WorldWideScience

Sample records for integrate basic science

  1. Horizontal integration of the basic sciences in the chiropractic curriculum.

    Science.gov (United States)

    Ward, Kevin P

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration.

  2. Horizontal Integration of the Basic Sciences in the Chiropractic Curriculum

    Science.gov (United States)

    Ward, Kevin P.

    2010-01-01

    Basic science curricula at most chiropractic colleges consist of courses (eg, general anatomy, physiology, biochemistry, etc) that are taught as stand-alone content domains. The lack of integration between basic science disciplines causes difficulties for students who need to understand how the parts function together as an integrated whole and apply this understanding to solving clinical problems. More horizontally integrated basic science curricula could be achieved by several means: integrated Part I National Board of Chiropractic Examiners questions, a broader education for future professors, an increased emphasis on integration within the current model, linked courses, and an integrated, thematic basic science curriculum. Horizontally integrating basic science curricula would require significant efforts from administrators, curriculum committees, and instructional faculty. Once in place this curriculum would promote more clinically relevant learning, improved learning outcomes, and superior vertical integration. PMID:21048882

  3. Integration and timing of basic and clinical sciences education.

    Science.gov (United States)

    Bandiera, Glen; Boucher, Andree; Neville, Alan; Kuper, Ayelet; Hodges, Brian

    2013-05-01

    Medical education has traditionally been compartmentalized into basic and clinical sciences, with the latter being viewed as the skillful application of the former. Over time, the relevance of basic sciences has become defined by their role in supporting clinical problem solving rather than being, of themselves, a defining knowledge base of physicians. As part of the national Future of Medical Education in Canada (FMEC MD) project, a comprehensive empirical environmental scan identified the timing and integration of basic sciences as a key pressing issue for medical education. Using the literature review, key informant interviews, stakeholder meetings, and subsequent consultation forums from the FMEC project, this paper details the empirical basis for focusing on the role of basic science, the evidentiary foundations for current practices, and the implications for medical education. Despite a dearth of definitive relevant studies, opinions about how best to integrate the sciences remain strong. Resource allocation, political power, educational philosophy, and the shift from a knowledge-based to a problem-solving profession all influence the debate. There was little disagreement that both sciences are important, that many traditional models emphasized deep understanding of limited basic science disciplines at the expense of other relevant content such as social sciences, or that teaching the sciences contemporaneously rather than sequentially has theoretical and practical merit. Innovations in integrated curriculum design have occurred internationally. Less clear are the appropriate balance of the sciences, the best integration model, and solutions to the political and practical challenges of integrated curricula. New curricula tend to emphasize integration, development of more diverse physician competencies, and preparation of physicians to adapt to evolving technology and patients' expectations. Refocusing the basic/clinical dichotomy to a foundational

  4. Integration of Basic and Clinical Science in the Psychiatry Clerkship.

    Science.gov (United States)

    Wilkins, Kirsten M; Moore, David; Rohrbaugh, Robert M; Briscoe, Gregory W

    2017-06-01

    Integration of basic and clinical science is a key component of medical education reform, yet best practices have not been identified. The authors compared two methods of basic and clinical science integration in the psychiatry clerkship. Two interventions aimed at integrating basic and clinical science were implemented and compared in a dementia conference: flipped curriculum and coteaching by clinician and physician-scientist. The authors surveyed students following each intervention. Likert-scale responses were compared. Participants in both groups responded favorably to the integration format and would recommend integration be implemented elsewhere in the curriculum. Survey response rates differed significantly between the groups and student engagement with the flipped curriculum video was limited. Flipped curriculum and co-teaching by clinician and physician-scientist are two methods of integrating basic and clinical science in the psychiatry clerkship. Student learning preferences may influence engagement with a particular teaching format.

  5. Integration of basic sciences and clinical sciences in oral radiology education for dental students.

    Science.gov (United States)

    Baghdady, Mariam T; Carnahan, Heather; Lam, Ernest W N; Woods, Nicole N

    2013-06-01

    Educational research suggests that cognitive processing in diagnostic radiology requires a solid foundation in the basic sciences and knowledge of the radiological changes associated with disease. Although it is generally assumed that dental students must acquire both sets of knowledge, little is known about the most effective way to teach them. Currently, the basic and clinical sciences are taught separately. This study was conducted to compare the diagnostic accuracy of students when taught basic sciences segregated or integrated with clinical features. Predoctoral dental students (n=51) were taught four confusable intrabony abnormalities using basic science descriptions integrated with the radiographic features or taught segregated from the radiographic features. The students were tested with diagnostic images, and memory tests were performed immediately after learning and one week later. On immediate and delayed testing, participants in the integrated basic science group outperformed those from the segregated group. A main effect of learning condition was found to be significant (pbasic sciences integrated with clinical features produces higher diagnostic accuracy in novices than teaching basic sciences segregated from clinical features.

  6. Back to the basic sciences: an innovative approach to teaching senior medical students how best to integrate basic science and clinical medicine.

    Science.gov (United States)

    Spencer, Abby L; Brosenitsch, Teresa; Levine, Arthur S; Kanter, Steven L

    2008-07-01

    Abraham Flexner persuaded the medical establishment of his time that teaching the sciences, from basic to clinical, should be a critical component of the medical student curriculum, thus giving rise to the "preclinical curriculum." However, students' retention of basic science material after the preclinical years is generally poor. The authors believe that revisiting the basic sciences in the fourth year can enhance understanding of clinical medicine and further students' understanding of how the two fields integrate. With this in mind, a return to the basic sciences during the fourth year of medical school may be highly beneficial. The purpose of this article is to (1) discuss efforts to integrate basic science into the clinical years of medical student education throughout the United States and Canada, and (2) describe the highly developed fourth-year basic science integration program at the University of Pittsburgh School of Medicine. In their critical review of medical school curricula of 126 U.S. and 17 Canadian medical schools, the authors found that only 19% of U.S. medical schools and 24% of Canadian medical schools require basic science courses or experiences during the clinical years, a minor increase compared with 1985. Curricular methods ranged from simple lectures to integrated case studies with hands-on laboratory experience. The authors hope to advance the national discussion about the need to more fully integrate basic science teaching throughout all four years of the medical student curriculum by placing a curricular innovation in the context of similar efforts by other U.S. and Canadian medical schools.

  7. Integration of Basic and Clinical Sciences: Faculty Perspectives at a U.S. Dental School.

    Science.gov (United States)

    van der Hoeven, Dharini; van der Hoeven, Ransome; Zhu, Liang; Busaidy, Kamal; Quock, Ryan L

    2018-04-01

    Although dental education has traditionally been organized into basic sciences education (first and second years) and clinical education (third and fourth years), there has been growing interest in ways to better integrate the two to more effectively educate students and prepare them for practice. Since 2012, The University of Texas School of Dentistry at Houston (UTSD) has made it a priority to improve integration of basic and clinical sciences, with a focus to this point on integrating the basic sciences. The aim of this study was to determine the perspectives of basic and clinical science faculty members regarding basic and clinical sciences integration and the degree of integration currently occurring. In October 2016, all 227 faculty members (15 basic scientists and 212 clinicians) were invited to participate in an online survey. Of the 212 clinicians, 84 completed the clinician educator survey (response rate 40%). All 15 basic scientists completed the basic science educator survey (response rate 100%). The majority of basic and clinical respondents affirmed the value of integration (93.3%, 97.6%, respectively) and reported regular integration in their teaching (80%, 86.9%). There were no significant differences between basic scientists and clinicians on perceived importance (p=0.457) and comfort with integration (p=0.240), but the basic scientists were more likely to integrate (p=0.039) and collaborate (p=0.021) than the clinicians. There were no significant differences between generalist and specialist clinicians on importance (p=0.474) and degree (p=0.972) of integration in teaching and intent to collaborate (p=0.864), but the specialists reported feeling more comfortable presenting basic science information (p=0.033). Protected faculty time for collaborative efforts and a repository of integrated basic science and clinical examples for use in teaching and faculty development were recommended to improve integration. Although questions might be raised about

  8. Vertical integration of basic science in final year of medical education.

    Science.gov (United States)

    Rajan, Sudha Jasmine; Jacob, Tripti Meriel; Sathyendra, Sowmya

    2016-01-01

    Development of health professionals with ability to integrate, synthesize, and apply knowledge gained through medical college is greatly hampered by the system of delivery that is compartmentalized and piecemeal. There is a need to integrate basic sciences with clinical teaching to enable application in clinical care. To study the benefit and acceptance of vertical integration of basic science in final year MBBS undergraduate curriculum. After Institutional Ethics Clearance, neuroanatomy refresher classes with clinical application to neurological diseases were held as part of the final year posting in two medical units. Feedback was collected. Pre- and post-tests which tested application and synthesis were conducted. Summative assessment was compared with the control group of students who had standard teaching in other two medical units. In-depth interview was conducted on 2 willing participants and 2 teachers who did neurology bedside teaching. Majority (>80%) found the classes useful and interesting. There was statistically significant improvement in the post-test scores. There was a statistically significant difference between the intervention and control groups' scores during summative assessment (76.2 vs. 61.8 P Vertical integration of basic science in final year was beneficial and resulted in knowledge gain and improved summative scores. The classes were found to be useful, interesting and thought to help in clinical care and application by majority of students.

  9. Key steps for integrating a basic science throughout a medical school curriculum using an e-learning approach.

    Science.gov (United States)

    Dubois, Eline Agnès; Franson, Kari Lanette

    2009-09-01

    Basic sciences can be integrated into the medical school curriculum via e-learning. The process of integrating a basic science in this manner resembles a curricular change. The change usually begins with an idea for using e-learning to teach a basic science and establishing the need for the innovation. In the planning phase, learning outcomes are formulated and a prototype of the program is developed based on the desired requirements. A realistic concept is formed after considering the limitations of the current institute. Next, a project team is assembled to develop the program and plan its integration. Incorporation of the e-learning program is facilitated by a well-developed and communicated integration plan. Various course coordinators are contacted to determine content of the e-learning program as well as establish assessment. Linking the e-learning program to existing course activities and thereby applying the basic science into the clinical context enhances the degree of integration. The success of the integration is demonstrated by a positive assessment of the program including favourable cost-benefit analysis and improved student performance. Lastly, when the program becomes institutionalised, continuously updating content and technology (when appropriate), and evaluating the integration contribute to the prolonged survival of the e-learning program.

  10. The use of simulation in teaching the basic sciences.

    Science.gov (United States)

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  11. A multi-instructor, team-based, active-learning exercise to integrate basic and clinical sciences content.

    Science.gov (United States)

    Kolluru, Srikanth; Roesch, Darren M; Akhtar de la Fuente, Ayesha

    2012-03-12

    To introduce a multiple-instructor, team-based, active-learning exercise to promote the integration of basic sciences (pathophysiology, pharmacology, and medicinal chemistry) and clinical sciences in a doctor of pharmacy curriculum. A team-based learning activity that involved pre-class reading assignments, individual-and team-answered multiple-choice questions, and evaluation and discussion of a clinical case, was designed, implemented, and moderated by 3 faculty members from the pharmaceutical sciences and pharmacy practice departments. Student performance was assessed using a multiple-choice examination, an individual readiness assurance test (IRAT), a team readiness assurance test (TRAT), and a subjective, objective, assessment, and plan (SOAP) note. Student attitudes were assessed using a pre- and post-exercise survey instrument. Students' understanding of possible correct treatment strategies for depression improved. Students were appreciative of this true integration of basic sciences knowledge in a pharmacotherapy course and to have faculty members from both disciplines present to answer questions. Mean student score on the on depression module for the examination was 80.4%, indicating mastery of the content. An exercise led by multiple instructors improved student perceptions of the importance of team-based teaching. Integrated teaching and learning may be achieved when instructors from multiple disciplines work together in the classroom using proven team-based, active-learning exercises.

  12. Positron emission tomography basic sciences

    CERN Document Server

    Townsend, D W; Valk, P E; Maisey, M N

    2003-01-01

    Essential for students, science and medical graduates who want to understand the basic science of Positron Emission Tomography (PET), this book describes the physics, chemistry, technology and overview of the clinical uses behind the science of PET and the imaging techniques it uses. In recent years, PET has moved from high-end research imaging tool used by the highly specialized to an essential component of clinical evaluation in the clinic, especially in cancer management. Previously being the realm of scientists, this book explains PET instrumentation, radiochemistry, PET data acquisition and image formation, integration of structural and functional images, radiation dosimetry and protection, and applications in dedicated areas such as drug development, oncology, and gene expression imaging. The technologist, the science, engineering or chemistry graduate seeking further detailed information about PET, or the medical advanced trainee wishing to gain insight into the basic science of PET will find this book...

  13. Integration of basic science and clinical medicine: the innovative approach of the cadaver biopsy project at the Boston University School of Medicine.

    Science.gov (United States)

    Eisenstein, Anna; Vaisman, Lev; Johnston-Cox, Hillary; Gallan, Alexander; Shaffer, Kitt; Vaughan, Deborah; O'Hara, Carl; Joseph, Lija

    2014-01-01

    Curricular integration has emerged as a consistent theme in medical education reform. Vertical integration of topics such as pathology offers the potential to bring basic science content into the clinical arena, but faculty/student acceptance and curricular design pose challenges for such integration. The authors describe the Cadaver Biopsy Project (CBP) at Boston University School of Medicine as a sustainable model of vertical integration. Faculty and select senior medical students obtained biopsies of cadavers during the first-year gross anatomy course (fall 2009) and used these to develop clinical cases for courses in histology (spring 2010), pathology (fall 2010-spring 2011), and radiology (fall 2011 or spring 2012), thereby linking students' first experiences in basic sciences with other basic science courses and later clinical courses. Project goals included engaging medical stu dents in applying basic science princi ples in all aspects of patient care as they acquire skills. The educational intervention used a patient (cadaver)-centered approach and small-group, collaborative, case-based learning. Through this project, the authors involved clinical and basic science faculty-plus senior medical students-in a collaborative project to design and implement an integrated curriculum through which students revisited, at several different points, the microscopic structure and pathophysiology of common diseases. Developing appropriate, measurable out comes for medical education initiatives, including the CBP, is challenging. Accumu lation of qualitative feedback from surveys will guide continuous improvement of the CBP. Documenting longer-term impact of the curricular innovation on test scores and other competency-based outcomes is an ultimate goal.

  14. Basic mathematics for the biological and social sciences

    CERN Document Server

    Marriott, F H C

    2013-01-01

    Basic Mathematics for the Biological and Social Sciences deals with the applications of basic mathematics in the biological and social sciences. Mathematical concepts that are discussed in this book include graphical methods, differentiation, trigonometrical or circular functions, limits and convergence, integration, vectors, and differential equations. The exponential function and related functions are also considered. This monograph is comprised of 11 chapters and begins with an overview of basic algebra, followed by an introduction to infinitesimal calculus, scalar and vector quantities, co

  15. Basic Sciences Fertilizing Clinical Microbiology and Infection Management.

    Science.gov (United States)

    Baquero, Fernando

    2017-08-15

    Basic sciences constitute the most abundant sources of creativity and innovation, as they are based on the passion of knowing. Basic knowledge, in close and fertile contact with medical and public health needs, produces distinct advancements in applied sciences. Basic sciences play the role of stem cells, providing material and semantics to construct differentiated tissues and organisms and enabling specialized functions and applications. However, eventually processes of "practice deconstruction" might reveal basic questions, as in de-differentiation of tissue cells. Basic sciences, microbiology, infectious diseases, and public health constitute an epistemological gradient that should also be an investigational continuum. The coexistence of all these interests and their cross-fertilization should be favored by interdisciplinary, integrative research organizations working simultaneously in the analytical and synthetic dimensions of scientific knowledge. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  16. Developing a complex systems perspective for medical education to facilitate the integration of basic science and clinical medicine.

    Science.gov (United States)

    Aron, David C

    2017-04-01

    The purpose of medical education is to produce competent and capable professional practitioners who can combine the art and science of medicine. Moreover, this process must prepare individuals to practise in a field in which knowledge is increasing and the contexts in which that knowledge is applied are changing in unpredictable ways. The 'basic sciences' are important in the training of a physician. The goal of basic science training is to learn it in a way that the material can be applied in practice. Much effort has been expended to integrate basic science and clinical training, while adding many other topics to the medical curriculum. This effort has been challenging. The aims of the paper are (1) to propose a unifying conceptual framework that facilitates knowledge integration among all levels of living systems from cell to society and (2) illustrate the organizing principles with two examples of the framework in action - cybernetic systems (with feedback) and distributed robustness. Literature related to hierarchical and holarchical frameworks was reviewed. An organizing framework derived from living systems theory and spanning the range from molecular biology to health systems management was developed. The application of cybernetic systems to three levels (regulation of pancreatic beta cell production of insulin, physician adjustment of medication for glycaemic control and development and action of performance measures for diabetes care) was illustrated. Similarly distributed robustness was illustrated by the DNA damage response system and principles underlying patient safety. Each of the illustrated organizing principles offers a means to facilitate the weaving of basic science and clinical medicine throughout the course of study. The use of such an approach may promote systems thinking, which is a core competency for effective and capable medical practice. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Basic science right, not basic science lite: medical education at a crossroad.

    Science.gov (United States)

    Fincher, Ruth-Marie E; Wallach, Paul M; Richardson, W Scott

    2009-11-01

    This perspective is a counterpoint to Dr. Brass' article, Basic biomedical sciences and the future of medical education: implications for internal medicine. The authors review development of the US medical education system as an introduction to a discussion of Dr. Brass' perspectives. The authors agree that sound scientific foundations and skill in critical thinking are important and that effective educational strategies to improve foundational science education should be implemented. Unfortunately, many students do not perceive the relevance of basic science education to clinical practice.The authors cite areas of disagreement. They believe it is unlikely that the importance of basic sciences will be diminished by contemporary directions in medical education and planned modifications of USMLE. Graduates' diminished interest in internal medicine is unlikely from changes in basic science education.Thoughtful changes in education provide the opportunity to improve understanding of fundamental sciences, the process of scientific inquiry, and translation of that knowledge to clinical practice.

  18. An integrated course in pain management and palliative care bridging the basic sciences and pharmacy practice.

    Science.gov (United States)

    Kullgren, Justin; Radhakrishnan, Rajan; Unni, Elizabeth; Hanson, Eric

    2013-08-12

    To describe the development of an integrated pain and palliative care course and to investigate the long-term effectiveness of the course during doctor of pharmacy (PharmD) students' advanced pharmacy practice experiences (APPEs) and in their practice after graduation. Roseman University College of Pharmacy faculty developed a 3-week elective course in pain and palliative care by integrating relevant clinical and pharmaceutical sciences. Instructional strategies included lectures, team and individual activities, case studies, and student presentations. Students who participated in the course in 2010 and 2011 were surveyed anonymously to gain their perception about the class as well as the utility of the course during their APPEs and in their everyday practice. Traditional and nontraditional assessment of students confirmed that the learning outcomes objectives were achieved. Students taking the integrated course on pain management and palliative care achieved mastery of the learning outcome objectives. Surveys of students and practicing pharmacists who completed the course showed that the learning experience as well as retention was improved with the integrated mode of teaching. Integrating basic and clinical sciences in therapeutic courses is an effective learning strategy.

  19. Making evolutionary biology a basic science for medicine

    Science.gov (United States)

    Nesse, Randolph M.; Bergstrom, Carl T.; Ellison, Peter T.; Flier, Jeffrey S.; Gluckman, Peter; Govindaraju, Diddahally R.; Niethammer, Dietrich; Omenn, Gilbert S.; Perlman, Robert L.; Schwartz, Mark D.; Thomas, Mark G.; Stearns, Stephen C.; Valle, David

    2010-01-01

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease. PMID:19918069

  20. Pros and cons of vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum: examples and experiences from Linköping, Sweden.

    Science.gov (United States)

    Dahle, L O; Brynhildsen, J; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Problem-based learning (PBL), combined with early patient contact, multiprofessional education and emphasis on development of communications skills, has become the basis for the medical curriculum at the Faculty of Health Sciences in Linköping (FHS), Sweden, which was started in 1986. Important elements in the curriculum are vertical integration, i.e. integration between the clinical and basic science parts of the curriculum and horizontal integration between different subject areas. This article discusses the importance of vertical integration in an undergraduate medical curriculum, according to experiences from the Faculty of Health Sciences in Linköping, and also give examples on how it has been implemented during the latest 15 years. Results and views put forward in published articles concerning vertical integration within undergraduate medical education are discussed in relation to the experiences in Linköping. Vertical integration between basic sciences and clinical medicine in a PBL setting has been found to stimulate profound rather than superficial learning, and thereby stimulates better understanding of important biomedical principles. Integration probably leads to better retention of knowledge and the ability to apply basic science principles in the appropriate clinical context. Integration throughout the whole curriculum entails a lot of time and work in respect of planning, organization and execution. The teachers have to be deeply involved and enthusiastic and have to cooperate over departmental borders, which may produce positive spin-off effects in teaching and research but also conflicts that have to be resolved. The authors believe vertical integration supports PBL and stimulates deep and lifelong learning.

  1. Basic Energy Sciences at NREL

    International Nuclear Information System (INIS)

    Moon, S.

    2000-01-01

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies

  2. Basic Energy Sciences at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.

    2000-12-04

    NREL's Center for Basic Sciences performs fundamental research for DOE's Office of Science. Our mission is to provide fundamental knowledge in the basic sciences and engineering that will underpin new and improved renewable energy technologies.

  3. Trends in Basic Sciences Education in Dental Schools, 1999-2016.

    Science.gov (United States)

    Lantz, Marilyn S; Shuler, Charles F

    2017-08-01

    The purpose of this study was to examine data published over the past two decades to identify trends in the basic sciences curriculum in dental education, provide an analysis of those trends, and compare them with trends in the basic sciences curriculum in medical education. Data published from the American Dental Association (ADA) Surveys of Dental Education, American Dental Education Association (ADEA) Surveys of Dental School Seniors, and two additional surveys were examined. In large part, survey data collected focused on the structure, content, and instructional strategies used in dental education: what was taught and how. Great variability was noted in the total clock hours of instruction and the clock hours of basic sciences instruction reported by dental schools. Moreover, the participation of medical schools in the basic sciences education of dental students appears to have decreased dramatically over the past decade. Although modest progress has been made in implementing some of the curriculum changes recommended in the 1995 Institute of Medicine report such as integrated basic and clinical sciences curricula, adoption of active learning methods, and closer engagement with medical and other health professions education programs, educational effectiveness studies needed to generate data to support evidence-based approaches to curriculum reform are lacking. Overall, trends in the basic sciences curriculum in medical education were similar to those for dental education. Potential drivers of curriculum change were identified, as was recent work in other fields that should encourage reconsideration of dentistry's approach to basic sciences education. This article was written as part of the project "Advancing Dental Education in the 21st Century."

  4. Speaking of food: connecting basic and applied plant science.

    Science.gov (United States)

    Gross, Briana L; Kellogg, Elizabeth A; Miller, Allison J

    2014-10-01

    The Food and Agriculture Organization (FAO) predicts that food production must rise 70% over the next 40 years to meet the demands of a growing population that is expected to reach nine billion by the year 2050. Many facets of basic plant science promoted by the Botanical Society of America are important for agriculture; however, more explicit connections are needed to bridge the gap between basic and applied plant research. This special issue, Speaking of Food: Connecting Basic and Applied Plant Science, was conceived to showcase productive overlaps of basic and applied research to address the challenges posed by feeding billions of people and to stimulate more research, fresh connections, and new paradigms. Contributions to this special issue thus illustrate some interactive areas of study in plant science-historical and modern plant-human interaction, crop and weed origins and evolution, and the effects of natural and artificial selection on crops and their wild relatives. These papers provide examples of how research integrating the basic and applied aspects of plant science benefits the pursuit of knowledge and the translation of that knowledge into actions toward sustainable production of crops and conservation of diversity in a changing climate. © 2014 Botanical Society of America, Inc.

  5. Integration of ICTs into the Basic Curriculum in Primary Schools in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integration of ICTs into the Basic Curriculum in Primary Schools in Sénégal - Phase II ... for integrating ICTs at various stages of the teaching and learning process. ... première cohorte de chercheuses en science des changements climatiques.

  6. Information-seeking behavior of basic science researchers: implications for library services.

    Science.gov (United States)

    Haines, Laura L; Light, Jeanene; O'Malley, Donna; Delwiche, Frances A

    2010-01-01

    This study examined the information-seeking behaviors of basic science researchers to inform the development of customized library services. A qualitative study using semi-structured interviews was conducted on a sample of basic science researchers employed at a university medical school. The basic science researchers used a variety of information resources ranging from popular Internet search engines to highly technical databases. They generally relied on basic keyword searching, using the simplest interface of a database or search engine. They were highly collegial, interacting primarily with coworkers in their laboratories and colleagues employed at other institutions. They made little use of traditional library services and instead performed many traditional library functions internally. Although the basic science researchers expressed a positive attitude toward the library, they did not view its resources or services as integral to their work. To maximize their use by researchers, library resources must be accessible via departmental websites. Use of library services may be increased by cultivating relationships with key departmental administrative personnel. Despite their self-sufficiency, subjects expressed a desire for centralized information about ongoing research on campus and shared resources, suggesting a role for the library in creating and managing an institutional repository.

  7. Basic Energy Sciences: Summary of Accomplishments

    Science.gov (United States)

    1990-05-01

    For more than four decades, the Department of Energy, including its predecessor agencies, has supported a program of basic research in nuclear- and energy-related sciences, known as Basic Energy Sciences. The purpose of the program is to explore fundamental phenomena, create scientific knowledge, and provide unique user'' facilities necessary for conducting basic research. Its technical interests span the range of scientific disciplines: physical and biological sciences, geological sciences, engineering, mathematics, and computer sciences. Its products and facilities are essential to technology development in many of the more applied areas of the Department's energy, science, and national defense missions. The accomplishments of Basic Energy Sciences research are numerous and significant. Not only have they contributed to Departmental missions, but have aided significantly the development of technologies which now serve modern society daily in business, industry, science, and medicine. In a series of stories, this report highlights 22 accomplishments, selected because of their particularly noteworthy contributions to modern society. A full accounting of all the accomplishments would be voluminous. Detailed documentation of the research results can be found in many thousands of articles published in peer-reviewed technical literature.

  8. 77 FR 5246 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-02-02

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L... FURTHER INFORMATION CONTACT: Katie Perine; Office of Basic Energy Sciences; U.S. Department of Energy...

  9. 75 FR 41838 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-07-19

    ... Basic Energy Sciences Computational Materials Science and Chemistry for Innovation Workshop Final Report... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic...

  10. 76 FR 48147 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-08-08

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of renewal of the Basic Energy Sciences Advisory Committee. SUMMARY... that the Basic Energy Sciences Advisory Committee will be renewed for a two-year period beginning July...

  11. Interprofessional education and the basic sciences: Rationale and outcomes.

    Science.gov (United States)

    Thistlethwaite, Jill E

    2015-01-01

    Interprofessional education (IPE) aims to improve patient outcomes and the quality of care. Interprofessional learning outcomes and interprofessional competencies are now included in many countries' health and social care professions' accreditation standards. While IPE may take place at any time in health professions curricula it tends to focus on professionalism and clinical topics rather than basic science activities. However generic interprofessional competencies could be included in basic science courses that are offered to at least two different professional groups. In developing interprofessional activities at the preclinical level, it is important to define explicit interprofessional learning outcomes plus the content and process of the learning. Interprofessional education must involve interactive learning processes and integration of theory and practice. This paper provides examples of IPE in anatomy and makes recommendations for course development and evaluation. © 2015 American Association of Anatomists.

  12. 78 FR 47677 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-08-06

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... hereby given that the Basic Energy Sciences Advisory Committee's (BESAC) charter will be renewed for a two-year period. The Committee will provide advice and recommendations to the Office of Science on the...

  13. 78 FR 6088 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-01-29

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Office of Science... Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat... INFORMATION CONTACT: Katie Perine, Office of Basic Energy Sciences, U.S. Department of Energy; SC-22...

  14. Attitudes among students and teachers on vertical integration between clinical medicine and basic science within a problem-based undergraduate medical curriculum.

    Science.gov (United States)

    Brynhildsen, J; Dahle, L O; Behrbohm Fallsberg, M; Rundquist, I; Hammar, M

    2002-05-01

    Important elements in the curriculum at the Faculty of Health Sciences in Linköping are vertical integration, i.e. integration between the clinical and basic science sections of the curriculum, and horizontal integration between different subject areas. Integration throughout the whole curriculum is time-consuming for both teachers and students and hard work is required for planning, organization and execution. The aim was to assess the importance of vertical and horizontal integration in an undergraduate medical curriculum, according to opinions among students and teachers. In a questionnaire 102 faculty teachers and 106 students were asked about the importance of 14 different components of the undergraduate medical curriculum including vertical and horizontal integration. They were asked to assign between one and six points to each component (6 points = extremely important for the quality of the curriculum; 1 point = unimportant). Students as well as teachers appreciated highly both forms of integration. Students scored horizontal integration slightly but significantly higher than the teachers (median 6 vs 5 points; p=0.009, Mann-Whitney U-test), whereas teachers scored vertical integration higher than students (6 vs 5; p=0.019, Mann-Whitney U-test). Both students and teachers considered horizontal and vertical integration to be highly important components of the undergraduate medical programme. We believe both kinds of integration support problem-based learning and stimulate deep and lifelong learning and suggest that integration should always be considered deeply when a new curriculum is planned for undergraduate medical education.

  15. FWP executive summaries: Basic energy sciences materials sciences programs

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1996-02-01

    This report provides an Executive Summary of the various elements of the Materials Sciences Program which is funded by the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico.

  16. Sport science integration: An evolutionary synthesis.

    Science.gov (United States)

    Balagué, N; Torrents, C; Hristovski, R; Kelso, J A S

    2017-02-01

    The aim of the paper is to point out one way of integrating the supposedly incommensurate disciplines investigated in sports science. General, common principles can be found among apparently unrelated disciplines when the focus is put on the dynamics of sports-related phenomena. Dynamical systems approaches that have recently changed research in biological and social sciences among others, offer key concepts to create a common pluricontextual language in sport science. This common language, far from being homogenising, offers key synthesis between diverse fields, respecting and enabling the theoretical and experimental pluralism. It forms a softly integrated sports science characterised by a basic dynamic explanatory backbone as well as context-dependent theoretical flexibility. After defining the dynamic integration in living systems, unable to be captured by structural static approaches, we show the commonalities between the diversity of processes existing on different levels and time scales in biological and social entities. We justify our interpretation by drawing on some recent scientific contributions that use the same general principles and concepts, and diverse methods and techniques of data analysis, to study different types of phenomena in diverse disciplines. We show how the introduction of the dynamic framework in sport science has started to blur the boundaries between physiology, biomechanics, psychology, phenomenology and sociology. The advantages and difficulties of sport science integration and its consequences in research are also discussed.

  17. The relevance of basic sciences in undergraduate medical education.

    Science.gov (United States)

    Lynch, C; Grant, T; McLoughlin, P; Last, J

    2016-02-01

    Evolving and changing undergraduate medical curricula raise concerns that there will no longer be a place for basic sciences. National and international trends show that 5-year programmes with a pre-requisite for school chemistry are growing more prevalent. National reports in Ireland show a decline in the availability of school chemistry and physics. This observational cohort study considers if the basic sciences of physics, chemistry and biology should be a prerequisite to entering medical school, be part of the core medical curriculum or if they have a place in the practice of medicine. Comparisons of means, correlation and linear regression analysis assessed the degree of association between predictors (school and university basic sciences) and outcomes (year and degree GPA) for entrants to a 6-year Irish medical programme between 2006 and 2009 (n = 352). We found no statistically significant difference in medical programme performance between students with/without prior basic science knowledge. The Irish school exit exam and its components were mainly weak predictors of performance (-0.043 ≥ r ≤ 0.396). Success in year one of medicine, which includes a basic science curriculum, was indicative of later success (0.194 ≥ r (2) ≤ 0.534). University basic sciences were found to be more predictive than school sciences in undergraduate medical performance in our institution. The increasing emphasis of basic sciences in medical practice and the declining availability of school sciences should mandate medical schools in Ireland to consider how removing basic sciences from the curriculum might impact on future applicants.

  18. 75 FR 6369 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2010-02-09

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  19. 76 FR 41234 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  20. 78 FR 38696 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2013-06-27

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of Open Meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). The Federal Advisory Committee Act (Pub. L. 92-463, 86 Stat...

  1. 77 FR 41395 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2012-07-13

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  2. 76 FR 8358 - Basic Energy Sciences Advisory Committee

    Science.gov (United States)

    2011-02-14

    ... DEPARTMENT OF ENERGY Basic Energy Sciences Advisory Committee AGENCY: Department of Energy, Office of Science. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Basic Energy Sciences Advisory Committee (BESAC). Federal Advisory Committee Act (Pub. L. 92- 463, 86 Stat. 770...

  3. Cystic fibrosis: Beyond the airways. Report on the meeting of the basic science working group in Loutraki, Greece.

    Science.gov (United States)

    Amaral, Margarida D; Boj, Sylvia F; Shaw, James; Leipziger, Jens; Beekman, Jeffrey M

    2018-06-01

    The European Cystic Fibrosis Society (ECFS) Basic Science Working Group (BSWG) organized a session on the topic "Cystic Fibrosis: Beyond the Airways", within the 15th ECFS Basic Science Conference which gathered around 200 researchers working in the basic science of CF. The session was organized and chaired by Margarida Amaral (BioISI, University of Lisboa, Portugal) and Jeffrey Beekman (University Medical Centre Utrecht, Netherlands) as Chair and Vice-Chair of the BSWG and its purpose was to bring attention of participants of the ECFS Basic Science Conference to "more forgotten" organs in CF disease. In this report we attempt to review and integrate the ideas that emerged at the session. Copyright © 2018 European Cystic Fibrosis Society. All rights reserved.

  4. Science as Knowledge, Practice, and Map Making: The Challenge of Defining Metrics for Evaluating and Improving DOE-Funded Basic Experimental Science

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1993-03-01

    Industrial R&D laboratories have been surprisingly successful in developing performance objectives and metrics that convincingly show that planning, management, and improvement techniques can be value-added to the actual output of R&D organizations. In this paper, I will discuss the more difficult case of developing analogous constructs for DOE-funded non-nuclear, non-weapons basic research, or as I will refer to it - basic experimental science. Unlike most industrial R&D or the bulk of applied science performed at the National Renewable Energy Laboratory (NREL), the purpose of basic experimental science is producing new knowledge (usually published in professional journals) that has no immediate application to the first link (the R) of a planned R&D chain. Consequently, performance objectives and metrics are far more difficult to define. My claim is that if one can successfully define metrics for evaluating and improving DOE-funded basic experimental science (which is the most difficult case), then defining such constructs for DOE-funded applied science should be much less problematic. With the publication of the DOE Standard - Implementation Guide for Quality Assurance Programs for Basic and Applied Research (DOE-ER-STD-6001-92) and the development of a conceptual framework for integrating all the DOE orders, we need to move aggressively toward the threefold next phase: (1) focusing the management elements found in DOE-ER-STD-6001-92 on the main output of national laboratories - the experimental science itself; (2) developing clearer definitions of basic experimental science as practice not just knowledge; and (3) understanding the relationship between the metrics that scientists use for evaluating the performance of DOE-funded basic experimental science, the management elements of DOE-ER-STD-6001-92, and the notion of continuous improvement.

  5. Emulsion Science Basic Principles

    CERN Document Server

    Leal-Calderon, Fernando; Schmitt, Véronique

    2007-01-01

    Emulsions are generally made out of two immiscible fluids like oil and water, one being dispersed in the second in the presence of surface-active compounds.They are used as intermediate or end products in a huge range of areas including the food, chemical, cosmetic, pharmaceutical, paint, and coating industries. Besides the broad domain of technological interest, emulsions are raising a variety of fundamental questions at the frontier between physics and chemistry. This book aims to give an overview of the most recent advances in emulsion science. The basic principles, covering aspects of emulsions from their preparation to their destruction, are presented in close relation to both the fundamental physics and the applications of these materials. The book is intended to help scientists and engineers in formulating new materials by giving them the basics of emulsion science.

  6. Technological integration in Brazilian public basic education: an analysis of the temporal evolution and the interdisciplinarity of the theme

    Directory of Open Access Journals (Sweden)

    Priscila Cadorin Nicolete

    2016-12-01

    Full Text Available The complexity inherent to technological integration in the context of basic education in the current reality of the students and the digital culture that permeates society today features a transformation in the dynamics of knowledge construction. It is difficult to connect students, fully involving them in this process when using traditional teaching and learning methods. This new context requires interdisciplinary research for better understanding, involving experts in the field of sciences and more technical areas such as engineering and computer science. To answer the question of how to handle the evolution of interdisciplinary theoretical and empirical studies related to the subject, it was developed a survey in order to understand the evolution, interdisciplinarity and the theoretical and empirical variables related to the integration of technologies in the Brazilian basic education. This article presents the results of the exploratory survey of systematic review procedures of literature in electronic databases, then bibliometric and descriptive analyzes. Among the obtained results, were identified as strategies for the integration of technologies in Brazilian public basic education: Remote Experimentation for Physics, Mobile Learning and Software teaching for practices in Mathematics classes. The studies are divided into six large areas of knowledge: Social Sciences, Decision Science, Computer Science, Engineering, Business and Mathematics, demonstrating the interdisciplinarity of the theme.

  7. Coordinating the undergraduate medical (MBBS basic sciences programme in a Nepalese medical school

    Directory of Open Access Journals (Sweden)

    Shankar PR

    2011-06-01

    Full Text Available KIST Medical College follows the curriculum of the Institute ofMedicine, Tribhuvan University. The programme aims toproduce socially responsible and competent physicians whoare willing and able to meet the existing and emergingchallenges of the national and international healthcaresystem. The first cohort of undergraduate medical students(MBBS students was admitted in November 2008 and threecohorts including the one admitted in 2008 have beenadmitted at the time of writing. The basic science subjects aretaught in an integrated, organ-system-based manner withcommunity medicine during the first two years. I wasappointed as the MBBS Phase I programme coordinator inSeptember 2008 and in this article I share my experiences ofrunning the basic sciences programme and also offersuggestions for running an efficient academic programme. Themanuscript will be of special interest to readers runningundergraduate medical programmes. The reader canunderstand our experiences in running the programme inadverse circumstances, learning to achieve greater integrationamong basic science, community medicine and clinicaldepartments, obtain information about a communitydiagnosis programme and know about running specialmodules on the medical humanities and pharmaceuticalpromotion.

  8. Adult-Rated Oceanography Part 1: A Project Integrating Ocean Sciences into Adult Basic Education Programs.

    Science.gov (United States)

    Cowles, S.; Collier, R.; Torres, M. K.

    2004-12-01

    Busy scientists seek opportunities to implement education and outreach efforts, but often don't know where to start. One easy and tested method is to form collaborations with federally-funded adult education and adult literacy programs. These programs exist in every U.S. state and territory and serve underrepresented populations through such major initiatives as adult basic education, adult secondary education (and GED preparation), and English language acquisition. These students are workers, consumers, voters, parents, grandparents, and members of every community. They have specific needs that are often overlooked in outreach activities. This presentation will describe the steps by which the Oregon Ocean Science and Math Collaborative program was developed. It is based on a partnership between the Oregon Department of Community Colleges and Workforce Development, Oregon State University College of Oceanic and Atmospheric Sciences, Oregon Sea Grant, and the OSU Hatfield Marine Science Center. It includes professional development through instructor institutes; teachers at sea and informal education opportunities; curriculum and web site development. Through the partnership described here, instructors in adult basic education programs participate in a yearlong experience in which they develop, test, and adapt innovative instructional strategies to meet the specific needs of adult learners. This, in turn, leads to new prospects for study in the areas of ocean science and math and introduces non-academic careers in marine science to a new community. Working directly with instructors, we have identified expertise level, instructional environment, instructor background and current teaching strategies used to address science literacy and numeracy goals of the adult learners in the State of Oregon. Preliminary evaluation of our ongoing project in meeting these goals will be discussed. These efforts contribute to national goals of science literacy for all, by providing

  9. Basic Principles of Animal Science. Reprinted.

    Science.gov (United States)

    Florida State Dept. of Education, Tallahassee.

    The reference book is designed to fulfill the need for organized subject matter dealing with basic principles of animal science to be incorporated into the high school agriculture curriculum. The material presented is scientific knowledge basic to livestock production. Five units contain specific information on the following topics: anatomy and…

  10. IS IT POSSIBLE TO INTEGRATE BASIC BIOLOGICAL DISCIPLINES IN A PRIVATE INSTITUTION?

    Directory of Open Access Journals (Sweden)

    L.A. Azzalis

    2008-05-01

    Full Text Available Basic biological disciplines as biochemistry, genetic and molecular biology have grown faster than any of other sciences. Moreover, those disciplines contribute to the understanding and treatment of an elevated number of illnesses. On the other hand, teachers cannot assure the graduating students that each particular discipline  is essential.  Furthermore,  those disciplines are often studied separately without any interdisciplinary integration between them.  The new curriculum proposed at Anhembi Morumbi University  - a private institution placed at São Paulo city  - incorporates learning blocks that  have been designed to integrate basic biological disciplines and clinical contents from the beginning in order to provide the stimulation and motivation to guide the  student through his learning.  The educational trend has concentrated on the following steps: 1 Biochemistry, genetic, cellular and molecular biology teachers´ from that institution have elaborated a new discipline  that was named Biologic Process. The aim of this new discipline was integrate basic biological sciences in a single content;  2  Selecting problems that could be discussed in the light of biochemistry, genetic and molecular contents; e.g. sickle cell anemia; 3 Developing  an innovative instructional method that challenges students “learn to learn” different from problem-based learning , economically unavailable at any particular university,  and  4 Assessments that measure knowledge, skills, attitudes and beliefs.  We believe that the future pedagogical system in  private health university will be a combination of “classical”  presentation of contents combined with actively involved students in the educational process and instruction based on either hypothetical  or real clinical cases in order to create  the stimulus for  the student continues to  integrate basic and clinical investigation.

  11. Evolution in health and medicine Sackler colloquium: Making evolutionary biology a basic science for medicine.

    Science.gov (United States)

    Nesse, Randolph M; Bergstrom, Carl T; Ellison, Peter T; Flier, Jeffrey S; Gluckman, Peter; Govindaraju, Diddahally R; Niethammer, Dietrich; Omenn, Gilbert S; Perlman, Robert L; Schwartz, Mark D; Thomas, Mark G; Stearns, Stephen C; Valle, David

    2010-01-26

    New applications of evolutionary biology in medicine are being discovered at an accelerating rate, but few physicians have sufficient educational background to use them fully. This article summarizes suggestions from several groups that have considered how evolutionary biology can be useful in medicine, what physicians should learn about it, and when and how they should learn it. Our general conclusion is that evolutionary biology is a crucial basic science for medicine. In addition to looking at established evolutionary methods and topics, such as population genetics and pathogen evolution, we highlight questions about why natural selection leaves bodies vulnerable to disease. Knowledge about evolution provides physicians with an integrative framework that links otherwise disparate bits of knowledge. It replaces the prevalent view of bodies as machines with a biological view of bodies shaped by evolutionary processes. Like other basic sciences, evolutionary biology needs to be taught both before and during medical school. Most introductory biology courses are insufficient to establish competency in evolutionary biology. Premedical students need evolution courses, possibly ones that emphasize medically relevant aspects. In medical school, evolutionary biology should be taught as one of the basic medical sciences. This will require a course that reviews basic principles and specific medical applications, followed by an integrated presentation of evolutionary aspects that apply to each disease and organ system. Evolutionary biology is not just another topic vying for inclusion in the curriculum; it is an essential foundation for a biological understanding of health and disease.

  12. Innovative curriculum: Integrating the bio-behavioral and social science principles across the LifeStages in basic science years.

    Science.gov (United States)

    Lele Mookerjee, Anuradha; Fischer, Bradford D; Cavanaugh, Susan; Rajput, Vijay

    2018-05-20

    Behavioral and social science integration in clinical practice improves health outcomes across the life stages. The medical school curriculum requires an integration of the behavioral and social science principles in early medical education. We developed and delivered a four-week course entitled "LifeStages" to the first year medical students. The learning objectives of the bio-behavioral and social science principles along with the cultural, economic, political, and ethical parameters were integrated across the lifespan in the curriculum matrix. We focused on the following major domains: Growth and Brain Development; Sexuality, Hormones and Gender; Sleep; Cognitive and Emotional Development; Mobility, Exercise, Injury and Safety; Nutrition, Diet and Lifestyle; Stress and coping skills, Domestic Violence; Substance Use Disorders; Pain, Illness and Suffering; End of Life, Ethics and Death along with Intergenerational issues and Family Dynamics. Collaboration from the clinical and biomedical science departments led to the dynamic delivery of the course learning objectives and content. The faculty developed and led a scholarly discussion, using the case of a multi-racial, multi-generational family during Active Learning Group (ALG) sessions. The assessment in the LifeStages course involved multiple assessment tools: including the holistic assessment by the faculty facilitator inside ALGs, a Team-Based Learning (TBL) exercise, multiple choice questions and Team Work Assessment during which the students had to create a clinical case on a LifeStages domain along with the facilitators guide and learning objectives.

  13. Exploring Attractiveness of the Basic Sciences for Female Physicians.

    Science.gov (United States)

    Yamazaki, Yuka; Fukushima, Shinji; Kozono, Yuki; Uka, Takanori; Marui, Eiji

    2018-01-01

    In Japan, traditional gender roles of women, especially the role of motherhood, may cause early career resignations in female physicians and a shortage of female researchers. Besides this gender issue, a general physician shortage is affecting basic science fields. Our previous study suggested that female physicians could be good candidates for the basic sciences because such work offers good work-life balance. However, the attractiveness for female physicians of working in the basic sciences, including work-life balance, is not known. In a 2012 nationwide cross-sectional questionnaire survey, female physicians holding tenured positions in the basic sciences at Japan's medical schools were asked an open-ended question about positive aspects of basic sciences that clinical medicine lacks, and we analyzed 58 respondents' comments. Qualitative analysis using the Kawakita Jiro method revealed four positive aspects: research attractiveness, priority on research productivity, a healthy work-life balance, and exemption from clinical duties. The most consistent positive aspect was research attractiveness, which was heightened by medical knowledge and clinical experience. The other aspects were double-edged swords; for example, while the priority on research productivity resulted in less gender segregation, it sometimes created tough competition, and while exemption from clinical duties contributed to a healthy work-life balance, it sometimes lowered motivation as a physician and provided unstable income. Overall, if female physicians lack an intrinsic interest in research and seek good work-life balance, they may drop out of research fields. Respecting and cultivating students' research interest is critical to alleviating the physician shortage in the basic sciences.

  14. A model for integrating clinical care and basic science research, and pitfalls of performing complex research projects for addressing a clinical challenge.

    Science.gov (United States)

    Steck, R; Epari, D R; Schuetz, M A

    2010-07-01

    The collaboration of clinicians with basic science researchers is crucial for addressing clinically relevant research questions. In order to initiate such mutually beneficial relationships, we propose a model where early career clinicians spend a designated time embedded in established basic science research groups, in order to pursue a postgraduate qualification. During this time, clinicians become integral members of the research team, fostering long term relationships and opening up opportunities for continuing collaboration. However, for these collaborations to be successful there are pitfalls to be avoided. Limited time and funding can lead to attempts to answer clinical challenges with highly complex research projects characterised by a large number of "clinical" factors being introduced in the hope that the research outcomes will be more clinically relevant. As a result, the complexity of such studies and variability of its outcomes may lead to difficulties in drawing scientifically justified and clinically useful conclusions. Consequently, we stress that it is the basic science researcher and the clinician's obligation to be mindful of the limitations and challenges of such multi-factorial research projects. A systematic step-by-step approach to address clinical research questions with limited, but highly targeted and well defined research projects provides the solid foundation which may lead to the development of a longer term research program for addressing more challenging clinical problems. Ultimately, we believe that it is such models, encouraging the vital collaboration between clinicians and researchers for the work on targeted, well defined research projects, which will result in answers to the important clinical challenges of today. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Clinical Correlations as a Tool in Basic Science Medical Education

    Directory of Open Access Journals (Sweden)

    Brenda J. Klement

    2016-01-01

    Full Text Available Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1 Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2 Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3 Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4 Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5 Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills.

  16. Basic Energy Sciences FY 2011 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-01-01

    This report provides a collection of research abstracts for more than 1,300 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2011 at some 180 institutions across the U.S. This volume is organized along the three BES divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  17. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, Hans; Balogh, Werner

    2014-05-01

    The basic space science initiative was a long-term effort for the development of astronomy and space science through regional and international cooperation in this field on a worldwide basis, particularly in developing nations. Basic space science workshops were co-sponsored and co-organized by ESA, JAXA, and NASA. A series of workshops on basic space science was held from 1991 to 2004 (India 1991, Costa Rica and Colombia 1992, Nigeria 1993, Egypt 1994, Sri Lanka 1995, Germany 1996, Honduras 1997, Jordan 1999, France 2000, Mauritius 2001, Argentina 2002, and China 2004; http://neutrino.aquaphoenix.com/un-esa/) and addressed the status of astronomy in Asia and the Pacific, Latin America and the Caribbean, Africa, and Western Asia. Through the lead of the National Astronomical Observatory Japan, astronomical telescope facilities were inaugurated in seven developing nations and planetariums were established in twenty developing nations based on the donation of respective equipment by Japan.Pursuant to resolutions of the Committee on the Peaceful Uses of Outer Space of the United Nations (COPUOS) and its Scientific and Technical Subcommittee, since 2005, these workshops focused on the preparations for and the follow-ups to the International Heliophysical Year 2007 (UAE 2005, India 2006, Japan 2007, Bulgaria 2008, South Korea 2009; www.unoosa.org/oosa/SAP/bss/ihy2007/index.html). IHY's legacy is the current operation of 16 worldwide instrument arrays with more than 1000 instruments recording data on solar-terrestrial interaction from coronal mass ejections to variations of the total electron content in the ionosphere (http://iswisecretariat.org/). Instruments are provided to hosting institutions by entities of Armenia, Brazil, France, Israel, Japan, Switzerland, and the United States. Starting in 2010, the workshops focused on the International Space Weather Initiative (ISWI) as mandated in a three-year-work plan as part of the deliberations of COPUOS. Workshops on ISWI

  18. Basic Energy Sciences FY 2012 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-01-01

    This report provides a collection of research abstracts and highlights for more than 1,400 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2012 at some 180 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  19. Basic Energy Sciences FY 2014 Research Summaries

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-01-01

    This report provides a collection of research abstracts and highlights for more than 1,200 research projects funded by the Office of Basic Energy Sciences (BES) in Fiscal Year 2014 at some 200 institutions across the U.S. This volume is organized along the three BES Divisions: Materials Sciences and Engineering; Chemical Sciences, Geosciences, and Biosciences; and Scientific User Facilities.

