K/AKT pathway activation. Clinical feasibility of the assay was established by testing blood samples from a small cohort of patients, where we detected populations of both CD138 pos and CD138 neg MM CTCs. In this study, we developed an immunofluorescent cell-based assay to detect and characterize CTCs in MM.

  17. Integrative ChIP-seq/microarray analysis identifies a CTNNB1 target signature enriched in intestinal stem cells and colon cancer.

    Directory of Open Access Journals (Sweden)

    Kazuhide Watanabe

    Full Text Available Deregulation of canonical Wnt/CTNNB1 (beta-catenin pathway is one of the earliest events in the pathogenesis of colon cancer. Mutations in APC or CTNNB1 are highly frequent in colon cancer and cause aberrant stabilization of CTNNB1, which activates the transcription of Wnt target genes by binding to chromatin via the TCF/LEF transcription factors. Here we report an integrative analysis of genome-wide chromatin occupancy of CTNNB1 by chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq and gene expression profiling by microarray analysis upon RNAi-mediated knockdown of CTNNB1 in colon cancer cells.We observed 3629 CTNNB1 binding peaks across the genome and a significant correlation between CTNNB1 binding and knockdown-induced gene expression change. Our integrative analysis led to the discovery of a direct Wnt target signature composed of 162 genes. Gene ontology analysis of this signature revealed a significant enrichment of Wnt pathway genes, suggesting multiple feedback regulations of the pathway. We provide evidence that this gene signature partially overlaps with the Lgr5+ intestinal stem cell signature, and is significantly enriched in normal intestinal stem cells as well as in clinical colorectal cancer samples. Interestingly, while the expression of the CTNNB1 target gene set does not correlate with survival, elevated expression of negative feedback regulators within the signature predicts better prognosis.Our data provide a genome-wide view of chromatin occupancy and gene regulation of Wnt/CTNNB1 signaling in colon cancer cells.

  18. Multiple Kernel Learning with Random Effects for Predicting Longitudinal Outcomes and Data Integration

    Science.gov (United States)

    Chen, Tianle; Zeng, Donglin

    2015-01-01

    Summary Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data. PMID:26177419

  19. Sensory feedback, error correction, and remapping in a multiple oscillator model of place cell activity

    Directory of Open Access Journals (Sweden)

    Joseph D. Monaco

    2011-09-01

    Full Text Available Mammals navigate by integrating self-motion signals (‘path integration’ and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid cells demonstrate a phase relationship with the local theta (6–10 Hz rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of ‘partial remapping’ responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.

  20. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    Science.gov (United States)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  1. T regulatory cells are markers of disease activity in multiple sclerosis patients.

    Directory of Open Access Journals (Sweden)

    Dacia Dalla Libera

    Full Text Available FoxP3⁺ Treg cells are believed to play a role in the occurrence of autoimmunity and in the determination of clinical recurrences. Contradictory reports are, however, available describing frequency and function of Treg cells during autoimmune diseases. We examined, by both polychromatic flow cytometry, and real-time RT-PCR, several Treg markers in peripheral blood mononuclear cells from patients with multiple sclerosis (MS, an autoimmune disease affecting the central nervous system. We found that Tregs, as defined by CD25, CD39, FoxP3, CTLA4, and GITR expression, were significantly decreased in stable MS patients as compared to healthy donors, but, surprisingly, restored to normal levels during an acute clinical attack. We conclude that Treg cells are not involved in causing clinical relapses, but rather react to inflammation in the attempt to restore homeostasis.

  2. CALCULUS FROM THE PAST: MULTIPLE DELAY SYSTEMS ARISING IN CANCER CELL MODELLING

    KAUST Repository

    WAKE, G. C.; BYRNE, H. M.

    2013-01-01

    Nonlocal calculus is often overlooked in the mathematics curriculum. In this paper we present an interesting new class of nonlocal problems that arise from modelling the growth and division of cells, especially cancer cells, as they progress through the cell cycle. The cellular biomass is assumed to be unstructured in size or position, and its evolution governed by a time-dependent system of ordinary differential equations with multiple time delays. The system is linear and taken to be autonomous. As a result, it is possible to reduce its solution to that of a nonlinear matrix eigenvalue problem. This method is illustrated by considering case studies, including a model of the cell cycle developed recently by Simms, Bean and Koeber. The paper concludes by explaining how asymptotic expressions for the distribution of cells across the compartments can be determined and used to assess the impact of different chemotherapeutic agents. Copyright © 2013 Australian Mathematical Society.

  3. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles

    Directory of Open Access Journals (Sweden)

    Maryam Alsadat Rad

    2016-12-01

    Full Text Available This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young’s modulus, Poisson’s ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m−1, 123.4700 GPa, 0.3000 and 0.0693 V·m·N−1, respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young’s modulus of the cells are determined to be 10.8867 ± 0.0094 N·m−1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young’s modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  4. Finite Element Analysis of Single Cell Stiffness Measurements Using PZT-Integrated Buckling Nanoneedles.

    Science.gov (United States)

    Rad, Maryam Alsadat; Tijjani, Auwal Shehu; Ahmad, Mohd Ridzuan; Auwal, Shehu Muhammad

    2016-12-23

    This paper proposes a new technique for real-time single cell stiffness measurement using lead zirconate titanate (PZT)-integrated buckling nanoneedles. The PZT and the buckling part of the nanoneedle have been modelled and validated using the ABAQUS software. The two parts are integrated together to function as a single unit. After calibration, the stiffness, Young's modulus, Poisson's ratio and sensitivity of the PZT-integrated buckling nanoneedle have been determined to be 0.7100 N·m -1 , 123.4700 GPa, 0.3000 and 0.0693 V·m·N -1 , respectively. Three Saccharomyces cerevisiae cells have been modelled and validated based on compression tests. The average global stiffness and Young's modulus of the cells are determined to be 10.8867 ± 0.0094 N·m -1 and 110.7033 ± 0.0081 MPa, respectively. The nanoneedle and the cell have been assembled to measure the local stiffness of the single Saccharomyces cerevisiae cells The local stiffness, Young's modulus and PZT output voltage of the three different size Saccharomyces cerevisiae have been determined at different environmental conditions. We investigated that, at low temperature the stiffness value is low to adapt to the change in the environmental condition. As a result, Saccharomyces cerevisiae becomes vulnerable to viral and bacterial attacks. Therefore, the proposed technique will serve as a quick and accurate process to diagnose diseases at early stage in a cell for effective treatment.

  5. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective.

    Science.gov (United States)

    Shao, Yue; Fu, Jianping

    2014-03-12

    The rapid development of micro/nanoengineered functional biomaterials in the last two decades has empowered materials scientists and bioengineers to precisely control different aspects of the in vitro cell microenvironment. Following a philosophy of reductionism, many studies using synthetic functional biomaterials have revealed instructive roles of individual extracellular biophysical and biochemical cues in regulating cellular behaviors. Development of integrated micro/nanoengineered functional biomaterials to study complex and emergent biological phenomena has also thrived rapidly in recent years, revealing adaptive and integrated cellular behaviors closely relevant to human physiological and pathological conditions. Working at the interface between materials science and engineering, biology, and medicine, we are now at the beginning of a great exploration using micro/nanoengineered functional biomaterials for both fundamental biology study and clinical and biomedical applications such as regenerative medicine and drug screening. In this review, an overview of state of the art micro/nanoengineered functional biomaterials that can control precisely individual aspects of cell-microenvironment interactions is presented and they are highlighted them as well-controlled platforms for mechanistic studies of mechano-sensitive and -responsive cellular behaviors and integrative biology research. The recent exciting trend where micro/nanoengineered biomaterials are integrated into miniaturized biological and biomimetic systems for dynamic multiparametric microenvironmental control of emergent and integrated cellular behaviors is also discussed. The impact of integrated micro/nanoengineered functional biomaterials for future in vitro studies of regenerative medicine, cell biology, as well as human development and disease models are discussed. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Unfolded Protein Response Is Induced by the Cell Wall Integrity Mitogen-activated Protein Kinase Signaling Cascade and Is Required for Cell Wall Integrity in Saccharomyces cerevisiae

    OpenAIRE

    Scrimale, Thomas; Didone, Louis; de Mesy Bentley, Karen L.; Krysan, Damian J.

    2009-01-01

    The yeast cell wall is an extracellular structure that is dependent on secretory and membrane proteins for its construction. We investigated the role of protein quality control mechanisms in cell wall integrity and found that the unfolded protein response (UPR) and, to a lesser extent, endoplasmic reticulum (ER)-associated degradation (ERAD) pathways are required for proper cell wall construction. Null mutation of IRE1, double mutation of ERAD components (hrd1Δ and ubc7Δ) and ire1Δ, or expres...

  7. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders

    Directory of Open Access Journals (Sweden)

    F. Cremonesi

    2013-03-01

    Full Text Available The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS and computer assisted semen analyzer (CASA. Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19°C for 6 days (short-term or 12 days (long-term. The integrity of spermatozoa membranes was analyzed by FMS using propidium iodide, 5,5’,6,6’-tetrachloro-1,1’,3,3’ tetraethylbenzimidazolyl-carbocyanine iodide (JC-1 and fluorescein isothiocyanate-conjugated peanut agglutinin (PNA. The results obtained from this staining were compared with spermatozoa motility assessed by CASA. Our study showed that the number of viable spermatozoa with non-reacted acrosomes and intact mitochondria was positively correlated with the rate of motile spermatozoa (r2>0.9 irrespective of the extender used. In all extenders the number of motile spermatozoa significantly decreased as preservation period increased (P<0.05. FMS test is a potent indicator of sperm motility because it analyses mitochondrial integrity independently from observable alterations in motility. The best performing extenders were BTS for short-term storage and TRI-x-Cell for long-term storage.

  8. Multiple-integrations of HPV16 genome and altered transcription of viral oncogenes and cellular genes are associated with the development of cervical cancer.

    Directory of Open Access Journals (Sweden)

    Xulian Lu

    Full Text Available The constitutive expression of the high-risk HPV E6 and E7 viral oncogenes is the major cause of cervical cancer. To comprehensively explore the composition of HPV16 early transcripts and their genomic annotation, cervical squamous epithelial tissues from 40 HPV16-infected patients were collected for analysis of papillomavirus oncogene transcripts (APOT. We observed different transcription patterns of HPV16 oncogenes in progression of cervical lesions to cervical cancer and identified one novel transcript. Multiple-integration events in the tissues of cervical carcinoma (CxCa are significantly more often than those of low-grade squamous intraepithelial lesions (LSIL and high-grade squamous intraepithelial lesions (HSIL. Moreover, most cellular genes within or near these integration sites are cancer-associated genes. Taken together, this study suggests that the multiple-integrations of HPV genome during persistent viral infection, which thereby alters the expression patterns of viral oncogenes and integration-related cellular genes, play a crucial role in progression of cervical lesions to cervix cancer.

  9. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial) Endosymbiont

    Science.gov (United States)

    Zheng, Weiwen; Rasmussen, Ulla; Zheng, Siping; Bao, Xiaodong; Chen, Bin; Gao, Yuan; Guan, Xiong; Larsson, John; Bergman, Birgitta

    2013-01-01

    Programmed cell death (PCD) is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20%) of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays), together with visualization of cytoskeleton alterations (FITC-phalloidin staining), showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20) further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom. PMID:23822984

  10. Multiple Modes of Cell Death Discovered in a Prokaryotic (Cyanobacterial Endosymbiont.

    Directory of Open Access Journals (Sweden)

    Weiwen Zheng

    Full Text Available Programmed cell death (PCD is a genetically-based cell death mechanism with vital roles in eukaryotes. Although there is limited consensus on similar death mode programs in prokaryotes, emerging evidence suggest that PCD events are operative. Here we present cell death events in a cyanobacterium living endophytically in the fern Azolla microphylla, suggestive of PCD. This symbiosis is characterized by some unique traits such as a synchronized development, a vertical transfer of the cyanobacterium between plant generations, and a highly eroding cyanobacterial genome. A combination of methods was used to identify cell death modes in the cyanobacterium. Light- and electron microscopy analyses showed that the proportion of cells undergoing cell death peaked at 53.6% (average 20% of the total cell population, depending on the cell type and host developmental stage. Biochemical markers used for early and late programmed cell death events related to apoptosis (Annexin V-EGFP and TUNEL staining assays, together with visualization of cytoskeleton alterations (FITC-phalloidin staining, showed that all cyanobacterial cell categories were affected by cell death. Transmission electron microscopy revealed four modes of cell death: apoptotic-like, autophagic-like, necrotic-like and autolytic-like. Abiotic stresses further enhanced cell death in a dose and time dependent manner. The data also suggest that dynamic changes in the peptidoglycan cell wall layer and in the cytoskeleton distribution patterns may act as markers for the various cell death modes. The presence of a metacaspase homolog (domain p20 further suggests that the death modes are genetically programmed. It is therefore concluded that multiple, likely genetically programmed, cell death modes exist in cyanobacteria, a finding that may be connected with the evolution of cell death in the plant kingdom.

  11. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jun [Graduate School of Anhui Medical University, Hefei (China); Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Yang, Yang [Department of Hematology, General Hospital of Air Force, Beijing (China); Wang, Lu; Gao, Chun-Ji [Department of Hematology, PLA General Hospital, Beijing (China); Guo, Zi-Kuan [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Wu, Chu-Tse [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China); Wang, Li-Sheng, E-mail: Wangls@bmi.ac.cn [Department of Experimental Hematology, Beijing Institute of Radiation Medicine, Beijing 100850 (China); Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu (China)

    2015-05-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation.

  12. SENP1 inhibition induces apoptosis and growth arrest of multiple myeloma cells through modulation of NF-κB signaling

    International Nuclear Information System (INIS)

    Xu, Jun; Sun, Hui-Yan; Xiao, Feng-Jun; Wang, Hua; Yang, Yang; Wang, Lu; Gao, Chun-Ji; Guo, Zi-Kuan; Wu, Chu-Tse; Wang, Li-Sheng

    2015-01-01

    SUMO/sentrin specific protease 1 (Senp1) is an important regulation protease in the protein sumoylation, which affects the cell cycle, proliferation and differentiation. The role of Senp1 mediated protein desumoylation in pathophysiological progression of multiple myeloma is unknown. In this study, we demonstrated that Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. Lentivirus-mediated Senp1 knockdown triggers apoptosis and reduces viability, proliferation and colony forming ability of MM cells. The NF-κB family members including P65 and inhibitor protein IkBα play important roles in regulation of MM cell survival and proliferation. We further demonstrated that Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation, leading to inactivation of NF-kB signaling in MM cells. These results delineate a key role for Senp1in IL-6 induced proliferation and survival of MM cells, suggesting it may be a potential new therapeutic target in MM. - Highlights: • Senp1 is overexpressed and induced by IL-6 in multiple myeloma cells. • Senp1 knockdown triggers apoptosis and reduces proliferation of MM cells. • Senp1 inhibition decreased IL-6-induced P65 and IkBα phosphorylation

  13. Meningeal mast cells affect early T cell central nervous system infiltration and blood-brain barrier integrity through TNF: a role for neutrophil recruitment?

    Science.gov (United States)

    Sayed, Blayne A; Christy, Alison L; Walker, Margaret E; Brown, Melissa A

    2010-06-15

    Mast cells contribute to the pathogenesis of experimental autoimmune encephalomyelitis, a rodent model of the human demyelinating disease multiple sclerosis. Yet their site and mode of action is unknown. In both diseases, myelin-specific T cells are initially activated in peripheral lymphoid organs. However, for disease to occur, these cells must enter the immunologically privileged CNS through a breach in the relatively impermeable blood-brain barrier. In this study, we demonstrate that a dense population of resident mast cells in the meninges, structures surrounding the brain and spinal cord, regulate basal CNS barrier function, facilitating initial T cell CNS entry. Through the expression of TNF, mast cells recruit an early wave of neutrophils to the CNS. We propose that neutrophils in turn promote the blood-brain barrier breach and together with T cells lead to further inflammatory cell influx and myelin damage. These findings provide specific targets for intervention in multiple sclerosis as well as other immune-mediated CNS diseases.

  14. A multiple p-n junction structure obtained from as-grown Czochralski silicon crystals by heat treatment - Application to solar cells

    Science.gov (United States)

    Chi, J. Y.; Gatos, H. C.; Mao, B. Y.

