WorldWideScience

Sample records for integrally stiffened aircraft

  1. Crack turning in integrally stiffened aircraft structures

    Science.gov (United States)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture

  2. Design and evaluation of a foam-filled hat-stiffened panel concept for aircraft primary structural applications

    Science.gov (United States)

    Ambur, Damodar R.

    1995-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as stiffener core has been designed for aircraft primary structural applications. This stiffener concept utilizes a manufacturing process that can be adapted readily to grid-stiffened structural configurations which possess inherent damage tolerance characteristics due to their multiplicity of load paths. The foam-filled hat-stiffener concept in a prismatically stiffened panel configuration is more efficient than most other stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The prismatically stiffened panel concept investigated here has been designed using AS4/3502 preimpregnated tape and Rohacell foam core and evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimens suggest that this structural concept responds to loading as anticipated and has good damage tolerance characteristics.

  3. Impact damage and residual strength analysis of composite panels with bonded stiffeners. [for primary aircraft structures

    Science.gov (United States)

    Madan, Ram C.; Shuart, Mark J.

    1990-01-01

    Blade-stiffened, compression-loaded cover panels were designed, manufactured, analyzed, and tested. All panels were fabricated from IM6/1808I interleafed graphite-epoxy. An orthotropic blade stiffener and an orthotropic skin were selected to satisfy the design requirements for an advanced aircraft configuration. All specimens were impact damaged prior to testing. Experimental results were obtained for three- and five-stiffener panels. Analytical results described interlaminar forces caused by impact and predicted specimen residual strength. The analytical results compared reasonably with the experimental results for residual strength of the specimens.

  4. Aircraft interior noise models - Sidewall trim, stiffened structures, and cabin acoustics with floor partition

    Science.gov (United States)

    Pope, L. D.; Wilby, E. G.; Willis, C. M.; Mayes, W. H.

    1983-01-01

    As part of the continuing development of an aircraft interior noise prediction model, in which a discrete modal representation and power flow analysis are used, theoretical results are considered for inclusion of sidewall trim, stiffened structures, and cabin acoustics with floor partition. For validation purposes, predictions of the noise reductions for three test articles (a bare ring-stringer stiffened cylinder, an unstiffened cylinder with floor and insulation, and a ring-stringer stiffened cylinder with floor and sidewall trim) are compared with measurements.

  5. Flexible neural interfaces with integrated stiffening shank

    Energy Technology Data Exchange (ETDEWEB)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2017-10-17

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  6. Flexible neural interfaces with integrated stiffening shank

    Science.gov (United States)

    Tooker, Angela C.; Felix, Sarah H.; Pannu, Satinderpall S.; Shah, Kedar G.; Sheth, Heeral; Tolosa, Vanessa

    2016-07-26

    A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.

  7. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    Science.gov (United States)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  8. Structure-Property Correlations in Al-Li Alloy Integrally Stiffened Extrusions

    Science.gov (United States)

    Hales, Stephen J.; Hafley, Robert A.

    2001-01-01

    The objective of this investigation was to establish the relationship between mechanical property anisotropy, microstructure and crystallographic texture in integrally 'T'-stiffened extruded panels fabricated from the Al-Li alloys 2195, 2098 and 2096. In-plane properties were measured as a function of orientation at two locations in the panels, namely mid-way between (Skin), and directly beneath (Base), the integral 'T' stiffeners. The 2195 extrusion exhibited the best combination of strength and toughness, but was the most anisotropic. The 2098 extrusion exhibited lower strength and comparable toughness, but was more isotropic than 2195. The 2096 extrusion exhibited the lowest strength and poor toughness, but was the most isotropic. All three alloys exhibited highly elongated grain structures and similar location-dependent variations in grain morphology. The textural characteristics comprised a beta + fiber texture, similar to rolled product, in the Skin regions and alpha + fiber texture, comparable to axisymmetric extruded product, in the Base regions. In an attempt to quantitatively correlate texture with yield strength anisotropy, the original 'full constraint' Taylor model and a variant of the 'relaxed constraint' model, explored by Wert et al., were applied to the data. A comparison of the results revealed that the Wert model was consistently more accurate than the Taylor model.

  9. Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL)

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Aircraft Wiring Support Equipment Integration Laboratory (AWSEIL) provides a variety of research, design engineering and prototype fabrication services...

  10. Aircraft System Design and Integration

    Directory of Open Access Journals (Sweden)

    D. P. Coldbeck

    2000-01-01

    Full Text Available In the 1980's the British aircraft industry changed its approach to the management of projects from a system where a project office would manage a project and rely on a series of specialist departments to support them to a more process oriented method, using systems engineering models, whose most outwardly visible signs were the introduction of multidisciplinary product teams. One of the problems with the old method was that the individual departments often had different priorities and projects would get uneven support. The change in the system was only made possible for complex designs by the electronic distribution of data giving instantaneous access to all involved in the project. In 1997 the Defence and Aerospace Foresight Panel emphasised the need for a system engineering approach if British industry was to remain competitive. The Royal Academy of Engineering recognised that the change in working practices also changed what was required of a chartered engineer and redefined their requirements in 1997 [1]. The result of this is that engineering degree courses are now judged against new criteria with more emphasis placed on the relevance to industry rather than on purely academic content. At the University of Glasgow it was realized that the students ought to be made aware of current working practices and that there ought to be a review to ensure that the degrees give students the skills required by industry. It was decided to produce a one week introduction course in systems engineering for Masters of Engineering (MEng students to be taught by both university lecturers and practitioners from a range of companies in the aerospace industry with the hope of expanding the course into a module. The reaction of the students was favourable in terms of the content but it seems ironic that the main criticism was that there was not enough discussion involving the students. This paper briefly describes the individual teaching modules and discusses the

  11. A fracture mechanics analysis of bonded repaired skin/stiffener structures with inclined central crack

    International Nuclear Information System (INIS)

    Chung, Ki Hyun; Yang, Won Ho; Kim, Cheol; Heo, Sung Pil; Ko, Myung Hoon

    2001-01-01

    Composite patch repair of cracked aircraft structures has been accepted as one of improving fatigue life and attaining better structural integrity. Analysis for the stress intensity factor at the skin/stiffener structure with inclined central crack repaired by composite stiffened panels are developed. A numerical investigation was conducted to characterize the fracture behavior and crack growth behavior. In order to investigate the crack growth direction, Maximum Tangential Stress(MTS) criteria is used. The main objective of this research is the validation of the inclined crack patching design. In this paper, the reduction of stresses intensity factors at the crack-tip and prediction of crack growth direction are determined to evaluate the effects of various non-dimensional design parameter including; composite patch thickness and stiffener distance. The research on cracked structure subjected to mixed mode loading is accomplished and it is evident that more work using different approaches is necessary

  12. Stiffened Composite Fuselage Barrel Optimization

    Science.gov (United States)

    Movva, R. G.; Mittal, A.; Agrawal, K.; Upadhyay, C. S.

    2012-07-01

    In a typical commercial transport aircraft, Stiffened skin panels and frames contribute around 40% of the fuselage weight. In the current study a stiffened composite fuselage skin panel optimization engine is developed for optimization of the layups of composite panels and stringers using Genetic Algorithm (GA). The skin and stringers of the fuselage section are optimized for the strength and the stability requirements. The selection of the GA parameters considered for the optimization is arrived by performing case studies on selected problems. The optimization engine facilitates in carrying out trade studies for selection of the optimum ply layup and material combination for the configuration being analyzed. The optimization process is applied on a sample model and the results are presented.

  13. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    Science.gov (United States)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  14. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  15. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    Kim, Junyong; Chang, Yoonsuk

    2013-01-01

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  16. Experiences with an integrated management system for aircraft maintenance

    International Nuclear Information System (INIS)

    Huber, U.

    1993-01-01

    For 20 years, SWISSAIR has employed an integrated information system for aircraft maintenance. To date, a wide range of functions has been set up in their own development. For the future SWISSAIR is increasingly basing on the use of SAP/standard software packages. 10 figs

  17. Integration of Predictive Display and Aircraft Flight Control System

    Directory of Open Access Journals (Sweden)

    Efremov A.V.

    2017-01-01

    Full Text Available The synthesis of predictive display information and direct lift control system are considered for the path control tracking tasks (in particular landing task. The both solutions are based on pilot-vehicle system analysis and requirements to provide the highest accuracy and lowest pilot workload. The investigation was carried out for cases with and without time delay in aircraft dynamics. The efficiency of the both ways for the flying qualities improvement and their integration is tested by ground based simulation.

  18. Applying a Stiffened Stitched Concept to Shear-Loaded Structure

    Science.gov (United States)

    Jegley, Dawn C.

    2014-01-01

    NASA and The Boeing Company have worked to develop new low-cost, lightweight composite structures for aircraft. A stitched carbon-epoxy material system was developed to reduce the weight and cost of transport aircraft structure, first in the NASA Advanced Composites Technology (ACT) Program in the 1990's and now in the Environmentally Responsible Aviation (ERA) Project. By stitching through the thickness of a dry carbon fiber material prior to cure, the need for mechanical fasteners is almost eliminated. Stitching also provides the benefit of reducing or eliminating delaminations, including those between stiffener flanges and skin. The stitched panel concept used in the ACT program used simple blade-stiffeners as stringers, caps, and clips. Today, the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed for application to advanced vehicle configurations. PRSEUS provides additional weight savings through the use of a stiffener with a thin web and a unidirectional carbon rod at the top of the web which provides structurally efficient stiffening. Comparisons between stitched and unstitched structure and between blade-stiffened and rod-stiffened structure are presented focusing on a panel loaded in shear. Shear loading is representative of spar loading in wing structures.

  19. INTEGRATING UNMANNED AIRCRAFT VEHICLES IN THE ROMANIAN NATIONAL AIRSPACE

    Directory of Open Access Journals (Sweden)

    Sorana Alina Catinca POP

    2015-07-01

    Full Text Available The use of unmanned aerial vehicles in the Romanian civil airspace brings us back to the 1920's, when the first aircraft started to fly over the Romanian sky. Little did the legislators at that time know how to create the proper legal framework for the use of such machines so that all aspects related to their use be covered, as well as identify all potential risks and effects. Nowadays, UAVs are the new aircraft and it is a challenge for the legislators to properly identify the legal framework so that the safety and security of civil aviation are not affected. The paper will address the challenges the regulator faces in the integration of the UAVs in the Romanian civil airspace, developments and issues raised by the current regulation, as well as aspects related to the national regulations expected to enter into force at the end of 2015, beginning of 2016.

  20. Unitized Stiffened Composite Textile Panels: Manufacturing, Characterization, Experiments, and Analysis

    Science.gov (United States)

    Kosztowny, Cyrus Joseph Robert

    Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and

  1. Integrating Cloud-Computing-Specific Model into Aircraft Design

    Science.gov (United States)

    Zhimin, Tian; Qi, Lin; Guangwen, Yang

    Cloud Computing is becoming increasingly relevant, as it will enable companies involved in spreading this technology to open the door to Web 3.0. In the paper, the new categories of services introduced will slowly replace many types of computational resources currently used. In this perspective, grid computing, the basic element for the large scale supply of cloud services, will play a fundamental role in defining how those services will be provided. The paper tries to integrate cloud computing specific model into aircraft design. This work has acquired good results in sharing licenses of large scale and expensive software, such as CFD (Computational Fluid Dynamics), UG, CATIA, and so on.

  2. Compressive Behavior of Frame-Stiffened Composite Panels

    Science.gov (United States)

    Yovanof, Nicolette P.; Jegley, Dawn C.

    2011-01-01

    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented.

  3. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  4. Human systems integration in remotely piloted aircraft operations.

    Science.gov (United States)

    Tvaryanas, Anthony P

    2006-12-01

    The role of humans in remotely piloted aircraft (RPAs) is qualitatively different from manned aviation, lessening the applicability of aerospace medicine human factors knowledge derived from traditional cockpits. Aerospace medicine practitioners should expect to be challenged in addressing RPA crewmember performance. Human systems integration (HSI) provides a model for explaining human performance as a function of the domains of: human factors engineering; personnel; training; manpower; environment, safety, and occupational health (ESOH); habitability; and survivability. RPA crewmember performance is being particularly impacted by issues involving the domains of human factors engineering, personnel, training, manpower, ESOH, and habitability. Specific HSI challenges include: 1) changes in large RPA operator selection and training; 2) human factors engineering deficiencies in current RPA ground control station design and their impact on human error including considerations pertaining to multi-aircraft control; and 3) the combined impact of manpower shortfalls, shiftwork-related fatigue, and degraded crewmember effectiveness. Limited experience and available research makes it difficult to qualitatively or quantitatively predict the collective impact of these issues on RPA crewmember performance. Attending to HSI will be critical for the success of current and future RPA crewmembers. Aerospace medicine practitioners working with RPA crewmembers should gain first-hand knowledge of their task environment while the larger aerospace medicine community needs to address the limited information available on RPA-related aerospace medicine human factors. In the meantime, aeromedical decisions will need to be made based on what is known about other aerospace occupations, realizing this knowledge may have only partial applicability.

  5. Integrated controls pay-off. [for flight/propulsion aircraft systems

    Science.gov (United States)

    Putnam, Terrill W.; Christiansen, Richard S.

    1989-01-01

    It is shown that the integration of the propulsion and flight control systems for high performance aircraft can help reduce pilot workload while simultaneously increasing overall aircraft performance. Results of the Highly Integrated Digital Electronic Control (HiDEC) flight research program are presented to demonstrate the emerging payoffs of controls integration. Ways in which the performance of fighter aircraft can be improved through the use of propulsion for primary aircraft control are discussed. Research being conducted by NASA with the F-18 High Angle-of Attack Research Vehicle is described.

  6. Analytical prediction of the interior noise for cylindrical models of aircraft fuselages for prescribed exterior noise fields. Phase 2: Models for sidewall trim, stiffened structures and cabin acoustics with floor partition

    Science.gov (United States)

    Pope, L. D.; Wilby, E. G.

    1982-01-01

    An airplane interior noise prediction model is developed to determine the important parameters associated with sound transmission into the interiors of airplanes, and to identify apropriate noise control methods. Models for stiffened structures, and cabin acoustics with floor partition are developed. Validation studies are undertaken using three test articles: a ring stringer stiffened cylinder, an unstiffened cylinder with floor partition, and ring stringer stiffened cylinder with floor partition and sidewall trim. The noise reductions of the three test articles are computed using the heoretical models and compared to measured values. A statistical analysis of the comparison data indicates that there is no bias in the predictions although a substantial random error exists so that a discrepancy of more than five or six dB can be expected for about one out of three predictions.

  7. Formulation of an improved smeared stiffener theory for buckling analysis of grid-stiffened composite panels

    Science.gov (United States)

    Jaunky, Navin; Knight, Norman F., Jr.; Ambur, Damodar R.

    1995-01-01

    A smeared stiffener theory for stiffened panels is presented that includes skin-stiffener interaction effects. The neutral surface profile of the skin-stiffener combination is developed analytically using the minimum potential energy principle and statics conditions. The skin-stiffener interaction is accounted for by computing the stiffness due to the stiffener and the skin in the skin-stiffener region about the neutral axis at the stiffener. Buckling load results for axially stiffened, orthogrid, and general grid-stiffened panels are obtained using the smeared stiffness combined with a Rayleigh-Ritz method and are compared with results from detailed finite element analyses.

  8. Unmanned Aircraft Systems: The Road to Effective Integration

    National Research Council Canada - National Science Library

    Petrock, Christopher T; Huizenga, Thomas D

    2006-01-01

    ...) sharing airspace with manned assets. There have been at least two recent collisions between unmanned and rotary-wing aircraft at lower altitudes in Iraq, as well as numerous near misses with fixed-wing aircraft at higher altitudes...

  9. Integrated Network of Optimizations for Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aircraft design is a complex process requiring interactions and exchange of information among multiple disciplines such as aerodynamics, strength, fatigue, controls,...

  10. Landing Gear Integration in Aircraft Conceptual Design. Revision

    Science.gov (United States)

    Chai, Sonny T.; Mason, William H.

    1997-01-01

    The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.

  11. Improving aircraft accident forecasting for an integrated plutonium storage facility

    International Nuclear Information System (INIS)

    Rock, J.C.; Kiffe, J.; McNerney, M.T.; Turen, T.A.

    1998-06-01

    Aircraft accidents pose a quantifiable threat to facilities used to store and process surplus weapon-grade plutonium. The Department of Energy (DOE) recently published its first aircraft accident analysis guidelines: Accident Analysis for Aircraft Crash into Hazardous Facilities. This document establishes a hierarchy of procedures for estimating the small annual frequency for aircraft accidents that impact Pantex facilities and the even smaller frequency of hazardous material released to the environment. The standard establishes a screening threshold of 10 -6 impacts per year; if the initial estimate of impact frequency for a facility is below this level, no further analysis is required. The Pantex Site-Wide Environmental Impact Statement (SWEIS) calculates the aircraft impact frequency to be above this screening level. The DOE Standard encourages more detailed analyses in such cases. This report presents three refinements, namely, removing retired small military aircraft from the accident rate database, correcting the conversion factor from military accident rates (accidents per 100,000 hours) to the rates used in the DOE model (accidents per flight phase), and adjusting the conditional probability of impact for general aviation to more accurately reflect pilot training and local conditions. This report documents a halving of the predicted frequency of an aircraft impact at Pantex and points toward further reductions

  12. A Risk Management Architecture for Emergency Integrated Aircraft Control

    Science.gov (United States)

    McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.

    2011-01-01

    Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.

  13. Unmanned Aircraft Systems Integration in the National Airspace System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security...

  14. Integrating the Unmanned Aircraft System into the National Airspace System

    Science.gov (United States)

    2011-06-18

    HALE High Altitude Long Endurance IFR Instrument Flight Rules ISR Intelligence, Surveillance, and Reconnaissance JFC Joint Force Commander JP...many advantages and disadvantages of unmanned aircraft now made national headlines as UAS executed missions, once reserved for manned aircraft...of this research. To operate above 18,000 feet MSL the UAS must be filed under Instrument Flight Rules, or IFR flight plan. Additionally, the

  15. Aeroelastic Wingbox Stiffener Topology Optimization

    Science.gov (United States)

    Stanford, Bret K.

    2017-01-01

    This work considers an aeroelastic wingbox model seeded with run-out blade stiffeners along the skins. Topology optimization is conducted within the shell webs of the stiffeners, in order to add cutouts and holes for mass reduction. This optimization is done with a global-local approach in order to moderate the computational cost: aeroelastic loads are computed at the wing-level, but the topology and sizing optimization is conducted at the panel-level. Each panel is optimized separately under stress, buckling, and adjacency constraints, and periodically reassembled to update the trimmed aeroelastic loads. The resulting topology is baselined against a design with standard full-depth solid stiffener blades, and found to weigh 7.43% less.

  16. Integral Transportation Systems in Military Transport Aircraft Supply

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Supply of goods, equipment and soldiers by militwy transportaircraft can serve as a support to airborne landing operation,support to encircled forces, and support to forces leadinga gue1rilla war. Transport aircraft are designed in such a wayas to be able to cany containers, pallets, most of land vehiclesand helicopters. Militwy transport aircraft can be grouped intothose that were originally designed for military transp01t andthose that are modified civilian aircraft and helicopters. Supplypallets can be wooden, metal, can be airdropped in "taxiing","low-flight", and can also be fitted with a parachute or"retrorocket" for reducing the ground impact. Pallets canamong other things carry liquids, heavy combat and ca1rier vehicles,artillery and rocket weapons and valious containers.Pallets are usually pe1manently deformed at ground impact.Nowadays, high precision of airdrop has been achieved. Containersare used to carry various equipment, food, fue~ weapons,ammunition etc. It is to be expected that the containers,wmoured combat and other vehicles will be redesigned so asto provide more efficient transport and fast a!Tangement ofhigh-mobility units, whereas the form of the future militarytransport aircraft will not undergo substantial changes. By adjustingand standardising the transporlation vehicles, integraltransportation means and cwgo, the overall combat efficiencywill be increased, the a~rangement time especially shortenedand the air supply safety increased.

  17. Integrating the Base of Aircraft Data (BADA) in CTAS Trajectory Synthesizer

    Science.gov (United States)

    Abramson, Michael; Ali, Kareem

    2012-01-01

    The Center-Terminal Radar Approach Control (TRACON) Automation System (CTAS), developed at NASA Ames Research Center for assisting controllers in the management and control of air traffic in the extended terminal area, supports the modeling of more than four hundred aircraft types. However, 90% of them are supported indirectly by mapping them to one of a relatively few aircraft types for which CTAS has detailed drag and engine thrust models. On the other hand, the Base of Aircraft Data (BADA), developed and maintained by Eurocontrol, supports more than 300 aircraft types, about one third of which are directly supported, i.e. they have validated performance data. All these data were made available for CTAS by integrating BADA version 3.8 into CTAS Trajectory Synthesizer (TS). Several validation tools were developed and used to validate the integrated code and to evaluate the accuracy of trajectory predictions generated using CTAS "native" and BADA Aircraft Performance Models (APM) comparing them with radar track data. Results of these comparisons indicate that the two models have different strengths and weaknesses. The BADA APM can improve the accuracy of CTAS predictions at least for some aircraft types, especially small aircraft, and for some flight phases, especially climb.

  18. Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage

    Science.gov (United States)

    Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei

    Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.

  19. Application of Ultrasonic Phased Array Technology to the Detection of Defect in Composite Stiffened-structures

    Science.gov (United States)

    Zhou, Yuan-Qi; Zhan, Li-Hua

    2016-05-01

    Composite stiffened-structure consists of the skin and stringer has been widely used in aircraft fuselage and wings. The main purpose of the article is to detect the composite material reinforced structure accurately and explore the relationship between defect formation and structural elements or curing process. Based on ultrasonic phased array inspection technology, the regularity of defects in the manufacture of composite materials are obtained, the correlation model between actual defects and nondestructive testing are established. The article find that the forming quality of deltoid area in T-stiffened structure is obviously improved by pre-curing, the defects of hat-stiffened structure are affected by the mandrel. The results show that the ultrasonic phased array inspection technology can be an effectively way for the detection of composite stiffened-structures, which become an important means to control the defects of composite and improve the quality of the product.

  20. Test results of smart aircraft fastener for KC-135 structural integrity

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  1. The Automated Aircraft Rework System (AARS): A system integration approach

    Science.gov (United States)

    Benoit, Michael J.

    1994-01-01

    The Mercer Engineering Research Center (MERC), under contract to the United States Air Force (USAF) since 1989, has been actively involved in providing the Warner Robins Air Logistics Center (WR-ALC) with a robotic workcell designed to perform rework automated defastening and hole location/transfer operations on F-15 wings. This paper describes the activities required to develop and implement this workcell, known as the Automated Aircraft Rework System (AARS). AARS is scheduled to be completely installed and in operation at WR-ALC by September 1994.

  2. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    Science.gov (United States)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  3. A novel integrated self-powered brake system for more electric aircraft

    Directory of Open Access Journals (Sweden)

    Yaoxing SHANG

    2018-05-01

    Full Text Available Traditional hydraulic brake systems require a complex system of pipelines between an aircraft engine driven pump (EDP and brake actuators, which increases the weight of the aircraft and may even cause serious vibration and leakage problems. In order to improve the reliability and safety of more electric aircraft (MEA, this paper proposes a new integrated self-powered brake system (ISBS for MEA. It uses a hydraulic pump geared to the main wheel to recover a small part of the kinetic energy of a landing aircraft. The recovered energy then serves as the hydraulic power supply for brake actuators. It does not require additional hydraulic source, thus removing the pipelines between an EDP and brake actuators. In addition, its self-powered characteristic makes it possible to brake as usual even in an emergency situation when the airborne power is lost. This paper introduces the working principle of the ISBS and presents a prototype. The mathematical models of a taxiing aircraft and the ISBS are established. A feedback linearization control algorithm is designed to fulfill the anti-skid control. Simulations are carried out to verify the feasibility of the ISBS, and experiments are conducted on a ground inertia brake test bench. The ISBS presents a good performance and provides a new potential solution in the field of brake systems for MEA. Keywords: Hydraulic, Feedback linearization control, More electric aircraft, Novel brake system, Self-powered

  4. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY16 Annual Review

    Science.gov (United States)

    Grindle, Laurie; Hackenberg, Davis

    2016-01-01

    This presentation gives insight into the research activities and efforts being executed in order to integrate unmanned aircraft systems into the national airspace system. This briefing is to inform others of the UAS-NAS FY16 progress and future directions.

  5. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    Science.gov (United States)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an

  6. Buckling optimization of steering stiffeners for grid-stiffened composite structures

    NARCIS (Netherlands)

    Wang, D.; Abdalla, M.M.

    2015-01-01

    Grid-stiffened composite structures, where the skin is stiffened by a lattice of stiffeners, not only allow for significant reduction in structural weight but are also competitive in terms of structural stability and damage tolerance compared with sandwich composite structures. As the development of

  7. Integrated Modelling of an Unmanned High-Altitude Solar-Powered Aircraft for Control Law Design Analysis

    OpenAIRE

    Klöckner, Andreas; Leitner, Martin; Schlabe, Daniel; Looye, Gertjan

    2013-01-01

    Solar-powered high-altitude unmanned platforms are highly optimized and integrated aircraft. In order to account for the complex, multi-physical interactions between their systems, we propose using integrated simulation models throughout the aircraft’s life cycle. Especially small teams with limited ressources should benefit from this approach. In this paper, we describe our approach to an integrated model of the Electric High-Altitude Solar-Powered Aircraft ELHASPA. It includes aspects of th...