  20. An Analysison Provincial Medical Science Basic Research Competitiveness Based on the National Natural Science Foundation of China

    Directory of Open Access Journals (Sweden)

    Xing Xia

    2017-06-01

    Full Text Available [Purpose/significance] The National Natural Science Foundation of China (NSFC is one of the most important channels to support basic research in China. Competition for funding by the NSFC has been a very important indicator to measure the basic research level of various province and scientific research institutions. [Method/process] By combing and analyzing the status quo of NSFC in medical science, it is helpful to narrow the provincial gap and improve the basic research of medical science in China. Based on the project information of NSFC and previous scholars’ research, the paper update the index of basic research competitiveness, and analyzes project number and project funding of medical science during 2006-2016. At the same time, the competitiveness of medical science basic research and its changing trend in 31 provinces of China are analyzed. [Result/conclusion] The result shows that, in recent years, China’s basic scientific research has greatly improved, but there is a large gap between the provinces.

  1. 75 FR 65363 - Basic Behavioral and Social Science Opportunity Network (OppNet)

    Science.gov (United States)

    2010-10-22

    ... public meeting to promote and publicize the Basic Behavioral and Social Science Opportunity Network (Opp... . Background: The Basic Behavioral and Social Science Opportunity Network (OppNet) is a trans-NIH initiative to expand the agency's funding of basic behavioral and social sciences research (b-BSSR). OppNet prioritizes...

  2. Integration of Social Sciences in Nuclear Research

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, M.; Eggermont, G

    2002-04-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised.

  3. Integration of Social Sciences in Nuclear Research

    International Nuclear Information System (INIS)

    Bovy, M.; Eggermont, G.

    2002-01-01

    In 1998, SCK-CEN initiated a programme to integrate social sciences into its scientific and technological projects. Activities were started on the following issues: (1) sustainable development; (2) ethics and decision making in nuclear waste management (transgenerational ethics/retrievability; socio-psychological aspect and local involvement); (3) law and liability (medical applications and the basic safety standards implementation); (4) decision making (emergency management); safety culture; ALARA and ethical choices in protection). Two working groups were created to discuss two broad items: (1) ethical choices in radiation protection; and (2) the role and culture of the expert. Progress and major achievements in SCK-CEN's social science programme in 2001 are summarised

  4. A Comparison of Science Word Meaning in the Classrooms of Two Different Countries: Scottish Integrated Science in Scotland and in Malaysia.

    Science.gov (United States)

    Isa, A. M.; Maskill, R.

    1982-01-01

    Investigates the difference between two groups of adolescents learning basic science from the same curriculum (Scottish Integrated Science) but in two different languages and cultural settings. Word association tests distinguished between the groups, with the Malay children producing more associations than the Scottish children. (Author/JJD)

  5. Conserving Our Environment. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 13.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit focuses on: (1) basic ecological and conservation concepts; (2) problems and complexities of…

  6. Integrating Climate Change Science and Sustainability in Environmental Science, Sociology, Philosophy and Business Courses.

    Science.gov (United States)

    Boudrias, M. A.; Cantzler, J.; Croom, S.; Huston, C.; Woods, M.

    2015-12-01

    Courses on sustainability can be taught from multiple perspectives with some focused on specific areas (environmental, socio-cultural, economic, ethics) and others taking a more integrated approach across areas of sustainability and academic disciplines. In conjunction with the Climate Change Education Program efforts to enhance climate change literacy with innovative approaches, resources and communication strategies developed by Climate Education Partners were used in two distinct ways to integrate climate change science and impacts into undergraduate and graduate level courses. At the graduate level, the first lecture in the MBA program in Sustainable Supply Chain Management is entirely dedicated to climate change science, local and global impacts and discussions about key messages to communicate to the business community. Basic science concepts are integrated with discussions about mitigation and adaptation focused on business leaders. The concepts learned are then applied to the semester-long business plan project for the students. At the undergraduate level, a new model of comprehensive integration across disciplines was implemented in Spring 2015 across three courses on Sustainability each with a specific lens: Natural Science, Sociology and Philosophy. All three courses used climate change as the 'big picture' framing concept and had similar learning objectives creating a framework where lens-specific topics, focusing on depth in a discipline, were balanced with integrated exercises across disciplines providing breadth and possibilities for integration. The comprehensive integration project was the creation of the climate action plan for the university with each team focused on key areas of action (water, energy, transportation, etc.) and each team built with at least one member from each class ensuring a natural science, sociological and philosophical perspective. The final project was presented orally to all three classes and an integrated paper included

  7. Solar heating. Vol. 1. Basic knowledge of thermal science

    Energy Technology Data Exchange (ETDEWEB)

    Jauffret, C.

    1982-01-01

    This document deals with general basic knowledge of thermal sciences: basics of thermodynamics, heat transfer, studies of thermal exchanges in the building industry including ventilation and the effects of the wind, basics and techniques of central heating and refrigeration (technologies, calculations, thermodynamic cycles and refrigerating machines).

  8. Building the Capacity for Climate Services: Thoughts on Training Next Generation Climate Science Integrators

    Science.gov (United States)

    Garfin, G. M.; Brugger, J.; Gordon, E. S.; Barsugli, J. J.; Rangwala, I.; Travis, W.

    2015-12-01

    For more than a decade, stakeholder needs assessments and reports, including the recent National Climate Assessment, have pointed out the need for climate "science translators" or "science integrators" who can help bridge the gap between the cultures and contexts of researchers and decision-makers. Integration is important for exchanging and enhancing knowledge, building capacity to use climate information in decision making, and fostering more robust planning for decision-making in the context of climate change. This talk will report on the characteristics of successful climate science integrators, and a variety of models for training the upcoming generation of climate science integrators. Science integration characteristics identified by an experienced vanguard in the U.S. include maintaining credibility in both the scientific and stakeholder communities, a basic respect for stakeholders demonstrated through active listening, and a deep understanding of the decision-making context. Drawing upon the lessons of training programs for Cooperative Extension, public health professionals, and natural resource managers, we offer ideas about training next generation climate science integrators. Our model combines training and development of skills in interpersonal relations, communication of science, project implementation, education techniques and practices - integrated with a strong foundation in disciplinary knowledge.

  9. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy.

    Science.gov (United States)

    Schoeman, J P; van Schoor, M; van der Merwe, L L; Meintjes, R A

    2009-03-01

    In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small-group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem-based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  10. Utilization and acceptance of virtual patients in veterinary basic sciences - the vetVIP-project.

    Science.gov (United States)

    Kleinsorgen, Christin; Kankofer, Marta; Gradzki, Zbigniew; Mandoki, Mira; Bartha, Tibor; von Köckritz-Blickwede, Maren; Naim, Hassan Y; Beyerbach, Martin; Tipold, Andrea; Ehlers, Jan P

    2017-01-01

    virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.

  11. FWP executive summaries: basic energy sciences materials sciences and engineering program (SNL/NM).

    Energy Technology Data Exchange (ETDEWEB)

    Samara, George A.; Simmons, Jerry A.

    2006-07-01

    This report presents an Executive Summary of the various elements of the Materials Sciences and Engineering Program which is funded by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy at Sandia National Laboratories, New Mexico. A general programmatic overview is also presented.

  12. The Junior High School Integrated Science: The Actual Teaching Process in the Perspective of an Ethnographer

    Science.gov (United States)

    Adu-Gyamfi, Kenneth; Ampiah, Joseph Ghartey

    2016-01-01

    Science education at the Basic School (Primary and Junior High School) serves as the foundation upon which higher levels of science education are pivoted. This ethnographic study sought to investigate the teaching of Integrated Science at the Junior High School (JHS) level in the classrooms of two science teachers in two schools of differing…

  13. Nigerian Journal of Basic and Applied Sciences: Editorial Policies

    African Journals Online (AJOL)

    The Nigerian Journal of Basic and Applied Sciences is a biannual journal ... S.A. Isezuo, College of Health Sciences, UsmanuDanfodiyo University, Sokoto, ... of Mathematics, Statistics Unit, UsmanuDanfodiyo University, Sokoto, Nigeria. 7.

  14. Basic concepts in social sciences I

    NARCIS (Netherlands)

    Hoede, C.

    2000-01-01

    In this paper the results are given of an investigation into concepts from Economics, Organization Theory, Political Science, Psychology and Sociology. The goal of this investigation was to find out whether there is a set of concepts that may be considered to be basic to all these five social

  15. A case-based, small-group cooperative learning course in preclinical veterinary science aimed at bridging basic science and clinical literacy

    Directory of Open Access Journals (Sweden)

    J.P. Schoeman

    2009-05-01

    Full Text Available In 1999 a dedicated problem-based learning course was introduced into the lecture-based preclinical veterinary curriculum of the University of Pretoria. The Introduction to Clinical Studies Course combines traditional lectures, practical sessions, student self-learning and guided tutorials. The self-directed component of the course utilises case-based, small group cooperative learning as an educational vehicle to link basic science with clinical medicine. The aim of this article is to describe the objectives and structure of the course and to report the results of the assessment of the students' perceptions on some aspects of the course. Students reacted very positively to the ability of the course to equip them with problem-solving skills. Students indicated positive perceptions about the workload of the course. There were, however, significantly lower scores for the clarity of the course objectives. Although the study guide for the course is very comprehensive, the practice regarding the objectives is still uncertain. It is imperative to set clear objectives in non-traditional, student-centred courses. The objectives have to be explained at the outset and reiterated throughout the course. Tutors should also communicate the rationale behind problem based learning as a pedagogical method to the students. Further research is needed to verify the effectiveness of this course in bridging the gap between basic science and clinical literacy in veterinary science. Ongoing feedback and assessment of the management and content are important to refine this model for integrating basic science with clinical literacy.

  16. A critical narrative review of transfer of basic science knowledge in health professions education.

    Science.gov (United States)

    Castillo, Jean-Marie; Park, Yoon Soo; Harris, Ilene; Cheung, Jeffrey J H; Sood, Lonika; Clark, Maureen D; Kulasegaram, Kulamakan; Brydges, Ryan; Norman, Geoffrey; Woods, Nicole

    2018-02-08

    'Transfer' is the application of a previously learned concept to solve a new problem in another context. Transfer is essential for basic science education because, to be valuable, basic science knowledge must be transferred to clinical problem solving. Therefore, better understanding of interventions that enhance the transfer of basic science knowledge to clinical reasoning is essential. This review systematically identifies interventions described in the health professions education (HPE) literature that document the transfer of basic science knowledge to clinical reasoning, and considers teaching and assessment strategies. A systematic search of the literature was conducted. Articles related to basic science teaching at the undergraduate level in HPE were analysed using a 'transfer out'/'transfer in' conceptual framework. 'Transfer out' refers to the application of knowledge developed in one learning situation to the solving of a new problem. 'Transfer in' refers to the use of previously acquired knowledge to learn from new problems or learning situations. Of 9803 articles initially identified, 627 studies were retrieved for full text evaluation; 15 were included in the literature review. A total of 93% explored 'transfer out' to clinical reasoning and 7% (one article) explored 'transfer in'. Measures of 'transfer out' fostered by basic science knowledge included diagnostic accuracy over time and in new clinical cases. Basic science knowledge supported learning - 'transfer in' - of new related content and ultimately the 'transfer out' to diagnostic reasoning. Successful teaching strategies included the making of connections between basic and clinical sciences, the use of commonsense analogies, and the study of multiple clinical problems in multiple contexts. Performance on recall tests did not reflect the transfer of basic science knowledge to clinical reasoning. Transfer of basic science knowledge to clinical reasoning is an essential component of HPE that

  17. Basic energy sciences at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Postma, H.

    1985-01-01

    The testimony expresses concerns about two areas of the FY-86 budget and goes on to discuss basic energy science programs at ORNL, scientific results, support of technologies, user facilities, recent significant discoveries, support of major facilities and ORNL trends in basic research

  18. Storytelling in Earth sciences: The eight basic plots

    Science.gov (United States)

    Phillips, Jonathan

    2012-11-01

    Reporting results and promoting ideas in science in general, and Earth science in particular, is treated here as storytelling. Just as in literature and drama, storytelling in Earth science is characterized by a small number of basic plots. Though the list is not exhaustive, and acknowledging that multiple or hybrid plots and subplots are possible in a single piece, eight standard plots are identified, and examples provided: cause-and-effect, genesis, emergence, destruction, metamorphosis, convergence, divergence, and oscillation. The plots of Earth science stories are not those of literary traditions, nor those of persuasion or moral philosophy, and deserve separate consideration. Earth science plots do not conform those of storytelling more generally, implying that Earth scientists may have fundamentally different motivations than other storytellers, and that the basic plots of Earth Science derive from the characteristics and behaviors of Earth systems. In some cases preference or affinity to different plots results in fundamentally different interpretations and conclusions of the same evidence. In other situations exploration of additional plots could help resolve scientific controversies. Thus explicit acknowledgement of plots can yield direct scientific benefits. Consideration of plots and storytelling devices may also assist in the interpretation of published work, and can help scientists improve their own storytelling.

  19. Utilization and acceptance of virtual patients in veterinary basic sciences – the vetVIP-project

    Directory of Open Access Journals (Sweden)

    Kleinsorgen, Christin

    2017-05-01

    .Conclusion: Veterinary virtual patients in basic sciences can be introduced and used for the presentation of integrative clinical case scenarios. Student post-course comments also supported the conclusion that overall the virtual cases increased their motivation for learning veterinary basic sciences.

  20. Multimedia Bootcamp: a health sciences library provides basic training to promote faculty technology integration.

    Science.gov (United States)

    Ramsey, Ellen C

    2006-04-25

    Recent research has shown a backlash against the enthusiastic promotion of technological solutions as replacements for traditional educational content delivery. Many institutions, including the University of Virginia, have committed staff and resources to supporting state-of-the-art, showpiece educational technology projects. However, the Claude Moore Health Sciences Library has taken the approach of helping Health Sciences faculty be more comfortable using technology in incremental ways for instruction and research presentations. In July 2004, to raise awareness of self-service multimedia resources for instructional and professional development needs, the Library conducted a "Multimedia Bootcamp" for nine Health Sciences faculty and fellows. Case study. Program stewardship by a single Library faculty member contributed to the delivery of an integrated learning experience. The amount of time required to attend the sessions and complete homework was the maximum fellows had to devote to such pursuits. The benefit of introducing technology unfamiliar to most fellows allowed program instructors to start everyone at the same baseline while not appearing to pass judgment on the technology literacy skills of faculty. The combination of wrapping the program in the trappings of a fellowship and selecting fellows who could commit to a majority of scheduled sessions yielded strong commitment from participants as evidenced by high attendance and a 100% rate of assignment completion. Response rates to follow-up evaluation requests, as well as continued use of Media Studio resources and Library expertise for projects begun or conceived during Bootcamp, bode well for the long-term success of this program. An incremental approach to integrating technology with current practices in instruction and presentation provided a supportive yet energizing environment for Health Sciences faculty. Keys to this program were its faculty focus, traditional hands-on instruction, unrestricted

  1. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    Science.gov (United States)

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  2. Preparing medical students for future learning using basic science instruction.

    Science.gov (United States)

    Mylopoulos, Maria; Woods, Nicole

    2014-07-01

    The construct of 'preparation for future learning' (PFL) is understood as the ability to learn new information from available resources, relate new learning to past experiences and demonstrate innovation and flexibility in problem solving. Preparation for future learning has been proposed as a key competence of adaptive expertise. There is a need for educators to ensure that opportunities are provided for students to develop PFL ability and that assessments accurately measure the development of this form of competence. The objective of this research was to compare the relative impacts of basic science instruction and clinically focused instruction on performance on a PFL assessment (PFLA). This study employed a 'double transfer' design. Fifty-one pre-clerkship students were randomly assigned to either basic science instruction or clinically focused instruction to learn four categories of disease. After completing an initial assessment on the learned material, all participants received clinically focused instruction for four novel diseases and completed a PFLA. The data from the initial assessment and the PFLA were submitted to independent-sample t-tests. Mean ± standard deviation [SD] scores on the diagnostic cases in the initial assessment were similar for participants in the basic science (0.65 ± 0.11) and clinical learning (0.62 ± 0.11) conditions. The difference was not significant (t[42] = 0.90, p = 0.37, d = 0.27). Analysis of the diagnostic cases on the PFLA revealed significantly higher mean ± SD scores for participants in the basic science learning condition (0.72 ± 0.14) compared with those in the clinical learning condition (0.63 ± 0.15) (t[42] = 2.02, p = 0.05, d = 0.62). Our results show that the inclusion of basic science instruction enhanced the learning of novel related content. We discuss this finding within the broader context of research on basic science instruction, development of adaptive expertise and assessment

  3. Basic science research in urology training.

    Science.gov (United States)

    Eberli, D; Atala, A

    2009-04-01

    The role of basic science exposure during urology training is a timely topic that is relevant to urologic health and to the training of new physician scientists. Today, researchers are needed for the advancement of this specialty, and involvement in basic research will foster understanding of basic scientific concepts and the development of critical thinking skills, which will, in turn, improve clinical performance. If research education is not included in urology training, future urologists may not be as likely to contribute to scientific discoveries.Currently, only a minority of urologists in training are currently exposed to significant research experience. In addition, the number of physician-scientists in urology has been decreasing over the last two decades, as fewer physicians are willing to undertake a career in academics and perform basic research. However, to ensure that the field of urology is driving forward and bringing novel techniques to patients, it is clear that more research-trained urologists are needed. In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  4. Online Learning Tools as Supplements for Basic and Clinical Science Education.

    Science.gov (United States)

    Ellman, Matthew S; Schwartz, Michael L

    2016-01-01

    Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the "flipped classroom" pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  5. 191 Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    User

    2011-07-21

    Jul 21, 2011 ... Achievement Test in Basic showed Science (SATBS) were employed as .... Higher Studies; Teacher-Students opinion and found out that students .... Factors and Pupils Leaning Outcome in Bended Primary Science Project,.

  6. Basic and Applied Science Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, Paul W.

    2005-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science using four experimental areas. LANSCE has two areas that provide neutrons generated by the 800-MeV proton beam striking tungsten target systems. A third area uses the proton beam for radiography. The fourth area uses 100 MeV protons to produce medical radioisotopes. This paper describes the four LANSCE experimental areas, gives nuclear science highlights of the past operating period, and discusses plans for the future

  7. Journal of Mind and Medical Sciences: translational and integrative mission

    OpenAIRE

    David L. Rowland; Ion G. Motofei

    2017-01-01

    Initiated four years ago, Journal of Mind and Medical Sciences (J Mind Med Sci.) established the mission to publish papers on mental and medical topics in distinct but closely interrelated domains. The editorial policy especially encourages interdisciplinary and integrative perspectives, being equally focused on basic research and clinical investigations and short reports. The journal adheres to the philosophy that high quality, original ideas and information should be readily accessibl...

  8. Editorial Commentary: A Model for Shoulder Rotator Cuff Repair and for Basic Science Investigations.

    Science.gov (United States)

    Brand, Jefferson C

    2018-04-01

    "Breaking the fourth wall" is a theater convention where the narrator or character speaks directly to the audience. As an Assistant Editor-in-Chief, as I comment on a recent basic science study investigating rotator cuff repair, I break the fourth wall and articulate areas of basic science research excellence that align with the vision that we hold for our journal. Inclusion of a powerful video strengthens the submission. We prefer to publish clinical videos in our companion journal, Arthroscopy Techniques, and encourage basic science video submissions to Arthroscopy. Basic science research requires step-by-tedious-step analogous to climbing a mountain. Establishment of a murine rotator cuff repair model was rigorous and research intensive, biomechanically, radiographically, histologically, and genetically documented, a huge step toward the bone-to-tendon healing research summit. This research results in a model for both rotator cuff repair and the pinnacle of quality, basic science research. Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  9. Fundamentals of neurogastroenterology: basic science.

    Science.gov (United States)

    Grundy, David; Al-Chaer, Elie D; Aziz, Qasim; Collins, Stephen M; Ke, Meiyun; Taché, Yvette; Wood, Jackie D

    2006-04-01

    The focus of neurogastroenterology in Rome II was the enteric nervous system (ENS). To avoid duplication with Rome II, only advances in ENS neurobiology after Rome II are reviewed together with stronger emphasis on interactions of the brain, spinal cord, and the gut in terms of relevance for abdominal pain and disordered gastrointestinal function. A committee with expertise in selective aspects of neurogastroenterology was invited to evaluate the literature and provide a consensus overview of the Fundamentals of Neurogastroenterology textbook as they relate to functional gastrointestinal disorders (FGIDs). This review is an abbreviated version of a fuller account that appears in the forthcoming book, Rome III. This report reviews current basic science understanding of visceral sensation and its modulation by inflammation and stress and advances in the neurophysiology of the ENS. Many of the concepts are derived from animal studies in which the physiologic mechanisms underlying visceral sensitivity and neural control of motility, secretion, and blood flow are examined. Impact of inflammation and stress in experimental models relative to FGIDs is reviewed as is human brain imaging, which provides a means for translating basic science to understanding FGID symptoms. Investigative evidence and emerging concepts implicate dysfunction in the nervous system as a significant factor underlying patient symptoms in FGIDs. Continued focus on neurogastroenterologic factors that underlie the development of symptoms will lead to mechanistic understanding that is expected to directly benefit the large contingent of patients and care-givers who deal with FGIDs.

  10. A brief simulation intervention increasing basic science and clinical knowledge

    Directory of Open Access Journals (Sweden)

    Maria L. Sheakley

    2016-04-01

    Full Text Available Background: The United States Medical Licensing Examination (USMLE is increasing clinical content on the Step 1 exam; thus, inclusion of clinical applications within the basic science curriculum is crucial. Including simulation activities during basic science years bridges the knowledge gap between basic science content and clinical application. Purpose: To evaluate the effects of a one-off, 1-hour cardiovascular simulation intervention on a summative assessment after adjusting for relevant demographic and academic predictors. Methods: This study was a non-randomized study using historical controls to evaluate curricular change. The control group received lecture (n l=515 and the intervention group received lecture plus a simulation exercise (nl+s=1,066. Assessment included summative exam questions (n=4 that were scored as pass/fail (≥75%. USMLE-style assessment questions were identical for both cohorts. Descriptive statistics for variables are presented and odds of passage calculated using logistic regression. Results: Undergraduate grade point ratio, MCAT-BS, MCAT-PS, age, attendance at an academic review program, and gender were significant predictors of summative exam passage. Students receiving the intervention were significantly more likely to pass the summative exam than students receiving lecture only (P=0.0003. Discussion: Simulation plus lecture increases short-term understanding as tested by a written exam. A longitudinal study is needed to assess the effect of a brief simulation intervention on long-term retention of clinical concepts in a basic science curriculum.

  11. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School

    Directory of Open Access Journals (Sweden)

    Olopade FE

    2016-07-01

    Full Text Available Funmilayo Eniola Olopade,1 Oluwatosin Adekunle Adaramoye,2 Yinusa Raji,3 Abiodun Olubayo Fasola,4 Emiola Oluwabunmi Olapade-Olaopa5 1Department of Anatomy, 2Department of Biochemistry, 3Department of Physiology, 4Department of Oral Pathology, 5Department of Surgery, College of Medicine, University of Ibadan, Ibadan, Nigeria Abstract: The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the “old” curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula

  12. Basic Pharmaceutical Sciences Examination as a Predictor of Student Performance during Clinical Training.

    Science.gov (United States)

    Fassett, William E.; Campbell, William H.

    1984-01-01

    A comparison of Basic Pharmaceutical Sciences Examination (BPSE) results with student performance evaluations in core clerkships, institutional and community externships, didactic and clinical courses, and related basic science coursework revealed the BPSE does not predict student performance during clinical instruction. (MSE)

  13. Pharmacology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2013-08-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed course directors of basic pharmacology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-nine of sixty-seven (73.1 percent) U.S. and Canadian dental schools. The findings suggest the following: 1) substantial variation exists in instructional hours, faculty affiliation, placement within curriculum, class size, and interdisciplinary nature of pharmacology courses; 2) pharmacology course content emphasis is similar among schools; 3) the number of contact hours in pharmacology has remained stable over the past three decades; 4) recent curricular changes were often directed towards enhancing the integrative and clinically relevant aspects of pharmacology instruction; and 5) a trend toward innovative content delivery, such as use of computer-assisted instruction applications, is evident. Data, derived from this study, may be useful to pharmacology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  14. Integrating Forensic Science.

    Science.gov (United States)

    Funkhouser, John; Deslich, Barbara J.

    2000-01-01

    Explains the implementation of forensic science in an integrated curriculum and discusses the advantages of this approach. Lists the forensic science course syllabi studied in three high schools. Discusses the unit on polymers in detail. (YDS)

  15. The United Nations Basic Space Science Initiative

    Science.gov (United States)

    Haubold, H. J.

    2006-08-01

    Pursuant to recommendations of the United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/ European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contribute to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) concurrent design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of nonextensive statistical mechanics. Beginning in 2005, the workshops focus on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world-wide instrument arrays as lead by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops. Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  16. Teaching Basic Probability in Undergraduate Statistics or Management Science Courses

    Science.gov (United States)

    Naidu, Jaideep T.; Sanford, John F.

    2017-01-01

    Standard textbooks in core Statistics and Management Science classes present various examples to introduce basic probability concepts to undergraduate business students. These include tossing of a coin, throwing a die, and examples of that nature. While these are good examples to introduce basic probability, we use improvised versions of Russian…

  17. Integrating art into science education: a survey of science teachers' practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-07-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science teachers (n = 66). A pedagogical model for science teachers' art integration emerged from a qualitative content analysis conducted on examples of art integration. In the model, art integration is characterised as integration through content and activities. Whilst the links in the content were facilitated either directly between concepts and ideas or indirectly through themes or artefacts, the integration through activity often connected an activity in one domain and a concept, idea or artefact in the other domain with the exception of some activities that could belong to both domains. Moreover, the examples of art integration in everyday classroom did not include expression of emotions often associated with art. In addition, quantitative part of the survey confirmed that integration is infrequent in all mapped areas. The findings of this study have implications for science teacher education that should offer opportunities for more consistent art integration.

  18. Embryology and histology education in North American dental schools: the Basic Science Survey Series.

    Science.gov (United States)

    Burk, Dorothy T; Lee, Lisa M J; Lambert, H Wayne

    2013-06-01

    As part of the Basic Science Survey Series (BSSS) for Dentistry, members of the American Dental Education Association (ADEA) Anatomical Sciences Section surveyed faculty members teaching embryology and histology courses at North American dental schools. The survey was designed to assess, among other things, curriculum content, utilization of laboratories, use of computer-assisted instruction (CAI), and recent curricular changes. Responses were received from fifty-nine (88.1 percent) of the sixty-seven U.S. and Canadian dental schools. Findings suggest the following: 1) a trend toward combining courses is evident, though the integration was predominantly discipline-based; 2) embryology is rarely taught as a stand-alone course, as content is often covered in gross anatomy, oral histology, and/or in an integrated curriculum; 3) the number of contact hours in histology is decreasing; 4) a trend toward reduction in formal laboratory sessions, particularly in embryology, is ongoing; and 5) use of CAI tools, including virtual microscopy, in both embryology and histology has increased. Additionally, embryology and histology content topic emphasis is identified within this study. Data, derived from this study, may be useful to new instructors, curriculum and test construction committees, and colleagues in the anatomical sciences, especially when determining a foundational knowledge base.

  19. Welding As Science: Applying Basic Engineering Principles to the Discipline

    Science.gov (United States)

    Nunes, A. C., Jr.

    2010-01-01

    This Technical Memorandum provides sample problems illustrating ways in which basic engineering science has been applied to the discipline of welding. Perhaps inferences may be drawn regarding optimal approaches to particular welding problems, as well as for the optimal education for welding engineers. Perhaps also some readers may be attracted to the science(s) of welding and may make worthwhile contributions to the discipline.

  20. Engaging Oral Health Students in Learning Basic Science Through Assessment That Weaves in Personal Experience.

    Science.gov (United States)

    Leadbeatter, Delyse; Gao, Jinlong

    2018-04-01

    Learning basic science forms an essential foundation for oral health therapy and dentistry, but frequently students perceive it as difficult, dry, and disconnected from clinical practice. This perception is encouraged by assessment methods that reward fact memorization, such as objective examinations. This study evaluated use of a learner-centered assessment portfolio designed to increase student engagement with basic science in an oral health therapy program at the University of Sydney, Australia. The aim of this qualitative study based on focus groups was to investigate students' engagement with basic science courses following introduction of the portfolio. Three assessments were conducted in three subsequent semesters: one based on students' interest in everyday phenomena (one student, for example, explored why she had red hair); the second focussed on scientific evidence and understanding of systemic diseases; and the third explored relations between oral and general health. Students were encouraged to begin with issues from their personal experience or patient care, to focus on what they were curious about, and to ask questions they really cared about. Each student prepared a written report and gave an oral presentation to the entire cohort. After the portfolios were completed, the authors held focus groups with two cohorts of students (N=21) in 2016 and analyzed the results using Zepke's framework for student engagement research. The results showed that the students successfully interweaved personal experience into their studies and that it provided significant motivation for learning. The students described their learning in terms of connection to themselves, their peer community, and their profession. Many additional benefits were identified, from increased student engagement in all courses to appreciation of the relevance of basic science. The findings should encourage dental and allied dental educators to reconsider the effects of assessments and seek

  1. Basic science and energy research sector profile: Background for the National Energy Strategy

    Energy Technology Data Exchange (ETDEWEB)

    March, F.; Ashton, W.B.; Kinzey, B.R.; McDonald, S.C.; Lee, V.E.

    1990-11-01

    This Profile report provides a general perspective on the role of basic science in the spectrum of research and development in the United States, and basic research's contributions to the goals of the National Energy Strategy (NES). It includes selected facts, figures, and analysis of strategic issues affecting the future of science in the United States. It is provided as background for people from government, the private sector, academia, and the public, who will be reviewing the NES in the coming months; and it is intended to serve as the basis for discussion of basic science issues within the context of the developing NES.

  2. Restructuring a basic science course for core competencies: an example from anatomy teaching.

    Science.gov (United States)

    Gregory, Jeremy K; Lachman, Nirusha; Camp, Christopher L; Chen, Laura P; Pawlina, Wojciech

    2009-09-01

    Medical schools revise their curricula in order to develop physicians best skilled to serve the public's needs. To ensure a smooth transition to residency programs, undergraduate medical education is often driven by the six core competencies endorsed by the Accreditation Council for Graduate Medical Education (ACGME): patient care, medical knowledge, practice-based learning, interpersonal skills, professionalism, and systems-based practice. Recent curricular redesign at Mayo Medical School provided an opportunity to restructure anatomy education and integrate radiology with first-year gross and developmental anatomy. The resulting 6-week (120-contact-hour) human structure block provides students with opportunities to learn gross anatomy through dissection, radiologic imaging, and embryologic correlation. We report more than 20 educational interventions from the human structure block that may serve as a model for incorporating the ACGME core competencies into basic science and early medical education. The block emphasizes clinically-oriented anatomy, invites self- and peer-evaluation, provides daily formative feedback through an audience response system, and employs team-based learning. The course includes didactic briefing sessions and roles for students as teachers, leaders, and collaborators. Third-year medical students serve as teaching assistants. With its clinical focus and competency-based design, the human structure block connects basic science with best-practice clinical medicine.

  3. Basic science research and education: a priority for training and capacity building in developing countries.

    Science.gov (United States)

    Deckelbaum, Richard J; Ntambi, James M; Wolgemuth, Debra J

    2011-09-01

    This article provides evidence that basic science research and education should be key priorities for global health training, capacity building, and practice. Currently, there are tremendous gaps between strong science education and research in developed countries (the North) as compared to developing countries (the South). In addition, science research and education appear as low priorities in many developing countries. The need to stress basic science research beyond the typical investment of infectious disease basic service and research laboratories in developing areas is significant in terms of the benefits, not only to education, but also for economic strengthening and development of human resources. There are some indications that appreciation of basic science research education and training is increasing, but this still needs to be applied more rigorously and strengthened systematically in developing countries. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Integrating psychoeducation in a basic computer skills course for people suffering from social anxiety: participants' experiences

    Directory of Open Access Journals (Sweden)

    Löhr HD

    2011-08-01

    Full Text Available Hildegard D Löhr1,2, Jan H Rosenvinge1,3, Rolf Wynn2,41Division of General Psychiatry, University Hospital of North Norway, 2Telemedicine Research Group, Department of Clinical Medicine, Faculty of Health Sciences, 3Department of Psychology, Faculty of Health Sciences, University of Tromsø, 4Division of Addiction and Specialized Psychiatry, University Hospital of North Norway, Tromsø, NorwayAbstract: We describe a psychoeducational program integrated in a basic computer skills course for participants suffering from social anxiety. The two main aims of the course were: that the participants learn basic computer skills, and that the participants learn to cope better with social anxiety. Computer skills were taught by a qualified teacher. Psychoeducation and cognitive therapy skills, including topics such as anxiety coping, self-accept, and self-regulation, were taught by a clinical psychologist. Thirteen of 16 participants completed the course, which lasted 11 weeks. A qualitative analysis was performed, drawing on observations during the course and on interviews with the participants. The participants were positive about the integration of psychoeducation sessions in the computer course, and described positive outcomes for both elements, including improved computer skills, improved self-esteem, and reduced social anxiety. Most participants were motivated to undertake further occupational rehabilitation after the course.Keywords: cognitive therapy, information technology, occupational rehabilitation, psychoeducation, self-help, social anxiety

  5. Emotional Value Judgment and Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study sought to examine emotional value judgment on student achievement in Basic Science. The study was carried out in Ijebu-North Local Government Area of Ogun State. Data were collected through valid questionnaire sent to five secondary schools within the local Government. One Hundred Junior Secondary II ...

  6. Physiotherapy Students’ Attitudes to Basic Medical Sciences Courses

    Directory of Open Access Journals (Sweden)

    Vasaghi Gharamaleki B

    2015-04-01

    Full Text Available  Aims: Students’ attitude to the basic sciences courses has a considerable impact in their clinical practice. The aim of this study was to investigate the attitudes of undergraduate and graduate students to the Physiotherapy rather than basic science. Instrument & Methods: This descriptive cross-sectional study was done on 151 undergraduate and graduate schools of Physiotherapy and Rehabilitation, Tehran and Iran University of Medical Sciences students using easy access sampling in October and November of 2012. To evaluate the attitude and the importance and effectiveness subscales the West questionnaire was used. Data were analyzed using SPSS 17 software using One-way ANOVA, independent T, and logistic regression tests. Findings: There was a significant difference between the sexes in response to items 1, 4, 7 and 8. The attitudes mean and the importance and effectiveness subscales were greater in women in the bachelor fifth and seventh semesters. The attitude and the importance of women were significantly more positive than men in Master degree students of the first semester, but there was no statistically significant difference between the sexes in the third semester of the Master degree students. Conclusion: Bachelor and Master students' positive attitudes toward physical science is affected by their gender and women pay more attention to learn treatment physiologically details, while men are more likely to emphasize on the results of the treatment. By increasing the presence of women in Master degrees their attitude get closer to men.

  7. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  8. Gender Integration in Basic Training: The Services Are Using a Variety of Approaches

    National Research Council Canada - National Science Library

    1997-01-01

    ...) the extent to which the services have gender integrated basic training and (2) the performance of men and women in gender integrated basic training compared with that of men and women whose training is segregated...

  9. Article Commentary: Online Learning Tools as Supplements for Basic and Clinical Science Education

    Directory of Open Access Journals (Sweden)

    Matthew S. Ellman

    2016-01-01

    Full Text Available Undergraduate medical educators are increasingly incorporating online learning tools into basic and clinical science curricula. In this paper, we explore the diversity of online learning tools and consider the range of applications for these tools in classroom and bedside learning. Particular advantages of these tools are highlighted, such as delivering foundational knowledge as part of the “flipped classroom” pedagogy and for depicting unusual physical examination findings and advanced clinical communication skills. With accelerated use of online learning, educators and administrators need to consider pedagogic and practical challenges posed by integrating online learning into individual learning activities, courses, and curricula as a whole. We discuss strategies for faculty development and the role of school-wide resources for supporting and using online learning. Finally, we consider the role of online learning in interprofessional, integrated, and competency-based applications among other contemporary trends in medical education are considered.

  10. Educational Status of Dental Basic Science Course and its Correlation with Students' Educational Background in Kermanshah University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Mozafar Khazaei

    2014-04-01

    Full Text Available Introduction: Basic science course plays a pivotal role in the academic achievement of the students. The scientific background and educational performance of the students are also influential in this period. The aim of the present study was to investigate the educational status of dental basic science course in the first three admissions (2009-2011 and its association with students’ educational background in Kermanshah University of Medical Sciences (KUMS. Methods: In this descriptive cross-sectional study, all dental students admitted to school of dentistry in 2009-2011 years were included. The students’ academic background (scores, grade point average, score of comprehensive basic sciences examination (CBSE were recorded. Data were analyzed by SPSS 16 using one-way analysis of variance (ANOVA and independent t-test. Results: Kermanshah dental students admitted to university in 2009-2011 were mostly female (59.2%, belonged to regions 2 and 3 (81.6% of university entrance exam, had sciences diploma (89.8% and their grade point average of diploma was nearly 18. There was a significant difference between the three groups of students admitted to university in Biology, Chemistry, Mathematics, Arabic, English language and Theology lessones of entrane exam (P<0.05. The students’ failure rate was 1.5% in university coureses. They all (100% passed CBSE and were ranked second nationally in the year. There was no significant difference between male and female students in terms of age, diploma grade point average, grade point average of basic sciences and score of CBSE. Conclusion: Basic science courses of dentistry in Kermanshah enjoyed a rather constant status and students had a good academic level in these courses.

  11. Basic Science for a Secure Energy Future

    Science.gov (United States)

    Horton, Linda

    2010-03-01

    Anticipating a doubling in the world's energy use by the year 2050 coupled with an increasing focus on clean energy technologies, there is a national imperative for new energy technologies and improved energy efficiency. The Department of Energy's Office of Basic Energy Sciences (BES) supports fundamental research that provides the foundations for new energy technologies and supports DOE missions in energy, environment, and national security. The research crosses the full spectrum of materials and chemical sciences, as well as aspects of biosciences and geosciences, with a focus on understanding, predicting, and ultimately controlling matter and energy at electronic, atomic, and molecular levels. In addition, BES is the home for national user facilities for x-ray, neutron, nanoscale sciences, and electron beam characterization that serve over 10,000 users annually. To provide a strategic focus for these programs, BES has held a series of ``Basic Research Needs'' workshops on a number of energy topics over the past 6 years. These workshops have defined a number of research priorities in areas related to renewable, fossil, and nuclear energy -- as well as cross-cutting scientific grand challenges. These directions have helped to define the research for the recently established Energy Frontier Research Centers (EFRCs) and are foundational for the newly announced Energy Innovation Hubs. This overview will review the current BES research portfolio, including the EFRCs and user facilities, will highlight past research that has had an impact on energy technologies, and will discuss future directions as defined through the BES workshops and research opportunities.

  12. The Relationship between Immediate Relevant Basic Science Knowledge and Clinical Knowledge: Physiology Knowledge and Transthoracic Echocardiography Image Interpretation

    Science.gov (United States)

    Nielsen, Dorte Guldbrand; Gotzsche, Ole; Sonne, Ole; Eika, Berit

    2012-01-01

    Two major views on the relationship between basic science knowledge and clinical knowledge stand out; the Two-world view seeing basic science and clinical science as two separate knowledge bases and the encapsulated knowledge view stating that basic science knowledge plays an overt role being encapsulated in the clinical knowledge. However, resent…

  13. Integrating the New Generation Science Standards (NGSS) into K- 6 teacher training and curricula

    Science.gov (United States)

    Pinter, S.; Carlson, S. J.

    2017-12-01

    The Next Generation Science Standards is an initiative, adopted by 26 states, to set national education standards that are "rich in content and practice, arranged in a coherent manner across disciplines and grades to provide all students an internationally benchmarked science education." Educators now must integrate these standards into existing curricula. Many grade-school (K-6) teachers face a particularly daunting task, as they were traditionally not required to teach science or only at a rudimentary level. The majority of K-6 teachers enter teaching from non-science disciplines, making this transition even more difficult. Since the NGSS emphasizes integrated and coherent progression of knowledge from grade to grade, prospective K-6 teachers must be able to deliver science with confidence and enthusiasm to their students. CalTeach/MAST (Mathematics and Science Teaching Program) at the University of California Davis, has created a two-quarter sequence of integrated science courses for undergraduate students majoring in non-STEM disciplines and intending to pursue multiple-subject K-6 credentials. The UCD integrated science course provides future primary school teachers with a basic, but comprehensive background in the physical and earth/space sciences. Key tools are taught for improving teaching methods, investigating complex science ideas, and solving problems relevant to students' life experiences that require scientific or technological knowledge. This approach allows prospective K-6 teachers to explore more effectively the connections between the disciplinary core ideas, crosscutting concepts, and scientific and engineering practices, as outlined in the NGSS. In addition, they develop a core set of science teaching skills based on inquiry activities and guided lab discussions. With this course, we deliver a solid science background to prospective K-6 teachers and facilitate their ability to teach science following the standards as articulated in the NGSS.

  14. The basic science of bone marrow aspirate concentrate in chondral injuries

    Directory of Open Access Journals (Sweden)

    James Holton

    2016-09-01

    Full Text Available There has been great interest in bone marrow aspirate concentrate (BMAC as a cost effective method in delivering mesenchymal stem cells (MSCs to aid in the repair and regeneration of cartilage defects. Alongside MSCs, BMAC contains a range of growth factors and cytokines to support cell growth following injury. However, there is paucity of information relating to the basic science underlying BMAC and its exact biological role in supporting the growth and regeneration of chondrocytes. The focus of this review is the basic science underlying BMAC in relation to chondral damage and regeneration.

  15. Japanese representation in leading general medicine and basic science journals: a comparison of two decades.

    Science.gov (United States)

    Fukui, Tsuguya; Takahashi, Osamu; Rahman, Mahbubur

    2013-11-01

    During 1991-2000, Japan contribution to the top general medicine journals was very small although the contribution to the top basic science journals was sizeable. However, it has not been examined whether the contribution to the top general medicine and basic science journals has changed during the last decade (2001-2010). The objective of this study was to compare Japan representation in high-impact general medicine and basic science journals between the years 1991-2000 and 2001-2010. We used PubMed database to examine the frequency of articles originated from Japan and published in 7 high-impact general medicine and 6 high-impact basic science journals. Several Boolean operators were used to connect name of the journal, year of publication and corresponding authors' affiliation in Japan. Compared to the 1991-2000 decade, Japan contribution to the top general medicine journals did not increase over the 2001-2010 period (0.66% vs. 0.74%, P = 0.255). However, compared to the same period, its contribution to the top basic science journals increased during 2001-2010 (2.51% vs. 3.60%, P journals showed an upward trend over the 1991-2000 period (P general medicine journals remained flat both during 1991-2000 (P = 0.273) and 2001-2010 (P = 0.073). Overall, Japan contribution to the top general medicine journals has remained small and unchanged over the last two decades. However, top basic science journals had higher Japan representation during 2001-2010 compared to 1991-2000.

  16. Students' Self-Concept and Their Achievement in Basic Science ...

    African Journals Online (AJOL)

    The study investigated the relationship between students self-concept andtheir academic performance in Basic Science. It further examines genderdifference in students performance. The study adopted ex-post factorresearch design and made use of 300 students all from Public Schools. Theadapted Version of ...

  17. How In-Service Science Teachers Integrate History and Nature of Science in Elementary Science Courses

    Science.gov (United States)

    Hacieminoglu, Esme

    2014-01-01

    The purpose of this study is to investigate how the in-service science teachers' (IST) perceptions and practices about curriculum and integration of the history of science (HOS) and the nature of science (NOS) affect their science courses. For this aim, how ISTs integrated the NOS and HOS in their elementary science courses for understanding of…

  18. Journal of Basic and Clinical Reproductive Sciences: A New Baby ...

    African Journals Online (AJOL)

    Journal of Basic and Clinical Reproductive Sciences · January - December ... determined with certainty as some cases are asymptomatic .... Bangal et al. reported a rare case of Peritonitis ... following emergency exploratory laparotomy and.

  19. Proceedings of the meeting and scientific presentations on basic science research and nuclear technology

    International Nuclear Information System (INIS)

    Prayitno; Slamet Santosa; Darsono; Syarip; Agus Taftazani; Samin; Tri Mardji Atmono; Dwi Biyantoro; Herry Poernomo; Prajitno; Tjipto Sujitno; Gede Sutresna W; Djoko Slamet Pujorahardjo; Budi Setiawan; Bambang Siswanto; Endro Kismolo; Jumari

    2016-08-01

    The Proceedings of the Meeting and Scientific Presentations on Basic Science Research and Nuclear Technology by Center for Accelerator Science and Technology in Yogyakarta with the theme of Universities and research and development institutions synergy in the development of basic science and nuclear technology held on Surakarta 9 August 2016. This seminar is an annual routine activities of Center for Accelerator Science and Technology for exchange research result among University and BATAN researcher for using nuclear technology. The proceeding consist of 3 article from keynotes’ speaker and 37 articles from BATAN participant as well as outside which have been indexed separately. (MPN)

  20. malERA: An updated research agenda for basic science and enabling technologies in malaria elimination and eradication

    Science.gov (United States)

    2017-01-01

    Basic science holds enormous power for revealing the biological mechanisms of disease and, in turn, paving the way toward new, effective interventions. Recognizing this power, the 2011 Research Agenda for Malaria Eradication included key priorities in fundamental research that, if attained, could help accelerate progress toward disease elimination and eradication. The Malaria Eradication Research Agenda (malERA) Consultative Panel on Basic Science and Enabling Technologies reviewed the progress, continuing challenges, and major opportunities for future research. The recommendations come from a literature of published and unpublished materials and the deliberations of the malERA Refresh Consultative Panel. These areas span multiple aspects of the Plasmodium life cycle in both the human host and the Anopheles vector and include critical, unanswered questions about parasite transmission, human infection in the liver, asexual-stage biology, and malaria persistence. We believe an integrated approach encompassing human immunology, parasitology, and entomology, and harnessing new and emerging biomedical technologies offers the best path toward addressing these questions and, ultimately, lowering the worldwide burden of malaria. PMID:29190277

  1. Support of a Problem-Based Learning Curriculum by Basic Science Faculty

    Directory of Open Access Journals (Sweden)

    William L. Anderson

    2002-11-01

    Full Text Available Although published reports describe benefits to students of learning in a problem-based, student-centered environment, questions have persisted about the excessive faculty time commitments associated with the implementation of PBL pedagogy. The argument has been put forward that the excessive faculty costs of such a curriculum cannot be justified based upon the potential benefits to students. However, the magnitude of the faculty time commitment to a PBL curriculum to support the aforementioned argument is not clear to us and we suspect that it is also equally unclear to individuals charged with making resource decisions supporting the educational efforts of the institution. Therefore, to evaluate this cost - benefit question, we analyzed the actual basic science faculty time commitment in a hybrid PBL curriculum during the first phase 18 months of undergraduate medical education. The results of this analysis do demonstrate an increase in faculty time commitments but do not support the argument that PBL pedagogy is excessively costly in terms of faculty time. For the year analyzed in this report, basic science faculty members contributed on average of 27.4 hours to the instruction of medical students. The results of the analysis did show significant contributions (57% of instructional time by the clinical faculty during the initial 18 months of medical school. In addition, the data revealed a four-fold difference between time commitments of the four basic science departments. We conclude that a PBL curriculum does not place unreasonable demands on the time of basic science faculty. The demands on clinical faculty, in the context of their other commitments, could not be evaluated. Moreover, this type of analysis provides a tool that can be used to make faculty resource allocation decisions fairly.

  2. Integrating the Nature of Science

    Science.gov (United States)

    Weiland, Ingrid; Blieden, Katherine; Akerson, Valarie

    2014-01-01

    The nature of science (NOS) describes what science is and how knowledge in science is developed (NSTA 2013). To develop elementary students' understandings of how scientists explore the world, the authors--an education professor and a third-grade teacher--endeavored to integrate NOS into a third-grade life science unit. Throughout the lesson,…

  3. Development and Validation of the Life Sciences Assessment: A Measure of Preschool Children's Conceptions of Basic Life Sciences

    Science.gov (United States)

    Maherally, Uzma Nooreen

    2014-01-01

    The purpose of this study was to develop and validate a science assessment tool termed the Life Sciences Assessment (LSA) in order to assess preschool children's conceptions of basic life sciences. The hypothesis was that the four sub-constructs, each of which can be measured through a series of questions on the LSA, will make a significant…

  4. White Paper on Nuclear Data Needs and Capabilities for Basic Science

    Energy Technology Data Exchange (ETDEWEB)

    Batchelder, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kawano, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kelley, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kondev, F. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McCutchan, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Smith, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sonzogni, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thoennessen, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Thompson, I. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-05-14

    Reliable nuclear structure and reaction data represent the fundamental building blocks of nuclear physics and astrophysics research, and are also of importance in many applications. There is a continuous demand for high-quality updates of the main nuclear physics databases via the prompt compilation and evaluation of the latest experimental and theoretical results. The nuclear physics research community benefits greatly from comprehensive, systematic and up-to-date reviews of the experimentally determined nuclear properties and observables, as well as from the ability to rapidly access these data in user-friendly forms. Such credible databases also act as a bridge between science, technology, and society by making the results of basic nuclear physics research available to a broad audience of users, and hence expand the societal utilization of nuclear science. Compilation and evaluation of nuclear data has deep roots in the history of nuclear science research, as outlined in Appendix 1. They have an enormous impact on many areas of science and applications, as illustrated in Figure 2 for the Evaluated Nuclear Structure Data File (ENSDF) database. The present workshop concentrated on the needs of the basic nuclear science community for data and capabilities. The main role of this community is to generate and use data in order to understand the basic nuclear forces and interactions that are responsible for the existence and the properties of all nuclides and, as a consequence, to gain knowledge about the origins, evolution and structure of the universe. Thus, the experiments designed to measure a wealth of nuclear properties towards these fundamental scientific goals are typically performed from within this community.

  5. PNNL Highlights for the Office of Basic Energy Sciences (July 2013-July 2014)

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Benjamin; Warren, Pamela M.; Manke, Kristin L.

    2014-08-13

    This report includes research highlights of work funded in part or whole by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences as well as selected leadership accomplishments.

  6. Basic science of nuclear medicine

    International Nuclear Information System (INIS)

    Parker, R.P.; Taylor, D.M.; Smith, P.H.S.