    1980-01-01

    Multiple p-n junctions have been prepared in as-grown Czochralski p-type silicon through overcompensation near the oxygen periodic concentration maxima by oxygen thermal donors generated during heat treatment at 450 C. Application of the multiple p-n-junction configuration to photovoltaic energy conversion has been investigated. A new solar-cell structure based on multiple p-n-junctions was developed. Theoretical analysis showed that a significant increase in collection efficiency over the conventional solar cells can be achieved.

  15. Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection.

    Science.gov (United States)

    Yu, Qian; Xiong, Youhua; Gao, Hang; Liu, Jianliang; Chen, Zhiqiang; Wang, Qin; Wen, Dongling

    2015-08-04

    Increasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood. In this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component. The determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.

  16. Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

    Directory of Open Access Journals (Sweden)

    Mahmoud Paripour

    2014-08-01

    Full Text Available In this paper, the Bernstein polynomials are used to approximatethe solutions of linear integral equations with multiple time lags (IEMTL through expansion methods (collocation method, partition method, Galerkin method. The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out

  17. Optimization of multi-response dynamic systems integrating multiple ...

    African Journals Online (AJOL)

    It also results in better optimization performance than back-propagation neural network-based approach and data mining-based approach reported by the past researchers. Keywords: multiple responses, multiple regression, weighted dynamic signal-to-noise ratio, performance measure modelling, response function ...

  18. Multiple Synchronous Central Giant Cell Granulomas of the Maxillofacial Region: A Case Report

    International Nuclear Information System (INIS)

    Kang, Min Seok; Kim, Hak Jin

    2010-01-01

    Multifocal central giant cell granulomas (CGCG) in the maxillofacial region are suggestive of systemic disease such as hyperparathyroidism or an inherited syndrome such as Noonan-like multiple giant cell lesion syndrome. Only 5 cases of multifocal CGCGs in the maxillofacial region without any concomitant systemic disease have currently been reported. We report here on an unusual case of 17-year-old man who presented with multifocal CGCGs of the bilateral posterior mandible and right maxilla and he was without any concomitant systemic disease

  19. Multiple Synchronous Central Giant Cell Granulomas of the Maxillofacial Region: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Min Seok; Kim, Hak Jin [Pusan National University Hospital, Busan (Korea, Republic of)

    2010-01-15

    Multifocal central giant cell granulomas (CGCG) in the maxillofacial region are suggestive of systemic disease such as hyperparathyroidism or an inherited syndrome such as Noonan-like multiple giant cell lesion syndrome. Only 5 cases of multifocal CGCGs in the maxillofacial region without any concomitant systemic disease have currently been reported. We report here on an unusual case of 17-year-old man who presented with multifocal CGCGs of the bilateral posterior mandible and right maxilla and he was without any concomitant systemic disease

  20. Targeting poly (ADP-ribose polymerase partially contributes to bufalin-induced cell death in multiple myeloma cells.

    Directory of Open Access Journals (Sweden)

    He Huang

    Full Text Available Despite recent pharmaceutical advancements in therapeutic drugs, multiple myeloma (MM remains an incurable disease. Recently, ploy(ADP-ribose polymerase 1 (PARP1 has been shown as a potentially promising target for MM therapy. A previous report suggested bufalin, a component of traditional Chinese medicine ("Chan Su", might target PARP1. However, this hypothesis has not been verified. We here showed that bufalin could inhibit PARP1 activity in vitro and reduce DNA-damage-induced poly(ADP-ribosylation in MM cells. Molecular docking analysis revealed that the active site of bufalin interaction is within the catalytic domain of PAPR1. Thus, PARP1 is a putative target of bufalin. Furthermore, we showed, for the first time that the proliferation of MM cell lines (NCI-H929, U266, RPMI8226 and MM.1S and primary CD138(+ MM cells could be inhibited by bufalin, mainly via apoptosis and G2-M phase cell cycle arrest. MM cell apoptosis was confirmed by apoptotic cell morphology, Annexin-V positive cells, and the caspase3 activation. We further evaluated the role of PARP1 in bufalin-induced apoptosis, discovering that PARP1 overexpression partially suppressed bufalin-induced cell death. Moreover, bufalin can act as chemosensitizer to enhance the cell growth-inhibitory effects of topotecan, camptothecin, etoposide and vorinostat in MM cells. Collectively, our data suggest that bufalin is a novel PARP1 inhibitor and a potentially promising therapeutic agent against MM alone or in combination with other drugs.

  1. An integrated analysis of genes and pathways exhibiting metabolic differences between estrogen receptor positive breast cancer cells

    International Nuclear Information System (INIS)

    Mandal, Soma; Davie, James R

    2007-01-01

    The sex hormone estrogen (E2) is pivotal to normal mammary gland growth and differentiation and in breast carcinogenesis. In this in silico study, we examined metabolic differences between ER(+)ve breast cancer cells during E2 deprivation. Public repositories of SAGE and MA gene expression data generated from E2 deprived ER(+)ve breast cancer cell lines, MCF-7 and ZR75-1 were compared with normal breast tissue. We analyzed gene ontology (GO), enrichment, clustering, chromosome localization, and pathway profiles and performed multiple comparisons with cell lines and tumors with different ER status. In all GO terms, biological process (BP), molecular function (MF), and cellular component (CC), MCF-7 had higher gene utilization than ZR75-1. Various analyses showed a down-regulated immune function, an up-regulated protein (ZR75-1) and glucose metabolism (MCF-7). A greater percentage of 77 common genes localized to the q arm of all chromosomes, but in ZR75-1 chromosomes 11, 16, and 19 harbored more overexpressed genes. Despite differences in gene utilization (electron transport, proteasome, glycolysis/gluconeogenesis) and expression (ribosome) in both cells, there was an overall similarity of ZR75-1 with ER(-)ve cell lines and ER(+)ve/ER(-)ve breast tumors. This study demonstrates integral metabolic differences may exist within the same cell subtype (luminal A) in representative ER(+)ve cell line models. Selectivity of gene and pathway usage for strategies such as energy requirement minimization, sugar utilization by ZR75-1 contrasted with MCF-7 cells, expressing genes whose protein products require ATP utilization. Such characteristics may impart aggressiveness to ZR75-1 and may be prognostic determinants of ER(+)ve breast tumors

  2. Optimizing the method for generation of integration-free induced pluripotent stem cells from human peripheral blood.

    Science.gov (United States)

    Gu, Haihui; Huang, Xia; Xu, Jing; Song, Lili; Liu, Shuping; Zhang, Xiao-Bing; Yuan, Weiping; Li, Yanxin

    2018-06-15

    Generation of induced pluripotent stem cells (iPSCs) from human peripheral blood provides a convenient and low-invasive way to obtain patient-specific iPSCs. The episomal vector is one of the best approaches for reprogramming somatic cells to pluripotent status because of its simplicity and affordability. However, the efficiency of episomal vector reprogramming of adult peripheral blood cells is relatively low compared with cord blood and bone marrow cells. In the present study, integration-free human iPSCs derived from peripheral blood were established via episomal technology. We optimized mononuclear cell isolation and cultivation, episomal vector promoters, and a combination of transcriptional factors to improve reprogramming efficiency. Here, we improved the generation efficiency of integration-free iPSCs from human peripheral blood mononuclear cells by optimizing the method of isolating mononuclear cells from peripheral blood, by modifying the integration of culture medium, and by adjusting the duration of culture time and the combination of different episomal vectors. With this optimized protocol, a valuable asset for banking patient-specific iPSCs has been established.

  3. Inhibition of Ubc13-mediated Ubiquitination by GPS2 Regulates Multiple Stages of B Cell Development.

    Science.gov (United States)

    Lentucci, Claudia; Belkina, Anna C; Cederquist, Carly T; Chan, Michelle; Johnson, Holly E; Prasad, Sherry; Lopacinski, Amanda; Nikolajczyk, Barbara S; Monti, Stefano; Snyder-Cappione, Jennifer; Tanasa, Bogdan; Cardamone, M Dafne; Perissi, Valentina

    2017-02-17

    Non-proteolytic ubiquitin signaling mediated by Lys 63 ubiquitin chains plays a critical role in multiple pathways that are key to the development and activation of immune cells. Our previous work indicates that GPS2 (G-protein Pathway Suppressor 2) is a multifunctional protein regulating TNFα signaling and lipid metabolism in the adipose tissue through modulation of Lys 63 ubiquitination events. However, the full extent of GPS2-mediated regulation of ubiquitination and the underlying molecular mechanisms are unknown. Here, we report that GPS2 is required for restricting the activation of TLR and BCR signaling pathways and the AKT/FOXO1 pathway in immune cells based on direct inhibition of Ubc13 enzymatic activity. Relevance of this regulatory strategy is confirmed in vivo by B cell-targeted deletion of GPS2, resulting in developmental defects at multiple stages of B cell differentiation. Together, these findings reveal that GPS2 genomic and non-genomic functions are critical for the development and cellular homeostasis of B cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. How Does the Modular Organization of Entorhinal Grid Cells Develop?

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2014-06-01

    Full Text Available The entorhinal-hippocampal system plays a crucial role in spatial cognition and navigation. Since the discovery of grid cells in layer II of medial entorhinal cortex (MEC, several types of models have been proposed to explain their development and operation; namely, continuous attractor network models, oscillatory interference models, and self-organizing map (SOM models. Recent experiments revealing the in vivo intracellular signatures of grid cells (Domnisoru et al., 2013; Schmidt-Heiber & Hausser, 2013, the primarily inhibitory recurrent connectivity of grid cells (Couey et al., 2013; Pastoll et al., 2013, and the topographic organization of grid cells within anatomically overlapping modules of multiple spatial scales along the dorsoventral axis of MEC (Stensola et al., 2012 provide strong constraints and challenges to existing grid cell models. This article provides a computational explanation for how MEC cells can emerge through learning with grid cell properties in modular structures. Within this SOM model, grid cells with different rates of temporal integration learn modular properties with different spatial scales. Model grid cells learn in response to inputs from multiple scales of directionally-selective stripe cells (Krupic et al., 2012; Mhatre et al., 2012 that perform path integration of the linear velocities that are experienced during navigation. Slower rates of grid cell temporal integration support learned associations with stripe cells of larger scales. The explanatory and predictive capabilities of the three types of grid cell models are comparatively analyzed in light of recent data to illustrate how the SOM model overcomes problems that other types of models have not yet handled.

  5. Endothelial progenitor cells display clonal restriction in multiple myeloma

    International Nuclear Information System (INIS)

    Braunstein, Marc; Özçelik, Tayfun; Bağişlar, Sevgi; Vakil, Varsha; Smith, Eric LP; Dai, Kezhi; Akyerli, Cemaliye B; Batuman, Olcay A

    2006-01-01

    In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (V H ). In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with V H primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI

  6. Xeno-Free and Defined Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells Functionally Integrate in a Large-Eyed Preclinical Model

    Directory of Open Access Journals (Sweden)

    Alvaro Plaza Reyes

    2016-01-01

    Full Text Available Human embryonic stem cell (hESC-derived retinal pigment epithelial (RPE cells could replace lost tissue in geographic atrophy (GA but efficacy has yet to be demonstrated in a large-eyed model. Also, production of hESC-RPE has not yet been achieved in a xeno-free and defined manner, which is critical for clinical compliance and reduced immunogenicity. Here we describe an effective differentiation methodology using human laminin-521 matrix with xeno-free and defined medium. Differentiated cells exhibited characteristics of native RPE including morphology, pigmentation, marker expression, monolayer integrity, and polarization together with phagocytic activity. Furthermore, we established a large-eyed GA model that allowed in vivo imaging of hESC-RPE and host retina. Cells transplanted in suspension showed long-term integration and formed polarized monolayers exhibiting phagocytic and photoreceptor rescue capacity. We have developed a xeno-free and defined hESC-RPE differentiation method and present evidence of functional integration of clinically compliant hESC-RPE in a large-eyed disease model.

  7. Ibrutinib targets microRNA-21 in multiple myeloma cells by inhibiting NF-κB and STAT3.

    Science.gov (United States)

    Ma, Jing; Gong, Wei; Liu, Su; Li, Qian; Guo, Mengzheng; Wang, Jinhan; Wang, Suying; Chen, Naiyao; Wang, Yafei; Liu, Qiang; Zhao, Hui

    2018-01-01

    The oncogenic microRNA-21 contributes to the pathogenesis of multiple myeloma. Ibrutinib (also referred to as PCI-32765), an inhibitor of Bruton's tyrosine kinase, while its effects on multiple myeloma have not been well described. Here, we show that microRNA-21 is an oncogenic marker closely linked with progression of multiple myeloma. Moreover, ibrutinib attenuates microRNA-21 expression in multiple myeloma cells by inhibiting nuclear factor-κB and signal transducer and activator of transcription 3 signaling pathways. Taken together, our results suggest that ibrutinib is a promising potential treatment for multiple myeloma. Further investigation of mechanisms of ibrutinib function in multiple myeloma will be necessary to evaluate its use as a novel multiple myeloma treatment.

  8. Cross-species multiple environmental stress responses: An integrated approach to identify candidate genes for multiple stress tolerance in sorghum (Sorghum bicolor (L. Moench and related model species.

    Directory of Open Access Journals (Sweden)

    Adugna Abdi Woldesemayat

    Full Text Available Crop response to the changing climate and unpredictable effects of global warming with adverse conditions such as drought stress has brought concerns about food security to the fore; crop yield loss is a major cause of concern in this regard. Identification of genes with multiple responses across environmental stresses is the genetic foundation that leads to crop adaptation to environmental perturbations.In this paper, we introduce an integrated approach to assess candidate genes for multiple stress responses across-species. The approach combines ontology based semantic data integration with expression profiling, comparative genomics, phylogenomics, functional gene enrichment and gene enrichment network analysis to identify genes associated with plant stress phenotypes. Five different ontologies, viz., Gene Ontology (GO, Trait Ontology (TO, Plant Ontology (PO, Growth Ontology (GRO and Environment Ontology (EO were used to semantically integrate drought related information.Target genes linked to Quantitative Trait Loci (QTLs controlling yield and stress tolerance in sorghum (Sorghum bicolor (L. Moench and closely related species were identified. Based on the enriched GO terms of the biological processes, 1116 sorghum genes with potential responses to 5 different stresses, such as drought (18%, salt (32%, cold (20%, heat (8% and oxidative stress (25% were identified to be over-expressed. Out of 169 sorghum drought responsive QTLs associated genes that were identified based on expression datasets, 56% were shown to have multiple stress responses. On the other hand, out of 168 additional genes that have been evaluated for orthologous pairs, 90% were conserved across species for drought tolerance. Over 50% of identified maize and rice genes were responsive to drought and salt stresses and were co-located within multifunctional QTLs. Among the total identified multi-stress responsive genes, 272 targets were shown to be co-localized within QTLs

  9. Twelve-year survival after multiple recurrences and repeated metastasectomies for renal cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Wang Jue

    2011-11-01

    Full Text Available Abstract Background Metastatic renal cell carcinoma (RCC presents a therapeutic challenge for clinicians because of the unpredictable clinical course, resistance to chemotherapy or radiotherapy and the limited response to immunotherapy. Patients and Methods We report a case of a 62-year-old woman who underwent nephrectomy for T4N0 RCC, clear cell type, Fuhrman grade 3/4 in 1999. The patinet subsequently had multiple tumor recurrences. Results The patient underwent eight metastasectomies, including multiple partial left nephrectomies, right adrenalectomy, a complete left nephrectomy, and distal pancreatectomy. She remains well and tumor free 12 years after initial diagnosis. Conclusion Repeated resections after initial metastasectomy can be carried out safely and provide long-term survival in selected patients with recurrent metastasis from RCC. The findings from our case indicate that close follow-up for the early detection of recurrence and complete resection of metastases can improve the results after repeated resection.

  10. The interactive effects of multiple stressors on physiological stress responses and club cell investment in fathead minnows

    International Nuclear Information System (INIS)

    Manek, Aditya K.; Ferrari, Maud C.O.; Niyogi, Som; Chivers, Douglas P.