  8. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    Science.gov (United States)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  9. Experimental Behavior of Fatigued Single Stiffener PRSEUS Specimens

    Science.gov (United States)

    Jegley, Dawn C.

    2009-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression in fatigue and to failure.

  10. Meeting of Experts on NASA's Unmanned Aircraft System (UAS) Integration in the National Airspace Systems (NAS) Project

    Science.gov (United States)

    Wolfe, Jean; Bauer, Jeff; Bixby, C.J.; Lauderdale, Todd; Shively, Jay; Griner, James; Hayhurst, Kelly

    2010-01-01

    Topics discussed include: Aeronautics Research Mission Directorate Integrated Systems Research Program (ISRP) and UAS Integration in the NAS Project; UAS Integration into the NAS Project; Separation Assurance and Collision Avoidance; Pilot Aircraft Interface Objectives/Rationale; Communication; Certification; and Integrated Tests and Evaluations.

  11. Development and evaluation of a profile negotiation process for integrating aircraft and air traffic control automation

    Science.gov (United States)

    Green, Steven M.; Denbraven, Wim; Williams, David H.

    1993-01-01

    The development and evaluation of the profile negotiation process (PNP), an interactive process between an aircraft and air traffic control (ATC) that integrates airborne and ground-based automation capabilities to determine conflict-free trajectories that are as close to an aircraft's preference as possible, are described. The PNP was evaluated in a real-time simulation experiment conducted jointly by NASA's Ames and Langley Research Centers. The Ames Center/TRACON Automation System (CTAS) was used to support the ATC environment, and the Langley Transport Systems Research Vehicle (TSRV) piloted cab was used to simulate a 4D Flight Management System (FMS) capable aircraft. Both systems were connected in real time by way of voice and data lines; digital datalink communications capability was developed and evaluated as a means of supporting the air/ground exchange of trajectory data. The controllers were able to consistently and effectively negotiate nominally conflict-free vertical profiles with the 4D-equipped aircraft. The actual profiles flown were substantially closer to the aircraft's preference than would have been possible without the PNP. However, there was a strong consensus among the pilots and controllers that the level of automation of the PNP should be increased to make the process more transparent. The experiment demonstrated the importance of an aircraft's ability to accurately execute a negotiated profile as well as the need for digital datalink to support advanced air/ground data communications. The concept of trajectory space is proposed as a comprehensive approach for coupling the processes of trajectory planning and tracking to allow maximum pilot discretion in meeting ATC constraints.

  12. Aging Evaluation Programs for Jet Transport Aircraft Structural Integrity

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2012-10-01

    Full Text Available The paper deals with criteria and procedures in evaluationof timely preventive maintenance recommendations that willsupport continued safe operation of aging jet transports untiltheir retirement from service. The active service life of commercialaircraft has increased in recent years as a result of low fuelcost, and increasing costs and delivery times for fleet replacements.Air transport industry consensus is that older jet transportswill continue in service despite anticipated substantial increasesin required maintenance. Design concepts, supportedby testing, have worked well due to the system that is used to ensureflying safety. Continuing structural integrity by inspectionand overhaul recommendation above the level contained inmaintenance and service bulletins is additional requirement, insuch cases. Airplane structural safety depends on the performanceof all participants in the system and the responsibility forsafety cannot be delegated to a single participant. This systemhas three major participants: the manufacturers who design,build and support airplanes in service, the airlines who operate,inspect and mantain airplanes and the airworthiness authoritieswho establish rules and regulations, approve the design andpromote airline maintenance performance.

  13. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  14. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  15. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project KDP-C Review

    Science.gov (United States)

    Grindle, Laurie; Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    The topics discussed are the UAS-NAS project life-cycle and ARMD thrust flow down, as well as the UAS environments and how we operate in those environments. NASA's Armstrong Flight Research Center at Edwards, CA, is leading a project designed to help integrate unmanned air vehicles into the world around us. The Unmanned Aircraft Systems Integration in the National Airspace System project, or UAS in the NAS, will contribute capabilities designed to reduce technical barriers related to safety and operational challenges associated with enabling routine UAS access to the NAS. The project falls under the Integrated Systems Research Program office managed at NASA Headquarters by the agency's Aeronautics Research Mission Directorate. NASA's four aeronautics research centers - Armstrong, Ames Research Center, Langley Research Center, and Glenn Research Center - are part of the technology development project. With the use and diversity of unmanned aircraft growing rapidly, new uses for these vehicles are constantly being considered. Unmanned aircraft promise new ways of increasing efficiency, reducing costs, enhancing safety and saving lives 460265main_ED10-0132-16_full.jpg Unmanned aircraft systems such as NASA's Global Hawks (above) and Predator B named Ikhana (below), along with numerous other unmanned aircraft systems large and small, are the prime focus of the UAS in the NAS effort to integrate them into the national airspace. Credits: NASA Photos 710580main_ED07-0243-37_full.jpg The UAS in the NAS project envisions performance-based routine access to all segments of the national airspace for all unmanned aircraft system classes, once all safety-related and technical barriers are overcome. The project will provide critical data to such key stakeholders and customers as the Federal Aviation Administration and RTCA Special Committee 203 (formerly the Radio Technical Commission for Aeronautics) by conducting integrated, relevant system-level tests to adequately address

  16. Identification of integrated airframe: Propulsion effects on an F-15 aircraft for application to drag minimization

    Science.gov (United States)

    Schkolnik, Gerard S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  17. Integrated Mode Choice, Small Aircraft Demand, and Airport Operations Model User's Guide

    Science.gov (United States)

    Yackovetsky, Robert E. (Technical Monitor); Dollyhigh, Samuel M.

    2004-01-01

    A mode choice model that generates on-demand air travel forecasts at a set of GA airports based on changes in economic characteristics, vehicle performance characteristics such as speed and cost, and demographic trends has been integrated with a model to generate itinerate aircraft operations by airplane category at a set of 3227 airports. Numerous intermediate outputs can be generated, such as the number of additional trips diverted from automobiles and schedule air by the improved performance and cost of on-demand air vehicles. The total number of transported passenger miles that are diverted is also available. From these results the number of new aircraft to service the increased demand can be calculated. Output from the models discussed is in the format to generate the origin and destination traffic flow between the 3227 airports based on solutions to a gravity model.

  18. Manufacturing Theory for Advanced Grid Stiffened Structures

    National Research Council Canada - National Science Library

    Huybrechts, Steven M; Meink, Troy E; Wegner, Peter M; Ganley, Jeff M

    2002-01-01

    Lattices of rigidly connected ribs, known as advanced grid stiffened (AGS) structures, have many advantages over traditional construction methods, which use panels, sandwich cores and/or expensive frameworks...

  19. Flight service evaluation of an advanced composite empennage component on commercial transport aircraft. Phase 1: Engineering development

    Science.gov (United States)

    Ary, A.; Axtell, C.; Fogg, L.; Jackson, A.; James, A. M.; Mosesian, B.; Vanderwier, J.; Vanhamersveld, J.

    1976-01-01

    The empennage component selected for this program is the vertical fin box of the L-1011 aircraft. The box structure extends from the fuselage production joint to the tip rib and includes the front and rear spars. Various design options were evaluated to arrive at a configuration which would offer the highest potential for satisfying program objectives. The preferred configuration selected consists of a hat-stiffened cover with molded integrally stiffened spars, aluminum trussed composite ribs, and composite miniwich web ribs with integrally molded caps. Material screening tests were performed to select an advanced composite material system for the Advanced Composite Vertical Fin (ACFV) that would meet the program requirements from the standpoint of quality, reproducibility, and cost. Preliminary weight and cost analysis were made, targets established, and tracking plans developed. These include FAA certification, ancillary test program, quality control, and structural integrity control plans.

  20. Multi-Objective Climb Path Optimization for Aircraft/Engine Integration Using Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Aristeidis Antonakis

    2017-04-01

    Full Text Available In this article, a new multi-objective approach to the aircraft climb path optimization problem, based on the Particle Swarm Optimization algorithm, is introduced to be used for aircraft–engine integration studies. This considers a combination of a simulation with a traditional Energy approach, which incorporates, among others, the use of a proposed path-tracking scheme for guidance in the Altitude–Mach plane. The adoption of population-based solver serves to simplify case setup, allowing for direct interfaces between the optimizer and aircraft/engine performance codes. A two-level optimization scheme is employed and is shown to improve search performance compared to the basic PSO algorithm. The effectiveness of the proposed methodology is demonstrated in a hypothetic engine upgrade scenario for the F-4 aircraft considering the replacement of the aircraft’s J79 engine with the EJ200; a clear advantage of the EJ200-equipped configuration is unveiled, resulting, on average, in 15% faster climbs with 20% less fuel.

  1. Integration of Multifidelity Multidisciplinary Computer Codes for Design and Analysis of Supersonic Aircraft

    Science.gov (United States)

    Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu

    2011-01-01

    This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.

  2. Stiffening solids with liquid inclusions

    Science.gov (United States)

    Style, Robert W.; Boltyanskiy, Rostislav; Allen, Benjamin; Jensen, Katharine E.; Foote, Henry P.; Wettlaufer, John S.; Dufresne, Eric R.

    2015-01-01

    From bone and wood to concrete and carbon fibre, composites are ubiquitous natural and synthetic materials. Eshelby’s inclusion theory describes how macroscopic stress fields couple to isolated microscopic inclusions, allowing prediction of a composite’s bulk mechanical properties from a knowledge of its microstructure. It has been extended to describe a wide variety of phenomena from solid fracture to cell adhesion. Here, we show experimentally and theoretically that Eshelby’s theory breaks down for small liquid inclusions in a soft solid. In this limit, an isolated droplet’s deformation is strongly size-dependent, with the smallest droplets mimicking the behaviour of solid inclusions. Furthermore, in opposition to the predictions of conventional composite theory, we find that finite concentrations of small liquid inclusions enhance the stiffness of soft solids. A straightforward extension of Eshelby’s theory, accounting for the surface tension of the solid-liquid interface, explains our experimental observations. The counterintuitive stiffening of solids by fluid inclusions is expected whenever inclusion radii are smaller than an elastocapillary length, given by the ratio of the surface tension to Young’s modulus of the solid matrix. These results suggest that surface tension can be a simple and effective mechanism to cloak the far-field elastic signature of inclusions.

  3. Alaska Center for Unmanned Aircraft Systems Integration (ACUASI): Operational Support and Geoscience Research

    Science.gov (United States)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2016-12-01

    Unmanned Aircraft Systems (UAS) have enormous potential for use in geoscience research and supporting operational needs from natural hazard assessment to the mitigation of critical infrastructure failure. They provide a new tool for universities, local, state, federal, and military organizations to collect new measurements not readily available from other sensors. We will present on the UAS capabilities and research of the Alaska Center for Unmanned Aircraft Systems Integration (ACUASI, http://acuasi.alaska.edu/). Our UAS range from the Responder with its dual visible/infrared payload that can provide simultaneous data to our new SeaHunter UAS with 90 lb. payload and multiple hour flight time. ACUASI, as a designated US Federal Aviation Administration (FAA) test center, works closely with the FAA on integrating UAS into the national airspace. ACUASI covers all aspects of working with UAS from pilot training, airspace navigation, flight operations, and remote sensing analysis to payload design and integration engineers and policy experts. ACUASI's recent missions range from supporting the mapping of sea ice cover for safe passage of Alaskans across the hazardous winter ice to demonstrating how UAS can be used to provide support during oil spill response. Additionally, we will present on how ACUASI has worked with local authorities in Alaska to integrate UAS into search and rescue operations and with NASA and the FAA on their UAS Transport Management (UTM) project to fly UAS within the manned airspace. ACUASI is also working on developing new capabilities to sample volcanic plumes and clouds, map forest fire impacts and burn areas, and develop a new citizen network for monitoring snow extent and depth during Northern Hemisphere winters. We will demonstrate how UAS can be integrated in operational support systems and at the same time be used in geoscience research projects to provide high precision, accurate, and reliable observations.

  4. Analyses of integrated aircraft cabin contaminant monitoring network based on Kalman consensus filter.

    Science.gov (United States)

    Wang, Rui; Li, Yanxiao; Sun, Hui; Chen, Zengqiang

    2017-11-01

    The modern civil aircrafts use air ventilation pressurized cabins subject to the limited space. In order to monitor multiple contaminants and overcome the hypersensitivity of the single sensor, the paper constructs an output correction integrated sensor configuration using sensors with different measurement theories after comparing to other two different configurations. This proposed configuration works as a node in the contaminant distributed wireless sensor monitoring network. The corresponding measurement error models of integrated sensors are also proposed by using the Kalman consensus filter to estimate states and conduct data fusion in order to regulate the single sensor measurement results. The paper develops the sufficient proof of the Kalman consensus filter stability when considering the system and the observation noises and compares the mean estimation and the mean consensus errors between Kalman consensus filter and local Kalman filter. The numerical example analyses show the effectiveness of the algorithm. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  5. Development of Stitched Composite Structure for Advanced Aircraft

    Science.gov (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  6. Night vision imaging systems design, integration, and verification in military fighter aircraft

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Cantiello, Maurizio; Toscano, Mario; Fiorini, Pietro; Jia, Huamin; Zammit-Mangion, David

    2012-04-01

    This paper describes the developmental and testing activities conducted by the Italian Air Force Official Test Centre (RSV) in collaboration with Alenia Aerospace, Litton Precision Products and Cranfiled University, in order to confer the Night Vision Imaging Systems (NVIS) capability to the Italian TORNADO IDS (Interdiction and Strike) and ECR (Electronic Combat and Reconnaissance) aircraft. The activities consisted of various Design, Development, Test and Evaluation (DDT&E) activities, including Night Vision Goggles (NVG) integration, cockpit instruments and external lighting modifications, as well as various ground test sessions and a total of eighteen flight test sorties. RSV and Litton Precision Products were responsible of coordinating and conducting the installation activities of the internal and external lights. Particularly, an iterative process was established, allowing an in-site rapid correction of the major deficiencies encountered during the ground and flight test sessions. Both single-ship (day/night) and formation (night) flights were performed, shared between the Test Crews involved in the activities, allowing for a redundant examination of the various test items by all participants. An innovative test matrix was developed and implemented by RSV for assessing the operational suitability and effectiveness of the various modifications implemented. Also important was definition of test criteria for Pilot and Weapon Systems Officer (WSO) workload assessment during the accomplishment of various operational tasks during NVG missions. Furthermore, the specific technical and operational elements required for evaluating the modified helmets were identified, allowing an exhaustive comparative evaluation of the two proposed solutions (i.e., HGU-55P and HGU-55G modified helmets). The results of the activities were very satisfactory. The initial compatibility problems encountered were progressively mitigated by incorporating modifications both in the front and

  7. Buckling Analysis of Grid-Stiffened Composite Shells

    OpenAIRE

    Wang, D.; Abdalla, M.M.

    2014-01-01

    There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are investigated for grid-stiffened composite panels using homogenization theory. Characteristic cell configurations with periodic boundary constraints are employed for orthogrid- and isogrid-stiffened s...

  8. Effects of Joint Stiffening on the Dynamic Response of Frames ...

    African Journals Online (AJOL)

    ... of the stiffened portion to that of the flexible portion of the left and right ends of a member respectively. In the absence of joint stiffeners (i.e. α = β = 0) the obtained modified ... An earlier work showed that stiffening of joints enhances stability.

  9. Potential for integrated optical circuits in advanced aircraft with fiber optic control and monitoring systems

    Science.gov (United States)

    Baumbick, Robert J.

    1991-02-01

    Fiber optic technology is expected to be used in future advanced weapons platforms as well as commercial aerospace applications. Fiber optic waveguides will be used to transmit noise free high speed data between a multitude of computers as well as audio and video information to the flight crew. Passive optical sensors connected to control computers with optical fiber interconnects will serve both control and monitoring functions. Implementation of fiber optic technology has already begun. Both the military and NASA have several programs in place. A cooperative program called FOCSI (Fiber Optic Control System Integration) between NASA Lewis and the NAVY to build environmentally test and flight demonstrate sensor systems for propul sion and flight control systems is currently underway. Integrated Optical Circuits (IOC''s) are also being given serious consideration for use in advanced aircraft sys tems. IOC''s will result in miniaturization and localization of components to gener ate detect optical signals and process them for use by the control computers. In some complex systems IOC''s may be required to perform calculations optically if the technology is ready replacing some of the electronic systems used today. IOC''s are attractive because they will result in rugged components capable of withstanding severe environments in advanced aerospace vehicles. Manufacturing technology devel oped for microelectronic integrated circuits applied to IOC''s will result in cost effective manufacturing. This paper reviews the current FOCSI program and describes the role of IOC''s in FOCSI applications.

  10. Personnel Selection Influences on Remotely Piloted Aircraft Human-System Integration.

    Science.gov (United States)

    Carretta, Thomas R; King, Raymond E

    2015-08-01

    Human-system integration (HSI) is a complex process used to design and develop systems that integrate human capabilities and limitations in an effective and affordable manner. Effective HSI incorporates several domains, including manpower, personnel and training, human factors, environment, safety, occupational health, habitability, survivability, logistics, intelligence, mobility, and command and control. To achieve effective HSI, the relationships among these domains must be considered. Although this integrated approach is well documented, there are many instances where it is not followed. Human factors engineers typically focus on system design with little attention to the skills, abilities, and other characteristics needed by human operators. When problems with fielded systems occur, additional training of personnel is developed and conducted. Personnel selection is seldom considered during the HSI process. Complex systems such as aviation require careful selection of the individuals who will interact with the system. Personnel selection is a two-stage process involving select-in and select-out procedures. Select-in procedures determine which candidates have the aptitude to profit from training and represent the best investment. Select-out procedures focus on medical qualification and determine who should not enter training for medical reasons. The current paper discusses the role of personnel selection in the HSI process in the context of remotely piloted aircraft systems.

  11. Compressive Strength of Longitudinally Stiffened GRP Panels

    DEFF Research Database (Denmark)

    Böhme, J.; Noury, P.; Riber, Hans Jørgen

    1996-01-01

    A structural analysis of a cross stiffened orthotropic GRP panel subjected to uniaxial compressive loads is carried out. Analytical solutions to the buckling of such structures are proposed and validated by a finite element analysis. Both analytical and finite element approaches confirm an identi...

  12. Buckling Optimization of Thick Stiffened Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Qasim Hassan Bader

    2016-03-01

    Full Text Available In this work the critical pressure due to buckling was calculated numerically by using ANSYS15 for both stiffened and un-stiffened cylinder for various locations and installing types , strengthening of the cylinder causes a more significant increase in buckling pressures than non reinforced cylinder . The optimum design of structure was done by using the ASYS15 program; in this step the number of design variables 21 DVs. These variables are Independent variables that directly affect. The design variables represented the thickness of the cylinder and( height and width of 10 stiffeners. State variables (SVs, these variables are dependent variables that change as a result of changing the DVs and are necessary to constrain the design. The objective function is the one variable in the optimization that needs to be minimized. In this case the state variable is critical pressure (CP and the objective function is the total (volume of the structure. The optimum weight of the structure with reasonable required conditions for multi types of structure was found. The result shows the best location of stiffener at internal side with circumferential direction. In this case the critical pressure can be increased about 18.6% and the total weight of the structure decreases to 15.8%.

  13. Behavior of Frame-Stiffened Composite Panels with Damage

    Science.gov (United States)

    Jegley, Dawn C.

    2013-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.

  14. Fuel containment and damage tolerance in large composite primary aircraft structures. Phase 2: Testing

    Science.gov (United States)

    Sandifer, J. P.; Denny, A.; Wood, M. A.

    1985-01-01

    Technical issues associated with fuel containment and damage tolerance of composite wing structures for transport aircraft were investigated. Material evaluation tests were conducted on two toughened resin composites: Celion/HX1504 and Celion/5245. These consisted of impact, tension, compression, edge delamination, and double cantilever beam tests. Another test series was conducted on graphite/epoxy box beams simulating a wing cover to spar cap joint configuration of a pressurized fuel tank. These tests evaluated the effectiveness of sealing methods with various fastener types and spacings under fatigue loading and with pressurized fuel. Another test series evaluated the ability of the selected coatings, film, and materials to prevent fuel leakage through 32-ply AS4/2220-1 laminates at various impact energy levels. To verify the structural integrity of the technology demonstration article structural details, tests were conducted on blade stiffened panels and sections. Compression tests were performed on undamaged and impacted stiffened AS4/2220-1 panels and smaller element tests to evaluate stiffener pull-off, side load and failsafe properties. Compression tests were also performed on panels subjected to Zone 2 lightning strikes. All of these data were integrated into a demonstration article representing a moderately loaded area of a transport wing. This test combined lightning strike, pressurized fuel, impact, impact repair, fatigue and residual strength.

  15. Thrust Augmentation by Airframe-Integrated Linear-Spike Nozzle Concept for High-Speed Aircraft

    Directory of Open Access Journals (Sweden)

    Hidemi Takahashi

    2018-02-01

    Full Text Available The airframe-integrated linear-spike nozzle concept applied to an external nozzle for high-speed aircraft was evaluated with regard to the thrust augmentation capability and the trim balance. The main focus was on the vehicle aftbody. The baseline airframe geometry was first premised to be a hypersonic waverider design. The baseline aftbody case had an external nozzle comprised of a simple divergent nozzle and was hypothetically replaced with linear-spike external nozzle configurations. Performance evaluation was mainly conducted by considering the nozzle thrust generated by the pressure distribution on the external nozzle surface at the aftbody portion calculated by computer simulation at a given cruise condition with zero angle of attack. The thrust performance showed that the proposed linear-spike external nozzle concept was beneficial in thrust enhancement compared to the baseline geometry because the design of the proposed concept had a compression wall for the exhaust flow, which resulted in increasing the wall pressure. The configuration with the boattail and the angled inner nozzle exhibited further improvement in thrust performance. The trim balance evaluation showed that the aerodynamic center location appeared as acceptable. Thus, benefits were obtained by employing the airframe-integrated linear-spike external nozzle concept.

  16. Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents

    Science.gov (United States)

    Belcastro, Christine M.; Jacobson, Steven r.

    2010-01-01

    Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents.

  17. Behaviour of a stiffened circular slab

    International Nuclear Information System (INIS)

    Kulkarni, M.G.; Subramanian, K.V.

    1975-01-01

    Configuration of intake structure for cooling water system for Madras Atomic Power Project was studied on a hydraulic model and it was recommended to provide a circular slab in the structure to give directional property to the inflow and reduce air entrainment. This slab, as indicated by hydraulic model tests was required to withstand hydrodynamic pressures of the order of 10T/m 2 due to breaking waves of about 6 m height. Analysis of this circular cover slab, Stiffened by radial and circumferential beams, carried with the help of an analysis based on grid idealisation is presented. Results of approximate design analysis to assess behaviour of radial stiffener have been compared. Actual design is based on judgement of actual degree of fixity possessed by the supports or restraints. (author)

  18. Integrating Multiple Autonomous Underwater Vessels, Surface Vessels and Aircraft into Oceanographic Research Vessel Operations

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Martins, R.; Rajan, K.

    2012-12-01

    Autonomous platforms are increasingly used as components of Integrated Ocean Observing Systems and oceanographic research cruises. Systems deployed can include gliders or propeller-driven autonomous underwater vessels (AUVs), autonomous surface vessels (ASVs), and unmanned aircraft systems (UAS). Prior field campaigns have demonstrated successful communication, sensor data fusion and visualization for studies using gliders and AUVs. However, additional requirements exist for incorporating ASVs and UASs into ship operations. For these systems to be optimally integrated into research vessel data management and operational planning systems involves addressing three key issues: real-time field data availability, platform coordination, and data archiving for later analysis. A fleet of AUVs, ASVs and UAS deployed from a research vessel is best operated as a system integrated with the ship, provided communications among them can be sustained. For this purpose, Disruptive Tolerant Networking (DTN) software protocols for operation in communication-challenged environments help ensure reliable high-bandwidth communications. Additionally, system components need to have considerable onboard autonomy, namely adaptive sampling capabilities using their own onboard sensor data stream analysis. We discuss Oceanographic Decision Support System (ODSS) software currently used for situational awareness and planning onshore, and in the near future event detection and response will be coordinated among multiple vehicles. Results from recent field studies from oceanographic research vessels using AUVs, ASVs and UAS, including the Rapid Environmental Picture (REP-12) cruise, are presented describing methods and results for use of multi-vehicle communication and deliberative control networks, adaptive sampling with single and multiple platforms, issues relating to data management and archiving, and finally challenges that remain in addressing these technological issues. Significantly, the

  19. Elastic tripping analysis of corroded stiffeners in stiffened plate with irregular surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rahbarranji, Ahmad [AmirKabir University of Technology, Tehran (Iran, Islamic Republic of)

    2014-09-15

    Tripping of stiffeners is one of the buckling modes of stiffened panels which could rapidly lead to its catastrophic failure. Loss of thickness in the web and flange of stiffeners due to corrosion reduces elastic buckling strength. It is common practice to assume a uniform thickness reduction for corroded surfaces. To estimate the remaining strength of a corroded structure, a much higher level of accuracy is required since corroded surfaces are irregular. Finite element method is employed to analyze elastic tripping stress of corroded stiffeners with irregular surfaces. Comparing the results with elastic tripping stress of un-corroded stiffener, a reduction factor is introduced. It is found that for flat-bars and angle-bars the reduction factor increases by increasing corrosion loss; however, for tee-bars remains almost unchanged. Surface roughness has no significant effect on reduction of tripping Euler stress of angle-bars and flat-bars; however, it has an effect on reduction of tripping Euler stress of small flat-bars. For high values of corrosion loss, reduction of tripping Euler stress is higher in flat-bars than angle-bars. Corrosion at the mid-length or ends of flat-bars is more detrimental than full length. Corrosion at the ends of angle-bars is more detrimental than full length and mid-length.