    1978-01-01

    A book has been written presenting those aspects of physics, chemistry and related sciences which are essential to a clear understanding of the scientific basis of nuclear medicine. Part I covers the basic physics of radiation and radioactivity. Part II deals with radiation dosimetry, the biological effects of radiation and the principles of tracer techniques. The measurement of radioactivity and the principal aspects of modern instrumentation are presented in Part III. Those aspects of chemistry relevant to the preparation and use of radiopharmaceuticals are discussed in Part IV. The final section is concerned with the production of radionuclides and radiopharmaceuticals and with the practical aspects of laboratory practice, facilities and safety. The book serves as a general introductory text for physicians, scientists, radiographers and technicians who are entering nuclear medicine. (U.K.)

  7. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    Science.gov (United States)

    Rusli, Aloysius

    2016-08-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  8. Science Awareness and Science Literacy through the Basic Physics Course: Physics with a bit of Metaphysics?

    International Nuclear Information System (INIS)

    Rusli, Aloysius

    2016-01-01

    Until the 1980s, it is well known and practiced in Indonesian Basic Physics courses, to present physics by its effective technicalities: The ideally elastic spring, the pulley and moving blocks, the thermodynamics of ideal engine models, theoretical electrostatics and electrodynamics with model capacitors and inductors, wave behavior and its various superpositions, and hopefully closed with a modern physics description. A different approach was then also experimented with, using the Hobson and Moore texts, stressing the alternative aim of fostering awareness, not just mastery, of science and the scientific method. This is hypothesized to be more in line with the changed attitude of the so-called Millenials cohort who are less attentive if not interested, and are more used to multi-tasking which suits their shorter span of attention. The upside is increased awareness of science and the scientific method. The downside is that they are getting less experience of the scientific method which intensely bases itself on critical observation, analytic thinking to set up conclusions or hypotheses, and checking consistency of the hypotheses with measured data. Another aspect is recognition that the human person encompasses both the reasoning capacity and the mental- spiritual-cultural capacity. This is considered essential, as the world grows even smaller due to increased communication capacity, causing strong interactions, nonlinear effects, and showing that value systems become more challenging and challenged due to physics / science and its cosmology, which is successfully based on the scientific method. So students should be made aware of the common basis of these two capacities: the assumptions, the reasoning capacity and the consistency assumption. This shows that the limits of science are their set of basic quantifiable assumptions, and the limits of the mental-spiritual-cultural aspects of life are their set of basic metaphysical (non-quantifiable) assumptions. The

  9. Regenerative dentistry: translating advancements in basic science research to the dental practice.

    Science.gov (United States)

    Garcia-Godoy, Franklin; Murray, Peter

    2010-01-01

    Scientific advances in the creation of restorative biomaterials, in vitro cell culture technology, tissue engineering, molecular biology and the human genome project provide the basis for the introduction of new technologies into dentistry. This review provides an assessment of how tissue engineering, stem cell, genetic transfer, biomaterial and growth factor therapies can be integrated into clinical dental therapies to restore and regenerate oral tissues. In parallel to the creation of a new field in general medicine called "regenerative medicine," we call this field "regenerative dentistry." While the problems of introducing regenerative therapies are substantial, the potential benefits to patients and the profession are equally ground-breaking. In this review, we outline a few areas of interest for the future of oral and dental medicine in which advancements in basic science have already been adapted to fit the goals of 21st century dentistry.

  10. Basic science of nuclear medicine the bare bone essentials

    CERN Document Server

    Lee, Kai H

    2015-01-01

    Through concise, straightforward explanations and supporting graphics that bring abstract concepts to life, the new Basic Science of Nuclear Medicine—the Bare Bone Essentials is an ideal tool for nuclear medicine technologist students and nuclear cardiology fellows looking for an introduction to the fundamentals of the physics and technologies of modern day nuclear medicine.

  11. Elements of Contemporary Integrated Science Curriculum: Impacts ...

    African Journals Online (AJOL)

    This paper acknowledged the vital roles played by integration of ideas and established the progress brought about when science is taught as a unified whole through knowledge integration which birthed integrated science as a subject in Nigerian school curriculum. The efforts of interest groups at regional, national and ...

  12. Very long-term retention of basic science knowledge in doctors after graduation.

    Science.gov (United States)

    Custers, Eugène J F M; Ten Cate, Olle T J

    2011-04-01

    Despite frequent complaints that biomedical knowledge is quickly forgotten after it has been learned, few investigations of actual long-term retention of basic science knowledge have been conducted in the medical domain. Our aim was to illuminate the long-term retention of basic science knowledge, particularly of unrehearsed knowledge. Using a cross-sectional study design, medical students and doctors in the Netherlands were tested for retention of basic science knowledge. Relationships between retention interval and proportion of correct answers on a knowledge test were investigated. The popular notion that most of basic science knowledge is forgotten shortly after graduation is not supported by our findings. With respect to the full test scores, which reflect a composite of unrehearsed and rehearsed knowledge, performance decreased from approximately 40% correct answers for students still in medical school, to 25-30% correct answers for doctors after many years of practice. When rehearsal during the retention interval is controlled for, it appears that little knowledge is lost for 1.5-2 years after it was last used; from then on, retention is best described by a negatively accelerated (logarithmic) forgetting curve. After ≥ 25 years, retention levels were in the range of 15-20%. Conclusions about the forgetting of unrehearsed knowledge in this study are in line with findings reported in other domains: it proceeds in accordance with the Ebbinghaus curve for meaningful material, except that in our findings the 'downward' part appears to start later than in most other studies. The limitations of the study are discussed and possible ramifications for medical education are proposed. © Blackwell Publishing Ltd 2011.

  13. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  14. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL`s in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy`s National Photovoltaic Research Program plans.

  15. Annual report, Basic Sciences Branch, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    This report summarizes the progress of the Basic Sciences Branch of the National Renewable Energy Laboratory (NREL) from October 1, 1990, through September 30, 1991. Seven technical sections of the report cover these main areas of NREL's in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, Solid-State Spectroscopy, and Superconductivity. Each section explains the purpose and major accomplishments of the work in the context of the US Department of Energy's National Photovoltaic Research Program plans.

  16. Physiology education in North American dental schools: the basic science survey series.

    Science.gov (United States)

    Gautam, Medha; Shaw, David H; Pate, Ted D; Lambert, H Wayne

    2014-06-01

    As part of the Basic Science Survey Series for Dentistry, members of the American Dental Education Association (ADEA) Physiology, Pharmacology, and Therapeutics Section surveyed directors of physiology courses in North American dental schools. The survey was designed to assess, among other things, faculty affiliation and experience of course directors, teaching methods, general course content and emphasis, extent of interdisciplinary (shared) instruction, and impact of recent curricular changes. Responses were received from forty-four of sixty-seven (65.7 percent) U.S. and Canadian dental schools. The findings suggest the following: substantial variation exists in instructional hours, faculty affiliation, class size, and interdisciplinary nature of physiology courses; physiology course content emphasis is similar between schools; student contact hours in physiology, which have remained relatively stable in the past fifteen years, are starting to be reduced; recent curricular changes have often been directed towards enhancing the integrative and clinically relevant aspects of physiology instruction; and a trend toward innovative content delivery, such as use of computer-assisted instruction, is evident. Data from this study may be useful to physiology course directors, curriculum committees, and other dental educators with an interest in integrative and interprofessional education.

  17. Making Basic Science Studies in Glaucoma More Clinically Relevant: The Need for a Consensus.

    Science.gov (United States)

    Toris, Carol B; Gelfman, Claire; Whitlock, Andy; Sponsel, William E; Rowe-Rendleman, Cheryl L

    2017-09-01

    Glaucoma is a chronic, progressive, and debilitating optic neuropathy that causes retinal damage and visual defects. The pathophysiologic mechanisms of glaucoma remain ill-defined, and there is an indisputable need for contributions from basic science researchers in defining pathways for translational research. However, glaucoma researchers today face significant challenges due to the lack of a map of integrated pathways from bench to bedside and the lack of consensus statements to guide in choosing the right research questions, techniques, and model systems. Here, we present the case for the development of such maps and consensus statements, which are critical for faster development of the most efficacious glaucoma therapy. We underscore that interrogating the preclinical path of both successful and unsuccessful clinical programs is essential to defining future research. One aspect of this is evaluation of available preclinical research tools. To begin this process, we highlight the utility of currently available animal models for glaucoma and emphasize that there is a particular need for models of glaucoma with normal intraocular pressure. In addition, we outline a series of discoveries from cell-based, animal, and translational research that begin to reveal a map of glaucoma from cell biology to physiology to disease pathology. Completion of these maps requires input and consensus from the global glaucoma research community. This article sets the stage by outlining various approaches to such a consensus. Together, these efforts will help accelerate basic science research, leading to discoveries with significant clinical impact for people with glaucoma.

  18. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  19. Integrating Mathematics and Science: Ecology and Venn Diagrams

    Science.gov (United States)

    Leszczynski, Eliza; Munakata, Mika; Evans, Jessica M.; Pizzigoni, Francesca

    2014-01-01

    Efforts to integrate mathematics and science have been widely recognized by mathematics and science educators. However, successful integration of these two important school disciplines remains a challenge. In this article, a mathematics and science activity extends the use of Venn diagrams to a life science context and then circles back to a…

  20. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes Towards Integration

    Science.gov (United States)

    McHugh, Luisa

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to improved student perception of the integration of science and mathematics. Although there is adequate literature to substantiate students' positive responses to integration in terms of attitudes, there has been little empirical data to support significant academic improvement when both disciplines are taught in an integrated method. This research study, conducted at several school districts on Long Island and New York City, New York, examined teachers' attitudes toward integration and students' attitudes about, and achievement on assessments in, an integrated 8th grade science classroom compared to students in a non-integrated classroom. An examination of these parameters was conducted to analyze the impact of the sizeable investment of time and resources needed to teach an integrated curriculum effectively. These resources included substantial teacher training, planning time, collaboration with colleagues, and administration of student assessments. The findings suggest that students had positive outcomes associated with experiencing an integrated science and mathematics curriculum, though these were only weakly correlated with teacher confidence in implementing the integrated model successfully. The positive outcomes included the ability of students to understand scientific concepts within a concrete mathematical framework, improved confidence in applying mathematics to scientific ideas, and increased agreement with the usefulness of mathematics in interpreting science concepts. Implications of these research findings may be of benefit to educators and policymakers looking to adapt integrated curricula in order to

  1. Ciencia básica y ciencia aplicada Basic science and applied science

    Directory of Open Access Journals (Sweden)

    Ruy Pérez-Tamayo

    2001-08-01

    ://www.insp.mx/salud/index.htmlA lecture was presented by the author at the Democratic Opinion Forum on Health Teaching and Research, organized by Mexico´s National Health Institutes Coordinating Office, at National Cardiology Institute "Ignacio Chavez", where he presented a critical review of the conventional classification of basic and applied science, as well as his personal view on health science teaching and research. According to the author, "well-conducted science" is that "generating reality-checked knowledge" and "mis-conducted science" is that "unproductive or producing 'just lies' and 'non-fundable'. To support his views, the author reviews utilitarian and pejorative definitions of science, as well as those of committed and pure science, useful and useless science, and practical and esoterical science, as synonyms of applied and basic science. He also asserts that, in Mexico, "this classification has been used in the past to justify federal funding cutbacks to basic science, allegedly because it is not targeted at solving 'national problems' or because it was not relevant to priorities set in a given six-year political administration period". Regarding health education and research, the author asserts that the current academic programs are inefficient and ineffective; his proposal to tackle these problems is to carry out a solid scientific study, conducted by a multidisciplinary team of experts, "to design the scientific researcher curricula from recruitment of intelligent young people to retirement or death". Performance assessment of researchers would not be restricted to publication of papers, since "the quality of scientific work and contribution to the development of science is not reflected by the number of published papers". The English version of this paper is available at: http://www.insp.mx/salud/index.html

  2. Anatomy Integration Blueprint: A Fourth-Year Musculoskeletal Anatomy Elective Model

    Science.gov (United States)

    Lazarus, Michelle D.; Kauffman, Gordon L., Jr.; Kothari, Milind J.; Mosher, Timothy J.; Silvis, Matthew L.; Wawrzyniak, John R.; Anderson, Daniel T.; Black, Kevin P.

    2014-01-01

    Current undergraduate medical school curricular trends focus on both vertical integration of clinical knowledge into the traditionally basic science-dedicated curricula and increasing basic science education in the clinical years. This latter type of integration is more difficult and less reported on than the former. Here, we present an outline of…

  3. Integral Methods in Science and Engineering

    CERN Document Server

    Constanda, Christian

    2011-01-01

    An enormous array of problems encountered by scientists and engineers are based on the design of mathematical models using many different types of ordinary differential, partial differential, integral, and integro-differential equations. Accordingly, the solutions of these equations are of great interest to practitioners and to science in general. Presenting a wealth of cutting-edge research by a diverse group of experts in the field, Integral Methods in Science and Engineering: Computational and Analytic Aspects gives a vivid picture of both the development of theoretical integral techniques

  4. Biology as an Integrating Natural Science Domain

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 3. Biology as an Integrating Natural Science Domain: A Proposal for BSc (Hons) in Integrated Biology. Kambadur Muralidhar. Classroom Volume 13 Issue 3 March 2008 pp 272-276 ...

  5. Work station learning activities: a flexible and scalable instrument for integrating across basic subjects in biomedical education.

    Science.gov (United States)

    González-Soltero, Rocío; Learte, Ana Isabel R; Sánchez, Ana Mª; Gal, Beatriz

    2017-11-29

    Establishing innovative teaching programs in biomedical education involves dealing with several national and supra-national (i.e. European) regulations as well as with new pedagogical and demographic demands. We aimed to develop and validate a suitable instrument to integrate activities across preclinical years in all Health Science Degrees while meeting requirements of national quality agencies. The new approach was conceived at two different levels: first, we identified potentially integrative units from different fields according to national learning goals established for each preclinical year (national quality agency regulations). Secondly, we implemented a new instrument that combines active methodologies in Work Station Learning Activities (WSLA), using clinical scenarios as a guiding common thread to instruct students from an integrated perspective. We evaluated students' perception through a Likert-type survey of a total of 118 students enrolled in the first year of the Bachelor's Degree in Medicine. Our model of integrated activities through WSLA is feasible, scalable and manageable with large groups of students and a minimum number of instructors, two major limitations in many medical schools. Students' perception of WSLA was positive in overall terms. Seventy nine percent of participants stated that WSLA sessions were more useful than non-integrated activities. Eighty three percent confirmed that the WSLA methodology was effective at integrating concepts covered by different subjects. The WSLA approach is a flexible and scalable instrument for moving towards integrated curricula, and it can be successfully adapted to teach basic subjects in preclinical years of Health Science degrees. WSLA can be applied to large groups of students in a variety of contexts or environments using clinical cases as connecting threads.

  6. How neuroscience is taught to North American dental students: results of the Basic Science Survey Series.

    Science.gov (United States)

    Gould, Douglas J; Clarkson, Mackenzie J; Hutchins, Bob; Lambert, H Wayne

    2014-03-01

    The purpose of this study was to determine how North American dental students are taught neuroscience during their preclinical dental education. This survey represents one part of a larger research project, the Basic Science Survey Series for Dentistry, which covers all of the biomedical science coursework required of preclinical students in North American dental schools. Members of the Section on Anatomical Sciences of the American Dental Education Association assembled, distributed, and analyzed the neuroscience survey, which had a 98.5 percent response from course directors of the sixty-seven North American dental schools. The eighteen-item instrument collected demographic data on the course directors, information on the content in each course, and information on how neuroscience content is presented. Findings indicate that 1) most neuroscience instruction is conducted by non-dental school faculty members; 2) large content variability exists between programs; and 3) an increase in didactic instruction, integrated curricula, and use of computer-aided instruction is occurring. It is anticipated that the information derived from the survey will help guide neuroscience curricula in dental schools and aid in identifying appropriate content.

  7. Systematic Approach to Remediation in Basic Science Knowledge for Preclinical Students: A case study

    Science.gov (United States)

    Amara, Francis

    Remediation of pre-clerkship students for deficits in basic science knowledge should help them overcome their learning deficiencies prior to clerkship. However, very little is known about remediation in basic science knowledge during pre-clerkship. This study utilized the program theory framework to collect and organize mixed methods data of the remediation plan for pre-clerkship students who failed their basic science cognitive examinations in a Canadian medical school. This plan was analyzed using a logic model narrative approach and compared to literature on the learning theories. The analysis showed a remediation plan that was strong on governance and verification of scores, but lacked: clarity and transparency of communication, qualified remedial tutors, individualized diagnosis of learner's deficits, and student centered learning. Participants admitted uncertainty about the efficacy of the remediation process. A remediation framework is proposed that includes student-centered participation, individualized learning plan and activities, deliberate practice, feedback, reflection, and rigorous reassessment.

  8. Basic and Applied Research at the Los Alamos Neutron Science Center

    International Nuclear Information System (INIS)

    Lisowski, P.W.

    2003-01-01

    The Los Alamos Neutron Science Center, or LANSCE, is an accelerator-based national user facility for research in basic and applied science. At present LANSCE has two experimental areas primarily using neutrons generated by 800-MeV protons striking tungsten target systems. A third area uses the proton beam for radiography. This paper describes the three LANSCE experimental areas, gives highlights of the past operating period, and discusses plans for the future

  9. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  10. Integration and Implementation Sciences: Building a New Specialization

    Directory of Open Access Journals (Sweden)

    Gabriele Bammer

    2005-12-01

    Full Text Available Developing a new specialization - Integration and Implementation Sciences - may be an effective way to draw together and significantly strengthen the theory and methods necessary to tackle complex societal issues and problems. This paper presents an argument for such a specialization, beginning with a brief review of calls for new research approaches that combine disciplines and interact more closely with policy and practice. It posits that the core elements of Integration and Implementation Sciences already exist, but that the field is currently characterized by fragmentation and marginalization. The paper then outlines three sets of characteristics that will delineate Integration and Implementation Sciences. First is that the specialization will aim to find better ways to deal with the defining elements of many current societal issues and problems: namely complexity, uncertainty, change, and imperfection. Second is that there will be three theoretical and methodological pillars for doing this: 1 systems thinking and complexity science, 2 participatory methods, and 3 knowledge management, exchange, and implementation. Third, operationally, Integration and Implementation Sciences will be grounded in practical application, and generally involve large-scale collaboration. The paper concludes by examining where Integration and Implementation Sciences would sit in universities, and outlines a program for further development of the field. An appendix provides examples of Integration and Implementation Sciences in action.

  11. A review of second law techniques applicable to basic thermal science research

    Science.gov (United States)

    Drost, M. Kevin; Zamorski, Joseph R.

    1988-11-01

    This paper reports the results of a review of second law analysis techniques which can contribute to basic research in the thermal sciences. The review demonstrated that second law analysis has a role in basic thermal science research. Unlike traditional techniques, second law analysis accurately identifies the sources and location of thermodynamic losses. This allows the development of innovative solutions to thermal science problems by directing research to the key technical issues. Two classes of second law techniques were identified as being particularly useful. First, system and component investigations can provide information of the source and nature of irreversibilities on a macroscopic scale. This information will help to identify new research topics and will support the evaluation of current research efforts. Second, the differential approach can provide information on the causes and spatial and temporal distribution of local irreversibilities. This information enhances the understanding of fluid mechanics, thermodynamics, and heat and mass transfer, and may suggest innovative methods for reducing irreversibilities.

  12. Distant Recombination and the Creation of Basic Inventions

    DEFF Research Database (Denmark)

    Barirani, Ahmad; Beaudry, Catherine; Agard, Bruno

    2015-01-01

    This article explores whether the relationship between the breath of technological integration (recombination distance) and the breath of an invention׳s subsequent application (basicness) is moderated by the sector of activity (private or public), science-linkage strength and industry characteris...

  13. Developing a competency-based medical education curriculum for the core basic medical sciences in an African Medical School.

    Science.gov (United States)

    Olopade, Funmilayo Eniola; Adaramoye, Oluwatosin Adekunle; Raji, Yinusa; Fasola, Abiodun Olubayo; Olapade-Olaopa, Emiola Oluwabunmi

    2016-01-01

    The College of Medicine of the University of Ibadan recently revised its MBBS and BDS curricula to a competency-based medical education method of instruction. This paper reports the process of revising the methods of instruction and assessment in the core basic medical sciences directed at producing medical and dental graduates with a sound knowledge of the subjects sufficient for medical and dental practice and for future postgraduate efforts in the field or related disciplines. The health needs of the community and views of stakeholders in the Ibadan medical and dental schools were determined, and the "old" curriculum was reviewed. This process was directed at identifying the strengths and weaknesses of the old curricula and the newer competences required for modern-day medical/dental practice. The admission criteria and processes and the learning methods of the students were also studied. At the end of the review, an integrated, system-based, community-oriented, person-centered, and competency-driven curriculum was produced and approved for implementation. Four sets of students have been admitted into the curriculum. There have been challenges to the implementation process, but these have been overcome by continuous faculty development and reorientation programs for the nonteaching staff and students. Two sets of students have crossed over to the clinical school, and the consensus among the clinical teachers is that their knowledge and application of the basic medical sciences are satisfactory. The Ibadan medical and dental schools are implementing their competency-based medical education curricula successfully. The modifications to the teaching and assessment of the core basic medical science subjects have resulted in improved learning and performance at the final examinations.

  14. The Sequencing of Basic Chemistry Topics by Physical Science Teachers

    Science.gov (United States)

    Sibanda, Doras; Hobden, Paul

    2016-01-01

    The purpose of this study was to find out teachers' preferred teaching sequence for basic chemistry topics in Physical Science in South Africa, to obtain their reasons underpinning their preferred sequence, and to compare these sequences with the prescribed sequences in the current curriculum. The study was located within a pragmatic paradigm and…

  15. Development and Validation of a Project Package for Junior Secondary School Basic Science

    Science.gov (United States)

    Udofia, Nsikak-Abasi

    2014-01-01

    This was a Research and Developmental study designed to develop and validate projects for Junior Secondary School Basic Science instruction and evaluation. The projects were developed using the project blueprint and sent for validation by experts in science education and measurement and evaluation; using a project validation scale. They were to…

  16. A basic framework for integrating social and collaborative applications into learning environments

    NARCIS (Netherlands)

    Moghnieh, Ayman; Blat, Josep

    2009-01-01

    Moghnieh, A., & Blat, J. (2009). A basic framework for integrating social and collaborative applications into learning environments. Proceedings of the first conference on Research, Reflection, and Innovations in Integrating ICT in Education: Vol. 2 (pp. 1057-1061). April, 22-24, 2009, Lisbon,

  17. Integrating mental health into the basic nursing curriculum: Benefits ...

    African Journals Online (AJOL)

    Integration of mental health into the basic nursing curricula provides an environment for and affords students an opportunity to learn how a client should be treated holistically. Nurses constitute the largest proportion of health workers in most countries of the world. They work in the remotest areas where there are hardly any ...

  18. Opportunities for discovery: Theory and computation in Basic Energy Sciences

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, Bruce; Kirby, Kate; McCurdy, C. William

    2005-01-11

    New scientific frontiers, recent advances in theory, and rapid increases in computational capabilities have created compelling opportunities for theory and computation to advance the scientific mission of the Office of Basic Energy Sciences (BES). The prospects for success in the experimental programs of BES will be enhanced by pursuing these opportunities. This report makes the case for an expanded research program in theory and computation in BES. The Subcommittee on Theory and Computation of the Basic Energy Sciences Advisory Committee was charged with identifying current and emerging challenges and opportunities for theoretical research within the scientific mission of BES, paying particular attention to how computing will be employed to enable that research. A primary purpose of the Subcommittee was to identify those investments that are necessary to ensure that theoretical research will have maximum impact in the areas of importance to BES, and to assure that BES researchers will be able to exploit the entire spectrum of computational tools, including leadership class computing facilities. The Subcommittee s Findings and Recommendations are presented in Section VII of this report.

  19. Evaluation of Some Approved Basic Science and Technology Textbooks in Use in Junior Secondary Schools in Nigeria

    Science.gov (United States)

    Nwafor, C. E.; Umoke, C. C.

    2016-01-01

    This study was designed to evaluate the content adequacy and readability of approved basic science and technology textbooks in use in junior secondary schools in Nigeria. Eight research questions guided the study. The sample of the study consisted of six (6) approved basic science and technology textbooks, 30 Junior Secondary Schools randomly…

  20. Spicing Up Basic Science Instruction with Storyline Strategy; What Is ...

    African Journals Online (AJOL)

    This study determined the effect of storyline strategy on primary school pupils‟ achievement in Basic Science with moderating effect of English Language proficiency of pupils. This study is the pre-test, post-test control group. It is a 2 x 2 quasi experimental study in which intact classes were used. This implies that the design ...

  1. Test of Science Process Skills of Biology Students towards Developing of Learning Exercises

    Directory of Open Access Journals (Sweden)

    Judith S. Rabacal

    2016-11-01

    Full Text Available This is a descriptive study aimed to determine the academic achievement on science process skills of the BS Biology Students of Northern Negros State College of Science and Technology, Philippines with the end view of developing learning exercises which will enhance their academic achievement on basic and integrated science process skills. The data in this study were obtained using a validated questionnaire. Mean was the statistical tool used to determine the academic achievement on the above mentioned science process skills; t-test for independent means was used to determine significant difference on the academic achievement of science process skills of BS Biology students while Pearson Product Moment of Correlation Coefficient was used to determine the significant relationship between basic and integrated science process skills of the BS Biology students. A 0.05 level of significance was used to determine whether the hypothesis set in the study will be rejected or accepted. Findings revealed that the academic achievement on basic and integrated science process skills of the BS Biology students was average. Findings revealed that there are no significant differences on the academic performance of the BS Biology students when grouped according to year level and gender. Findings also revealed that there is a significant difference on the academic achievement between basic and integrated science process skills of the BS Biology students. Findings revealed that there is a significant relationship between academic achievement on the basic and integrated science process skills of the BS Biology students.

  2. A New Era of Science Education: Science Teachers' Perceptions and Classroom Practices of Science, Technology, Engineering, and Mathematics (STEM) Integration

    Science.gov (United States)

    Wang, Hui-Hui

    Quality STEM education is the key in helping the United States maintain its lead in global competitiveness and in preparing for new economic and security challenges in the future. Policymakers and professional societies emphasize STEM education by legislating the addition of engineering standards to the existing science standards. On the other hand, the nature of the work of most STEM professionals requires people to actively apply STEM knowledge to make critical decisions. Therefore, using an integrated approach to teaching STEM in K-12 is expected. However, science teachers encounter numerous difficulties in adapting the new STEM integration reforms into their classrooms because of a lack of knowledge and experience. Therefore, high quality STEM integration professional development programs are an urgent necessity. In order to provide these high quality programs, it is important to understand teachers' perceptions and classroom practices regarding STEM integration. A multiple-case study was conducted with five secondary school science teachers in order to gain a better understanding of teachers' perceptions and classroom practices in using STEM integration. This study addresses the following research questions: 1) What are secondary school science teachers' practices of STEM integration? 2) What are secondary science teachers' overall perceptions of STEM integration? and 3) What is the connection between secondary science teachers' perceptions and understanding of STEM integration with their classroom practices? This research aims to explore teachers' perceptions and classroom practices in order to set up the baseline for STEM integration and also to determine STEM integration professional development best practices in science education. Findings from the study provide critical data for making informed decision about the direction for STEM integration in science education in K-12.

  3. Improving integrity of on-line grammage measurement with traceable basic calibration.

    Science.gov (United States)

    Kangasrääsiö, Juha

    2010-07-01

    The automatic control of grammage (basis weight) in paper and board production is based upon on-line grammage measurement. Furthermore, the automatic control of other quality variables such as moisture, ash content and coat weight, may rely on the grammage measurement. The integrity of Kr-85 based on-line grammage measurement systems was studied, by performing basic calibrations with traceably calibrated plastic reference standards. The calibrations were performed according to the EN ISO/IEC 17025 standard, which is a requirement for calibration laboratories. The observed relative measurement errors were 3.3% in the first time calibrations at the 95% confidence level. With the traceable basic calibration method, however, these errors can be reduced to under 0.5%, thus improving the integrity of on-line grammage measurements. Also a standardised algorithm, based on the experience from the performed calibrations, is proposed to ease the adjustment of the different grammage measurement systems. The calibration technique can basically be applied to all beta-radiation based grammage measurements. 2010 ISA. Published by Elsevier Ltd. All rights reserved.

  4. Axiology on the Integration of Knowledge, Islam and Science

    Directory of Open Access Journals (Sweden)

    Mas’ud Zein

    2014-07-01

    Full Text Available The integration of Islamic and science was done through integration-interconnected, referring to ontological, epistemological dan axiological perspectives. This paper will focus on the integration of Islam and science from axiological perspective.  In the view of axiology, science is seen as neutral and value-free; the value of science is given by its users. This condition motivates Muslim scholars to reintegrate science and religion. The first attempt made is my giving ideas on the Islamization of science. The attempt to Islamize the science in the Islamic world is dilemmatic, whether to wrap western science with the label of Islam or Islamic, or transforming religious norms based the Qur’an and the Hadith to fit empirical data. Both strategies are difficult if the effort is not based on the critic of epistemology.

  5. The Impact of Hands-On-Approach on Student Academic Performance in Basic Science and Mathematics

    Science.gov (United States)

    Ekwueme, Cecilia O.; Ekon, Esther E.; Ezenwa-Nebife, Dorothy C.

    2015-01-01

    Children can learn mathematics and sciences effectively even before being exposed to formal school curriculum if basic Mathematics and Sciences concepts are communicated to them early using activity oriented (Hands-on) method of teaching. Mathematics and Science are practical and activity oriented and can best be learnt through inquiry (Okebukola…

  6. Basic research needs to assure a secure energy future. A report from the Basic Energy Sciences Advisory Committee

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-02-01

    This report has highlighted many of the possible fundamental research areas that will help our country avoid a future energy crisis. The report may not have adequately captured the atmosphere of concern that permeated the discussions at the workshop. The difficulties facing our nation and the world in meeting our energy needs over the next several decades are very challenging. It was generally felt that traditional solutions and approaches will not solve the total energy problem. Knowledge that does not exist must be obtained to address both the quantity of energy needed to increase the standard of living world-wide and the quality of energy generation needed to preserve the environment. In terms of investments, it was clear that there is no single research area that will secure the future energy supply. A diverse range of economic energy sources will be required--and a broad range of fundamental research is needed to enable these. Many of the issues fall into the traditional materials and chemical sciences research areas, but with specific emphasis on understanding mechanisms, energy related phenomena, and pursuing novel directions in, for example, nanoscience and integrated modeling. An important result from the discussions, which is hopefully apparent from the brief presentations above, is that the problems that must be dealt with are truly multidisciplinary. This means that they require the participation of investigators with different skill sets. Basic science skills have to be complemented by awareness of the overall nature of the problem in a national and world context, and with knowledge of the engineering, design, and control issues in any eventual solution. It is necessary to find ways in which this can be done while still preserving the ability to do first-class basic science. The traditional structure of research, with specific disciplinary groupings, will not be sufficient. This presents great challenges and opportunities for the funders of the

  7. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis.

    Science.gov (United States)

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or "phantoms." Results of adopting the "dual aspect monism" approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status.

  8. The Evolution of Psychology as a Basic Bio-behavioral Science in Healthcare Education.

    Science.gov (United States)

    Carr, John E

    2017-12-01

    For over a century, researchers and educators have called for the integration of psychological science into medical school curricula, but such efforts have been impeded by barriers within medicine and psychology. In addressing these barriers, Psychology has re-examined its relationship to Medicine, incorporated psychological practices into health care, and redefined its parameters as a science. In response to interdisciplinary research into the mechanisms of bio-behavioral interaction, Psychology evolved from an ancillary social science to a bio-behavioral science that is fundamental to medicine and health care. However, in recent medical school curriculum innovations, psychological science is being reduced to a set of "clinical skills," and once again viewed as an ancillary social science. These developments warrant concern and consideration of new approaches to integrating psychological science in medical education.

  9. Basic Energy Sciences Program Update

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-04

    The U.S. Department of Energy’s (DOE) Office of Basic Energy Sciences (BES) supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels to provide the foundations for new energy technologies and to support DOE missions in energy, environment, and national security. The research disciplines covered by BES—condensed matter and materials physics, chemistry, geosciences, and aspects of physical biosciences— are those that discover new materials and design new chemical processes. These disciplines touch virtually every aspect of energy resources, production, conversion, transmission, storage, efficiency, and waste mitigation. BES also plans, constructs, and operates world-class scientific user facilities that provide outstanding capabilities for imaging and spectroscopy, characterizing materials of all kinds ranging from hard metals to fragile biological samples, and studying the chemical transformation of matter. These facilities are used to correlate the microscopic structure of materials with their macroscopic properties and to study chemical processes. Such experiments provide critical insights to electronic, atomic, and molecular configurations, often at ultrasmall length and ultrafast time scales.

  10. Development of FBR integrity system code. Basic concept

    International Nuclear Information System (INIS)

    Asayama, Tai

    2001-05-01

    For fast breeder reactors to be commercialized, they must be more reliable, safer, and at the same, economically competitive with future light water reactors. Innovation of elevated temperature structural design standard is necessary to achieve this goal. The most powerful way is to enlarge the scope of structural integrity code to cover items other than design evaluation that has been addressed in existing codes. Items that must be newly covered are prerequisites of design, fabrication, examination, operation and maintenance, etc. This allows designers to choose the most economical combination of design variations to achieve specific reliability that is needed for a particular component. Designing components by this concept, a cost-minimum design of a whole plant can be realized. By determining the reliability that must be achieved for a component by risk technologies, further economical improvement can be expected by avoiding excessive quality. Recognizing the necessity for the codes based on the new concept, the development of 'FBR integrity system code' began in 2000. Research and development will last 10 years. For this development, the basic logistics and system as well as technologies that materialize the concept are necessary. Original logistics and system must be developed, because no existing researches are available in and out of Japan. This reports presents the results of the work done in the first year regarding the basic idea, methodology, and structure of the code. (author)

  11. Improving basic math skills through integrated dynamic representation strategies.

    Science.gov (United States)

    González-Castro, Paloma; Cueli, Marisol; Cabeza, Lourdes; Álvarez-García, David; Rodríguez, Celestino

    2014-01-01

    In this paper, we analyze the effectiveness of the Integrated Dynamic Representation strategy (IDR) to develop basic math skills. The study involved 72 students, aged between 6 and 8 years. We compared the development of informal basic skills (numbers, comparison, informal calculation, and informal concepts) and formal (conventionalisms, number facts, formal calculus, and formal concepts) in an experimental group (n = 35) where we applied the IDR strategy and in a Control group (n = 37) in order to identify the impact of the procedure. The experimental group improved significantly in all variables except for number facts and formal calculus. It can therefore be concluded that IDR favors the development of the skills more closely related to applied mathematics than those related to automatic mathematics and mental arithmetic.

  12. Information Science and integrative Science. A sistemic approach to information units

    Directory of Open Access Journals (Sweden)

    Rita Dolores Santaella Ruiz

    2006-01-01

    Full Text Available Structured in two parts: The Documentation like integrating science and Systematics approach to the documentary units, this work understands the Documentation from a brought integrating perspective of the twinning that supposes same modus operandi in the information systems through the use of the technologies of the communication. From the General Theory of Systems, the present work interprets this science to multidiscipline like a system formed by the technical subsystems, of elements and individuals

  13. 78 FR 38318 - Integrated Science Assessment for Lead

    Science.gov (United States)

    2013-06-26

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9827-4] Integrated Science Assessment for Lead AGENCY... availability of a final document titled, ``Integrated Science Assessment for Lead'' (EPA/600/R-10/075F). The... lead (Pb). DATES: The document will be available on or around June 26, 2013. ADDRESSES: The...

  14. Data-Intensive Science and Research Integrity.

    Science.gov (United States)

    Resnik, David B; Elliott, Kevin C; Soranno, Patricia A; Smith, Elise M

    2017-01-01

    In this commentary, we consider questions related to research integrity in data-intensive science and argue that there is no need to create a distinct category of misconduct that applies to deception related to processing, analyzing, or interpreting data. The best way to promote integrity in data-intensive science is to maintain a firm commitment to epistemological and ethical values, such as honesty, openness, transparency, and objectivity, which apply to all types of research, and to promote education, policy development, and scholarly debate concerning appropriate uses of statistics.

  15. Defining Integrated Science Education and Putting It to Test

    OpenAIRE

    Åström, Maria

    2008-01-01

    The thesis is made up by four studies, on the comprehensive theme of integrated and subject-specific science education in Swedish compulsory school. A literature study on the matter is followed by an expert survey, then a case study and ending with two analyses of students' science results from PISA 2003 and PISA 2006. The first two studies explore similarities and differences between integrated and subject-specific science education, i.e. Science education and science taught as Biology, Chem...

  16. Thinking science with thinking machines: The multiple realities of basic and applied knowledge in a research border zone.

    Science.gov (United States)

    Hoffman, Steve G

    2015-04-01

    Some scholars dismiss the distinction between basic and applied science as passé, yet substantive assumptions about this boundary remain obdurate in research policy, popular rhetoric, the sociology and philosophy of science, and, indeed, at the level of bench practice. In this article, I draw on a multiple ontology framework to provide a more stable affirmation of a constructivist position in science and technology studies that cannot be reduced to a matter of competing perspectives on a single reality. The analysis is grounded in ethnographic research in the border zone of Artificial Intelligence science. I translate in-situ moments in which members of neighboring but differently situated labs engage in three distinct repertoires that render the reality of basic and applied science: partitioning, flipping, and collapsing. While the essences of scientific objects are nowhere to be found, the boundary between basic and applied is neither illusion nor mere propaganda. Instead, distinctions among scientific knowledge are made real as a matter of course.

  17. Integration of ICTs into the Basic Curriculum in Primary Schools in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Integration of ICTs into the Basic Curriculum in Primary Schools in Sénégal - Phase ... Special journal issue highlights IDRC-supported findings on women's paid work ... A new website and resource library will help improve developing country ...

  18. Radiation chemistry: basic, strategic or tactical science?

    International Nuclear Information System (INIS)

    Wardman, Peter

    1989-01-01

    The work of Weiss in the 1930s, particularly with Haber, has only recently been recognized to have implications in biology and medicine. Similarly, research in radiation chemistry and the application of the pulse radiolysis technique, for example, have implications far beyond traditional radiation chemistry. Some examples of such research are discussed against a background of categorization into 'basic', 'strategic' or 'tactical' science. Examples discussed include redox properties of free radicals, and the identification and characterization of nitro radicals as intermediates in drug metabolism. Radical reactions often take place in multicomponent systems, and the techniques of radiation chemistry can be used to probe, for example, events occurring at interfaces in micelles. Industrial processes involving radiation are attracting investment, particularly in Japan. (author)

  19. Basic Science Research and the Protection of Human Research Participants

    Science.gov (United States)

    Eiseman, Elisa

    2001-03-01

    Technological advances in basic biological research have been instrumental in recent biomedical discoveries, such as in the understanding and treatment of cancer, HIV/AIDS, and heart disease. However, many of these advances also raise several new ethical challenges. For example, genetic research may pose no physical risk beyond that of obtaining the initial blood sample, yet it can pose significant psychological and economic risks to research participants, such as stigmatization, discrimination in insurance and employment, invasion of privacy, or breach of confidentiality. These harms may occur even when investigators do not directly interact with the person whose DNA they are studying. Moreover, this type of basic research also raises broader questions, such as what is the definition of a human subject, and what kinds of expertise do Institutional Review Boards (IRBs) need to review the increasingly diverse types of research made possible by these advances in technology. The National Bioethics Advisory Commission (NBAC), a presidentially appointed federal advisory committee, has addressed these and other ethical, scientific and policy issues that arise in basic science research involving human participants. Two of its six reports, in particular, have proposed recommendations in this regard. "Research Involving Human Biological Materials: Ethical and Policy Guidance" addresses the basic research use of human tissues, cells and DNA and the protection of human participants in this type of research. In "Ethical and Policy Issues in the Oversight of Human Research" NBAC proposes a definition of research involving human participants that would apply to all scientific disciplines, including physical, biological, and social sciences, as well as the humanities and related professions, such as business and law. Both of these reports make it clear that the protection of research participants is key to conducting ethically sound research. By ensuring that all participants in

  20. Status of the JWST Integrated Science Instrument Module

    Science.gov (United States)

    Greenhouse, Matthew A.; Dunn, Jamie; Kimble, Randy A.; Lambros, Scott; Lundquist, Ray; Rauscher, Bernard J.; Van Campen, Julie

    2015-01-01

    The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) is the science instrument payload of the JWST. It is one of three system elements that comprise the JWST space vehicle. It consists of four science sensors, a fine guidance sensor, and nine other subsystems that support them. At 1.4 metric tons, it comprises approximately 20% of the JWST mass. The ISIM is currently at 100% integration and has completed 2 of 3 planned element-level space simulation tests. The ISIM is on schedule to be delivered for integration with the Optical Telescope Element during 2015. In this poster, we present an overview of the ISIM and its status.

  1. LRN, ERN:, & BERN @ Wireless Integrating the Sciences (WITS) Theatre

    Science.gov (United States)

    Hilliard, L.; Campbell, B.; Foody, M.; Klitsner, D.

    2010-01-01

    In order to develop a call to action for a learning tool that would work to best teach Science Technology Engineering and Math (STEM), the NASA Goddard team will partner with the inventor of Bop It!, an interactive game of verbs and following instructions; and Global Imagination, the developers of Magic Planet. In this paper Decision-making Orbital Health! (DOH!) will be described as a game derived from the basic functions necessary for Bop lt!, a familiar game. that will ask the educational audience to respond to changing commands to Bop It!, Twist It!, and Squeeze It! The success of the new version of the game, will be that the Earth will be making these commands from Dynamic Planet, and the crowd assembled can play wirelessly. Wireless Integrating The Sciences (WITS) Theatre : A balanced approach will describe how the communities local to Goddard and perhaps San Francisco will develop curriculum that helps kids teach kids with an engaging game and a STEM message. The performing arts will be employed to make it entertaining and appropriate to the size of the gathering, and the students educational level.

  2. The United Nations Basic Space Science Initiative (UNBSSI): A Historical Introduction

    Science.gov (United States)

    Haubold, H. J.

    2006-11-01

    Pursuant to recommendations of the Third United Nations Conference on the Exploration and Peaceful Uses of Outer Space (UNISPACE III) and deliberations of the United Nations Committee on the Peaceful Uses of Outer Space (UNCOPUOS), annual UN/European Space Agency workshops on basic space science have been held around the world since 1991. These workshops contributed to the development of astrophysics and space science, particularly in developing nations. Following a process of prioritization, the workshops identified the following elements as particularly important for international cooperation in the field: (i) operation of astronomical telescope facilities implementing TRIPOD, (ii) virtual observatories, (iii) astrophysical data systems, (iv) con-current design capabilities for the development of international space missions, and (v) theoretical astrophysics such as applications of non-extensive statistical mechanics. Beginning in 2005, the workshops are focusing on preparations for the International Heliophysical Year 2007 (IHY2007). The workshops continue to facilitate the establishment of astronomical telescope facilities as pursued by Japan and the development of low-cost, ground-based, world- wide instrument arrays as led by the IHY secretariat. Wamsteker, W., Albrecht, R. and Haubold, H.J.: Developing Basic Space Science World-Wide: A Decade of UN/ESA Workshops: Kluwer Academic Publishers, Dordrecht 2004. http://ihy2007.org http://www.unoosa.org/oosa/en/SAP/bss/ihy2007/index.html http://www.cbpf.br/GrupPesq/StatisticalPhys/biblio.htm

  3. The Neuropsychoanalytic Approach: Using Neuroscience as the Basic Science of Psychoanalysis

    Science.gov (United States)

    Johnson, Brian; Flores Mosri, Daniela

    2016-01-01

    Neuroscience was the basic science behind Freud's psychoanalytic theory and technique. He worked as a neurologist for 20 years before being aware that a new approach to understand complex diseases, namely the hysterias, was needed. Solms coined the term neuropsychoanalysis to affirm that neuroscience still belongs in psychoanalysis. The neuropsychoanalytic field has continued Freud's original ideas as stated in 1895. Developments in psychoanalysis that have been created or revised by the neuropsychoanalysis movement include pain/relatedness/opioids, drive, structural model, dreams, cathexis, and dynamic unconscious. Neuroscience has contributed to the development of new psychoanalytic theory, such as Bazan's (2011) description of anxiety driven by unconscious intentions or “phantoms.” Results of adopting the “dual aspect monism” approach of idiographic psychoanalytic clinical observation combined with nomothetic investigation of related human phenomena include clarification and revision of theory, restoration of the scientific base of psychoanalysis, and improvement of clinical treatments. By imbricating psychoanalytic thinking with neuroscience, psychoanalysts are also positioned to make contributions to neuroscience research. Freud's original Project for a Scientific Psychology/Psychology for Neurologists can be carried forward in a way that moves psychoanalysis into the twenty-first century as a core contemporary science (Kandel, 1999). Neuroscience as the basic science of psychoanalysis both improves the field, and enhances its scientific and cultural status. PMID:27790160

  4. Aligning library instruction with the needs of basic sciences graduate students: a case study.

    Science.gov (United States)

    O'Malley, Donna; Delwiche, Frances A

    2012-10-01

    How can an existing library instruction program be reconfigured to reach basic sciences graduate students and other patrons missed by curriculum-based instruction? The setting is an academic health sciences library that serves both the university and its affiliated teaching hospital. The existing program was redesigned to incorporate a series of seven workshops that encompassed the range of information literacy skills that graduate students in the basic sciences need. In developing the new model, the teaching librarians made changes in pedagogy, technology, marketing, and assessment strategies. Total attendance at the sessions increased substantially in the first 2 years of the new model, increasing from an average of 20 per semester to an average of 124. Survey results provided insight about what patrons wanted to learn and how best to teach it. Modifying the program's content and structure resulted in a program that appealed to the target audience.

  5. Basic principles, contents, and benefits of an integrated management system

    International Nuclear Information System (INIS)

    Schwarzin, Juergen

    2010-01-01

    The basic principles and contents of an integrated management system are presented. The report focuses on the benefits and the experience accumulated in using an integrated management system. Integrated management systems are characterized by 2 features in particular: - On the one hand, by a system holistically controlling and describing all processes within a company which are necessary to achieve the company policy and company goals as defined. - On the other hand, it combines in one integrated management system various different aspects (such as quality, environmental protection, and safety) and the resulting requirements. Successful implementation of an integrated management system requires a clear commitment by company management to the integrated management system serving as a management tool. Implementation must be assigned the appropriate importance in the company. It must not be viewed as an instrument preserving 'status quo.' Instead, it must be seen as a tool for long-term improvement of the company. Application of the integrated management system minimizes the probability of occurrence of events, but is not able to reduce it to zero. (orig.)

  6. elements of contemporary integrated science curriculum

    African Journals Online (AJOL)

    both science and technology (Hurd, 1975). Discoveries in nature are made easier through integration of ideas, thoughts and concepts. To this end, science teaching in the modern world ought to be interdisciplinary, unified, society based and aspire above all to achieve scientific literacy (Arokoyu and Dike, 2009). These are.

  7. Modelling Spark Integration in Science Classroom

    Directory of Open Access Journals (Sweden)

    Marie Paz E. Morales

    2014-02-01

    Full Text Available The study critically explored how a PASCO-designed technology (SPARK ScienceLearning System is meaningfully integrated into the teaching of selected topics in Earth and Environmental Science. It highlights on modelling the effectiveness of using the SPARK Learning System as a primary tool in learning science that leads to learning and achievement of the students. Data and observation gathered and correlation of the ability of the technology to develop high intrinsic motivation to student achievement were used to design framework on how to meaningfully integrate SPARK ScienceLearning System in teaching Earth and Environmental Science. Research instruments used in this study were adopted from standardized questionnaires available from literature. Achievement test and evaluation form were developed and validated for the purpose of deducing data needed for the study. Interviews were done to delve into the deeper thoughts and emotions of the respondents. Data from the interviews served to validate all numerical data culled from this study. Cross-case analysis of the data was done to reveal some recurring themes, problems and benefits derived by the students in using the SPARK Science Learning System to further establish its effectiveness in the curriculum as a forerunner to the shift towards the 21st Century Learning.

  8. Using the earth system for integrating the science curriculum

    Science.gov (United States)

    Mayer, Victor J.

    Content and process instruction from the earth sciences has gone unrepresented in the world's science curricula, especially at the secondary level. As a result there is a serious deficiency in public understanding of the planet on which we all live. This lack includes national and international leaders in politics, business, and science. The earth system science effort now engaging the research talent of the earth sciences provides a firm foundation from the sciences for inclusion of earth systems content into the evolving integrated science curricula of this country and others. Implementing integrated science curricula, especially at the secondary level where potential leaders often have their only exposure to science, can help to address these problems. The earth system provides a conceptual theme as opposed to a disciplinary theme for organizing such integrated curricula, absent from prior efforts. The end of the cold war era is resulting in a reexamination of science and the influence it has had on our planet and society. In the future, science and the curricula that teach about science must seriously address the environmental and social problems left in the wake of over 100 years of preparation for military and economic war. The earth systems education effort provides one such approach to the modernization of science curricula. Earth science educators should assume leadership in helping to establish such curricula in this country and around the world.

  9. Thinking about thinking and emotion: the metacognitive approach to the medical humanities that integrates the humanities with the basic and clinical sciences.