    2014-01-01

    Anthropogenic activities have dramatically increased over the past decades, with the consequence that many organisms are simultaneously exposed to multiple stressors. Understanding how organisms respond to these stressors is a key focus for scientists from many disciplines. Here we investigated the interactive effects of two stressors, UV radiation (UVR) and cadmium (Cd) exposure on a common freshwater fish, fathead minnow (Pimephales promelas). UVR is known to influence the density of epidermal club cells (ECCs), which are not only a key component of the innate immune system of fishes, but are also the source of chemical alarm cues that serve to warn other fishes of nearby predators. In contrast, Cd impairs the physiological stress response and ability of fish to respond to alarm cues. We used an integrative approach to examine physiological stress response as well as investment in ECCs. Fish exposed to UVR had higher levels of cortisol than non-exposed controls, but Cd reduced cortisol levels substantially for fish exposed to UVR. Fish exposed to UVR, either in the presence or absence of Cd, showed consistent decreases in ECC investment compared to non-exposed controls. Despite differences in ECC number, there was no difference in the potency of alarm cues prepared from the skin of UVR and Cd exposed or non-exposed fish indicating that UVR and Cd exposure combined may have little influence on chemically-mediated predator–prey interactions. - Highlights: • UV radiation caused a physiological stress response (cortisol release) in fish. • Cd reduced cortisol levels substantially for fish exposed to UV. • Fish exposed to UV, with or without Cd, showed decreases in club cell investment. • There was no difference in alarm cues potency from UV and Cd exposed fish. • Our work highlights the difficulty of untangling effects of multiple stressors

  11. The interactive effects of multiple stressors on physiological stress responses and club cell investment in fathead minnows

    Energy Technology Data Exchange (ETDEWEB)

    Manek, Aditya K., E-mail: aditya.manek@usask.ca [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada); Ferrari, Maud C.O. [Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4 (Canada); Niyogi, Som; Chivers, Douglas P. [Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 SK (Canada)

    2014-04-01

    Anthropogenic activities have dramatically increased over the past decades, with the consequence that many organisms are simultaneously exposed to multiple stressors. Understanding how organisms respond to these stressors is a key focus for scientists from many disciplines. Here we investigated the interactive effects of two stressors, UV radiation (UVR) and cadmium (Cd) exposure on a common freshwater fish, fathead minnow (Pimephales promelas). UVR is known to influence the density of epidermal club cells (ECCs), which are not only a key component of the innate immune system of fishes, but are also the source of chemical alarm cues that serve to warn other fishes of nearby predators. In contrast, Cd impairs the physiological stress response and ability of fish to respond to alarm cues. We used an integrative approach to examine physiological stress response as well as investment in ECCs. Fish exposed to UVR had higher levels of cortisol than non-exposed controls, but Cd reduced cortisol levels substantially for fish exposed to UVR. Fish exposed to UVR, either in the presence or absence of Cd, showed consistent decreases in ECC investment compared to non-exposed controls. Despite differences in ECC number, there was no difference in the potency of alarm cues prepared from the skin of UVR and Cd exposed or non-exposed fish indicating that UVR and Cd exposure combined may have little influence on chemically-mediated predator–prey interactions. - Highlights: • UV radiation caused a physiological stress response (cortisol release) in fish. • Cd reduced cortisol levels substantially for fish exposed to UV. • Fish exposed to UV, with or without Cd, showed decreases in club cell investment. • There was no difference in alarm cues potency from UV and Cd exposed fish. • Our work highlights the difficulty of untangling effects of multiple stressors.

  12. Cerebrospinal fluid B cells correlate with early brain inflammation in multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Bettina Kuenz

    Full Text Available BACKGROUND: There is accumulating evidence from immunological, pathological and therapeutic studies that B cells are key components in the pathophysiology of multiple sclerosis (MS. METHODOLOGY/PRINCIPAL FINDINGS: In this prospective study we have for the first time investigated the differences in the inflammatory response between relapsing and progressive MS by comparing cerebrospinal fluid (CSF cell profiles from patients at the onset of the disease (clinically isolated syndrome, CIS, relapsing-remitting (RR and chronic progressive (CP MS by flow cytometry. As controls we have used patients with other neurological diseases. We have found a statistically significant accumulation of CSF mature B cells (CD19+CD138- and plasma blasts (CD19+CD138+ in CIS and RRMS. Both B cell populations were, however, not significantly increased in CPMS. Further, this accumulation of B cells correlated with acute brain inflammation measured by magnetic resonance imaging and with inflammatory CSF parameters such as the number of CSF leukocytes, intrathecal immunoglobulin M and G synthesis and intrathecal production of matrix metalloproteinase (MMP-9 and the B cell chemokine CxCL-13. CONCLUSIONS: Our data support an important role of CSF B cells in acute brain inflammation in CIS and RRMS.

  13. On the estimation of multiple random integrals and U-statistics

    CERN Document Server

    Major, Péter

    2013-01-01

    This work starts with the study of those limit theorems in probability theory for which classical methods do not work. In many cases some form of linearization can help to solve the problem, because the linearized version is simpler. But in order to apply such a method we have to show that the linearization causes a negligible error. The estimation of this error leads to some important large deviation type problems, and the main subject of this work is their investigation. We provide sharp estimates of the tail distribution of multiple integrals with respect to a normalized empirical measure and so-called degenerate U-statistics and also of the supremum of appropriate classes of such quantities. The proofs apply a number of useful techniques of modern probability that enable us to investigate the non-linear functionals of independent random variables. This lecture note yields insights into these methods, and may also be useful for those who only want some new tools to help them prove limit theorems when stand...

  14. A Web-Based Integration Procedure for the Development of Reconfigurable Robotic Work-Cells

    OpenAIRE

    Paulo Ferreira; Victoria Reyes; João Mestre

    2013-01-01

    Concepts related to the development of reconfigurable manufacturing systems (RMS) and methodologies to provide the best practices in the processing industry and factory automation, such as system integration and web-based technology, are major issues in designing next-generation manufacturing systems (NGMS). Adaptable and integrable devices are crucial for the success of NGMS. In robotic cells the integration of manufacturing components is essential to accelerate system adaptability. Sensors,...

  15. Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.

    Science.gov (United States)

    Wan, Weijie; Yeow, John T W

    2012-04-01

    This paper describes an integrated microchip system as an efficient and cost-effective solution involving Nanotechnology and Lab-on-a-Chip technology for the rapid detection of bacteria. The system is based on using surface-modified gold nanoparticles for efficient cell lysis followed by microchip PCR without having to remove the nanoparticles from the PCR solution. Poly(quaternary ammonium) modified gold nanoparticles are used to provide a novel and efficient cell lysis method without the need to go through time-consuming, expensive and complicated microfabrication processes as most of current cell lysis methods for Lab-on-a-Chip applications do. It also facilitates the integration of cell lysis and PCR by sharing the same reaction chamber as PCR uses. It is integrated with a prototype microchip PCR system consisting of a physical microchip PCR device and an automated temperature control mechanism. The research work explores solutions for the problem of PCR inhibition caused by gold nanoparticles as well as for the problem of non-specific PCR amplification in the integrated microchip system. It also explores the possibility of greatly reducing PCR cycling time to achieve the same result compared to the protocol for a regular PCR machine. The simplicity of the setup makes it easy to be integrated with other Lab-on-a-Chip functional modules to create customized solutions for target applications.

  16. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome

    NARCIS (Netherlands)

    Fox, J.E.; Bridgham, J.T.; Bovee, T.F.H.; Thornton, J.W.

    2007-01-01

    To study a gene interaction network, we developed a gene-targeting strategy that allows efficient and stable genomic integration of multiple genetic constructs at distinct target loci in the yeast genome. This gene-targeting strategy uses a modular plasmid with a recyclable selectable marker and a

  17. Using CORBA to integrate manufacturing cells to a virtual enterprise

    Science.gov (United States)

    Pancerella, Carmen M.; Whiteside, Robert A.

    1997-01-01

    It is critical in today's enterprises that manufacturing facilities are not isolated from design, planning, and other business activities and that information flows easily and bidirectionally between these activities. It is also important and cost-effective that COTS software, databases, and corporate legacy codes are well integrated in the information architecture. Further, much of the information generated during manufacturing must be dynamically accessible to engineering and business operations both in a restricted corporate intranet and on the internet. The software integration strategy in the Sandia Agile Manufacturing Testbed supports these enterprise requirements. We are developing a CORBA-based distributed object software system for manufacturing. Each physical machining device is a CORBA object and exports a common IDL interface to allow for rapid and dynamic insertion, deletion, and upgrading within the manufacturing cell. Cell management CORBA components access manufacturing devices without knowledge of any device-specific implementation. To support information flow from design to planning data is accessible to machinists on the shop floor. CORBA allows manufacturing components to be easily accessible to the enterprise. Dynamic clients can be created using web browsers and portable Java GUI's. A CORBA-OLE adapter allows integration to PC desktop applications. Other commercial software can access CORBA network objects in the information architecture through vendor API's.

  18. Murine leukemia virus-derived retroviral vector has differential integration patterns in human cell lines used to produce recombinant factor VIII

    Directory of Open Access Journals (Sweden)

    Marcela Cristina Correa de Freitas

    2014-06-01

    Full Text Available OBJECTIVE: Nowadays recombinant factor VIII is produced in murine cells including in Chinese hamster ovary (CHO and baby hamster kidney cells (BHK. Previous studies, using the murine leukemia virus-derived retroviral vector pMFG-FVIII-P140K, modified two recombinant human cell lines, HepG2 and Hek293 to produce recombinant factor VIII. In order to characterize these cells, the present study aimed to analyze the integration pattern of retroviral vector pMFG-FVIII-P140K.METHODS: This study used ligation-mediated polymerase chain reaction to locate the site of viral vector integration by sequencing polymerase chain reaction products. The sequences were compared to genomic databases to characterize respective clones.RESULTS: The retroviral vector presented different and non-random profiles of integration between cells lines. A preference of integration for chromosomes 19, 17 and 11 was observed for HepG2FVIIIdB/P140K and chromosome 9 for Hek293FVIIIdB/P140K. In genomic regions such as CpG islands and transcription factor binding sites, there was no difference in the integration profiles for both cell lines. Integration in intronic regions of encoding protein genes (RefSeq genes was also observed in both cell lines. Twenty percent of integrations occurred at fragile sites in the genome of the HepG2 cell line and 17% in Hek293.CONCLUSION: The results suggest that the cell type can affect the profile of chromosomal integration of the retroviral vector used; these differences may interfere in the level of expression of recombinant proteins.

  19. B cell follicle-like structures in multiple sclerosis-with focus on the role of B cell activating factor

    DEFF Research Database (Denmark)

    Morten, Haugen; Frederiksen, Jette L; Vinter, Matilda Degn

    2014-01-01

    B lymphocytes play an important role in the pathogenesis of multiple sclerosis (MS). Follicle-like structures (FLS) have recently been found in the subarachnoid space in the leptomeninges in some patients with secondary progressive MS (SPMS). They contain proliferating B lymphocytes, plasma cells......, helper T lymphocytes and a network of follicular dendritic cells. FLS have been shown to correlate with increased cortical demyelination, neuronal loss, meningeal infiltration and central nervous system inflammation, as well as lower age at disease onset and progression to severe disability and death....... In this review, we will discuss the role of FLS in MS pathogenesis and disease course and the possible influence by B cell activating factor (BAFF) and C-X-C motif chemokine 13 (CXCL13)....

  20. Microfluidic device for continuous single cells analysis via Raman spectroscopy enhanced by integrated plasmonic nanodimers

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Candeloro, Patrizio; De Grazia, Antonio

    2016-01-01

    In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels-where the cells can flow one-by-one -, allowing single...... cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm...

  1. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Science.gov (United States)

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  2. Orchestrating Multiple Intelligences

    Science.gov (United States)

    Moran, Seana; Kornhaber, Mindy; Gardner, Howard

    2006-01-01

    Education policymakers often go astray when they attempt to integrate multiple intelligences theory into schools, according to the originator of the theory, Howard Gardner, and his colleagues. The greatest potential of a multiple intelligences approach to education grows from the concept of a profile of intelligences. Each learner's intelligence…

  3. A review on stem cell therapy for multiple sclerosis: special focus on human embryonic stem cells.

    Science.gov (United States)

    Shroff, Geeta

    2018-01-01

    Multiple sclerosis (MS), a complex disorder of the central nervous system (CNS), is characterized with axonal loss underlying long-term progressive disability. Currently available therapies for its management are able to slow down the progression but fail to treat it completely. Moreover, these therapies are associated with major CNS and cardiovascular adverse events, and prolonged use of these treatments may cause life-threatening diseases. Recent research has shown that cellular therapies hold a potential for CNS repair and may be able to provide protection from inflammatory damage caused after injury. Human embryonic stem cell (hESC) transplantation is one of the promising cell therapies; hESCs play an important role in remyelination and help in preventing demylenation of the axons. In this study, an overview of the current knowledge about the unique properties of hESC and their comparison with other cell therapies has been presented for the treatment of patients with MS.

  4. Andrographolide inhibits multiple myeloma cells by inhibiting the TLR4/NF-κB signaling pathway.

    Science.gov (United States)

    Gao, Hui; Wang, Jianrong

    2016-02-01

    Andrographolide is an active component from the extract of Andrographis paniculata [(Burm.f) Nees], a medicinal plant from the Acanthaceae family. Pharmacological studies have revealed that andrographolide possesses anti-bacterial, anti-inflammatory, anti-viral, immune regulatory and hepatoprotective properties, and is efficacious in the treatment of cardiovascular diseases, while exhibiting low toxicity and low cost. The present study aimed to determine the inhibitory effects of andrographolide on the growth of multiple myeloma (MM) cells and its possible impact on the Toll-like receptor (TLR)4/nuclear factor (NF)-κB signaling pathway. Cell proliferation was detected using an MTT assay, cellular apoptosis was measured using flow cytometry, and caspase-9/3 activation were assessed using colorimetric assay kits. Furthermore, TLR4 and NF-κB protein expression was determined by western blot analysis. The results revealed that andrographolide reduced the proliferation, while increasing cellular apoptosis and caspase-9/3 activation of MM cells, in addition to downregulating the expression of TLR4 and NF-κB protein. Of note, TLR4- or NF-κB-targeting small-interfering (si)RNA enhanced the andrographolide-induced inhibition of cell proliferation and induction of apoptosis of MM cells. The results of the present study therefore suggested that andrographolide inhibited multiple myeloma cells via the TLR4/NF-κB signaling pathway.

  5. Pericellular oxygen monitoring with integrated sensor chips for reproducible cell culture experiments.

    Science.gov (United States)

    Kieninger, J; Aravindalochanan, K; Sandvik, J A; Pettersen, E O; Urban, G A

    2014-04-01

    Here we present an application, in two tumour cell lines, based on the Sensing Cell Culture Flask system as a cell culture monitoring tool for pericellular oxygen sensing. T-47D (human breast cancer) and T98G (human brain cancer) cells were cultured either in atmospheric air or in a glove-box set at 4% oxygen, in both cases with 5% CO2 in the gas phase. Pericellular oxygen tension was measured with the help of an integrated sensor chip comprising oxygen sensor arrays. Obtained results illustrate variation of pericellular oxygen tension in attached cells covered by stagnant medium. Independent of incubation conditions, low pericellular oxygen concentration levels, usually associated with hypoxia, were found in dense cell cultures. Respiration alone brought pericellular oxygen concentration down to levels which could activate hypoxia-sensing regulatory processes in cultures believed to be aerobic. Cells in culture believed to experience conditions of mild hypoxia may, in reality, experience severe hypoxia. This would lead to incorrect assumptions and suggests that pericellular oxygen concentration readings are of great importance to obtain reproducible results when dealing with hypoxic and normoxic (aerobic) incubation conditions. The Sensing Cell Culture Flask system allows continuous monitoring of pericellular oxygen concentration with outstanding long-term stability and no need for recalibration during cell culture experiments. The sensor is integrated into the flask bottom, thus in direct contact with attached cells. No additional equipment needs to be inserted into the flask during culturing. Transparency of the electrochemical sensor chip allows optical inspection of cells attached on top of the sensor. © 2014 John Wiley & Sons Ltd.

  6. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    Directory of Open Access Journals (Sweden)

    Kaur Punit

    2008-11-01

    Full Text Available Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Results Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. Conclusion The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  7. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells.