  20. An Integrated Approach to Aircraft Modelling and Flight Control Law Design

    NARCIS (Netherlands)

    Looye, G.H.N.

    2008-01-01

    The design of flight control laws (FCLs) for automatic and manual (augmented) control of aircraft is a complicated task. FCLs have to fulfil large amounts of performance criteria and must work reliably in all flight conditions, for all aircraft configurations, and in adverse weather conditions.

  1. INS/GNSS Integration for Aerobatic Flight Applications and Aircraft Motion Surveying.

    Science.gov (United States)

    V Hinüber, Edgar L; Reimer, Christian; Schneider, Tim; Stock, Michael

    2017-04-26

    This paper presents field tests of challenging flight applications obtained with a new family of lightweight low-power INS/GNSS ( inertial navigation system/global satellite navigation system ) solutions based on MEMS ( micro-electro-mechanical- sensor ) machined sensors, being used for UAV ( unmanned aerial vehicle ) navigation and control as well as for aircraft motion dynamics analysis and trajectory surveying. One key is a 42+ state extended Kalman-filter-based powerful data fusion, which also allows the estimation and correction of parameters that are typically affected by sensor aging, especially when applying MEMS-based inertial sensors, and which is not yet deeply considered in the literature. The paper presents the general system architecture, which allows iMAR Navigation the integration of all classes of inertial sensors and GNSS ( global navigation satellite system ) receivers from very-low-cost MEMS and high performance MEMS over FOG ( fiber optical gyro ) and RLG ( ring laser gyro ) up to HRG ( hemispherical resonator gyro ) technology, and presents detailed flight test results obtained under extreme flight conditions. As a real-world example, the aerobatic maneuvers of the World Champion 2016 (Red Bull Air Race) are presented. Short consideration is also given to surveying applications, where the ultimate performance of the same data fusion, but applied on gravimetric surveying, is discussed.

  2. Causal Factors and Adverse Conditions of Aviation Accidents and Incidents Related to Integrated Resilient Aircraft Control

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Sandifer, Carl E.; Jones, Sharon Monica

    2010-01-01

    The causal factors of accidents from the National Transportation Safety Board (NTSB) database and incidents from the Federal Aviation Administration (FAA) database associated with loss of control (LOC) were examined for four types of operations (i.e., Federal Aviation Regulation Part 121, Part 135 Scheduled, Part 135 Nonscheduled, and Part 91) for the years 1988 to 2004. In-flight LOC is a serious aviation problem. Well over half of the LOC accidents included at least one fatality (80 percent in Part 121), and roughly half of all aviation fatalities in the studied time period occurred in conjunction with LOC. An adverse events table was updated to provide focus to the technology validation strategy of the Integrated Resilient Aircraft Control (IRAC) Project. The table contains three types of adverse conditions: failure, damage, and upset. Thirteen different adverse condition subtypes were gleaned from the Aviation Safety Reporting System (ASRS), the FAA Accident and Incident database, and the NTSB database. The severity and frequency of the damage conditions, initial test conditions, and milestones references are also provided.

  3. Carbon fiber reinforced hierarchical orthogrid stiffened cylinder: Fabrication and testing

    Science.gov (United States)

    Wu, Hao; Lai, Changlian; Sun, Fangfang; Li, Ming; Ji, Bin; Wei, Weiyi; Liu, Debo; Zhang, Xi; Fan, Hualin

    2018-04-01

    To get strong, stiff and light cylindrical shell, carbon fiber reinforced hierarchical orthogrid stiffened cylinders are designed and fabricated. The cylinder is stiffened by two-scale orthogrid. The primary orthogrid has thick and high ribs and contains several sub-orthogrid cells whose rib is much thinner and lower. The primary orthogrid stiffens the bending rigidity of the cylinder to resist the global instability while the sub-orthogrid stiffens the bending rigidity of the skin enclosed by the primary orthogrid to resist local buckling. The cylinder is fabricated by filament winding method based on a silicone rubber mandrel with hierarchical grooves. Axial compression tests are performed to reveal the failure modes. With hierarchical stiffeners, the cylinder fails at skin fracture and has high specific strength. The cylinder will fail at end crushing if the end of the cylinder is not thickened. Global instability and local buckling are well restricted by the hierarchical stiffeners.

  4. The Proposed Use of Unmanned Aerial System Surrogate Research Aircraft for National Airspace System Integration Research

    Science.gov (United States)

    Howell, Charles T., III

    2011-01-01

    Research is needed to determine what procedures, aircraft sensors and other systems will be required to allow Unmanned Aerial Systems (UAS) to safely operate with manned aircraft in the National Airspace System (NAS). This paper explores the use of Unmanned Aerial System (UAS) Surrogate research aircraft to serve as platforms for UAS systems research, development, and flight testing. These aircraft would be manned with safety pilots and researchers that would allow for flight operations almost anywhere in the NAS without the need for a Federal Aviation Administration (FAA) Certificate of Authorization (COA). With pilot override capability, these UAS Surrogate aircraft would be controlled from ground stations like true UAS s. It would be possible to file and fly these UAS Surrogate aircraft in the NAS with normal traffic and they would be better platforms for real world UAS research and development over existing vehicles flying in restricted ranges or other sterilized airspace. These UAS surrogate aircraft could be outfitted with research systems as required such as computers, state sensors, video recording, data acquisition, data link, telemetry, instrumentation, and Automatic Dependent Surveillance-Broadcast (ADS-B). These surrogate aircraft could also be linked to onboard or ground based simulation facilities to further extend UAS research capabilities. Potential areas for UAS Surrogate research include the development, flight test and evaluation of sensors to aide in the process of air traffic "see-and-avoid". These and other sensors could be evaluated in real-time and compared with onboard human evaluation pilots. This paper examines the feasibility of using UAS Surrogate research aircraft as test platforms for a variety of UAS related research.

  5. An integrated approach to the probabilistic assessments of aircraft strikes and structural mode of damages to nuclear power plants

    International Nuclear Information System (INIS)

    Godbout, P.; Brais, A.

    1975-01-01

    The possibilities of an aircraft striking a Canadian nuclear power plant in the vicinity of an airport and of inducing structural failure modes have been evaluated. This evaluation, together with other studies, may enhance decisions in the development of general criteria for the siting of reactors near airports. The study made use, for assessment, of the probabilistic approach and made judicious applications of the finite Canadian, French, German, American and English resources that were available. The tools, techniques and methods used for achieving the above, form what may be called an integrated approach. This method of approach requires that the study be made in six consecutive steps as follows: the qualitative evaluation of having an aircraft strike on a site situated near an airport with the use of the logic model technique; the statistical data gathering on aircraft movements and accidents; evaluating the probability distribution and calculating the basic event probabilities; evaluating the probability of an aircraft strike and the application of the sensitivity approach; generating the probability density distribution versus strike impact energy, that is, the evaluation of the energy envelope; and the probabilistic evaluation of structural failure mode inducements

  6. Operational implications and proposed infrastructure changes for NAS integration of remotely piloted aircraft (RPA)

    Science.gov (United States)

    2014-12-01

    The intent of this report is to provide (1) an initial assessment of National Airspace System (NAS) infrastructure affected by continuing development and deployment of unmanned aircraft systems into the NAS, and (2) a description of process challenge...

  7. A Thin Film Transistor Based Ultrasonic Sensor for Aircraft Integrity Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Incorporated (IAI) and its subcontractor, Penn State U., propose a novel system to detect damage in aircraft structures. The system combines...

  8. Identification of integrated airframe-propulsion effects on an F-15 aircraft for application to drag minimization

    Science.gov (United States)

    Schkolnik, Gerald S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  9. Viscoelastic Analysis of Thermally Stiffening Polymer Nanocomposites

    Science.gov (United States)

    Ehlers, Andrew; Rende, Deniz; Senses, Erkan; Akcora, Pinar; Ozisik, Rahmi

    Poly(ethylene oxide), PEO, filled with silica nanoparticles coated with poly(methyl methacrylate), PMMA, was shown to present thermally stiffening behavior above the glass transition temperature of both PEO and PMMA. In the current study, the viscoelastic beahvior of this nanocomposite system is investigated via nanoindenation experiments to complement on going rheological studies. Results were compared to neat polymers, PEO and PMMA, to understand the effect of coated nanoparticles. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-1538730.

  10. Buckling Analysis of Grid-Stiffened Composite Shells

    NARCIS (Netherlands)

    Wang, D.; Abdalla, M.M.

    2014-01-01

    There is a renewed interest in grid-stiffened composite structures; they are not only competitive with conventional stiffened constructions and sandwich shells in terms of weight but also enjoy superior damage tolerance properties. In this paper, both global and local structural instabilities are

  11. Strength of Ship Stiffened Panels under Combined Loading

    DEFF Research Database (Denmark)

    Weicheng, Cui; Wang, Young-jun; Pedersen, Preben Terndrup

    2000-01-01

    A ship's hull is a box girder structure composed of stiffened panels and therefore, strength of stiffened panels plays a significant role for the ultimate strength analysis of ship structures. In recent years several authors have proposed simplified methods to calculate the ultimate strength of s...

  12. Instability behavior of stiffened dome liners under construction condition

    International Nuclear Information System (INIS)

    Jefts, A.R.; Guha-Majumdar, S.; Wanchoo, M.K.

    1977-01-01

    The purpose of this paper is to present techniques related to stability analysis, design concepts and behavior of dome liners. Various stiffening systems are examined from economy, schedule and constructablity point of view. The various failure modes can be classified as either buckling due to local instability or to an overall instability of the shell. Local instability may occur due to buckling of liner panel between a pair of rings and stringers or torsional and lateral buckling of the stiffeners. Methods are developed for proportioning stiffening system to preclude local buckling. Overall stability is a function of concrete pour height and thickness, loading distribution, time elapse between successive placements, rate of concrete placement, arrangement of stiffeners and other external supports. A computer program based on system energy minimization is used to study the overall instability of stiffened domes. Modelling techniques, effect of temperature and lack of bond, and their influence on results are discussed. Results for a self-standing stiffened hemispherical dome are presented in the form of mode shapes and buckling loads. Based on the results, a pouring scheme is recommended for an economical stiffening system. Recommendations are made to select the stiffening system and predict the buckling loads for preliminary analysis and design of the dome liner. Existing methods and code provisions related to tolerance, design criteria etc. are examined and recommendations made from practical considerations

  13. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    Science.gov (United States)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  14. Technology integration box beam failure study

    Science.gov (United States)

    Shuart, M. J.; Ambur, Damodar R.; Davis, D. D., Jr.; Davis, R. C.; Farley, G. L.; Lotts, C. G.; Wang, J. T.

    1993-01-01

    Composite structures have the potential to be cost-effective, structurally efficient primary aircraft structures. The Advanced Composites Technology (ACT) Program has the goal to develop the technology to exploit this potential for heavily loaded aircraft structures. As part of the ACT Program, Lockheed Aeronautical Systems Company completed the design and fabrication of the Technology Integration Box Beam (TIBB). The TIBB is an advanced composite prototype structure for the center wing section of the C-130 aircraft. Lockheed subjected the TIBB to downbending, upbending, torsion and combined upbending and torsion load conditions to verify the design. The TIBB failed at 83 percent of design ultimate load for the combined upbending and torsion load condition. The objective of this paper is to describe the mechanisms that led to the failure of the TIBB. The results of a comprehensive analytical and experimental study are presented. Analytical results include strain and deflection results from both a global analysis of the TIBB and a local analysis of the failure region. These analytical results are validated by experimental results from the TIBB tests. The analytical and experimental results from the TIBB tests are used to determine a sequence of events that resulted in failure of the TIBB. A potential cause of failure is high stresses in a stiffener runout region. Analytical and experimental results are also presented for a stiffener runout specimen that was used to simulate the TIBB failure mechanisms.

  15. Integrated Design of a Long-Haul Commercial Aircraft Optimized for Formation Flying

    NARCIS (Netherlands)

    Dijkers, H.P.A.; Van Nunen, R.; Bos, D.A.; Gutleb, T.L.M.; Herinckx, L.E.; Radfar, H.; Van Rompuy, E.; Sayin, S.E.; De Wit, J.; Beelaerts van Blokland, W.W.A.

    2011-01-01

    The airline industry is under continuous pressure to reduce emissions and costs. This paper investigates the feasibility for commercial airlines to use formation flight to reduce emissions and fuel burn. To fly in formation, an aircraft needs to benefit from the wake vortices of the preceding

  16. The Neuroergonomics of Aircraft Cockpits: The Four Stages of Eye-Tracking Integration to Enhance Flight Safety

    Directory of Open Access Journals (Sweden)

    Vsevolod Peysakhovich

    2018-02-01

    Full Text Available Commercial aviation is currently one of the safest modes of transportation; however, human error is still one major contributing cause of aeronautical accidents and incidents. One promising avenue to further enhance flight safety is Neuroergonomics, an approach at the intersection of neuroscience, cognitive engineering and human factors, which aims to create better human–system interaction. Eye-tracking technology allows users to “monitor the monitoring” by providing insights into both pilots’ attentional distribution and underlying decisional processes. In this position paper, we identify and define a framework of four stages of step-by-step integration of eye-tracking systems in modern cockpits. Stage I concerns Pilot Training and Flight Performance Analysis on-ground; stage II proposes On-board Gaze Recordings as extra data for the “black box” recorders; stage III describes Gaze-Based Flight Deck Adaptation including warning and alerting systems, and, eventually, stage IV prophesies Gaze-Based Aircraft Adaptation including authority taking by the aircraft. We illustrate the potential of these four steps with a description of incidents or accidents that we could certainly have avoided thanks to eye-tracking. Estimated milestones for the integration of each stage are also proposed together with a list of some implementation limitations. We believe that the research institutions and industrial actors of the domain will all benefit from the integration of the framework of the eye-tracking systems into cockpits.

  17. Tension Stiffened and Tendon Actuated Manipulator

    Science.gov (United States)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  18. A Reference Software Architecture to Support Unmanned Aircraft Integration in the National Airspace System

    Science.gov (United States)

    2012-07-01

    and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general architecture and a SAA testbed implementation that...that provides data and software services to enable a set of Unmanned Aircraft (UA) platforms to operate in a wide range of air domains which may...implemented by MIT Lincoln Laboratory in the form of a Sense and Avoid ( SAA ) testbed that provides some of the core services . This paper describes the general

  19. Integration, Testing, and Validation of a Small Hybrid-Electric Remotely-Piloted Aircraft

    Science.gov (United States)

    2012-03-22

    unmanned aircraft offers the capability to unrelentingly pursue a target in a way the stamina of a human pilot simply cannot match. Unmanned systems can...electricity in these examples is provided by batteries, other hybrid-electric systems use generators, solar cells , or even hydrogen fuel cells ... cells , or solar panels. Throughout this paper, HE-RPA will refer specifically to the battery and fossil fuel combination. Usually, the secondary energy

  20. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    International Nuclear Information System (INIS)

    Black, S.J.; Spalek, G.

    1992-01-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL- modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations

  1. Calculation of mechanical vibration frequencies of stiffened superconducting cavities

    International Nuclear Information System (INIS)

    Black, S.J.; Spalek, G.

    1992-01-01

    We calculated the frequencies of transverse and longitudinal mechanical-vibration modes of the HEPL-modified, CERN/DESY four-cell superconducting cavity, using finite-element techniques. We compared the results of these calculations, including the stiffening of the cavity with rods, with mode frequencies measured at HEPL. The correlation between data was significant. The same techniques were also used to design and optimize the stiffening scheme for the seven-cell 805-MHz superconducting cavity being developed at Los Alamos. In this report, we describe the final stiffening scheme and the results of our calculations. (Author) 6 figs., 5 tabs., 4 refs

  2. Elastic buckling analysis of corroded stiffened plates with irregular ...

    Indian Academy of Sciences (India)

    Numerical simulation is used to study the influence of corrosion damage ... For the structural safety assessment of corroded structures, strength reduction ... The main aim of the present work is to determine Euler stress of stiffened plates with.

  3. Damage tolerant evaluation of cracked stiffened panels under ...

    Indian Academy of Sciences (India)

    Stiffened panels; stress intensity factor; fatigue and fracture; damage .... Extensive work on fracture analysis of structural components was carried out by using the ... respectively), in view of the transformation matrices related to MQL9S2 FE.

  4. Margination of Stiffened Red Blood Cells Regulated By Vessel Geometry.

    Science.gov (United States)

    Chen, Yuanyuan; Li, Donghai; Li, Yongjian; Wan, Jiandi; Li, Jiang; Chen, Haosheng

    2017-11-10

    Margination of stiffened red blood cells has been implicated in many vascular diseases. Here, we report the margination of stiffened RBCs in vivo, and reveal the crucial role of the vessel geometry in the margination by calculations when the blood is seen as viscoelastic fluid. The vessel-geometry-regulated margination is then confirmed by in vitro experiments in microfluidic devices, and it establishes new insights to cell sorting technology and artificial blood vessel fabrication.

  5. Guided wave crack detection and size estimation in stiffened structures

    Science.gov (United States)

    Bhuiyan, Md Yeasin; Faisal Haider, Mohammad; Poddar, Banibrata; Giurgiutiu, Victor

    2018-03-01

    Structural health monitoring (SHM) and nondestructive evaluation (NDE) deals with the nondestructive inspection of defects, corrosion, leaks in engineering structures by using ultrasonic guided waves. In the past, simplistic structures were often considered for analyzing the guided wave interaction with the defects. In this study, we focused on more realistic and relatively complicated structure for detecting any defect by using a non-contact sensing approach. A plate with a stiffener was considered for analyzing the guided wave interactions. Piezoelectric wafer active transducers were used to produce excitation in the structures. The excitation generated the multimodal guided waves (aka Lamb waves) that propagate in the plate with stiffener. The presence of stiffener in the plate generated scattered waves. The direct wave and the additional scattered waves from the stiffener were experimentally recorded and studied. These waves were considered as a pristine case in this research. A fine horizontal semi-circular crack was manufactured by using electric discharge machining in the same stiffener. The presence of crack in the stiffener produces additional scattered waves as well as trapped waves. These scattered waves and trapped wave modes from the cracked stiffener were experimentally measured by using a scanning laser Doppler vibrometer (SLDV). These waves were analyzed and compared with that from the pristine case. The analyses suggested that both size and shape of the horizontal crack may be predicted from the pattern of the scattered waves. Different features (reflection, transmission, and mode-conversion) of the scattered wave signals are analyzed. We found direct transmission feature for incident A0 wave mode and modeconversion feature for incident S0 mode are most suitable for detecting the crack in the stiffener. The reflection feature may give a better idea of sizing the crack.

  6. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption.

    Science.gov (United States)

    Xin, F X; Lu, T J

    2011-04-01

    The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.

  7. Integrated topology for an aircraft electric power distribution system using MATLAB and ILP optimization technique and its implementation

    Science.gov (United States)

    Madhikar, Pratik Ravindra

    The most important and crucial design feature while designing an Aircraft Electric Power Distribution System (EPDS) is reliability. In EPDS, the distribution of power is from top level generators to bottom level loads through various sensors, actuators and rectifiers with the help of AC & DC buses and control switches. As the demands of the consumer is never ending and the safety is utmost important, there is an increase in loads and as a result increase in power management. Therefore, the design of an EPDS should be optimized to have maximum efficiency. This thesis discusses an integrated tool that is based on a Need Based Design method and Fault Tree Analysis (FTA) to achieve the optimum design of an EPDS to provide maximum reliability in terms of continuous connectivity, power management and minimum cost. If an EPDS is formulated as an optimization problem then it can be solved with the help of connectivity, cost and power constraints by using a linear solver to get the desired output of maximum reliability at minimum cost. Furthermore, the thesis also discusses the viability and implementation of the resulted topology on typical large aircraft specifications.

  8. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    Directory of Open Access Journals (Sweden)

    Daniel Medale

    2012-10-01

    Full Text Available The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  9. System-on-chip integration of a new electromechanical impedance calculation method for aircraft structure health monitoring.

    Science.gov (United States)

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-10-11

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M impedance method development, its implementation into a CPU with limited resources as well as a comparison with experimental testing data needed to demonstrate the feasibility of flaw detection on composite materials and answer the question of the method reliability. The different development steps are presented and the integration issues are discussed. Furthermore, we present the unique advantages that the reconfigurable electronics through System-on-Chip (SoC) technology brings to the system scaling and flexibility. At the end of this article, we demonstrate the capability of a basic network of sensors mounted onto a real composite aircraft part specimen to capture its local impedance spectrum signature and to diagnosis different delamination sizes using a comparison with a baseline.

  10. Energy transmission through a double-wall curved stiffened panel using Green's theorem

    Science.gov (United States)

    Ghosh, Subha; Bhattacharya, Partha

    2015-04-01

    It is a common practice in aerospace and automobile industries to use double wall panels as fuselage skins or in window panels to improve acoustic insulation. However, the scientific community is yet to develop a reliable prediction method for a suitable vibro-acoustic model for sound transmission through a curved double-wall panel. In this quest, the present work tries to delve into the modeling of energy transmission through a double-wall curved panel. Subsequently the radiation of sound power into the free field from the curved panel in the low to mid frequency range is also studied. In the developed model to simulate a stiffened aircraft fuselage configuration, the outer wall is provided with longitudinal stiffeners. A modal expansion theory based on Green's theorem is implemented to model the energy transmission through an acoustically coupled double-wall curved panel. An elemental radiator approach is implemented to calculate the radiated energy from the curved surface in to the free field. The developed model is first validated with various numerical models available. It has been observed in the present study that the radius of curvature of the surface has a prominent effect on the behavior of radiated sound power into the free field. Effect of the thickness of the air gap between the two curved surfaces on the sound power radiation has also been noted.

  11. A backing device based on an embedded stiffener and retractable insertion tool for thin-film cochlear arrays

    Science.gov (United States)

    Tewari, Radheshyam

    Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hot-embossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes

  12. Emergent Strain Stiffening in Interlocked Granular Chains

    Science.gov (United States)

    Dumont, Denis; Houze, Maurine; Rambach, Paul; Salez, Thomas; Patinet, Sylvain; Damman, Pascal

    2018-02-01

    Granular chain packings exhibit a striking emergent strain-stiffening behavior despite the individual looseness of the constitutive chains. Using indentation experiments on such assemblies, we measure an exponential increase in the collective resistance force F with the indentation depth z and with the square root of the number N of beads per chain. These two observations are, respectively, reminiscent of the self-amplification of friction in a capstan or in interleaved books, as well as the physics of polymers. The experimental data are well captured by a novel model based on these two ingredients. Specifically, the resistance force is found to vary according to the universal relation log F ˜μ √{N }Φ11 /8z /b , where μ is the friction coefficient between two elementary beads, b is their size, and Φ is the volume fraction of chain beads when semidiluted in a surrounding medium of unconnected beads. Our study suggests that theories normally confined to the realm of polymer physics at a molecular level can be used to explain phenomena at a macroscopic level. This class of systems enables the study of friction in complex assemblies, with practical implications for the design of new materials, the textile industry, and biology.

  13. Arterial stiffening provides sufficient explanation for primary hypertension.

    Directory of Open Access Journals (Sweden)

    Klas H Pettersen

    2014-05-01

    Full Text Available Hypertension is one of the most common age-related chronic disorders, and by predisposing individuals for heart failure, stroke, and kidney disease, it is a major source of morbidity and mortality. Its etiology remains enigmatic despite intense research efforts over many decades. By use of empirically well-constrained computer models describing the coupled function of the baroreceptor reflex and mechanics of the circulatory system, we demonstrate quantitatively that arterial stiffening seems sufficient to explain age-related emergence of hypertension. Specifically, the empirically observed chronic changes in pulse pressure with age and the impaired capacity of hypertensive individuals to regulate short-term changes in blood pressure arise as emergent properties of the integrated system. The results are consistent with available experimental data from chemical and surgical manipulation of the cardio-vascular system. In contrast to widely held opinions, the results suggest that primary hypertension can be attributed to a mechanogenic etiology without challenging current conceptions of renal and sympathetic nervous system function.

  14. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: Terminal Operations HITL 1B Primary Results

    Science.gov (United States)

    Rorie, Conrad; Monk, Kevin; Roberts, Zach; Brandt, Summer

    2018-01-01

    This presentation provides an overview of the primary results from the Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project's second Terminal Operations human-in-the-loop simulation. This talk covers the background of this follow-on experiment, which includes an overview of the first Terminal Operations HITL performed by the project. The primary results include a look at the number and durations of detect and avoid (DAA) alerts issued by the two DAA systems under test. It also includes response time metrics and metrics on the ability of the pilot-in-command (PIC) to maintain sufficient separation. Additional interoperability metrics are included to illustrate how pilots interact with the tower controller. Implications and conclusions are covered at the end.

  15. Investigation Analysis of Crack Growth Arresting with Fasteners in Hybrid Laminated Skin-Stiffener Joint

    Science.gov (United States)

    Jeevan Kumar, N.; Ramesh Babu, P.

    2018-02-01

    In recent years carbon fibre-reinforced polymers (CFRP) emerged its increasing demand in aerospace engineering. Due to their high specific strength to weight ratio, these composites offer more characteristics and considerable advantages compared to metals. Metals, unlike composites, offer plasticity effects to evade high stress concentrations during postbuckling. Under compressive load, composite structures show a wide range of damage mechanisms where a set of damage modes combined together might lead to the eventual structural collapse. Crack is one of the most critical damages in fiber composites, which are being employed in primary aircraft structures. A parametric study is conducted to investigate the arrest mechanism of the delamination or crack growth with installation of multiple fasteners when the delamination is embedded in between the skin and stiffener interface.