    Science.gov (United States)

    Eichbaum, Quentin G

    2014-01-01

    Medical knowledge in recent decades has grown prodigiously and has outstripped the capacity of the human brain to absorb and understand it all. This burgeoning of knowledge has created a dilemma for medical educators. We can no longer expect students to continue memorizing this large body of increasingly complex knowledge. Instead, our efforts should be redirected at developing in students a competency as flexible thinkers and agile learners so they can adeptly deal with new knowledge, complexity, and uncertainty in a rapidly changing world. Such a competency would entail not only cognitive but also emotional skills essential for the holistic development of their professional identity. This article will argue that metacognition--“thinking about thinking (and emotion)”--offers the most viable path toward developing this competency. The overwhelming volume of medical knowledge has driven some medical schools to reduce the time allocated in their curricula to the “soft-option” humanities as they tend to consider them an expendable “luxury.” Vanderbilt University School of Medicine, Nashville, TN, has moved away from the traditional conception of the medical humanities as “the arts,” composed of art, music, and literature, toward an approach that integrates the humanities with the basic and clinical sciences, based on metacognition. This metacognitive approach to the humanities, described in this article, has three goals: 1) to develop students as flexible thinkers and agile learners and to provide them with essential cognitive and emotional skills for navigating medical complexity and uncertainty; 2) to elicit in students empathy and tolerance by making them aware of the immense diversity in human cognition (and emotion); and 3) to integrate the humanities with the basic and clinical sciences. Through this metacognitive approach, students come to understand their patterns of cognition and emotions, and in the group setting, they learn to mindfully

  10. The rate of knowledge retention in basic sciences courses among dentistry students

    Directory of Open Access Journals (Sweden)

    S.S Mazloomi

    2009-03-01

    Full Text Available Background: Acquiring and recalling knowledge can be considered as the starting point of learning; so increasing  the acquisition  of knowledge and information  recall is one the most important goals of education.Objective: To determine the students'  information recall in the basic courses of histology, immunology, physiology, biochemistry,  head and neck anatomy,  and microbiology  in dentistry  school.Method:  In this descriptive  survey, 60 students who had passed their basis courses were studied. The tests  were  held  five semesters  following  the basic  courses,  and  were  like  those  they  had  passed previously.Results: The results revealed that information recall was the highest for the physiology course (z=0.72, while it was the lowest for anatomy (z=0.07. For the histology course, the lowest mean score was achieved by the students entered in the  year 1997, and the highest  by those  entered  in 1999. The relationship between the entry year  of the  students  and  their  information recall  is  statistically significant  (p<0.05.Discussant: The results showed that the teaching basic science courses such as physiology, anatomy, immunology, microbiology, and biochemistry should  accompany new  strategies in  teaching  and learning. One of these is the inclusion by the teachers of retrieval cues in any course so as to facilitate learning.Keywords:  knowledge retention,  basic sciences

  11. Basic Definitions and Concepts of Systems Approach, Mathematical Modeling and Information Technologies in Sports Science

    Directory of Open Access Journals (Sweden)

    А. Лопатьєв

    2017-09-01

    Full Text Available The objective is to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies to sports science. Materials and methods. The research has studied the availability of appropriate terms in shooting sports, which would meet the requirements of modern sports science. It has examined the compliance of the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions with the modern requirements and principles. Research results. The paper suggests the basic definitions adapted to the requirements of technical sports and sports science. The research has thoroughly analyzed the shooting sports training program for children and youth sports schools, the Olympic reserve specialized children and youth schools, schools of higher sports skills, and sports educational institutions. The paper offers options to improve the training program in accordance with the modern tendencies of training athletes.  Conclusions. The research suggests to systematize and adapt the basic definitions and concepts of the systems approach, mathematical modeling and information technologies using the example of technical sports.

  12. Disaster Relief and Emergency Medical Services Project (DREAMS TM): Clinical and Basic Science Projects

    National Research Council Canada - National Science Library

    Casscells, Ward

    1999-01-01

    DREAMS clinical and basic science projects complement the digital EMS effort by investigating the mechanisms of tissue injury in order to minimize the mortality and mortality of trauma and "natural...

  13. USGS integrated drought science

    Science.gov (United States)

    Ostroff, Andrea C.; Muhlfeld, Clint C.; Lambert, Patrick M.; Booth, Nathaniel L.; Carter, Shawn L.; Stoker, Jason M.; Focazio, Michael J.

    2017-06-05

    Project Need and OverviewDrought poses a serious threat to the resilience of human communities and ecosystems in the United States (Easterling and others, 2000). Over the past several years, many regions have experienced extreme drought conditions, fueled by prolonged periods of reduced precipitation and exceptionally warm temperatures. Extreme drought has far-reaching impacts on water supplies, ecosystems, agricultural production, critical infrastructure, energy costs, human health, and local economies (Milly and others, 2005; Wihlite, 2005; Vörösmarty and others, 2010; Choat and others, 2012; Ledger and others, 2013). As global temperatures continue to increase, the frequency, severity, extent, and duration of droughts are expected to increase across North America, affecting both humans and natural ecosystems (Parry and others, 2007).The U.S. Geological Survey (USGS) has a long, proven history of delivering science and tools to help decision-makers manage and mitigate effects of drought. That said, there is substantial capacity for improved integration and coordination in the ways that the USGS provides drought science. A USGS Drought Team was formed in August 2016 to work across USGS Mission Areas to identify current USGS drought-related research and core capabilities. This information has been used to initiate the development of an integrated science effort that will bring the full USGS capacity to bear on this national crisis.

  14. Critical Need for Family-Based, Quasi-Experimental Designs in Integrating Genetic and Social Science Research

    Science.gov (United States)

    Lahey, Benjamin B.; Turkheimer, Eric; Lichtenstein, Paul

    2013-01-01

    Researchers have identified environmental risks that predict subsequent psychological and medical problems. Based on these correlational findings, researchers have developed and tested complex developmental models and have examined biological moderating factors (e.g., gene–environment interactions). In this context, we stress the critical need for researchers to use family-based, quasi-experimental designs when trying to integrate genetic and social science research involving environmental variables because these designs rigorously examine causal inferences by testing competing hypotheses. We argue that sibling comparison, offspring of twins or siblings, in vitro fertilization designs, and other genetically informed approaches play a unique role in bridging gaps between basic biological and social science research. We use studies on maternal smoking during pregnancy to exemplify these principles. PMID:23927516

  15. Science Integrating Learning Objectives: A Cooperative Learning Group Process

    Science.gov (United States)

    Spindler, Matt

    2015-01-01

    The integration of agricultural and science curricular content that capitalizes on natural and inherent connections represents a challenge for secondary agricultural educators. The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives…

  16. Pharmaceutical applications of cyclodextrins: basic science and product development.

    Science.gov (United States)

    Loftsson, Thorsteinn; Brewster, Marcus E

    2010-11-01

    Drug pipelines are becoming increasingly difficult to formulate. This is punctuated by both retrospective and prospective analyses that show that while 40% of currently marketed drugs are poorly soluble based on the definition of the biopharmaceutical classification system (BCS), about 90% of drugs in development can be characterized as poorly soluble. Although a number of techniques have been suggested for increasing oral bioavailability and for enabling parenteral formulations, cyclodextrins have emerged as a productive approach. This short review is intended to provide both some basic science information as well as data on the ability to develop drugs in cyclodextrin-containing formulations. There are currently a number of marketed products that make use of these functional solubilizing excipients and new product introduction continues to demonstrate their high added value. The ability to predict whether cyclodextrins will be of benefit in creating a dosage form for a particular drug candidate requires a good working knowledge of the properties of cyclodextrins, their mechanism of solubilization and factors that contribute to, or detract from, the biopharmaceutical characteristics of the formed complexes. We provide basic science information as well as data on the development of drugs in cyclodextrin-containing formulations. Cyclodextrins have emerged as an important tool in the formulator's armamentarium to improve apparent solubility and dissolution rate for poorly water-soluble drug candidates. The continued interest and productivity of these materials bode well for future application and their currency as excipients in research, development and drug product marketing. © 2010 The Authors. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  17. Geoengineering: Basic science and ongoing research efforts in China

    Directory of Open Access Journals (Sweden)

    Long Cao

    2015-09-01

    Full Text Available Geoengineering (also called climate engineering, which refers to large-scale intervention in the Earth's climate system to counteract greenhouse gas-induced warming, has been one of the most rapidly growing areas of climate research as a potential option for tackling global warming. Here, we provide an overview of the scientific background and research progress of proposed geoengineering schemes. Geoengineering can be broadly divided into two categories: solar geoengineering (also called solar radiation management, or SRM, which aims to reflect more sunlight to space, and carbon dioxide removal (CDR, which aims to reduce the CO2 content in the atmosphere. First, we review different proposed geoengineering methods involved in the solar radiation management and carbon dioxide removal schemes. Then, we discuss the fundamental science underlying the climate response to the carbon dioxide removal and solar radiation management schemes. We focus on two basic issues: 1 climate response to the reduction in solar irradiance and 2 climate response to the reduction in atmospheric CO2. Next, we introduce an ongoing geoengineering research project in China that is supported by National Key Basic Research Program. This research project, being the first coordinated geoengineering research program in China, will systematically investigate the physical mechanisms, climate impacts, and risk and governance of a few targeted geoengineering schemes. It is expected that this research program will help us gain a deep understanding of the physical science underlying geoengineering schemes and the impacts of geoengineering on global climate, in particular, on the Asia monsoon region.

  18. The effectivenes of science domain-based science learning integrated with local potency

    Science.gov (United States)

    Kurniawati, Arifah Putri; Prasetyo, Zuhdan Kun; Wilujeng, Insih; Suryadarma, I. Gusti Putu

    2017-08-01

    This research aimed to determine the significant effect of science domain-based science learning integrated with local potency toward science process skills. The research method used was a quasi-experimental design with nonequivalent control group design. The population of this research was all students of class VII SMP Negeri 1 Muntilan. The sample of this research was selected through cluster random sampling, namely class VII B as an experiment class (24 students) and class VII C as a control class (24 students). This research used a test instrument that was adapted from Agus Dwianto's research. The aspect of science process skills in this research was observation, classification, interpretation and communication. The analysis of data used the one factor anova at 0,05 significance level and normalized gain score. The significance level result of science process skills with one factor anova is 0,000. It shows that the significance level < alpha (0,05). It means that there was significant effect of science domain-based science learning integrated with local potency toward science learning process skills. The results of analysis show that the normalized gain score are 0,29 (low category) in control class and 0,67 (medium category) in experiment class.

  19. Basic science and surgical treatment options for articular cartilage injuries of the knee.

    Science.gov (United States)

    Tetteh, Elizabeth S; Bajaj, Sarvottam; Ghodadra, Neil S

    2012-03-01

    The complex structure of articular cartilage allows for diverse knee function throughout range of motion and weight bearing. However, disruption to the structural integrity of the articular surface can cause significant morbidity. Due to an inherently poor regenerative capacity, articular cartilage defects present a treatment challenge for physicians and therapists. For many patients, a trial of nonsurgical treatment options is paramount prior to surgical intervention. In instances of failed conservative treatment, patients can undergo an array of palliative, restorative, or reparative surgical procedures to treat these lesions. Palliative methods include debridement and lavage, while restorative techniques include marrow stimulation. For larger lesions involving subchondral bone, reparative procedures such as osteochondral grafting or autologous chondrocyte implantation are considered. Clinical success not only depends on the surgical techniques but also requires strict adherence to rehabilitation guidelines. The purpose of this article is to review the basic science of articular cartilage and to provide an overview of the procedures currently performed at our institution for patients presenting with symptomatic cartilage lesions.

  20. The Divergent Thinking of Basic Skills of Sciences Process Skills of Life Aspects on Natural Sciences Subject in Indonesian Elementary School Students

    Science.gov (United States)

    Subali, Bambang; Paidi; Mariyam, Siti

    2016-01-01

    This research aims at measuring the divergent thinking of basic skills of science process skills (SPS) of life aspects in Natural Sciences subjects on Elementary School. The test instruments used in this research have been standardized through the development of instruments. In this case, the tests were tried out to 3070 students. The results of…

  1. Why we do what we do: a theoretical evaluation of the integrated practice model for forensic nursing science.

    Science.gov (United States)

    Valentine, Julie L

    2014-01-01

    An evaluation of the Integrated Practice Model for Forensic Nursing Science () is presented utilizing methods outlined by . A brief review of nursing theory basics and evaluation methods by Meleis is provided to enhance understanding of the ensuing theoretical evaluation and critique. The Integrated Practice Model for Forensic Nursing Science, created by forensic nursing pioneer Virginia Lynch, captures the theories, assumptions, concepts, and propositions inherent in forensic nursing practice and science. The historical background of the theory is explored as Lynch's model launched the role development of forensic nursing practice as both a nursing and forensic science specialty. It is derived from a combination of nursing, sociological, and philosophical theories to reflect the grounding of forensic nursing in the nursing, legal, psychological, and scientific communities. As Lynch's model is the first inception of forensic nursing theory, it is representative of a conceptual framework although the title implies a practice theory. The clarity and consistency displayed in the theory's structural components of assumptions, concepts, and propositions are analyzed. The model is described and evaluated. A summary of the strengths and limitations of the model is compiled followed by application to practice, education, and research with suggestions for ongoing theory development.

  2. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-10-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  3. Basic Research Needs for Advanced Nuclear Systems. Report of the Basic Energy Sciences Workshop on Basic Research Needs for Advanced Nuclear Energy Systems, July 31-August 3, 2006

    International Nuclear Information System (INIS)

    Roberto, J.; Diaz de la Rubia, T.; Gibala, R.; Zinkle, S.; Miller, J.R.; Pimblott, S.; Burns, C.; Raymond, K.; Grimes, R.; Pasamehmetoglu, K.; Clark, S.; Ewing, R.; Wagner, A.; Yip, S.; Buchanan, M.; Crabtree, G.; Hemminger, J.; Poate, J.; Miller, J.C.; Edelstein, N.; Fitzsimmons, T.; Gruzalski, G.; Michaels, G.; Morss, L.; Peters, M.; Talamini, K.

    2006-01-01

    The global utilization of nuclear energy has come a long way from its humble beginnings in the first sustained nuclear reaction at the University of Chicago in 1942. Today, there are over 440 nuclear reactors in 31 countries producing approximately 16% of the electrical energy used worldwide. In the United States, 104 nuclear reactors currently provide 19% of electrical energy used nationally. The International Atomic Energy Agency projects significant growth in the utilization of nuclear power over the next several decades due to increasing demand for energy and environmental concerns related to emissions from fossil plants. There are 28 new nuclear plants currently under construction including 10 in China, 8 in India, and 4 in Russia. In the United States, there have been notifications to the Nuclear Regulatory Commission of intentions to apply for combined construction and operating licenses for 27 new units over the next decade. The projected growth in nuclear power has focused increasing attention on issues related to the permanent disposal of nuclear waste, the proliferation of nuclear weapons technologies and materials, and the sustainability of a once-through nuclear fuel cycle. In addition, the effective utilization of nuclear power will require continued improvements in nuclear technology, particularly related to safety and efficiency. In all of these areas, the performance of materials and chemical processes under extreme conditions is a limiting factor. The related basic research challenges represent some of the most demanding tests of our fundamental understanding of materials science and chemistry, and they provide significant opportunities for advancing basic science with broad impacts for nuclear reactor materials, fuels, waste forms, and separations techniques. Of particular importance is the role that new nanoscale characterization and computational tools can play in addressing these challenges. These tools, which include DOE synchrotron X

  4. Open Science: a first step towards Science Communication

    Science.gov (United States)

    Grigorov, Ivo; Tuddenham, Peter

    2015-04-01

    As Earth Science communicators gear up to adopt the new tools and captivating approaches to engage citizen scientists, budding entrepreneurs, policy makers and the public in general, researchers have the responsibility, and opportunity, to fully adopt Open Science principles and capitalize on its full societal impact and engagement. Open Science is about removing all barriers to basic research, whatever its formats, so that it can be freely used, re-used and re-hashed, thus fueling discourse and accelerating generation of innovative ideas. The concept is central to EU's Responsible Research and Innovation philosophy, and removing barriers to basic research measurably contributes to engaging citizen scientists into the research process, it sets the scene for co-creation of solutions to societal challenges, and raises the general science literacy level of the public. Despite this potential, only 50% of today's basic research is freely available. Open Science can be the first passive step of communicating marine research outside academia. Full and unrestricted access to our knowledge including data, software code and scientific publications is not just an ethical obligation, but also gives solid credibility to a more sophisticated communication strategy on engaging society. The presentation will demonstrate how Open Science perfectly compliments a coherent communication strategy for placing Marine Research in societal context, and how it underpin an effective integration of Ocean & Earth Literacy principles in standard educational, as well mobilizing citizen marine scientists, thus making marine science Open Science.

  5. An international basic science and clinical research summer program for medical students.

    Science.gov (United States)

    Ramjiawan, Bram; Pierce, Grant N; Anindo, Mohammad Iffat Kabir; Alkukhun, Abedalrazaq; Alshammari, Abdullah; Chamsi, Ahmad Talal; Abousaleh, Mohannad; Alkhani, Anas; Ganguly, Pallab K

    2012-03-01

    An important part of training the next generation of physicians is ensuring that they are exposed to the integral role that research plays in improving medical treatment. However, medical students often do not have sufficient time to be trained to carry out any projects in biomedical and clinical research. Many medical students also fail to understand and grasp translational research as an important concept today. In addition, since medical training is often an international affair whereby a medical student/resident/fellow will likely train in many different countries during his/her early training years, it is important to provide a learning environment whereby a young medical student experiences the unique challenges and value of an international educational experience. This article describes a program that bridges the gap between the basic and clinical research concepts in a unique international educational experience. After completing two semester curricula at Alfaisal University in Riyadh, Kingdom of Saudi Arabia, six medical students undertook a summer program at St. Boniface Hospital Research Centre, in Winnipeg, MB, Canada. The program lasted for 2 mo and addressed advanced training in basic science research topics in medicine such as cell isolation, functional assessment, and molecular techniques of analysis and manipulation as well as sessions on the conduct of clinical research trials, ethics, and intellectual property management. Programs such as these are essential to provide a base from which medical students can decide if research is an attractive career choice for them during their clinical practice in subsequent years. An innovative international summer research course for medical students is necessary to cater to the needs of the medical students in the 21st century.

  6. The basic science of dermal fillers: past and present Part I: background and mechanisms of action.

    Science.gov (United States)

    Gilbert, Erin; Hui, Andrea; Waldorf, Heidi A

    2012-09-01

    Dermal fillers have provided a safe and effective means for aesthetic soft tissue augmentation, and have experienced a dramatic increase in popularity during the past 10 years. Much focus has been placed upon filler technique and patient outcomes. However, there is a relative lack of literature reviewing the basic science of dermal fillers, which is vital to a physician's understanding of how each product behaves in vivo. Part I of this article reviews the basic science and evolution of both historical and contemporary dermal fillers; Part II examines their adverse effects. We endeavor to provide the physician with a practical approach to choosing products that maximize both aesthetic outcome and safety.

  7. A report of the Basic Energy Sciences Advisory Committee: 1992 review of the Basic Energy Sciences Program of the Department of Energy

    International Nuclear Information System (INIS)

    1993-09-01

    The general quality of BES research at each of the 4 laboratories is high. Diversity of management at the different laboratories is beneficial as long as the primary BES mission and goals are clearly identified and effectively pursued. External sources of personnel should be encouraged. DOE has been designing a new high flux research reactor, the Advanced Neutron Source, to replace DOE's two aging research reactors; BESAC conducted a panel evaluation of neutron sources for the future. The two new light sources, Advanced Light Source and Advanced Photon source will come on line well before all of their beamline instrumentation can be funded, developed, and installed. Appointment of a permanent director and deputy for OBES would enhance OBES effectiveness in budget planning and intra-DOE program coordination. Some DOE and DP laboratories have substantial infrastructure which match well industry development-applications needs; interlaboratory partnerships in this area are encouraged. Funding for basic science research programs should be maintained at FY1993 levels, adjusted for inflation; OBES plans should be updated and monitored to maintain the balance between basic research and facilities construction and operation. The recommendations are discussed in detail in this document

  8. Integrating data to acquire new knowledge: Three modes of integration in plant science.

    Science.gov (United States)

    Leonelli, Sabina

    2013-12-01

    This paper discusses what it means and what it takes to integrate data in order to acquire new knowledge about biological entities and processes. Maureen O'Malley and Orkun Soyer have pointed to the scientific work involved in data integration as important and distinct from the work required by other forms of integration, such as methodological and explanatory integration, which have been more successful in captivating the attention of philosophers of science. Here I explore what data integration involves in more detail and with a focus on the role of data-sharing tools, like online databases, in facilitating this process; and I point to the philosophical implications of focusing on data as a unit of analysis. I then analyse three cases of data integration in the field of plant science, each of which highlights a different mode of integration: (1) inter-level integration, which involves data documenting different features of the same species, aims to acquire an interdisciplinary understanding of organisms as complex wholes and is exemplified by research on Arabidopsis thaliana; (2) cross-species integration, which involves data acquired on different species, aims to understand plant biology in all its different manifestations and is exemplified by research on Miscanthus giganteus; and (3) translational integration, which involves data acquired from sources within as well as outside academia, aims at the provision of interventions to improve human health (e.g. by sustaining the environment in which humans thrive) and is exemplified by research on Phytophtora ramorum. Recognising the differences between these efforts sheds light on the dynamics and diverse outcomes of data dissemination and integrative research; and the relations between the social and institutional roles of science, the development of data-sharing infrastructures and the production of scientific knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Teaching Basic Science Content via Real-World Applications: A College-Level Summer Course in Veterinary Anatomy and Physiology

    Science.gov (United States)

    Maza, Paul; Miller, Allison; Carson, Brian; Hermanson, John

    2018-01-01

    Learning and retaining science content may be increased by applying the basic science material to real-world situations. Discussing cases with students during lectures and having them participate in laboratory exercises where they apply the science content to practical situations increases students' interest and enthusiasm. A summer course in…

  10. The effect of science learning integrated with local potential to improve science process skills

    Science.gov (United States)

    Rahardini, Riris Riezqia Budy; Suryadarma, I. Gusti Putu; Wilujeng, Insih

    2017-08-01

    This research was aimed to know the effectiveness of science learning that integrated with local potential to improve student`s science process skill. The research was quasi experiment using non-equivalent control group design. The research involved all student of Muhammadiyah Imogiri Junior High School on grade VII as a population. The sample in this research was selected through cluster random sampling, namely VII B (experiment group) and VII C (control group). Instrument that used in this research is a nontest instrument (science process skill observation's form) adapted Desak Megawati's research (2016). The aspect of science process skills were making observation and communication. The data were using univariat (ANOVA) analyzed at 0,05 significance level and normalized gain score for science process skill increase's category. The result is science learning that integrated with local potential was effective to improve science process skills of student (Sig. 0,00). This learning can increase science process skill, shown by a normalized gain score value at 0,63 (medium category) in experiment group and 0,29 (low category) in control group.

  11. Exploring Art and Science Integration in an Afterschool Program

    Science.gov (United States)

    Bolotta, Alanna

    Science, technology, engineering, arts and math (STEAM) education integrates science with art, presenting a unique and interesting opportunity to increase accessibility in science for learners. This case study examines an afterschool program grounded in art and science integration. Specifically, I studied the goals of the program, it's implementation and the student experience (thinking, feeling and doing) as they participated in the program. My findings suggest that these programs can be powerful methods to nurture scientific literacy, creativity and emotional development in learners. To do so, this program made connections between disciplines and beyond, integrated holistic teaching and learning practices, and continually adapted programming while also responding to challenges. The program is therefore specially suited to engage the heads, hands and hearts of learners, and can make an important contribution to their learning and development. To conclude, I provide some recommendations for STEAM implementation in both formal and informal learning settings.

  12. The energy-climate continuum lessons from basic science and history

    CERN Document Server

    Bret, Antoine

    2014-01-01

    An entertaining, highly informative introduction to the intimate linkage between the energy and climate debates Illustrates the basic science behind energy and climate with back-of-the-envelope calculations, that even non-experts can easily follow without a calculator Thus provides an access to getting an accurate feeling for orders of magnitudes from simple estimations A conversation starter for some of the most debated topics of today Compares the actual situation with historic cases of societies at a turning point and finds warning as well as encouraging examples For everyone, who wan

  13. GPRA (Government Performance and Results Act) and research evaluation for basic science

    International Nuclear Information System (INIS)

    Takahashi, Shoji

    2002-08-01

    The purpose of the Government Performance and Results Act of 1993 (GPRA) is to ask federal agencies for evaluating their program performance especially from cost-efficiency aspect and to report to Congress. GPRA is to hold agencies accountable for their programs by requiring that they think strategically (in most cases every 5 years) and set, measure and report goals annually. The agencies which have responsibilities for enhancing basic science like Department of Energy (DOE) and National Science Fund (NSF) are not excluded by reasons of the difficulties of economic evaluations. In Japan, based on 'the Rationalization program for the public corporations' of 2001, the research developing type corporations should make a cost-performance evaluation in addition to the conventional ones. They have same theme as US agencies struggles. The purpose of this report is to get some hints for this theme by surveying GPRA reports of DOE and NSF and analyzing related information. At present, I have to conclude although everybody accepts the necessities of socio-economic evaluations and investment criteria for basic research, studies and discussions about ways and means are still continuing even in the US. (author)

  14. Science Teachers’ Pedagogical Content Knowledge and Integrated Approach

    Science.gov (United States)

    Adi Putra, M. J.; Widodo, A.; Sopandi, W.

    2017-09-01

    The integrated approach refers to the stages of pupils’ psychological development. Unfortunately, the competences which are designed into the curriculum is not appropriate with the child development. This Manuscript presents PCK (pedagogical content knowledge) of teachers who teach science content utilizing an integrated approach. The data has been collected by using CoRe, PaP-eR, and interviews from six elementary teachers who teach science. The paper informs that high and stable teacher PCKs have an impact on how teachers present integrated teaching. Because it is influenced by the selection of important content that must be submitted to the students, the depth of the content, the reasons for choosing the teaching procedures and some other things. So for teachers to be able to integrate teaching, they should have a balanced PCK.

  15. A review of some basic aspects related to integration of airplane’s equations of motion

    Directory of Open Access Journals (Sweden)

    Dan TURCANU

    2017-09-01

    Full Text Available Numerical integration of the airplane’s equations of motion has long been considered among the most fundamental calculations in airplane’s analysis. Numerical algorithms have been implemented and experimentally validated. However, the need for superior speed and accuracy is still very topical, as, nowadays, various optimization algorithms rely heavily on data generated from the integration of the equations of motion and having access to larger amounts of data can increase the quality of the optimization. Now, for a number of decades, engineers have relied heavily on commercial codes based on automatically selected integration steps. However, optimally chosen constant integration steps can save time and allows for larger numbers of integrations to be performed. Yet, the basic papers that presented the fundamentals of numerical integration, as applied to airplane’s equations of motion are nowadays not easy to locate. Consequently, this paper presents a review of basic aspects related to the integration of airplane’s equation of motion. The discussion covers fundamentals of longitudinal and lateral-directional motion as well as the implementation of some numerical integration methods. The relation between numerical integration steps, accuracy, computational resource usage, numerical stability and their relation with the parameters describing the dynamic response of the airplane is considered and suggestions are presented for a faster yet accurate numerical integration.

  16. Earth Systems Science in an Integrated Science Content and Methods Course for Elementary Education Majors

    Science.gov (United States)

    Madsen, J. A.; Allen, D. E.; Donham, R. S.; Fifield, S. J.; Shipman, H. L.; Ford, D. J.; Dagher, Z. R.

    2004-12-01

    With funding from the National Science Foundation, we have designed an integrated science content and methods course for sophomore-level elementary teacher education (ETE) majors. This course, the Science Semester, is a 15-credit sequence that consists of three science content courses (Earth, Life, and Physical Science) and a science teaching methods course. The goal of this integrated science and education methods curriculum is to foster holistic understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in teaching science in their classrooms. During the Science Semester, traditional subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based elementary science. Exemplary approaches that support both learning science and learning how to teach science are used. In the science courses, students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. In the methods course, students critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning in the science courses. An earth system science approach is ideally adapted for the integrated, inquiry-based learning that takes place during the Science Semester. The PBL investigations that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in the PBL investigation that focuses on energy, the carbon cycle is examined as it relates to fossil fuels. In another PBL investigation centered on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. In a PBL investigation that has students learning about the Delaware Bay ecosystem through the story of the horseshoe crab and the biome

  17. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  18. The psychological science of addiction.

    Science.gov (United States)

    Gifford, Elizabeth; Humphreys, Keith

    2007-03-01

    To discuss the contributions and future course of the psychological science of addiction. The psychology of addiction includes a tremendous range of scientific activity, from the basic experimental laboratory through increasingly broad relational contexts, including patient-practitioner interactions, families, social networks, institutional settings, economics and culture. Some of the contributions discussed here include applications of behavioral principles, cognitive and behavioral neuroscience and the development and evaluation of addiction treatment. Psychology has at times been guilty of proliferating theories with relatively little pruning, and of overemphasizing intrapersonal explanations for human behavior. However, at its best, defined as the science of the individual in context, psychology is an integrated discipline using diverse methods well-suited to capture the multi-dimensional nature of addictive behavior. Psychology has a unique ability to integrate basic experimental and applied clinical science and to apply the knowledge gained from multiple levels of analysis to the pragmatic goal of reducing the prevalence of addiction.

  19. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…

  20. Rocking Your Writing Program: Integration of Visual Art, Language Arts, & Science

    Science.gov (United States)

    Poldberg, Monique M.,; Trainin, Guy; Andrzejczak, Nancy

    2013-01-01

    This paper explores the integration of art, literacy and science in a second grade classroom, showing how an integrative approach has a positive and lasting influence on student achievement in art, literacy, and science. Ways in which art, science, language arts, and cognition intersect are reviewed. Sample artifacts are presented along with their…

  1. The use of high pressure in basic, materials, and life sciences

    International Nuclear Information System (INIS)

    Schilling, James S.

    2000-01-01

    Four of the most important applications of the high pressure technique in today's science are: (1) to help identify the materials which reside deep within our earth or other heavenly bodies and determine their properties, (2) to uncover underlying systematics and critically test theoretical models, (3) to synthesize novel and useful materials not readily available by other means, and (4) to determine the effect of pressure on living organisms and explore the conditions favorable for the origin of life itself. High pressure studies currently enjoy an increasing popularity which is fueled by recent advances in the notably difficult experimental techniques. In this paper I will attempt to capture some of the current excitement in this field by offering brief synopses of selected experiments in the basic, materials, and life sciences

  2. Basic Solar Energy Research in Japan (2011 EFRC Forum)

    International Nuclear Information System (INIS)

    Domen, Kazunari

    2011-01-01

    Kazunari Domen, Chemical System Engineering Professor at the University of Tokyo, was the second speaker in the May 26, 2011 EFRC Forum session, 'Global Perspectives on Frontiers in Energy Research.' In his presentation, Professor Domen talked about basic solar energy research in Japan. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  3. Computer science in Dutch secondary education: independent or integrated?

    NARCIS (Netherlands)

    van der Sijde, Peter; Doornekamp, B.G.

    1992-01-01

    Nowadays, in Dutch secondary education, computer science is integrated within school subjects. About ten years ago computer science was considered an independent subject, but in the mid-1980s this idea changed. In our study we investigated whether the objectives of teaching computer science as an

  4. Integrated Science Assessment (ISA) of Ozone and Related ...

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment of Ozone and Related Photochemical Oxidants. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision regarding the adequacy of the current national ambient air quality standards for ozone to protect human health, public welfare, and the environment. Critical evaluation and integration of the evidence on health and environmental effects of ozone to provide scientific support for the review of the NAAQS for ozone.

  5. The Integration of Mathematics in Middle School Science: Student and Teacher Impacts Related to Science Achievement and Attitudes towards Integration

    Science.gov (United States)

    McHugh, Luisa

    2016-01-01

    Contemporary research has suggested that in order for students to compete globally in the 21st century workplace, pedagogy must shift to include the integration of science and mathematics, where teachers effectively incorporate the two disciplines seamlessly. Mathematics facilitates a deeper understanding of science concepts and has been linked to…

  6. Making mathematics and science integration happen: key aspects of practice

    Science.gov (United States)

    Ríordáin, Máire Ní; Johnston, Jennifer; Walshe, Gráinne

    2016-02-01

    The integration of mathematics and science teaching and learning facilitates student learning, engagement, motivation, problem-solving, criticality and real-life application. However, the actual implementation of an integrative approach to the teaching and learning of both subjects at classroom level, with in-service teachers working collaboratively, at second-level education, is under-researched due to the complexities of school-based research. This study reports on a year-long case study on the implementation of an integrated unit of learning on distance, speed and time, within three second-level schools in Ireland. This study employed a qualitative approach and examined the key aspects of practice that impact on the integration of mathematics and science teaching and learning. We argue that teacher perspective, teacher knowledge of the 'other subject' and of technological pedagogical content knowledge (TPACK), and teacher collaboration and support all impact on the implementation of an integrative approach to mathematics and science education.

  7. Fort Collins Science Center- Policy Analysis and Science Assistance Branch : Integrating social, behavioral, economic and biological sciences

    Science.gov (United States)

    2010-01-01

    The Fort Collins Science Center's Policy Analysis and Science Assistance (PASA) Branch is a team of approximately 22 scientists, technicians, and graduate student researchers. PASA provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and biological analyses in the context of human-natural resource interactions. Resource planners, managers, and policymakers in the U.S. Departments of the Interior (DOI) and Agriculture (USDA), State and local agencies, as well as international agencies use information from PASA studies to make informed natural resource management and policy decisions. PASA scientists' primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to advance performance in policy relevant research areas. Management and research issues associated with human-resource interactions typically occur in a unique context, involve difficult to access populations, require knowledge of both natural/biological science in addition to social science, and require the skill to integrate multiple science disciplines. In response to these difficult contexts, PASA researchers apply traditional and state-of-the-art social science methods drawing from the fields of sociology, demography, economics, political science, communications, social-psychology, and applied industrial organization psychology. Social science methods work in concert with our rangeland/agricultural management, wildlife, ecology, and biology capabilities. The goal of PASA's research is to enhance natural resource management, agency functions, policies, and decision-making. Our research is organized into four broad areas of study.

  8. Department of Energy: some aspects of basic research in the chemical sciences

    International Nuclear Information System (INIS)

    1979-01-01

    The basic research needs pertinent to DOE's specific mission are identified in the fields of combustion science, coal chemistry, reprocessing of reactor fuel and the disposal of radioactive waste, and analytical chemistry. Aspects of these fields which do not need DOE support are also identified in some cases. In addition recommendations are made on review procedures and funding, use of DOE laboratories by university and other extramural chemists, isotope availability, and critically evaluated data

  9. Psychology as an Evolving, Interdisciplinary Science: Integrating Science in Sensation and Perception from Fourier to Fluid Dynamics

    Science.gov (United States)

    Ebersole, Tela M.; Kelty-Stephen, Damian G.

    2017-01-01

    This article outlines the theoretical rationale and process for an integrated-science approach to teaching sensation and perception (S&P) to undergraduate psychology students that may also serve as an integrated-science curriculum. The course aimed to introduce the interdisciplinary evolution of this psychological field irrespective of any…

  10. Nonlinear Science

    CERN Document Server

    Yoshida, Zensho

    2010-01-01

    This book gives a general, basic understanding of the mathematical structure "nonlinearity" that lies in the depths of complex systems. Analyzing the heterogeneity that the prefix "non" represents with respect to notions such as the linear space, integrability and scale hierarchy, "nonlinear science" is explained as a challenge of deconstruction of the modern sciences. This book is not a technical guide to teach mathematical tools of nonlinear analysis, nor a zoology of so-called nonlinear phenomena. By critically analyzing the structure of linear theories, and cl

  11. Integrating Inquiry-Based Science and Education Methods Courses in a "Science Semester" for Future Elementary Teachers

    Science.gov (United States)

    Madsen, J.; Fifield, S.; Allen, D.; Brickhouse, N.; Dagher, Z.; Ford, D.; Shipman, H.

    2001-05-01

    In this NSF-funded project we will adapt problem-based learning (PBL) and other inquiry-based approaches to create an integrated science and education methods curriculum ("science semester") for elementary teacher education majors. Our goal is to foster integrated understandings of science and pedagogy that future elementary teachers need to effectively use inquiry-based approaches in their classrooms. This project responds to calls to improve science education for all students by making preservice teachers' experiences in undergraduate science courses more consistent with reforms at the K-12 level. The involved faculty teach three science courses (biology, earth science, physical science) and an elementary science education methods course that are degree requirements for elementary teacher education majors. Presently, students take the courses in variable sequences and at widely scattered times. Too many students fail to appreciate the value of science courses to their future careers as teachers, and when they reach the methods course in the junior year they often retain little of the science content studied earlier. These episodic encounters with science make it difficult for students to learn the content, and to translate their understandings of science into effective, inquiry-based teaching strategies. To encourage integrated understandings of science concepts and pedagogy we will coordinate the science and methods courses in a junior-year science semester. Traditional subject matter boundaries will be crossed to stress shared themes that teachers must understand to teach standards-based elementary science. We will adapt exemplary approaches that support both learning science and learning how to teach science. Students will work collaboratively on multidisciplinary PBL activities that place science concepts in authentic contexts and build learning skills. "Lecture" meetings will be large group active learning sessions that help students understand difficult

  12. Integration of Cognitive Skills as a Cross-Cutting Theme Into the Undergraduate Medical Curriculum at Tehran University of Medical Sciences

    Directory of Open Access Journals (Sweden)

    Akbar Soltani

    2017-02-01

    Full Text Available Nowadays, improvement of thinking skills of students is one of the universally supported aims in the majority of medical schools. This study aims to design longitudinal theme of reasoning, problem-solving and decision-making into the undergraduate medical curriculum at Tehran University of Medical Sciences (TUMS. A participatory approach was applied to design the curriculum during 2009-2011. The project was conducted by the contribution of representatives of both basic and clinical faculty members, students and graduates at Tehran University of Medical Sciences. The first step toward integrating cognitive skills into the curriculum was to assemble a taskforce of different faculty and students, including a wide variety of fields with multidisciplinary expertise using nonprobability sampling and the snowball method. Several meetings with the contribution of experts and some medical students were held to generate the draft of expected outcomes. Subsequently, the taskforce also determined what content would fit best into each phase of the program and what teaching and assessment methods would be more appropriate for each outcome. After a pilot curriculum with a small group of second-year medical students, we implemented this program for all first-year students since 2011 at TUMS. Based on findings, the teaching of four areas, including scientific and critical thinking skills (Basic sciences, problem-solving and reasoning (Pathophysiology, evidence-based medicine (Clerkship, and clinical decision-making (Internship were considered in the form of a longitudinal theme. The results of this study could be utilized as a useful pattern for integration of psycho-social subjects into the medical curriculum.

  13. Integrating Science and Technology: Using Technological Pedagogical Content Knowledge as a Framework to Study the Practices of Science Teachers

    Science.gov (United States)

    Pringle, Rose M.; Dawson, Kara; Ritzhaupt, Albert D.

    2015-01-01

    In this study, we examined how teachers involved in a yearlong technology integration initiative planned to enact technological, pedagogical, and content practices in science lessons. These science teachers, engaged in an initiative to integrate educational technology in inquiry-based science lessons, provided a total of 525 lesson plans for this…

  14. Mathematics++ selected topics beyond the basic courses

    CERN Document Server

    Kantor, Ida; Šámal, Robert

    2015-01-01

    Mathematics++ is a concise introduction to six selected areas of 20th century mathematics providing numerous modern mathematical tools used in contemporary research in computer science, engineering, and other fields. The areas are: measure theory, high-dimensional geometry, Fourier analysis, representations of groups, multivariate polynomials, and topology. For each of the areas, the authors introduce basic notions, examples, and results. The presentation is clear and accessible, stressing intuitive understanding, and it includes carefully selected exercises as an integral part. Theory is comp

  15. The Future of Basic Science in Academic Surgery: Identifying Barriers to Success for Surgeon-scientists.

    Science.gov (United States)

    Keswani, Sundeep G; Moles, Chad M; Morowitz, Michael; Zeh, Herbert; Kuo, John S; Levine, Matthew H; Cheng, Lily S; Hackam, David J; Ahuja, Nita; Goldstein, Allan M

    2017-06-01

    The aim of this study was to examine the challenges confronting surgeons performing basic science research in today's academic surgery environment. Multiple studies have identified challenges confronting surgeon-scientists and impacting their ability to be successful. Although these threats have been known for decades, the downward trend in the number of successful surgeon-scientists continues. Clinical demands, funding challenges, and other factors play important roles, but a rigorous analysis of academic surgeons and their experiences regarding these issues has not previously been performed. An online survey was distributed to 2504 members of the Association for Academic Surgery and Society of University Surgeons to determine factors impacting success. Survey results were subjected to statistical analyses. We also reviewed publicly available data regarding funding from the National Institutes of Health (NIH). NIH data revealed a 27% decline in the proportion of NIH funding to surgical departments relative to total NIH funding from 2007 to 2014. A total of 1033 (41%) members responded to our survey, making this the largest survey of academic surgeons to date. Surgeons most often cited the following factors as major impediments to pursuing basic investigation: pressure to be clinically productive, excessive administrative responsibilities, difficulty obtaining extramural funding, and desire for work-life balance. Surprisingly, a majority (68%) did not believe surgeons can be successful basic scientists in today's environment, including departmental leadership. We have identified important barriers that confront academic surgeons pursuing basic research and a perception that success in basic science may no longer be achievable. These barriers need to be addressed to ensure the continued development of future surgeon-scientists.

  16. Special Project Examination in Integrated Science - Ordinary Level.

    Science.gov (United States)

    Wimpenny, David

    A science achievement test for the General Certificate of Education (GCE, England) was developed for students enrolled in the curriculum of the Schools Council Integrated Science Project. This document contains discussions of the testing program and a copy of the 1973 test. After an overview of the curriculum project and issues related to…

  17. Building thematic and integrated services for solid Earth sciences: the EPOS integrated approach

    Science.gov (United States)

    Cocco, Massimo; Consortium, Epos

    2016-04-01

    EPOS has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, not limited to scientists, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. A long-term integration plan is necessary to accomplish the EPOS mission. EPOS is presently in its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase builds on the achievements of the successful EPOS Preparatory Phase project and consists of two key activities: the legal establishment of the EPOS-ERIC and the EPOS IP project. The EPOS implementation phase will last from 2015 to 2019. Key objectives of the project are: implementing Thematic Core Services (TCS), the domain-specific service hubs for coordinating and harmonizing national resources/plans with the European dimension of EPOS; building the Integrated Core

  18. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    Science.gov (United States)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between

  19. Readiness and Acceptability of Information and Communication Technology Integration in Basic Education

    Directory of Open Access Journals (Sweden)

    CHARLIE P. NACARIO

    2014-02-01

    Full Text Available A research study was conducted to determine the readiness and acceptability of information and communication technology (ICT integration in six internet connected Public High Schools (ischools in Camarines Sur. It also aimed to determine the ICT knowledge, skills and attitude of faculty and students in ischools, ICT trainings and competencies of teachers and availability of ICT facilities in the schools and community. Purposive sampling was used in determining the respondents of the study and quantitative statistical tools such as frequency counts, percentage rates and weighted means were used in analyzing the data. Findings revealed that faculty and students in two out of the six schools were highly knowledgeable and highly skilled in ICT hardware and software components identification but only one school was found to be highly competent on ICT usage. All faculty members in one school integrated ICT in teaching English, Math, Science and TLE however, no school integrated ICT in Social Studies. The availability of ICT resources and the provision of initial ICT trainings to faculty and students in ischools contributed to ICT integration in teaching. The initial level of ICT integration in teaching is indicative of faculty and students’ readiness and acceptance of ICT tools in teaching-learning environment. Recommendations in the study were conduct of retraining courses on ICT; development of ICT-based teaching modules in Social Studies; conduct future studies that would test relationship between socio-demographic profile and ICT integration in teaching; and correlate ICT competencies of students in achievement tests in English, Math, and Science among ischools.

  20. An Elective Course on the Basic and Clinical Sciences Aspects of Vitamins and Minerals

    Science.gov (United States)

    2013-01-01

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students’ knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products. PMID:23463149

  1. An elective course on the basic and clinical sciences aspects of vitamins and minerals.

    Science.gov (United States)

    Islam, Mohammed A

    2013-02-12

    Objective. To develop and implement an elective course on vitamins and minerals and their usefulness as dietary supplements. Design. A 2-credit-hour elective course designed to provide students with the most up-to-date basic and clinical science information on vitamins and minerals was developed and implemented in the doctor of pharmacy (PharmD) curriculum. In addition to classroom lectures, an active-learning component was incorporated in the course in the form of group discussion. Assessment. Student learning was demonstrated by examination scores. Performance on pre- and post-course surveys administered in 2011 demonstrated a significant increase in students' knowledge of the basic and clinical science aspects of vitamins and minerals, with average scores increasing from 61% to 86%. At the end of the semester, students completed a standard course evaluation. Conclusion. An elective course on vitamin and mineral supplements was well received by pharmacy students and helped them to acquire knowledge and competence in patient counseling regarding safe, appropriate, effective, and economical use of these products.

  2. Integrated Basic Education and Skills Training (I-BEST). Washington's Community and Technical Colleges

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Washington's Integrated Basic Education and Skills Training Program (I-BEST) quickly teaches students literacy, work, and college-readiness skills so they can move through school and into living wage jobs faster. Pioneered by Washington's community and technical colleges, I-BEST uses a team-teaching approach to combine college-readiness classes…

  3. Review of Statistical Learning Methods in Integrated Omics Studies (An Integrated Information Science).

    Science.gov (United States)

    Zeng, Irene Sui Lan; Lumley, Thomas

    2018-01-01

    Integrated omics is becoming a new channel for investigating the complex molecular system in modern biological science and sets a foundation for systematic learning for precision medicine. The statistical/machine learning methods that have emerged in the past decade for integrated omics are not only innovative but also multidisciplinary with integrated knowledge in biology, medicine, statistics, machine learning, and artificial intelligence. Here, we review the nontrivial classes of learning methods from the statistical aspects and streamline these learning methods within the statistical learning framework. The intriguing findings from the review are that the methods used are generalizable to other disciplines with complex systematic structure, and the integrated omics is part of an integrated information science which has collated and integrated different types of information for inferences and decision making. We review the statistical learning methods of exploratory and supervised learning from 42 publications. We also discuss the strengths and limitations of the extended principal component analysis, cluster analysis, network analysis, and regression methods. Statistical techniques such as penalization for sparsity induction when there are fewer observations than the number of features and using Bayesian approach when there are prior knowledge to be integrated are also included in the commentary. For the completeness of the review, a table of currently available software and packages from 23 publications for omics are summarized in the appendix.

  4. The INTEGRAL science data centre (ISDC)

    DEFF Research Database (Denmark)

    Courvoisier, T.J.L.; Walter, Rasmus; Beckmann, V.

    2003-01-01

    The INTEGRAL Science Data Centre (ISDC) provides the INTEGRAL data and means to analyse them to the scientific community. The ISDC runs a gamma ray burst alert system that provides the position of gamma ray bursts on the sky within seconds to the community. It operates a quick-look analysis...... of the data within few hours that detects new and unexpected sources as well as it monitors the instruments. The ISDC processes the data through a standard analysis the results of which are provided to the observers together with their data....

  5. Predictive validity of the comprehensive basic science examination mean score for assessment of medical students' performance

    Directory of Open Access Journals (Sweden)

    Firouz Behboudi

    2002-04-01

    Full Text Available Background Medical education curriculum improvements can be achieved bye valuating students performance. Medical students have to pass two undergraduate comprehensive examinations, basic science and preinternship, in Iran. Purpose To measure validity of the students' mean score in comprehensive basic science exam (CBSE for predicting their performance in later curriculum phases. Methods This descriptive cross-sectional study was conducted on 95 (38 women and 55 men Guilan medical university students. Their admission to the university was 81% by regional quota and 12% by shaheed and other organizations' share. They first enrolled in 1994 and were able to pass CBS£ at first try. Data on gender, regional quota, and average grades of CBS£, PC, and CPIE were collected by a questionnaire. The calculations were done by SPSS package. Results The correlation coefficient between CBS£ and CPIE mean scores (0.65 was higher than correlation coefficient between CBS£ and PC mean scores (0.49. The predictive validity of CBS£ average grade was significant for students' performance in CPIE; however, the predictive validity of CBSE mean scores for students I pe1jormance in PC was lower. Conclusion he students' mean score in CBSE can be a good denominator for their further admission. We recommend further research to assess the predictive validity for each one of the basic courses. Keywords predictive validity, comprehensive basic exam

  6. Basic science faculty in surgical departments: advantages, disadvantages and opportunities.

    Science.gov (United States)

    Chinoy, Mala R; Moskowitz, Jay; Wilmore, Douglas W; Souba, Wiley W

    2005-01-01

    The number of Ph.D. faculty in clinical departments now exceeds the number of Ph.D. faculty in basic science departments. Given the escalating pressures on academic surgeons to produce in the clinical arena, the recruitment and retention of high-quality Ph.D.s will become critical to the success of an academic surgical department. This success will be as dependent on the surgical faculty understanding the importance of the partnership as the success of the Ph.D. investigator. Tighter alignment among the various clinical and research programs and between surgeons and basic scientists will facilitate the generation of new knowledge that can be translated into useful products and services (thus improving care). To capitalize on what Ph.D.s bring to the table, surgery departments may need to establish a more formal research infrastructure that encourages the ongoing exchange of ideas and resources. Physically removing barriers between the research groups, encouraging the open exchange of techniques and observations and sharing core laboratories is characteristic of successful research teams. These strategies can meaningfully contribute to developing successful training program grants, program projects and bringing greater research recognition to the department of surgery.

  7. Professional fulfillment and parenting work-life balance in female physicians in Basic Sciences and medical research: a nationwide cross-sectional survey of all 80 medical schools in Japan.

    Science.gov (United States)

    Yamazaki, Yuka; Uka, Takanori; Marui, Eiji

    2017-09-15

    In Japan, the field of Basic Sciences encompasses clinical, academic, and translational research, as well as the teaching of medical sciences, with both an MD and PhD typically required. In this study, it was hypothesized that the characteristics of a Basic Sciences career path could offer the professional advancement and personal fulfillment that many female medical doctors would find advantageous. Moreover, encouraging interest in Basic Sciences could help stem shortages that Japan is experiencing in medical fields, as noted in the three principal contributing factors: premature resignation of female clinicians, an imbalance of female physicians engaged in research, and a shortage of medical doctors in the Basic Sciences. This study examines the professional and personal fulfillment expressed by Japanese female medical doctors who hold positions in Basic Sciences. Topics include career advancement, interest in medical research, and greater flexibility for parenting. A cross-sectional questionnaire survey was distributed at all 80 medical schools in Japan, directed to 228 female medical doctors whose academic rank was assistant professor or higher in departments of Basic Sciences in 2012. Chi-square tests and the binary logistic regression model were used to investigate the impact of parenthood on career satisfaction, academic rank, salary, etc. The survey response rate of female physicians in Basic Sciences was 54.0%. Regardless of parental status, one in three respondents cited research interest as their rationale for entering Basic Sciences, well over twice other motivations. A majority had clinical experience, with clinical duties maintained part-time by about half of respondents and particularly parents. Only one third expressed afterthoughts about relinquishing full-time clinical practice, with physicians who were parents expressing stronger regrets. Parental status had little effect on academic rank and income within the Basic Sciences, CONCLUSION

  8. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    Science.gov (United States)

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  9. A Cooperative Learning Group Procedure for Improving CTE and Science Integration

    Science.gov (United States)

    Spindler, Matt

    2016-01-01

    The purpose of this case study was to create information about the employment of Cooperative Learning Groups (CLG) to enhance the science integrating learning objectives utilized in secondary CTE courses. The objectives of the study were to determine if CLGs were an effective means for increasing the number of: a) science integrating learning…

  10. The Sciences: An Integrated Approach, 2nd Edition (by James Trefil and Robert M. Hazen)

    Science.gov (United States)

    Hoffman, Reviewed By Megan M.