    Science.gov (United States)

    Urueña, Claudia; Cifuentes, Claudia; Castañeda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-11-18

    There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytoskeleton organization analysis, cell cycle, mitochondria membrane depolarization, clonogenicity test, DNA fragmentation test and differential protein expression by HPLC-Chip/MS analysis. F4 fraction characterization was made by HPLC-MS. Petiveria alliacea fraction characterized by de-replication was found to alter actin cytoskeleton organization, induce G2 cell cycle arrest and cause apoptotic cell death in a mitochondria independent way. In addition, we found down regulation of cytoskeleton, chaperone, signal transduction proteins, and proteins involved in metabolic pathways. Finally up regulation of proteins involved in translation and intracellular degradation was also observed. The results of this study indicate that Petiveria alliacea exerts multiple biological activities in vitro consistent with cytotoxicity. Further studies in animal models are needed but Petiveria alliacea appears to be a good candidate to be used as an antitumor agent.

  8. Integrated pillar scatterers for speeding up classification of cell holograms.

    Science.gov (United States)

    Lugnan, Alessio; Dambre, Joni; Bienstman, Peter

    2017-11-27

    The computational power required to classify cell holograms is a major limit to the throughput of label-free cell sorting based on digital holographic microscopy. In this work, a simple integrated photonic stage comprising a collection of silica pillar scatterers is proposed as an effective nonlinear mixing interface between the light scattered by a cell and an image sensor. The light processing provided by the photonic stage allows for the use of a simple linear classifier implemented in the electric domain and applied on a limited number of pixels. A proof-of-concept of the presented machine learning technique, which is based on the extreme learning machine (ELM) paradigm, is provided by the classification results on samples generated by 2D FDTD simulations of cells in a microfluidic channel.

  9. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-01-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  10. Cell wall integrity signaling in plants: "To grow or not to grow that's the question".

    Science.gov (United States)

    Voxeur, Aline; Höfte, Herman

    2016-09-01

    Plants, like yeast, have the ability to monitor alterations in the cell wall architecture that occur during normal growth or in changing environments and to trigger compensatory changes in the cell wall. We discuss how recent advances in our understanding of the cell wall architecture provide new insights into the role of cell wall integrity sensing in growth control. Next we review the properties of membrane receptor-like kinases that have roles in pH control, mechano-sensing and reactive oxygen species accumulation in growing cells and which may be the plant equivalents of the yeast cell wall integrity (CWI) sensors. Finally, we discuss recent findings showing an increasing role for CWI signaling in plant immunity and the adaptation to changes in the ionic environment of plant cells. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Gallium Phosphide Integrated with Silicon Heterojunction Solar Cells

    Science.gov (United States)

    Zhang, Chaomin

    It has been a long-standing goal to epitaxially integrate III-V alloys with Si substrates which can enable low-cost microelectronic and optoelectronic systems. Among the III-V alloys, gallium phosphide (GaP) is a strong candidate, especially for solar cells applications. Gallium phosphide with small lattice mismatch ( 0.4%) to Si enables coherent/pseudomorphic epitaxial growth with little crystalline defect creation. The band offset between Si and GaP suggests that GaP can function as an electron-selective contact, and it has been theoretically shown that GaP/Si integrated solar cells have the potential to overcome the limitations of common a-Si based heterojunction (SHJ) solar cells. Despite the promising potential of GaP/Si heterojunction solar cells, there are two main obstacles to realize high performance photovoltaic devices from this structure. First, the growth of the polar material (GaP) on the non-polar material (Si) is a challenge in how to suppress the formation of structural defects, such as anti-phase domains (APD). Further, it is widely observed that the minority-carrier lifetime of the Si substrates is significantly decreased during epitaxially growth of GaP on Si. In this dissertation, two different GaP growth methods were compared and analyzed, including migration-enhanced epitaxy (MEE) and traditional molecular beam epitaxy (MBE). High quality GaP can be realized on precisely oriented (001) Si substrates by MBE growth, and the investigation of structural defect creation in the GaP/Si epitaxial structures was conducted using high resolution X-ray diffraction (HRXRD) and high resolution transmission electron microscopy (HRTEM). The mechanisms responsible for lifetime degradation were further investigated, and it was found that external fast diffusors are the origin for the degradation. Two practical approaches including the use of both a SiNx diffusion barrier layer and P-diffused layers, to suppress the Si minority-carrier lifetime degradation

  12. A case of Fanconi syndrome accompanied by crystal depositions in tubular cells in a patient with multiple myeloma

    Directory of Open Access Journals (Sweden)

    Do Hee Kim

    2014-06-01

    Full Text Available Fanconi syndrome (FS is a rare condition that is characterized by defects in the proximal tubular function. A 48-year-old woman was admitted for evaluation of proteinuria. The patient showed normal anion gap acidosis, normoglycemic glycosuria, hypophosphatemia, and hypouricemia. Thus, her condition was compatible with FS. The M peak was found behind the beta globulin region in urine protein electrophoresis. Upon bone marrow examination, we found that 24% of cells were CD138+ plasma cells with kappa restriction. From a kidney biopsy, we found crystalline inclusions within proximal tubular epithelial cells. Thereafter, she was diagnosed with FS accompanied by multiple myeloma. The patient received chemotherapy and autologous stem cell transplantation, and obtained very good partial hematologic response. However, proximal tubular dysfunction was persistent until 1 year after autologous stem cell transplantation. In short, we report a case of FS accompanied by multiple myeloma, demonstrating crystalline inclusion in proximal tubular cells on kidney biopsy.

  13. Molecular characterization of neoplastic and normal "sister" lymphoblastoid B-cell lines from chronic lymphocytic leukemia

    DEFF Research Database (Denmark)

    Lanemo Myhrinder, Anna; Hellqvist, Eva; Bergh, Ann-Charlotte

    2013-01-01

    Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface...... a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA...

  14. Barrier potential design criteria in multiple-quantum-well-based solar-cell structures

    Science.gov (United States)

    Mohaidat, Jihad M.; Shum, Kai; Wang, W. B.; Alfano, R. R.

    1994-01-01

    The barrier potential design criteria in multiple-quantum-well (MQW)-based solar-cell structures is reported for the purpose of achieving maximum efficiency. The time-dependent short-circuit current density at the collector side of various MQW solar-cell structures under resonant condition was numerically calculated using the time-dependent Schroedinger equation. The energy efficiency of solar cells based on the InAs/Ga(y)In(1-y)As and GaAs/Al(x)Ga(1-x)As MQW structues were compared when carriers are excited at a particular solar-energy band. Using InAs/Ga(y)In(1-y)As MQW structures it is found that a maximum energy efficiency can be achieved if the structure is designed with barrier potential of about 450 meV. The efficiency is found to decline linearly as the barrier potential increases for GaAs/Al(x)Ga(1-x)As MQW-structure-based solar cells.

  15. Individual motile CD4+ T cells can participate in efficient multi-killing through conjugation to multiple tumor cells

    Science.gov (United States)

    Liadi, Ivan; Singh, Harjeet; Romain, Gabrielle; Rey-Villamizar, Nicolas; Merouane, Amine; Adolacion, Jay R T.; Kebriaei, Partow; Huls, Helen; Qiu, Peng; Roysam, Badrinath; Cooper, Laurence J.N.; Varadarajan, Navin

    2015-01-01

    T cells genetically modified to express a CD19-specific chimeric antigen receptor (CAR) for the investigational treatment of B-cell malignancies comprise a heterogeneous population, and their ability to persist and participate in serial killing of tumor cells is a predictor of therapeutic success. We implemented Timelapse Imaging Microscopy In Nanowell Grids (TIMING) to provide direct evidence that CD4+CAR+ T cells (CAR4 cells) can engage in multi-killing via simultaneous conjugation to multiple tumor cells. Comparisons of the CAR4 cells and CD8+CAR+ T cells (CAR8 cells) demonstrate that while CAR4 cells can participate in killing and multi-killing, they do so at slower rates, likely due to the lower Granzyme B content. Significantly, in both sets of T cells, a minor sub-population of individual T cells identified by their high motility, demonstrated efficient killing of single tumor cells. By comparing both the multi-killer and single killer CAR+ T cells it appears that the propensity and kinetics of T-cell apoptosis was modulated by the number of functional conjugations. T cells underwent rapid apoptosis, and at higher frequencies, when conjugated to single tumor cells in isolation and this effect was more pronounced on CAR8 cells. Our results suggest that the ability of CAR+ T cells to participate in multi-killing should be evaluated in the context of their ability to resist activation induced cell death (AICD). We anticipate that TIMING may be utilized to rapidly determine the potency of T-cell populations and may facilitate the design and manufacture of next-generation CAR+ T cells with improved efficacy. PMID:25711538

  16. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  17. Integrated Genomic Analysis of Diverse Induced Pluripotent Stem Cells from the Progenitor Cell Biology Consortium.

    Science.gov (United States)

    Salomonis, Nathan; Dexheimer, Phillip J; Omberg, Larsson; Schroll, Robin; Bush, Stacy; Huo, Jeffrey; Schriml, Lynn; Ho Sui, Shannan; Keddache, Mehdi; Mayhew, Christopher; Shanmukhappa, Shiva Kumar; Wells, James; Daily, Kenneth; Hubler, Shane; Wang, Yuliang; Zambidis, Elias; Margolin, Adam; Hide, Winston; Hatzopoulos, Antonis K; Malik, Punam; Cancelas, Jose A; Aronow, Bruce J; Lutzko, Carolyn

    2016-07-12

    The rigorous characterization of distinct induced pluripotent stem cells (iPSC) derived from multiple reprogramming technologies, somatic sources, and donors is required to understand potential sources of variability and downstream potential. To achieve this goal, the Progenitor Cell Biology Consortium performed comprehensive experimental and genomic analyses of 58 iPSC from ten laboratories generated using a variety of reprogramming genes, vectors, and cells. Associated global molecular characterization studies identified functionally informative correlations in gene expression, DNA methylation, and/or copy-number variation among key developmental and oncogenic regulators as a result of donor, sex, line stability, reprogramming technology, and cell of origin. Furthermore, X-chromosome inactivation in PSC produced highly correlated differences in teratoma-lineage staining and regulator expression upon differentiation. All experimental results, and raw, processed, and metadata from these analyses, including powerful tools, are interactively accessible from a new online portal at https://www.synapse.org to serve as a reusable resource for the stem cell community. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Integrated proteomics identified novel activation of dynein IC2-GR-COX-1 signaling in neurofibromatosis type I (NF1) disease model cells.

    Science.gov (United States)

    Hirayama, Mio; Kobayashi, Daiki; Mizuguchi, Souhei; Morikawa, Takashi; Nagayama, Megumi; Midorikawa, Uichi; Wilson, Masayo M; Nambu, Akiko N; Yoshizawa, Akiyasu C; Kawano, Shin; Araki, Norie

    2013-05-01

    Neurofibromatosis type 1 (NF1) tumor suppressor gene product, neurofibromin, functions in part as a Ras-GAP, and though its loss is implicated in the neuronal abnormality of NF1 patients, its precise cellular function remains unclear. To study the molecular mechanism of NF1 pathogenesis, we prepared NF1 gene knockdown (KD) PC12 cells, as a NF1 disease model, and analyzed their molecular (gene and protein) expression profiles with a unique integrated proteomics approach, comprising iTRAQ, 2D-DIGE, and DNA microarrays, using an integrated protein and gene expression analysis chart (iPEACH). In NF1-KD PC12 cells showing abnormal neuronal differentiation after NGF treatment, of 3198 molecules quantitatively identified and listed in iPEACH, 97 molecules continuously up- or down-regulated over time were extracted. Pathway and network analysis further revealed overrepresentation of calcium signaling and transcriptional regulation by glucocorticoid receptor (GR) in the up-regulated protein set, whereas nerve system development was overrepresented in the down-regulated protein set. The novel up-regulated network we discovered, "dynein IC2-GR-COX-1 signaling," was then examined in NF1-KD cells. Validation studies confirmed that NF1 knockdown induces altered splicing and phosphorylation patterns of dynein IC2 isomers, up-regulation and accumulation of nuclear GR, and increased COX-1 expression in NGF-treated cells. Moreover, the neurite retraction phenotype observed in NF1-KD cells was significantly recovered by knockdown of the dynein IC2-C isoform and COX-1. In addition, dynein IC2 siRNA significantly inhibited nuclear translocation and accumulation of GR and up-regulation of COX-1 expression. These results suggest that dynein IC2 up-regulates GR nuclear translocation and accumulation, and subsequently causes increased COX-1 expression, in this NF1 disease model. Our integrated proteomics strategy, which combines multiple approaches, demonstrates that NF1-related neural

  19. Analysis of gene expression profiles of soft tissue sarcoma using a combination of knowledge-based filtering with integration of multiple statistics.

    Directory of Open Access Journals (Sweden)

    Anna Takahashi

    Full Text Available The diagnosis and treatment of soft tissue sarcomas (STS have been difficult. Of the diverse histological subtypes, undifferentiated pleomorphic sarcoma (UPS is particularly difficult to diagnose accurately, and its classification per se is still controversial. Recent advances in genomic technologies provide an excellent way to address such problems. However, it is often difficult, if not impossible, to identify definitive disease-associated genes using genome-wide analysis alone, primarily because of multiple testing problems. In the present study, we analyzed microarray data from 88 STS patients using a combination method that used knowledge-based filtering and a simulation based on the integration of multiple statistics to reduce multiple testing problems. We identified 25 genes, including hypoxia-related genes (e.g., MIF, SCD1, P4HA1, ENO1, and STAT1 and cell cycle- and DNA repair-related genes (e.g., TACC3, PRDX1, PRKDC, and H2AFY. These genes showed significant differential expression among histological subtypes, including UPS, and showed associations with overall survival. STAT1 showed a strong association with overall survival in UPS patients (logrank p = 1.84 × 10(-6 and adjusted p value 2.99 × 10(-3 after the permutation test. According to the literature, the 25 genes selected are useful not only as markers of differential diagnosis but also as prognostic/predictive markers and/or therapeutic targets for STS. Our combination method can identify genes that are potential prognostic/predictive factors and/or therapeutic targets in STS and possibly in other cancers. These disease-associated genes deserve further preclinical and clinical validation.

  20. Exploring continuous and integrated strategies for the up- and downstream processing of human mesenchymal stem cells.

    Science.gov (United States)

    Cunha, Bárbara; Aguiar, Tiago; Silva, Marta M; Silva, Ricardo J S; Sousa, Marcos F Q; Pineda, Earl; Peixoto, Cristina; Carrondo, Manuel J T; Serra, Margarida; Alves, Paula M

    2015-11-10

    The integration of up- and downstream unit operations can result in the elimination of hold steps, thus decreasing the footprint, and ultimately can create robust closed system operations. This type of design is desirable for the bioprocess of human mesenchymal stem cells (hMSC), where high numbers of pure cells, at low volumes, need to be delivered for therapy applications. This study reports a proof of concept of the integration of a continuous perfusion culture in bioreactors with a tangential flow filtration (TFF) system for the concentration and washing of hMSC. Moreover, we have also explored a continuous alternative for concentrating hMSC. Results show that expanding cells in a continuous perfusion operation mode provided a higher expansion ratio, and led to a shift in cells' metabolism. TFF operated either in continuous or discontinuous allowed to concentrate cells, with high cell recovery (>80%) and viability (>95%); furthermore, continuous TFF permitted to operate longer with higher cell concentrations. Continuous diafiltration led to higher protein clearance (98%) with lower cell death, when comparing to discontinuous diafiltration. Overall, an integrated process allowed for a shorter process time, recovering 70% of viable hMSC (>95%), with no changes in terms of morphology, immunophenotype, proliferation capacity and multipotent differentiation potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mutual Information Based Dynamic Integration of Multiple Feature Streams for Robust Real-Time LVCSR

    Science.gov (United States)

    Sato, Shoei; Kobayashi, Akio; Onoe, Kazuo; Homma, Shinichi; Imai, Toru; Takagi, Tohru; Kobayashi, Tetsunori

    We present a novel method of integrating the likelihoods of multiple feature streams, representing different acoustic aspects, for robust speech recognition. The integration algorithm dynamically calculates a frame-wise stream weight so that a higher weight is given to a stream that is robust to a variety of noisy environments or speaking styles. Such a robust stream is expected to show discriminative ability. A conventional method proposed for the recognition of spoken digits calculates the weights front the entropy of the whole set of HMM states. This paper extends the dynamic weighting to a real-time large-vocabulary continuous speech recognition (LVCSR) system. The proposed weight is calculated in real-time from mutual information between an input stream and active HMM states in a searchs pace without an additional likelihood calculation. Furthermore, the mutual information takes the width of the search space into account by calculating the marginal entropy from the number of active states. In this paper, we integrate three features that are extracted through auditory filters by taking into account the human auditory system's ability to extract amplitude and frequency modulations. Due to this, features representing energy, amplitude drift, and resonant frequency drifts, are integrated. These features are expected to provide complementary clues for speech recognition. Speech recognition experiments on field reports and spontaneous commentary from Japanese broadcast news showed that the proposed method reduced error words by 9.2% in field reports and 4.7% in spontaneous commentaries relative to the best result obtained from a single stream.