  16. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    Science.gov (United States)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  17. Army-NASA aircrew/aircraft integration program (A3I) software detailed design document, phase 3

    Science.gov (United States)

    Banda, Carolyn; Chiu, Alex; Helms, Gretchen; Hsieh, Tehming; Lui, Andrew; Murray, Jerry; Shankar, Renuka

    1990-01-01

    The capabilities and design approach of the MIDAS (Man-machine Integration Design and Analysis System) computer-aided engineering (CAE) workstation under development by the Army-NASA Aircrew/Aircraft Integration Program is detailed. This workstation uses graphic, symbolic, and numeric prototyping tools and human performance models as part of an integrated design/analysis environment for crewstation human engineering. Developed incrementally, the requirements and design for Phase 3 (Dec. 1987 to Jun. 1989) are described. Software tools/models developed or significantly modified during this phase included: an interactive 3-D graphic cockpit design editor; multiple-perspective graphic views to observe simulation scenarios; symbolic methods to model the mission decomposition, equipment functions, pilot tasking and loading, as well as control the simulation; a 3-D dynamic anthropometric model; an intermachine communications package; and a training assessment component. These components were successfully used during Phase 3 to demonstrate the complex interactions and human engineering findings involved with a proposed cockpit communications design change in a simulated AH-64A Apache helicopter/mission that maps to empirical data from a similar study and AH-1 Cobra flight test.

  18. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project FY17 Annual Review

    Science.gov (United States)

    Sakahara, Robert; Hackenberg, Davis; Johnson, William

    2017-01-01

    This presentation was presented to the Integrated Aviation Systems Program at the FY17 Annual Review of the UAS-NAS project. The presentation captures the overview of the work completed by the UAS-NAS project and its subprojects.

  19. Integrated Reconfigurable Aero and Propulsion Control for Improved Flight Safety of Commercial Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The main objective of this project is to develop and test a novel innovative Integrated Reconfigurable Aero (i) Adaptive control design for the case of aero-only...

  20. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project - Systems Integration and Operationalization (SIO) Demonstration

    Science.gov (United States)

    Swieringa, Kurt

    2018-01-01

    The UAS-NAS Project hosted a Systems Integration Operationalization (SIO) Industry Day for the SIO Request for Information (RFI) on November 30, 2017 in San Diego, California. This presentation is being presented to the same group as a follow up regarding the progress that the UAS-NAS project has made on the SIO RFI. The presentation will be virtual with a teleconference

  1. Impact Response Study on Covering Cap of Aircraft Big-Size Integral Fuel Tank

    Science.gov (United States)

    Wang, Fusheng; Jia, Senqing; Wang, Yi; Yue, Zhufeng

    2016-10-01

    In order to assess various design concepts and choose a kind of covering cap design scheme which can meet the requirements of airworthiness standard and ensure the safety of fuel tank. Using finite element software ANSYS/LS- DYNA, the impact process of covering cap of aircraft fuel tank by projectile were simulated, in which dynamical characteristics of simple single covering cap and gland double-layer covering cap impacted by titanium alloy projectile and rubber projectile were studied, as well as factor effects on simple single covering cap and gland double-layer covering cap under impact region, impact angle and impact energy were also studied. Though the comparison of critical damage velocity and element deleted number of the covering caps, it shows that the external covering cap has a good protection effect on internal covering cap. The regions close to boundary are vulnerable to appear impact damage with titanium alloy projectile while the regions close to center is vulnerable to occur damage with rubber projectile. Equivalent strain in covering cap is very little when impact angle is less than 15°. Element deleted number in covering cap reaches the maximum when impact angle is between 60°and 65°by titanium alloy projectile. While the bigger the impact angle and the more serious damage of the covering cap will be when rubber projectile impact composite covering cap. The energy needed for occurring damage on external covering cap and internal covering cap is less than and higher than that when single covering cap occur damage, respectively. The energy needed for complete breakdown of double-layer covering cap is much higher than that of single covering cap.

  2. Design and Analysis of a Stiffened Composite Structure Repair Concept

    Science.gov (United States)

    Przekop, Adam

    2011-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. Since the repair concept is a bolted repair using metal components, it can easily be applied in the operational environment. Initial analyses are aimed at validating the finite element modeling approach by comparing with available test data. Once confidence in the analysis approach is established several repair configurations are explored and the most efficient one presented. Repairs involving damage to the top of the stiffener alone are considered in addition to repairs involving a damaged stiffener, flange and underlying skin. High fidelity finite element modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic metallic material properties and geometrically nonlinear analysis are utilized in the effort. The results of the analysis are presented and factors influencing the design are assessed and discussed.

  3. Design aids for stiffened composite shells with cutouts

    CERN Document Server

    Sahoo, Sarmila

    2017-01-01

    This book focuses on the free vibrations of graphite-epoxy laminated composite stiffened shells with cutout both in terms of the natural frequencies and mode shapes. The dynamic analysis of shell structures, which may have complex geometry and arbitrary loading and boundary conditions, is solved efficiently by the finite element method, even including cutouts in shells. The results may be readily used by practicing engineers dealing with stiffened composite shells with cutouts. Several shell forms viz. cylindrical shell, hypar shell, conoidal shell, spherical shell, saddle shell, hyperbolic paraboloidal shell and elliptic paraboloidal shell are considered in the book. The dynamic characteristics of stiffened composite shells with cutout are described in terms of the natural frequency and mode shapes. The size of the cutouts and their positions with respect to the shell centre are varied for different edge constraints of cross-ply and angle-ply laminated composite shells. The effects of these parametric variat...

  4. Small Unmanned Aircraft Systems Integration into the National Airspace System Visual-Line-of-Sight Human-in-the-Loop Experiment

    Science.gov (United States)

    Trujillo, Anna C.; Ghatas, Rania W.; Mcadaragh, Raymon; Burdette, Daniel W.; Comstock, James R.; Hempley, Lucas E.; Fan, Hui

    2015-01-01

    As part of the Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) project, research on integrating small UAS (sUAS) into the NAS was underway by a human-systems integration (HSI) team at the NASA Langley Research Center. Minimal to no research has been conducted on the safe, effective, and efficient manner in which to integrate these aircraft into the NAS. sUAS are defined as aircraft weighing 55 pounds or less. The objective of this human system integration team was to build a UAS Ground Control Station (GCS) and to develop a research test-bed and database that provides data, proof of concept, and human factors guidelines for GCS operations in the NAS. The objectives of this experiment were to evaluate the effectiveness and safety of flying sUAS in Class D and Class G airspace utilizing manual control inputs and voice radio communications between the pilot, mission control, and air traffic control. The design of the experiment included three sets of GCS display configurations, in addition to a hand-held control unit. The three different display configurations were VLOS, VLOS + Primary Flight Display (PFD), and VLOS + PFD + Moving Map (Map). Test subject pilots had better situation awareness of their vehicle position, altitude, airspeed, location over the ground, and mission track using the Map display configuration. This configuration allowed the pilots to complete the mission objectives with less workload, at the expense of having better situation awareness of other aircraft. The subjects were better able to see other aircraft when using the VLOS display configuration. However, their mission performance, as well as their ability to aviate and navigate, was reduced compared to runs that included the PFD and Map displays.

  5. Unmanned Aircraft Systems Detect and Avoid System: End-to-End Verification and Validation Simulation Study of Minimum Operations Performance Standards for Integrating Unmanned Aircraft into the National Airspace System

    Science.gov (United States)

    Ghatas, Rania W.; Jack, Devin P.; Tsakpinis, Dimitrios; Sturdy, James L.; Vincent, Michael J.; Hoffler, Keith D.; Myer, Robert R.; DeHaven, Anna M.

    2017-01-01

    As Unmanned Aircraft Systems (UAS) make their way to mainstream aviation operations within the National Airspace System (NAS), research efforts are underway to develop a safe and effective environment for their integration into the NAS. Detect and Avoid (DAA) systems are required to account for the lack of "eyes in the sky" due to having no human on-board the aircraft. The technique, results, and lessons learned from a detailed End-to-End Verification and Validation (E2-V2) simulation study of a DAA system representative of RTCA SC-228's proposed Phase I DAA Minimum Operational Performance Standards (MOPS), based on specific test vectors and encounter cases, will be presented in this paper.

  6. Integration of an Advanced Cryogenic Electric Propulsion System (ACEPS) to Aerodynamically Efficient Subsonic Transport Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal defines innovative aerodynamic concepts and technology goals aimed at vehicle efficiency for future subsonic aircraft in the 2020 -- 2030 timeframe....

  7. Transient performance simulation of aircraft engine integrated with fuel and control systems

    International Nuclear Information System (INIS)

    Wang, C.; Li, Y.G.; Yang, B.Y.

    2017-01-01

    Highlights: • A new performance simulation method for engine hydraulic fuel systems is introduced. • Time delay of engine performance due to fuel system model is noticeable but small. • The method provides details of fuel system behavior in engine transient processes. • The method could be used to support engine and fuel system designs. - Abstract: A new method for the simulation of gas turbine fuel systems based on an inter-component volume method has been developed. It is able to simulate the performance of each of the hydraulic components of a fuel system using physics-based models, which potentially offers more accurate results compared with those using transfer functions. A transient performance simulation system has been set up for gas turbine engines based on an inter-component volume (ICV) method. A proportional-integral (PI) control strategy is used for the simulation of engine controller. An integrated engine and its control and hydraulic fuel systems has been set up to investigate their coupling effect during engine transient processes. The developed simulation system has been applied to a model aero engine. The results show that the delay of the engine transient response due to the inclusion of the fuel system model is noticeable although relatively small. The developed method is generic and can be applied to any other gas turbines and their control and fuel systems.

  8. Modern and prospective technologies for weather modification activities: Developing a framework for integrating autonomous unmanned aircraft systems

    Science.gov (United States)

    DeFelice, T. P.; Axisa, Duncan

    2017-09-01

    This paper builds upon the processes and framework already established for identifying, integrating and testing an unmanned aircraft system (UAS) with sensing technology for use in rainfall enhancement cloud seeding programs to carry out operational activities or to monitor and evaluate seeding operations. We describe the development and assessment methodologies of an autonomous and adaptive UAS platform that utilizes in-situ real time data to sense, target and implement seeding. The development of a UAS platform that utilizes remote and in-situ real-time data to sense, target and implement seeding deployed with a companion UAS ensures optimal, safe, secure, cost-effective seeding operations, and the dataset to quantify the results of seeding. It also sets the path for an innovative, paradigm shifting approach for enhancing precipitation independent of seeding mode. UAS technology is improving and their application in weather modification must be explored to lay the foundation for future implementation. The broader significance lies in evolving improved technology and automating cloud seeding operations that lowers the cloud seeding operational footprint and optimizes their effectiveness and efficiency, while providing the temporal and spatial sensitivities to overcome the predictability or sparseness of environmental parameters needed to identify conditions suitable for seeding, and how such might be implemented. The dataset from the featured approach will contain data from concurrent Eulerian and Lagrangian perspectives over sub-cloud scales that will facilitate the development of cloud seeding decision support tools.

  9. Sensitivity analysis on ultimate strength of aluminium stiffened panels

    DEFF Research Database (Denmark)

    Rigo, P.; Sarghiuta, R.; Estefen, S.

    2003-01-01

    This paper presents the results of an extensive sensitivity analysis carried out by the Committee III.1 "Ultimate Strength" of ISSC?2003 in the framework of a benchmark on the ultimate strength of aluminium stiffened panels. Previously, different benchmarks were presented by ISSC committees on ul...

  10. Prediction of Vibrational Behavior of Grid-Stiffened Cylindrical Shells

    Directory of Open Access Journals (Sweden)

    G. H. Rahimi

    2014-01-01

    Full Text Available A unified analytical approach is applied to investigate the vibrational behavior of grid-stiffened cylindrical shells with different boundary conditions. A smeared method is employed to superimpose the stiffness contribution of the stiffeners with those of shell in order to obtain the equivalent stiffness parameters of the whole panel. Theoretical formulation is established based on Sanders’ thin shell theory. The modal forms are assumed to have the axial dependency in the form of Fourier series whose derivatives are legitimized using Stoke's transformation. A 3D finite element model is also built using ABAQUS software which takes into consideration the exact geometric configuration of the stiffeners and the shell. The achievements from the two types of analyses are compared with each other and good agreement has been obtained. The Influences of variations in shell geometrical parameters, boundary condition, and changes in the cross stiffeners angle on the natural frequencies are studied. The results obtained are novel and can be used as a benchmark for further studies. The simplicity and the capability of the present method are also discussed.

  11. Advanced Near Net Shape Technology (ANNST) - Integrally Stiffened Cylinder (ISC)

    Data.gov (United States)

    National Aeronautics and Space Administration — Machined/welded construction of launch vehicle cryotanks is expensive, heavy, and risky. The current state of the art manufacturing of launch vehicles contributes to...

  12. Engine-integrated solid oxide fuel cells for efficient electrical power generation on aircraft

    Science.gov (United States)

    Waters, Daniel F.; Cadou, Christopher P.

    2015-06-01

    This work investigates the use of engine-integrated catalytic partial oxidation (CPOx) reactors and solid oxide fuel cells (SOFCs) to reduce fuel burn in vehicles with large electrical loads like sensor-laden unmanned air vehicles. Thermodynamic models of SOFCs, CPOx reactors, and three gas turbine (GT) engine types (turbojet, combined exhaust turbofan, separate exhaust turbofan) are developed and checked against relevant data and source material. Fuel efficiency is increased by 4% and 8% in the 50 kW and 90 kW separate exhaust turbofan systems respectively at only modest cost in specific power (8% and 13% reductions respectively). Similar results are achieved in other engine types. An additional benefit of hybridization is the ability to provide more electric power (factors of 3 or more in some cases) than generator-based systems before encountering turbine inlet temperature limits. A sensitivity analysis shows that the most important parameters affecting the system's performance are operating voltage, percent fuel oxidation, and SOFC assembly air flows. Taken together, this study shows that it is possible to create a GT-SOFC hybrid where the GT mitigates balance of plant losses and the SOFC raises overall system efficiency. The result is a synergistic system with better overall performance than stand-alone components.

  13. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    Science.gov (United States)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  14. Flexural-torsional buckling analysis of angle-bar stiffened plates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.

  15. Aircraft operations management manual

    Science.gov (United States)

    1992-01-01

    The NASA aircraft operations program is a multifaceted, highly diverse entity that directly supports the agency mission in aeronautical research and development, space science and applications, space flight, astronaut readiness training, and related activities through research and development, program support, and mission management aircraft operations flights. Users of the program are interagency, inter-government, international, and the business community. This manual provides guidelines to establish policy for the management of NASA aircraft resources, aircraft operations, and related matters. This policy is an integral part of and must be followed when establishing field installation policy and procedures covering the management of NASA aircraft operations. Each operating location will develop appropriate local procedures that conform with the requirements of this handbook. This manual should be used in conjunction with other governing instructions, handbooks, and manuals.

  16. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.

    Directory of Open Access Journals (Sweden)

    Andrea Guala

    Full Text Available The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.

  17. Compensatory Effect between Aortic Stiffening and Remodelling during Ageing.

    Science.gov (United States)

    Guala, Andrea; Camporeale, Carlo; Ridolfi, Luca

    2015-01-01

    The arterial tree exhibits a complex spatio-temporal wave pattern, whose healthy behaviour depends on a subtle balance between mechanical and geometrical properties. Several clinical studies demonstrated that such a balance progressively breaks down during ageing, when the aorta stiffens and remodels by increasing its diameter. These two degenerative processes however, have different impacts on the arterial wave pattern. They both tend to compensate for each other, thus reducing the detrimental effect they would have had if they had arisen individually. This remarkable compensatory mechanism is investigated by a validated multi-scale model, with the aim to elucidate how aortic stiffening and remodelling quantitatively impact the complex interplay between forward and reflected backward waves in the arterial network. We focus on the aorta and on the pressure at the ventricular-aortic interface, which epidemiological studies demonstrate to play a key role in cardiovascular diseases.

  18. Numerical analysis of stiffener for hybrid drive unite

    Directory of Open Access Journals (Sweden)

    Jakubovičová Lenka

    2018-01-01

    Full Text Available The matter of this article is a stress-strain analysis of hybrid drive prototype unit connected directly to convention Concrete Transit Mixer Gearbox. The unite was developed with intention to do field test on existing convection machines with possibility to use existing interfaces. The hybrid drive unit consists from electric and hydrostatic motor connected through addition mechanical transmission gearbox. The question is if today standard interface is good enough or need additional support a “stiffener”. Two engineering design were analysed. The first one includes using the stiffener to fixate the construction of hybrid drive unite connected to the planetary gear. The second one is without the stiffener. For strain-stress analysis, a finite element software ANSYS Workbench was used.

  19. Tensile behavior and tension stiffening of reinforced concrete

    International Nuclear Information System (INIS)

    Choun, Young Sun; Seo, Jeong Moon

    2001-03-01

    For the ultimate behavior analysis of containment buildings under severe accident conditions, a clear understanding of tensile behaviors of plain and reinforced concrete is necessary. Nonlinear models for tensile behaviors of concrete are also needed. This report describe following items: tensile behaviors of plain concrete, test results of reinforced concrete panels in uniaxial and biaxial tension, tension stiffening. The tensile behaviors of reinforced concrete are significantly influenced by the properties of concrete and reinforcing steel. Thus, for a more reliable evaluation of tensile behavior and ultimate pressure capacity of a reinforced or prestressed concrete containment building, an advanced concrete model which can be considered rebar-concrete interaction effects should be developed. In additions, a crack behavior analysis method and tension stiffening models, which are based on fracture mechanics, should be developed. The model should be based on the various test data from specimens considering material and sectional properties of the containment building

  20. Stiffening mechanisms in amorphous polyamide bio-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Focke, Walter W. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Macheca, Afonso D. [Institute of Applied Materials, Department of Chemical Engineering, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Department of Chemical Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo (Mozambique); Benhamida, Aida; Kaci, Mustapha [Laboratoire des Matériaux Polymères Avancés (LMPA), Université de Bejaia 06000 (Algeria)

    2016-05-18

    Dimer fatty acid polyamide nanocomposites based on flake- or needle-shaped nanoparticles were prepared via melt compounding. Transmission electron microscopy showed the presence of both individually dispersed particles and particle agglomerates in the polymer matrix. Dynamic mechanical analysis suggests that three stiffening mechanisms were operating. The reinforcing effect of the high stiffness inorganic filler particles is the primary contributor. Together with the chain confinement effect, that expresses itself in an apparent increase in the glass transition temperature, this provided an adequate rationalization of the stiffness variation below Tg. However, an additional stiffening effect is indicated at temperatures above Tg. The mechanism may involve dynamic network formation based on fluctuating hydrogen bonding interactions between the polymer chains and the filler particles.

  1. Parameter-free method for the shape optimization of stiffeners on thin-walled structures to minimize stress concentration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yang; Shibutan, Yoji [Osaka University, Osaka (Japan); Shimoda, Masatoshi [Toyota Technological Institute, Nagoya (Japan)

    2015-04-15

    This paper presents a parameter-free shape optimization method for the strength design of stiffeners on thin-walled structures. The maximum von Mises stress is minimized and subjected to the volume constraint. The optimum design problem is formulated as a distributed-parameter shape optimization problem under the assumptions that a stiffener is varied in the in-plane direction and that the thickness is constant. The issue of nondifferentiability, which is inherent in this min-max problem, is avoided by transforming the local measure to a smooth differentiable integral functional by using the Kreisselmeier-Steinhauser function. The shape gradient functions are derived by using the material derivative method and adjoint variable method and are applied to the H{sup 1} gradient method for shells to determine the optimal free-boundary shapes. By using this method, the smooth optimal stiffener shape can be obtained without any shape design parameterization while minimizing the maximum stress. The validity of this method is verified through two practical design examples.

  2. On solutions to equilibrium problems for systems of stiffened gases

    OpenAIRE

    Flåtten, Tore; Morin, Alexandre; Munkejord, Svend Tollak

    2011-01-01

    We consider an isolated system of N immiscible fluids, each following a stiffened-gas equation of state. We consider the problem of calculating equilibrium states from the conserved fluid-mechanical properties, i.e., the partial densities and internal energies. We consider two cases; in each case mechanical equilibrium is assumed, but the fluids may or may not be in thermal equilibrium. For both cases, we address the issues of existence, uniqueness, and physical validity of equilibrium soluti...

  3. The Noble-Abel Stiffened-Gas equation of state

    Science.gov (United States)

    Le Métayer, Olivier; Saurel, Richard

    2016-04-01

    Hyperbolic two-phase flow models have shown excellent ability for the resolution of a wide range of applications ranging from interfacial flows to fluid mixtures with several velocities. These models account for waves propagation (acoustic and convective) and consist in hyperbolic systems of partial differential equations. In this context, each phase is compressible and needs an appropriate convex equation of state (EOS). The EOS must be simple enough for intensive computations as well as boundary conditions treatment. It must also be accurate, this being challenging with respect to simplicity. In the present approach, each fluid is governed by a novel EOS named "Noble Abel stiffened gas," this formulation being a significant improvement of the popular "Stiffened Gas (SG)" EOS. It is a combination of the so-called "Noble-Abel" and "stiffened gas" equations of state that adds repulsive effects to the SG formulation. The determination of the various thermodynamic functions and associated coefficients is the aim of this article. We first use thermodynamic considerations to determine the different state functions such as the specific internal energy, enthalpy, and entropy. Then we propose to determine the associated coefficients for a liquid in the presence of its vapor. The EOS parameters are determined from experimental saturation curves. Some examples of liquid-vapor fluids are examined and associated parameters are computed with the help of the present method. Comparisons between analytical and experimental saturation curves show very good agreement for wide ranges of temperature for both liquid and vapor.

  4. Fracture Analysis of the FAA/NASA Wide Stiffened Panels

    Science.gov (United States)

    Seshadri, B. R.; Newman, J. C., Jr.; Dawicke, D. S.; Young, R. D.

    1999-01-01

    This paper presents the fracture analyses conducted on the FAA/NASA stiffened and unstiffened panels using the STAGS (STructural Analysis of General Shells) code with the critical crack-tip-opening angle (CTOA) fracture criterion. The STAGS code with the "plane-strain" core option was used in all analyses. Previous analyses of wide, flat panels have shown that the high-constraint conditions around a crack front, like plane strain, has to be modeled in order for the critical CTOA fracture criterion to predict wide panel failures from small laboratory tests. In the present study, the critical CTOA value was determined from a wide (unstiffened) panel with anti-buckling guides. The plane-strain core size was estimated from previous fracture analyses and was equal to about the sheet thickness. Rivet flexibility and stiffener failure was based on methods and criteria, like that currently used in industry. STAGS and the CTOA criterion were used to predict load-against-crack extension for the wide panels with a single crack and multiple-site damage cracking at many adjacent rivet holes. Analyses were able to predict stable crack growth and residual strength within a few percent (5%) of stiffened panel tests results but over predicted the buckling failure load on an unstiffened panel with a single crack by 10%.

  5. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes

    Science.gov (United States)

    Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.

    2018-03-01

    A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.

  6. 2002 Industry Studies: Aircraft

    Science.gov (United States)

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  7. RTO Meeting Proceedings 16, Aircraft Weapon System Compatibility and Integration held in Chester, United Kingdom, 28-30 September, 1998

    Science.gov (United States)

    1999-04-01

    explanation for the difference is that aircraft motion same incremental pitching moment coefficient, based in reaction to the weapon ejection was not...operations at gramme with the delivery of the first production aircraft extended ranges to permit quick reaction to, and attack of, achieved in 1996, and the... typographie << norniale ) et b. Mse djour deladsignation de Lobjectif pr~c~d 1 d’un " 0>’) sont regroup~es par "origine de b. r Mis Ao ioure de larm

  8. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project: KDP-A for Phase 2 Minimum Operational Performance Standards

    Science.gov (United States)

    Grindle, Laurie; Hackenberg, Davis L.

    2016-01-01

    UAS Integration in the NAS Project has: a) Developed Technical Challenges that are crucial to UAS integration, aligned with NASA's Strategic Plan and Thrusts, and support FAA standards development. b) Demonstrated rigorous project management processes through the execution of previous phases. c) Defined Partnership Plans. d) Established path to KDP-C. Request approval of Technical Challenges, execution of partnerships and plans, and execution of near-term FY17 activities. There is an increasing need to fly UAS in the NAS to perform missions of vital importance to National Security and Defense, Emergency Management, and Science. There is also an emerging need to enable commercial applications such as cargo transport (e.g. FedEx). Unencumbered NAS Access for Civil/Commercial UAS. Provide research findings, utilizing simulation and flight tests, to support the development and validation of DAA and C2 technologies necessary for integrating Unmanned Aircraft Systems into the National Airspace System.

  9. An Integrated Knowledge Based Engineering Mechatronics Modeling Approach to Support the Design of Unstable and Unmanned Aircraft

    NARCIS (Netherlands)

    Tian, F.N.