    2000-01-01

    "You're going to teach the organic chemistry section of the Natural Science class?" - one of my biology colleagues asked me last semester - "Better you than me!" "You are?" added a chemistry professor, with interest. Yet these same people ardently believe that all our students should have a basic understanding of carbon's remarkable bonding capabilities and how they relate to life on Earth. If our art or economics majors can learn about organic chemistry and genetics and astronomy, our faculty should be able to teach those same topics, regardless of their acknowledged specialties. The basis of a scientifically literate society is not expertise in specific arcane subfields of science. Scientific literacy is a general understanding of what science is, what science can and cannot do, and what scientific accomplishments have occurred over the centuries. If you subscribe to this definition of scientific literacy, James Trefil and Robert M. Hazen's The Sciences: An Integrated Approach can help you and your general science students. The self-avowed purpose of this text is to address science illiteracy in America. Trefil and Hazen propose that the best way to combat scientific illiteracy is to provide integrated science courses that focus on a broad understanding of science, rather than the specialized knowledge available to a science major. The new edition of The Sciences has been influenced by the 1996 publication of the National Research Council's National Science Education Standards. While the first edition of Trefil and Hazen's book admirably addressed the integration of the natural and physical sciences, in this second edition, the authors have increased the connections between science and real-world situations and have made a more conscious effort to emphasize the process of science and the overlapping nature of scientific disciplines. The text is based on 25 "scientific concepts", one per chapter. These concepts are clearly explained in relatively jargon

  11. Integration of ICT Methods for Teaching Science and Astronomy to Students and Teachers

    Science.gov (United States)

    Ghosh, Sumit; Chary, Naveen; Raghavender, G.; Aslam, Syed

    All children start out as scientist, full of curiosity and questions about the world, but schools eventually destroy their curiosity. In an effective teaching and learning process, the most challenging task is to motivate the students. As the science subjects are more abstract and complex, the job of teachers become even more daunting. We have devised an innovative idea of integrating ICT methods for teaching space science to students and teachers. In a third world country like India, practical demonstrations are given less importance and much emphasis is on theoretical aspects. Even the teachers are not trained or aware of the basic concepts. With the intention of providing the students and as well as the teachers more practical, real-time situations, we have incorporated innovative techniques like video presentation, animations, experimental models, do-yourself-kits etc. In addition to these we provide hands on experience on some scientific instruments like telescope, Laser. ICT has the potential to teach complex science topics to students and teachers in a safe environment and cost effective manner. The students are provided with a sense of adventure, wherein now they can manipulate parameters, contexts and environment and can try different scenarios and in the process they not only learn science but also the content and also the reasoning behind the content. The response we have obtained is very encouraging and students as well as teachers have acknowledged that they have learnt new things, which up to now they were ignorant of.

  12. Hurdles in Basic Science Translation

    Directory of Open Access Journals (Sweden)

    Christina J. Perry

    2017-07-01

    Full Text Available In the past century there have been incredible advances in the field of medical research, but what hinders translation of this knowledge into effective treatment for human disease? There is an increasing focus on the failure of many research breakthroughs to be translated through the clinical trial process and into medical practice. In this mini review, we will consider some of the reasons that findings in basic medical research fail to become translated through clinical trials and into basic medical practices. We focus in particular on the way that human disease is modeled, the understanding we have of how our targets behave in vivo, and also some of the issues surrounding reproducibility of basic research findings. We will also look at some of the ways that have been proposed for overcoming these issues. It appears that there needs to be a cultural shift in the way we fund, publish and recognize quality control in scientific research. Although this is a daunting proposition, we hope that with increasing awareness and focus on research translation and the hurdles that impede it, the field of medical research will continue to inform and improve medical practice across the world.

  13. The HelCat basic plasma science device

    Science.gov (United States)

    Gilmore, M.; Lynn, A. G.; Desjardins, T. R.; Zhang, Y.; Watts, C.; Hsu, S. C.; Betts, S.; Kelly, R.; Schamiloglu, E.

    2015-01-01

    The Helicon-Cathode(HelCat) device is a medium-size linear experiment suitable for a wide range of basic plasma science experiments in areas such as electrostatic turbulence and transport, magnetic relaxation, and high power microwave (HPM)-plasma interactions. The HelCat device is based on dual plasma sources located at opposite ends of the 4 m long vacuum chamber - an RF helicon source at one end and a thermionic cathode at the other. Thirteen coils provide an axial magnetic field B >= 0.220 T that can be configured individually to give various magnetic configurations (e.g. solenoid, mirror, cusp). Additional plasma sources, such as a compact coaxial plasma gun, are also utilized in some experiments, and can be located either along the chamber for perpendicular (to the background magnetic field) plasma injection, or at one of the ends for parallel injection. Using the multiple plasma sources, a wide range of plasma parameters can be obtained. Here, the HelCat device is described in detail and some examples of results from previous and ongoing experiments are given. Additionally, examples of planned experiments and device modifications are also discussed.

  14. Advances in welding science - a perspective

    International Nuclear Information System (INIS)

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-01-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes

  15. Against integration - Why evolution cannot unify the social sciences

    NARCIS (Netherlands)

    Derksen, M

    A lack of integration is often identified as a fundamental problem in psychology and the social sciences. It is thought that only through increased cooperation among the various disciplines and subdisciplines, and integration of their different theoretical approaches, can psychology and the social

  16. Translating Basic Behavioral and Social Science Research to Clinical Application: The EVOLVE Mixed Methods Approach

    Science.gov (United States)

    Peterson, Janey C.; Czajkowski, Susan; Charlson, Mary E.; Link, Alissa R.; Wells, Martin T.; Isen, Alice M.; Mancuso, Carol A.; Allegrante, John P.; Boutin-Foster, Carla; Ogedegbe, Gbenga; Jobe, Jared B.

    2013-01-01

    Objective: To describe a mixed-methods approach to develop and test a basic behavioral science-informed intervention to motivate behavior change in 3 high-risk clinical populations. Our theoretically derived intervention comprised a combination of positive affect and self-affirmation (PA/SA), which we applied to 3 clinical chronic disease…

  17. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    Science.gov (United States)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  18. Regional and Interregional Cooperation to Strengthen Basic Sciences in Developing Countries : Addis Ababa, 1-4 September 2009

    OpenAIRE

    2011-01-01

    The International Science Programme (ISP) at Uppsala University, Sweden, is devoted to long-term support to institutional capacity building in research and higher education in developing countries, with focus on the basic sciences: physics (since 1961), chemistry (since 1970), and mathematics (since 2002). Both research groups and scientific network activities are supported. Interdisciplinary and applied research is important in solving a number of challenges facing the world today. Problems ...

  19. Application of Model Project Based Learning on Integrated Science in Water Pollution

    Science.gov (United States)

    Yamin, Y.; Permanasari, A.; Redjeki, S.; Sopandi, W.

    2017-09-01

    The function of this research was to analyze the influence model Project Based Learning (PjBl) on integrated science about the concept mastery for junior high school students. Method used for this research constitutes the quasi of experiment method. Population and sample for this research are the students junior high school in Bandung as many as two classes to be experiment and control class. The instrument that used for this research is the test concept mastery, assessment questionnaire of product and the questionnaire responses of the student about learning integrated science. Based on the result of this research get some data that with accomplishment the model of PjBl. Learning authority of integrated science can increase the concept mastery for junior high school students. The highest increase in the theme of pollution water is in the concept of mixtures and the separation method. The students give a positive response in learning of integrated science for the theme of pollution of the water used model PjBL with questionnaire of the opinion aspect in amount of 83.5%, the anxiety of the students in amount of 95.5%, the profit learning model of PjBL in amount of 96.25% and profit learning of integrated science in amount of 95.75%.

  20. Highly coalesced quantum beam science (1)

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro

    2014-01-01

    The construction of the large-scale facilities of quantum beam is under way in our country, and these are the facilities to use specific quantum beam individually. For this reason, only limited information brought about from the specific intrinsic performance that the beam has can be obtained. To understand the function and structure of a target substance, it is required to integrate various types of complementary information obtainable from each quantum beam. In FY2009, a leading research and development committee on 'quantum beam integration research' was established in Japan Study for the Promotion of Science, and the establishment of a new technology to integrate quantum beams and the creation of a new research region developed from this integration were examined. This committee defined the new academic research region as 'quantum beam integration science' and examined various fields of the new research region. This paper takes out a material science field among them, and tries the systematization of the new academic research region related to the scientific research on quantum beam integration advanced materials by promoting the following: (1) search for the needs for material science research, (2) examination of integration facilities capable of corresponding to the research needs, and (3) basic integration research for the above. (A.O.)

  1. A Hybrid Model of Mathematics Support for Science Students Emphasizing Basic Skills and Discipline Relevance

    Science.gov (United States)

    Jackson, Deborah C.; Johnson, Elizabeth D.

    2013-01-01

    The problem of students entering university lacking basic mathematical skills is a critical issue in the Australian higher-education sector and relevant globally. The Maths Skills programme at La Trobe University has been developed to address under preparation in the first-year science cohort in the absence of an institutional mathematics support…

  2. Academic integrity in the online learning environment for health sciences students.

    Science.gov (United States)

    Azulay Chertok, Ilana R; Barnes, Emily R; Gilleland, Diana

    2014-10-01

    The online learning environment not only affords accessibility to education for health sciences students, but also poses challenges to academic integrity. Technological advances contribute to new modes of academic dishonesty, although there may be a lack of clarity regarding behaviors that constitute academic dishonesty in the online learning environment. To evaluate an educational intervention aimed at increasing knowledge and improving attitudes about academic integrity in the online learning environment among health sciences students. A quasi-experimental study was conducted using a survey of online learning knowledge and attitudes with strong reliability that was developed based on a modified version of a previously developed information technology attitudes rating tool with an added knowledge section based on the academic integrity statement. Blended-learning courses in a university health sciences center. 355 health sciences students from various disciplines, including nursing, pre-medical, and exercise physiology students, 161 in the control group and 194 in the intervention group. The survey of online learning knowledge and attitudes (SOLKA) was used in a pre-post test study to evaluate the differences in scores between the control group who received the standard course introduction and the intervention group who received an enhanced educational intervention about academic integrity during the course introduction. Post-intervention attitude scores were significantly improved compared to baseline scores for the control and intervention groups, indicating a positive relationship with exposure to the information, with a greater improvement among intervention group participants (pacademic integrity in the online environment. Emphasis should be made about the importance of academic integrity in the online learning environment in preparation for professional behavior in the technologically advancing health sciences arena. Copyright © 2013 Elsevier Ltd. All

  3. Understanding the Language Demands on Science Students from an Integrated Science and Language Perspective

    Science.gov (United States)

    Seah, Lay Hoon; Clarke, David John; Hart, Christina Eugene

    2014-01-01

    This case study of a science lesson, on the topic thermal expansion, examines the language demands on students from an integrated science and language perspective. The data were generated during a sequence of 9 lessons on the topic of "States of Matter" in a Grade 7 classroom (12-13 years old students). We identify the language demands…

  4. Regression analysis for the social sciences

    CERN Document Server

    Gordon, Rachel A

    2010-01-01

    The book provides graduate students in the social sciences with the basic skills that they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of both SAS and Stata "side-by-side" and use of chapter exercises in which students practice programming and interpretation on the same data set and course exercises in which students can choose their own research questions and data set.

  5. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  6. Basics of laser physics for students of science and engineering

    CERN Document Server

    Renk, Karl F

    2017-01-01

    This textbook provides an introductory presentation of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers. This expanded and updated second edition of the book presents a description of the dynamics of free-electron laser oscillation using a model introduced in the first edition that allows a reader to understand basic properties of a free-electron laser and makes the difference to “conventional” lasers. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses graduate and undergraduate students in science and engineering, featuring problems with solutions and over 400 illustrations.

  7. The wisdom of nature in integrating science, ethics and the arts.

    Science.gov (United States)

    Moser, A

    2000-07-01

    This paper deals with an approach to the integration of science (with technology and economics), ethics (with religion and mysticism), the arts (aesthetics) and Nature, in order to establish a world-view based on holistic, evolutionary ethics that could help with problem solving. The author suggests that this integration is possible with the aid of "Nature's wisdom" which is mirrored in the macroscopic pattern of the ecosphere. The corresponding eco-principles represent the basis for unifying soft and hard sciences resulting in "deep sciences". Deduction and induction will remain the methodology for deep sciences and will include conventional experiments and aesthetic and sentient experiences. Perception becomes the decisive factor with the senses as operators for the building of consciousness through the subconscious. In this paper, an attempt at integrating the concepts of the "true", the "right" and the "beautiful" with the aid of Nature's wisdom is explained in more detail along with consequences.

  8. [Boundaries and integrity in the "Social Contract for Spanish Science", 1907-1939].

    Science.gov (United States)

    Gómez, Amparo

    2014-01-01

    This article analyzes the relationship between science and politics in Spain in the early 20th century from the perspective of the Social Contract for Science. The article shows that a genuine social contract for science was instituted in Spain during this period, although some boundary and integrity problems emerged. These problems are analyzed, showing that the boundary problems were a product of the conservative viewpoint on the relationship between science and politics, while the integrity problems involved the activation of networks of influence in the awarding of scholarships to study abroad. Finally, the analysis reveals that these problems did not invalidate the Spanish social contract for science.

  9. Science from the Pond up: Using Measurement to Introduce Inquiry

    Science.gov (United States)

    Demir, Abdulkadir; Schmidt, Frank; Abell, Sandra K.

    2010-01-01

    The authors engaged nonscience majors enrolled in an integrated science course with a prototype activity designed to change their mindset from cookbook to inquiry science. This article describes the activity, the Warm Little Pond, which helped students develop essential understanding of basic statistics, significant figures, and the idea that…

  10. Basic research projects

    International Nuclear Information System (INIS)

    1979-04-01

    The research programs under the cognizance of the Office of Energy Research (OER) are directed toward discovery of natural laws and new knowledge, and to improved understanding of the physical and biological sciences as related to the development, use, and control of energy. The ultimate goal is to develop a scientific underlay for the overall DOE effort and the fundamental principles of natural phenomena so that these phenomena may be understood, and new principles, formulated. The DOE-OER outlay activities include three major programs: High Energy Physics, Nuclear Physics, and Basic Energy Sciences. Taken together, these programs represent some 30 percent of the Nation's Federal support of basic research in the energy sciences. The research activities of OER involve more than 6,000 scientists and engineers working in some 17 major Federal Research Centers and at more than 135 different universities and industrial firms throughout the United States. Contract holders in the areas of high-energy physics, nuclear physics, materials sciences, nuclear science, chemical sciences, engineering, mathematics geosciences, advanced energy projects, and biological energy research are listed. Funding trends for recent years are outlined

  11. The Views of Science Pre-Service Teachers about the Usage of Basic Information Technologies (BIT) in Education and Instruction

    Science.gov (United States)

    Çetin, Oguz

    2016-01-01

    In this study aiming to present a description based on science pre-service teachers' views related to use of Basic Information Technologies (BIT) in education and training, an interview is carried out with 21 pre-service science teachers who study in different classes in Faculty of Education, Nigde University. For this aim, improved interview form…

  12. A Mental Model of the Learner: Teaching the Basic Science of Educational Psychology to Future Teachers

    Science.gov (United States)

    Willingham, Daniel T.

    2017-01-01

    Although most teacher education programs include instruction in the basic science of psychology, practicing teachers report that this preparation has low utility. Researchers have considered what sort of information from psychology about children's thinking, emotion, and motivation would be useful for teachers' practice. Here, I take a different…

  13. Collaborative diagramming during problem based learning in medical education: Do computerized diagrams support basic science knowledge construction?

    NARCIS (Netherlands)

    de Leng, Bas; Gijlers, Aaltje H.

    2015-01-01

    Aim: To examine how collaborative diagramming affects discussion and knowledge construction when learning complex basic science topics in medical education, including its effectiveness in the reformulation phase of problem-based learning. Methods: Opinions and perceptions of students (n = 70) and

  14. An Integrated Science Glovebox for the Gateway Habitat

    Science.gov (United States)

    Calaway, M. J.; Evans, C. A.; Garrison, D. H.; Bell, M. S.

    2018-01-01

    Next generation habitats for deep space exploration of cislunar space, the Moon, and ultimately Mars will benefit from on-board glovebox capability. Such a glovebox facility will maintain sample integrity for a variety of scientific endeavors whether for life science, materials science, or astromaterials. Glovebox lessons learned from decades of astromaterials curation, ISS on-board sample handling, and robust analog missions provide key design and operational factors for inclusion in on-going habitat development.

  15. [Problems of world outlook and methodology of science integration in biological studies].

    Science.gov (United States)

    Khododova, Iu D

    1981-01-01

    Problems of worldoutlook and methodology of the natural-science knowledge are considered basing on the analysis of tendencies in the development of the membrane theory of cell processes and the use of principles of biological membrane functioning when solving some scientific and applied problems pertaining to different branches of chemistry and biology. The notion scientific knowledge integration is defined as interpenetration of approaches, methods and ideas of different branches of knowledge and enrichment on this basis of their content resulting in knowledge augmentation in each field taken separately. These processes are accompanied by appearance of new branches of knowledge - sciences "on junction" and their subsequent differentiations. The analysis of some gnoseological situations shows that integration of sciences contributes to coordination and some agreement of thinking styles of different specialists, puts forward keen personality of a scientist demanding, in particular, his high professional mobility. Problems of scientific activity organization are considered, which involve social sciences into the integration processes. The role of philosophy in the integration processes is emphasized.

  16. Can We Integrate Qualitative and Quantitative Research in Science Education?

    Science.gov (United States)

    Niaz, Mansoor

    The main objective of this paper is to emphasize the importance of integrating qualitative and quantitative research methodologies in science education. It is argued that the Kuhnian in commensurability thesis (a major source of inspiration for qualitative researchers) represents an obstacle for this integration. A major thesis of the paper is that qualitative researchers have interpreted the increased popularity of their paradigm (research programme) as a revolutionary break through in the Kuhnian sense. A review of the literature in areas relevant to science education shows that researchers are far from advocating qualitative research as the only methodology. It is concluded that competition between divergent approaches to research in science education (cf. Lakatos, 1970) would provide a better forum for a productive sharing of research experiences.

  17. Building Thematic and Integrated Services for European Solid Earth Sciences: the EPOS Integrated Approach

    Science.gov (United States)

    Harrison, M.; Cocco, M.

    2017-12-01

    EPOS (European Plate Observing System) has been designed with the vision of creating a pan-European infrastructure for solid Earth science to support a safe and sustainable society. In accordance with this scientific vision, the EPOS mission is to integrate the diverse and advanced European Research Infrastructures for solid Earth science relying on new e-science opportunities to monitor and unravel the dynamic and complex Earth System. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. To accomplish its mission, EPOS is engaging different stakeholders, to allow the Earth sciences to open new horizons in our understanding of the planet. EPOS also aims at contributing to prepare society for geo-hazards and to responsibly manage the exploitation of geo-resources. Through integration of data, models and facilities, EPOS will allow the Earth science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and human welfare. The research infrastructures (RIs) that EPOS is coordinating include: i) distributed geophysical observing systems (seismological and geodetic networks); ii) local observatories (including geomagnetic, near-fault and volcano observatories); iii) analytical and experimental laboratories; iv) integrated satellite data and geological information services; v) new services for natural and anthropogenic hazards; vi) access to geo-energy test beds. Here we present the activities planned for the implementation phase focusing on the TCS, the ICS and on their interoperability. We will discuss the data, data-products, software and services (DDSS) presently under

  18. Preparation Model of Student Teacher Candidate in Developing Integrative Science Learning

    Science.gov (United States)

    Wiyanto; Widiyatmoko, Arif

    2016-01-01

    According to 2013 Curriculum in Indonesia, science learning process in Junior High School is integrally held between physics, chemistry, biology, and earth science. To successfully implementing the 2013 Curriculum in school, the education institution which generates science teacher should prepare the student, so that they can develop integrative…

  19. Integrating Social Science and Ecosystem Management: A National Challenge

    Science.gov (United States)

    Cordell; H. Ken; Linda Caldwell

    1995-01-01

    These proceedings contain the contributed papers and panel presentations, as well as a paper presented at the National Workshop, of the Conference on Integrating Social Sciences and Ecosystem Management, which was held at Unicoi Lodge and Conference Center, Helen, GA, December 12-14, 1995. The overall purpose of this Conference was to improve understanding, integration...

  20. Robotics as an integration subject in the computer science university studies. The experience of the University of Almeria

    Directory of Open Access Journals (Sweden)

    Manuela Berenguel Soria

    2012-11-01

    Full Text Available This work presents a global view of the role of robotics in computer science studies, mainly in university degrees. The main motivation of the use of robotics in these studies deals with the following issues: robotics permits to put in practice many computer science fundamental topics, it is a multidisciplinary area which allows to complete the basic knowledge of any computer science student, it facilitates the practice and learning of basic competences of any engineer (for instance, teamwork, and there is a wide market looking for people with robotics knowledge. These ideas are discussed from our own experience in the University of Almeria acquired through the studies of Computer Science Technical Engineering, Computer Science Engineering, Computer Science Degree and Computer Science Postgraduate.

  1. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-01-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts…

  2. An integrated science plan for the Lake Tahoe basin: conceptual framework and research strategies

    Science.gov (United States)

    Zachary P. Hymanson; Michael W. Collopy

    2010-01-01

    An integrated science plan was developed to identify and refine contemporary science information needs for the Lake Tahoe basin ecosystem. The main objectives were to describe a conceptual framework for an integrated science program, and to develop research strategies addressing key uncertainties and information gaps that challenge government agencies in the theme...

  3. Regression analysis for the social sciences

    CERN Document Server

    Gordon, Rachel A

    2015-01-01

    Provides graduate students in the social sciences with the basic skills they need to estimate, interpret, present, and publish basic regression models using contemporary standards. Key features of the book include: interweaving the teaching of statistical concepts with examples developed for the course from publicly-available social science data or drawn from the literature. thorough integration of teaching statistical theory with teaching data processing and analysis. teaching of Stata and use of chapter exercises in which students practice programming and interpretation on the same data set. A separate set of exercises allows students to select a data set to apply the concepts learned in each chapter to a research question of interest to them, all updated for this edition.

  4. Basic pharmaceutical technology

    OpenAIRE

    Angelovska, Bistra; Drakalska, Elena

    2017-01-01

    The lecture deals with basics of pharmaceutical technology as applied discipline of pharmaceutical science, whose main subject of study is formulation and manufacture of drugs. In a broad sense, pharmaceutical technology is science of formulation, preparation, stabilization and determination of the quality of medicines prepared in the pharmacy or in pharmaceutical industry

  5. 13th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Kirsch, Andreas

    2015-01-01

    This contributed volume contains a collection of articles on state-of-the-art developments on the construction of theoretical integral techniques and their application to specific problems in science and engineering.  Written by internationally recognized researchers, the chapters in this book are based on talks given at the Thirteenth International Conference on Integral Methods in Science and Engineering, held July 21–25, 2014, in Karlsruhe, Germany.   A broad range of topics is addressed, from problems of existence and uniqueness for singular integral equations on domain boundaries to numerical integration via finite and boundary elements, conservation laws, hybrid methods, and other quadrature-related approaches.   This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines and other professionals for whom integration is an essential tool.

  6. Analysis of Science Process Skills in West African Senior Secondary School Certificate Physics Practical Examinations in Nigeria

    Directory of Open Access Journals (Sweden)

    A.O. Akinbobola

    2010-06-01

    Full Text Available This study analyzes the science process skills in West African senior secondary school certificate physics practical examinations in Nigeria for a period of 10 years (1998-2007. Ex-post facto design was adopted for the study. The 5 prominent science process skills identified out of the 15 used in the study are: manipulating (17%, calculating (14%, recording (14%, observing (12% and communicating (11%. The results also show high percentage rate of basic (lower order science process skills (63% as compared to the integrated (higher order science process skills (37%. The results also indicate that the number of basic process skills is significantly higher than the integrated process skills in the West African senior secondary school certificate physics practical examinations in Nigeria. It is recommended that the examination bodies in Nigeria should include more integrated science process skills into the senior secondary school physics practical examinations so as to enable the students to be prone to creativity, problem solving, reflective thinking, originality and invention which are vital ingredients for science and technological development of any nation.

  7. Towards Shibboleth-based security in the e-infrastructure for social sciences

    OpenAIRE

    Jie, Wei; Daw, Michael; Procter, Rob; Voss, Alex

    2007-01-01

    The e-Infrastructure for e-Social Sciences project leverages Grid computing technology to provide an integrated platform which enables social science researchers to securely access a variety of e-Science resources. Security underpins the e-Infrastructure and a security framework with authentication and authorization functionality is a core component of the e-Infrastructure for social sciences. To build the security framework, we adopt Shibboleth as the basic authentication and authorization i...

  8. Guidelines for DOE Long Term Civilian Research and Development. Volume III. Basic Energy Sciences, High Energy and Nuclear Physics

    International Nuclear Information System (INIS)

    1985-12-01

    The Research Panel prepared two reports. This report reviews the Department of Energy's Basic Energy Sciences, High Energy Physics, and Nuclear Physics programs. The second report examines the Environment, Health and Safety programs in the Department. This summary addresses the general value and priority of basic research programs for the Department of Energy and the nation. In addition, it describes the key strategic issues and major recommendations for each program area

  9. Competence of matric physical science teachers in some basic problem-solving strategies

    Directory of Open Access Journals (Sweden)

    Mailoo Selvaratnam

    2011-01-01

    Full Text Available The National Curriculum Statement for matric physical science places strong emphasis on the development of critical thinking and reasoning abilities of pupils. The successful implementation of this curriculum therefore requires teachers who are competent in the cognitive (intellectual skills and strategies needed for learning science effectively. Testing of teachers’ competence in this aspect is therefore important. I therefore analysed teachers’ answers to questions that were carefully designed to test competence in some basic intellectual strategies that are important for problem solving in physical science courses. A total of 73 matric physical science teachers, from about 50 Dinaledi schools in the North West and KwaZulu-Natal provinces in South Africa, were tested in five intellectual strategies: clear representation of problems, identifying and focusing on the goal, identification and use of relevant principles, use of equations for deductions and proceeding step-by-step with the solution. The teachers’ competence was poor in all the intellectual strategies tested. About 60% (the average performance in all 13 questions used for testing of teachers tested were unable to solve the questions correctly. An important objective of the curriculum is the development of critical thinking, scientific reasoning and strategies of pupils. This study shows that the achievement of this objective will be seriously handicapped because of the lack of competence of many teachers in intellectual strategies. There is therefore a need to train teachers in order to increase their competence in this aspect.

  10. Career-Oriented Performance Tasks in Chemistry: Effects on Students Integrated Science Process Skills

    OpenAIRE

    Allen A. Espinosa; Sheryl Lyn C. Monterola; Amelia E. Punzalan

    2013-01-01

    The study was conducted to assess the effectiveness of Career-Oriented Performance Task (COPT) approach against the traditional teaching approach (TTA) in enhancing students’ integrated science process skills. Specifically, it sought to find out if students exposed to COPT have higher integrated science process skills than those students exposed to the traditional teaching approach (TTA). Career-Oriented Performance Task (COPT) approach aims to integrate career-oriented examples and inquiry-b...

  11. The EGSE science software of the IBIS instrument on-board INTEGRAL satellite

    International Nuclear Information System (INIS)

    La Rosa, Giovanni; Fazio, Giacomo; Segreto, Alberto; Gianotti, Fulvio; Stephen, John; Trifoglio, Massimo

    2000-01-01

    IBIS (Imager on Board INTEGRAL Satellite) is one of the key instrument on-board the INTEGRAL satellite, the follow up mission of the high energy missions CGRO and Granat. The EGSE of IBIS is composed by a Satellite Interface Simulator, a Control Station and a Science Station. Here are described the solutions adopted for the architectural design of the software running on the Science Station. Some preliminary results are used to show the science functionality, that allowed to understand the instrument behavior, all along the test and calibration campaigns of the Engineering Model of IBIS

  12. Interactive Whiteboard Use in High-Tech Science Classrooms: Patterns of Integration

    Directory of Open Access Journals (Sweden)

    Rena Stroud

    2014-10-01

    Full Text Available Interactive whiteboard (IWB use has been associated with increased student motivation, engagement, and achievement, though many studies ignore the role of the teacher in effecting those positive changes. The current study followed the practice of 28 high school science teachers as they integrated the IWB into their regular classroom activities. The extent of teachers’ adoption and integration fell along a continuum, from the technologically confident “early adopter” to the low-use “resistant adopter.” Patterns of use are explored by extracting data from representative teachers’ practice. Science-specific benefits of IWB use, barriers to integration, and lessons learned for professional development are discussed.

  13. Pharmacy students' use and perceptions of Apple mobile devices incorporated into a basic health science laboratory.

    Science.gov (United States)

    Bryant, Jennifer E; Richard, Craig A H

    To describe pharmacy students' use of mobile devices in a basic health science laboratory and to report the students' perceptions on how solving cases with their mobile devices influenced their attitudes, abilities, and view on the use of mobile devices as tools for pharmacists. First-year pharmacy students utilized mobile devices to solve clinical case studies in a basic health sciences laboratory. A pre-survey and two post-surveys were administered to assess the students' comfort, awareness, use, and perceptions on the use of their mobile devices and apps. The pre-survey and first post-survey each had a response rate of 99%, and the second post-survey had a response rate of 100%. In comparing the pre-survey and first post-survey data, there was a statistically significant increase in the number of students that agreed or strongly agreed that they were more comfortable utilizing their mobile device (p = 0.025), they were more aware of apps for pharmacists (p mobile devices, to be more aware of apps that can be useful for pharmacists, and to be more agreeable with mobile device utilization by pharmacists in improving patient care. In addition, the second post-survey also demonstrated that 84% of students responded that using their mobile devices to solve the cases influenced them to either use their mobile device in a clinical setting for a clinical and/or pharmacy-related purpose for the first time or to use it more frequently for this purpose. The use of mobile devices to solve clinical cases in a first-year basic health science laboratory course was perceived as beneficial by students and influenced them to utilize their mobile device even more in a pharmacy practice setting. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. NEW DESIGN BASIC VOCATIONAL TRAINING PROGRAMMES IN THE CONTEXT OF CONSTRUCTING INNOVATION EDUCATION ENVIRONMENT OF THE UNIVERSITY

    Directory of Open Access Journals (Sweden)

    N. N. Demidova

    2016-01-01

    Full Text Available In accordance with modern educational standards, the basic professional educational programs should focus on the formation of basic research, innovative competence and initiative qualities of future highly qualified specialists.The new design is based on ideas OPOP interaction between education, science, innovation and involves a significant reorganization of the structure and content, the introduction of new forms of learning. The article explains the matrix model of project management as a condition for the establishment and implementation of a competitive basic professional educational program, reflecting the idea of complementarity and integration of education and science. The model assumes a new method of functioning of professional community and students. The provided format of the main professional educational programs allows to speak about new quality of training of competitive specialists according to challenges of the modern world.

  15. A natural user interface to integrate citizen science and physical exercise

    OpenAIRE

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed envir...

  16. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status.

    Science.gov (United States)

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students' academic performance in the comprehensive basic sciences examination. According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination.

  17. BASIC Programming for the Integration of Money, Demand Deposits Creation, and the Hicksian-Keynesian Model.

    Science.gov (United States)

    Tom, C. F. Joseph

    Money, banking, and macroeconomic textbooks traditionally present the topics of money, the creation of demand deposits by depository institutions, and the Hicksian-Keynesian Theory of Income and Interest separately, as if they were unrelated. This paper presents an integrated approach to those subjects using computer programs written in BASIC, the…

  18. Integrating Leadership Development throughout the Undergraduate Science Curriculum

    Science.gov (United States)

    Reed, Kelynne E.; Aiello, David P.; Barton, Lance F.; Gould, Stephanie L.; McCain, Karla S.; Richardson, John M.

    2016-01-01

    This article discusses the STEM (science, technology, engineering, and mathematics) Teaching and Research (STAR) Leadership Program, developed at Austin College, which engages students in activities integrated into undergraduate STEM courses that promote the development of leadership behaviors. Students focus on interpersonal communication,…

  19. Building ontologies with basic formal ontology

    CERN Document Server

    Arp, Robert; Spear, Andrew D.

    2015-01-01

    In the era of "big data," science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of particular relevance to biomedicine, covering theoretical components of ontologies, best practices for ontology design, and examples of biomedical ontologies in use. After defining an ontology as a representation of the types of entities in a given domain, the book distinguishes between different kinds of ontologies and taxonomies, and shows how applied ontology draws on more traditional ideas from metaphysics. It presents the core features of the Basic Formal Ontology (BFO), now u...

  20. Effectiveness of Adaptive Contextual Learning Model of Integrated Science by Integrating Digital Age Literacy on Grade VIII Students

    Science.gov (United States)

    Asrizal, A.; Amran, A.; Ananda, A.; Festiyed, F.

    2018-04-01

    Educational graduates should have good competencies to compete in the 21st century. Integrated learning is a good way to develop competence of students in this century. Besides that, literacy skills are very important for students to get success in their learning and daily life. For this reason, integrated science learning and literacy skills are important in 2013 curriculum. However, integrated science learning and integration of literacy in learning can’t be implemented well. Solution of this problem is to develop adaptive contextual learning model by integrating digital age literacy. The purpose of the research is to determine the effectiveness of adaptive contextual learning model to improve competence of grade VIII students in junior high school. This research is a part of the research and development or R&D. Research design which used in limited field testing was before and after treatment. The research instruments consist of three parts namely test sheet of learning outcome for assessing knowledge competence, observation sheet for assessing attitudes, and performance sheet for assessing skills of students. Data of student’s competence were analyzed by three kinds of analysis, namely descriptive statistics, normality test and homogeneity test, and paired comparison test. From the data analysis result, it can be stated that the implementation of adaptive contextual learning model of integrated science by integrating digital age literacy is effective to improve the knowledge, attitude, and literacy skills competences of grade VIII students in junior high school at 95% confidence level.

  1. Assessment of scientific thinking in basic science in the Iranian second national Olympiad

    Directory of Open Access Journals (Sweden)

    Azarpira Negar

    2012-01-01

    Full Text Available Abstract Background To evaluate the scientific reasoning in basic science among undergraduate medical students, we established the National Medical Science Olympiad in Iran. In this Olympiad, the drawing of a concept map was used to evaluate a student's knowledge framework; students' ability in hypothesis generation and testing were also evaluated in four different steps. All medical students were invited to participate in this program. Finally, 133 undergraduate medical students with average grades ≥ 16/20 from 45 different medical schools in Iran were selected. The program took the form of four exams: drawing a concept map (Exam I, hypothesis generation (Exam II, choosing variables based on the hypothesis (Exam III, measuring scientific thought (Exam IV. The examinees were asked to complete all examination items in their own time without using textbooks, websites, or personal consultations. Data were presented as mean ± SE of each parameter. The correlation coefficient between students' scores in each exam with the total final score and average grade was calculated using the Spearman test. Results Out of a possible score of 200, the mean ± SE of each exam were as follows: 183.88 ± 5.590 for Exam I; 78.68 ± 9.168 for Exam II; 92.04 ± 2.503 for exam III; 106.13 ± 2.345 for Exam IV. The correlation of each exam score with the total final score was calculated, and there was a significant correlation between them (p The average grade was significantly correlated with the total final score (R = 0.770, (p p R = 0.7708 and the average grade. This means students with higher average grades had better grades in each exam, especially in drawing the concept map. Conclusions We hope that this competition will encourage medical schools to integrate theory and practice, analyze data, and read research articles. Our findings relate to a selected population, and our data may not be applicable to all medical students. Therefore, further studies are

  2. Basic Energy Sciences Exascale Requirements Review. An Office of Science review sponsored jointly by Advanced Scientific Computing Research and Basic Energy Sciences, November 3-5, 2015, Rockville, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Windus, Theresa [Ames Lab., Ames, IA (United States); Banda, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Devereaux, Thomas [SLAC National Accelerator Lab., Menlo Park, CA (United States); White, Julia C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Antypas, Katie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Coffey, Richard [Argonne National Lab. (ANL), Argonne, IL (United States); Dart, Eli [Energy Sciences Network (ESNet), Berkeley, CA (United States); Dosanjh, Sudip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gerber, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hack, James [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Monga, Inder [Energy Sciences Network (ESNet), Berkeley, CA (United States); Papka, Michael E. [Argonne National Lab. (ANL), Argonne, IL (United States); Riley, Katherine [Argonne National Lab. (ANL), Argonne, IL (United States); Rotman, Lauren [Energy Sciences Network (ESNet), Berkeley, CA (United States); Straatsma, Tjerk [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wells, Jack [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baruah, Tunna [Univ. of Texas, El Paso, TX (United States); Benali, Anouar [Argonne National Lab. (ANL), Argonne, IL (United States); Borland, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Brabec, Jiri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Carter, Emily [Princeton Univ., NJ (United States); Ceperley, David [Univ. of Illinois, Urbana-Champaign, IL (United States); Chan, Maria [Argonne National Lab. (ANL), Argonne, IL (United States); Chelikowsky, James [Univ. of Texas, Austin, TX (United States); Chen, Jackie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cheng, Hai-Ping [Univ. of Florida, Gainesville, FL (United States); Clark, Aurora [Washington State Univ., Pullman, WA (United States); Darancet, Pierre [Argonne National Lab. (ANL), Argonne, IL (United States); DeJong, Wibe [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Deslippe, Jack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC); Dixon, David [Univ. of Alabama, Tuscaloosa, AL (United States); Donatelli, Jeffrey [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunning, Thomas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fernandez-Serra, Marivi [Stony Brook Univ., NY (United States); Freericks, James [Georgetown Univ., Washington, DC (United States); Gagliardi, Laura [Univ. of Minnesota, Minneapolis, MN (United States); Galli, Giulia [Univ. of Chicago, IL (United States); Garrett, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Glezakou, Vassiliki-Alexandra [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gordon, Mark [Iowa State Univ., Ames, IA (United States); Govind, Niri [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Gray, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Gull, Emanuel [Univ. of Michigan, Ann Arbor, MI (United States); Gygi, Francois [Univ. of California, Davis, CA (United States); Hexemer, Alexander [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Isborn, Christine [Univ. of California, Merced, CA (United States); Jarrell, Mark [Louisiana State Univ., Baton Rouge, LA (United States); Kalia, Rajiv K. [Univ. of Southern California, Los Angeles, CA (United States); Kent, Paul [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Klippenstein, Stephen [Argonne National Lab. (ANL), Argonne, IL (United States); Kowalski, Karol [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Krishnamurthy, Hulikal [Indian Inst. of Science, Bangalore (India); Kumar, Dinesh [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lena, Charles [Univ. of Texas, Austin, TX (United States); Li, Xiaosong [Univ. of Washington, Seattle, WA (United States); Maier, Thomas [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Markland, Thomas [Stanford Univ., CA (United States); McNulty, Ian [Argonne National Lab. (ANL), Argonne, IL (United States); Millis, Andrew [Columbia Univ., New York, NY (United States); Mundy, Chris [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nakano, Aiichiro [Univ. of Southern California, Los Angeles, CA (United States); Niklasson, A.M.N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Panagiotopoulos, Thanos [Princeton Univ., NJ (United States); Pandolfi, Ron [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parkinson, Dula [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Pask, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Perazzo, Amedeo [SLAC National Accelerator Lab., Menlo Park, CA (United States); Rehr, John [Univ. of Washington, Seattle, WA (United States); Rousseau, Roger [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sankaranarayanan, Subramanian [Argonne National Lab. (ANL), Argonne, IL (United States); Schenter, Greg [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Selloni, Annabella [Princeton Univ., NJ (United States); Sethian, Jamie [Univ. of California, Berkeley, CA (United States); Siepmann, Ilja [Univ. of Minnesota, Minneapolis, MN (United States); Slipchenko, Lyudmila [Purdue Univ., West Lafayette, IN (United States); Sternberg, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Stevens, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Summers, Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sumpter, Bobby [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sushko, Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Thayer, Jana [SLAC National Accelerator Lab., Menlo Park, CA (United States); Toby, Brian [Argonne National Lab. (ANL), Argonne, IL (United States); Tull, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Valeev, Edward [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Vashishta, Priya [Univ. of Southern California, Los Angeles, CA (United States); Venkatakrishnan, V. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yang, Ping [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Zwart, Peter H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-02-03

    Computers have revolutionized every aspect of our lives. Yet in science, the most tantalizing applications of computing lie just beyond our reach. The current quest to build an exascale computer with one thousand times the capability of today’s fastest machines (and more than a million times that of a laptop) will take researchers over the next horizon. The field of materials, chemical reactions, and compounds is inherently complex. Imagine millions of new materials with new functionalities waiting to be discovered — while researchers also seek to extend those materials that are known to a dizzying number of new forms. We could translate massive amounts of data from high precision experiments into new understanding through data mining and analysis. We could have at our disposal the ability to predict the properties of these materials, to follow their transformations during reactions on an atom-by-atom basis, and to discover completely new chemical pathways or physical states of matter. Extending these predictions from the nanoscale to the mesoscale, from the ultrafast world of reactions to long-time simulations to predict the lifetime performance of materials, and to the discovery of new materials and processes will have a profound impact on energy technology. In addition, discovery of new materials is vital to move computing beyond Moore’s law. To realize this vision, more than hardware is needed. New algorithms to take advantage of the increase in computing power, new programming paradigms, and new ways of mining massive data sets are needed as well. This report summarizes the opportunities and the requisite computing ecosystem needed to realize the potential before us. In addition to pursuing new and more complete physical models and theoretical frameworks, this review found that the following broadly grouped areas relevant to the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR) would directly affect the Basic Energy

  3. What's hot, what's new in basic science: report from the American Transplant Congress 2015.

    Science.gov (United States)

    Heeger, P S

    2015-11-01

    Research reports presented at the American Transplant Congress 2015 provided an array of basic science findings of relevance to the transplant community. Among key themes is the concept that ischemia-reperfusion injury and early posttransplantation inflammation is linked to adaptive alloimmunity and transplant injury. Molecular and cellular mechanisms contributing to these interactions were highlighted. The relevance of understanding how blocking costimulation, including CD40/CD154 interactions, affects various aspects of the alloimmune response was enhanced by the description of preclinical studies demonstrating efficacy of a unique, blocking anti-CD40 monoclonal antibody that could potentially be used in humans. The identification of mechanisms underlying interactions among T cell subsets and B cells, including follicular helper T cells, regulatory T cells, effector B cells, and regulatory B cells, provides multiple previously unrecognized targets for future therapeutic interventions. Additional reports of interest include novel insights into effects of the gut microbiome on graft survival and the ability to differentiate insulin-secreting, islet-like cells from induced pluripotent stem cells. Overall, the reported basic science findings from American Transplant Congress 2015 add to the fundamental understanding of innate and adaptive alloimmunity and provide novel and testable hypotheses that have the potential to be translated into improved clinical care of transplant patients. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  4. Virtual laboratory learning media development to improve science literacy skills of mechanical engineering students on basic physics concept of material measurement

    Science.gov (United States)

    Jannati, E. D.; Setiawan, A.; Siahaan, P.; Rochman, C.

    2018-05-01

    This study aims to determine the description of virtual laboratory learning media development to improve science literacy skills of Mechanical Engineering students on the concept of basic Physics. Quasi experimental method was employed in this research. The participants of this research were first semester students of mechanical engineering in Majalengka University. The research instrument was readability test of instructional media. The results of virtual laboratory learning media readability test show that the average score is 78.5%. It indicates that virtual laboratory learning media development are feasible to be used in improving science literacy skill of Mechanical Engineering students in Majalengka University, specifically on basic Physics concepts of material measurement.

  5. THE INTEGRATION OF EDUCATION AND SCIENCE AS A GLOBAL PROBLEM

    Directory of Open Access Journals (Sweden)

    Anatoliy I. Rakitov

    2016-09-01

    Full Text Available Introduction: mankind is on the edge of a new techno-technological and socio-economical revolution generated by robotization and automation in all spheres of individual and socio-economical activity. Among numerous conceptions of global development only the conception of the knowledge-based society is the most adequate to contemporary terms. As the higher education and science are the main source of knowledge adequate to contemporary terms then their integration should be investigated. Materials and Methods: the material for this investigation was gathered as from individual experience in science and pedagogical activity of the author which were earlier published in hundreds of articles and fifteen monograph translated in eleven languages, as the materials of Moscow city seminar, the results of which were published in annual “Science of science investigations”. This annual has been editing since 2004 and the author is the editor-in-chief of this edition. Also has been used other sources from different editions. The method of comparative analysis was used. Results: the author put forward the conception of inevitable integration of higher school and research institutions and forming a new structure – science-education consortium. Only such united structure can significantly rise both scientific researchers and higher education. And as a result, it will rise publishing activity and application of scientific researchers in real econ omy, social sphere, technological leadership. Discussion and Conclusions: conception put forward in this article fragmentary has been published by author earlier and initiated discussion in scientific press, which was reflected in home RISC and abroad citation indexes. The author proclaims the inevitability of realization of the suggested by him conception of the utmost integration of science and higher education.

  6. ICT Integration in Science and Mathematics Lessons: Teachers ...

    African Journals Online (AJOL)

    The study reported in this paper used Guskey's model (Guskey, 2000) to systematically investigate teachers' experiences about the professional development programme on ICT integration in teaching and learning of Science and Mathematics in secondary schools. The study employed survey research design and an ...

  7. Integrating Mathematics, Science, and Language Arts Instruction Using the World Wide Web.

    Science.gov (United States)

    Clark, Kenneth; Hosticka, Alice; Kent, Judi; Browne, Ron

    1998-01-01

    Addresses issues of access to World Wide Web sites, mathematics and science content-resources available on the Web, and methods for integrating mathematics, science, and language arts instruction. (Author/ASK)

  8. Technology Use in Science Instruction (TUSI): Aligning the Integration of Technology in Science Instruction in Ways Supportive of Science Education Reform

    Science.gov (United States)

    Campbell, Todd; Abd-Hamid, Nor Hashidah

    2013-08-01

    This study describes the development of an instrument to investigate the extent to which technology is integrated in science instruction in ways aligned to science reform outlined in standards documents. The instrument was developed by: (a) creating items consistent with the five dimensions identified in science education literature, (b) establishing content validity with both national and international content experts, (c) refining the item pool based on content expert feedback, (d) piloting testing of the instrument, (e) checking statistical reliability and item analysis, and (f) subsequently refining and finalization of the instrument. The TUSI was administered in a field test across eleven classrooms by three observers, with a total of 33 TUSI ratings completed. The finalized instrument was found to have acceptable inter-rater intraclass correlation reliability estimates. After the final stage of development, the TUSI instrument consisted of 26-items separated into the original five categories, which aligned with the exploratory factor analysis clustering of the items. Additionally, concurrent validity of the TUSI was established with the Reformed Teaching Observation Protocol. Finally, a subsequent set of 17 different classrooms were observed during the spring of 2011, and for the 9 classrooms where technology integration was observed, an overall Cronbach alpha reliability coefficient of 0.913 was found. Based on the analyses completed, the TUSI appears to be a useful instrument for measuring how technology is integrated into science classrooms and is seen as one mechanism for measuring the intersection of technological, pedagogical, and content knowledge in science classrooms.

  9. Basic concepts of epidemiology

    International Nuclear Information System (INIS)

    Savitz, D.A.

    1984-01-01

    Epidemiology can be defined simply as the science of the distribution and determinants of disease in human populations. As a descriptive tool, epidemiology can aid health care service providers, for example, in allocation of resources. In its analytic capacity, the epidemiologic approach can help identify determinants of disease through the study of human populations. Epidemiology is primarily an observational rather than experimental methodology, with corresponding strengths and limitations. Relative to other approaches for assessing disease etiology and impacts of potential health hazards, epidemiology has a rather unique role that is complementary to, but independent of, both basic biologic sciences and clinical medicine. Experimental biologic sciences such as toxicology and physiology provide critical information on biologic mechanisms of disease required for causal inference. Clinical medicine often serves as the warning system that provides etiologic clues to be pursued through systematic investigation. The advantage of the epidemiologic approach is its reliance on human field experience, that is, the real world. While laboratory experimentation is uniquely well suited to defining potential hazards, it can neither determine whether human populations have actually been affected nor quantify that effect. Building all the complexities of human behavior and external factors into a laboratory study or mathematical model is impossible. By studying the world as it exists, epidemiology examines the integrated, summarized product of the myriad factors influencing health

  10. Science and students: Yucca Mountain project's education outreach program

    International Nuclear Information System (INIS)

    Gil, A.V.; Larkin, E.L.; Reilly, B.; Austin, P.

    1992-01-01

    The U.S. Department of Energy (DOE) is very concerned about the lack of understanding of basic science. Increasingly, critical decisions regarding the use of energy, technology, and the environment are being made. A well-educated and science-literate public is vital to the success of these decisions. Science education and school instruction are integral parts of the DOE's public outreach program on the Yucca Mountain Site Characterization Project (YMP). Project staff and scientists speak to elementary, junior high, high school, and university students, accepting all speaking invitations. The objectives of this outreach program include the following: (1) educating Nevada students about the concept of a high-level nuclear waste repository; (2) increasing awareness of energy and environmental issues; (3) helping students understand basic concepts of earth science and geology in relation to siting a potential repository; and (4) giving students information about careers in science and engineering

  11. Science Educational Outreach Programs That Benefit Students and Scientists.

    Directory of Open Access Journals (Sweden)

    Greg Clark

    2016-02-01

    Full Text Available Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs--"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist"--that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.

  12. Science Educational Outreach Programs That Benefit Students and Scientists

    Science.gov (United States)

    Enyeart, Peter; Gracia, Brant; Wessel, Aimee; Jarmoskaite, Inga; Polioudakis, Damon; Stuart, Yoel; Gonzalez, Tony; MacKrell, Al; Rodenbusch, Stacia; Stovall, Gwendolyn M.; Beckham, Josh T.; Montgomery, Michael; Tasneem, Tania; Jones, Jack; Simmons, Sarah; Roux, Stanley

    2016-01-01

    Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities. PMID:26844991

  13. Promoting Science and Technology in Primary Education: A Review of Integrated Curricula

    NARCIS (Netherlands)

    Drs Rens Gresnigt; Koeno Gravemeijer; Hanno Keulen, van; Liesbeth Baartman; Ruurd Taconis

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  14. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Gresnigt, H.L.L.; Taconis, R.; Keulen, van Hanno; Gravemeijer, K.P.E.; Baartman, L.K.J.