  2. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  3. CD4 T cell autophagy is integral to memory maintenance.

    Science.gov (United States)

    Murera, Diane; Arbogast, Florent; Arnold, Johan; Bouis, Delphine; Muller, Sylviane; Gros, Frédéric

    2018-04-13

    Studies of mice deficient for autophagy in T cells since thymic development, concluded that autophagy is integral to mature T cell homeostasis. Basal survival and functional impairments in vivo, limited the use of these models to delineate the role of autophagy during the immune response. We generated Atg5 f/f distal Lck (dLck)-cre mice, with deletion of autophagy only at a mature stage. In this model, autophagy deficiency impacts CD8 + T cell survival but has no influence on CD4 + T cell number and short-term activation. Moreover, autophagy in T cells is dispensable during early humoral response but critical for long-term antibody production. Autophagy in CD4 + T cells is required to transfer humoral memory as shown by injection of antigen-experienced cells in naive mice. We also observed a selection of autophagy-competent cells in the CD4 + T cell memory compartment. We performed in vitro differentiation of memory CD4 + T cells, to better characterize autophagy-deficient memory cells. We identified mitochondrial and lipid load defects in differentiated memory CD4 + T cells, together with a compromised survival, without any collapse of energy production. We then propose that memory CD4 + T cells rely on autophagy for their survival to regulate toxic effects of mitochondrial activity and lipid overload.

  4. Cerebral blood flow and red cell delivery in normal subjects and in multiple sclerosis

    International Nuclear Information System (INIS)

    Swank, R.L.; Roth, J.G.; Woody, D.C. Jr.

    1983-01-01

    Regional cerebral blood flow (rCBF) was determined in 77 normal females and 53 normal males of different ages and in 26 men and 45 women with multiple sclerosis by the inhalation of radioactive Xe133 method. In the normal subjects the CBF was relatively high in the teens and fell, at first rapidly and then slowly in both sexes with age. During adult life the flow in females was significantly higher than in males. The delivery of packed red cells (RCD) was determined by multiplying the CBF by the percentage concentration of red cells (HCT). The RCD for both sexes was nearly the same. In the patients with multiple sclerosis there occurred a progressive generalized decrease in CBF and in RCD with age which was significantly greater than observed in normal subjects. The rate of decrease in CBF and RCD correlated directly with the rate of progress of the disease

  5. Identification of a B cell-dependent subpopulation of multiple sclerosis by measurements of brain-reactive B cells in the blood.

    Science.gov (United States)

    Kuerten, Stefanie; Pommerschein, Giovanna; Barth, Stefanie K; Hohmann, Christopher; Milles, Bianca; Sammer, Fabian W; Duffy, Cathrina E; Wunsch, Marie; Rovituso, Damiano M; Schroeter, Michael; Addicks, Klaus; Kaiser, Claudia C; Lehmann, Paul V

    2014-01-01

    B cells are increasingly coming into play in the pathogenesis of multiple sclerosis (MS). Here, we screened peripheral blood mononuclear cells (PBMC) from patients with clinically isolated syndrome (CIS), MS, other non-inflammatory neurological, inflammatory neurological or autoimmune diseases, and healthy donors for their B cell reactivity to CNS antigen using the enzyme-linked immunospot technique (ELISPOT) after 96 h of polyclonal stimulation. Our data show that nine of 15 patients with CIS (60.0%) and 53 of 67 patients with definite MS (79.1%) displayed CNS-reactive B cells, compared to none of the control donors. The presence of CNS-reactive B cells in the blood of the majority of patients with MS or at risk to develop MS along with their absence in control subjects suggests that they might be indicative of a B cell-dependent subpopulation of the disease. Copyright © 2014. Published by Elsevier Inc.

  6. Fuel cell-powered microfluidic platform for lab-on-a-chip applications: Integration into an autonomous amperometric sensing device.

    Science.gov (United States)

    Esquivel, J P; Colomer-Farrarons, J; Castellarnau, M; Salleras, M; del Campo, F J; Samitier, J; Miribel-Català, P; Sabaté, N

    2012-11-07

    The present paper reports for the first time the integration of a microfluidic system, electronics modules, amperometric sensor and display, all powered by a single micro direct methanol fuel cell. In addition to activating the electronic circuitry, the integrated power source also acts as a tuneable micropump. The electronics fulfil several functions. First, they regulate the micro fuel cell output power, which off-gas controls the flow rate of different solutions toward an electrochemical sensor through microfluidic channels. Secondly, as the fuel cell powers a three-electrode electrochemical cell, the electronics compare the working electrode output signal with a set reference value. Thirdly, if the concentration measured by the sensor exceeds this threshold value, the electronics switch on an integrated organic display. This integrated approach pushes forward the development of truly autonomous point-of-care devices relying on electrochemical detection.

  7. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways.

    Science.gov (United States)

    Kunnumakkara, Ajaikumar B; Bordoloi, Devivasha; Harsha, Choudhary; Banik, Kishore; Gupta, Subash C; Aggarwal, Bharat B

    2017-08-01

    Curcumin, a component of a spice native to India, was first isolated in 1815 by Vogel and Pelletier from the rhizomes of Curcuma longa (turmeric) and, subsequently, the chemical structure of curcumin as diferuloylmethane was reported by Milobedzka et al. [(1910) 43., 2163-2170]. Since then, this polyphenol has been shown to exhibit antioxidant, anti-inflammatory, anticancer, antiviral, antibacterial, and antifungal activities. The current review primarily focuses on the anticancer potential of curcumin through the modulation of multiple cell signaling pathways. Curcumin modulates diverse transcription factors, inflammatory cytokines, enzymes, kinases, growth factors, receptors, and various other proteins with an affinity ranging from the pM to the mM range. Furthermore, curcumin effectively regulates tumor cell growth via modulation of numerous cell signaling pathways and potentiates the effect of chemotherapeutic agents and radiation against cancer. Curcumin can interact with most of the targets that are modulated by FDA-approved drugs for cancer therapy. The focus of this review is to discuss the molecular basis for the anticancer activities of curcumin based on preclinical and clinical findings. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  8. Integration of multiple theories for the simulation of laser interference lithography processes.

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-24

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  9. Integration of multiple theories for the simulation of laser interference lithography processes

    Science.gov (United States)

    Lin, Te-Hsun; Yang, Yin-Kuang; Fu, Chien-Chung

    2017-11-01

    The periodic structure of laser interference lithography (LIL) fabrication is superior to other lithography technologies. In contrast to traditional lithography, LIL has the advantages of being a simple optical system with no mask requirements, low cost, high depth of focus, and large patterning area in a single exposure. Generally, a simulation pattern for the periodic structure is obtained through optical interference prior to its fabrication through LIL. However, the LIL process is complex and combines the fields of optical and polymer materials; thus, a single simulation theory cannot reflect the real situation. Therefore, this research integrates multiple theories, including those of optical interference, standing waves, and photoresist characteristics, to create a mathematical model for the LIL process. The mathematical model can accurately estimate the exposure time and reduce the LIL process duration through trial and error.

  10. Geometric Integration Of The Valsov-Maxwell System With A Variational Particle-in-cell Scheme

    International Nuclear Information System (INIS)

    Squire, J.; Qin, H.; Tang, W.M.

    2012-01-01

    A fully variational, unstructured, electromagnetic particle-in-cell integrator is developed for integration of the Vlasov-Maxwell equations. Using the formalism of Discrete Exterior Calculus [1], the field solver, interpolation scheme and particle advance algorithm are derived through minimization of a single discrete field theory action. As a consequence of ensuring that the action is invariant under discrete electromagnetic gauge transformations, the integrator exactly conserves Gauss's law.

  11. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Kelsey; Amaya, Moushimi [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Mueller, Claudius [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Roberts, Brian [Leidos Health Life Sciences, 5202 Presidents Court, Suite 110, Frederick, MD (United States); Kehn-Hall, Kylene; Bailey, Charles [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States); Petricoin, Emanuel [Center for Applied Proteomics and Personalized Medicine, George Mason University, 10900 University Boulevard, Manassas, VA (United States); Narayanan, Aarthi, E-mail: anaraya1@gmu.edu [National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, 10650 Pyramid Place, Manassas, VA (United States)

    2014-11-15

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells.

  12. Inhibition of host extracellular signal-regulated kinase (ERK) activation decreases new world alphavirus multiplication in infected cells

    International Nuclear Information System (INIS)

    Voss, Kelsey; Amaya, Moushimi; Mueller, Claudius; Roberts, Brian; Kehn-Hall, Kylene; Bailey, Charles; Petricoin, Emanuel; Narayanan, Aarthi

    2014-01-01

    New World alphaviruses belonging to the family Togaviridae are classified as emerging infectious agents and Category B select agents. Our study is focused on the role of the host extracellular signal-regulated kinase (ERK) in the infectious process of New World alphaviruses. Infection of human cells by Venezuelan equine encephalitis virus (VEEV) results in the activation of the ERK-signaling cascade. Inhibition of ERK1/2 by the small molecule inhibitor Ag-126 results in inhibition of viral multiplication. Ag-126-mediated inhibition of VEEV was due to potential effects on early and late stages of the infectious process. While expression of viral proteins was down-regulated in Ag-126 treated cells, we did not observe any influence of Ag-126 on the nuclear distribution of capsid. Finally, Ag-126 exerted a broad-spectrum inhibitory effect on New World alphavirus multiplication, thus indicating that the host kinase, ERK, is a broad-spectrum candidate for development of novel therapeutics against New World alphaviruses. - Highlights: • VEEV infection activated multiple components of the ERK signaling cascade. • Inhibition of ERK activation using Ag-126 inhibited VEEV multiplication. • Activation of ERK by Ceramide C6 increased infectious titers of TC-83. • Ag-126 inhibited virulent strains of all New World alphaviruses. • Ag-126 treatment increased percent survival of infected cells

  13. Cellular Decision Making by Non-Integrative Processing of TLR Inputs

    Directory of Open Access Journals (Sweden)

    Ryan A. Kellogg

    2017-04-01

    Full Text Available Cells receive a multitude of signals from the environment, but how they process simultaneous signaling inputs is not well understood. Response to infection, for example, involves parallel activation of multiple Toll-like receptors (TLRs that converge on the nuclear factor κB (NF-κB pathway. Although we increasingly understand inflammatory responses for isolated signals, it is not clear how cells process multiple signals that co-occur in physiological settings. We therefore examined a bacterial infection scenario involving co-stimulation of TLR4 and TLR2. Independent stimulation of these receptors induced distinct NF-κB dynamic profiles, although surprisingly, under co-stimulation, single cells continued to show ligand-specific dynamic responses characteristic of TLR2 or TLR4 signaling rather than a mixed response, comprising a cellular decision that we term “non-integrative” processing. Iterating modeling and microfluidic experiments revealed that non-integrative processing occurred through interaction of switch-like NF-κB activation, receptor-specific processing timescales, cell-to-cell variability, and TLR cross-tolerance mediated by multilayer negative feedback.

  14. B-cell activating factor in the pathophysiology of multiple myeloma: a target for therapy?

    International Nuclear Information System (INIS)

    Hengeveld, P J; Kersten, M J

    2015-01-01

    Multiple myeloma (MM) is a currently incurable malignancy of plasma cells. Malignant myeloma cells (MMCs) are heavily dependent upon the bone marrow (BM) microenvironment for their survival. One component of this tumor microenvironment, B-Cell Activating Factor (BAFF), has been implicated as a key player in this interaction. This review discusses the role of BAFF in the pathophysiology of MM, and the potential of BAFF-inhibitory therapy for the treatment of MM. Multiple studies have shown that BAFF functions as a survival factor for MMCs. Furthermore, MMCs express several BAFF-binding receptors. Of these, only Transmembrane Activator and CAML Interactor (TACI) correlates with the MMC's capability to ligate BAFF. Additionally, the level of expression of TACI correlates with the level of the MMC's BM dependency. Ligation of BAFF receptors on MMCs causes activation of the Nuclear Factor of κ-B (NF-κB) pathway, a crucial pathway for the pathogenesis of many B-cell malignancies. Serum BAFF levels are significantly elevated in MM patients when compared to healthy controls, and correlate inversely with overall survival. BAFF signaling is thus an interesting target for the treatment of MM. Several BAFF-inhibitory drugs are currently under evaluation for the treatment of MM. These include BAFF-monoclonal antibodies (tabalumab) and antibody-drug conjugates (GSK2857916)

  15. Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?

    Science.gov (United States)

    Favreau, Mérédis; Vanderkerken, Karin

    2016-01-01

    Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress. PMID:26895468

  16. Multiple-stage integrating accelerometer

    International Nuclear Information System (INIS)

    Devaney, H.F.

    1986-01-01

    An accelerometer assembly is described for use in activating a switch or the like responding to multiple acceleration pulses in series, comprising: a housing forming a chamber having a first and second end; a mass slidably disposed in the chamber and movable during acceleration from the first end toward the second end; means for biasing the movable mass toward a reset position adjacent the first end; means for damping the movement of the mass in the chamber; cam and follower means carried by the movable mass and the housing for relative movement in response to the acceleration, the cam and follower means including means for temporarily blocking the mass movement toward the second end after a first acceleration pulse; the cam and follower means cooperating together to allow continued movement toward the second end and switch activation in response to at least a second separate acceleration pulse in series with the first

  17. [Being cared for and caring: living with multiple chronic diseases (Leila)-a qualitative study about APN contributions to integrated care].

    Science.gov (United States)

    Müller-Staub, Maria; Zigan, Nicole; Händler-Schuster, Daniela; Probst, Sebastian; Monego, Renate; Imhof, Lorenz

    2015-04-01

    Living with multiple chronic diseases is complex and leads to enhanced care needs. To foster integrated care a project called "Living with chronic disease" (Leila) was initiated. The aim was to develop an Advanced Practice Nursing (APN) service in collaboration with medical centers for persons who are living with multiple chronic diseases. The following research questions were addressed: 1. What are patients' experiences, referring physicians and APNs with the Leila-Service? 2. How are referral processes performed? 3. How do the involved groups experience collaboration and APN role development? A qualitative approach according grounded theory of Corbin and Strauss was used to explore the experiences with the Leila project and the interaction of the persons involved. 38 interviews were conducted with patients who are living with multiple chronic diseases, their APN's and the referring physicians. The findings revealed "Being cared for and caring" as main category. The data demonstrated how patients responded to their involvement into care and that they were taken as serious partners in the care process. The category "organizing everyday life" describes how patients learned to cope with the consequences of living with multiple chronic diseases. "Using all resources" as another category demonstrates how capabilities and strengths were adopted. The results of the cooperation- and allocation processes showed that the APN recognition and APN role performance have to be negotiated. Prospective APN-services for this patient population should be integrated along with physician networks and other service providers including community health nursing.