    2015-01-01

    The commercial transport aircraft industry is currently developing new “more electric aircraft” (MEA) designs in which various conventional mechanical, hydraulic and pneumatic power systems are replaced with electrically-based power systems. Their objective is to improve the overall flight

  10. The influence of stiffeners on axial crushing of glass-fabric-reinforced epoxy composite shells

    Directory of Open Access Journals (Sweden)

    A. Vasanthanathan

    2017-01-01

    Full Text Available A generic static and impact experimental procedure has been developed in this work aimed at improving the stability of glass fabric reinforced epoxy shell structures by bonding with axial stiffeners. Crashworthy structures fabricated from composite laminate with stiffeners would offer energy absorption superior to metallic structures under compressive loading situations. An experimental material characterisation of the glass fabric reinforced epoxy composite under uni-axial tension has been carried out in this study. This work provides a numerical simulation procedure to describe the static and dynamic response of unstiffened glass fabric reinforced epoxy composite shell (without stiffeners and stiffened glass fabric reinforced epoxy composite shell (with axial stiffeners under static and impact loading using the Finite Element Method. The finite element calculation for the present study was made with ANSYS®-LS-DYNA® software. Based upon the experimental and numerical investigations, it has been asserted that glass fabric reinforced epoxy shells stiffened with GFRP stiffeners are better than unstiffened glass fabric reinforced epoxy shell and glass fabric reinforced epoxy shell stiffened with aluminium stiffeners. The failure surfaces of the glass fabric reinforced epoxy composite shell structures tested under impact were examined by SEM.

  11. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration

    Science.gov (United States)

    Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.

    2018-03-01

    Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.

  12. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light.

    Science.gov (United States)

    Zheng, Zhao; Hu, Jingjing; Wang, Hui; Huang, Junlin; Yu, Yihua; Zhang, Qiang; Cheng, Yiyun

    2017-07-26

    The development of light-responsive hydrogels that exhibit switchable size and mechanical properties with temporal and spatial resolution is of great importance in many fields. However, it remains challenging to prepare smart hydrogels that dramatically change their properties in response to both ultraviolet (UV) and near-infrared (NIR) lights. Here, we designed a dual-light responsive supramolecular gel by integrating UV light-switchable host-guest recognition, temperature responsiveness, and NIR photothermal ability in the gel. The gel could rapidly self-heal and is capable of both softening and stiffening controlled by UV and NIR lights, respectively. Besides stiffness modulation, the bending direction of the gel can be controlled by UV or NIR light irradiation. The smart gel makes it possible to generate dynamic materials that respond to both UV and NIR lights and represents a useful tool that might be used to modulate cellular microenvironments with spatiotemporal resolution.

  13. Principles for Aircraft Energy Mapping

    OpenAIRE

    Berg, Frederick T N

    2013-01-01

    An increasing emphasis on energy eciency in aircraft systems has in recentyears led to greater interest in integrated design and optimisation withinthe industry. New tools are needed to understand, compare and manage energyuse of an aircraft throughout its design and operation. This thesis describes a new methodology to meet this need: aircraft exergy mapping.The choice of exergy, a 2nd law metric, to describe the energy ows is fundamental to the methodology, providing numerous advantages ove...

  14. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  15. Integration of structural health monitoring solutions onto commercial aircraft via the Federal Aviation Administration structural health monitoring research program

    Science.gov (United States)

    Swindell, Paul; Doyle, Jon; Roach, Dennis

    2017-02-01

    The Federal Aviation Administration (FAA) started a research program in structural health monitoring (SHM) in 2011. The program's goal was to understand the technical gaps of implementing SHM on commercial aircraft and the potential effects on FAA regulations and guidance. The program evolved into a demonstration program consisting of a team from Sandia National Labs Airworthiness Assurance NDI Center (AANC), the Boeing Corporation, Delta Air Lines, Structural Monitoring Systems (SMS), Anodyne Electronics Manufacturing Corp (AEM) and the FAA. This paper will discuss the program from the selection of the inspection problem, the SHM system (Comparative Vacuum Monitoring-CVM) that was selected as the inspection solution and the testing completed to provide sufficient data to gain the first approved use of an SHM system for routine maintenance on commercial US aircraft.

  16. On Integrating Unmanned Aircraft Systems into the National Airspace System Issues, Challenges, Operational Restrictions, Certification, and Recommendations

    CERN Document Server

    Dalamagkidis, Konstantinos; Piegl, Les A

    2012-01-01

    This book presents, in a comprehensive way, current unmanned aviation regulation, airworthiness certification, special aircraft categories, pilot certification, federal aviation requirements, operation rules, airspace classes and regulation development models. It discusses unmanned aircraft systems levels of safety derived mathematically based on the corresponding levels for manned aviation. It provides an overview of the history and current status of UAS airworthiness and operational regulation worldwide. Existing regulations have been developed considering the need for a complete regulatory framework for UAS. It focuses on UAS safety assessment and functional requirements, achieved in terms of defining an “Equivalent Level of Safety”, or ELOS, with that of manned aviation, specifying what the ELOS requirement entails for UAS regulations. To accomplish this, the safety performance of manned aviation is first evaluated, followed by a novel model to derive reliability requirements for achieving target lev...

  17. System-on-Chip Integration of a New Electromechanical Impedance Calculation Method for Aircraft Structure Health Monitoring

    OpenAIRE

    Boukabache, Hamza; Escriba, Christophe; Zedek, Sabeha; Medale, Daniel; Rolet, Sebastien; Fourniols, Jean Yves

    2012-01-01

    The work reported on this paper describes a new methodology implementation for active structural health monitoring of recent aircraft parts made from carbon-fiber-reinforced polymer. This diagnosis is based on a new embedded method that is capable of measuring the local high frequency impedance spectrum of the structure through the calculation of the electro-mechanical impedance of a piezoelectric patch pasted non-permanently onto its surface. This paper involves both the laboratory based E/M...

  18. Reduction of initial stress stiffening by topology optimization

    DEFF Research Database (Denmark)

    Philippine, M. A.; Sigmund, Ole; Rebeiz, G. M.

    2012-01-01

    Topology optimization is a rigorous method of obtaining non-intuitive designs. We use it to obtain a capacitive RF switch that stiffens little in response to an increase of the in-plane biaxial stresses that typically develop during MEMS fabrication. The actuation voltage is closely related...... level. We include a volume constraint and a compliance constraint. Topology optimized designs are compared to an intuitively-designed RF switch. The switches contain similar features. The compliance constraint is varied such that the topology optimized switch performance approaches the intuitively......-designed one. Finally, the importance of the compliance constraint and of the robust formulation are discussed....

  19. Implementation and efficiency of two geometric stiffening approaches

    International Nuclear Information System (INIS)

    Lugris, Urbano; Naya, Miguel A.; Perez, Jose A.; Cuadrado, Javier

    2008-01-01

    When the modeling of flexible bodies is required in multibody systems, the floating frame of reference formulations are probably the most efficient methods available. In the case of beams undergoing high speed rotations, the geometric stiffening effect can appear due to geometric nonlinearities, and it is often not captured by the aforementioned methods, since it is common to linearize the elastic forces assuming small deformations. The present work discusses the implementation of different existing methods developed to consider such geometric nonlinearities within a floating frame of reference formulation in natural coordinates, making emphasis on the relation between efficiency and accuracy of the resulting algorithms, seeking to provide practical criteria of use

  20. Evaluation of tension stiffening effect on the crack width calculation of flexural RC members

    Directory of Open Access Journals (Sweden)

    Said M. Allam

    2013-06-01

    Full Text Available Building codes consider the tension stiffening when calculating the crack width of the flexural members. A simple analytical procedure is proposed for the determination of forces, stresses and strains acting on a reinforced concrete section subjected to flexure considering the concrete contribution in tension up to tensile concrete strain corresponding to the cracking strength of concrete. This analytical method gives the minimum value (lower bound of tension stiffening. Also, a commercial Finite Element Program (ABAQUS 2007 was used to perform non-linear analysis in order to evaluate the total contribution of the tensioned concrete in carrying loads which may be considered as the upper bound of tension stiffening. In addition, a comparison is carried out among the different codes using four reinforced concrete rectangular models to compare and evaluate the tension stiffening with proposed analytical lower bound tension stiffening and upper bound as obtained by ABAQUS. The models include different percentages of flexural steel ratio. The comparison revealed that the codes’ equations always consider tension stiffening lying between lower and upper bound of tension stiffening proposed in this study. Also, the study showed that the tension stiffening decreases with the increase of the percentage of the flexural reinforcement ratio.

  1. Models for stiffening in cross-linked biopolymer networks : A comparative study

    NARCIS (Netherlands)

    van Dillen, T.; Onck, P. R.; Van der Giessen, E.

    In a recent publication, we studied the mechanical stiffening behavior in two-dimensional (2D) cross-linked networks of semiflexible biopolymer filaments under simple shear [Onck, P.R., Koeman, T., Van Dillen, T., Van der Giessen, E., 2005. Alternative explanation of stiffening in cross-linked

  2. Minimum stiffness criteria for ring frame stiffeners of space launch vehicles

    Science.gov (United States)

    Friedrich, Linus; Schröder, Kai-Uwe

    2016-12-01

    Frame stringer-stiffened shell structures show high load carrying capacity in conjunction with low structural mass and are for this reason frequently used as primary structures of aerospace applications. Due to the great number of design variables, deriving suitable stiffening configurations is a demanding task and needs to be realized using efficient analysis methods. The structural design of ring frame stringer-stiffened shells can be subdivided into two steps. One, the design of a shell section between two ring frames. Two, the structural design of the ring frames such that a general instability mode is avoided. For sizing stringer-stiffened shell sections, several methods were recently developed, but existing ring frame sizing methods are mainly based on empirical relations or on smeared models. These methods do not mandatorily lead to reliable designs and in some cases the lightweight design potential of stiffened shell structures can thus not be exploited. In this paper, the explicit physical behaviour of ring frame stiffeners of space launch vehicles at the onset of panel instability is described using mechanical substitute models. Ring frame stiffeners of a stiffened shell structure are sized applying existing methods and the method suggested in this paper. To verify the suggested method and to demonstrate its potential, geometrically non-linear finite element analyses are performed using detailed finite element models.

  3. On buckling of double-shell-stiffened cylindrical steel structures

    International Nuclear Information System (INIS)

    Chen, S.J.; Chiu, K.D.; Odar, E.

    1981-01-01

    Buckling analysis methods and acceptance criteria for single shells of various configurations are well documented and adequately covered by many codes. There are, however, no guidelines or criteria for large Double-Shell-Stiffened (DSS) structures, which have been used recently in nuclear power plant applications. The existing codes for buckling analysis cannot be directly utilized because of the uniqueness of structural configuration and complexity of loading. This paper discusses a method for determining the critical buckling loads for this type of structure under a multitude load and suggests buckling criteria for the design of DSS structures. The method commonly used to determine the critical buckling loads for a single shell with or without stiffeners applies reduction factors to the theoretical results. The capacity reduction factors, which are often obtained from experimental results, include plasticity corrections and account for the difference between actual and theoretical buckling loads resulting from the effects of imperfections and nonlinearities. The interaction formulas derived from experimental results can be used to compute the interaction effects of three stress components. This paper extends these concepts and discusses their applicability to a DSS cylindrical structure. (orig./HP)

  4. Arterial stiffening precedes systolic hypertension in diet-induced obesity.

    Science.gov (United States)

    Weisbrod, Robert M; Shiang, Tina; Al Sayah, Leona; Fry, Jessica L; Bajpai, Saumendra; Reinhart-King, Cynthia A; Lob, Heinrich E; Santhanam, Lakshmi; Mitchell, Gary; Cohen, Richard A; Seta, Francesca

    2013-12-01

    Stiffening of conduit arteries is a risk factor for cardiovascular morbidity. Aortic wall stiffening increases pulsatile hemodynamic forces that are detrimental to the microcirculation in highly perfused organs, such as the heart, brain, and kidney. Arterial stiffness is associated with hypertension but presumed to be due to an adaptive response to increased hemodynamic load. In contrast, a recent clinical study found that stiffness precedes and may contribute to the development of hypertension although the mechanisms underlying hypertension are unknown. Here, we report that in a diet-induced model of obesity, arterial stiffness, measured in vivo, develops within 1 month of the initiation of the diet and precedes the development of hypertension by 5 months. Diet-induced obese mice recapitulate the metabolic syndrome and are characterized by inflammation in visceral fat and aorta. Normalization of the metabolic state by weight loss resulted in return of arterial stiffness and blood pressure to normal. Our findings support the hypothesis that arterial stiffness is a cause rather than a consequence of hypertension.

  5. Aircraft/Stores Compatibility, Integration and Separation Testing (Essais de compatibilite, d’integration et de separation des emports sur aeronef)

    Science.gov (United States)

    2014-09-01

    Interface Control Document ID Identification JMPS Joint Mission Planning System LAR Launch Acceptability Region LGB Laser Guided Bombs LOAL...Dump/unguided Cluster Bombs (CBUs); • Laser -Guided Bombs (LGBs); • Inertial-Aided Munitions (IAMs); • Air Intercept Missiles (AIMs); and • Air-to...light stores may be operated by energizing a solenoid to open the hooks. On these systems, the store falls away from the aircraft under the

  6. Aerodynamic Engine/Airframe Integration for High Performance Aircraft and Missiles (L’Integration Aerodynamique des Moteurs et des Cellules dans les Avions et les Missiles a Hautes Performances)

    Science.gov (United States)

    1992-09-01

    baisse du niveas da plateau supersonique (Fig.9). L’onde de choc DCZ 0,30 0068avance de 1% dc Ia corde ci cc dilplacement ye rilperesic sur toute CX 104...propulsion component, which is very helpful for a better understanding of the underlying pheno- mena and finding possible areas of improve- men t.I...of excessive, and for a plane and plug nozzle of a hypersonic aircraft, for probably prohibitive, fine meshes. It has to be men - a highly integrated

  7. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    Science.gov (United States)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  8. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  9. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams

    Directory of Open Access Journals (Sweden)

    Ahmad Azim Shukri

    2015-07-01

    Full Text Available Tension stiffening is a characteristic behavior of reinforced concrete (RC beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  10. The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams.

    Science.gov (United States)

    Shukri, Ahmad Azim; Darain, Kh Mahfuz Ud; Jumaat, Mohd Zamin

    2015-07-08

    Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.

  11. Tension stiffening in partially prestressed concrete flexural members

    International Nuclear Information System (INIS)

    Oukaili, K. N.

    2000-01-01

    Concrete tensile strength is not being zero, cracking does not extend to the neutral axis as assumed in standard cracked section analysis. In addition, un cracked concrete, which exists above the crack tip in the tension zone, contributes to the stiffness of the member. This paper discusses the influence of concrete tensile stress below the neut ural axis position at the cracked section on the tension stiffening phenomenon and deflection of progressively cracking partially prestressed concrete flexural members. The computation of the neutral axis location, which takes into consideration the effect of concrete in tension, can be achieved by solving iteratively tow simultaneous equation derived from forces and moments equilibrium, strain compatibility and linear stress - strain relationship in concrete across the section depth. Once the section depth after cracking is known, it can be used to calculate the effective moment of inertia for deflection analysis. (author). 13 refs., 3 figs., 1 table

  12. Modal analysis of a stiffened toroidal shell sector

    International Nuclear Information System (INIS)

    Cerreta, R.; Di Pietro, E.; Pizzuto, A.

    1987-01-01

    This paper presents the results of the modal analysis of a sector of the toroidal vacuum vessel of a new experimental machine for research in the field of controlled thermonuclear fusion (FTU - Frascati Tokamak Upgrade). The vacuum vessel, one of the most critical components of the experimental device, consist of 12 stainless steel toroidal sectors, and it is designed to withstand pulsed electromagnetic loads during operation. Results of the modal analysis of the stiffened toroidal shell sector are compared and discussed with regard to the experimental data. Theoretical eigenvalues and eigenvectors have been predicted by means of ABAQUS finite element code. Experimental analysis has been carried out on a full scale model and natural frequencies have been measured. Satisfactory agreement between experimental and theoretical eigenvalues has been found

  13. Finite element predictions of active buckling control of stiffened panels

    Science.gov (United States)

    Thompson, Danniella M.; Griffin, O. H., Jr.

    1993-04-01

    Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.

  14. Amphibious Aircraft

    Data.gov (United States)

    National Aeronautics and Space Administration — A brief self composed research article on Amphibious Aircrafts discussing their use, origin and modern day applications along with their advantages and disadvantages...

  15. 150 Passenger Commercial Aircraft

    Science.gov (United States)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  16. Making the Case for New Research to Support the Integration of Small Unmanned Aircraft Systems into the National Airspace System

    Science.gov (United States)

    McAdaragh, Raymon M.; Comstock, James R., Jr.; Ghatas, Rania W.; Burdette, Daniel W.; Trujillo, Anna C.

    2014-01-01

    This paper describes the current state of sUAS regulation, their technical capabilities and the latest technologies that will allow for sUAS NAS integration. The research that is needed to demonstrate sUAS NAS integration capability is identified, and recommendations for conducting this necessary research are suggested.

  17. Sound transmission through stiffened double-panel structures lined with elastic porous materials

    Science.gov (United States)

    Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming

    This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.

  18. Aircraft Capability Management

    Science.gov (United States)

    Mumaw, Randy; Feary, Mike

    2018-01-01

    This presentation presents an overview of work performed at NASA Ames Research Center in 2017. The work concerns the analysis of current aircraft system management displays, and the initial development of an interface for providing information about aircraft system status. The new interface proposes a shift away from current aircraft system alerting interfaces that report the status of physical components, and towards displaying the implications of degradations on mission capability. The proposed interface describes these component failures in terms of operational consequences of aircraft system degradations. The research activity was an effort to examine the utility of different representations of complex systems and operating environments to support real-time decision making of off-nominal situations. A specific focus was to develop representations that provide better integrated information to allow pilots to more easily reason about the operational consequences of the off-nominal situations. The work is also seen as a pathway to autonomy, as information is integrated and understood in a form that automated responses could be developed for the off-nominal situations in the future.

  19. Strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhaoting; Wang, Rong Hui; Chen, Li; Dong, Chung Uang [School of Civil Engineering and Transportation, South China University of Technology, Guangzhou (China)

    2016-08-15

    This article investigated the strongly nonlinear free vibration of four edges simply supported stiffened plates with geometric imperfections. The von Karman nonlinear strain-displacement relationships are applied. The nonlinear vibration of stiffened plate is reduced to a one-degree-of-freedom nonlinear system by assuming mode shapes. The Multiple scales Lindstedt-Poincare method (MSLP) and Modified Lindstedt-Poincare method (MLP) are used to solve the governing equations of vibration. Numerical examples for stiffened plates with different initial geometric imperfections are presented in order to discuss the influences to the strongly nonlinear free vibration of the stiffened plate. The results showed that: the frequency ratio reduced as the initial geometric imperfections of plate increased, which showed that the increase of the initial geometric imperfections of plate can lead to the decrease of nonlinear effect; by comparing the results calculated by MSLP method, using MS method to study strongly nonlinear vibration can lead to serious mistakes.

  20. Ultimate uniaxial compressive strength of stiffened panel with opening under lateral pressure

    Directory of Open Access Journals (Sweden)

    Chang-Li Yu

    2015-03-01

    Full Text Available This paper concentrated on the ultimate uniaxial compressive strength of stiffened panel with opening under lateral load and also studied the design-oriented formulae. For this purpose, three series of well executed experiments on longitudinal stiffened panel with rectangular opening subjected to the combined load have been selected as test models. The finite element analysis package, ABAQUS, is used for simulation with considering the large elasticplastic deflection behavior of stiffened panels. The feasibility of the numerical procedure is verified by a good agreement of experimental results and numerical results. More cases studies are executed employing nonlinear finite element method to analyze the influence of design variables on the ultimate strength of stiffened panel with opening under combined pressure. Based on data, two design formulae corresponding to different opening types are fitted, and accuracy of them is illustrated to demonstrate that they could be applied to basic design of practical engineering structure.

  1. Out-of-autoclave manufacturing of a stiffened thermoplastic carbon fibre PEEK panel

    Science.gov (United States)

    Flanagan, M.; Goggins, J.; Doyle, A.; Weafer, B.; Ward, M.; Bizeul, M.; Canavan, R.; O'Bradaigh, C.; Doyle, K.; Harrison, N.

    2017-10-01

    Out-of-Autoclave manufacturing methods, specifically Automated Tape Placement (ATP) and induction welding, used in the fabrication of a stiffened thermoplastic demonstrator panel, are presented in this study. The demonstrator panel consists of two stiffeners induction welded to a flat skin, to form a typical load bearing aerospace sub-component. The skin of the panel is manufactured from uni-directional Carbon Fibre (CF) Polyetheretherkeytone (PEEK) using laser assisted Automated Tape Placement (ATP) and the stiffeners are press formed from woven CF-PEEK. The stiffeners are fusion bonded to the skin using a continuous induction welding process. A susceptor material is used at the interface to ensure the required heating is concentrated at the weldline. Microscopy was used to examine the manufactured coupons for defects. Destructive testing was carried out to evaluate the strength of the overall assembly. The work shows that assemblies manufactured using continuous induction welding and ATP are suitable for load bearing aerospace applications.

  2. Buckling analysis for structural sections and stiffened plates reinforced with laminated composites.

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.-C.; Miller, R. E., Jr.

    1972-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked flat plate and beam elements. Plates are idealized as multilayered orthotropic elements; structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections and stiffened plates is investigated. Buckling loads are found as the lowest of all possible general and local failure modes and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections and stiffened plates including boron-reinforced structures are discussed. In general, correlations are reasonably good.

  3. Buckling analysis for axially compressed flat plates, structural sections, and stiffened plates reinforced with laminated composites

    Science.gov (United States)

    Viswanathan, A. V.; Soong, T.; Miller, R. E., Jr.

    1971-01-01

    A classical buckling analysis is developed for stiffened, flat plates composed of a series of linked plate and beam elements. Plates are idealized as multilayered orthotropic elements. Structural beads and lips are idealized as beams. The loaded edges of the stiffened plate are simply-supported and the conditions at the unloaded edges can be prescribed arbitrarily. The plate and beam elements are matched along their common junctions for displacement continuity and force equilibrium in an exact manner. Offsets between elements are considered in the analysis. Buckling under uniaxial compressive load for plates, sections, and stiffened plates is investigated. Buckling loads are the lowest of all possible general and local failure modes, and the mode shape is used to determine whether buckling is a local or general instability. Numerical correlations with existing analysis and test data for plates, sections, and stiffened plates including boron-reinforced structures are discussed. In general correlations are reasonably good.

  4. Design and Testing of the Minotaur Advanced Grid-Stiffened Fairing

    National Research Council Canada - National Science Library

    Higgins, John; Wegner, Peter; Viisoreanu, Adrian; Sanford, Greg

    2004-01-01

    .... Various failure modes were examined for the composite grid-stiffened structure. The controlling criterion for this design was a joint failure in tension between the ribs and skin of the structure...

  5. New interpretation of arterial stiffening due to cigarette smoking using a structurally motivated constitutive model

    DEFF Research Database (Denmark)

    Enevoldsen, Majken; Henneberg, K-A; Jensen, J A

    2011-01-01

    these effects using a single stiffening parameter similar to the approach in isotropic continuum damage mechanics. There is a pressing need, however, for more detailed histological information coupled with more complete biaxial mechanical data for a broader range of systemic arteries....... published for rat pulmonary arteries. A structurally motivated "four fiber family" constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening caused...

  6. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  7. Multilevel Optimization Framework for Hierarchical Stiffened Shells Accelerated by Adaptive Equivalent Strategy

    Science.gov (United States)

    Wang, Bo; Tian, Kuo; Zhao, Haixin; Hao, Peng; Zhu, Tianyu; Zhang, Ke; Ma, Yunlong

    2017-06-01

    In order to improve the post-buckling optimization efficiency of hierarchical stiffened shells, a multilevel optimization framework accelerated by adaptive equivalent strategy is presented in this paper. Firstly, the Numerical-based Smeared Stiffener Method (NSSM) for hierarchical stiffened shells is derived by means of the numerical implementation of asymptotic homogenization (NIAH) method. Based on the NSSM, a reasonable adaptive equivalent strategy for hierarchical stiffened shells is developed from the concept of hierarchy reduction. Its core idea is to self-adaptively decide which hierarchy of the structure should be equivalent according to the critical buckling mode rapidly predicted by NSSM. Compared with the detailed model, the high prediction accuracy and efficiency of the proposed model is highlighted. On the basis of this adaptive equivalent model, a multilevel optimization framework is then established by decomposing the complex entire optimization process into major-stiffener-level and minor-stiffener-level sub-optimizations, during which Fixed Point Iteration (FPI) is employed to accelerate convergence. Finally, the illustrative examples of the multilevel framework is carried out to demonstrate its efficiency and effectiveness to search for the global optimum result by contrast with the single-level optimization method. Remarkably, the high efficiency and flexibility of the adaptive equivalent strategy is indicated by compared with the single equivalent strategy.

  8. Time reversed Lamb wave for damage detection in a stiffened aluminum plate

    International Nuclear Information System (INIS)

    Bijudas, C R; Mitra, M; Mujumdar, P M

    2013-01-01

    According to the concept of time reversibility of the Lamb wave, in the absence of damage, a Lamb wave signal can be reconstructed at the transmitter location if a time reversed signal is sent back from the receiver location. This property is used for baseline-free damage detection, where the presence of damage breaks down the time reversibility and the mismatch between the reconstructed and the input signal is inferred as the presence of damage. This paper presents an experimental and a simulation study of baseline-free damage detection in a stiffened aluminum plate by time reversed Lamb wave (TRLW). In this study, single Lamb wave mode (A 0 ) is generated and sensed using piezoelectric (PZT) transducers through specific transducer placement and amplitude tuning. Different stiffening configurations such as plane and T-stiffeners are considered. Damage cases of disbonding of stiffeners from the base plate, and vertical and embedded cracks in the stiffened plate, are studied. The results show that TRLW based schemes can efficiently identify the presence of damage in a stiffened plate. (paper)

  9. Advanced technology composite aircraft structures

    Science.gov (United States)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  10. Advanced composites structural concepts and materials technologies for primary aircraft structures. Structural response and failure analysis: ISPAN modules users manual

    Science.gov (United States)

    Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.