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focused on integrated curricula in primary education from

  15. Promoting science and technology in primary education : a review of integrated curricula

    NARCIS (Netherlands)

    Hanno van Keulen; Rens Gresnigt; Liesbeth Baartman; Ruurd Taconis; Koeno Gravemeijer

    2014-01-01

    Integrated curricula seem promising for the increase of attention on science and technology in primary education. A clear picture of the advantages and disadvantages of integration efforts could help curriculum innovation. This review has focussed on integrated curricula in primary education from

  16. A study of the academic performance of medical students in the comprehensive examination of the basic sciences according to the indices of emotional intelligence and educational status

    Science.gov (United States)

    Moslehi, Mohsen; Samouei, Rahele; Tayebani, Tayebeh; Kolahduz, Sima

    2015-01-01

    Background: Considering the increasing importance of emotional intelligence (EI) in different aspects of life, such as academic achievement, the present survey is aimed to predict academic performance of medical students in the comprehensive examination of the basic sciences, according to the indices of emotional intelligence and educational status. Materials and Methods: The present survey is a descriptive, analytical, and cross-sectional study performed on the medical students of Isfahan, Tehran, and Mashhad Universities of Medical Sciences. Sampling the universities was performed randomly after which selecting the students was done, taking into consideration the limitation in their numbers. Based on the inclusion criteria, all the medical students, entrance of 2005, who had attended the comprehensive basic sciences examination in 2008, entered the study. The data collection tools included an Emotional Intelligence Questionnaire (standardized in Isfahan), the average score of the first to fifth semesters, total average of each of the five semesters, and the grade of the comprehensive basic sciences examination. The data were analyzed through stepwise regression coefficient by SPSS software version 15. Results: The results indicated that the indicators of independence from an emotional intelligence test and average scores of the first and third academic semesters were significant in predicting the students’ academic performance in the comprehensive basic sciences examination. Conclusion: According to the obtained results, the average scores of students, especially in the earlier semesters, as well as the indicators of independence and the self-esteem rate of students can influence their success in the comprehensive basic sciences examination. PMID:26430693

  17. Living in Water: An Aquatic Science Curriculum for Grades 5-7.

    Science.gov (United States)

    National Aquarium in Baltimore, MD. Dept. of Education.

    "Living in Water" is a classroom-based, scientific study of water, aquatic environments, and the plants and animals that live in water. The lessons in this curriculum integrate basic physical, biological, and earth sciences, and mathematics. The integration of language arts is also considered essential to its success. These lessons do not require…

  18. Basic Research in the United States.

    Science.gov (United States)

    Handler, Philip

    1979-01-01

    Presents a discussion of the development of basic research in the U.S. since World War II. Topics include the creation of the federal agencies, physics and astronomy, chemistry, earth science, life science, the environment, and social science. (BB)

  19. How much basic science content do second-year medical students remember from their first year?

    Science.gov (United States)

    Schneid, Stephen D; Pashler, Hal; Armour, Chris

    2018-01-23

    While most medical students generally perform well on examinations and pass their courses during the first year, we do not know how much basic science content they retain at the start of their second year and how that relates to minimal competency set by the faculty. In the fall of 2014, before starting their second-year courses, 27 medical students volunteered to participate in a study of long-term retention of the basic sciences by taking a "retention exam" after a delay of 5-11 months. The overall mean performance when the students initially answered the 60 multiple choice questions (MCQs) was 82.8% [standard deviation (SD) = 7.4%], which fell to 50.1% (SD = 12.1%) on the retention exam. This gave a mean retention of 60.4% (SD = 12.8%) with the retention for individual students ranging from 37 to 81%. The majority of students (23/27; 85%) fell below the minimal level of competency to start their second year. Medical educators should be more aware of the significant amount of forgetting that occurs during training and make better use of instructional strategies that promote long-term learning such as retrieval practice, interleaving, and spacing.

  20. Integrating systems Approaches into Pharmaceutical Sciences

    DEFF Research Database (Denmark)

    Westerhoff, H.V.; Mosekilde, Erik; Noe, C. R.

    2008-01-01

    During the first week of December 2007, the European Federation for Pharmaceutical Sciences (EUFEPS) and BioSim, the major European Network of Excellence on Systems Biology, held a challenging conference on the use of mathematical models in the drug development process. More precisely, the purpose...... of the conference was to promote the ‘Integration of Systems Approaches into Pharmaceutical Sciences’ in view of optimising the development of new effective drugs. And a challenge this is, considering both the high attrition rates in the pharmaceutical industry and the failure of finding definitive drug solutions...... for many of the diseases that plague mankind today. The conference was co-sponsored by the American College of Clinical Pharmacology, the European Center for Pharmaceutical Medicine, and the Swiss Society of Pharmaceutical Sciences and, besides representatives from the European Regulatory Agencies and FDA...

  1. Modeling for Integrated Science Management and Resilient Systems Development

    Science.gov (United States)

    Shelhamer, M.; Mindock, J.; Lumpkins, S.

    2014-01-01

    Many physiological, environmental, and operational risks exist for crewmembers during spaceflight. An understanding of these risks from an integrated perspective is required to provide effective and efficient mitigations during future exploration missions that typically have stringent limitations on resources available, such as mass, power, and crew time. The Human Research Program (HRP) is in the early stages of developing collaborative modeling approaches for the purposes of managing its science portfolio in an integrated manner to support cross-disciplinary risk mitigation strategies and to enable resilient human and engineered systems in the spaceflight environment. In this talk, we will share ideas being explored from fields such as network science, complexity theory, and system-of-systems modeling. Initial work on tools to support these explorations will be discussed briefly, along with ideas for future efforts.

  2. Landscape of Innovation for Cardiovascular Pharmaceuticals: From Basic Science to New Molecular Entities.

    Science.gov (United States)

    Beierlein, Jennifer M; McNamee, Laura M; Walsh, Michael J; Kaitin, Kenneth I; DiMasi, Joseph A; Ledley, Fred D

    2017-07-01

    This study examines the complete timelines of translational science for new cardiovascular therapeutics from the initiation of basic research leading to identification of new drug targets through clinical development and US Food and Drug Administration (FDA) approval of new molecular entities (NMEs) based on this research. This work extends previous studies by examining the association between the growth of research on drug targets and approval of NMEs associated with these targets. Drawing on research on innovation in other technology sectors, where technological maturity is an important determinant in the success or failure of new product development, an analytical model was used to characterize the growth of research related to the known targets for all 168 approved cardiovascular therapeutics. Categorizing and mapping the technological maturity of cardiovascular therapeutics reveal that (1) there has been a distinct transition from phenotypic to targeted methods for drug discovery, (2) the durations of clinical and regulatory processes were significantly influenced by changes in FDA practice, and (3) the longest phase of the translational process was the time required for technology to advance from initiation of research to a statistically defined established point of technology maturation (mean, 30.8 years). This work reveals a normative association between metrics of research maturation and approval of new cardiovascular therapeutics and suggests strategies for advancing translational science by accelerating basic and applied research and improving the synchrony between the maturation of this research and drug development initiatives. Copyright © 2017 Elsevier HS Journals, Inc. All rights reserved.

  3. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    International Nuclear Information System (INIS)

    Dahlburg, Jill; Corones, James; Batchelor, Donald; Bramley, Randall; Greenwald, Martin; Jardin, Stephen; Krasheninnikov, Sergei; Laub, Alan; Leboeuf, Jean-Noel; Lindl, John; Lokke, William; Rosenbluth, Marshall; Ross, David; Schnack, Dalton

    2002-01-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world's energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the

  4. Report of the Fusion Energy Sciences Advisory Committee. Panel on Integrated Simulation and Optimization of Magnetic Fusion Systems

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, Jill [General Atomics, San Diego, CA (United States); Corones, James [Krell Inst., Ames, IA (United States); Batchelor, Donald [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bramley, Randall [Indiana Univ., Bloomington, IN (United States); Greenwald, Martin [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Jardin, Stephen [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Krasheninnikov, Sergei [Univ. of California, San Diego, CA (United States); Laub, Alan [Univ. of California, Davis, CA (United States); Leboeuf, Jean-Noel [Univ. of California, Los Angeles, CA (United States); Lindl, John [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lokke, William [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rosenbluth, Marshall [Univ. of California, San Diego, CA (United States); Ross, David [Univ. of Texas, Austin, TX (United States); Schnack, Dalton [Science Applications International Corporation, Oak Ridge, TN (United States)

    2002-11-01

    Fusion is potentially an inexhaustible energy source whose exploitation requires a basic understanding of high-temperature plasmas. The development of a science-based predictive capability for fusion-relevant plasmas is a challenge central to fusion energy science, in which numerical modeling has played a vital role for more than four decades. A combination of the very wide range in temporal and spatial scales, extreme anisotropy, the importance of geometric detail, and the requirement of causality which makes it impossible to parallelize over time, makes this problem one of the most challenging in computational physics. Sophisticated computational models are under development for many individual features of magnetically confined plasmas and increases in the scope and reliability of feasible simulations have been enabled by increased scientific understanding and improvements in computer technology. However, full predictive modeling of fusion plasmas will require qualitative improvements and innovations to enable cross coupling of a wider variety of physical processes and to allow solution over a larger range of space and time scales. The exponential growth of computer speed, coupled with the high cost of large-scale experimental facilities, makes an integrated fusion simulation initiative a timely and cost-effective opportunity. Worldwide progress in laboratory fusion experiments provides the basis for a recent FESAC recommendation to proceed with a burning plasma experiment (see FESAC Review of Burning Plasma Physics Report, September 2001). Such an experiment, at the frontier of the physics of complex systems, would be a huge step in establishing the potential of magnetic fusion energy to contribute to the world’s energy security. An integrated simulation capability would dramatically enhance the utilization of such a facility and lead to optimization of toroidal fusion plasmas in general. This science-based predictive capability, which was cited in the FESAC

  5. NST and NST integration: nuclear science and technique and nano science and technique

    International Nuclear Information System (INIS)

    Zhao Yuliang; Chai Zhifang; Liu Yuanfang

    2008-01-01

    Nuclear science is considered as a big science and also the frontier in the 20 th century, it developed many big scientific facilities and many technique platforms (e.g., nuclear reactor, synchrotron radiation, accelerator, etc.) Nuclear Science and Technology (NST) provide us with many unique tools such as neutron beams, electron beams, gamma rays, alpha rays, beta rays, energetic particles, etc. These are efficient and essential probes for studying many technique and scientific issues in the fields of new materials, biological sciences, environmental sciences, life sciences, medical science, etc. Nano Science and Technology (NST) is a newly emerging multidisciplinary science and the frontier in the 21 st century, it is expected to dominate the technological revolution in diverse aspects of our life. It involves diverse fields such as nanomaterials, nanobiological sciences, environmental nanotechnology, nanomedicine, etc. nanotechnology was once considered as a futuristic science with applications several decades in the future and beyond. But, the rapid development of nanotechnology has broken this prediction. For example, diverse types of manufactured nanomaterials or nanostructures have been currently utilized in industrial products, semiconductors, electronics, stain-resistant clothing, ski wax, catalysts, other commodity products such as food, sunscreens, cosmetics, automobile parts, etc., to improve their performance of previous functions, or completely create novel functions. They will also be increasingly utilized in medicines for purposes of clinic therapy, diagnosis, and drug delivery. In the talk, we will discuss the possibility of NST-NST integration: how to apply the unique probes of advanced radiochemical and nuclear techniques in nanoscience and nanotechnology. (authors)

  6. The Impact of Science Integrated Curriculum Supplements on Early Childhood Teachers' Attitudes and Beliefs towards Science while In-Service: A Multiple Case

    Science.gov (United States)

    Collins, Kellian L.

    Science at the early childhood level has been rarely taught as a single subject or integrated into the curriculum. One reason why early childhood educators avoid teaching science are their attitudes, beliefs, and lack of understanding scientific concepts as presented in traditional science curriculums. The intervention used by researchers for improving beliefs and attitudes in K-6 pre-service teachers towards teaching science in early childhood has been science method courses. For in service teachers, the intervention has been professional development workshops, seminars, and symposiums. Though these interventions have had a positive impact on teachers' attitudes and beliefs toward teaching science, the interventions have not necessarily guaranteed more science being taught in the preschool classroom. The specific problem investigated for this study was how to improve the interventions designed to improve preschool teachers' attitudes and beliefs so that they would feel more confident in teaching science to young children. The purpose of this study was to examine how implementing a one-week science integrated curriculum supplement could be an effective tool for improving preschool teachers' attitudes and beliefs toward teaching science. This study utilized the qualitative multiple case study research method. A logical model was created based on negative teacher attitudes and beliefs attributes that were the core components of the Preschool Teachers' Attitudes and Beliefs toward Science teaching (P-TABS) questionnaire. The negative attributes were paired with positive interventions and encapsulated in a one-week science integrated curriculum supplement based on the factors of teacher comfort, child benefit and challenges. The primary source of evidence for this study was the semi-structured interview. The researcher contacted 24 early childhood facilities, 44 emails were sent to preschool teachers, four teachers agreed to participate in the study. The results of the

  7. The Brave New Researcher of Doctoral Integrity Training in the Heath Sciences

    DEFF Research Database (Denmark)

    Sarauw, Laura Louise

    2018-01-01

    as points of reference for an overall discussion of the implied ideas about the ideal researcher in a comparative cross-faculty perspective: 1) Translations between international/national/institutional and local/faculty ideas about what problems the integrity training is expected to solve, 2) Translations......The presented material is a part of a wider, comparative ethnography in which we study the emerging integrity training for PhD fellows provided by four different faculties: Science, Humanities, Social Science and Business, and Health. The comparison comprises the following themes that will serve...... between standardisations of curriculum and content, local development and ideas about what problems integrity training is expected to solve. 3) Translations between ideas about adequate pedagogies and ideas about what problems integrity training is expected to solve...

  8. A Bayesian Mixed-Methods Analysis of Basic Psychological Needs Satisfaction through Outdoor Learning and Its Influence on Motivational Behavior in Science Class

    Directory of Open Access Journals (Sweden)

    Ulrich Dettweiler

    2017-12-01

    Full Text Available Research has shown that outdoor educational interventions can lead to students' increased self-regulated motivational behavior. In this study, we searched into the satisfaction of basic psychological needs (BPN, i.e., autonomy support, the learners' experience of competence, and relatedness, both within the peer group and with their teachers, through outdoor learning. From 2014 to 2016, n = 281 students attended “research weeks” at a Student Science Lab in the Alpine National Park Berchtesgaden (Germany. The program is a curriculum-based one-week residential course, centered on a 2-day research expedition. Both before and after the course, students completed a composite questionnaire addressing BPN-satisfaction and overall motivational behavior in relation to the Self-Determination Index (SDI. At the latter time-point, students also reported on their experiences during the intervention. Questionnaire data was analyzed using a set of Bayesian General Linear Models with random effects. Those quantitative measures have been complemented by and contextualized with a set of qualitative survey methods. The results showed that the basic psychological needs influence the motivational behavior in both contexts equally, however on different scale levels. The basic needs satisfaction in the outdoor context is decisively higher than indoors. Moreover, the increment of competence-experience from the school context to the hands-on outdoor program appears to have the biggest impact to students' increased intrinsic motivation during the intervention. Increased autonomy support, student-teacher relations, and student-student relations have much less or no influence on the overall difference of motivational behavior. Gender does not influence the results. The contextualization partly supports those results and provide further explanation for the students' increased self-regulation in the outdoors. They add some explanatory thrust to the argument that outdoor

  9. On Solid Ground: Science, Technology, and Integrated Land ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Commission's Panel on Integrated Land Management was convened to explore how science and technology could contribute to the overall discussion of land management as part of the review by the Commission on Sustainable Development of the follow-up to the 1992 United Nations Conference on Environment and ...

  10. Transforming Defense Basic Research Strategy

    National Research Council Canada - National Science Library

    Fountain, Augustus W

    2004-01-01

    ... technologies for development. With a basic research budget less than half that of the National Science Foundation and a mere fraction that of the NIH the DoD can no longer afford to pursue lofty science education goals...

  11. Determining the Correlation Between Language Scores Obtained by Medical Students in their University Entrance and Comprehensive Medical Basic Sciences Exams

    Directory of Open Access Journals (Sweden)

    Majid Ahmadi

    2009-06-01

    Full Text Available Background and Purpose: Some professors and educators in the field of English language believe that the high grades attained by medical students in their Comprehensive Medical Basic Sciences Exam (CMBSE are mainly a result of the students prior fluency in the language before entering medical colleges; they are of the opinion that these grades are not necessarily a result of the combined effort of the English teachers and students in language courses at the university. This research aimsat determining the correlation between the level of fluency in English of medical students prior to university entrance and the grades obtained by them in their CMBSE after 3 terms of language courses at the university.Methods: Seven of the major and smaller universities of medical sciences were selected. The language scores of 2426 students admitted to these universities during the three academic years of 1999 to 2002 in both the National University Entrance Examination (NUEE and the Comprehensive Medical Basic Sciences Exam (CMBSE were obtained from their related universities and from the secretariat of the Council of Medical Basic Sciences Education respectively. The language scores of each studentobtained in both NUEE and CMBSE were then matched. The related SPSS software was used to assess the level of correlation between these two groups of language scores for the students of each university, for each academic year and semester and also the overall score for the three years.Results: Overall a positive and moderately significant correlation was found between the NUEE language scores and those of the CMBSE of the students of the universities studied (P<0/001; R=443%. The level of correlation for the various universities studied differed (Max. 69%, min.27%.A comparison of the means of these two groups of scores also confirmed this correlation.Conclusion: students’ grades The NUEE language score was not the only factor affecting the student’s CMBSE score

  12. Water. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 3.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of water in students' daily lives; (2) the need to purify drinking…

  13. Improvement of Students’ Environmental Literacy by Using Integrated Science Teaching Materials

    Science.gov (United States)

    Suryanti, D.; Sinaga, P.; Surakusumah, W.

    2018-02-01

    This study aims to determine the improvement of student environmental literacy through the use of integrated science teaching materials on pollution topics. The research is used weak experiment method with the one group pre-test post-test design. The sample of the study were junior high school students in Bandung amounted to 32 people of 7th grade. Data collection in the form of environmental literacy test instrument consist of four components of environmental literacy that is (1) Knowledge, (2) Competencies (Cognitive Skill), (3) Affective and (4) Environmentally Responsible Behavior. The results show that the student’s environmental literacy ability is improved after using integrated science teaching materials. An increase in the medium category is occurring in the knowledge (N-gain=46%) and cognitive skill (N-gain=31%), while the increase in the low category occurs in the affective component (N-gain=25%) and behaviour (N-gain=24%). The conclusions of this study as a whole the improvement of students’ environmental literacy by using integrated science teaching material is in the medium category (N-gain=34%).

  14. The Learning of Science Basic Concept by Using Scientifiq Inquiry to Improve Student’s Thinking, Working, and Scientific Attitude Abilities

    Directory of Open Access Journals (Sweden)

    Wachidatul Linda Yuhanna

    2016-03-01

    Full Text Available This research was a classroom action research which was conducted intwo cycles, each cycle consists of planning, implementing, observing, and reflecting. The data used was quantitative data on student observation sheet instruments. The Results of the study which were obtained from the first cycle showed about the students’ thinking skills and scientific works. They were categorized as excellent 18.18%, good 22.73%, enough 52.27%, and sufficiently less 6.82%. As for the scientific attitude with a very active category of 11.36%, 43.18% and less active 45.45%. It has not reached indicators of success, so it was necessary to cycle II. Cycle II demonstrated the excellent category 38.63%, 36.36% good, good enough18.18% and less 6.81%. While the scientific attitude in the cycle II was an active attitude 29.54%, active 54.54%, inactive 15.91%. These results show an increase from the cycle I to cycle II. The conclusion of this study were: 1 learning the basic concepts of science with scientific inquiry in students can be conducible applied.2 Learning the basic concepts of science with scientific inquiry can improve thinking ability and scientific work and students’ scientific attitude. 3 Learning the basic concepts of science with scientific inquiry be able to explore and develop student creativity in designing simple experiments which can be applied in primary schools.

  15. Elementary science teachers' integration of engineering design into science instruction: results from a randomised controlled trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-07-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210] guidelines for ED PD and promoted inclusion of ED within science teaching. The treatment group included 219 teachers from 83 schools. Participants in the control group included 145 teachers from 60 schools in a mid-Atlantic state. Data sources, including lesson overviews and videotaped classroom observations, were analysed quantitatively to determine the frequency of ED integration and qualitatively to describe how teachers incorporated ED into instruction after attending the PD. Results indicated more participants who attended the PD (55%) incorporated ED into instruction compared with the control participants (24%), χ2(1, n = 401) = 33.225, p .05) through ED lessons. In ED lessons, students typically conducted research and created and tested initial designs. The results suggest the PD supported teachers in implementing ED into their science instruction and support the efficacy of using Cunningham and Carlsen's (2014) guidelines to inform ED PD design.

  16. E-Basics: Online Basic Training in Program Evaluation

    Science.gov (United States)

    Silliman, Ben

    2016-01-01

    E-Basics is an online training in program evaluation concepts and skills designed for youth development professionals, especially those working in nonformal science education. Ten hours of online training in seven modules is designed to prepare participants for mentoring and applied practice, mastery, and/or team leadership in program evaluation.…

  17. [Platforms are needed for innovative basic research in ophthalmology].

    Science.gov (United States)

    Wang, Yi-qiang

    2012-07-01

    Basic research poses the cornerstone of technical innovation in all lines including medical sciences. Currently, there are shortages of professional scientists as well as technical supporting teams and facilities in the field of basic research of ophthalmology and visual science in China. Evaluation system and personnel policies are not supportive for innovative but high-risk-of-failure research projects. Discussion of reasons and possible solutions are given here to address these problems, aiming at promoting buildup of platforms hosting novel and important basic research in eye science in this country.

  18. A psycho-historical research program for the integrative science of art.

    Science.gov (United States)

    Bullot, Nicolas J; Reber, Rolf

    2013-04-01

    Critics of the target article objected to our account of art appreciators' sensitivity to art-historical contexts and functions, the relations among the modes of artistic appreciation, and the weaknesses of aesthetic science. To rebut these objections and justify our program, we argue that the current neglect of sensitivity to art-historical contexts persists as a result of a pervasive aesthetic–artistic confound; we further specify our claim that basic exposure and the design stance are necessary conditions of artistic understanding; and we explain why many experimental studies do not belong to a psycho-historical science of art.

  19. INTEGRATION OF BUSINESS, EDUCATION AND SCIENCE AT THE REGIONAL LEVEL FOR IMPLEMENTING THE NATIONAL TECHNOLOGICAL INITIATIVE

    Directory of Open Access Journals (Sweden)

    Innara Lyapina

    2018-01-01

    Full Text Available Current world affairs show that the post-industrial stage of development of all mature world powers’ economies is followed by creation of a new development paradigm, which is based on the economy of knowledge, science achievements, innovations, global information and communication systems, and which leads to innovative economy formation. In the context of the national innovation economy formation in the Russian Federation, prerequisites are created for integrating the efforts of business, science and education representatives to develop, produce and market high-tech products which have significant economic or social potential. And this is not only the task announced by the Russian government, but also a natural process in the country’s economy, which contributes to the increase in the integration participants’ efficiency. The result of such integrated interaction of education, science and business consists in a synergistic effect through formation of an interactive cooperation model that involves the active use of combined knowledge, ideas, technologies and other resources during innovative projects implementation. At the same time, integration processes are diverse, complex and occur in each case taking into account the integrating parties’ activity specifics. Within this framework, the goal of the research is to characterize the impact of the education, science and business integration process, on the national technological initiative implementation in the country on the whole and to study the integrating experience of these entities at the regional level. In the course of the research, the stages of the Russian national innovation economy formation process have been studied; the role of education, science and business in the National Technological Initiative implementation has been characterized; it’s been proved that educational institutions are the key link in the integration process in the chain “education – science

  20. Basics of Laser Physics For Students of Science and Engineering

    CERN Document Server

    Renk, Karl F

    2012-01-01

    Basics of Laser Physics provides an introductory presentation of the field of all types of lasers. It contains a general description of the laser, a theoretical treatment and a characterization of its operation as it deals with gas, solid state, free-electron and semiconductor lasers and, furthermore, with a few laser related topics. The different subjects are connected to each other by the central principle of the laser, namely, that it is a self-oscillating system. Special emphasis is put on a uniform treatment of gas and solid-state lasers, on the one hand, and semiconductor lasers, on the other hand. The discussions and the treatment of equations are presented in a way that a reader can immediately follow. The book addresses undergraduate and graduate students of science and engineering. Not only should it enable instructors to prepare their lectures, but it can be helpful to students for preparing for an examination.

  1. Proceeding on the scientific meeting and presentation on basic research of nuclear science and technology (book I): physics, reactors

    International Nuclear Information System (INIS)

    Syarip; Prayitno; Samin; Agus Taftazani; Sudjatmoko; Pramudita Anggraita; Gede Sutresna W; Tjipto Sujitno; Slamet Santosa; Herry Poernomo; R Sukarsono; Prajitno

    2014-06-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is an annual activity held by Centre for Accelerator Science and Technology, National Nuclear Energy Agency, in Yogyakarta, for monitoring research activities achieved by the Agency. The papers presented in the meeting were collected into proceedings which were divided into two groups that are physics and nuclear reactors. The proceedings consists of three articles from keynote speakers and 25 articles from BATAN and others participants.(PPIKSN)

  2. Behavioural sciences at university of health sciences: the way forward

    International Nuclear Information System (INIS)

    Khan, J.S.; Mukhtar, O.; Tabasum, S.

    2016-01-01

    Background: The association of medical ethics with teaching and training and health profession has been informal, largely dependent on role modelling and the social contract of the physicians with the community that they abide by. This study was conducted to examine the effect, if any, of introducing the subject of Behavioural Sciences on students performance in the clinical years viva voce and patient interactions components of the examinations. Methods: A prospective study on four cohorts of students at UHS from 2007 to 2012 (8,155 candidates). Reliability was calculated through Cronbach Alpha. Linear Regression Analysis was applied to determine the relationship between the scores of Basic Medical Sciences, Behavioural Sciences and Forensic medicine with the viva voce and Structured Stations marks of the Clinical Sciences in OSCE. Gender and demographics analysis was also done. Results: Cronbach Alpha was 0.47, 0.63, 0.67 and 0.53 for the Papers of Behavioural Sciences from 2007 to 2010 respectively. Poor predictive value of Behavioural Sciences for performance in the clinical years viva voce and OSCE was identified. Basic Medical Sciences and Forensic Medicine were statistically significant predictors for the performance of female candidates in all four cohorts of the study (p<0.05). In Central Punjab, Behavioural Sciences statistically significantly predicted for better performance in all four cohorts of the study (p<0.05). Conclusion: It is premature to understand the results of Behavioural Sciences teaching at University of Health Sciences (UHS). We can still safely conclude that it can only have a positive sustained effect on the healthcare delivery systems and patient care in Pakistan if it is integrated within each subject and taught and learned not as a theoretical construct but rather an evaluation of one values within the code of conduct of medical professionalism in the larger context of the societal and cultural norms. (author)

  3. Cleft Palate-Craniofacial Journal 50th anniversary editorial board commentary: anatomy, basic sciences, and genetics--then and now.

    Science.gov (United States)

    Mooney, Mark P; Cooper, Gregory M; Marazita, Mary L

    2014-05-01

    To celebrate the 50th year of the Cleft Palate-Craniofacial Journal we look back to where we started in 1964 and where we are now, and we speculate about directions for the future in a "Then and Now" editorial series. This editorial examines changing trends and perspectives in anatomical, basic science, and genetic studies published in this 50-year interval. In volume 1 there were 45 total papers, seven (16%) of which were peer-reviewed basic science and genetic articles published: four in anatomy, three in craniofacial biology, and none in genetics. In contrast, in volume 50, of 113 articles there were 47 (42%) peer-reviewed basic science and genetic articles published: 30 in anatomy, five in craniofacial biology, and 12 in genetics. Topical analysis of published manuscripts then and now reveal that similar topics in anatomy and craniofacial biology are still being researched today (e.g., phenotypic variability, optimal timing of surgery, presurgical orthopedics, bone grafting); whereas, most of the more recent papers use advanced technology to address old questions. In contrast, genetic publications have clearly increased in frequency during the last 50 years, which parallels advances in the field during this time. However, all of us have noticed that the more "cutting-edge" papers in these areas are not being submitted for publication to the journal, but instead to discipline-specific journals. Concerted efforts are therefore indicated to attract and publish these cutting-edge papers in order to keep the Cleft Palate-Craniofacial Journal in the forefront of orofacial cleft and craniofacial anomaly research and to provide a valuable service to American Cleft Palate-Craniofacial Association members.

  4. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan - Final.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  5. Math, Science, and Engineering Integration in a High School Engineering Course: A Qualitative Study

    Science.gov (United States)

    Valtorta, Clara G.; Berland, Leema K.

    2015-01-01

    Engineering in K-12 classrooms has been receiving expanding emphasis in the United States. The integration of science, mathematics, and engineering is a benefit and goal of K-12 engineering; however, current empirical research on the efficacy of K-12 science, mathematics, and engineering integration is limited. This study adds to this growing…

  6. Computational anatomy based on whole body imaging basic principles of computer-assisted diagnosis and therapy

    CERN Document Server

    Masutani, Yoshitaka

    2017-01-01

    This book deals with computational anatomy, an emerging discipline recognized in medical science as a derivative of conventional anatomy. It is also a completely new research area on the boundaries of several sciences and technologies, such as medical imaging, computer vision, and applied mathematics. Computational Anatomy Based on Whole Body Imaging highlights the underlying principles, basic theories, and fundamental techniques in computational anatomy, which are derived from conventional anatomy, medical imaging, computer vision, and applied mathematics, in addition to various examples of applications in clinical data. The book will cover topics on the basics and applications of the new discipline. Drawing from areas in multidisciplinary fields, it provides comprehensive, integrated coverage of innovative approaches to computational anatomy. As well,Computational Anatomy Based on Whole Body Imaging serves as a valuable resource for researchers including graduate students in the field and a connection with ...

  7. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Visser, T.J. [Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Krenning, E.P. [Dept. of Nuclear Medicine, Erasmus Medical Centre Rotterdam (Netherlands); Dept. of Internal Medicine, Erasmus Medical Centre Rotterdam (Netherlands)

    2001-09-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  8. Somatostatin receptor-mediated imaging and therapy: basic science, current knowledge, limitations and future perspectives

    International Nuclear Information System (INIS)

    Breeman, W.A.P.; Jong, M. de; Kwekkeboom, D.J.; Valkema, R.; Bakker, W.H.; Kooij, P.P.M.; Visser, T.J.; Krenning, E.P.

    2001-01-01

    In vivo somatostatin receptor-mediated scintigraphy has proven to be a valuable method for the visualisation of neuroendocrine tumours and their metastases. A new application is the use of radiolabelled analogues for somatostatin receptor-mediated therapy. This paper presents a review on the basic science, historical background and current knowledge of somatostatin receptor subtypes and their expression in neuroendocrine tumours. New somatostatin analogues, new chelators, ''new'' radionuclides and combinations thereof are also discussed. Due attention is given to limitations and future perspectives of somatostatin receptor-mediated imaging and therapy. (orig.)

  9. The Role of Semantics in Open-World, Integrative, Collaborative Science Data Platforms

    Science.gov (United States)

    Fox, Peter; Chen, Yanning; Wang, Han; West, Patrick; Erickson, John; Ma, Marshall

    2014-05-01

    As collaborative science spreads into more and more Earth and space science fields, both participants and funders are expressing stronger needs for highly functional data and information capabilities. Characteristics include a) easy to use, b) highly integrated, c) leverage investments, d) accommodate rapid technical change, and e) do not incur undue expense or time to build or maintain - these are not a small set of requirements. Based on our accumulated experience over the last ~ decade and several key technical approaches, we adapt, extend, and integrate several open source applications and frameworks to handle major portions of functionality for these platforms. This includes: an object-type repository, collaboration tools, identity management, all within a portal managing diverse content and applications. In this contribution, we present our methods and results of information models, adaptation, integration and evolution of a networked data science architecture based on several open source technologies (Drupal, VIVO, the Comprehensive Knowledge Archive Network; CKAN, and the Global Handle System; GHS). In particular we present the Deep Carbon Observatory - a platform for international science collaboration. We present and discuss key functional and non-functional attributes, and discuss the general applicability of the platform.

  10. Earth science information: Planning for the integration and use of global change information

    Science.gov (United States)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  11. Documentation on the interlinked sponsorship programme of the BMFT for basic research in the natural sciences

    International Nuclear Information System (INIS)

    1993-02-01

    The reports from the individual research teams working at various places in Germany show their particular achievements on the one hand, and at the same time illustrate the effectiveness of the interlinked sponsorship concept adopted by the Federal Ministry of Science and Technology (BMFT). There is an annex giving statistical data on the scope and organisation of state sponsorship of basic research bound to large-scale research equipment. (DG) [de

  12. Linking Science and Language Arts: A Review of the Literature Which Compares Integrated versus Non-Integrated Approaches

    Science.gov (United States)

    Bradbury, Leslie U.

    2014-01-01

    The purpose of this paper is to review the literature published during the last 20 years that investigates the impact of approaches that describe themselves as integrating science and language arts on student learning and/or attitude at the elementary level. The majority of papers report that integrated approaches led to greater student…

  13. Driven by Beliefs: Understanding Challenges Physical Science Teachers Face When Integrating Engineering and Physics

    Science.gov (United States)

    Dare, Emily A.; Ellis, Joshua A.; Roehrig, Gillian H.

    2014-01-01

    It is difficult to ignore the increased use of technological innovations in today's world, which has led to various calls for the integration of engineering into K-12 science standards. The need to understand how engineering is currently being brought to science classrooms is apparent and necessary in order to address these calls for integration.…

  14. The chain reaction: a golden jubilee commemorative volume on research in basic sciences at DAE Institutions. V. 1

    International Nuclear Information System (INIS)

    2005-01-01

    This book has been chosen to metaphorically reflect how research in basic sciences in various institutions of the Department of Atomic Energy (DAE) has evolved over the years, closely mimicking what goes on in a nuclear chain reactor. Since, for harnessing atomic energy for peaceful uses, nuclear physics and atomic physics are the two core activities, work was undertaken in these areas during initial days at the Tata Institute of Fundamental Research. These activities then promoted the growth of major programmes in a number of areas, such as, reactor physics, accelerator physics, condensed matter physics and materials science, theoretical physics and mathematical physics, astronomy and astrophysics, laser and plasma physics, radiation chemistry, photochemistry, chemical dynamics, nuclear chemistry, radiation biology and health sciences, molecular and cellular biology, structural biology and biophysics, agriculture and food sciences etc. In turn, all these programmes have been fostering the growth in several other domains of science, engineering and technology

  15. Integrated Instrument Simulator Suites for Earth Science

    Science.gov (United States)

    Tanelli, Simone; Tao, Wei-Kuo; Matsui, Toshihisa; Hostetler, Chris; Hair, John; Butler, Carolyn; Kuo, Kwo-Sen; Niamsuwan, Noppasin; Johnson, Michael P.; Jacob, Joseph C.; hide

    2012-01-01

    The NASA Earth Observing System Simulators Suite (NEOS3) is a modular framework of forward simulations tools for remote sensing of Earth's Atmosphere from space. It was initiated as the Instrument Simulator Suite for Atmospheric Remote Sensing (ISSARS) under the NASA Advanced Information Systems Technology (AIST) program of the Earth Science Technology Office (ESTO) to enable science users to perform simulations based on advanced atmospheric and simple land surface models, and to rapidly integrate in a broad framework any experimental or innovative tools that they may have developed in this context. The name was changed to NEOS3 when the project was expanded to include more advanced modeling tools for the surface contributions, accounting for scattering and emission properties of layered surface (e.g., soil moisture, vegetation, snow and ice, subsurface layers). NEOS3 relies on a web-based graphic user interface, and a three-stage processing strategy to generate simulated measurements. The user has full control over a wide range of customizations both in terms of a priori assumptions and in terms of specific solvers or models used to calculate the measured signals.This presentation will demonstrate the general architecture, the configuration procedures and illustrate some sample products and the fundamental interface requirements for modules candidate for integration.

  16. Understanding sport continuation: an integration of the theories of planned behaviour and basic psychological needs.

    Science.gov (United States)

    Gucciardi, Daniel F; Jackson, Ben

    2015-01-01

    Fostering individuals' long-term participation in activities that promote positive development such as organised sport is an important agenda for research and practice. We integrated the theories of planned behaviour (TPB) and basic psychological needs (BPN) to identify factors associated with young adults' continuation in organised sport over a 12-month period. Prospective study, including an online psycho-social assessment at Time 1 and an assessment of continuation in sport approximately 12 months later. Participants (N=292) aged between 17 and 21 years (M=18.03; SD=1.29) completed an online survey assessing the theories of planned behaviour and basic psychological needs constructs. Bayesian structural equation modelling (BSEM) was employed to test the hypothesised theoretical sequence, using informative priors for structural relations based on empirical and theoretical expectations. The analyses revealed support for the robustness of the hypothesised theoretical model in terms of the pattern of relations as well as the direction and strength of associations among the constructs derived from quantitative summaries of existing research and theoretical expectations. The satisfaction of basic psychological needs was associated with more positive attitudes, higher levels of perceived behavioural control, and more favourable subjective norms; positive attitudes and perceived behavioural control were associated with higher behavioural intentions; and both intentions and perceived behavioural control predicted sport continuation. This study demonstrated the utility of Bayesian structural equation modelling for testing the robustness of an integrated theoretical model, which is informed by empirical evidence from meta-analyses and theoretical expectations, for understanding sport continuation. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. The Information Book Genre: Its Role in Integrated Science Literacy Research and Practice

    Science.gov (United States)

    Pappas, Christine C.

    2006-01-01

    There has been a call for approaches that connect science learning with literacy, yet the use of, and research on, children's literature information books in science instruction has been quite limited. Because the discipline of science involves distinctive generic linguistic registers, what information books should be integrated in science…

  18. Basic data, computer codes and integral experiments: The tools for modelling in nuclear technology

    International Nuclear Information System (INIS)

    Sartori, E.

    2001-01-01

    When studying applications in nuclear technology we need to understand and be able to predict the behavior of systems manufactured by human enterprise. First, the underlying basic physical and chemical phenomena need to be understood. We have then to predict the results from the interplay of the large number of the different basic events: i.e. the macroscopic effects. In order to be able to build confidence in our modelling capability, we need then to compare these results against measurements carried out on such systems. The different levels of modelling require the solution of different types of equations using different type of parameters. The tools required for carrying out a complete validated analysis are: - The basic nuclear or chemical data; - The computer codes, and; - The integral experiments. This article describes the role each component plays in a computational scheme designed for modelling purposes. It describes also which tools have been developed and are internationally available. The role of the OECD/NEA Data Bank, the Radiation Shielding Information Computational Center (RSICC), and the IAEA Nuclear Data Section are playing in making these elements available to the community of scientists and engineers is described. (author)

  19. Integration of the primary health care approach into a community nursing science curriculum.

    Science.gov (United States)

    Vilakazi, S S; Chabeli, M M; Roos, S D

    2000-12-01

    The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994: 155). Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  20. Integration of the primary health care approach into a community nursing science curriculum

    Directory of Open Access Journals (Sweden)

    SS Vilakazi

    2000-09-01

    Full Text Available The purpose of this article is to explore and describe guidelines for integration of the primary health care approach into a Community Nursing Science Curriculum in a Nursing College in Gauteng. A qualitative, exploratory, descriptive and contextual research design was utilized. The focus group interviews were conducted with community nurses and nurse educators as respondents. Data were analysed by a qualitative descriptive method of analysis as described in Creswell (1994:155. Respondents in both groups held similar perceptions regarding integration of primary health care approach into a Community Nursing Science Curriculum. Five categories, which are in line with the curriculum cycle, were identified as follows: situation analysis, selection and organisation of objectives/ goals, content, teaching methods and evaluation. Guidelines and recommendations for the integration of the primary health care approach into a Community Nursing Science Curriculum were described.

  1. Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan

    International Nuclear Information System (INIS)

    1993-12-01

    This document is the FY 1993 report on Hanford Site-specific science and technology (S ampersand T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford's highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S ampersand T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ''problem owners'' (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S ampersand T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders

  2. Attitudes Toward Integration as Perceived by Preservice Teachers Enrolled in an Integrated Mathematics, Science, and Technology Teacher Education Program.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    2002-01-01

    Describes the purpose of the Master of Education (M. Ed.) Program in Integrated Mathematics, Science, and Technology Education (MSAT Program) at The Ohio State University and discusses preservice teachers' attitudes and perceptions toward integrated curriculum. (Contains 35 references.) (YDS)

  3. Advancing Alternative Analysis: Integration of Decision Science.

    Science.gov (United States)

    Malloy, Timothy F; Zaunbrecher, Virginia M; Batteate, Christina M; Blake, Ann; Carroll, William F; Corbett, Charles J; Hansen, Steffen Foss; Lempert, Robert J; Linkov, Igor; McFadden, Roger; Moran, Kelly D; Olivetti, Elsa; Ostrom, Nancy K; Romero, Michelle; Schoenung, Julie M; Seager, Thomas P; Sinsheimer, Peter; Thayer, Kristina A

    2017-06-13

    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings. We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. We advance four recommendations: a ) engaging the systematic development and evaluation of decision approaches and tools; b ) using case studies to advance the integration of decision analysis into alternatives analysis; c ) supporting transdisciplinary research; and d ) supporting education and outreach efforts. https://doi.org/10.1289/EHP483.

  4. Peer review, basic research, and engineering: Defining a role for QA professionals in basic research environments

    Energy Technology Data Exchange (ETDEWEB)

    Bodnarczuk, M.

    1989-02-01

    Within the context of doing basic research, this paper seeks to answer four major questions: (1) What is the authority structure of science. (2) What is peer review. (3) Where is the interface between basic physics research and standard engineering. and (4) Given the conclusions to the first three questions, what is the role of the QA professional in a basic research environment like Fermilab. 23 refs.

  5. Tech-Savvy Science Education? Understanding Teacher Pedagogical Practices for Integrating Technology in K-12 Classrooms

    Science.gov (United States)

    Hechter, Richard; Vermette, Laurie Anne

    2014-01-01

    This paper examines the technology integration practices of Manitoban K-12 inservice science educators based on the Technological, Pedagogical, and Content knowledge (TPACK) framework. Science teachers (n = 433) completed a 10-item online survey regarding pedagogical beliefs about technology integration, types of technology used, and how often…

  6. Integrating social science knowledge into natural resource management public involvement practice

    DEFF Research Database (Denmark)

    Stummann, Cathy Brown

    This PhD study explores the long-recognized challenge of integrating social science knowledge into NRM public involvement practice theoretically and empirically. Theoretically, the study draws on research from adult learning, continuing rofessional education and professional knowledge development...... to better understand how social science knowledge can benefit NRM public involvement practice. Empirically, the study explores the potential of NRM continuing professional education as a means for introducing social science knowledge to public NRM professionals. The study finds social science knowledge can...... be of value to NRM public involvement prospectively and retrospectively; and that continuing professional education can be an effective means to introducing social science knowledge to public NRM professionals. In the design of NRM continuing professional education focused on social science knowledge...

  7. The Glory Program: Global Science from a Unique Spacecraft Integration

    Science.gov (United States)

    Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas

    2006-01-01

    The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program

  8. Gaming science innovations to integrate health systems science into medical education and practice.

    Science.gov (United States)

    White, Earla J; Lewis, Joy H; McCoy, Lise

    2018-01-01

    Health systems science (HSS) is an emerging discipline addressing multiple, complex, interdependent variables that affect providers' abilities to deliver patient care and influence population health. New perspectives and innovations are required as physician leaders and medical educators strive to accelerate changes in medical education and practice to meet the needs of evolving populations and systems. The purpose of this paper is to introduce gaming science as a lens to magnify HSS integration opportunities in the scope of medical education and practice. Evidence supports gaming science innovations as effective teaching and learning tools to promote learner engagement in scientific and systems thinking for decision making in complex scenarios. Valuable insights and lessons gained through the history of war games have resulted in strategic thinking to minimize risk and save lives. In health care, where decisions can affect patient and population outcomes, gaming science innovations have the potential to provide safe learning environments to practice crucial decision-making skills. Research of gaming science limitations, gaps, and strategies to maximize innovations to further advance HSS in medical education and practice is required. Gaming science holds promise to equip health care teams with HSS knowledge and skills required for transformative practice. The ultimate goals are to empower providers to work in complex systems to improve patient and population health outcomes and experiences, and to reduce costs and improve care team well-being.

  9. Exploration of problem-based learning combined with standardized patient in the teaching of basic science of ophthalmology

    Directory of Open Access Journals (Sweden)

    Jin Yan

    2015-08-01

    Full Text Available AIM:To investigate the effect of problem-based learning(PBLcombined with standardized patient(SPin the teaching of basic science of ophthalmology. METHODS: Sixty-four students of Optometry in grade 2012 were randomly divided into experimental group(n=32and control group(n=32. Traditional teaching method was implemented in control group while PBL combined with SP was applied in experimental group. At the end of term students were interviewed using self-administered questionnaire to obtain their evaluation for teaching effect. Measurement data were expressed as (-overx±s and analyzed by independent samples t test. Enumeration data were analyzed by χ2 test, and PRESULTS:The mean scores of theory test(83.22±3.75and experimental test(94.28±2.20in experimental group were significantly higher than theory test(70.72±3.95and experimental test(85.44±3.52in control group(all PPPCONCLUSION:Using PBL combined with SP teaching mode in basic science of ophthalmology can highly improve learning enthusiasm of students and cultivate self-learning ability of students, practice ability and ability of clinical analysis.

  10. Investigation of Pre-Service Teachers' Opinions about Science in Terms of the Basic Elements of the Education Program

    Science.gov (United States)

    Sengul, Ozge Aydin

    2016-01-01

    The purpose of the current study is to investigate the pre-service teachers' opinions about science within the context of the basic elements of the education program, such as objectives, content, learning-teaching process and evaluation. The study was designed as a case study, one of the qualitative research methods. The participants of the study…

  11. Basic nucleonics. 2. ed.

    International Nuclear Information System (INIS)

    Guzman, M.E.

    1989-01-01

    This book is oriented mainly towards professionals who are not physicists or experts in nuclear sciences, physicians planning to specialize in nuclear medicine or radiotherapy and technicians involved in nuclear applications. The book covers the fundamental concepts of nuclear science and technology in a simple and ordered fashion. Theory is illustrated with appropriate exercises and answers. With 17 chapters plus 3 appendices on mathematics, basic concepts are covered in: nuclear science, radioactivity, radiation and matter, nuclear reactions, X rays, shielding and radioprotection

  12. Review of the Lujan neutron scattering center: basic energy sciences prereport February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Hurd, Alan J [Los Alamos National Laboratory; Rhyne, James J [Los Alamos National Laboratory; Lewis, Paul S [Los Alamos National Laboratory

    2009-01-01

    The Lujan Neutron Scattering Center (Lujan Center) at LANSCE is a designated National User Facility for neutron scattering and nuclear physics studies with pulsed beams of moderated neutrons (cold, thermal, and epithermal). As one of five experimental areas at the Los Alamos Neutron Science Center (LANSCE), the Lujan Center hosts engineers, scientists, and students from around the world. The Lujan Center consists of Experimental Room (ER) 1 (ERl) built by the Laboratory in 1977, ER2 built by the Office of Basic Energy Sciences (BES) in 1989, and the Office Building (622) also built by BES in 1989, along with a chem-bio lab, a shop, and other out-buildings. According to a 1996 Memorandum of Agreement (MOA) between the Defense Programs (DP) Office of the National Nuclear Security Agency (NNSA) and the Office of Science (SC, then the Office of Energy Research), the Lujan Center flight paths were transferred from DP to SC, including those in ERI. That MOA was updated in 2001. Under the MOA, NNSA-DP delivers neutron beam to the windows of the target crypt, outside of which BES becomes the 'landlord.' The leveraging nature of the Lujan Center on the LANSCE accelerator is a substantial annual leverage to the $11 M BES operating fund worth approximately $56 M operating cost of the linear accelerator (LINAC)-in beam delivery.

  13. Basic science research in urology training

    Directory of Open Access Journals (Sweden)

    D Eberli

    2009-01-01

    In this article we will analyse the current status of basic research in urology training and discuss the importance of and obstacles to successful addition of research into the medical training curricula. Further, we will highlight different opportunities for trainees to obtain significant research exposure in urology.

  14. The EPOS Implementation Phase: building thematic and integrated services for solid Earth sciences

    Science.gov (United States)

    Cocco, Massimo; Epos Consortium, the

    2015-04-01

    The European Plate Observing System (EPOS) has a scientific vision and approach aimed at creating a pan-European infrastructure for Earth sciences to support a safe and sustainable society. To follow this vision, the EPOS mission is integrating a suite of diverse and advanced Research Infrastructures (RIs) in Europe relying on new e-science opportunities to monitor and understand the dynamic and complex Earth system. To this goal, the EPOS Preparatory Phase has designed a long-term plan to facilitate integrated use of data and products as well as access to facilities from mainly distributed existing and new research infrastructures for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. Since its conception EPOS has been built as "a single, Pan-European, sustainable and distributed infrastructure". EPOS is, indeed, the sole infrastructure for solid Earth Science in ESFRI and its pan-European dimension is demonstrated by the participation of 23 countries in its preparatory phase. EPOS is presently moving into its implementation phase further extending its pan-European dimension. The EPOS Implementation Phase project (EPOS IP) builds on the achievements of the successful EPOS preparatory phase project. The EPOS IP objectives are synergetic and coherent with the establishment of the new legal subject (the EPOS-ERIC in Italy). EPOS coordinates the existing and new solid Earth RIs within Europe and builds the

  15. Impact of Integrated Science and English Language Arts Literacy Supplemental Instructional Intervention on Science Academic Achievement of Elementary Students

    Science.gov (United States)

    Marks, Jamar Terry

    2017-01-01

    The purpose of this quasi-experimental, nonequivalent pretest-posttest control group design study was to determine if any differences existed in upper elementary school students' science academic achievement when instructed using an 8-week integrated science and English language arts literacy supplemental instructional intervention in conjunction…

  16. Design and Use of a Proton Pump Inhibitor Case to Integrate Physiology, Pharmacology, and Biochemistry

    Science.gov (United States)

    Lee, Michael W.