  18. Human immunodeficiency virus-like particles activate multiple types of immune cells

    International Nuclear Information System (INIS)

    Sailaja, Gangadhara; Skountzou, Ioanna; Quan, Fu-Shi; Compans, Richard W.; Kang, Sang-Moo

    2007-01-01

    The rapid spread of human immunodeficiency virus (HIV) worldwide makes it a high priority to develop an effective vaccine. Since live attenuated or inactivated HIV is not likely to be approved as a vaccine due to safety concerns, HIV virus like particles (VLPs) offer an attractive alternative because they are safe due to the lack of a viral genome. Although HIV VLPs have been shown to induce humoral and cellular immune responses, it is important to understand the mechanisms by which they induce such responses and to improve their immunogenicity. We generated HIV VLPs, and VLPs containing Flt3 ligand (FL), a dendritic cell growth factor, to target VLPs to dendritic cells, and investigated the roles of these VLPs in the initiation of adaptive immune responses in vitro and in vivo. We found that HIV-1 VLPs induced maturation of dendritic cells and monocyte/macrophage populations in vitro and in vivo, with enhanced expression of maturation markers and cytokines. Dendritic cells pulsed with VLPs induced activation of splenocytes resulting in increased production of cytokines. VLPs containing FL were found to increase dendritic cells and monocyte/macrophage populations in the spleen when administered to mice. Administration of VLPs induced acute activation of multiple types of cells including T and B cells as indicated by enhanced expression of the early activation marker CD69 and down-regulation of the homing receptor CD62L. VLPs containing FL were an effective form of antigen in activating immune cells via dendritic cells, and immunization with HIV VLPs containing FL resulted in enhanced T helper type 2-like immune responses

  19. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    Science.gov (United States)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  20. Integrated Assessment of Shallow-Aquifer Vulnerability to Multiple Contaminants and Drinking-Water Exposure Pathways in Holliston, Massachusetts

    Directory of Open Access Journals (Sweden)

    Birgit Claus Henn

    2017-12-01

    Full Text Available Half of U.S. drinking water comes from aquifers, and very shallow ones (<20 feet to water table are especially vulnerable to anthropogenic contamination. We present the case of Holliston, a Boston, Massachusetts suburb that draws its drinking water from very shallow aquifers, and where metals and solvents have been reported in groundwater. Community concerns focus on water discolored by naturally occurring manganese (Mn, despite reports stating regulatory aesthetic compliance. Epidemiologic studies suggest Mn is a potentially toxic element (PTE for children exposed by the drinking-water pathway at levels near the regulatory aesthetic level. We designed an integrated, community-based project: five sites were profiled for contaminant releases; service areas for wells were modeled; and the capture zone for one vulnerable well was estimated. Manganese, mercury, and trichloroethylene are among 20 contaminants of interest. Findings show that past and/or current exposures to multiple contaminants in drinking water are plausible, satisfying the criteria for complete exposure pathways. This case questions the adequacy of aquifer protection and monitoring regulations, and highlights the need for integrated assessment of multiple contaminants, associated exposures and health risks. It posits that community-researcher partnerships are essential for understanding and solving complex problems.

  1. FDRAnalysis: a tool for the integrated analysis of tandem mass spectrometry identification results from multiple search engines.

    Science.gov (United States)

    Wedge, David C; Krishna, Ritesh; Blackhurst, Paul; Siepen, Jennifer A; Jones, Andrew R; Hubbard, Simon J

    2011-04-01

    Confident identification of peptides via tandem mass spectrometry underpins modern high-throughput proteomics. This has motivated considerable recent interest in the postprocessing of search engine results to increase confidence and calculate robust statistical measures, for example through the use of decoy databases to calculate false discovery rates (FDR). FDR-based analyses allow for multiple testing and can assign a single confidence value for both sets and individual peptide spectrum matches (PSMs). We recently developed an algorithm for combining the results from multiple search engines, integrating FDRs for sets of PSMs made by different search engine combinations. Here we describe a web-server and a downloadable application that makes this routinely available to the proteomics community. The web server offers a range of outputs including informative graphics to assess the confidence of the PSMs and any potential biases. The underlying pipeline also provides a basic protein inference step, integrating PSMs into protein ambiguity groups where peptides can be matched to more than one protein. Importantly, we have also implemented full support for the mzIdentML data standard, recently released by the Proteomics Standards Initiative, providing users with the ability to convert native formats to mzIdentML files, which are available to download.

  2. Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit.

    Science.gov (United States)

    Yi, Faliu; Lee, Jieun; Moon, Inkyu

    2014-05-01

    The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

  3. Deconstructing stem cell population heterogeneity: Single-cell analysis and modeling approaches

    Science.gov (United States)

    Wu, Jincheng; Tzanakakis, Emmanuel S.

    2014-01-01

    Isogenic stem cell populations display cell-to-cell variations in a multitude of attributes including gene or protein expression, epigenetic state, morphology, proliferation and proclivity for differentiation. The origins of the observed heterogeneity and its roles in the maintenance of pluripotency and the lineage specification of stem cells remain unclear. Addressing pertinent questions will require the employment of single-cell analysis methods as traditional cell biochemical and biomolecular assays yield mostly population-average data. In addition to time-lapse microscopy and flow cytometry, recent advances in single-cell genomic, transcriptomic and proteomic profiling are reviewed. The application of multiple displacement amplification, next generation sequencing, mass cytometry and spectrometry to stem cell systems is expected to provide a wealth of information affording unprecedented levels of multiparametric characterization of cell ensembles under defined conditions promoting pluripotency or commitment. Establishing connections between single-cell analysis information and the observed phenotypes will also require suitable mathematical models. Stem cell self-renewal and differentiation are orchestrated by the coordinated regulation of subcellular, intercellular and niche-wide processes spanning multiple time scales. Here, we discuss different modeling approaches and challenges arising from their application to stem cell populations. Integrating single-cell analysis with computational methods will fill gaps in our knowledge about the functions of heterogeneity in stem cell physiology. This combination will also aid the rational design of efficient differentiation and reprogramming strategies as well as bioprocesses for the production of clinically valuable stem cell derivatives. PMID:24035899

  4. Signal Integration in Quorum Sensing Enables Cross-Species Induction of Virulence in Pectobacterium wasabiae

    OpenAIRE

    Rita S. Valente; Pol Nadal-Jimenez; André F. P. Carvalho; Filipe J. D. Vieira; Karina B. Xavier; Bonnie Bassler

    2017-01-01

    This deposit is composed by the main article plus the supplementary materials of the publication. Bacterial communities can sense their neighbors, regulating group behaviors in response to cell density and environmental changes. The diversity of signaling networks in a single species has been postulated to allow custom responses to different stimuli; however, little is known about how multiple signals are integrated and the implications of this integration in different ecological contexts....

  5. Development of Integrative STEM Curriculum: A Multiple Case Study of Multi-Disciplinary Teams in Two Pennsylvania High Schools

    Science.gov (United States)

    Rider-Bertrand, Joey H.

    At the start of the 21st century, STEM education was a new priority in many schools as the focus shifted from separate disciplines to integrative STEM education. Unfortunately, there was limited research to offer guidance to practitioners (Brown, 2012; Honey, Pearson & Schweingruber, 2014). This qualitative, multiple case study explored the experiences of two multi-disciplinary teams of secondary teachers from Pennsylvania who developed and implemented integrative STEM curriculum. Four teachers from a rural high school and four teachers from a suburban high school participated in the study. A document review of integrative STEM curriculum and semi-structured interviews were conducted to learn about the curriculum development process and teachers' perceptions regarding conditions that support or hinder success. Individual and cross-case analyses were performed to establish findings and themes. Although the individual case themes varied slightly, the cross-case themes and assertions that emerged provided highly sought after guidance to practitioners and added to the limited body of research on integrative STEM education. This study found that current curriculum models do not fit integrative STEM curriculum, the development process is fluid, and substantial administrative support and resources are necessary to develop, implement, and sustain integrative STEM education programs. The results offered implications for all educators, as well as two examples of how teachers navigated the terrain of integrative STEM curriculum.

  6. Optimal multiple-information integration inherent in a ring neural network

    International Nuclear Information System (INIS)

    Takiyama, Ken

    2017-01-01

    Although several behavioral experiments have suggested that our neural system integrates multiple sources of information based on the certainty of each type of information in the manner of maximum-likelihood estimation, it is unclear how the maximum-likelihood estimation is implemented in our neural system. Here, I investigate the relationship between maximum-likelihood estimation and a widely used ring-type neural network model that is used as a model of visual, motor, or prefrontal cortices. Without any approximation or ansatz, I analytically demonstrate that the equilibrium of an order parameter in the neural network model exactly corresponds to the maximum-likelihood estimation when the strength of the symmetrical recurrent synaptic connectivity within a neural population is appropriately stronger than that of asymmetrical connectivity, that of local and external inputs, and that of symmetrical or asymmetrical connectivity between different neural populations. In this case, strengths of local and external inputs or those of symmetrical connectivity between different neural populations exactly correspond to the input certainty in maximum-likelihood estimation. Thus, my analysis suggests appropriately strong symmetrical recurrent connectivity as a possible candidate for implementing the maximum-likelihood estimation within our neural system. (paper)

  7. Single-cell multiple gene expression analysis based on single-molecule-detection microarray assay for multi-DNA determination

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lu [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Xianwei [School of Life Sciences, Shandong University, Jinan 250100 (China); Zhang, Xiaoli [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China); Wang, Jinxing [School of Life Sciences, Shandong University, Jinan 250100 (China); Jin, Wenrui, E-mail: jwr@sdu.edu.cn [School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)

    2015-01-07

    Highlights: • A single-molecule-detection (SMD) microarray for 10 samples is fabricated. • The based-SMD microarray assay (SMA) can determine 8 DNAs for each sample. • The limit of detection of SMA is as low as 1.3 × 10{sup −16} mol L{sup −1}. • The SMA can be applied in single-cell multiple gene expression analysis. - Abstract: We report a novel ultra-sensitive and high-selective single-molecule-detection microarray assay (SMA) for multiple DNA determination. In the SMA, a capture DNA (DNAc) microarray consisting of 10 subarrays with 9 spots for each subarray is fabricated on a silanized glass coverslip as the substrate. On the subarrays, the spot-to-spot spacing is 500 μm and each spot has a diameter of ∼300 μm. The sequence of the DNAcs on the 9 spots of a subarray is different, to determine 8 types of target DNAs (DNAts). Thus, 8 types of DNAts are captured to their complementary DNAcs at 8 spots of a subarray, respectively, and then labeled with quantum dots (QDs) attached to 8 types of detection DNAs (DNAds) with different sequences. The ninth spot is used to detect the blank value. In order to determine the same 8 types of DNAts in 10 samples, the 10 DNAc-modified subarrays on the microarray are identical. Fluorescence single-molecule images of the QD-labeled DNAts on each spot of the subarray are acquired using a home-made single-molecule microarray reader. The amounts of the DNAts are quantified by counting the bright dots from the QDs. For a microarray, 8 types of DNAts in 10 samples can be quantified in parallel. The limit of detection of the SMA for DNA determination is as low as 1.3 × 10{sup −16} mol L{sup −1}. The SMA for multi-DNA determination can also be applied in single-cell multiple gene expression analysis through quantification of complementary DNAs (cDNAs) corresponding to multiple messenger RNAs (mRNAs) in single cells. To do so, total RNA in single cells is extracted and reversely transcribed into their cDNAs. Three

  8. Molecular purging of multiple myeloma cells by ex-vivo culture and retroviral transduction of mobilized-blood CD34+ cells

    Directory of Open Access Journals (Sweden)

    Corneo Gianmarco

    2007-07-01

    Full Text Available Abstract Background Tumor cell contamination of the apheresis in multiple myeloma is likely to affect disease-free and overall survival after autografting. Objective To purge myeloma aphereses from tumor contaminants with a novel culture-based purging method. Methods We cultured myeloma-positive CD34+ PB samples in conditions that retained multipotency of hematopoietic stem cells, but were unfavourable to survival of plasma cells. Moreover, we exploited the resistance of myeloma plasma cells to retroviral transduction by targeting the hematopoietic CD34+ cell population with a retroviral vector carrying a selectable marker (the truncated form of the human receptor for nerve growth factor, ΔNGFR. We performed therefore a further myeloma purging step by selecting the transduced cells at the end of the culture. Results Overall recovery of CD34+ cells after culture was 128.5%; ΔNGFR transduction rate was 28.8% for CD34+ cells and 0% for CD138-selected primary myeloma cells, respectively. Recovery of CD34+ cells after ΔNGFR selection was 22.3%. By patient-specific Ig-gene rearrangements, we assessed a decrease of 0.7–1.4 logs in tumor load after the CD34+ cell selection, and up to 2.3 logs after culture and ΔNGFR selection. Conclusion We conclude that ex-vivo culture and retroviral-mediated transduction of myeloma leukaphereses provide an efficient tumor cell purging.

  9. The Mutational Landscape of Circulating Tumor Cells in Multiple Myeloma

    Directory of Open Access Journals (Sweden)

    Yuji Mishima

    2017-04-01

    Full Text Available The development of sensitive and non-invasive “liquid biopsies” presents new opportunities for longitudinal monitoring of tumor dissemination and clonal evolution. The number of circulating tumor cells (CTCs is prognostic in multiple myeloma (MM, but there is little information on their genetic features. Here, we have analyzed the genomic landscape of CTCs from 29 MM patients, including eight cases with matched/paired bone marrow (BM tumor cells. Our results show that 100% of clonal mutations in patient BM were detected in CTCs and that 99% of clonal mutations in CTCs were present in BM MM. These include typical driver mutations in MM such as in KRAS, NRAS, or BRAF. These data suggest that BM and CTC samples have similar clonal structures, as discordances between the two were restricted to subclonal mutations. Accordingly, our results pave the way for potentially less invasive mutation screening of MM patients through characterization of CTCs.

  10. Low-Power, Rad-hard Reconfigurable, Bi-directional Flexfet™ Level Shifter ReBiLS for Multiple Generation Technology Integration for Space Exploration, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The many different generations of integrated circuit (IC) technologies required for new space exploration systems demand designs operate at multiple and often...

  11. Multiple myeloma

    International Nuclear Information System (INIS)

    Sohn, Jeong Ick; Ha, Choon Ho; Choi, Karp Shik

    1994-01-01

    Multiple myeloma is a malignant plasma cell tumor that is thought to originate proliferation of a single clone of abnormal plasma cell resulting production of a whole monoclonal paraprotein. The authors experienced a case of multiple myeloma with severe mandibular osteolytic lesions in 46-year-old female. As a result of careful analysis of clinical, radiological, histopathological features, and laboratory findings, we diagnosed it as multiple myeloma, and the following results were obtained. 1. Main clinical symptoms were intermittent dull pain on the mandibular body area, abnormal sensation of lip and pain due to the fracture on the right clavicle. 2. Laboratory findings revealed M-spike, reversed serum albumin-globulin ratio, markedly elevated ESR and hypercalcemia. 3. Radiographically, multiple osteolytic punched-out radiolucencies were evident on the skull, zygoma, jaw bones, ribs, clavicle and upper extremities. Enlarged liver and increased uptakes on the lesional sites in RN scan were also observed. 4. Histopathologically, markedly hypercellular marrow with sheets of plasmoblasts and megakaryocytes were also observed.

  12. SOS1 and PTPN11 mutations in five cases of Noonan syndrome with multiple giant cell lesions.

    Science.gov (United States)

    Beneteau, Claire; Cavé, Hélène; Moncla, Anne; Dorison, Nathalie; Munnich, Arnold; Verloes, Alain; Leheup, Bruno

    2009-10-01

    We report five cases of multiple giant cell lesions in patients with typical Noonan syndrome. Such association has frequently been referred to as Noonan-like/multiple giant cell (NL/MGCL) syndrome before the molecular definition of Noonan syndrome. Two patients show mutations in PTPN11 (p.Tyr62Asp and p.Asn308Asp) and three in SOS1 (p.Arg552Ser and p.Arg552Thr). The latter are the first SOS1 mutations reported outside PTPN11 in NL/MGCL syndrome. MGCL lesions were observed in jaws ('cherubism') and joints ('pigmented villonodular synovitis'). We show through those patients that both types of MGCL are not PTPN11-specific, but rather represent a low penetrant (or perhaps overlooked) complication of the dysregulated RAS/MAPK signaling pathway. We recommend discarding NL/MGCL syndrome from the nosology, as this presentation is neither gene-nor allele-specific of Noonan syndrome; these patients should be described as Noonan syndrome with MGCL (of the mandible, the long bone...). The term cherubism should be used only when multiple giant cell lesions occur without any other clinical and molecular evidence of Noonan syndrome, with or without mutations of the SH3BP2 gene.

  13. Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.