    1992-01-01

    The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.

  11. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    Science.gov (United States)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  12. Aircraft cybernetics

    Science.gov (United States)

    1977-01-01

    The use of computers for aircraft control, flight simulation, and inertial navigation is explored. The man-machine relation problem in aviation is addressed. Simple and self-adapting autopilots are described and the assets and liabilities of digital navigation techniques are assessed.

  13. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    Science.gov (United States)

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  14. Nonlinear analysis of commercial aircraft impact on a reactor building—Comparison between integral and decoupled crash simulation

    Energy Technology Data Exchange (ETDEWEB)

    Siefert, A., E-mail: siefert@woelfel.de; Henkel, F.O.

    2014-04-01

    Since 9/11, the crash of a commercial aeroplane on the reactor building of a nuclear power plant is a realistic design scenario. Before that the structural behaviour under a crash of a military plane was investigated by a procedure using load-time functions (Riera, 1968). Thereby, the computation of the load-time-function was based on a conceptional model considering the main stiffness parts and masses by discrete elements. With respect to the homogeneous structural set-up of a military plane, the application of this model and the derived load-time-function applied as lumped load case seems very feasible. Contrary thereto the structural set-up of a commercial aeroplane, with e.g. the high mass concentration of the turbine or the high stiffness of the wing box compared to other parts, is different. This can be counteracted by using a more detailed finite element (FE) model for the computation of the load-time-function and by dividing the load case for the reactor building in different main load zones. Although this represents a more detailed investigation, the procedure of using a load-time-function still has the disadvantage to separate the real scenario into two steps. Thereby, the direct interaction between the structure and the aeroplane including all softening effects due to material respectively structural compliances is neglected. This leads to the general conclusion that by applying load-time-functions the results are conservative compared to the real behaviour. Due to the increased capabilities of numerical software solutions it is also possible nowadays to carry out integral crash simulations, combining all effects within one simulation. Compared to the procedure of using load-time-functions, the numerical complexity and therefore the amount of work for this integral method are increased. Within this paper both procedures (load-time function by detailed FE-model and the integral method) are exemplarily compared to each other by a crash analysis of an

  15. Nonlinear analysis of commercial aircraft impact on a reactor building—Comparison between integral and decoupled crash simulation

    International Nuclear Information System (INIS)

    Siefert, A.; Henkel, F.O.

    2014-01-01

    Since 9/11, the crash of a commercial aeroplane on the reactor building of a nuclear power plant is a realistic design scenario. Before that the structural behaviour under a crash of a military plane was investigated by a procedure using load-time functions (Riera, 1968). Thereby, the computation of the load-time-function was based on a conceptional model considering the main stiffness parts and masses by discrete elements. With respect to the homogeneous structural set-up of a military plane, the application of this model and the derived load-time-function applied as lumped load case seems very feasible. Contrary thereto the structural set-up of a commercial aeroplane, with e.g. the high mass concentration of the turbine or the high stiffness of the wing box compared to other parts, is different. This can be counteracted by using a more detailed finite element (FE) model for the computation of the load-time-function and by dividing the load case for the reactor building in different main load zones. Although this represents a more detailed investigation, the procedure of using a load-time-function still has the disadvantage to separate the real scenario into two steps. Thereby, the direct interaction between the structure and the aeroplane including all softening effects due to material respectively structural compliances is neglected. This leads to the general conclusion that by applying load-time-functions the results are conservative compared to the real behaviour. Due to the increased capabilities of numerical software solutions it is also possible nowadays to carry out integral crash simulations, combining all effects within one simulation. Compared to the procedure of using load-time-functions, the numerical complexity and therefore the amount of work for this integral method are increased. Within this paper both procedures (load-time function by detailed FE-model and the integral method) are exemplarily compared to each other by a crash analysis of an

  16. Active vibration reduction by optimally placed sensors and actuators with application to stiffened plates by beams

    International Nuclear Information System (INIS)

    Daraji, A H; Hale, J M

    2014-01-01

    This study concerns new investigation of active vibration reduction of a stiffened plate bonded with discrete sensor/actuator pairs located optimally using genetic algorithms based on a developed finite element modeling. An isotropic plate element stiffened by a number of beam elements on its edges and having a piezoelectric sensor and actuator pair bonded to its surfaces is modeled using the finite element method and Hamilton’s principle, taking into account the effects of piezoelectric mass, stiffness and electromechanical coupling. The modeling is based on the first order shear deformation theory taking into account the effects of bending, membrane and shear deformation for the plate, the stiffening beam and the piezoelectric patches. A Matlab finite element program has been built for the stiffened plate model and verified with ANSYS and also experimentally. Optimal placement of ten piezoelectric sensor/actuator pairs and optimal feedback gain for active vibration reduction are investigated for a plate stiffened by two beams arranged in the form of a cross. The genetic algorithm was set up for optimization of sensor/actuator placement and feedback gain based on the minimization of the optimal linear quadratic index as an objective function to suppress the first six modes of vibration. Comparison study is presented for active vibration reduction of a square cantilever plate stiffened by crossed beams with two sensor/actuator configurations: firstly, ten piezoelectric sensor/actuator pairs are located in optimal positions; secondly, a piezoelectric layer of single sensor/actuator pair covering the whole of the stiffened plate as a SISO system. (paper)

  17. Aircraft Design Software

    Science.gov (United States)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  18. Vibration isolation design for periodically stiffened shells by the wave finite element method

    Science.gov (United States)

    Hong, Jie; He, Xueqing; Zhang, Dayi; Zhang, Bing; Ma, Yanhong

    2018-04-01

    Periodically stiffened shell structures are widely used due to their excellent specific strength, in particular for aeronautical and astronautical components. This paper presents an improved Wave Finite Element Method (FEM) that can be employed to predict the band-gap characteristics of stiffened shell structures efficiently. An aero-engine casing, which is a typical periodically stiffened shell structure, was employed to verify the validation and efficiency of the Wave FEM. Good agreement has been found between the Wave FEM and the classical FEM for different boundary conditions. One effective wave selection method based on the Wave FEM has thus been put forward to filter the radial modes of a shell structure. Furthermore, an optimisation strategy by the combination of the Wave FEM and genetic algorithm was presented for periodically stiffened shell structures. The optimal out-of-plane band gap and the mass of the whole structure can be achieved by the optimisation strategy under an aerodynamic load. Results also indicate that geometric parameters of stiffeners can be properly selected that the out-of-plane vibration attenuates significantly in the frequency band of interest. This study can provide valuable references for designing the band gaps of vibration isolation.

  19. Analysis of Stiffened Penstock External Pressure Stability Based on Immune Algorithm and Neural Network

    Directory of Open Access Journals (Sweden)

    Wensheng Dong

    2014-01-01

    Full Text Available The critical external pressure stability calculation of stiffened penstock in the hydroelectric power station is very important work for penstock design. At present, different assumptions and boundary simplification are adopted by different calculation methods which sometimes cause huge differences too. In this paper, we present an immune based artificial neural network model via the model and stability theory of elastic ring, we study effects of some factors (such as pipe diameter, pipe wall thickness, sectional size of stiffening ring, and spacing between stiffening rings on penstock critical external pressure during huge thin-wall procedure of penstock. The results reveal that the variation of diameter and wall thickness can lead to sharp variation of penstock external pressure bearing capacity and then give the change interval of it. This paper presents an optimizing design method to optimize sectional size and spacing of stiffening rings and to determine penstock bearing capacity coordinate with the bearing capacity of stiffening rings and penstock external pressure stability coordinate with its strength safety. As a practical example, the simulation results illustrate that the method presented in this paper is available and can efficiently overcome inherent defects of BP neural network.

  20. Creep-age forming of AA7475 aluminum panels for aircraft lower wing skin application

    Directory of Open Access Journals (Sweden)

    Diego José Inforzato

    2012-08-01

    Full Text Available Creep-age forming (CAF is an interesting process for the airframe industry, as it is able to form or shape panels into smooth, but complex, curvatures. In the CAF process, the ageing cycle of the alloy is used to relax external loads imposed to the part, through creep mechanisms. Those relaxed stresses impose a new curvature to the part. At the end of the process, significant spring back (sometimes about 70% is observed and the success in achieving the desired form depends on how the spring back can be predicted in order to compensate it by tooling changes. Most of the applications relate to simple (non stiffened panels. The present work deals with the CAF of aluminum panels for aircraft wing skin application. CAF was performed using vacuum-bagging autoclave technique in small scale complex shape stiffened panels, machined from an AA7475 alloy plate. An analytical reference model from the literature was employed estimate the spring back effect in such panel geometry. This model that deals with simple plates was adapted to stiffened panels using a geometric simplification, resulting in a semi-empirical model. The results demonstrate that CAF is a promising process to form stiffened panels, and the spring back can be roughly estimated through a simple model and few experiments.

  1. Influence of cracks and pitting corrosion on residual ultimate strength of stiffened plates

    Directory of Open Access Journals (Sweden)

    ZHANG Jing

    2018-02-01

    Full Text Available [Objectives] Ships and offshore platforms serve in the harsh sea environment for a long time. Cracks and pitting corrosion will occur in such a structure and the damage will affect its ultimate strength.[Methods] To investigate the influence of cracks and pitting corrosion on ultimate bearing capacity, the ultimate strength of a structure under axial compression is studied by using a nonlinear finite element. The mesh size of a stiffened plate with cracks and pitting corrosion is first discussed. Then the influence of the relative positions of cracks and pitting corrosion, number of corrosion points and crack length impact on the residual ultimate strength of damaged stiffened plates is discussed via a series of calculations.[Results] The results indicate that the increase in crack length and pitting corrosion significantly decreases the ultimate strength of a stiffened plate. [Conclusions] This provides a useful reference for designing and maintaining ships and offshore structures in their life cycles.

  2. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    theories, each providing valuable insight. One of these is capable of predicting the vertical string lift due to stiffening in terms of simple expressions, with results that agree very well with experimental measurements for a wide range of conditions. It appears that resonance effects cannot be ignored...... for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating......, as was done in a few related studies¿¿unless the system has very low modal density or heavy damping; thus first-order consideration to resonance effects is included. Using the specific example with experimental support to put confidence on the proposed theory, expressions for predicting the stiffening effect...

  3. Analysis for stresses and buckling of heated composite stiffened panels and other structures, phase 3

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.

  4. Simplified Procedure For The Free Vibration Analysis Of Rectangular Plate Structures With Holes And Stiffeners

    Directory of Open Access Journals (Sweden)

    Cho Dae Seung

    2015-04-01

    Full Text Available Thin and thick plates, plates with holes, stiffened panels and stiffened panels with holes are primary structural members in almost all fields of engineering: civil, mechanical, aerospace, naval, ocean etc. In this paper, a simple and efficient procedure for the free vibration analysis of such elements is presented. It is based on the assumed mode method and can handle different plate thickness, various shapes and sizes of holes, different framing sizes and types as well as different combinations of boundary conditions. Natural frequencies and modes are determined by solving an eigenvalue problem of a multi-degree-of-freedom system matrix equation derived by using Lagrange’s equations. Mindlin theory is applied for a plate and Timoshenko beam theory for stiffeners. The applicability of the method in the design procedure is illustrated with several numerical examples obtained by the in-house developed code VAPS. Very good agreement with standard commercial finite element software is achieved.

  5. New interpretation of arterial stiffening due to cigarette smoking using a structurally motivated constitutive model

    DEFF Research Database (Denmark)

    Enevoldsen, Marie Sand; Henneberg, Kaj-Åge; Jensen, Jørgen Arendt

    2011-01-01

    to capture these effects using a single stiffening parameter similar to the approach in isotropic continuum damage mechanics. There is a pressing need, however, for more detailed histological information coupled with more complete biaxial mechanical data for a broader range of systemic arteries....... published for rat pulmonary arteries. A structurally motivated ‘‘four fiber family’’ constitutive relation was used to fit the available biaxial data and associated best-fit values of material parameters were estimated using multivariate nonlinear regression. Results suggested that arterial stiffening...

  6. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  7. Aircraft Noise Reduction Subproject Overview

    Science.gov (United States)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  8. Challenges of Aircraft Design Integration

    Science.gov (United States)

    2003-03-01

    predicted by the conceptual stick model and the full FEM of the Challenger wing without winglets . Advanced aerodynamic wing design methods To design wings...Piperni, E. Laurendeau Advanced Aerodynamics Bombardier Aerospace 400 CMte Vertu Road Dorval, Quebec, Canada, H4S 1Y9 Fassi.Kafyeke @notes.canadair.ca Tel...514) 855-7186 Abstract The design of a modern airplane brings together many disciplines: structures, aerodynamics , controls, systems, propulsion

  9. Model Updating in Online Aircraft Prognosis Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  10. Ultimate pressure capacity assessment of R FRC PCCV based on the tension stiffening tests

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Choun, Young Sun

    2012-01-01

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the tensile resistance of concrete structures. Recently, the application of fibers to prestressed concrete containment vessels (PCCVs) has been a major research topic. However, the tensile stiffening behavior of reinforced - fiber reinforced concrete (RFRC) is not fully developed yet especially for specimens using large diameter re bars. In nuclear power plant (NPP) PCCVs, large diameter re bars are applied. Therefore, the tensile stiffening behavior model should be developed to assess ultimate pressure capacity (UPC) of R FRC PCCVs. In this study, we modeled the tensile stiffening behavior of R FRC PCCVs by using recently developed model, and assessed the UPC of R FRC PCCVs. To do this, we performed tension stiffening test of R FRC with large diameter re bar

  11. Vibro-Acoustic modulation based damage identification in a composite skin-stiffener structure

    NARCIS (Netherlands)

    Ooijevaar, T.H.; Loendersloot, Richard; Rogge, M.D.; Akkerman, Remko; Tinga, Tiedo; Le Cam, V.; Mevel, L.; Schoefs, F.

    2014-01-01

    The vibro-acoustic modulation method is applied to a composite skin-stiffener structure to investigate the possibilities to utilise this method for damage identification in terms of detection, localisation and damage quantification. The research comprises a theoretical part and an experimental part.

  12. Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing

    Science.gov (United States)

    2011-09-01

    isolated AO mode first arrival, recorded at PZT 2, is shown at 3 different fatigue levels. Figure 5. The area under the PSD curve, calculated twice...Structural Damage Identification in Stiffened Plate Fatigue Specimens Using Piezoelectric Active Sensing B. L. GRISSO, G. PARK, L. W. SALVINO...with several challenges including limited performance knowledge of the materials, aluminum sensitization, structural fatigue performance, and

  13. Effect of longitudinal stiffening on bridge girder webs at incremental launching stage

    Directory of Open Access Journals (Sweden)

    Carlos Graciano

    2015-01-01

    Full Text Available Patch loading is a predominant load case at incremental bridge launching. Bridge girder webs are frequently provided with longitudinal stiffeners to increase in-service shear and bending strength, and its effect has been included in design codes. However, no straightforward rules are given to account for the influence of such stiffeners on improving the patch loading resistance. This paper presents a review of some available formulae found in the literature to estimate the girder ultimate strength including the provisions of the European, American and Colombian design codes. Additionally, a nonlinear finite element analysis is conducted on three case studies related to actual launched bridges. The case studies are also used to study the influence of the longitudinal stiffener and girder depth on the girder capacity. Different load-displacement responses are observed depending on the girder depth. Finally, the finite element analysis shows to what extent the longitudinal stiffeners can increase the patch loading capacity of bridge girder webs during launching.

  14. High-Fat, High-Sugar Diet-Induced Subendothelial Matrix Stiffening is Mitigated by Exercise.

    Science.gov (United States)

    Kohn, Julie C; Azar, Julian; Seta, Francesca; Reinhart-King, Cynthia A

    2018-03-01

    Consumption of a high-fat, high-sugar diet and sedentary lifestyle are correlated with bulk arterial stiffening. While measurements of bulk arterial stiffening are used to assess cardiovascular health clinically, they cannot account for changes to the tissue occurring on the cellular scale. The compliance of the subendothelial matrix in the intima mediates vascular permeability, an initiating step in atherosclerosis. High-fat, high-sugar diet consumption and a sedentary lifestyle both cause micro-scale subendothelial matrix stiffening, but the impact of these factors in concert remains unknown. In this study, mice on a high-fat, high-sugar diet were treated with aerobic exercise or returned to a normal diet. We measured bulk arterial stiffness through pulse wave velocity and subendothelial matrix stiffness ex vivo through atomic force microscopy. Our data indicate that while diet reversal mitigates high-fat, high-sugar diet-induced macro- and micro-scale stiffening, exercise only significantly decreases micro-scale stiffness and not macro-scale stiffness, during the time-scale studied. These data underscore the need for both healthy diet and exercise to maintain vascular health. These data also indicate that exercise may serve as a key lifestyle modification to partially reverse the deleterious impacts of high-fat, high-sugar diet consumption, even while macro-scale stiffness indicators do not change.

  15. Experimental buckling investigation of ring-stiffened cylindrical shells under unsymmetrical axial loads

    International Nuclear Information System (INIS)

    Baker, W.E.; Babock, C.D.; Bennett, J.G.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to stimulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius. The results showed that the buckling load and mode for the shell having a penetration that did not cut a ring stiffener were essentially the same as those for the unpenetrated shell. The buckling loads for the penetrated shells in which stiffeners were interrupted were less than that for the unpenetrated shells. Results of all tests are compared to numerical solutions carried out using a nonlinear collapse analysis and to the predictions of ASME Code Case N-284

  16. Ultimate pressure capacity assessment of R FRC PCCV based on the tension stiffening tests

    Energy Technology Data Exchange (ETDEWEB)

    Hahm, Dae Gi; Choun, Young Sun [KAERI, Daejeon (Korea, Republic of)

    2012-10-15

    The use of fibers in concrete or cement composites can enhance the performance of structural elements. Fibers have been used for a cement mixture to increase the toughness and tensile strength, and to improve the cracking and deformation characteristics. The addition of fibers into concrete can improve the ductility and increase the tensile resistance of concrete structures. Recently, the application of fibers to prestressed concrete containment vessels (PCCVs) has been a major research topic. However, the tensile stiffening behavior of reinforced - fiber reinforced concrete (RFRC) is not fully developed yet especially for specimens using large diameter re bars. In nuclear power plant (NPP) PCCVs, large diameter re bars are applied. Therefore, the tensile stiffening behavior model should be developed to assess ultimate pressure capacity (UPC) of R FRC PCCVs. In this study, we modeled the tensile stiffening behavior of R FRC PCCVs by using recently developed model, and assessed the UPC of R FRC PCCVs. To do this, we performed tension stiffening test of R FRC with large diameter re bar.

  17. Concepts for improving the damage tolerance of composite compression panels. [aircraft structures

    Science.gov (United States)

    Rhodes, M. D.; Williams, J. G.

    1984-01-01

    The residual strength of specimens with damage and the sensitivity to damage while subjected to an applied inplane compression load were determined for flatplate specimens and blade-stiffened panels. The results suggest that matrix materials that fail by delamination have the lowest damage tolerance capability. Alternate matrix materials or laminates which are transversely reinforced suppress the delamination mode of failure and change the failure mode to transverse shear crippling which occurs at a higher strain value. Several damage-tolerant blade-stiffened panel design concepts are evaluated. Structural efficiency studies conducted show only small mass penalties may result from incorporating these damage-tolerant features in panel design. The implication of test results on the design of aircraft structures was examined with respect to FAR requirements.

  18. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  19. Aircraft Cabin Environmental Quality Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  20. Cost-Benefit Analysis for the Advanced Near Net Shape Technology (ANNST) Method for Fabricating Stiffened Cylinders

    Science.gov (United States)

    Ivanco, Marie L.; Domack, Marcia S.; Stoner, Mary Cecilia; Hehir, Austin R.

    2016-01-01

    Low Technology Readiness Levels (TRLs) and high levels of uncertainty make it challenging to develop cost estimates of new technologies in the R&D phase. It is however essential for NASA to understand the costs and benefits associated with novel concepts, in order to prioritize research investments and evaluate the potential for technology transfer and commercialization. This paper proposes a framework to perform a cost-benefit analysis of a technology in the R&D phase. This framework was developed and used to assess the Advanced Near Net Shape Technology (ANNST) manufacturing process for fabricating integrally stiffened cylinders. The ANNST method was compared with the conventional multi-piece metallic construction and composite processes for fabricating integrally stiffened cylinders. Following the definition of a case study for a cryogenic tank cylinder of specified geometry, data was gathered through interviews with Subject Matter Experts (SMEs), with particular focus placed on production costs and process complexity. This data served as the basis to produce process flowcharts and timelines, mass estimates, and rough order-of-magnitude cost and schedule estimates. The scalability of the results was subsequently investigated to understand the variability of the results based on tank size. Lastly, once costs and benefits were identified, the Analytic Hierarchy Process (AHP) was used to assess the relative value of these achieved benefits for potential stakeholders. These preliminary, rough order-of-magnitude results predict a 46 to 58 percent reduction in production costs and a 7-percent reduction in weight over the conventional metallic manufacturing technique used in this study for comparison. Compared to the composite manufacturing technique, these results predict cost savings of 35 to 58 percent; however, the ANNST concept was heavier. In this study, the predicted return on investment of equipment required for the ANNST method was ten cryogenic tank barrels

  1. Propulsion controlled aircraft computer

    Science.gov (United States)

    Cogan, Bruce R. (Inventor)

    2010-01-01

    A low-cost, easily retrofit Propulsion Controlled Aircraft (PCA) system for use on a wide range of commercial and military aircraft consists of an propulsion controlled aircraft computer that reads in aircraft data including aircraft state, pilot commands and other related data, calculates aircraft throttle position for a given maneuver commanded by the pilot, and then displays both current and calculated throttle position on a cockpit display to show the pilot where to move throttles to achieve the commanded maneuver, or is automatically sent digitally to command the engines directly.

  2. Computer program for buckling loads of orthotropic laminated stiffened panels subjected to biaxial in-place loads (BUCLASP 2)

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.

    1974-01-01

    General-purpose program performs exact instability analyses for structures such as unidirectionally-stiffened, rectangular composite panels. Program was written in FORTRAN IV and COMPASS for CDC-series computers.

  3. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  4. Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1.

    Science.gov (United States)

    Bhatta, Anil; Yao, Lin; Xu, Zhimin; Toque, Haroldo A; Chen, Jijun; Atawia, Reem T; Fouda, Abdelrahman Y; Bagi, Zsolt; Lucas, Rudolf; Caldwell, Ruth B; Caldwell, Robert W

    2017-11-01

    Elevation of arginase activity has been linked to vascular dysfunction in diabetes and hypertension by a mechanism involving decreased nitric oxide (NO) bioavailability due to L-arginine depletion. Excessive arginase activity also can drive L-arginine metabolism towards the production of ornithine, polyamines, and proline, promoting proliferation of vascular smooth muscle cells and collagen formation, leading to perivascular fibrosis. We hypothesized that there is a specific involvement of arginase 1 expression within the vascular endothelial cells in this pathology. To test this proposition, we used models of type 2 diabetes and metabolic syndrome. Studies were performed using wild type (WT), endothelial-specific arginase 1 knockout (EC-A1-/-) and littermate controls(A1con) mice fed high fat-high sucrose (HFHS) or normal diet (ND) for 6 months and isolated vessels exposed to palmitate-high glucose (PA/HG) media. Some WT mice or isolated vessels were treated with an arginase inhibitor, ABH [2-(S)-amino-6-boronohexanoic acid. In WT mice, the HFHS diet promoted increases in body weight, fasting blood glucose, and post-prandial insulin levels along with arterial stiffening and fibrosis, elevated blood pressure, decreased plasma levels of L-arginine, and elevated L-ornithine. The HFHS diet or PA/HG treatment also induced increases in vascular arginase activity along with oxidative stress, reduced vascular NO levels, and impaired endothelial-dependent vasorelaxation. All of these effects except obesity and hypercholesterolemia were prevented or significantly reduced by endothelial-specific deletion of arginase 1 or ABH treatment. Vascular dysfunctions in diet-induced obesity are prevented by deletion of arginase 1 in vascular endothelial cells or arginase inhibition. These findings indicate that upregulation of arginase 1 expression/activity in vascular endothelial cells has an integral role in diet-induced cardiovascular dysfunction and metabolic syndrome. Published

  5. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  6. Experimental buckling investigation of ring-stiffened cyclindrical shells under unsymmetrical axial loads

    International Nuclear Information System (INIS)

    Baker, W.E.; Bennett, J.G.; Babcock, C.D.