    2014-01-01

    The use of drugs to integrate basic and clinical sciences is frequently used in a lecture format, but the availability of alternative pedagogical approaches that address higher-order learning are not widely available. The use of case studies and case-based projects to reinforce lectures can help link basic and clinical disciplines and promote…

  17. Basic Optics for the Astronomical Sciences

    CERN Document Server

    Breckinridge, James

    2012-01-01

    This text was written to provide students of astronomy and engineers an understanding of optical science - the study of the generation, propagation, control, and measurement of optical radiation - as it applies to telescopes and instruments for astronomical research in the areas of astrophysics, astrometry, exoplanet characterization, and planetary science. The book provides an overview of the elements of optical design and physical optics within the framework of the needs of the astronomical community.

  18. Arctic System Science: Meeting Earth System and Social Impact Challenges through Integrative Approaches and Synthesis

    Science.gov (United States)

    Vorosmarty, C. J.; Hinzman, L. D.; Rawlins, M. A.; Serreze, M. C.; Francis, J. A.; Liljedahl, A. K.; McDonald, K. C.; Piasecki, M.; Rich, R. H.; Holland, M. M.

    2017-12-01

    The Arctic is an integral part of the Earth system where multiple interactions unite its natural and human elements. Recent observations show the Arctic to be experiencing rapid and amplified signatures of global climate change. At the same time, the Arctic system's response to this broader forcing has itself become a central research topic, given its potential role as a critical throttle on future planetary dynamics. Changes are already impacting life systems and economic prosperity and continued change is expected to bear major implications far outside the region. We also have entered an era when environmental management, traditionally local in scope, must confront regional, whole biome, and pan-Arctic biogeophysical challenges. While challenges may appear to operate in isolation, they emerge within the context of an evolving, integrated Arctic system defined by interactions among natural and social sub-systems. Clearly, new efforts aimed at community planning, industrial development, and infrastructure construction must consider this multiplicity of interacting processes. We recently organized an "Arctic System Synthesis Workshop Series" supported by the Arctic Systems Science Program of NSF and devoted to exploring approaches capable of uncovering the systems-level behavior in both the natural and social sciences domains. The series featured two topical meetings. The first identified the sources responsible for extreme climate events in the Arctic. The second focused on multiple "currencies" within the system (i.e., water, energy, carbon, nutrients) and how they interact to produce systems-level behaviors. More than 40 experts participated, drawn from the ranks of Arctic natural and social sciences. We report here on the workshop series consensus report, which identifies a broad array of topics. Principal among these are a consideration of why study the Arctic as a system, as well as an articulation of the major systems-level approaches to support basic as well

  19. Large Scale Computing and Storage Requirements for Basic Energy Sciences Research

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Richard; Wasserman, Harvey

    2011-03-31

    The National Energy Research Scientific Computing Center (NERSC) is the leading scientific computing facility supporting research within the Department of Energy's Office of Science. NERSC provides high-performance computing (HPC) resources to approximately 4,000 researchers working on about 400 projects. In addition to hosting large-scale computing facilities, NERSC provides the support and expertise scientists need to effectively and efficiently use HPC systems. In February 2010, NERSC, DOE's Office of Advanced Scientific Computing Research (ASCR) and DOE's Office of Basic Energy Sciences (BES) held a workshop to characterize HPC requirements for BES research through 2013. The workshop was part of NERSC's legacy of anticipating users future needs and deploying the necessary resources to meet these demands. Workshop participants reached a consensus on several key findings, in addition to achieving the workshop's goal of collecting and characterizing computing requirements. The key requirements for scientists conducting research in BES are: (1) Larger allocations of computational resources; (2) Continued support for standard application software packages; (3) Adequate job turnaround time and throughput; and (4) Guidance and support for using future computer architectures. This report expands upon these key points and presents others. Several 'case studies' are included as significant representative samples of the needs of science teams within BES. Research teams scientific goals, computational methods of solution, current and 2013 computing requirements, and special software and support needs are summarized in these case studies. Also included are researchers strategies for computing in the highly parallel, 'multi-core' environment that is expected to dominate HPC architectures over the next few years. NERSC has strategic plans and initiatives already underway that address key workshop findings. This report includes a

  20. Integrating Bioethics into Clinical and Translational Science Research: A Roadmap

    Science.gov (United States)

    Shapiro, Robyn S.; Layde, Peter M.

    2008-01-01

    Abstract Recent initiatives to improve human health emphasize the need to effectively and appropriately translate new knowledge gleaned from basic biomedical and behavioral research to clinical and community application. To maximize the beneficial impact of scientific advances in clinical practice and community health, and to guard against potential deleterious medical and societal consequences of such advances, incorporation of bioethics at each stage of clinical and translational science research is essential. At the earliest stage, bioethics input is critical to address issues such as whether to limit certain areas of scientific inquiry. Subsequently, bioethics input is important to assure not only that human subjects trials are conducted and reported responsibly, but also that results are incorporated into clinical and community practices in a way that promotes and protects bioethical principles. At the final stage of clinical and translational science research, bioethics helps to identify the need and approach for refining clinical practices when safety or other concerns arise. The framework we present depicts how bioethics interfaces with each stage of clinical and translational science research, and suggests an important research agenda for systematically and comprehensively assuring bioethics input into clinical and translational science initiatives. PMID:20443821

  1. [MD PhD programs: Providing basic science education for ophthalmologists].

    Science.gov (United States)

    Spaniol, K; Geerling, G

    2015-06-01

    Enrollment in MD PhD programs offers the opportunity of a basic science education for medical students and doctors. These programs originated in the USA where structured programs have been offered for many years, but now German universities also run MD PhD programs. The MD PhD programs provided by German universities were investigated regarding entrance requirements, structure and financing modalities. An internet and telephone-based search was carried out. Out of 34 German universities 22 offered MD PhD programs. At 15 of the 22 universities a successfully completed course of studies in medicine was required for enrollment, 7 programs admitted medical students in training and 7 programs required a medical doctoral thesis, which had to be completed with at least a grade of magna cum laude in 3 cases. Financing required scholarships in many cases. Several German universities currently offer MD PhD programs; however, these differ considerably regarding entrance requirements, structure and financing. A detailed analysis investigating the success rates of these programs (e.g. successful completion and career paths of graduates) would be of benefit.

  2. Integrated basic treatment of activated carbon for enhanced CO{sub 2} selectivity

    Energy Technology Data Exchange (ETDEWEB)

    Adelodun, Adedeji Adebukola; Jo, Young-Min, E-mail: ymjo@khu.ac.kr

    2013-12-01

    We attempted the use of three chemical agents viz nitric acid (HN), calcium nitrate (CaN) and calcium ethanoate (CaEt) to achieve enhanced CO{sub 2} selective adsorption by activated carbon (AC). In dry phase treatment, microporous coconut shell-based carbon (CS) exhibits higher CO{sub 2} capacity than coal-based. However, upon wet-phase pre-treatment, modified CS samples showed lesser CO{sub 2} adsorption efficiency. Surface characterization with X-ray photoelectron spectroscopy confirms the presence of calcium and amine species on the samples with integrated treatment (A-CaN). These samples recorded the highest low-level CO{sub 2} capture despite calcinated CaEt-doped samples (C-CaEt) showing the highest value for pure and high level CO{sub 2} adsorption capacities. The slope and linearity values of isobaric desorption were used to estimate the proportion of CO{sub 2} chemisorbed and heterogeneity of the adsorbents’ surfaces respectively. Consequently, integrated basic impregnation provides the most efficient adsorbents for selective adsorption of both indoor and outdoor CO{sub 2} levels.

  3. Using XML technology for the ontology-based semantic integration of life science databases.

    Science.gov (United States)

    Philippi, Stephan; Köhler, Jacob

    2004-06-01

    Several hundred internet accessible life science databases with constantly growing contents and varying areas of specialization are publicly available via the internet. Database integration, consequently, is a fundamental prerequisite to be able to answer complex biological questions. Due to the presence of syntactic, schematic, and semantic heterogeneities, large scale database integration at present takes considerable efforts. As there is a growing apprehension of extensible markup language (XML) as a means for data exchange in the life sciences, this article focuses on the impact of XML technology on database integration in this area. In detail, a general architecture for ontology-driven data integration based on XML technology is introduced, which overcomes some of the traditional problems in this area. As a proof of concept, a prototypical implementation of this architecture based on a native XML database and an expert system shell is described for the realization of a real world integration scenario.

  4. Terry Turbopump Expanded Operating Band Full-Scale Component and Basic Science Detailed Test Plan-Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Solom, Matthew [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Ross, Kyle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Cardoni, Jeffrey N. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.; Osborn, Douglas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Severe Accident Analysis Dept.

    2017-08-01

    This document details the milestone approach to define the true operating limitations (margins) of the Terry turbopump systems used in the nuclear industry for Milestone 3 (full-scale component experiments) and Milestone 4 (Terry turbopump basic science experiments) efforts. The overall multinational-sponsored program creates the technical basis to: (1) reduce and defer additional utility costs, (2) simplify plant operations, and (3) provide a better understanding of the true margin which could reduce overall risk of operations.

  5. FWP executive summaries, Basic Energy Sciences Materials Sciences Programs (SNL/NM)

    Energy Technology Data Exchange (ETDEWEB)

    Samara, G.A.

    1997-05-01

    The BES Materials Sciences Program has the central theme of Scientifically Tailored Materials. The major objective of this program is to combine Sandia`s expertise and capabilities in the areas of solid state sciences, advanced atomic-level diagnostics and materials synthesis and processing science to produce new classes of tailored materials as well as to enhance the properties of existing materials for US energy applications and for critical defense needs. Current core research in this program includes the physics and chemistry of ceramics synthesis and processing, the use of energetic particles for the synthesis and study of materials, tailored surfaces and interfaces for materials applications, chemical vapor deposition sciences, artificially-structured semiconductor materials science, advanced growth techniques for improved semiconductor structures, transport in unconventional solids, atomic-level science of interfacial adhesion, high-temperature superconductors, and the synthesis and processing of nano-size clusters for energy applications. In addition, the program includes the following three smaller efforts initiated in the past two years: (1) Wetting and Flow of Liquid Metals and Amorphous Ceramics at Solid Interfaces, (2) Field-Structured Anisotropic Composites, and (3) Composition-Modulated Semiconductor Structures for Photovoltaic and Optical Technologies. The latter is a joint effort with the National Renewable Energy Laboratory. Separate summaries are given of individual research areas.

  6. Using New-Antiquarian Photographic Processes to Integrate Art and Science

    Science.gov (United States)

    Beaver, J.

    2017-12-01

    In this session we describe an interdisciplinary course, The Art and Science of Photography (ASP), and its accompanying textbook and associated project-based activities, offered at the University of Wisconsin - Fox Valley in Menasha, Wisconsin. ASP uses photography as a point of departure to inspire students to ask fundamental questions about the nature of art, and to consider physics and astronomy as part of the study of nature. In turn, aspects of art and physics/astronomy are chosen in part for their direct relevance to the fundamentals of photography. For example, the subtle nature of shadows on a sunny day is related to the geometry of eclipses.ASP is offered as a 4-credit lecture/lab/studio course, and the students have a choice of registration for either art or natural-science credit. A large majority of students register for natural-science credit, and we suggest that ASP may be particularly useful as an entry point for students who view themselves as lacking ability in the sciences.Combining art with science in an introductory course is a particularly fruitful way to increase student engagement, as there is a perception that to be "artistic" precludes success in science. But it is of equal importance that students sometimes perceive that being "science-minded" precludes success in art.Part of the aim of ASP is to integrate art and science to such a degree that a student is always doing both, while still maintaining the integrity and rigor of each discipline. Towards this end, we have developed several unique hands-on practices that often use antiquarian photographic processes in a new way.Some of these hybrid techniques are little known or not previously described. Yet they allow for unique artistic expression, while also highlighting - in a way that ordinary digital photography does not - prinicpals of the interaction between light, atmosphere, weather, and the physical photographic substrate. These newly-described processes are accessible and inexpensive

  7. Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science

    Science.gov (United States)

    Hong, Zuway R.; Lin, Huann-Shyang; Lawrenz, Frances P.

    2012-02-01

    The goal of this study was to test the effectiveness of integrating science and societal implication on adolescents' positive thinking and emotional perceptions about learning science. Twenty-five eighth-grade Taiwanese adolescents (9 boys and 16 girls) volunteered to participate in a 12-week intervention and formed the experimental group. Fifty-seven eighth-grade Taiwanese adolescents (30 boys and 27 girls) volunteered to participate in the assessments and were used as the comparison group. Additionally, 15 experimental students were recruited to be observed and interviewed. Paired t-tests, correlations, and analyses of covariance assessed the similarity and differences between groups. The findings were that the experimental group significantly outperformed its counterpart on positive thinking and emotional perceptions, and all participants' positive thinking scores were significantly related to their emotional perceptions about learning science. Recommendations for integrating science and societal implication for adolescents are provided.

  8. Life sciences payload definition and integration study, task C and D. Volume 2: Payload definition, integration, and planning studies

    Science.gov (United States)

    1973-01-01

    The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.

  9. The XMM-Newton Science Archive and its integration into ESASky

    Science.gov (United States)

    Loiseau, N.; Baines, D.; Colomo, E.; Giordano, F.; Merín, B.; Racero, E.; Rodríguez, P.; Salgado, J.; Sarmiento, M.

    2017-07-01

    We describe the variety of functionalities of the XSA (XMM-Newton Science Archive) that allow to search and access the XMM-Newton data and catalogues. The web interface http://nxsa.esac.esa.int/ is very flexible allowing different kinds of searches by a single position or target name, or by a list of targets, with several selecting options (target type, text in the abstract, etc.), and with several display options. The resulting data can be easily broadcast to Virtual Observatory (VO) facilities for a first look analysis, or for cross-matching the results with info from other observatories. Direct access via URL or command line are also possible for scripts usage, or to link XMM-Newton data from other interfaces like Vizier, ADS, etc. The full metadata content of the XSA can be queried through the TAP (Table access Protocol) via ADQL (Astronomical Data Query Language). We present also the roadmap for future improvements of the XSA including the integration of the Upper Limit server, the on-the-fly data analysis, and the interactive visualization of EPIC sources spectra and light curves and RGS spectra, among other advanced features. Within this modern visualization philosophy XSA is also being integrated into ESASky (http://sky.esa.int). ESASky is the science-driven multi-wavelength discovery portal for all the ESA Astronomy Missions (Integral, HST, Herschel, Suzaku, Planck, etc.), and other space and ground telescope data. The system offers progressive multi-resolution all-sky projections of full mission datasets using HiPS, a new generation of HEALPix projections developed by CDS, precise footprints to connect to individual observations, and direct access to science-ready data from the underlying mission specific science archives. XMM-Newton EPIC and OM all-sky HiPS maps, catalogues and links to the observations are available through ESASky.

  10. Integrating Science Content and Pedagogy in the Earth, Life, and Physical Sciences: A K-8 Pre-Service Teacher Preparation Continuum at the University of Delaware

    Science.gov (United States)

    Madsen, J.; Allen, D.; Donham, R.; Fifield, S.; Ford, D.; Shipman, H.; Dagher, Z.

    2007-12-01

    University of Delaware faculty in the geological sciences, biological sciences, and the physics and astronomy departments have partnered with faculty and researchers from the school of education to form a continuum for K- 8 pre-service teacher preparation in science. The goal of the continuum is to develop integrated understandings of content and pedagogy so that these future teachers can effectively use inquiry-based approaches in teaching science in their classrooms. Throughout the continuum where earth science content appears an earth system science approach, with emphasis on inquiry-based activities, is employed. The continuum for K-8 pre-service teachers includes a gateway content course in the earth, life, or physical sciences taken during the freshman year followed by integrated science content and methods courses taken during the sophomore year. These integrated courses, called the Science Semester, were designed and implemented with funding from the National Science Foundation. During the Science Semester, traditional content and pedagogy subject matter boundaries are crossed to stress shared themes that teachers must understand to teach standards-based science. Students work collaboratively on multidisciplinary problem-based learning (PBL) activities that place science concepts in authentic contexts and build learning skills. They also critically explore the theory and practice of elementary science teaching, drawing on their shared experiences of inquiry learning during the Science Semester. The PBL activities that are the hallmark of the Science Semester provide the backdrop through which fundamental earth system interactions can be studied. For example in a PBL investigation that focuses on kids, cancer, and the environment, the hydrologic cycle with emphasis on surface runoff and ground water contamination is studied. Those students seeking secondary certification in science will enroll, as a bridge toward their student teaching experience, in an

  11. Basic SPSS tutorial

    NARCIS (Netherlands)

    Grotenhuis, H.F. te; Matthijssen, A.C.B.

    2015-01-01

    This supplementary book for the social, behavioral, and health sciences helps readers with no prior knowledge of IBM® SPSS® Statistics, statistics, or mathematics learn the basics of SPSS. Designed to reduce fear and build confidence, the book guides readers through point-and-click sequences using

  12. The Analysis of Learning Styles and Their Relationship to Academic Achievement in Medical Students of Basic Sciences Program

    Directory of Open Access Journals (Sweden)

    Reza Ghaffari

    2013-10-01

    Full Text Available Introduction: Learning style is an individual’s preferred method of encountering information in specific situations in order to acquire knowledge, skills and attitudes through study or experience. Students and Planers’ awareness of learning styles facilitate the teaching process, increases satisfaction and makes the future choices easier. This study aimed to examine different learning styles and their relation to academic achievement in medical students of basic sciences program at Tabriz University of Medical Sciences. Methods: In this descriptive – analytical study, the sample consisted of all medical students of basic sciences program at Tabriz University of Medical Sciences in 2011-2012. The data was collected through a questionnaire which included respondents’ demographic information and overall grade point average (GPA as well as Kolb standard questions on learning styles. Results: 4.3%, 47.8%, 44.9% and 2.9% of students preferred diverger, assimilator, converger and accommodator learning styles, respectively. Mean overall GPA of students who preferred diverger learning styles was 14.990.39±. Students who prefer assimilator, converger and accommodator learning styles had mean overall GPAs of 14.940.56±, 15.080.58± and 14.830.29± respectively. The findings showed no significant relationship between students’ learning academic achievement and their learning styles (p = 0.689. Conclusion: There was no significant relationship between Students’ academic achievement and their learning styles. Furthermore, the majorit of the students preferred accommodator and converger learning styles. Consequently, adopting interactive teaching methods, using tutorials, running simulation programs, launching laboratory activities and encouraging students to think and analyze problems and issues can be greatly effective in prolonging their learning lifecycle.

  13. Challenges and Opportunities for Integrating Social Science Perspectives into Climate and Global Change Assessments

    Science.gov (United States)

    Larson, E. K.; Li, J.; Zycherman, A.

    2017-12-01

    Integration of social science into climate and global change assessments is fundamental for improving understanding of the drivers, impacts and vulnerability of climate change, and the social, cultural and behavioral challenges related to climate change responses. This requires disciplinary and interdisciplinary knowledge as well as integrational and translational tools for linking this knowledge with the natural and physical sciences. The USGCRP's Social Science Coordinating Committee (SSCC) is tasked with this challenge and is working to integrate relevant social, economic and behavioral knowledge into processes like sustained assessments. This presentation will discuss outcomes from a recent SSCC workshop, "Social Science Perspectives on Climate Change" and their applications to sustained assessments. The workshop brought academic social scientists from four disciplines - anthropology, sociology, geography and archaeology - together with federal scientists and program managers to discuss three major research areas relevant to the USGCRP and climate assessments: (1) innovative tools, methods, and analyses to clarify the interactions of human and natural systems under climate change, (2) understanding of factors contributing to differences in social vulnerability between and within communities under climate change, and (3) social science perspectives on drivers of global climate change. These disciplines, collectively, emphasize the need to consider socio-cultural, political, economic, geographic, and historic factors, and their dynamic interactions, to understand climate change drivers, social vulnerability, and mitigation and adaptation responses. They also highlight the importance of mixed quantitative and qualitative methods to explain impacts, vulnerability, and responses at different time and spatial scales. This presentation will focus on major contributions of the social sciences to climate and global change research. We will discuss future directions for

  14. The translational science training program at NIH: Introducing early career researchers to the science and operation of translation of basic research to medical interventions.

    Science.gov (United States)

    Gilliland, C Taylor; Sittampalam, G Sitta; Wang, Philip Y; Ryan, Philip E

    2017-01-02

    Translational science is an emerging field that holds great promise to accelerate the development of novel medical interventions. As the field grows, so does the demand for highly trained biomedical scientists to fill the positions that are being created. Many graduate and postdoctorate training programs do not provide their trainees with sufficient education to take advantage of this growing employment sector. To help better prepare the trainees at the National Institutes of Health for possible careers in translation, we have created the Translational Science Training Program (TSTP). The TSTP is an intensive 2- to 3-day training program that introduces NIH postdoctoral trainees and graduate students to the science and operation of turning basic research discoveries into a medical therapeutic, device or diagnostic, and also exposes them to the variety of career options in translational science. Through a combination of classroom teaching from practicing experts in the various disciplines of translation and small group interactions with pre-clinical development teams, participants in the TSTP gain knowledge that will aid them in obtaining a career in translational science and building a network to make the transition to the field. © 2016 by The International Union of Biochemistry and Molecular Biology, 45(1):13-24, 2017. © 2016 The International Union of Biochemistry and Molecular Biology.

  15. Aging and degeneration of the intervertebral disc: review of basic science

    Directory of Open Access Journals (Sweden)

    Josemberg da Silva Baptista

    2015-06-01

    Full Text Available Currently there is a growing interest in the study of intervertebral discs due to loss of manpower brought to society by low back and neck pains. These papers seek to delineate the difference between normal aging and disc degeneration, trying to understand what factor would be determining for the second condition. Thus, the morphology field was expanded and knowledge on the structure of intervertebral discs currently uses the research field of cell and molecular biology, and genetics. The results indicate that regardless of age or condition, the intervertebral disc undergoes long and extensive remodeling of its constituents, which are influenced by several factors: environmental, soluble, cell growth and extracellular matrix. In this literature review we describe the biological characteristics of the cervical and lumbar intervertebral disc with a focus on basic science of aging and degeneration, selecting the latest findings and discussions of the area, which influence future research and clinical thoughts.

  16. Proceeding of the Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology. Part I : Physics, Reactor Physics and Nuclear Instrumentation

    International Nuclear Information System (INIS)

    Sudjatmoko; Karmanto, Eko Edy; Supartini, Endang

    1996-04-01

    Scientific Meeting and Presentation on Basic Research in Nuclear Science and Technology is a routine activity was held by PPNY BATAN for monitoring the research Activity which achieved in BATAN. The Proceeding contains a proposal about basic which has physics; reactor physics and nuclear instrumentation. This proceedings is the first part from two part which published in series. There are 33 articles which have separated index

  17. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  18. Fusion connection: contributions to industry, defense, and basic science resulting from scientific advances made in the Magnetic Fusion Energy Program

    International Nuclear Information System (INIS)

    Finn, T.; Woo, J.; Temkin, R.

    1985-10-01

    Fusion research has led to significant contributions in many different areas of industry, defense, and basic science. This diversity is represented visually in the introductory figure which shows both a radio galaxy, and a microchip produced by plasma etching. Some of these spin-off technologies are discussed

  19. Response to Industry Canada's Consultation Paper "Seizing Canada's Moment: Moving Forward in Science, Technology and Innovation"

    Science.gov (United States)

    Peters, Wayne D.; Turk, James L.

    2014-01-01

    According to these authors, Canada is in need of a new science policy and strategy. The current direction of the federal government is threatening to impede scientific progress and compromise the integrity and independence of public science. This is reflected in the government's waning commitment to funding basic research; its attempts to steer…

  20. STEM Integration in Middle School Life Science: Student Learning and Attitudes

    Science.gov (United States)

    Guzey, S. Selcen; Moore, Tamara J.; Harwell, Michael; Moreno, Mario

    2016-08-01

    In many countries around the world, there has been an increasing emphasis on improving science education. Recent reform efforts in the USA call for teachers to integrate scientific and engineering practices into science teaching; for example, science teachers are asked to provide learning experiences for students that apply crosscutting concepts (e.g., patterns, scale) and increase understanding of disciplinary core ideas (e.g., physical science, earth science). Engineering practices and engineering design are essential elements of this new vision of science teaching and learning. This paper presents a research study that evaluates the effects of an engineering design-based science curriculum on student learning and attitudes. Three middle school life science teachers and 275 seventh grade students participated in the study. Content assessments and attitude surveys were administered before and after the implementation of the curriculum unit. Statewide mathematics test proficiency scores were included in the data analysis as well. Results provide evidence of the positive effects of implementing the engineering design-based science unit on student attitudes and learning.

  1. Cryo Testing of tbe James Webb Space Telescope's Integrated Science Instrument Module

    Science.gov (United States)

    VanCampen, Julie

    2004-01-01

    The Integrated Science Instrument Module (ISIM) of the James Webb Space Telescope will be integrated and tested at the Environmental Test Facilities at Goddard Space Flight Center (GSFC). The cryogenic thermal vacuum testing of the ISIM will be the most difficult and problematic portion of the GSFC Integration and Test flow. The test is to validate the coupled interface of the science instruments and the ISIM structure and to sufficiently stress that interface while validating image quality of the science instruments. The instruments and the structure are not made from the same materials and have different CTE. Test objectives and verification rationale are currently being evaluated in Phase B of the project plan. The test program will encounter engineering challenges and limitations, which are derived by cost and technology many of which can be mitigated by facility upgrades, creative GSE, and thorough forethought. The cryogenic testing of the ISIM will involve a number of risks such as the implementation of unique metrology techniques, mechanical, electrical and optical simulators housed within the cryogenic vacuum environment. These potential risks are investigated and possible solutions are proposed.

  2. Authentic Science Research Opportunities: How Do Undergraduate Students Begin Integration into a Science Community of Practice?

    Science.gov (United States)

    Gardner, Grant E.; Forrester, Jennifer H.; Jeffrey, Penny Shumaker; Ferzli, Miriam; Shea, Damian

    2015-01-01

    The goal of the study described was to understand the process and degree to which an undergraduate science research program for rising college freshmen achieved its stated objectives to integrate participants into a community of practice and to develop students' research identities.

  3. Development of an Analysis Model from the Perspectives of Science, Individual and Society in the Teaching of Science

    Directory of Open Access Journals (Sweden)

    José Manuel do Carmo

    2016-12-01

    Full Text Available The basic vision of learning science has changed as scientific culture concepts evolution and the nature of the teaching of science go along. From a model essentially based on information acquisition, science instruction has included the practice of the science method when the importance of emphasizing the development of personal skills, thinking processes, and action was considered. The concern about citizens’ education in matters referring to the relationship between science and society and enlightened social participation demanded a special attention in investigation and in students’ participation in issues related to urban, natural, and technological environment. This research seeks to develop an integrative model of curriculum organizations based on these three axes or perspectives: science, individual, and society. A matrix enabling the analysis of curricular proposals and organization plans of didactic units is built, as well as the observation of teachers’ representations in the teaching of science.

  4. The European Plate Observing System (EPOS): Integrating Thematic Services for Solid Earth Science

    Science.gov (United States)

    Atakan, Kuvvet; Bailo, Daniele; Consortium, Epos

    2016-04-01

    The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS, during its Implementation Phase (EPOS-IP), will integrate multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. These include Data, Data-products, Services and Software (DDSS), from seismology, near fault observatories, geodetic observations, volcano observations, satellite observations, geomagnetic observations, as well as data from various anthropogenic hazard episodes, geological information and modelling. In addition, transnational access to multi-scale laboratories and geo-energy test-beds for low-carbon energy will be provided. TCS DDSS will be integrated into Integrated Core Services (ICS), a platform that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage

  5. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  6. Conserving Our Energy. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 11.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with: (1) the importance of energy in students' everyday lives; (2) energy forms and…

  7. Conserving Our Health. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 12.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P9 SIS unit deals with conserving health, focusing on such body processes as breathing, digestion, excretion,…

  8. Living Things Reproduce. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 6.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on reproduction in animals and in flowering plants. Particular topics examined include the…

  9. Basic Research in Information Science in France.

    Science.gov (United States)

    Chambaud, S.; Le Coadic, Y. F.

    1987-01-01

    Discusses the goals of French academic research policy in the field of information science, emphasizing the interdisciplinary nature of the field. Areas of research highlighted include communication, telecommunications, co-word analysis in scientific and technical documents, media, and statistical methods for the study of social sciences. (LRW)

  10. Social and Economic Analysis Branch: integrating policy, social, economic, and natural science

    Science.gov (United States)

    Schuster, Rudy; Walters, Katie D.

    2015-01-01

    The Fort Collins Science Center's Social and Economic Analysis Branch provides unique capabilities in the U.S. Geological Survey by leading projects that integrate social, behavioral, economic, and natural science in the context of human–natural resource interactions. Our research provides scientific understanding and support for the management and conservation of our natural resources in support of multiple agency missions. We focus on meeting the scientific needs of the Department of the Interior natural resource management bureaus in addition to fostering partnerships with other Federal and State managers to protect, restore, and enhance our environment. The Social and Economic Analysis Branch has an interdisciplinary group of scientists whose primary functions are to conduct both theoretical and applied social science research, provide technical assistance, and offer training to support the development of skills in natural resource management activities. Management and research issues associated with human-resource interactions typically occur in a unique context and require knowledge of both natural and social sciences, along with the skill to integrate multiple science disciplines. In response to these challenging contexts, Social and Economic Analysis Branch researchers apply a wide variety of social science concepts and methods which complement our rangeland/agricultural, wildlife, ecology, and biology capabilities. The goal of the Social and Economic Analysis Branch's research is to enhance natural-resource management, agency functions, policies, and decisionmaking.

  11. Reconstruction of biological networks based on life science data integration.

    Science.gov (United States)

    Kormeier, Benjamin; Hippe, Klaus; Arrigo, Patrizio; Töpel, Thoralf; Janowski, Sebastian; Hofestädt, Ralf

    2010-10-27

    For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH--an integration toolkit for building life science data warehouses, CardioVINEdb--a information system for biological data in cardiovascular-disease and VANESA--a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  12. Medical Students’ View about the Effects of Practical Courses on Learning the General Theoretical Concepts of Basic Medical Sciences

    Directory of Open Access Journals (Sweden)

    Leila Roshangar

    2014-05-01

    Full Text Available Introduction: The basic medical sciences section requires 2.5 years in the medical education curriculum. Practical courses complement theoretical knowledge in this period to improve their appreciation. Despite spending lots of disbursement and time, this period’s efficacy is not clearly known. Methods: One hundred thirty-three General Practitioner (GP students have been included in this descriptive cross-sectional study and were asked by questionnaire about the positive impact of practical courses on learning theoretical knowledge. Data were analyzed by descriptive statistics. Result: The agreement in “Practical Head and Neck Anatomy” was 40.91% ± 29.45, in “Practical Trunk Anatomy” was 63.62% ± 2.32 and in “Practical Anatomy of Extremities” was 56.16% ± 2.57. In “Practical Histology”, agreement was 69.50%±2.19; “Practical Biophysics” was 45.97%±2.25, “Practical Physiology” 61.75%±2.17; “Practical Biochemistry” 36.28%±2.42; “Practical Pathology” 59.80%±2.53; “Practical Immunology” 56.25%±26.40; “Practical Microbiology and Virology” 60.39%±2.27 and “Practical Mycology and Parasitology” 68.2%± 2.16.Conclusion: GP students in Tabriz University of Medical Sciences are not optimistic about the applicability of practical courses of basic medical sciences lessons.

  13. Proceedings of the 109th basic science seminar on research for quantum radiation measurement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-07-01

    In the field of radiation measurement in next century, one of the main themes for researchers will be to develop new radiation detection techniques based on quantum effects. Thus three research projects for development of new neutron detection method using He-Ne laser cells, radiation-resistant optical fibers, and superconducting tunnel junction radiation detectors have been started five years before in our research group for quantum radiation measurement of the advanced science research center (ASRC) of JAERI. The joint workshop `Research for Quantum Radiation Measurement` was held as one of basic science seminars in ASRC on 19-20th of January 1998 on the occasion of the ending of the projects. There were many presentations concerning the above three themes and the participants had a good opportunity to exchange relating research information. This proceedings includes 13 papers of the presentations. It is not only useful to know the present status of advanced study but also very suggestive to see the direction and evolution of `radiation detection techniques based on quantum effects` in the future. (J.P.N.)

  14. Responsible science: Ensuring the integrity of the research process, volume 1

    Science.gov (United States)

    This report thoughtfully examines the challenges posed in ensuring that the search for truth reflects adherence to ethical standards. In recent years, we have learned, sometimes painfully, that not all scientists adhere to this obligation. Reports of falsified research results and plagiarism involving both junior and senior scientists have stimulated doubts and criticism about the ways in which misconduct in science is addressed by the research community. Misconduct in science is now being publicly examined in all of its aspects; how misconduct is defined, the process by which misconduct is discovered, and procedures for judging innocence or guilt and assessing penalties. Also being explored are the appropriate roles of individuals, research institutions, journals, government research agencies, and the legal system. Issues of misconduct and integrity in science present complex questions. These issues require the sustained attention of all members of the research community as well as of leaders in the public and private sector who are concerned with safeguarding the health of science. In this regard ensuring the integrity of the research process is similar to assuring safety in the workplace: it is a process that requires continued participation from all levels of the entire research enterprise--the practitioners, the host institutions, the sponsors in government, and the legislators who provide the funds.

  15. The Content Analysis, Material Presentation, and Readability of Curriculum 2013 Science Textbook for 1st Semester of Junior High School 7th Grade

    Directory of Open Access Journals (Sweden)

    Endik Deni Nugroho

    2017-07-01

    Full Text Available Based on the early observation by researchers of the two Science textbooks 7thGrade about biological material, 1stand 2ndsemester of curriculum 2013, there were errors in the material presentation and legibility. This study aimed to compare and find the contents suitability of the book based on standard of competence and basic competences, readability, materials presentation and supporting material in the science textbook VII grade, 1st and 2nd semester and measured student legibility. This study used a qualitative descriptive approach by using document analysis. The data resources were obtained by using purposive, the data collection was triangulation, data analysis was inductive/qualitative and the results emphasized the meaning. This research results showed that the Integrated Sciences and Sciences textbook 1st and 2nd semester meet the standards of the core competencies and basic competence on the syllabus curriculum 2013 and also meet the books standart. The results of the analysis conducted in misstatement concept and principles and material llustration in the Integrated Science textbook 1st semester were found 5 misstatement concept, for the presentation of the principles and material illustration was found no error. In the book Integrated Sciences there was no delivery errors concept, principle, and material illustration. Science textbook 1st semester found 8 concepts misstatements and 8 illustration material misstatements. In general, Integrated Sciences and Sciences textbooks 1st and 2nd semester are illegibility so not appropriate for students.

  16. Integrating Felting in Elementary Science Classrooms to Facilitate Understanding of the Polar Auroras

    Directory of Open Access Journals (Sweden)

    Brandy Terrill

    2017-10-01

    Full Text Available The Next Generation Science Standards (NGSS emphasize conceptual science instruction that draws on students’ ability to make observations, explain natural phenomena, and examine concept relationships. This paper explores integrating the arts, in the form of felting, in elementary science classrooms as a way for students to model and demonstrate understanding of the complex scientific processes that cause the polar auroras. The steps for creating felting, and using the felting artwork students create for assessing science learning, are described.

  17. Integrating Contemplative Tools into Biomedical Science Education and Research Training Programs

    Directory of Open Access Journals (Sweden)

    Rodney R. Dietert

    2014-01-01

    Full Text Available Academic preparation of science researchers and/or human or veterinary medicine clinicians through the science, technology, engineering, and mathematics (STEM curriculum has usually focused on the students (1 acquiring increased disciplinary expertise, (2 learning needed methodologies and protocols, and (3 expanding their capacity for intense, persistent focus. Such educational training is effective until roadblocks or problems arise via this highly-learned approach. Then, the health science trainee may have few tools available for effective problem solving. Training to achieve flexibility, adaptability, and broadened perspectives using contemplative practices has been rare among biomedical education programs. To address this gap, a Cornell University-based program involving formal biomedical science coursework, and health science workshops has been developed to offer science students, researchers and health professionals a broader array of personal, contemplation-based, problem-solving tools. This STEM educational initiative includes first-person exercises designed to broaden perceptional awareness, decrease emotional drama, and mobilize whole-body strategies for creative problem solving. Self-calibration and journaling are used for students to evaluate the personal utility of each exercise. The educational goals are to increase student self-awareness and self-regulation and to provide trainees with value-added tools for career-long problem solving. Basic elements of this educational initiative are discussed using the framework of the Tree of Contemplative Practices.

  18. Integrating science and resource management in Tampa Bay, Florida

    Science.gov (United States)

    Yates, Kimberly K.; Greening, Holly; Morrison, Gerold

    2011-01-01

    Tampa Bay is recognized internationally for its remarkable progress towards recovery since it was pronounced "dead" in the late 1970s. Due to significant efforts by local governments, industries and private citizens throughout the watershed, water clarity in Tampa Bay is now equal to what it was in 1950, when population in the watershed was less than one-quarter of what it is today. Seagrass extent has increased by more than 8,000 acres since the mid-1980s, and fish and wildlife populations are increasing. Central to this successful turn-around has been the Tampa Bay resource management community's long-term commitment to development and implementation of strong science-based management strategies. Research institutions and agencies, including Eckerd College, the Florida Wildlife Commission Fish and Wildlife Research Institute, Mote Marine Laboratory, National Oceanic and Atmospheric Administration, the Southwest Florida Water Management District, University of South Florida, U.S. Environmental Protection Agency, U.S. Geological Survey, local and State governments, and private companies contribute significantly to the scientific basis of our understanding of Tampa Bay's structure and ecological function. Resource management agencies, including the Tampa Bay Regional Planning Council's Agency on Bay Management, the Southwest Florida Water Management District's Surface Water Improvement and Management Program, and the Tampa Bay Estuary Program, depend upon this scientific basis to develop and implement regional adaptive management programs. The importance of integrating science with management has become fully recognized by scientists and managers throughout the region, State and Nation. Scientific studies conducted in Tampa Bay over the past 10–15 years are increasingly diverse and complex, and resource management programs reflect our increased knowledge of geology, hydrology and hydrodynamics, ecology and restoration techniques. However, a synthesis of this

  19. Department of Energy's Virtual Lab Infrastructure for Integrated Earth System Science Data

    Science.gov (United States)

    Williams, D. N.; Palanisamy, G.; Shipman, G.; Boden, T.; Voyles, J.

    2014-12-01

    The U.S. Department of Energy (DOE) Office of Biological and Environmental Research (BER) Climate and Environmental Sciences Division (CESD) produces a diversity of data, information, software, and model codes across its research and informatics programs and facilities. This information includes raw and reduced observational and instrumentation data, model codes, model-generated results, and integrated data products. Currently, most of this data and information are prepared and shared for program specific activities, corresponding to CESD organization research. A major challenge facing BER CESD is how best to inventory, integrate, and deliver these vast and diverse resources for the purpose of accelerating Earth system science research. This talk provides a concept for a CESD Integrated Data Ecosystem and an initial roadmap for its implementation to address this integration challenge in the "Big Data" domain. Towards this end, a new BER Virtual Laboratory Infrastructure will be presented, which will include services and software connecting the heterogeneous CESD data holdings, and constructed with open source software based on industry standards, protocols, and state-of-the-art technology.

  20. Islam - Science Integration Approach in Developing Chemistry Individualized Education Program (IEP for Students with Disabilities

    Directory of Open Access Journals (Sweden)

    Jamil Suprihatiningrum

    2017-11-01

    Full Text Available The paper is based on a research which tries to explore, explain and describe Islam - science integration approach to develop an Individualized Education Program (IEP for students with disabilities in chemistry lesson. As a qualitative case study, this paper is aimed at investigating how Islam - science integration approach can be underpinned for developing the IEP for Chemistry. Participants were recruited purposively and data were collected by interviews; documents’ analysis; and experts’ assessment (i.e. material experts, inclusive education experts, media experts, chemistry teachers and support teachers, then analyzed using content-analysis. The result shows Islam - science integration approach can be a foundation to develop the chemistry IEP by seeking support for the verses of the Qur'an and corresponding hadiths. Even although almost all the subject matter in chemistry can be integrated with Islamic values, this study only developed two contents, namely Periodic System of Elements and Reaction Rate.

  1. Next Generation Space Telescope Integrated Science Module Data System

    Science.gov (United States)

    Schnurr, Richard G.; Greenhouse, Matthew A.; Jurotich, Matthew M.; Whitley, Raymond; Kalinowski, Keith J.; Love, Bruce W.; Travis, Jeffrey W.; Long, Knox S.

    1999-01-01

    The Data system for the Next Generation Space Telescope (NGST) Integrated Science Module (ISIM) is the primary data interface between the spacecraft, telescope, and science instrument systems. This poster includes block diagrams of the ISIM data system and its components derived during the pre-phase A Yardstick feasibility study. The poster details the hardware and software components used to acquire and process science data for the Yardstick instrument compliment, and depicts the baseline external interfaces to science instruments and other systems. This baseline data system is a fully redundant, high performance computing system. Each redundant computer contains three 150 MHz power PC processors. All processors execute a commercially available real time multi-tasking operating system supporting, preemptive multi-tasking, file management and network interfaces. These six processors in the system are networked together. The spacecraft interface baseline is an extension of the network, which links the six processors. The final selection for Processor busses, processor chips, network interfaces, and high-speed data interfaces will be made during mid 2002.

  2. Art-science integration: Portrait of a residency

    Science.gov (United States)

    Feldman, Rhoda Lynn

    This dissertation is based on a year-long study of an arts integration residency at Hampton, a public elementary school in the Midwest. The study examined residency curriculum and pedagogies, factors facilitating and constraining the integration, and the perception of the artist, teachers, and students of the program and arts integration within it. The Hampton residency, "Art and Science: A Shared Evolution," represented a historical approach to the linking of the two disciplines within the framework of a survey extending from the origins of the universe to relativity theory, from cave paintings to Picasso. Findings indicate that integration encompassed more than issues of curriculum and pedagogy---that it was closely linked to the nature and extent of artist-teacher collaboration (importance of the interpersonal element); that multiple factors seemed to militate against integration and collaboration, including differing expectations of teachers and artist for the residency and integration, the lack of sustained professional development to support the integration of disciplines and collaboration of participants, and the pressure upon teachers of high stakes testing; that a common prep period was a necessary but not sufficient condition for collaboration to occur; and that the pedagogy of the artist while at Hampton was different than while at another school with similar demographics. The experience at Hampton seems to support conceiving of integration as a partnership capitalizing on the strengths of each partner, including teachers in the planning and development of curriculum, establishing structures to support teachers and artists in integrating curriculum and building/sustaining collaborative relationships, and insuring alignment of residency units with subject-area teaching. The study revealed that while integration in theory can offer an antidote for fragmentation of the school curriculum, in practice it is difficult to execute in a way that is meaningful to

  3. Climate change, uncertainty, and resilient fisheries: Institutional responses through integrative science

    DEFF Research Database (Denmark)

    Miller, K.; Charles, A.; Barange, M.

    2010-01-01

    This paper explores the importance of a focus on the fundamental goals of resilience and adaptive capacity in the governance of uncertain fishery systems, particularly in the context of climate change. Climate change interacts strongly with fishery systems, and adds to the inherent uncertainty...... that understanding these aspects of fishery systems and fishery governance is valuable even in the absence of climate-induced processes of change, but that attention to climate change both reinforces the need for, and facilitates the move toward, implementation of integrative science for improved fishery governance....... and processes – to support suitable institutional responses, a broader planning perspective, and development of suitable resilience-building strategies. The paper explores how synergies between institutional change and integrative science can facilitate the development of more effective fisheries policy...

  4. Different Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets.] Unit 5.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) help students develop an elementary understanding of how living things can be…

  5. Air and Weather Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 2.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of air and air pressure in students' everyday lives; (2) oxidation…

  6. Techniques and Measurements. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 1.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit is designed to: (1) introduce students to and familiarize them with working in the school laboratory;…

  7. Food and Growth. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 7.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit examines: (1) the role played by bones, muscles, and teeth and the importance of developing and…

  8. Heat and Molecules. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 10.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit deals with: (1) changes in temperature which make matter expand and contract (and how this affects…

  9. Magnets and Electricity. Seychelles Integrated Science [Teacher and Pupil Booklets]. Unit 8.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) elementary concepts in magnetic theory and the role magnets and magnetism play in…

  10. Acids and Alkalis. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 9.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P8 SIS unit focuses on: (1) the uses of acids and bases (alkalis) in students' everyday lives, stressing their…

  11. Basic science behind the cardiovascular benefits of exercise.

    Science.gov (United States)

    Wilson, Mathew G; Ellison, Georgina M; Cable, N Tim

    2016-01-01

    Cardiorespiratory fitness is a strong predictor of cardiovascular (CV) disease and all-cause mortality, with increases in cardiorespiratory fitness associated with corresponding decreases in CV disease risk. The effects of exercise upon the myocardium and vascular system are dependent upon the frequency, intensity and duration of the exercise itself. Following a prolonged period (≥6 months) of regular intensive exercise in previously untrained individuals, resting and submaximal exercising heart rates are typically 5-20 beats lower, with an increase in stroke volume of ∼20% and enhanced myocardial contractility. Structurally, all four heart chambers increase in volume with mild increases in wall thickness, resulting in greater cardiac mass due to increased myocardial cell size. With this in mind, the present paper aims to review the basic science behind the CV benefits of exercise. Attention will be paid to understanding (1) the relationship between exercise and cardiac remodelling; (2) the cardiac cellular and molecular adaptations in response to exercise, including the examination of molecular mechanisms of physiological cardiac growth and applying these mechanisms to identify new therapeutic targets to prevent or reverse pathological remodelling and heart failure; and (3) vascular adaptations in response to exercise. Finally, this review will briefly examine how to optimise the CV benefits of exercise by considering how much and how intense exercise should be. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  12. Indigenous Knowledge, Science, and Resilience: What Have We Learned from a Decade of International Literature on "Integration"?

    Directory of Open Access Journals (Sweden)

    Erin L. Bohensky

    2011-12-01

    Full Text Available Despite the increasing trend worldwide of integrating indigenous and scientific knowledge in natural resource management, there has been little stock-taking of literature on lessons learned from bringing indigenous knowledge and science together and the implications for maintaining and building social-ecological system resilience. In this paper we investigate: (1 themes, questions, or problems encountered for integration of indigenous knowledge and science; (2 the relationship between knowledge integration and social-ecological system resilience; and (3 critical features of knowledge integration practice needed to foster productive and mutually beneficial relationships between indigenous knowledge and science. We examine these questions through content analyses of three special journal issues and an edited book published in the past decade on indigenous, local, and traditional knowledge and its interface with science. We identified broad themes in the literature related to: (1 similarities and differences between knowledge systems; (2 methods and processes of integration; (3 social contexts of integration; and (4 evaluation of knowledge. A minority of papers discuss a relationship between knowledge integration and social-ecological system resilience, but there remains a lack of clarity and empirical evidence for such a relationship that can help distinguish how indigenous knowledge and knowledge integration contribute most to resilience. Four critical features of knowledge integration are likely to enable a more productive and mutually beneficial relationship between indigenous and scientific knowledge: new frames for integration, greater cognizance of the social contexts of integration, expanded modes of knowledge evaluation, and involvement of inter-cultural "knowledge bridgers."

  13. Teaching bioethics: the tale of a "soft" science in a hard world.

    Science.gov (United States)

    Lovy, Andrew; Paskhover, Boris; Trachtman, Howard

    2010-10-01

    Although bioethics is considered essential to the practice of medicine, medical students often view it as a "soft" subject that is secondary in importance to the other courses in their basic science and clinical curriculum. This perspective may be a consequence of the heavy reliance on students' aptitude in the quantitative sciences as a criterion for entry into medical school and as a barometer of academic success after admission. It is exacerbated by the widespread impression that bioethics is imprecise and culturally relativistic. In an effort to redress this imbalance, we propose an approach to teaching bioethics to medical students which emphasizes that the intellectual basis and the degree of certainty of knowledge is comparable in all medical subjects ranging from basic science courses to clinical rotations to bioethics tutorials. Adopting these pedagogical steps may promote greater integration of the various elements-bioethics and clinical science-in the medical school curriculum.

  14. Physics of the Life Sciences

    CERN Document Server

    Newman, Jay

    2008-01-01

    Originally developed for the author's course at Union College, this text is designed for life science students who need to understand the connections of fundamental physics to modern biology and medicine. Almost all areas of modern life sciences integrally involve physics in both experimental techniques and in basic understanding of structure and function. Physics of the Life Sciences is not a watered-down, algebra-based engineering physics book with sections on relevant biomedical topics added as an afterthought. This authoritative and engaging text, which is designed to be covered in a two-semester course, was written with a thoroughgoing commitment to the needs and interests of life science students. Although covering most of the standard topics in introductory physics in a more or less traditional sequence, the author gives added weight and space to concepts and applications of greater relevance to the life sciences. Students benefit from occasional sidebars using calculus to derive fundamental relations,...

  15. The Museum of Science and Industry Basic List of Children's Science Books 1973-1984.

    Science.gov (United States)

    Richter, Bernice; Wenzel, Duane

    Children's science books are listed under these headings: animals; astronomy; aviation and space; biography; careers; earth sciences; encyclopedias and reference books; environment and conservation; fiction; general science; life sciences; marine life; mathematics and computer science; medical and health sciences; physics and chemistry; plant…

  16. Track A Basic Science

    OpenAIRE

    Sargeant, D.; Deverasetty, S.; Luo, Y.; Villahoz-Baleta, A.; Zobrist, S.; Rathnayake, V.; Russo, J.; Muesing, M.; Schiller, M.; Andrabi, R.; Kumar, R.; Bala, M.; Nair, A.; Biswas, A.; Wig, N.

    2012-01-01

    Background Many HIV databases and applications focus on a limited domain of HIV knowledge. Since even a “simple” organism like HIV represents a very complex system with many interacting elements, the fractured structure of existing databases and applications likely limits our ability to investigate and understand HIV. To facilitate research, therefore, we have built HIVToolbox, which integrates much of the knowledge about HIV proteins and presents the data in an interactive web application. H...

  17. Development of Contextual Mathematics teaching Material integrated related sciences and realistic for students grade xi senior high school

    Science.gov (United States)

    Helma, H.; Mirna, M.; Edizon, E.