    Science.gov (United States)

    Meppelink, Amanda M; Wang, Xing-Hua; Bradica, Gino; Barron, Kathryn; Hiltz, Kathleen; Liu, Xiang-Hong; Goldman, Scott M; Vacanti, Joseph P; Keating, Armand; Hoganson, David M

    2016-06-01

    The use of bone marrow-derived mesenchymal stromal cells (MSCs) in cell-based therapies is currently being developed for a number of diseases. Thus far, the clinical results have been inconclusive and variable, in part because of the variety of cell isolation procedures and culture conditions used in each study. A new isolation technique that streamlines the method of concentration and demands less time and attention could provide clinical and economic advantages compared with current methodologies. In this study, we evaluated the concentrating capability of an integrated centrifuge-based technology compared with standard Ficoll isolation. MSCs were concentrated from bone marrow aspirate using the new device and the Ficoll method. The isolation capabilities of the device and the growth characteristics, secretome production, and differentiation capacity of the derived cells were determined. The new MSC isolation device concentrated the bone marrow in 90 seconds and resulted in a mononuclear cell yield 10-fold higher and with a twofold increase in cell retention compared with Ficoll. The cells isolated using the device were shown to exhibit similar morphology and functional activity as assessed by growth curves and secretome production compared to the Ficoll-isolated cells. The surface marker and trilineage differentiation profile of the device-isolated cells was consistent with the known profile of MSCs. The faster time to isolation and greater cell yield of the integrated centrifuge-based technology may make this an improved approach for MSC isolation from bone marrow aspirates. Copyright © 2016 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. Support structure concept for integration of ITER diagnostics in the port cell

    Energy Technology Data Exchange (ETDEWEB)

    Udintsev, V.S., E-mail: victor.udintsev@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Portalès, M.; Giacomin, T.; Darcourt, O.; Direz, M.-F.; Martins, J.P.; Penot, C.; Arumugam, A.P.; Drevon, J.-M.; Friconneau, J.P.; Levesy, B.; Maquet, P.; Patel, K.M.; Pitcher, C.S. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Popova, E. [Russian Federation Domestic Agency, Moscow (Russian Federation); Proust, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Ronden, D.M.S. [DIFFER, Nieuwegein (Netherlands); Walker, C.I.; Walsh, M.J.; Watts, C. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► An interspace support structure to support the diagnostic systems from the back of the upper and equatorial port plugs to the biological shield plug. ► Port cell support structures are foreseen to handle the equipment in the port cell. ► Both ISS and PCSS will be supported by means of RH rail system. ► The structures will be positioned with a certain tolerance. ► The proposed concepts are found to fulfil the needs for support of the diagnostics in ITER. -- Abstract: Development of the diagnostics for ITER tokamak, which is presently under construction by several international partners at Cadarache in France, is a major challenge because of severe environment, strict engineering requirements, and the need for high reliability in the measurements. The diagnostic systems in the upper, equatorial and lower port cells on ITER are designed to be integrated within the interspace and port cell support structures. These structures are interfacing with remote handling rail system for the cask operations, thus facilitating the removal and installation of the diagnostics in the port and hence minimizing time for working close to the tokamak. In this paper, the challenges associated with the integration of the diagnostics in the port interspace and port cell, as well as their solutions will be addressed and presented. The interspace and the port cell support structures, as well as their interfaces with the biological shield, will be discussed.

  15. Circularly Polarized Transparent Microstrip Patch Reflectarray Integrated with Solar Cell for Satellite Applications

    OpenAIRE

    Zainud-Deen, S. H.; El-Shalaby, N. A.; Gaber, S. M.; Malhat, H. A.

    2016-01-01

    Circularly polarized (CP) transparent microstrip reflectarray antenna is integrated with solar cell for small satellite applications at 10 GHz. The reflectarray unit cell consists of a perfect electric conductor (PEC) square patch printed on an optically transparent substrate with the PEC ground plane. A comparison between using transparent conducting polymers and using the PEC in unit-cell construction has been introduced. The waveguide simulator is used to calculate the required compensatio...

  16. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture

    KAUST Repository

    Inal, Sahika

    2017-05-03

    This work reports the design of a live-cell monitoring platform based on a macroporous scaffold of a conducting polymer, poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate). The conducting polymer scaffolds support 3D cell cultures due to their biocompatibility and tissue-like elasticity, which can be manipulated by inclusion of biopolymers such as collagen. Integration of a media perfusion tube inside the scaffold enables homogenous cell spreading and fluid transport throughout the scaffold, ensuring long term cell viability. This also allows for co-culture of multiple cell types inside the scaffold. The inclusion of cells within the porous architecture affects the impedance of the electrically conducting polymer network and, thus, is utilized as an in situ tool to monitor cell growth. Therefore, while being an integral part of the 3D tissue, the conducting polymer is an active component, enhancing the tissue function, and forming the basis for a bioelectronic device with integrated sensing capability.

  17. Killing multiple myeloma cells with the small molecule 3-bromopyruvate: implications for therapy.

    Science.gov (United States)

    Majkowska-Skrobek, Grażyna; Augustyniak, Daria; Lis, Paweł; Bartkowiak, Anna; Gonchar, Mykhailo; Ko, Young H; Pedersen, Peter L; Goffeau, Andre; Ułaszewski, Stanisław

    2014-07-01

    The small molecule 3-bromopyruvate (3-BP), which has emerged recently as the first member of a new class of potent anticancer agents, was tested for its capacity to kill multiple myeloma (MM) cancer cells. Human MM cells (RPMI 8226) begin to lose viability significantly within 8 h of incubation in the presence of 3-BP. The Km (0.3 mmol/l) for intracellular accumulation of 3-BP in MM cells is 24 times lower than that in control cells (7.2 mmol/l). Therefore, the uptake of 3-BP by MM cells is significantly higher than that by peripheral blood mononuclear cells. Further, the IC50 values for human MM cells and control peripheral blood mononuclear cells are 24 and 58 µmol/l, respectively. Therefore, specificity and selectivity of 3-BP toward MM cancer cells are evident on the basis of the above. In MM cells the transcription levels of the gene encoding the monocarboxylate transporter MCT1 is significantly amplified compared with control cells. The level of intracellular ATP in MM cells decreases by over 90% within 1 h after addition of 100 µmol/l 3-BP. The cytotoxicity of 3-BP, exemplified by a marked decrease in viability of MM cells, is potentiated by the inhibitor of glutathione synthesis buthionine sulfoximine. In addition, the lack of mutagenicity and its superior capacity relative to Glivec to kill MM cancer cells are presented in this study.

  18. Staphylococcus aureus host cell invasion and virulence in sepsis is facilitated by the multiple repeats within FnBPA.

    Directory of Open Access Journals (Sweden)

    Andrew M Edwards

    2010-06-01

    Full Text Available Entry of Staphylococcus aureus into the bloodstream can lead to metastatic abscess formation and infective endocarditis. Crucial to the development of both these conditions is the interaction of S. aureus with endothelial cells. In vivo and in vitro studies have shown that the staphylococcal invasin FnBPA triggers bacterial invasion of endothelial cells via a process that involves fibronectin (Fn bridging to alpha(5beta(1 integrins. The Fn-binding region of FnBPA usually contains 11 non-identical repeats (FnBRs with differing affinities for Fn, which facilitate the binding of multiple Fn molecules and may promote integrin clustering. We thus hypothesized that multiple repeats are necessary to trigger the invasion of endothelial cells by S. aureus. To test this we constructed variants of fnbA containing various combinations of FnBRs. In vitro assays revealed that endothelial cell invasion can be facilitated by a single high-affinity, but not low-affinity FnBR. Studies using a nisin-inducible system that controlled surface expression of FnBPA revealed that variants encoding fewer FnBRs required higher levels of surface expression to mediate invasion. High expression levels of FnBPA bearing a single low affinity FnBR bound Fn but did not invade, suggesting that FnBPA affinity for Fn is crucial for triggering internalization. In addition, multiple FnBRs increased the speed of internalization, as did higher expression levels of FnBPA, without altering the uptake mechanism. The relevance of these findings to pathogenesis was demonstrated using a murine sepsis model, which showed that multiple FnBRs were required for virulence. In conclusion, multiple FnBRs within FnBPA facilitate efficient Fn adhesion, trigger rapid bacterial uptake and are required for pathogenesis.

  19. Replication of Syngrapha falcifera Multiple-Nuclear Polyhedrosis Virus-D in Different Insect Cells

    Science.gov (United States)

    Khalid Nessr Alhag, Sadeq; Xin, Peng Jian

    Six insect cell lines were tested for susceptibility to Syngrapha falcifera multiple nucleocapsid nucleopolyhedrovirus-D (SfaMNPV-D) infection by use of a typical endpoint assay procedure. Cell lines from Trichoplusia ni (Tn5B1-4), (L105-clone), Spodoptera litura (SL-ZSU-1), Spodoptera frugiperda (IPLB-SF-21), Pieris rapaeb (Pr-E-HNU9) and Helicoverpa zea (BCIRL-HZ-AM1) in 96-well tissue culture plates were infected with dilutions of extra cellular virus suspensions of (SfaMNPV-D). Each cell/virus combination was incubated at temperatures 27°C and wells were scored for positive infection at 2 to 4 day intervals. The resulting data were analyzed by Reed and Muench method, providing virus titers for each combination of virus, cell line. The results were categorized by accuracy and by rapidity of maximum titer. Virus titer of Tn5B-4 was higher than other cell lines TCID50 8.7x108, the lowest level detected in infected was in (Pr-E-HNU9) cells TCID50 2.4x108. No Virions or polyhedral inclusion bodies were detected in infected SL-ZSU-1 cells.

  20. Cannabinoids synergize with carfilzomib, reducing multiple myeloma cells viability and migration.

    Science.gov (United States)

    Nabissi, Massimo; Morelli, Maria Beatrice; Offidani, Massimo; Amantini, Consuelo; Gentili, Silvia; Soriani, Alessandra; Cardinali, Claudio; Leoni, Pietro; Santoni, Giorgio

    2016-11-22

    Several studies showed a potential anti-tumor role for cannabinoids, by modulating cell signaling pathways involved in cancer cell proliferation, chemo-resistance and migration. Cannabidiol (CBD) was previously noted in multiple myeloma (MM), both alone and in synergy with the proteasome inhibitor bortezomib, to induce cell death. In other type of human cancers, the combination of CBD with Δ9-tetrahydrocannabinol (THC) was found to act synergistically with other chemotherapeutic drugs suggesting their use in combination therapy. In the current study, we evaluated the effects of THC alone and in combination with CBD in MM cell lines. We found that CBD and THC, mainly in combination, were able to reduce cell viability by inducing autophagic-dependent necrosis. Moreover, we showed that the CBD-THC combination was able to reduce MM cells migration by down-regulating expression of the chemokine receptor CXCR4 and of the CD147 plasma membrane glycoprotein. Furthermore, since the immuno-proteasome is considered a new target in MM and also since carfilzomib (CFZ) is a new promising immuno-proteasome inhibitor that creates irreversible adducts with the β5i subunit of immuno-proteasome, we evaluated the effect of CBD and THC in regulating the expression of the β5i subunit and their effect in combination with CFZ. Herein, we also found that the CBD and THC combination is able to reduce expression of the β5i subunit as well as to act in synergy with CFZ to increase MM cell death and inhibits cell migration. In summary, these results proved that this combination exerts strong anti-myeloma activities.

  1. Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors.

    Science.gov (United States)

    Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne

    2013-07-19

    Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.

  2. Integrated Transcriptomic and Epigenomic Analysis of Primary Human Lung Epithelial Cell Differentiation

    Science.gov (United States)

    Marconett, Crystal N.; Zhou, Beiyun; Rieger, Megan E.; Selamat, Suhaida A.; Dubourd, Mickael; Fang, Xiaohui; Lynch, Sean K.; Stueve, Theresa Ryan; Siegmund, Kimberly D.; Berman, Benjamin P.

    2013-01-01

    Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation. PMID:23818859

  3. The FERONIA Receptor Kinase Maintains Cell-Wall Integrity during Salt Stress through Ca2+ Signaling.

    Science.gov (United States)

    Feng, Wei; Kita, Daniel; Peaucelle, Alexis; Cartwright, Heather N; Doan, Vinh; Duan, Qiaohong; Liu, Ming-Che; Maman, Jacob; Steinhorst, Leonie; Schmitz-Thom, Ina; Yvon, Robert; Kudla, Jörg; Wu, Hen-Ming; Cheung, Alice Y; Dinneny, José R

    2018-03-05

    Cells maintain integrity despite changes in their mechanical properties elicited during growth and environmental stress. How cells sense their physical state and compensate for cell-wall damage is poorly understood, particularly in plants. Here we report that FERONIA (FER), a plasma-membrane-localized receptor kinase from Arabidopsis, is necessary for the recovery of root growth after exposure to high salinity, a widespread soil stress. The extracellular domain of FER displays tandem regions of homology with malectin, an animal protein known to bind di-glucose in vitro and important for protein quality control in the endoplasmic reticulum. The presence of malectin-like domains in FER and related receptor kinases has led to widespread speculation that they interact with cell-wall polysaccharides and can potentially serve a wall-sensing function. Results reported here show that salinity causes softening of the cell wall and that FER is necessary to sense these defects. When this function is disrupted in the fer mutant, root cells explode dramatically during growth recovery. Similar defects are observed in the mur1 mutant, which disrupts pectin cross-linking. Furthermore, fer cell-wall integrity defects can be rescued by treatment with calcium and borate, which also facilitate pectin cross-linking. Sensing of these salinity-induced wall defects might therefore be a direct consequence of physical interaction between the extracellular domain of FER and pectin. FER-dependent signaling elicits cell-specific calcium transients that maintain cell-wall integrity during salt stress. These results reveal a novel extracellular toxicity of salinity, and identify FER as a sensor of damage to the pectin-associated wall. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Characterization of CD4+ T cell-mediated cytotoxicity in patients with multiple myeloma.

    Science.gov (United States)

    Zhang, Xiaole; Gao, Lei; Meng, Kai; Han, Chunting; Li, Qiang; Feng, Zhenjun; Chen, Lei

    2018-05-01

    Multiple myeloma (MM) is an incurable cancer characterized by the development of malignant plasma cells. The CD8 T cell-mediated cytotoxicity is considered a major player in antitumor immunity, but in MM patients, the CD8 T cells displayed senescence markers and were functionally impaired. To investigate whether cytotoxic CD4 T cells could act as a treatment alternative in MM, we examined the frequency and function of naturally occurring cytotoxic CD4 T cells in MM patients. The cytotoxic CD4 T cells were identified as granzyme-A, granzyme B-, and perforin-expressing CD4 T cells, and their frequencies were significantly upregulated in MM patients when compared with healthy controls. The frequencies of cytotoxic CD4 T cells in MM patients were not associated with the frequencies of cytotoxic CD8 T cells, but were negatively associated with disease severity. Interestingly, the expression levels of inhibitory molecules, including PD-1 and CTLA-4, were significantly lower in cytotoxic CD4 T cells than in cytotoxic CD8 T cells. When co-incubated with autologous CD38 + CD138 + plasma cells, CD4 T cells were capable of eliminating plasma cells with varying degrees of efficacy. In MM patients, the frequency of circulating plasma cells was negatively correlated with the frequency of cytotoxic CD4 T cells. Therefore, CD4 T cell-mediated cytotoxicity existed naturally in MM patients and could potentially act as an option in antitumor therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Petiveria alliacea extracts uses multiple mechanisms to inhibit growth of human and mouse tumoral cells

    OpenAIRE

    Urue?a, Claudia; Cifuentes, Claudia; Casta?eda, Diana; Arango, Amparo; Kaur, Punit; Asea, Alexzander; Fiorentino, Susana

    2008-01-01

    Abstract Background There is ethnopharmacological evidence that Petiveria alliacea can have antitumor activity; however, the mechanism of its cytotoxic activity is not well understood. We assessed multiple in vitro biological activities of an ethyl acetate soluble plant fraction over several tumor cell lines. Methods Tumor cell lines were evaluated using the following tests: trypan blue exclusion test, MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide], flow cytometry, cytosk...

  6. Integrating Multiple Microarray Data for Cancer Pathway Analysis Using Bootstrapping K-S Test

    Directory of Open Access Journals (Sweden)

    Bing Han

    2009-01-01

    Full Text Available Previous applications of microarray technology for cancer research have mostly focused on identifying genes that are differentially expressed between a particular cancer and normal cells. In a biological system, genes perform different molecular functions and regulate various biological processes via interactions with other genes thus forming a variety of complex networks. Therefore, it is critical to understand the relationship (e.g., interactions between genes across different types of cancer in order to gain insights into the molecular mechanisms of cancer. Here we propose an integrative method based on the bootstrapping Kolmogorov-Smirnov test and a large set of microarray data produced with various types of cancer to discover common molecular changes in cells from normal state to cancerous state. We evaluate our method using three key pathways related to cancer and demonstrate that it is capable of finding meaningful alterations in gene relations.