    1983-01-01

    Six steel shells having nuclear containment-like features were fabricated and loaded to failure with an offset axial load. The shells of R/t = 500 buckled plastically. Four of the shells had reinforced circular cutouts. These penetrations were sized to cut no ring-stiffener, a single, two- or three-ring stiffeners. Reinforcing and framing around the penetrations were based upon the area-replacement rule of the applicable portion of the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code and were of a design to simulate actual practice for nuclear steel containments. Prior to testing, imperfections were measured and strain gages were applied to determine information on load distribution at the ends of the cylinder and strain fields at areas likely to buckle. Buckling loads were determined for an axial load applied with an eccentricity of R/2 where R is the cylinder radius

  7. Effects of solvents on the early stage stiffening rate of demineralized dentin matrix.

    Science.gov (United States)

    Garcia, Fernanda C P; Otsuki, Masayuki; Pashley, David H; Tay, Franklin R; Carvalho, Ricardo M

    2005-05-01

    To monitor the stiffening rate of demineralized dentin matrix at the early stages after exposure to different neat solvents. Dentin beams approximately 0.8x0.7x8.0 mm were obtained from human third molars. After covering their ends with resin composite, the middle exposed length of 4.0mm (gauge-length) was demineralized in 0.5 M EDTA (pH 7.0) for 7 days. The specimens were gripped by a testing machine, pre-loaded to 10 g and cyclically stressed in tension to 5% strain, for 30 repeated cycles (total 20 min) at 0.6 mm/min while immersed in water (control). Then, water was replaced by either 100% acetone, methanol, ethanol, propanol, HEMA or air and the specimens subjected to the same cyclic protocol. The maximum apparent modulus of elasticity (E(Max)) was calculated for every cycle, plotted as a function of time and subjected to regression analysis. Stiffening rate was calculated as changes in E (min). Regression analysis examined the relationship between E and time for each solvent. Data were analyzed by one-way ANOVA and Student-Newman-Keuls test at alpha=0.05. Regression analysis showed that E increased significantly with time in all water-free solvents (R2=0.8-0.99). Stiffening rate was higher for acetone (0.9 MPa/min) and ethanol (0.8 MPa/min), intermediate for air (0.7 MPa/min), methanol (0.6 MPa/min) and propanol (0.5 MPa/min), lower for HEMA (0.2 MPa/min) and practically none for water (0.07 MPa/min) with prate of demineralized dentin matrix is both time and solvent-dependent. The ability of solvents to promptly stiffen the demineralized dentin matrix may be important in maintaining the resin-infiltrated matrix expanded during the solvent evaporation stage of resin bonding.

  8. Structural design of nuclear power plant using stiffened steel plate concrete structure

    International Nuclear Information System (INIS)

    Moon, Ilhwan; Kim, Sungmin; Mun, Taeyoup; Kim, Keunkyeong; Sun, Wonsang

    2009-01-01

    Nuclear power is an alternative energy source that is conducive to mitigate the environmental strains. The countries having nuclear power plants are encouraging research and development sector to find ways to construct safer and more economically feasible nuclear power plants. Modularization using Steel Plate Concrete(SC) structure has been proposed as a solution to these efforts. A study of structural modules using SC structure has been performed for shortening of construction period and enhancement of structural safety of NPP structures in Korea. As a result of the research, the design code and design techniques based on limit state design method has been developed. The design code has been developed through various structural tests and theoretical studies, and it has been modified by application design of SC structure for NPP buildings. The code consists of unstiffened SC wall design, stiffened SC wall design, Half-SC slab design, stud design, connection design and so on. The stiffened steel plate concrete(SSC) wall is SC structure whose steel plates with ribs are composed on both sides of the concrete wall, and this structure was developed for improved constructability and safety of SC structure. This paper explains a design application of SC structure for a sample building specially devised to reflect all of major structural properties of main buildings of APR1400. In addition, Stiffening effect of SSC structure is evaluated and structural efficiency of SSC structure is verified in comparison with that of unstiffened SC structure. (author)

  9. Correction of malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance

    International Nuclear Information System (INIS)

    Lee, Seung Ryong; Baek, Kyong Hee; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk; Rim, Hark

    1997-01-01

    To determine the efficacy of correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance. Between November 1994 and March 1997, we performed 15 manipulations in 12 patients in whom a dual-cuff, straight Tenckhoff peritoneal dialysis catheter had been implanted due to chronic renal failure. The causes of catheter malfunctioning were inadequate drainage of the dialysate(n=14) and painful dialysis(n=1). Under fluoroscopic guidance, adhesiolysis and repositioning of the malfunctioning catheter were performed with an Amplatz Super Stiff guidewire and the stiffener from a biliary drainage catheter. The results of procedures were categorized as either immediate or durable success, this latter being defined as adequate catheter function for at least one month after the procedure. Immediate success was achieved in 14 of 15 procedures (93%), and durable success in 7 of 15(47%). The mean duration of catheter function was 157 (range, 30 to 578) days. After manipulation, abdominal pain developed in eight patients and peritonitis in two, but with conservative treatment, these symptoms improved. The correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance is an effective means of restoring catheter function and may be an effective alternative to surgical reimplantation of the catheter, or hemodialysis

  10. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows.

    Science.gov (United States)

    Forsyth, Alison M; Wan, Jiandi; Ristenpart, William D; Stone, Howard A

    2010-07-01

    The rigidity of red blood cells (RBCs) plays an important role in whole blood viscosity and is correlated with several cardiovascular diseases. Two chemical agents that are commonly used to study cell deformation are diamide and glutaraldehyde. Despite diamide's common usage, there are discrepancies in the literature surrounding diamide's effect on the deformation of RBCs in shear and pressure-driven flows; in particular, shear flow experiments have shown that diamide stiffens cells, while pressure-driven flow in capillaries did not give this result. We performed pressure-driven flow experiments with RBCs in a microfluidic constriction and quantified the cell dynamics using high-speed imaging. Diamide, which affects RBCs by cross-linking spectrin skeletal membrane proteins, did not reduce deformation and showed an unchanged effective strain rate when compared to healthy cells. In contrast, glutaraldehyde, which is a non-specific fixative that acts on all components of the cell, did reduce deformation and showed increased instances of tumbling, both of which are characteristic features of stiffened, or rigidified, cells. Because glutaraldehyde increases the effective viscosity of the cytoplasm and lipid membrane while diamide does not, one possible explanation for our results is that viscous effects in the cytoplasm and/or lipid membrane are a dominant factor in dictating dynamic responses of RBCs in pressure-driven flows. Finally, literature on the use of diamide as a stiffening agent is summarized, and provides supporting evidence for our conclusions. Copyright 2010 Elsevier Inc. All rights reserved.

  11. The genetic basis for altered blood vessel function in disease: large artery stiffening

    Directory of Open Access Journals (Sweden)

    Alex Agrotis

    2005-12-01

    Full Text Available Alex AgrotisThe Cell Biology Laboratory, Baker Heart Research Institute, Melbourne, Victoria, AustraliaAbstract: The progressive stiffening of the large arteries in humans that occurs during aging constitutes a potential risk factor for increased cardiovascular morbidity and mortality, and is accompanied by an elevation in systolic blood pressure and pulse pressure. While the underlying basis for these changes remains to be fully elucidated, factors that are able to influence the structure and composition of the extracellular matrix and the way it interacts with arterial smooth muscle cells could profoundly affect the properties of the large arteries. Thus, while age and sex represent important factors contributing to large artery stiffening, the variation in growth-stimulating factors and those that modulate extracellular production and homeostasis are also being increasingly recognized to play a key role in the process. Therefore, elucidating the contribution that genetic variation makes to large artery stiffening could ultimately provide the basis for clinical strategies designed to regulate the process for therapeutic benefit.Keywords: arterial stiffness, genes, polymorphism, extracellular matrix proteins

  12. Coupled Thermo-Electro-Magneto-Elastic Response of Smart Stiffened Panels

    Science.gov (United States)

    Bednarcyk, Brett A.; Yarrington, Phillip W.

    2009-01-01

    This report documents the procedures developed for incorporating smart laminate and panel analysis capabilities within the HyperSizer aerospace structural sizing software package. HyperSizer analyzes stiffened panels composed of arbitrary composite laminates through stiffener homogenization, or "smearing " techniques. The result is an effective constitutive equation for the stiffened panel that is suitable for use in a full vehicle-scale finite element analysis via MSC/NASTRAN. The existing thermo-elastic capabilities of HyperSizer have herein been extended to include coupled thermo-electro-magneto-elastic analysis capabilities. This represents a significant step toward realization of design tools capable of guiding the development of the next generation of smart aerospace structures. Verification results are presented that compare the developed smart HyperSizer capability with an ABAQUS piezoelectric finite element solution for a facesheet-flange combination. These results show good agreement between HyperSizer and ABAQUS, but highlight a limitation of the HyperSizer formulation in that constant electric field components are assumed.

  13. Lamb Wave Line Sensing for Crack Detection in a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2014-07-01

    Full Text Available This paper proposes a novel Lamb wave line sensing technique for crack detection in a welded stiffener. The proposed technique overcomes one of the biggest technical challenges of Lamb wave crack detection for real structure applications: crack-induced Lamb waves are often mixed with multiple reflections from complex waveguides. In particular, crack detection in a welded joint, one of the structural hot spots due to stress concentration, is accompanied by reflections from the welded joint as well as a crack. Extracting and highlighting crack-induced Lamb wave modes from Lamb wave responses measured at multi-spatial points along a single line can be accomplished through a frequency-wavenumber domain analysis. The advantages of the proposed technique enable us not only to enhance the crack detectability in the welded joint but also to minimize false alarms caused by environmental and operational variations by avoiding the direct comparison with the baseline data previously accumulated from the pristine condition of a target structure. The proposed technique is experimentally and numerically validated in vertically stiffened metallic structures, revealing that it successfully identifies and localizes subsurface cracks, regardless of the coexistence with the vertical stiffener.

  14. Correction of malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Ryong; Baek, Kyong Hee; Jung, Gyoo Sik; Huh, Jin Do; Joh, Young Duk; Rim, Hark [Kosin Medical College, Pusan (Korea, Republic of)

    1997-11-01

    To determine the efficacy of correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance. Between November 1994 and March 1997, we performed 15 manipulations in 12 patients in whom a dual-cuff, straight Tenckhoff peritoneal dialysis catheter had been implanted due to chronic renal failure. The causes of catheter malfunctioning were inadequate drainage of the dialysate(n=14) and painful dialysis(n=1). Under fluoroscopic guidance, adhesiolysis and repositioning of the malfunctioning catheter were performed with an Amplatz Super Stiff guidewire and the stiffener from a biliary drainage catheter. The results of procedures were categorized as either immediate or durable success, this latter being defined as adequate catheter function for at least one month after the procedure. Immediate success was achieved in 14 of 15 procedures (93%), and durable success in 7 of 15(47%). The mean duration of catheter function was 157 (range, 30 to 578) days. After manipulation, abdominal pain developed in eight patients and peritonitis in two, but with conservative treatment, these symptoms improved. The correction of a malfunctioning peritoneal dialysis catheter with guidewire and stiffener under fluoroscopic guidance is an effective means of restoring catheter function and may be an effective alternative to surgical reimplantation of the catheter, or hemodialysis.

  15. A Virtual Tool for Minimum Cost Design of a Wind Turbine Tower with Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Fatih Karpat

    2013-07-01

    Full Text Available Currently, renewable energy resources are becoming more important to reduce greenhouse gas emissions and increase energy efficiency. Researchers have focused on all components of wind turbines to increase reliability and minimize cost. In this paper, a procedure including a cost analysis method and a particle swarm optimization algorithm has been presented to efficiently design low cost steel wind turbine towers. A virtual tool is developed in MATLAB for the cost optimization of wind turbine steel towers with ring stiffeners using a particle swarm optimization algorithm. A wind turbine tower optimization problem in the literature is solved using the developed computer program. In the optimization procedure the optimization results match very well with the optimization results obtained previously. The wall thickness of the shell segments and the dimensions of the ring stiffeners are selected as the design variables, and the limits of the local buckling for the flat ring stiffeners, the local shell buckling limit, the panel ring buckling limit and the limitation of the frequency are considered the design constraints. Numerical examples are presented to understand the impacts of the design variables on the total cost of the wind turbine tower.

  16. Parameterized Flight Mission for Secondary Power Requirement Estimations of Commercial Transport Aircraft

    OpenAIRE

    Lampl, Thomas; Muschkorgel, Sandra; Hornung, Mirko;

    2018-01-01

    The trend towards More-Electric Aircraft (MEA) and the introduction of new system technologies lead to considerable changes at the system level of commercial transport aircraft. Because the number of systems and power requirements are increasing, the consideration and integration of aircraft systems in early aircraft design phases is important. The objective of this contribution is to develop a characteristic flight mission with modelled aircraft systems to estimate the secondary power requir...

  17. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices

    Science.gov (United States)

    Staunton, Jack R.; Doss, Bryant L.; Lindsay, Stuart; Ros, Robert

    2016-01-01

    Mechanical interactions between cells and their microenvironment dictate cell phenotype and behavior, calling for cell mechanics measurements in three-dimensional (3D) extracellular matrices (ECM). Here we describe a novel technique for quantitative mechanical characterization of soft, heterogeneous samples in 3D. The technique is based on the integration of atomic force microscopy (AFM) based deep indentation, confocal fluorescence microscopy, finite element (FE) simulations and analytical modeling. With this method, the force response of a cell embedded in 3D ECM can be decoupled from that of its surroundings, enabling quantitative determination of the elastic properties of both the cell and the matrix. We applied the technique to the quantification of the elastic properties of metastatic breast adenocarcinoma cells invading into collagen hydrogels. We found that actively invading and fully embedded cells are significantly stiffer than cells remaining on top of the collagen, a clear example of phenotypical change in response to the 3D environment. Treatment with Rho-associated protein kinase (ROCK) inhibitor significantly reduces this stiffening, indicating that actomyosin contractility plays a major role in the initial steps of metastatic invasion.

  18. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  19. Behavior of Shear Link of WF Section with Diagonal Web Stiffener of Eccentrically Braced Frame (EBF of Steel Structure

    Directory of Open Access Journals (Sweden)

    Yurisman

    2010-11-01

    Full Text Available This paper presents results of numerical and experimental study of shear link behavior, utilizing diagonal stiffener on web of steel profile to increase shear link performance in an eccentric braced frame (EBF of a steel structure system. The specimen is to examine the behavior of shear link by using diagonal stiffener on web part under static monotonic and cyclic load. The cyclic loading pattern conducted in the experiment is adjusted according to AISC loading standards 2005. Analysis was carried out using non-linear finite element method using MSC/NASTRAN software. Link was modeled as CQUAD shell element. Along the boundary of the loading area the nodal are constraint to produce only one direction loading. The length of the link in this analysis is 400mm of the steel profile of WF 200.100. Important parameters considered to effect significantly to the performance of shear link have been analyzed, namely flange and web thicknesses, , thickness and length of web stiffener, thickness of diagonal stiffener and geometric of diagonal stiffener. The behavior of shear link with diagonal web stiffener was compared with the behavior of standard link designed based on AISC 2005 criteria. Analysis results show that diagonal web stiffener is capable to increase shear link performance in terms of stiffness, strength and energy dissipation in supporting lateral load. However, differences in displacement ductility’s between shear links with diagonal stiffener and shear links based on AISC standards have not shown to be significant. Analysis results also show thickness of diagonal stiffener and geometric model of stiffener to have a significant influence on the performance of shear links. To perform validation of the numerical study, the research is followed by experimental work conducted in Structural Mechanic Laboratory Center for Industrial Engineering ITB. The Structures and Mechanics Lab rotary PAU-ITB. The experiments were carried out using three test

  20. Soft shell hard core concept for aircraft impact resistant design

    International Nuclear Information System (INIS)

    Chen, C.; Rieck, P.J.

    1978-01-01

    For nuclear power plants sited in the vicinity of airports, the hypothetical events of aircraft impact have to be designed for. The conventional design concept is to strengthen the exterior structure to resist the impact induced force. The stiffened structures have two (2) disadvantages; one is the high construction cost, and the other is the high reaction force induced as well as the vibrational effects on the interior equipment and piping systems. This new soft shell hard core concept can relieve the above shortcomings. In this concept, the essential equipment required for safety are installed inside the hard core area for protection and the non-essential equipment are maintained between the hard core and soft shell area. During a hypothetical impact event, the soft shell will collapse locally and absorb large amounts of kinetic energy; hence, it reduces the reaction force and the vibrational effects. The design and analysis of the soft shell concept are discussed. (Author)

  1. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  2. Aircraft Carrier Exposure Testing of Aircraft Materials

    National Research Council Canada - National Science Library

    Lee, Eui

    2004-01-01

    .... Test and control specimens were affixed on exposure racks and installed on aircraft carriers to compare adhesive bonding primers for aluminum and to determine the static property behavior of various...

  3. MATE. Multi Aircraft Training Environment

    DEFF Research Database (Denmark)

    Hauland, G.; Bove, T.; Andersen, Henning Boje

    2002-01-01

    A medium fidelity and low cost training device for pilots, called the Multi Aircraft Training Environment (MATE), is developed to replace other low fidelity stand-alone training devices and integrate them into a flexible environment, primarily aimed attraining pilots in checklist procedures....../models to be simulated) and with possibilities for including various forms of intelligent computer assistance. This training concept and the technology are not specific toaviation, but can be used to simulate various types of control panels in different domains. The training effectiveness of pilots' procedure training...... in the MATE prototype was compared with the effects of traditional training that included the use of realaircraft. The experimental group (EXP) trained the pre-start checklist and the engine start checklist for the Saab 340 commuter aircraft in a MATE prototype. The control group (CTR) trained the same...

  4. Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves

    Science.gov (United States)

    Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.

    2013-01-01

    Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.

  5. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo.

    Science.gov (United States)

    Barriga, Elias H; Franze, Kristian; Charras, Guillaume; Mayor, Roberto

    2018-02-22

    Collective cell migration is essential for morphogenesis, tissue remodelling and cancer invasion. In vivo, groups of cells move in an orchestrated way through tissues. This movement involves mechanical as well as molecular interactions between cells and their environment. While the role of molecular signals in collective cell migration is comparatively well understood, how tissue mechanics influence collective cell migration in vivo remains unknown. Here we investigated the importance of mechanical cues in the collective migration of the Xenopus laevis neural crest cells, an embryonic cell population whose migratory behaviour has been likened to cancer invasion. We found that, during morphogenesis, the head mesoderm underlying the cephalic neural crest stiffens. This stiffening initiates an epithelial-to-mesenchymal transition in neural crest cells and triggers their collective migration. To detect changes in their mechanical environment, neural crest cells use mechanosensation mediated by the integrin-vinculin-talin complex. By performing mechanical and molecular manipulations, we show that mesoderm stiffening is necessary and sufficient to trigger neural crest migration. Finally, we demonstrate that convergent extension of the mesoderm, which starts during gastrulation, leads to increased mesoderm stiffness by increasing the cell density underneath the neural crest. These results show that convergent extension of the mesoderm has a role as a mechanical coordinator of morphogenesis, and reveal a link between two apparently unconnected processes-gastrulation and neural crest migration-via changes in tissue mechanics. Overall, we demonstrate that changes in substrate stiffness can trigger collective cell migration by promoting epithelial-to-mesenchymal transition in vivo. More broadly, our results raise the idea that tissue mechanics combines with molecular effectors to coordinate morphogenesis.

  6. Mechanical interaction between concrete and structural reinforcement in the tension stiffening process

    DEFF Research Database (Denmark)

    Lárusson, Lárus Helgi; Fischer, Gregor; Jönsson, Jeppe

    2011-01-01

    as Engineered Cementitious Composite (ECC), have been combined with steel and glass fiber reinforced polymer (GFRP) reinforcement to contrast the effects of brittle and ductile cement matrices as well as elastic/plastic and elastic reinforcement on the tension stiffening process. Particular focus...... investigated using an image-based deformation measurement and analysis system. This allowed for detailed view of surface deformations and the implications on the resulting response of the member in tension. In this study, conventional concrete and a ductile, strain hardening cement composite, known...

  7. Parameter survey of a rib stiffened wooden floor using sinus modes model

    DEFF Research Database (Denmark)

    Sjökvist, Lars-Göran; Brunskog, Jonas; Jacobsen, Finn

    2008-01-01

    of the sound insulation for lightweight buildings have the possibility to speed up the development of new techniques and in the end give tenants better quality of life. This study uses Fourier sinus series to calculate the vibrations on a rib stiffened plate. The beams are modelled as line forces and moments......In buildings built with new techniques there exists a need for better understanding of their acoustical performance. The development of large wooden houses slows down by the uncertainty and costly testing that have to be performed many times before gaining good results. A greater understanding...

  8. Experimental Study on Temperature Behavior of SSC (Stiffened Steel Plate Concrete) Structures

    International Nuclear Information System (INIS)

    Lee, K. J.; Ham, K. W.; Park, D. S.; Kwon, K. J.

    2008-01-01

    SSC(Stiffened Steel plate Concrete) module method uses steel plate instead of reinforcing bar and mold in existing RC structure. Steel plate modules are fabricated in advance, installed and poured with concrete in construction field, so construction period is remarkably shortened by SC module technique. In case of existence of temperature gap between internal and external structure surface such as containment building, thermal stress is taken place and as a result of it, structural strength is deteriorated. In this study, we designed two test specimens and several tests with temperature heating were conducted to evaluate temperature behavior of SSC structures and RC structure

  9. Mitigation of Flanking Noise in Double-Plate Panel Structures by Periodic Stiffening

    DEFF Research Database (Denmark)

    Domadiya, Parthkumar Gandalal; Dickow, Kristoffer Ahrens; Andersen, Lars

    2011-01-01

    , the air enclosed in the cavities within the structure is taken into consideration, whereas the external air has been disregarded. A fully coupled analysis is performed in which solid finite elements are adopted for the structure, whereas the acoustic medium within the panel is discretized into fluid...... continuum elements. The computations are carried out in frequency domain in the range below 500 Hz and the load acts as a concentrated force on one side of one of the panels. The responses of the same panel as well as the adjacent wall are studied. The position of the load relative to the stiffeners...

  10. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    Science.gov (United States)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  11. Aircraft bi-level life cycle cost estimation

    NARCIS (Netherlands)

    Zhao, X.; Verhagen, W.J.C.; Curan, R.

    2015-01-01

    n an integrated aircraft design and analysis practice, Life Cycle Cost (LCC) is essential for decision making. The LCC of an aircraft is ordinarily partially estimated by emphasizing a specific cost type. However, an overview of the LCC including design and development cost, production cost,

  12. Analysis and Testing of a Metallic Repair Applicable to Pressurized Composite Aircraft Structure

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2014-01-01

    Development of repair technology is vital to the long-term application of new structural concepts on aircraft structure. The design, analysis, and testing of a repair concept applicable to a stiffened composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure was recently completed. The damage scenario considered was a mid-bay to mid-bay saw-cut with a severed stiffener, flange, and skin. A bolted metallic repair was selected so that it could be easily applied in the operational environment. The present work describes results obtained from tension and pressure panel tests conducted to validate both the repair concept and finite element analysis techniques used in the design effort. Simulation and experimental strain and displacement results show good correlation, indicating that the finite element modeling techniques applied in the effort are an appropriate compromise between required fidelity and computational effort. Static tests under tension and pressure loadings proved that the proposed repair concept is capable of sustaining load levels that are higher than those resulting from the current working stress allowables. Furthermore, the pressure repair panel was subjected to 55,000 pressure load cycles to verify that the design can withstand a life cycle representative for a transport category aircraft. These findings enable upward revision of the stress allowables that had been kept at an overly-conservative level due to concerns associated with repairability of the panels. This conclusion enables more weight efficient structural designs utilizing the composite concept under investigation.

  13. Degradation of the compressive strength of unstiffened/stiffened steel plates due to both-sides randomly distributed corrosion wastage

    Directory of Open Access Journals (Sweden)

    Zorareh Hadj Mohammad

    Full Text Available The paper addresses the problem of the influence of randomly distributed corrosion wastage on the collapse strength and behaviour of unstiffened/stiffened steel plates in longitudinal compression. A series of elastic-plastic large deflection finite element analyses is performed on both-sides randomly corroded steel plates and stiffened plates. The effects of general corrosion are introduced into the finite element models using a novel random thickness surface model. Buckling strength, post-buckling behaviour, ultimate strength and post-ultimate behaviour of the models are investigated as results of both-sides random corrosion.

  14. Repair Concepts as Design Constraints of a Stiffened Composite PRSEUS Panel

    Science.gov (United States)

    Przekop, Adam

    2012-01-01

    A design and analysis of a repair concept applicable to a stiffened thin-skin composite panel based on the Pultruded Rod Stitched Efficient Unitized Structure is presented. The concept is a bolted repair using metal components, so that it can easily be applied in the operational environment. The damage scenario considered is a midbay-to-midbay saw-cut with a severed stiffener, flange and skin. In a previous study several repair configurations were explored and their feasibility confirmed but refinement was needed. The present study revisits the problem under recently revised design requirements and broadens the suite of loading conditions considered. The repair assembly design is based on the critical tension loading condition and subsequently its robustness is verified for a pressure loading case. High fidelity modeling techniques such as mesh-independent definition of compliant fasteners, elastic-plastic material properties for metal parts and geometrically nonlinear solutions are utilized in the finite element analysis. The best repair design is introduced, its analysis results are presented and factors influencing the design are assessed and discussed.

  15. Nonlinear analysis of reinforced concrete beam with/without tension stiffening effect

    International Nuclear Information System (INIS)

    Dede, T.; Ayvaz, Y.

    2009-01-01

    The aim of this paper is to do materially nonlinear failure analysis of RC beam by using finite element method. In the finite element modeling, two different approaches and different tension stress-strain models with/without tension stiffening effect are used by considering two different mesh sizes. In the first approach, the material matrices of concrete and reinforcement are constructed separately, and then superimposed to obtain the element stiffness matrix. In the second approach, the reinforcement is assumed to be uniformly distributed throughout the beam. So, the beam is modeled as a single composite element with increasing the modulus of elasticity of concrete by considering the reinforcement ratio. For these two approaches, elastic-perfectly plastic stress-strain relationship is used for concrete in compression. For the concrete in tension, a stress-strain relationship with/without tension stiffening is used. It is concluded that the approaches and the models considered in this study can be effectively used in the materially nonlinear analysis of RC beams.

  16. Feedback amplification of fibrosis through matrix stiffening and COX-2 suppression

    Science.gov (United States)

    Liu, Fei; Mih, Justin D.; Shea, Barry S.; Kho, Alvin T.; Sharif, Asma S.; Tager, Andrew M.