    2018-04-01

    Mathematics is often applied in physics, chemistry, economics, engineering, and others. Besides that, mathematics is also used in everyday life. Learning mathematics in school should be associated with other sciences and everyday life. In this way, the learning of mathematics is more realstic, interesting, and meaningful. Needs analysis shows that required contextual mathematics teaching materials integrated related sciences and realistic on learning mathematics. The purpose of research is to produce a valid and practical contextual mathematics teaching material integrated related sciences and realistic. This research is development research. The result of this research is a valid and practical contextual mathematics teaching material integrated related sciences and realistic produced

  18. Integrating research into clinical internship training bridging the science/practice gap in pediatric psychology.

    Science.gov (United States)

    McQuaid, Elizabeth L; Spirito, Anthony

    2012-03-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a "capstone experience"; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the "business of science." Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists.

  19. Integrating Research Into Clinical Internship Training Bridging the Science/Practice Gap in Pediatric Psychology

    Science.gov (United States)

    Spirito, Anthony

    2012-01-01

    Existing literature highlights a critical gap between science and practice in clinical psychology. The internship year is a “capstone experience”; training in methods of scientific evaluation should be integrated with the development of advanced clinical competencies. We provide a rationale for continued exposure to research during the clinical internship year, including, (a) critical examination and integration of the literature regarding evidence-based treatment and assessment, (b) participation in faculty-based and independent research, and (c) orientation to the science and strategy of grantsmanship. Participation in research provides exposure to new empirical models and can foster the development of applied research questions. Orientation to grantsmanship can yield an initial sense of the “business of science.” Internship provides an important opportunity to examine the challenges to integrating the clinical evidence base into professional practice; for that reason, providing research exposure on internship is an important strategy in training the next generation of pediatric psychologists. PMID:22286345

  20. Reconstruction of biological networks based on life science data integration

    Directory of Open Access Journals (Sweden)

    Kormeier Benjamin

    2010-06-01

    Full Text Available For the implementation of the virtual cell, the fundamental question is how to model and simulate complex biological networks. Therefore, based on relevant molecular database and information systems, biological data integration is an essential step in constructing biological networks. In this paper, we will motivate the applications BioDWH - an integration toolkit for building life science data warehouses, CardioVINEdb - a information system for biological data in cardiovascular-disease and VANESA- a network editor for modeling and simulation of biological networks. Based on this integration process, the system supports the generation of biological network models. A case study of a cardiovascular-disease related gene-regulated biological network is also presented.

  1. Basic Research Needs for Solar Energy Utilization. Report of the Basic Energy Sciences Workshop on Solar Energy Utilization, April 18-21, 2005

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, N. S.; Crabtree, G.; Nozik, A. J.; Wasielewski, M. R.; Alivisatos, P.; Kung, H.; Tsao, J.; Chandler, E.; Walukiewicz, W.; Spitler, M.; Ellingson, R.; Overend, R.; Mazer, J.; Gress, M.; Horwitz, J.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2005-04-21

    World demand for energy is projected to more than double by 2050 and to more than triple by the end of the century. Incremental improvements in existing energy networks will not be adequate to supply this demand in a sustainable way. Finding sufficient supplies of clean energy for the future is one of society?s most daunting challenges. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from sunlight strikes the Earth in one hour (4.3 ? 1020 J) than all the energy consumed on the planet in a year (4.1 ? 1020 J). We currently exploit this solar resource through solar electricity ? a $7.5 billion industry growing at a rate of 35?40% per annum ? and solar-derived fuel from biomass, which provides the primary energy source for over a billion people. Yet, in 2001, solar electricity provided less than 0.1% of the world's electricity, and solar fuel from modern (sustainable) biomass provided less than 1.5% of the world's energy. The huge gap between our present use of solar energy and its enormous undeveloped potential defines a grand challenge in energy research. Sunlight is a compelling solution to our need for clean, abundant sources of energy in the future. It is readily available, secure from geopolitical tension, and poses no threat to our environment through pollution or to our climate through greenhouse gases. This report of the Basic Energy Sciences Workshop on Solar Energy Utilization identifies the key scientific challenges and research directions that will enable efficient and economic use of the solar resource to provide a significant fraction of global primary energy by the mid 21st century. The report reflects the collective output of the workshop attendees, which included 200 scientists representing academia, national laboratories, and industry in the United States and abroad, and the U.S. Department of Energy?s Office of Basic Energy Sciences and Office of Energy Efficiency and Renewable Energy.

  2. Analysis of expert validation on developing integrated science worksheet to improve problem solving skills of natural science prospective teachers

    Science.gov (United States)

    Widodo, W.; Sudibyo, E.; Sari, D. A. P.

    2018-04-01

    This study aims to develop student worksheets for higher education that apply integrated science learning in discussing issues about motion in humans. These worksheets will guide students to solve the problem about human movement. They must integrate their knowledge about biology, physics, and chemistry to solve the problem. The worksheet was validated by three experts in Natural Science Integrated Science, especially in Human Movement topic. The aspects of the validation were feasibility of the content, the construction, and the language. This research used the Likert scale to measure the validity of each aspect, which is 4.00 for very good validity criteria, 3.00 for good validity criteria, 2.00 for more or less validity criteria, and 1.00 for not good validity criteria. Data showed that the validity for each aspect were in the range of good validity and very good validity criteria (3.33 to 3.67 for the content aspect, 2.33 to 4.00 for the construction aspect, and 3.33 to 4.00 for language aspect). However, there was a part of construction aspect that needed to improve. Overall, this students’ worksheet can be applied in classroom after some revisions based on suggestions from the validators.

  3. Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria (Final Report, Sep 2008)

    Science.gov (United States)

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Sulfur Oxides – Health Criteria final assessment. This report represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scien...

  4. Integral methods in science and engineering theoretical and practical aspects

    CERN Document Server

    Constanda, C; Rollins, D

    2006-01-01

    Presents a series of analytic and numerical methods of solution constructed for important problems arising in science and engineering, based on the powerful operation of integration. This volume is meant for researchers and practitioners in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students.

  5. A Network for Integrated Science and Mathematics Teaching and Learning. NCSTL Monograph Series, #2.

    Science.gov (United States)

    Berlin, Donna F.; White, Arthur L.

    This monograph presents a summary of the results of the Wingspread Conference in April, 1991 concerning the viability and future of the concept of integration of mathematics and science teaching and learning. The conference focused on three critical issues: (1) development of definitions of integration and a rationale for integrated teaching and…

  6. Office of Basic Energy Sciences: 1984 summary report

    International Nuclear Information System (INIS)

    1984-11-01

    Subprograms of the OBES discussed in this document include: materials sciences, chemical sciences, nuclear sciences, engineering and geosciences, advanced energy projects, biological energy research, carbon dioxide research, HFBR, HFIR, NSLS, SSRL, IPNS, Combustion Research Facility, high-voltage and atomic resolution electron microscopic facilities, Oak Ridge Electron Linear Accelerator, Dynamitron Accelerator, calutrons, and Transuranium Processing Plant. Nickel aluminide and glassy metals are discussed

  7. Journal of Mind and Medical Sciences: translational and integrative mission

    Directory of Open Access Journals (Sweden)

    David L. Rowland

    2017-04-01

    Full Text Available Initiated four years ago, Journal of Mind and Medical Sciences (J Mind Med Sci. established the mission to publish papers on mental and medical topics in distinct but closely interrelated domains. The editorial policy especially encourages interdisciplinary and integrative perspectives, being equally focused on basic research and clinical investigations and short reports. The journal adheres to the philosophy that high quality, original ideas and information should be readily accessible and freely shared within and amongst the scientific community. Accordingly, J Mind Med Sci. is an online, open access, non-for-profit journal which, because of individual/ private support, has levied no charges for submission, review, and publication of articles. All published articles may be freely downloaded and used by anyone from anywhere for scientific purposes. Journal of Mind and Medical Sciences is published by ValpoScholar/ Valparaiso University using the leading institutional repository platform of Digital Commons (powered by Bepress and under the local management of Jon Bull, Library Services, Valparaiso University, which combines submission management, editorial, and peer-review tools into a unique and flexible publishing software system. These editorial and publishing norms have facilitated the journal’s evolution, now indexed and abstracted in several international respected databases. Journal visibility is wide among international academic institutions and readers, as documented by the number of downloaded articles cited in respected journals, some indexed by Thomson Reuters and having high impact factors. In addition, published authors in J Mind Med Sci. periodically receive a statistical report about views / downloads of their articles. It is a pleasure and honor to thank all those who have thus far supported the journal activity (authors, reviewers, editorial board and assistance, publishing support, and to further invite and encourage

  8. Brazilian Science and Research Integrity: Where are We? What Next?

    Directory of Open Access Journals (Sweden)

    Sonia M.R. Vasconcelos

    2015-06-01

    Full Text Available Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  9. Brazilian Science and Research Integrity: Where are We? What Next?

    Science.gov (United States)

    Vasconcelos, Sonia M R; Sorenson, Martha M; Watanabe, Edson H; Foguel, Debora; Palácios, Marisa

    2015-01-01

    Building a world-class scientific community requires first-class ingredients at many different levels: funding, training, management, international collaborations, creativity, ethics, and an understanding of research integrity practices. All over the world, addressing these practices has been high on the science policy agenda of major research systems. Universities have a central role in fostering a culture of research integrity, which has posed additional challenges for faculty, students and administrators - but also opportunities. In Brazil, the leading universities and governmental funding agencies are collaborating on this project, but much remains to be done.

  10. The basic science of the subchondral bone

    NARCIS (Netherlands)

    Madry, Henning; van Dijk, C. Niek; Mueller-Gerbl, Magdalena

    2010-01-01

    In the past decades, considerable efforts have been made to propose experimental and clinical treatments for articular cartilage defects. Yet, the problem of cartilage defects extending deep in the underlying subchondral bone has not received adequate attention. A profound understanding of the basic

  11. Integrating gender into a basic medical curriculum.

    NARCIS (Netherlands)

    Verdonk, P.; Mans, L.J.L.; Lagro-Janssen, A.L.M.

    2005-01-01

    INTRODUCTION: In 1998, gaps were found to exist in the basic medical curriculum of the Radboud University Nijmegen Medical Centre regarding health-related gender differences in terms of biological, psychological and social factors. After screening the curriculum for language, content and context,

  12. The General Philosophy Behind the New Integrated and Co-ordinated Science Courses in N.S.W. and the Science Foundation for Physics Textbook Series.

    Science.gov (United States)

    Messel, H.; Barker, E. N.

    Described are the science syllabuses and texts for the science courses written to fulfill the aims of the new system of education in the state of New South Wales, Australia. The science course was developed in two stages: (1) A four year integrated science syllabus for grades 7-10, and (2) separate courses in physics, chemistry, and biology with…

  13. 14th International Conference on Integral Methods in Science and Engineering

    CERN Document Server

    Riva, Matteo; Lamberti, Pier; Musolino, Paolo

    2017-01-01

    This contributed volume contains a collection of articles on the most recent advances in integral methods.  The first of two volumes, this work focuses on the construction of theoretical integral methods. Written by internationally recognized researchers, the chapters in this book are based on talks given at the Fourteenth International Conference on Integral Methods in Science and Engineering, held July 25-29, 2016, in Padova, Italy. A broad range of topics is addressed, such as: • Integral equations • Homogenization • Duality methods • Optimal design • Conformal techniques This collection will be of interest to researchers in applied mathematics, physics, and mechanical and electrical engineering, as well as graduate students in these disciplines, and to other professionals who use integration as an essential tool in their work.

  14. Rural School Math and Science Teachers' Technology Integration Familiarization

    Science.gov (United States)

    Kalonde, Gilbert

    2017-01-01

    This study explored the significance of technology integration familiarization and the subsequent PD provided to rural middle school teachers with several opportunities to gain technological skills for technology use in rural middle school math and science classrooms. In order to explore the use of technology in rural schools, this study surveyed…

  15. Effectiveness of integrated science instructional material on pressure in daily life theme to improve digital age literacy of students

    Science.gov (United States)

    Asrizal; Amran, A.; Ananda, A.; Festiyed; Khairani, S.

    2018-04-01

    Integrated science learning and literacy skills are relevant issues in Indonesian’s education. However, the use of the integrated science learning and the integration of literacy in learning cannot be implemented well. An alternative solution of this problem is to develop integrated science instructional material on pressure in daily life theme by integrating digital age literacy. Purpose of research is to investigate the effectiveness of the use of integrated science instructional material on pressure in daily life theme to improve knowledge competence, attitudes competence and literacy skills of students. This research was a part of development research which has been conducted. In the product testing stage of this research and development was used before and after design of treatment for one sample group. Instruments to collect the data consist of learning outcomes test sheet, attitude observation sheet, and performance assessment sheet of students. Data analysis techniques include descriptive statistics analysis, normality test, homogeneity test, and paired comparison test. Therefore, the important result of research is the use of integrated science instructional material on pressure in daily life theme is effective in scientific approach to improve knowledge competence, attitudes competence, and digital age literacy skills of grade VIII students at 95% confidence level.

  16. Designing an Earthquake-Proof Art Museum: An Arts- and Engineering-Integrated Science Lesson

    Science.gov (United States)

    Carignan, Anastasia; Hussain, Mahjabeen

    2016-01-01

    In this practical arts-integrated science and engineering lesson, an inquiry-based approach was adopted to teach a class of fourth graders in a Midwest elementary school about the scientific concepts of plate tectonics and earthquakes. Lessons were prepared following the 5 E instructional model. Next Generation Science Standards (4-ESS3-2) and the…

  17. Nanoethics and the breaching of boundaries: a heuristic for going from encouragement to a fuller integration of ethical, legal and social issues and science : commentary on: "Adding to the mix: integrating ELSI into a National Nanoscale Science and Technology Center".

    Science.gov (United States)

    Tuma, Julio R

    2011-12-01

    The intersection of ELSI and science forms a complicated nexus yet their integration is an important goal both for society and for the successful advancement of science. In what follows, I present a heuristic that makes boundary identification and crossing an important tool in the discovery of potential areas of ethical, legal, and social concern in science. A dynamic and iterative application of the heuristic can lead towards a fuller integration and appreciation of the concerns of ELSI and of science from both sides of the divide.

  18. System description of the Basic MRS System for the FY 1990 Systems Integration Program studies

    International Nuclear Information System (INIS)

    McKee, R.W.; Young, J.R.; Konzek, G.J.

    1991-07-01

    This document provides both functional and physical descriptions of a conceptual high-level waste management system defined as a Basic MRS System. Its purpose is to provide a basis for required system computer modeling and system studies initiated in FY 1990 under the Systems Integration Program of the Office of Civilian Radioactive Waste Management Office (OCRWM). Two specific systems studies initiated in FY 1990, the Reference System Performance Evaluation and the Aggregate Receipt Rate Study, utilize the information in this document. The Basic MRS System is the current OCRWM reference high-level radioactive wastes repository system concept. It is designed to accept 3000 MTU per year of spent fuel and 400 equivalent MTU per year of high-level wastes. The Basic MRS System includes a storage-only MRS that provides for a limited amount of commercial spent fuel storage capacity prior to acceptance by the geologic repository for disposal. This document contains both functional descriptions of the processes in the waste management system and physical descriptions of the equipment and facilities necessary for performance of those processes. The basic MRS system contains all system components, from the waste storage facilities of the waste generators to the underground facilities for final disposal of the wastes. The major facilities in the system are the waste generator waste storage facilities, an MRS facility that provides interim storage wastes accepted from the waste generators, a repository facility that packages the wastes and then emplaces them in the geologic repository, and the transportation equipment and facilities for transporting the waste between these major facilities

  19. Comparison and Evaluation of Motivation and Attitude of Medical Students at Basic Sciences and Internship phase on Cheating in Exams at Shahid Beheshti University of Medical Sciences in 2012

    Directory of Open Access Journals (Sweden)

    Aliasghar Jame-Bozorgi

    2016-05-01

    Full Text Available Background and Purpose: There is much evidence that the prevalence of academic misbehaviors is increasing in universities. This study examined the motivation and attitudes of medical students of Shahid Beheshti University of Medical Sciences on cheating and its frequency.Methods: The study is a survey of medical students’ of Shahid Beheshti University of Medical Sciences attitudes on cheating and Data was analyzed using Chi-square and McNemar's test.Results: One hundred and sixty medical students participated in this study. The mean and standard deviation of students’ age was 22.69±2.29 years. Basic Sciences and internship students’ attitudes on three cheating behaviors, including cheating from others (P=0.028, helping other students to copy answers during exams (P=0.001, and recording false reports deliberately to facilitate assignments were significantly different (P=0.0001. The students' highest motivation for cheating was fear of failing in the exam (79.3% and difficulty of the course (77.5%.Conclusions: The results showed that there were a higher number of interns than basic sciences students considered two behaviors of helping others to cheat and copying from one’s hand as cheating. It seems that policy-making in universities must be in a way that the problems of educational program, attitude and environment get more attention. In this regard, medical ethics education, reduced stress and pressure associated with medical education, fair and decisive punishment for dishonest people and appropriate resource allocation should be carried out for exam’s environment control.Keywords: Motivation, Attitude, Medical Students, Cheating

  20. The SMART Theory and Modeling Team: An Integrated Element of Mission Development and Science Analysis

    Science.gov (United States)

    Hesse, Michael; Birn, J.; Denton, Richard E.; Drake, J.; Gombosi, T.; Hoshino, M.; Matthaeus, B.; Sibeck, D.

    2005-01-01

    When targeting physical understanding of space plasmas, our focus is gradually shifting away from discovery-type investigations to missions and studies that address our basic understanding of processes we know to be important. For these studies, theory and models provide physical predictions that need to be verified or falsified by empirical evidence. Within this paradigm, a tight integration between theory, modeling, and space flight mission design and execution is essential. NASA's Magnetospheric MultiScale (MMS) mission is a pathfinder in this new era of space research. The prime objective of MMS is to understand magnetic reconnection, arguably the most fundamental of plasma processes. In particular, MMS targets the microphysical processes, which permit magnetic reconnection to operate in the collisionless plasmas that permeate space and astrophysical systems. More specifically, MMS will provide closure to such elemental questions as how particles become demagnetized in the reconnection diffusion region, which effects determine the reconnection rate, and how reconnection is coupled to environmental conditions such as magnetic shear angles. Solutions to these problems have remained elusive in past and present spacecraft missions primarily due to instrumental limitations - yet they are fundamental to the large-scale dynamics of collisionless plasmas. Owing to the lack of measurements, most of our present knowledge of these processes is based on results from modern theory and modeling studies of the reconnection process. Proper design and execution of a mission targeting magnetic reconnection should include this knowledge and have to ensure that all relevant scales and effects can be resolved by mission measurements. The SMART mission has responded to this need through a tight integration between instrument and theory and modeling teams. Input from theory and modeling is fed into all aspects of science mission design, and theory and modeling activities are tailored

  1. Elementary Science Teachers' Integration of Engineering Design into Science Instruction: Results from a Randomised Controlled Trial

    Science.gov (United States)

    Maeng, Jennifer L.; Whitworth, Brooke A.; Gonczi, Amanda L.; Navy, Shannon L.; Wheeler, Lindsay B.

    2017-01-01

    This randomised controlled trial used a mixed-methods approach to investigate the frequency and how elementary teachers integrated engineering design (ED) principles into their science instruction following professional development (PD). The ED components of the PD were aligned with Cunningham and Carlsen's [(2014). "Teaching engineering…

  2. Integration of Molecular Pathology, Epidemiology, and Social Science for Global Precision Medicine

    Science.gov (United States)

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L.; Nishihara, Reiko; Tan, Andy S.; Kawachi, Ichiro; Ogino, Shuji

    2015-01-01

    Summary The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations, and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial, and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors, and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference, and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology, and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors, and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging, and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science. PMID:26636627

  3. Integration of molecular pathology, epidemiology and social science for global precision medicine.

    Science.gov (United States)

    Nishi, Akihiro; Milner, Danny A; Giovannucci, Edward L; Nishihara, Reiko; Tan, Andy S; Kawachi, Ichiro; Ogino, Shuji

    2016-01-01

    The precision medicine concept and the unique disease principle imply that each patient has unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic alterations and interactions between cells (including immune cells) and exposures, including dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze disease risk factors and develop statistical methodologies to maximize utilization of big data on populations and disease pathology. The evolving transdisciplinary field of molecular pathological epidemiology (MPE) can advance biomedical and health research by linking exposures to molecular pathologic signatures, enhancing causal inference and identifying potential biomarkers for clinical impact. The MPE approach can be applied to any diseases, although it has been most commonly used in neoplastic diseases (including breast, lung and colorectal cancers) because of availability of various molecular diagnostic tests. However, use of state-of-the-art genomic, epigenomic and other omic technologies and expensive drugs in modern healthcare systems increases racial, ethnic and socioeconomic disparities. To address this, we propose to integrate molecular pathology, epidemiology and social science. Social epidemiology integrates the latter two fields. The integrative social MPE model can embrace sociology, economics and precision medicine, address global health disparities and inequalities, and elucidate biological effects of social environments, behaviors and networks. We foresee advancements of molecular medicine, including molecular diagnostics, biomedical imaging and targeted therapeutics, which should benefit individuals in a global population, by means of an interdisciplinary approach of integrative MPE and social health science.

  4. Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects

  5. Artificial Intelligence Needs More Emphasis on Basic Research: President's Quarterly Message

    OpenAIRE

    McCarthy, John

    1983-01-01

    Too few people are doing basic research in AI relative to the number working on applications. The ratio of basic/applied is less in AI than in the older sciences and than in computer science generally. This is unfortunate, because reaching human level artificial intelligence will require fundamental conceptual advances.

  6. Web portal on environmental sciences "ATMOS''

    Directory of Open Access Journals (Sweden)

    E. P. Gordov

    2006-01-01

    Full Text Available The developed under INTAS grant web portal ATMOS (http://atmos.iao.ru and http://atmos.scert.ru makes available to the international research community, environmental managers, and the interested public, a bilingual information source for the domain of Atmospheric Physics and Chemistry, and the related application domain of air quality assessment and management. It offers access to integrated thematic information, experimental data, analytical tools and models, case studies, and related information and educational resources compiled, structured, and edited by the partners into a coherent and consistent thematic information resource. While offering the usual components of a thematic site such as link collections, user group registration, discussion forum, news section etc., the site is distinguished by its scientific information services and tools: on-line models and analytical tools, and data collections and case studies together with tutorial material. The portal is organized as a set of interrelated scientific sites, which addressed basic branches of Atmospheric Sciences and Climate Modeling as well as the applied domains of Air Quality Assessment and Management, Modeling, and Environmental Impact Assessment. Each scientific site is open for external access information-computational system realized by means of Internet technologies. The main basic science topics are devoted to Atmospheric Chemistry, Atmospheric Spectroscopy and Radiation, Atmospheric Aerosols, Atmospheric Dynamics and Atmospheric Models, including climate models. The portal ATMOS reflects current tendency of Environmental Sciences transformation into exact (quantitative sciences and is quite effective example of modern Information Technologies and Environmental Sciences integration. It makes the portal both an auxiliary instrument to support interdisciplinary projects of regional environment and extensive educational resource in this important domain.

  7. The Community for Data Integration (CDI): Building Knowledge, Networks, and Integrated Science Capacity

    Science.gov (United States)

    Hsu, L.

    2017-12-01

    In 2009, the U.S. Geological Survey determined that a focused effort on data integration was necessary to capture the full scientific potential of its topically and geographically diverse data assets. The Community for Data Integration was established to fill this role, and an emphasis emerged on grassroots learning and solving of shared data integration and management challenges. Now, eight years later, the CDI has grown to over 700 members and runs monthly presentations, working groups, special training events, and an annual USGS-wide grants program. With a diverse membership of scientists, technologists, data managers, program managers, and others, there are a wide range of motivations and interests competing to drive the direction of the community. Therefore, an important role of the community coordinators is to prioritize member interests while valuing and considering many different viewpoints. To do this, new tools and mechanisms are frequently introduced to circulate information and obtain community input and feedback. The coordinators then match community interests with opportunities to address USGS priorities. As a result, the community has facilitated the implementation of USGS-wide data policies and data management procedures, produced guidelines and lessons learned for technologies like mobile applications and use of semantic web technologies, and developed technical recommendations to enable integrated science capacity for USGS leadership.

  8. On the Diversity of Linguistic Data and the Integration of the Language Sciences

    Directory of Open Access Journals (Sweden)

    Roberta D’Alessandro

    2017-11-01

    Full Text Available An integrated science of language is usually advocated as a step forward for linguistic research. In this paper, we maintain that integration of this sort is premature, and cannot take place before we identify a common object of study. We advocate instead a science of language that is inherently multi-faceted, and takes into account the different viewpoints as well as the different definitions of the object of study. We also advocate the use of different data sources, which, if non-contradictory, can provide more solid evidence for linguistic analysis. Last, we argue that generative grammar is an important tile in the puzzle.

  9. Principles of systems science

    CERN Document Server

    Mobus, George E

    2015-01-01

    This pioneering text provides a comprehensive introduction to systems structure, function, and modeling as applied in all fields of science and engineering. Systems understanding is increasingly recognized as a key to a more holistic education and greater problem solving skills, and is also reflected in the trend toward interdisciplinary approaches to research on complex phenomena. The subject of systems science, as a basis for understanding the components and drivers of phenomena at all scales, should be viewed with the same importance as a traditional liberal arts education. Principles of Systems Science contains many graphs, illustrations, side bars, examples, and problems to enhance understanding. From basic principles of organization, complexity, abstract representations, and behavior (dynamics) to deeper aspects such as the relations between information, knowledge, computation, and system control, to higher order aspects such as auto-organization, emergence and evolution, the book provides an integrated...

  10. Conceptual Integration of Chemical Equilibrium by Prospective Physical Sciences Teachers

    Science.gov (United States)

    Ganaras, Kostas; Dumon, Alain; Larcher, Claudine

    2008-01-01

    This article describes an empirical study concerning the mastering of the chemical equilibrium concept by prospective physical sciences teachers. The main objective was to check whether the concept of chemical equilibrium had become an integrating and unifying concept for them, that is to say an operational and functional knowledge to explain and…

  11. Development of a Mathematics, Science, and Technology Education Integrated Program for a Maglev

    Science.gov (United States)

    Park, Hyoung Seo

    2006-01-01

    The purpose of the study was to develop an MST Integrated Program for making a Maglev hands-on activity for higher elementary school students in Korea. In this MST Integrated Program, students will apply Mathematics, Science, and Technology principles and concepts to the design, construction, and evaluation of a magnetically levitated vehicle. The…

  12. A natural user interface to integrate citizen science and physical exercise.

    Science.gov (United States)

    Palermo, Eduardo; Laut, Jeffrey; Nov, Oded; Cappa, Paolo; Porfiri, Maurizio

    2017-01-01

    Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  13. A natural user interface to integrate citizen science and physical exercise.

    Directory of Open Access Journals (Sweden)

    Eduardo Palermo

    Full Text Available Citizen science enables volunteers to contribute to scientific projects, where massive data collection and analysis are often required. Volunteers participate in citizen science activities online from their homes or in the field and are motivated by both intrinsic and extrinsic factors. Here, we investigated the possibility of integrating citizen science tasks within physical exercises envisaged as part of a potential rehabilitation therapy session. The citizen science activity entailed environmental mapping of a polluted body of water using a miniature instrumented boat, which was remotely controlled by the participants through their physical gesture tracked by a low-cost markerless motion capture system. Our findings demonstrate that the natural user interface offers an engaging and effective means for performing environmental monitoring tasks. At the same time, the citizen science activity increases the commitment of the participants, leading to a better motion performance, quantified through an array of objective indices. The study constitutes a first and necessary step toward rehabilitative treatments of the upper limb through citizen science and low-cost markerless optical systems.

  14. On art and science: an epistemic framework for integrating social science and clinical medicine.

    Science.gov (United States)

    Wasserman, Jason Adam

    2014-06-01

    Calls for incorporating social science into patient care typically have accounted for neither the logistic constraints of medical training nor the methodological fallacies of utilizing aggregate "social facts" in clinical practice. By elucidating the different epistemic approaches of artistic and scientific practices, this paper illustrates an integrative artistic pedagogy that allows clinical practitioners to generate social scientific insights from actual patient encounters. Although there is no shortage of calls to bring social science into medicine, the more fundamental processes of thinking by which art and science proceed have not been addressed to this end. As such, the art of medical practice is conceptualized as an innate gift, and thus little is done to cultivate it. Yet doing so is more important than ever because uncertainty in diagnosing and treating chronic illnesses, the most significant contemporary mortality risks, suggests a re-expanding role for clinical judgment. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The science of autonomy: integrating autonomous systems with the ISR enterprise

    Science.gov (United States)

    Creech, Gregory S.

    2013-05-01

    Consider a future where joint, unmanned operations are the norm. A fleet of autonomous airborne systems conducts overwatch and surveillance for their land and sea brethren, accurately reporting adversary position and aptly guiding the group of autonomous land and sea warriors into position to conduct a successful takedown. Sounds a bit like science fiction, but reality is just around the corner. The DoD ISR Enterprise has evolved significantly over the past decade and has learned many a harsh lesson along the way. Autonomous system operations supporting the warfighter have also evolved, arguably to a point where integration into the ISR Enterprise is a must, in order to reap the benefits that these highly capable systems possess. Achieving meaningful integration, however, is not without its challenges. The ISR Enterprise, for example, is still plagued with "stovepipe" efforts - sufficiently filling a niche for an immediate customer need, but doing little to service the needs of the greater enterprise. This paper will examine the science of autonomy, the challenges and potential benefits that it brings to the ISR Enterprise and recommendations that will facilitate smooth integration of emerging autonomous systems with the mature suite of traditional manned and unmanned ISR platforms.

  16. Epistemology, development, and integrity in a science education professional development program

    Science.gov (United States)

    Hancock, Elizabeth St. Petery

    This research involved interpretive inquiry to understand changes in the notion of "self" as expressed by teachers recently enrolled as graduate students in an advanced degree program in science education at Florida State University. Teachers work in a context that integrates behavior, social structure, culture, and intention. Within this context, this study focused on the intentional realm that involves interior understandings, including self-epistemology, professional self-identity, and integrity. Scholarship in adult and teacher development, especially ways of knowing theory, guided my efforts to understand change in these notions of self. The five participants in this study were interviewed in depth to explore their "self"-related understandings in detail. The other primary data sources were portfolios and work the participants submitted as part of the program. Guided by a constructivist methodology, I used narrative inquiry and grounded theory to conduct data analysis. As learners and teachers, these individuals drew upon epistemological orientations emphasizing a procedural orientation to knowledge. They experienced varying degrees of interior and exterior development in self and epistemology. They created integrity in their efforts to align their intentions with their actions with a dynamic relationship to context. This study suggests that professional development experiences in science education include consideration of the personal and the professional, recognize and honor differing perspectives, facilitate development, and assist individuals to recognize and articulate their integrity.

  17. Health Care and Family and Consumer Sciences Education: An Integrative Approach.

    Science.gov (United States)

    Montgomery, Ruth; Rider, Mary Ellen

    2001-01-01

    Uses ecological systems theory as a foundation for integrating health care and its public policy issues into family and consumer sciences classrooms. Offers teachers alternative perspectives on consumer behavior changes and needs in heath care systems and policies. Contains 24 references. (JOW)

  18. Gardening for Homonyms: Integrating Science and Language Arts to Support Children's Creative Use of Multiple Meaning Words

    Science.gov (United States)

    Luna, Melissa J.; Rye, James Andrew; Forinash, Melissa; Minor, Alana

    2015-01-01

    Curriculum integration can increase the presence of science at the elementary level. The purpose of this article is to share how two second-grade teachers have integrated language arts content as a part of science-language arts instruction in a garden-based learning context. One application was a teacher-designed "Gardening for Homonyms"…

  19. FY 2005 annual report. 21st century COE program isotope science and engineering from basics to applications

    International Nuclear Information System (INIS)

    2006-09-01

    The 05' activity on 21st century COE program, Nagoya University, Isotopes open the future' is reported. The contents are: Research and educational execution planning; Operational reports (research activities, educational activities, international conferences, etc.); Research activities (1. the basic research field...isotope separation, isotope production, isotope measurement, and isotope materials, 2. the composite and development field...isotopes in biology, cultural science, and environment, 3. research contributions); Educational activities (1. programs for assist of young research students, 2. lectures on English, 3. lectures for postgraduate students). (M.H.)

  20. A structured four-step curriculum in basic laparoscopy

    DEFF Research Database (Denmark)

    Strandbygaard, Jeanett; Bjerrum, Flemming; Maagaard, Mathilde

    2014-01-01

    The objective of this study was to develop a 4-step curriculum in basic laparoscopy consisting of validated modules integrating a cognitive component, a practical component and a procedural component.......The objective of this study was to develop a 4-step curriculum in basic laparoscopy consisting of validated modules integrating a cognitive component, a practical component and a procedural component....

  1. Research on integrated simulation of fluid-structure system by computation science techniques

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1996-01-01

    In Power Reactor and Nuclear Fuel Development Corporation, the research on the integrated simulation of fluid-structure system by computation science techniques has been carried out, and by its achievement, the verification of plant systems which has depended on large scale experiments is substituted by computation science techniques, in this way, it has been aimed at to reduce development costs and to attain the optimization of FBR systems. For the purpose, it is necessary to establish the technology for integrally and accurately analyzing complicated phenomena (simulation technology), the technology for applying it to large scale problems (speed increasing technology), and the technology for assuring the reliability of the results of analysis when simulation technology is utilized for the permission and approval of FBRs (verifying technology). The simulation of fluid-structure interaction, the heat flow simulation in the space with complicated form and the related technologies are explained. As the utilization of computation science techniques, the elucidation of phenomena by numerical experiment and the numerical simulation as the substitute for tests are discussed. (K.I.)

  2. Using Self-Reflection To Increase Science Process Skills in the General Chemistry Laboratory

    Science.gov (United States)

    Veal, William R.; Taylor, Dawne; Rogers, Amy L.

    2009-03-01

    Self-reflection is a tool of instruction that has been used in the science classroom. Research has shown great promise in using video as a learning tool in the classroom. However, the integration of self-reflective practice using video in the general chemistry laboratory to help students develop process skills has not been done. Immediate video feedback and direct instruction were employed in a general chemistry laboratory course to improve students' mastery and understanding of basic and advanced process skills. Qualitative results and statistical analysis of quantitative data proved that self-reflection significantly helped students develop basic and advanced process skills, yet did not seem to influence the general understanding of the science content.

  3. Linkage of reproductive sciences: from 'quick fix' to 'integrated' conservation.

    Science.gov (United States)

    Wildt, D E; Ellis, S; Howard, J G

    2001-01-01

    Our laboratory has experienced four phases in understanding how the reproductive sciences contribute to genuine conservation of biodiversity. The first is the 'quick fix phase' in which the erroneous assumption is made that extant knowledge and techniques are readily adaptable to an unstudied wild animal to produce offspring rapidly. The second is the 'species-specificity phase' in which it is recognized that every species has evolved unique reproductive mechanisms that must be mastered before propagation can be enhanced. The third is the 'applicability phase' in which one grasps that all the new knowledge and technology are of minimal relevance without the cooperation of wildlife managers. The final phase is 'integration', the realization that reproduction is only one component in an abundantly complex conservation puzzle that requires interweaving many scientific disciplines with elaborate biopolitical, economic and habitat variables. These phases are illustrated using 20 years of experience with wildlife species, including the cheetah, black-footed ferret and giant panda. We conclude that the foremost value of the reproductive sciences for conserving endangered species is the discipline's powerful laboratory tools for understanding species-specific reproductive mechanisms. Such scholarly information, when applied holistically, can be used to improve management by natural or, occasionally, assisted breeding. Genuine conservation is achieved only when the reproductive knowledge and technologies are integrated into multidisciplinary programmes that preserve species integrity ex situ and preferably in situ.

  4. Physics Education: Effect of Micro-Teaching Method Supported by Educational Technologies on Pre-Service Science Teachers' Misconceptions on Basic Astronomy Subjects

    Science.gov (United States)

    Gurbuz, Fatih

    2016-01-01

    The purpose of this research study is to explore pre-service science teachers' misconceptions on basic astronomy subjects and to examine the effect of micro teaching method supported by educational technologies on correcting misconceptions. This study is an action research. Semi- structured interviews were used in the study as a data collection…

  5. Soil and Living Things. Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 4.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the structure of the two main soil types in Seychelles; (2) the role of roots in…

  6. The implementation of integrated science teaching materials based socio-scientific issues to improve students scientific literacy for environmental pollution theme

    Science.gov (United States)

    Yenni, Rita; Hernani, Widodo, Ari

    2017-05-01

    The study aims to determine the increasing of students' science literacy skills on content aspects and competency of science by using Integrated Science teaching materials based Socio-scientific Issues (SSI) for environmental pollution theme. The method used in the study is quasi-experiment with nonequivalent pretest and posttest control group design. The students of experimental class used teaching materials based SSI, whereas the students of control class were still using the usual textbooks. The result of this study showed a significant difference between the value of N-gain of experimental class and control class, whichalso occurred in every indicator of content aspects and competency of science. This result indicates that using of Integrated Science teaching materials based SSI can improve content aspect and competency of science and can be used as teaching materials alternative in teaching of Integrated Science.

  7. Exploring the Associations Among Nutrition, Science, and Mathematics Knowledge for an Integrative, Food-Based Curriculum.

    Science.gov (United States)

    Stage, Virginia C; Kolasa, Kathryn M; Díaz, Sebastián R; Duffrin, Melani W

    2018-01-01

    Explore associations between nutrition, science, and mathematics knowledge to provide evidence that integrating food/nutrition education in the fourth-grade curriculum may support gains in academic knowledge. Secondary analysis of a quasi-experimental study. Sample included 438 students in 34 fourth-grade classrooms across North Carolina and Ohio; mean age 10 years old; gender (I = 53.2% female; C = 51.6% female). Dependent variable = post-test-nutrition knowledge; independent variables = baseline-nutrition knowledge, and post-test science and mathematics knowledge. Analyses included descriptive statistics and multiple linear regression. The hypothesized model predicted post-nutrition knowledge (F(437) = 149.4, p mathematics knowledge were predictive of nutrition knowledge indicating use of an integrative science and mathematics curriculum to improve academic knowledge may also simultaneously improve nutrition knowledge among fourth-grade students. Teachers can benefit from integration by meeting multiple academic standards, efficiently using limited classroom time, and increasing nutrition education provided in the classroom. © 2018, American School Health Association.

  8. Sensors, Circuits, and Satellites - NGSS at it's best: the integration of three dimensions with NASA science

    Science.gov (United States)

    Butcher, G. J.; Roberts-Harris, D.

    2013-12-01

    A set of innovative classroom lessons were developed based on informal learning activities in the 'Sensors, Circuits, and Satellites' kit manufactured by littleBits™ Electronics that are designed to lead students through a logical science content storyline about energy using sound and light and fully implements an integrated approach to the three dimensions of the Next Generation of Science Standards (NGSS). This session will illustrate the integration of NGSS into curriculum by deconstructing lesson design to parse out the unique elements of the 3 dimensions of NGSS. We will demonstrate ways in which we have incorporated the NGSS as we believe they were intended. According to the NGSS, 'The real innovation in the NGSS is the requirement that students are required to operate at the intersection of practice, content, and connection. Performance expectations are the right way to integrate the three dimensions. It provides specificity for educators, but it also sets the tone for how science instruction should look in classrooms. (p. 3). The 'Sensors, Circuits, and Satellites' series of lessons accomplishes this by going beyond just focusing on the conceptual knowledge (the disciplinary core ideas) - traditionally approached by mapping lessons to standards. These lessons incorporate the other 2 dimensions -cross-cutting concepts and the 8-practices of Sciences and Engineering-via an authentic and exciting connection to NASA science, thus implementing the NGSS in the way they were designed to be used: practices and content with the crosscutting concepts. When the NGSS are properly integrated, students are engaged in science and engineering content through the coupling of practice, content and connection. In the past, these two dimensions have been separated as distinct entities. We know now that coupling content and practices better demonstrates what goes on in real world science and engineering. We set out to accomplish what is called for in NGSS by integrating these

  9. Basic Research Needs for Countering Terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, W.; Michalske, T.; Trewhella, J.; Makowski, L.; Swanson, B.; Colson, S.; Hazen, T.; Roberto, F.; Franz, D.; Resnick, G.; Jacobson, S.; Valdez, J.; Gourley, P.; Tadros, M.; Sigman, M.; Sailor, M.; Ramsey, M.; Smith, B.; Shea, K.; Hrbek, J.; Rodacy, P.; Tevault, D.; Edelstein, N.; Beitz, J.; Burns, C.; Choppin, G.; Clark, S.; Dietz, M.; Rogers, R.; Traina, S.; Baldwin, D.; Thurnauer, M.; Hall, G.; Newman, L.; Miller, D.; Kung, H.; Parkin, D.; Shuh, D.; Shaw, H.; Terminello, L.; Meisel, D.; Blake, D.; Buchanan, M.; Roberto, J.; Colson, S.; Carling, R.; Samara, G.; Sasaki, D.; Pianetta, P.; Faison, B.; Thomassen, D.; Fryberger, T.; Kiernan, G.; Kreisler, M.; Morgan, L.; Hicks, J.; Dehmer, J.; Kerr, L.; Smith, B.; Mays, J.; Clark, S.

    2002-03-01

    To identify connections between technology needs for countering terrorism and underlying science issues and to recommend investment strategies to increase the impact of basic research on efforts to counter terrorism.

  10. FY 2006 annual report. 21st century COE program isotope science and engineering from basics to applications

    International Nuclear Information System (INIS)

    2007-01-01

    The 06' activity on 21st century COE program, Nagoya University, Isotopes open the future' is reported. The contents are: Research and educational execution planning; Operational reports (research activities, educational activities, international conferences, etc.); Research activities (1. the basic research field...isotope separation, isotope production, isotope measurement, and isotope materials, 2. the composite and development field...isotopes in biology, cultural science, and environment, 3. the young researchers unit for composite research, 4. research contributions); Educational activities (1. programs for assist of young researchers, 2. lectures on English, 3. lectures for postgraduate students). (J.P.N.)

  11. Blended learning – integrating E-learning with traditional learning methods in teaching basic medical science

    OpenAIRE

    J.G. Bagi; N.K. Hashilkar

    2014-01-01

    Background: Blended learning includes an integration of face to face classroom learning with technology enhanced online material. It provides the convenience, speed and cost effectiveness of e-learning with the personal touch of traditional learning. Objective: The objective of the present study was to assess the effectiveness of a combination of e-learning module and traditional teaching (Blended learning) as compared to traditional teaching alone to teach acid base homeostasis to Phase I MB...

  12. Progress in photon science basics and applications

    CERN Document Server

    2017-01-01

    This book features chapters based on lectures presented by world-leading researchers of photon science from Russia and Japan at the first “STEPS Symposium on Photon Science” held in Tokyo in March 2015. It describes recent progress in the field of photon science, covering a wide range of interest to experts in the field, including laser-plasma interaction, filamentation and its applications, laser assisted electron scattering, exotic properties of light, ultrafast imaging, molecules and clusters in intense laser fields, photochemistry and spectroscopy of novel materials, laser-assisted material synthesis, and photon technology.

  13. Positive Impact of Integrating Histology and Physiology Teaching at a Medical School in China

    Science.gov (United States)

    Sherer, Renslow; Wan, Yu; Dong, Hongmei; Cooper, Brian; Morgan, Ivy; Peng, Biwen; Liu, Jun; Wang, Lin; Xu, David

    2014-01-01

    To modernize its stagnant, traditional curriculum and pedagogy, the Medical School of Wuhan University in China adopted (with modifications) the University of Chicago's medical curriculum model. The reform effort in basic sciences was integrating histology and physiology into one course, increasing the two subjects' connection to clinical…

  14. Integrating international relations and environmental science course concepts through an interactive world politics simulation

    Science.gov (United States)

    Straub, K. H.; Kesgin, B.

    2012-12-01

    During the fall 2012 semester, students in two introductory courses at Susquehanna University - EENV:101 Environmental Science and POLI:131 World Affairs - will participate together in an online international relations simulation called Statecraft (www.statecraftsim.com). In this strategy game, students are divided into teams representing independent countries, and choose their government type (democracy, constitutional monarchy, communist totalitarian, or military dictatorship) and two country attributes (industrial, green, militaristic, pacifist, or scientific), which determine a set of rules by which that country must abide. Countries interact over issues such as resource distribution, war, pollution, immigration, and global climate change, and must also keep domestic political unrest to a minimum in order to succeed in the game. This simulation has typically been run in political science courses, as the goal is to allow students to experience the balancing act necessary to maintain control of global and domestic issues in a dynamic, diverse world. This semester, environmental science students will be integrated into the simulation, both as environmental advisers to each country and as independent actors representing groups such as Greenpeace, ExxonMobil, and UNEP. The goal in integrating the two courses in the simulation is for the students in each course to gain both 1) content knowledge of certain fundamental material in the other course, and 2) a more thorough, applied understanding of the integrated nature of the two subjects. Students will gain an appreciation for the multiple tradeoffs that decision-makers must face in the real world (economy, resources, pollution, health, defense, etc.). Environmental science students will link these concepts to the traditional course material through a "systems thinking" approach to sustainability. Political science students will face the challenges of global climate change and gain an understanding of the nature of

  15. Beyond the Flipped Classroom: A Highly Interactive Cloud-Classroom (HIC) Embedded into Basic Materials Science Courses

    Science.gov (United States)

    Liou, Wei-Kai; Bhagat, Kaushal Kumar; Chang, Chun-Yen

    2016-06-01

    The present study compares the highly interactive cloud-classroom (HIC) system with traditional methods of teaching materials science that utilize crystal structure picture or real crystal structure model, in order to examine its learning effectiveness across three dimensions: knowledge, comprehension and application. The aim of this study was to evaluate the (HIC) system, which incorporates augmented reality, virtual reality and cloud-classroom to teach basic materials science courses. The study followed a pretest-posttest quasi-experimental research design. A total of 92 students (aged 19-20 years), in a second-year undergraduate program, participated in this 18-week-long experiment. The students were divided into an experimental group and a control group. The experimental group (36 males and 10 females) was instructed utilizing the HIC system, while the control group (34 males and 12 females) was led through traditional teaching methods. Pretest, posttest, and delayed posttest scores were evaluated by multivariate analysis of covariance. The results indicated that participants in the experimental group who used the HIC system outperformed the control group, in the both posttest and delayed posttest, across three learning dimensions. Based on these results, the HIC system is recommended to be incorporated in formal materials science learning settings.

  16. Simple webs of natural environment theme as a result of sharing in science teacher training

    Science.gov (United States)

    Tapilouw, M. C.; Firman, H.; Redjeki, S.; Chandra, D. T.

    2018-03-01

    Thematic learning is one type of integrated science (Biology, Physics, Chemistry and Earth Science) in Science Education. This study is concerning about simple webs of natural environment theme in science learning, as one of training material in science teacher training program. Making simple web is a goal of first step in teacher training program. Every group explain their web illustration to other group. Twenty Junior High School science teacher above one education foundation participate in science teacher training program. In order to gather simple webs, sharing method was used in this first step of science teacher training. The result of this study is five different simple web of natural environment themes. These webs represent science learning in class VII/Semester I, class VII/Semester II, Class VIII, Class IX/Semester I, Class IX/Semester II based on basic competency in National Curriculum 2013. Each group discussed web of natural environment theme based on their learning experience in real class which basic competency and subject matters are linked with natural environment theme. As a conclusion, simple webs are potential to develop in the next step of science teacher training program and to be implemented in real class.

  17. USGS Integration of New Science and Technology, Appendix A

    Science.gov (United States)

    Brey, Marybeth; Knights, Brent C.; Cupp, Aaron R.; Amberg, Jon J.; Chapman, Duane C.; Calfee, Robin D.; Duncker, James J.

    2017-01-01

    This product summarizes the USGS plans for integration of new science and technology into Asian Carp control efforts for 2017. This includes the 1) implementation and evaluation of new tactics and behavioral information for monitoring, surveillance, control and containment; 2) understanding behavior and reproduction of Asian carp in established and emerging populations to inform deterrent deployment, rapid response, and removal efforts; and 3) development and evaluation of databases, decision support tools and performance measures.

  18. A Faculty Development Program can result in an improvement of the quality and output in medical education, basic sciences and clinical research and patient care.

    Science.gov (United States)

    Dieter, Peter Erich

    2009-07-01

    The Carl Gustav Carus Faculty of Medicine, University of Technology Dresden, Germany, was founded in 1993 after the reunification of Germany. In 1999, a reform process of medical education was started together with Harvard Medical International.The traditional teacher- and discipline-centred curriculum was displaced by a student-centred, interdisciplinary and integrative curriculum, which has been named Dresden Integrative Patient/Problem-Oriented Learning (DIPOL). The reform process was accompanied and supported by a parallel-ongoing Faculty Development Program. In 2004, a Quality Management Program in medical education was implemented, and in 2005 medical education received DIN EN ISO 9001:2000 certification. Quality Management Program and DIN EN ISO 9001:2000 certification were/are unique for the 34 medical schools in Germany.The students play a very important strategic role in all processes. They are members in all committees like the Faculty Board, the Board of Study Affairs (with equal representation) and the ongoing audits in the Quality Management Program. The Faculty Development program, including a reform in medical education, the establishment of the Quality Management program and the certification, resulted in an improvement of the quality and output of medical education and was accompanied in an improvement of the quality and output of basic sciences and clinical research and interdisciplinary patient care.

  19. Examination of the relationship between preservice science teachers' scientific reasoning and problem solving skills on basic mechanics

    Science.gov (United States)

    Yuksel, Ibrahim; Ates, Salih

    2018-02-01

    The purpose of this study is to determine relationship between scientific reasoning and mechanics problem solving skills of students in science education program. Scientific Reasoning Skills Test (SRST) and Basic Mechanics Knowledge Test (BMKT) were applied to 90 second, third and fourth grade students who took Scientific Reasoning Skills course at science teaching program of Gazi Faculty of Education for three successive fall semesters of 2014, 2015 and 2016 academic years. It was found a statistically significant positive (p = 0.038 <0.05) but a low correlation (r = 0.219) between SRST and BMKT. There were no significant relationship among Conservation Laws, Proportional Thinking, Combinational Thinking, Correlational Thinking, Probabilistic Thinking subskills of reasoning and BMKT. There were significant and positive correlation among Hypothetical Thinking and Identifying and Controlling Variables subskills of reasoning and BMKT. The findings of the study were compared with other studies in the field and discussed.

  20. Computational Fluid Dynamics Methods and Their Applications in Medical Science

    Directory of Open Access Journals (Sweden)

    Kowalewski Wojciech

    2016-12-01

    Full Text Available As defined by the National Institutes of Health: “Biomedical engineering integrates physical, chemical, mathematical, and computational sciences and engineering principles to study biology, medicine, behavior, and health”. Many issues in this area are closely related to fluid dynamics. This paper provides an overview of the basic concepts concerning Computational Fluid Dynamics and its applications in medicine.