  7. Integrating the Allen Brain Institute Cell Types Database into Automated Neuroscience Workflow.

    Science.gov (United States)

    Stockton, David B; Santamaria, Fidel

    2017-10-01

    We developed software tools to download, extract features, and organize the Cell Types Database from the Allen Brain Institute (ABI) in order to integrate its whole cell patch clamp characterization data into the automated modeling/data analysis cycle. To expand the potential user base we employed both Python and MATLAB. The basic set of tools downloads selected raw data and extracts cell, sweep, and spike features, using ABI's feature extraction code. To facilitate data manipulation we added a tool to build a local specialized database of raw data plus extracted features. Finally, to maximize automation, we extended our NeuroManager workflow automation suite to include these tools plus a separate investigation database. The extended suite allows the user to integrate ABI experimental and modeling data into an automated workflow deployed on heterogeneous computer infrastructures, from local servers, to high performance computing environments, to the cloud. Since our approach is focused on workflow procedures our tools can be modified to interact with the increasing number of neuroscience databases being developed to cover all scales and properties of the nervous system.

  8. Cocaine modulates HIV-1 integration in primary CD4+ T cells: implications in HIV-1 pathogenesis in drug-abusing patients

    Science.gov (United States)

    Addai, Amma B.; Pandhare, Jui; Paromov, Victor; Mantri, Chinmay K.; Pratap, Siddharth; Dash, Chandravanu

    2015-01-01

    Epidemiologic studies suggest that cocaine abuse worsens HIV-1 disease progression. Increased viral load has been suggested to play a key role for the accelerated HIV disease among cocaine-abusing patients. The goal of this study was to investigate whether cocaine enhances proviral DNA integration as a mechanism to increase viral load. We infected CD4+ T cells that are the primary targets of HIV-1 in vivo and treated the cells with physiologically relevant concentrations of cocaine (1 µM–100 µM). Proviral DNA integration in the host genome was measured by nested qPCR. Our results illustrated that cocaine from 1 µM through 50 µM increased HIV-1 integration in CD4+ T cells in a dose-dependent manner. As integration can be modulated by several early postentry steps of HIV-1 infection, we examined the direct effects of cocaine on viral integration by in vitro integration assays by use of HIV-1 PICs. Our data illustrated that cocaine directly increases viral DNA integration. Furthermore, our MS analysis showed that cocaine is able to enter CD4+ T cells and localize to the nucleus-. In summary, our data provide strong evidence that cocaine can increase HIV-1 integration in CD4+ T cells. Therefore, we hypothesize that increased HIV-1 integration is a novel mechanism by which cocaine enhances viral load and worsens disease progression in drug-abusing HIV-1 patients. PMID:25691383

  9. Fluidic Logic Used in a Systems Approach to Enable Integrated Single-cell Functional Analysis

    Directory of Open Access Journals (Sweden)

    Naveen Ramalingam

    2016-09-01

    Full Text Available The study of single cells has evolved over the past several years to include expression and genomic analysis of an increasing number of single cells. Several studies have demonstrated wide-spread variation and heterogeneity within cell populations of similar phenotype. While the characterization of these populations will likely set the foundation for our understanding of genomic- and expression-based diversity, it will not be able to link the functional differences of a single cell to its underlying genomic structure and activity. Currently, it is difficult to perturb single cells in a controlled environment, monitor and measure the response due to perturbation, and link these response measurements to downstream genomic and transcriptomic analysis. In order to address this challenge, we developed a platform to integrate and miniaturize many of the experimental steps required to study single-cell function. The heart of this platform is an elastomer-based Integrated Fluidic Circuit (IFC that uses fluidic logic to select and sequester specific single cells based on a phenotypic trait for downstream experimentation. Experiments with sequestered cells that have been performed include on-chip culture, exposure to a variety of stimulants, and post-exposure image-based response analysis, followed by preparation of the mRNA transcriptome for massively parallel sequencing analysis. The flexible system embodies experimental design and execution that enable routine functional studies of single cells.

  10. Fully printed and integrated electrolyzer cells with additive manufacturing for high-efficiency water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gaoqiang; Mo, Jingke; Kang, Zhenye; Dohrmann, Yeshi; List, Frederick A.; Green, Johney B.; Babu, Sudarsanam S.; Zhang, Feng-Yuan

    2018-04-01

    Using additive manufacturing (AM) technology, a fundamental material and structure innovation was proposed to significantly increase the energy efficiency, and to reduce the weight, volume and component quantity of proton exchange membrane electrolyzer cells (PEMECs). Four conventional parts (liquid/gas diffusion layer, bipolar plate, gasket, and current distributor) in a PEMEC were integrated into one multifunctional AM plate without committing to tools or molds for the first time. In addition, since the interfacial contact resistances between those parts were eliminated, the comprehensive in-situ characterizations of AM cells showed that an excellent energy efficiency of up to 86.48% was achieved at 2 A/cm2 and 80 degrees C, and the hydrogen generation rate was increased by 61.81% compared to the conventional cell. More importantly, the highly complex inner structures of the AM integrated multifunctional plates also exhibit the potential to break limitations of conventional manufacture methods for hydrogen generation and to open a door for the development of other energy conversion devices, including fuel cells, solar cells and batteries.

  11. Pluripotent cells display enhanced resistance to mutagenesis

    Directory of Open Access Journals (Sweden)

    Daniel J. Cooper

    2017-03-01

    Full Text Available Pluripotent cells have been reported to exhibit lower frequencies of point mutations and higher levels of DNA repair than differentiated cells. This predicts that pluripotent cells are less susceptible to mutagenic exposures than differentiated cells. To test this prediction, we used a lacI mutation-reporter transgene system to assess the frequency of point mutations in multiple lines of mouse pluripotent embryonic stem cells and induced pluripotent cells, as well as in multiple lines of differentiated fibroblast cells, before and after exposure to a moderate dose of the mutagen, methyl methanesulfonate. We also measured levels of key enzymes in the base excision repair (BER pathway in each cell line before and after exposure to the mutagen. Our results confirm that pluripotent cells normally maintain lower frequencies of point mutations than differentiated cells, and show that differentiated cells exhibit a large increase in mutation frequency following a moderate mutagenic exposure, whereas pluripotent cells subjected to the same exposure show no increase in mutations. This result likely reflects the higher levels of BER proteins detectable in pluripotent cells prior to exposure and supports our thesis that maintenance of enhanced genetic integrity is a fundamental characteristic of pluripotent cells.

  12. Monitoring single-cell gene regulation under dynamically controllable conditions with integrated microfluidics and software

    NARCIS (Netherlands)

    Kaiser, Matthias; Jug, Florian; Julou, Thomas; Deshpande, S.R.; Pfohl, Thomas; Silander, Olin K.; Myers, Gene; Van Nimwegen, Erik

    2018-01-01

    Much is still not understood about how gene regulatory interactions control cell fate decisions in single cells, in part due to the difficulty of directly observing gene regulatory processes in vivo. We introduce here a novel integrated setup consisting of a microfluidic chip and accompanying

  13. Simultaneous and Sequential Integration by Cre/loxP Site-Specific Recombination in Saccharomyces cerevisiae.

    Science.gov (United States)

    Choi, Ho-Jung; Kim, Yeon-Hee

    2018-05-28

    A Cre/ loxP -δ-integration system was developed to allow sequential and simultaneous integration of a multiple gene expression cassette in Saccharomyces cerevisiae . To allow repeated integrations, the reusable Candida glabrata MARKER ( CgMARKER ) carrying loxP sequences was used, and the integrated CgMARKER was efficiently removed by inducing Cre recombinase. The XYLP and XYLB genes encoding endoxylanase and β-xylosidase, respectively, were used as model genes for xylan metabolism in this system, and the copy number of these genes was increased to 15.8 and 16.9 copies/cell, respectively, by repeated integration. This integration system is a promising approach for the easy construction of yeast strains with enhanced metabolic pathways through multicopy gene expression.

  14. Software-defined networking control plane for seamless integration of multiple silicon photonic switches in Datacom networks.

    Science.gov (United States)

    Shen, Yiwen; Hattink, Maarten H N; Samadi, Payman; Cheng, Qixiang; Hu, Ziyiz; Gazman, Alexander; Bergman, Keren

    2018-04-16

    Silicon photonics based switches offer an effective option for the delivery of dynamic bandwidth for future large-scale Datacom systems while maintaining scalable energy efficiency. The integration of a silicon photonics-based optical switching fabric within electronic Datacom architectures requires novel network topologies and arbitration strategies to effectively manage the active elements in the network. We present a scalable software-defined networking control plane to integrate silicon photonic based switches with conventional Ethernet or InfiniBand networks. Our software-defined control plane manages both electronic packet switches and multiple silicon photonic switches for simultaneous packet and circuit switching. We built an experimental Dragonfly network testbed with 16 electronic packet switches and 2 silicon photonic switches to evaluate our control plane. Observed latencies occupied by each step of the switching procedure demonstrate a total of 344 µs control plane latency for data-center and high performance computing platforms.

  15. Transparent polymeric cell culture chip with integrated temperature control and uniform media perfusion

    DEFF Research Database (Denmark)

    Petronis, Sarunas; Stangegaard, Michael; Christensen, C.

    2006-01-01

    Modern microfabrication and microfluidic technologies offer new opportunities in the design and fabrication of miniaturized cell culture systems for online monitoring of living cells. We used laser micromachining and thermal bonding to fabricate an optically transparent, low-cost polymeric chip...... for long-term online cell culture observation under controlled conditions. The chip incorporated a microfluidic flow equalization system, assuring uniform perfusion of the cell culture media throughout the cell culture chamber. The integrated indium-tin-oxide heater and miniature temperature probe linked....... HeLa cells were cultured for up to 2 weeks within the cell culture chip and monitored using a time-lapse video recording microscopy setup. Cell attachment and spreading was observed during the first 10-20 h (lag phase). After approximately 20 h, cell growth gained exponential character...

  16. Self-assembly as a design tool for the integration of photonic structures into excitonic solar cells

    KAUST Repository

    Guldin, S.

    2011-09-20

    One way to successfully enhance light harvesting of excitonic solar cells is the integration of optical elements that increase the photon path length in the light absorbing layer. Device architectures which incorporate structural order in form of one- or three-dimensional refractive index lattices can lead to the localization of light in specific parts of the spectrum, while retaining the cell\\'s transparency in others. Herein, we present two routes for the integration of photonic crystals (PCs) into dye-sensitized solar cells (DSCs). In both cases, the self-assembly of soft matter plays a key role in the fabrication process of the TiO2 electrode. One approach relies on a combination of colloidal self-assembly and the self-assembly of block copolymers, resulting in a double layer dye-sensitized solar cell with increased light absorption from the 3D PC element. An alternative route is based on the fact that the refractive index of the mesoporous layer can be finely tuned by the interplay between block copolymer self-assembly and hydrolytic TiO2 sol-gel chemistry. Alternating deposition of high and low refractive index layers enables the integration of a 1D PC into a DSC.

  17. Electric properties and carrier multiplication in breakdown sites in multi-crystalline silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneemann, Matthias; Carius, Reinhard; Rau, Uwe [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Kirchartz, Thomas, E-mail: t.kirchartz@fz-juelich.de [IEK5-Photovoltaics, Forschungszentrum Jülich, Jülich 52425 (Germany); Faculty of Engineering and CENIDE, University of Duisburg-Essen, Carl-Benz-Str. 199, Duisburg 47057 (Germany)

    2015-05-28

    This paper studies the effective electrical size and carrier multiplication of breakdown sites in multi-crystalline silicon solar cells. The local series resistance limits the current of each breakdown site and is thereby linearizing the current-voltage characteristic. This fact allows the estimation of the effective electrical diameters to be as low as 100 nm. Using a laser beam induced current (LBIC) measurement with a high spatial resolution, we find carrier multiplication factors on the order of 30 (Zener-type breakdown) and 100 (avalanche breakdown) as new lower limits. Hence, we prove that also the so-called Zener-type breakdown is followed by avalanche multiplication. We explain that previous measurements of the carrier multiplication using thermography yield results higher than unity, only if the spatial defect density is high enough, and the illumination intensity is lower than what was used for the LBIC method. The individual series resistances of the breakdown sites limit the current through these breakdown sites. Therefore, the measured multiplication factors depend on the applied voltage as well as on the injected photocurrent. Both dependencies are successfully simulated using a series-resistance-limited diode model.

  18. EPMLR: sequence-based linear B-cell epitope prediction method using multiple linear regression.

    Science.gov (United States)

    Lian, Yao; Ge, Meng; Pan, Xian-Ming

    2014-12-19

    B-cell epitopes have been studied extensively due to their immunological applications, such as peptide-based vaccine development, antibody production, and disease diagnosis and therapy. Despite several decades of research, the accurate prediction of linear B-cell epitopes has remained a challenging task. In this work, based on the antigen's primary sequence information, a novel linear B-cell epitope prediction model was developed using the multiple linear regression (MLR). A 10-fold cross-validation test on a large non-redundant dataset was performed to evaluate the performance of our model. To alleviate the problem caused by the noise of negative dataset, 300 experiments utilizing 300 sub-datasets were performed. We achieved overall sensitivity of 81.8%, precision of 64.1% and area under the receiver operating characteristic curve (AUC) of 0.728. We have presented a reliable method for the identification of linear B cell epitope using antigen's primary sequence information. Moreover, a web server EPMLR has been developed for linear B-cell epitope prediction: http://www.bioinfo.tsinghua.edu.cn/epitope/EPMLR/ .

  19. Substrate-Integrated Waveguide PCB Leaky-Wave Antenna Design Providing Multiple Steerable Beams in the V-Band

    Directory of Open Access Journals (Sweden)

    Matthias Steeg

    2017-12-01

    Full Text Available A periodic leaky-wave antenna (LWA design based on low loss substrate-integrated waveguide (SIW technology with inset half-wave microstrip antennas is presented. The developed LWA operates in the V-band between 50 and 70 GHz and has been fabricated using standard printed circuit board (PCB technology. The presented LWA is highly functional and very compact supporting 1D beam steering and multibeam operation with only a single radio frequency (RF feeding port. Within the operational 50–70 GHz bandwidth, the LWA scans through broadside, providing over 40° H-plane beam steering. When operated within the 57–66 GHz band, the maximum steering angle is 18.2°. The maximum gain of the fabricated LWAs is 15.4 dBi with only a small gain variation of +/−1.5 dB across the operational bandwidth. The beam steering and multibeam capability of the fabricated LWA is further utilized to support mobile users in a 60 GHz hot-spot. For a single user, a maximum wireless on-off keying (OOK data rate of 2.5 Gbit/s is demonstrated. Multibeam operation is achieved using the LWA in combination with multiple dense wavelength division multiplexing (WDM channels and remote optical heterodyning. Experimentally, multibeam operation supporting three users within a 57–66 GHz hot-spot with a total wireless cell capacity of 3 Gbit/s is achieved.

  20. Nanowire Structured Hybrid Cell for Concurrently Scavenging Solar and Mechanical Energies

    KAUST Repository

    Xu, Chen

    2009-04-29

    Conversion cells for harvesting solar energy and mechanical energy are usually separate and independent entities that are designed and built following different physical principles. Developing a technology that harvests multiple-type energies in forms such as sun light and mechanical around the clock is desperately desired for fully utilizing the energies available in our living environment. We report a hybrid cell that is intended for simultaneously harvesting solar and mechanical energies. Using aligned ZnO nanowire arrays grown on surfaces of a flat substrate, a dye-sensitized solar cell is integrated with a piezoelectric nanogenerator. The former harvests solar energy irradiating on the top, and the latter harvests ultrasonic wave energy from the surrounding. The two energy harvesting approaches can work simultaneously or individually, and they can be integrated in parallel and serial for raising the output current and voltage, respectively, as well as power. It is found that the voltage output from the solar cell can be used to raise the output voltage of the nanogenerator, providing an effective approach for effectively storing and utilizing the power generated by the nanogenerator. Our study demonstrates a new approach for concurrently harvesting multiple types of energies using an integrated hybrid cell so that the energy resources can be effectively and complementary utilized whenever and wherever one or all of them is available. © 2009 American Chemical Society.