    2010-01-01

    Tissue stiffening is a hallmark of fibrotic disorders but has traditionally been regarded as an outcome of fibrosis, not a contributing factor to pathogenesis. In this study, we show that fibrosis induced by bleomycin injury in the murine lung locally increases median tissue stiffness sixfold relative to normal lung parenchyma. Across this pathophysiological stiffness range, cultured lung fibroblasts transition from a surprisingly quiescent state to progressive increases in proliferation and matrix synthesis, accompanied by coordinated decreases in matrix proteolytic gene expression. Increasing matrix stiffness strongly suppresses fibroblast expression of COX-2 (cyclooxygenase-2) and synthesis of prostaglandin E2 (PGE2), an autocrine inhibitor of fibrogenesis. Exogenous PGE2 or an agonist of the prostanoid EP2 receptor completely counteracts the proliferative and matrix synthetic effects caused by increased stiffness. Together, these results demonstrate a dominant role for normal tissue compliance, acting in part through autocrine PGE2, in maintaining fibroblast quiescence and reveal a feedback relationship between matrix stiffening, COX-2 suppression, and fibroblast activation that promotes and amplifies progressive fibrosis. PMID:20733059

  17. Nonlinear force propagation, anisotropic stiffening and non-affine relaxation in a model cytoskeleton

    Science.gov (United States)

    Mizuno, Daisuke; Head, David; Ikebe, Emi; Nakamasu, Akiko; Kinoshita, Suguru; Peijuan, Zhang; Ando, Shoji

    2013-03-01

    Forces are generated heterogeneously in living cells and transmitted through cytoskeletal networks that respond highly non-linearly. Here, we carry out high-bandwidth passive microrheology on vimentin networks reconstituted in vitro, and observe the nonlinear mechanical response due to forces propagating from a local source applied by an optical tweezer. Since the applied force is constant, the gel becomes equilibrated and the fluctuation-dissipation theorem can be employed to deduce the viscoelasticity of the local environment from the thermal fluctuations of colloidal probes. Our experiments unequivocally demonstrate the anisotropic stiffening of the cytoskeletal network behind the applied force, with greater stiffening in the parallel direction. Quantitative agreement with an affine continuum model is obtained, but only for the response at certain frequency ~ 10-1000 Hz which separates the high-frequency power law and low-frequency elastic behavior of the network. We argue that the failure of the model at lower frequencies is due to the presence of non-affinity, and observe that zero-frequency changes in particle separation can be fitted when an independently-measured, empirical nonaffinity factor is applied.

  18. Field testing of stiffened deep cement mixing piles under lateral cyclic loading

    Science.gov (United States)

    Raongjant, Werasak; Jing, Meng

    2013-06-01

    Construction of seaside and underground wall bracing often uses stiffened deep cement mixed columns (SDCM). This research investigates methods used to improve the level of bearing capacity of these SDCM when subjected to cyclic lateral loading via various types of stiffer cores. Eight piles, two deep cement mixed piles and six stiffened deep cement mixing piles with three different types of cores, H shape cross section prestressed concrete, steel pipe, and H-beam steel, were embedded though soft clay into medium-hard clay on site in Thailand. Cyclic horizontal loading was gradually applied until pile failure and the hysteresis loops of lateral load vs. lateral deformation were recorded. The lateral carrying capacities of the SDCM piles with an H-beam steel core increased by 3-4 times that of the DCM piles. This field research clearly shows that using H-beam steel as a stiffer core for SDCM piles is the best method to improve its lateral carrying capacity, ductility and energy dissipation capacity.

  19. Buckling behaviour of imperfect ring-stiffened cone-cylinder intersections under internal pressure

    International Nuclear Information System (INIS)

    Zhao, Y.

    2005-01-01

    Cone-cylinder intersections are used commonly in pressure vessels and piping. In the case of a cone large end-to-cylinder intersection under internal pressure, the intersection is subject to a large circumferential compressive force. While both the cone and the cylinder may be locally thickened to strengthen the intersection, it is often desirable and convenient to provide an annular plate ring at the cone-to-cylinder joint to supplement local thickening or as an alternative strengthening measure, leading to a ring-stiffened cone-cylinder intersection. Only limited work has been carried out specifically on ring-stiffened cone-cylinder intersections under internal pressure. This paper presents the first experimental study on such intersections. In addition to the presentation of test results including geometric imperfections, failure behaviour and the determination of buckling mode and load based on displacement measurements, results from nonlinear bifurcation analysis using the perfect shape and nonlinear analysis using the measured imperfect shape are presented and compared with the experimental results

  20. Buckling Response of a Large-Scale, Seamless, Orthogrid-Stiffened Metallic Cylinder

    Science.gov (United States)

    Rudd, Michelle Tillotson; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.

    2018-01-01

    Results from the buckling test of a compression-loaded 8-ft-diameter seamless (i.e., without manufacturing joints), orthogrid-stiffened metallic cylinder are presented. This test was used to assess the buckling response and imperfection sensitivity characteristics of a seamless cylinder. In addition, the test article and test served as a technology demonstration to show the application of the flow forming manufacturing process to build more efficient buckling-critical structures by eliminating the welded joints that are traditionally used in the manufacturing of large metallic barrels. Pretest predictions of the cylinder buckling response were obtained using a finite-element model that included measured geometric imperfections. The buckling load predicted using this model was 697,000 lb, and the test article buckled at 743,000 lb (6% higher). After the test, the model was revised to account for measured variations in skin and stiffener geometry, nonuniform loading, and material properties. The revised model predicted a buckling load of 754,000 lb, which is within 1.5% of the tested buckling load. In addition, it was determined that the load carrying capability of the seamless cylinder is approximately 28% greater than a corresponding cylinder with welded joints.

  1. Ultimate strength analysis of ring-stiffened cylinders subjected to hydrostatic pressure

    International Nuclear Information System (INIS)

    Park, Chi Mo

    1990-01-01

    In this study, ultimate strength analysis of ring-stiffened cylinders have been performed, considering the elasto-plastic large deflection. In the elasto-plastic analysis, von Mises yield criteria, the plastic flow theory and the layered approach have been adopted. In order to take into account the follower force effect of the hydrostatic pressure, the incremental load components have been updated at every loading step. As collapse modes, axisymmetric yielding, interframe shell buckling and general buckling are considered, while local buckling of ring-stiffener is not considered. Initial shape imperfection is assumed to be the elastic buckling mode to obtain the lower bound of the ultimate strength. Results of numerical analysis are compared with the experimental results to show the validity of the present approach. It has been drawn that the present numerical results are closely correlated with the experimental results. On the other hand, the effects of initial shape imperfection and condition on the ultimate strength have been investigated. (Author)

  2. Local and global deformations in a strain-stiffening fibrin gel

    Energy Technology Data Exchange (ETDEWEB)

    Wen Qi [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Basu, Anindita [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Winer, Jessamine P [Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Yodh, Arjun [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Janmey, Paul A [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2007-11-15

    Extracellular matrices composed of filamentous biopolymers like collagen and fibrin have viscoelastic properties that differ from those of rubberlike elastomers or hydrogels formed by flexible polymers. Compared to flexible polymer gels, filamentous biopolymer networks generally have larger elastic moduli, a striking increase in elastic modulus with increasing strain, and a pronounced negative normal stress when deformed in simple shear. All three of these unusual features can be accounted for by a theory that extends concepts of entropic elasticity to a regime where the polymer chains are already significantly extended in the absence of external forces because of their finite bending stiffness. An essential assumption of the theories that relate microscopic structural parameters such as persistence length and mesh size of biopolymer gels to their macroscopic rheology is that the deformation of these materials is affine: that is, the macroscopic strain of the bulk material is equal to the local strain within the material at each point. The validity of this assumption for the dilute open meshworks of most biopolymer gels has been experimentally tested by embedding micron diameter fluorescent beads within the networks formed by fibrin and quantifying their displacements as the macroscopic samples are deformed in a rheometer. Measures of non-affine deformation are small at small strains and decrease as strain increases and the sample stiffens. These results are consistent with the entropic model for non-linear elasticity of semiflexible polymer networks and show that strain-stiffening does not require non-affine deformations.

  3. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  4. Combined effects of scaffold stiffening and mechanical preconditioning cycles on construct biomechanics, gene expression, and tendon repair biomechanics.

    Science.gov (United States)

    Nirmalanandhan, Victor Sanjit; Juncosa-Melvin, Natalia; Shearn, Jason T; Boivin, Gregory P; Galloway, Marc T; Gooch, Cynthia; Bradica, Gino; Butler, David L

    2009-08-01

    Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases both construct stiffness and the biomechanical properties of the repair tissue after surgery. When optimized using response surface methodology, our results indicate that a mechanical stimulus with three components (2.4% strain, 3000 cycles/day, and one cycle repetition) produced the highest in vitro linear stiffness. Such positive correlations between construct and repair stiffness after surgery suggest that enhancing structural stiffness before surgery could not only accelerate repair stiffness but also prevent premature failures in culture due to poor mechanical integrity. In this study, we examined the combined effects of scaffold crosslinking and subsequent mechanical stimulation on construct mechanics and biology. Autologous tissue-engineered constructs were created by seeding mesenchymal stem cells (MSCs) from 15 New Zealand white rabbits on type I collagen sponges that had undergone additional dehydrothermal crosslinking (termed ADHT in this manuscript). Both constructs from each rabbit were mechanically stimulated for 8h/day for 12 consecutive days with half receiving 100 cycles/day and the other half receiving 3000 cycles/day. These paired MSC-collagen autologous constructs were then implanted in bilateral full-thickness, full-length defects in the central third of rabbit patellar tendons. Increasing the number of in vitro cycles/day delivered to the ADHT constructs in culture produced no differences in stiffness or gene expression and no changes in biomechanical properties or histology 12 weeks after surgery. Compared to MSC-based repairs from a previous study that received no additional treatment in culture, ADHT crosslinking of the scaffolds actually lowered the 12-week repair stiffness. Thus, while ADHT crosslinking may initially stiffen a construct in culture, this specific treatment also appears to mask any benefits

  5. Aging Military Aircraft Landscape : A Case for End-of-Life Fleet Optimization

    NARCIS (Netherlands)

    Newcamp, J.M.; Verhagen, W.J.C.; Curran, Ricky

    2016-01-01

    Military aircraft fleets are continuing to age despite increased structural integrity concerns and rising maintenance costs. Aircraft are not being replaced or retired in large numbers but are instead having their lives extended beyond their original design service lives. Because aging aircraft cost

  6. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  7. Design, Analysis, Fabrication and Testing of Grid-Stiffened for Fuselage Applications

    NARCIS (Netherlands)

    Shroff, S.

    2014-01-01

    The application of composites in aircraft structures has grown significantly in the past decade, and an increase in this growth in application has recently been achieved in fuselage designs for large civil aircraft such as the Boeing B787 and the Airbus A350. In conventional design philosophies,

  8. Cyberinfrastructure for Aircraft Mission Support

    Science.gov (United States)

    Freudinger, Lawrence C.

    2010-01-01

    Forth last several years NASA's Airborne Science Program has been developing and using infrastructure and applications that enable researchers to interact with each other and with airborne instruments via network communications. Use of these tools has increased near realtime situational awareness during field operations, resulting it productivity improvements, improved decision making, and the collection of better data. Advances in pre-mission planning and post-mission access have also emerged. Integrating these capabilities with other tools to evolve coherent service-oriented enterprise architecture for aircraft flight and test operations is the subject of ongoing efforts.

  9. Retooling CFD for hypersonic aircraft

    Science.gov (United States)

    Dwoyer, Douglas L.; Kutler, Paul; Povinelli, Louis A.

    1987-01-01

    The CFD facility requirements of hypersonic aircraft configuration design development are different from those thus far employed for reentry vehicle design, because (1) the airframe and the propulsion system must be fully integrated to achieve the desired performance; (2) the vehicle must be reusable, with minimum refurbishment requirements between flights; and (3) vehicle performance must be optimized for a wide range of Mach numbers. An evaluation is presently made of flow resolution within shock waves, transition and turbulence phenomenon tractability, chemical reaction modeling, and hypersonic boundary layer transition, with state-of-the-art CFD.

  10. Innovative Materials for Aircraft Morphing

    Science.gov (United States)

    Simpson, J. O.; Wise, S. A.; Bryant, R. G.; Cano, R. J.; Gates, T. S.; Hinkley, J. A.; Rogowski, R. S.; Whitley, K. S.

    1997-01-01

    Reported herein is an overview of the research being conducted within the Materials Division at NASA Langley Research Center on the development of smart material technologies for advanced airframe systems. The research is a part of the Aircraft Morphing Program which is a new six-year research program to develop smart components for self-adaptive airframe systems. The fundamental areas of materials research within the program are computational materials; advanced piezoelectric materials; advanced fiber optic sensing techniques; and fabrication of integrated composite structures. This paper presents a portion of the ongoing research in each of these areas of materials research.

  11. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  12. High Altitude Long Endurance Remotely Operated Aircraft - National Airspace System Integration - Simulation IPT: Detailed Airspace Operations Simulation Plan. Version 1.0

    Science.gov (United States)

    2004-01-01

    The primary goal of Access 5 is to allow safe, reliable and routine operations of High Altitude-Long Endurance Remotely Operated Aircraft (HALE ROAs) within the National Airspace System (NAS). Step 1 of Access 5 addresses the policies, procedures, technologies and implementation issues of introducing such operations into the NAS above pressure altitude 40,000 ft (Flight Level 400 or FL400). Routine HALE ROA activity within the NAS represents a potentially significant change to the tasks and concerns of NAS users, service providers and other stakeholders. Due to the complexity of the NAS, and the importance of maintaining current high levels of safety in the NAS, any significant changes must be thoroughly evaluated prior to implementation. The Access 5 community has been tasked with performing this detailed evaluation of routine HALE-ROA activities in the NAS, and providing to key NAS stakeholders a set of recommended policies and procedures to achieve this goal. Extensive simulation, in concert with a directed flight demonstration program are intended to provide the required supporting evidence that these recommendations are based on sound methods and offer a clear roadmap to achieving safe, reliable and routine HALE ROA operations in the NAS. Through coordination with NAS service providers and policy makers, and with significant input from HALE-ROA manufacturers, operators and pilots, this document presents the detailed simulation plan for Step 1 of Access 5. A brief background of the Access 5 project will be presented with focus on Steps 1 and 2, concerning HALE-ROA operations above FL400 and FL180 respectively. An overview of project management structure follows with particular emphasis on the role of the Simulation IPT and its relationships to other project entities. This discussion will include a description of work packages assigned to the Simulation IPT, and present the specific goals to be achieved for each simulation work package, along with the associated

  13. On using PEMFC for Electrical Power Generation on More Electric Aircraft

    OpenAIRE

    Jenica Ileana Corcau; Liviu Dinca

    2012-01-01

    The electrical power systems of aircrafts have made serious progress in recent years because the aircrafts depend more and more on the electricity. There is a trend in the aircraft industry to replace hydraulic and pneumatic systems with electrical systems, achieving more comfort and monitoring features and enlarging the energetic efficiency. Thus, was born the concept More Electric Aircraft. In this paper is analyzed the integration of a fuel cell into the existing elect...

  14. Predicting visibility of aircraft.

    Directory of Open Access Journals (Sweden)

    Andrew Watson

    Full Text Available Visual detection of aircraft by human observers is an important element of aviation safety. To assess and ensure safety, it would be useful to be able to be able to predict the visibility, to a human observer, of an aircraft of specified size, shape, distance, and coloration. Examples include assuring safe separation among aircraft and between aircraft and unmanned vehicles, design of airport control towers, and efforts to enhance or suppress the visibility of military and rescue vehicles. We have recently developed a simple metric of pattern visibility, the Spatial Standard Observer (SSO. In this report we examine whether the SSO can predict visibility of simulated aircraft images. We constructed a set of aircraft images from three-dimensional computer graphic models, and measured the luminance contrast threshold for each image from three human observers. The data were well predicted by the SSO. Finally, we show how to use the SSO to predict visibility range for aircraft of arbitrary size, shape, distance, and coloration.

  15. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  16. Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Project, UAS Control and Non-Payload Communication System Phase-1 Flight Test Results

    Science.gov (United States)

    Griner, James H.

    2014-01-01

    NASA's UAS Integration in the NAS project, has partnered with Rockwell Collins to develop a concept Control and Non-Payload Communication (CNPC) system prototype radio, operating on recently allocated UAS frequency spectrum bands. This prototype radio is being used to validate initial proposed performance requirements for UAS control communications. This presentation will give an overview of the current status of the prototype radio development, and results from phase 1 flight tests conducted during 2013.

  17. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  18. Computer program for stresses and buckling of heated composite-stiffened panels and other structures (BUCLASP 3)

    Science.gov (United States)

    Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.

    1974-01-01

    General-purpose program is intended for thermal stress and instability analyses of structures such as axially-stiffened curved panels. Two types of instability analyses can be effected by program: (1) thermal buckling with temperature variation as specified and (2) buckling due to in-plane biaxial loading.

  19. Collaborative Systems Driven Aircraft Configuration Design Optimization

    OpenAIRE

    Shiva Prakasha, Prajwal; Ciampa, Pier Davide; Nagel, Björn

    2016-01-01

    A Collaborative, Inside-Out Aircraft Design approach is presented in this paper. An approach using physics based analysis to evaluate the correlations between the airframe design, as well as sub-systems integration from the early design process, and to exploit the synergies within a simultaneous optimization process. Further, the disciplinary analysis modules involved in the optimization task are located in different organization. Hence, the Airframe and Subsystem design tools are integrated ...

  20. SOLAR AIRCRAFT DESIGN

    OpenAIRE

    RAHMATI, Sadegh; GHASED, Amir

    2015-01-01

    Abstract. Generally domain Aircraft uses conventional fuel. These fuel having limited life, high cost and pollutant. Also nowadays price of petrol and other fuels are going to be higher, because of scarcity of those fuels. So there is great demand of use of non-exhaustible unlimited source of energy like solar energy. Solar aircraft is one of the ways to utilize solar energy. Solar aircraft uses solar panel to collect the solar radiation for immediate use but it also store the remaining part ...

  1. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  2. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections.

    Science.gov (United States)

    Morelli, Francesco; Amico, Cosimo; Salvatore, Walter; Squeglia, Nunziante; Stacul, Stefano

    2017-06-18

    Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  3. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections

    Directory of Open Access Journals (Sweden)

    Francesco Morelli

    2017-06-01

    Full Text Available Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  4. Evaluation of the Behavior of Technova Corporation Rod-Stiffened Stitched Compression Specimens

    Science.gov (United States)

    Jegley, Dawn C.

    2013-01-01

    Under Space Act Agreement 1347 between NASA and Technova Corporation, Technova designed and fabricated two carbon-epoxy crippling specimens and NASA loaded them to failure in axial compression. Each specimen contained a pultruded rod stiffener which was held to the specimen skin with through-the-thickness stitches. One of these specimens was designed to be nominally the same as pultruded rod stitched specimens fabricated by Boeing under previous programs. In the other specimen, the rod was prestressed in a Technova manufacturing process to increase its ability to carrying compressive loading. Experimental results demonstrated that the specimen without prestressing carried approximately the same load as the similar Boeing specimens and that the specimen with prestressing carried significantly more load than the specimen without prestressing.

  5. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    Science.gov (United States)

    Sahoo, Sarmila

    2016-08-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.

  6. Self-healing of sandwich structures with a grid stiffened shape memory polymer syntactic foam core

    Science.gov (United States)

    John, Manu; Li, Guoqiang

    2010-07-01

    In this paper, a new sandwich with an orthogrid stiffened shape memory polymer (SMP) based syntactic foam core was proposed, fabricated, programmed, impacted, healed (sealed), and compression tested, for the purposes of healing impact damage repeatedly and almost autonomously. Two prestrain levels (3% and 20%), two impact energy levels (30.0 and 53.3 J), and two recovery (healing) conditions (2D confined and 3D confined) were employed in this paper. Up to seven impact-healing cycles were conducted. Macroscopic and microscopic damage-healing observation and analysis were implemented. Residual strength was evaluated using an anti-buckling compression test fixture. It was found that the healing efficiency was over 100% for almost all the impact-healing cycles; programming using 20% prestrain led to higher residual strength than that with 3% prestrain; 3D confined recovery resulted in higher residual strength than 2D confined recovery; and as the impact energy increased, the healing efficiency slightly decreased.

  7. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  8. Buckling Analysis for Stiffened Anisotropic Circular Cylinders Based on Sanders Nonlinear Shell Theory

    Science.gov (United States)

    Nemeth, Michael P.

    2014-01-01

    Nonlinear and bifurcation buckling equations for elastic, stiffened, geometrically perfect, right-circular cylindrical, anisotropic shells subjected to combined loads are presented that are based on Sanders' shell theory. Based on these equations, a three-parameter approximate Rayleigh-Ritz solution and a classical solution to the buckling problem are presented for cylinders with simply supported edges. Extensive comparisons of results obtained from these solutions with published results are also presented for a wide range of cylinder constructions. These comparisons include laminated-composite cylinders with a wide variety of shell-wall orthotropies and anisotropies. Numerous results are also given that show the discrepancies between the results obtained by using Donnell's equations and variants of Sanders' equations. For some cases, nondimensional parameters are identified and "master" curves are presented that facilitate the concise representation of results.

  9. Theoretical Analysis of Stress Distribution in Bonded Single Strap and Stiffened Joints

    Directory of Open Access Journals (Sweden)

    Behnam Ghoddous

    Full Text Available Abstract In this paper, distribution of peeling stress in two types of adhesively-bonded joints is investigated. The joints are a single strap and a stiffened joint. Theses joints are under uniform tensile load and materials are assumed orthotropic. Layers can be identical or different in mechanical or geometrical properties. A two-dimensional elasticity theory that includes the complete stress-strain and the complete strain-displacement relations for adhesive and adherends is used in this analysis. The displacement is assumed to be linear in the adhesive layer. A set of differential equations was derived and solved by using appropriate boundary conditions. Results revealed that the peak peeling stress developed within the adhesive layer is a function of geometrical and mechanical properties. FEM solution is used as the second method to verify the analytical results. A good agreement is observed between analytical and FEM solutions.

  10. Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout

    International Nuclear Information System (INIS)

    Sahoo, Sarmila

    2016-01-01

    Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances. (paper)

  11. Influence of MSD crack pattern on the residual strength of flat stiffened sheets

    Science.gov (United States)

    Nilsson, K.-F.

    A parameter study of the residual strength for a multiple site damaged (MSD) stiffened sheet is presented. The analysis is based on an elastic-plastic fracture analysis using the yield-strip model for interaction between a lead crack and the smaller MSD cracks. Two crack growth criteria, one with a pronounced crack growth resistance and one with no crack growth resistance and five different MSD crack patterns, are analysed for different sizes of the lead crack and the smaller MSD cracks. The analysis indicates that the residual strength reduction depends on all these parameters and that MSD may totally erode the crack arrest capability of a tear strap. Another important outcome is that for certain combinations also very small MSD cracks may induce a significant residual strength reduction.

  12. Aircraft Fire Protection Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Navy Aircraft Protection Laboratory provides complete test support for all Navy air vehicle fire protection systems.The facility allows for the simulation of a...

  13. Automated Inspection of Aircraft

    Science.gov (United States)

    1998-04-01

    This report summarizes the development of a robotic system designed to assist aircraft inspectors by remotely deploying non-destructive inspection (NDI) sensors and acquiring, processing, and storing inspection data. Carnegie Mellon University studie...

  14. Aircraft Depainting Technology

    National Research Council Canada - National Science Library

    Kozol, Joseph

    1999-01-01

    ... of aircraft and component stripping at various levels of maintenance. Under this program, the Navy pursued development of non-HAP chemical paint strippers as alternatives for methylene chloride based strippers...

  15. The Aircraft Industry, 2006

    National Research Council Canada - National Science Library

    Daniel, Keith

    2006-01-01

    .... and global economic growth. The overall outlook for the industry is positive. Orders for commercial aircraft are up from a boom in air travel that is likely to continue well into the next decade...

  16. The Aircraft Industry

    National Research Council Canada - National Science Library

    Fitzgerald, Tim; Baiche, Noureddine; Brewer, Mike; Collins, Al; Knapp, Kathy; Kott, Marilyn; McGill, Duncan; Mensah, Dunstan; Neighbors, Mark; Reardon, Dee

    2005-01-01

    .... As the airline companies prepare to buy new Boeing and Airbus passenger jets, they remain under intense pressure to cut costs in order to remain profitable, forcing aircraft and engine manufacturers...

  17. Essentials of aircraft armaments

    CERN Document Server

    Kaushik, Mrinal

    2017-01-01

    This book aims to provide a complete exposure about armaments from their design to launch from the combat aircraft. The book details modern ammunition and their tactical roles in warfare. The proposed book discusses aerodynamics, propulsion, structural as well as navigation, control, and guidance of aircraft armament. It also introduces the various types of ammunition developed by different countries and their changing trends. The book imparts knowledge in the field of design, and development of aircraft armaments to aerospace engineers and covers the role of the United Nations in peacekeeping and disarmament. The book will be very useful to researchers, students, and professionals working in design and manufacturing of aircraft armaments. The book will also serve air force and naval aspirants, and those interested in working on defence research and developments organizations. .

  18. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. Depreciation of aircraft

    Science.gov (United States)

    Warner, Edward P

    1922-01-01

    There is a widespread, and quite erroneous, impression to the effect that aircraft are essentially fragile and deteriorate with great rapidity when in service, so that the depreciation charges to be allowed on commercial or private operation are necessarily high.

  20. Galectin-3: A Link between Myocardial and Arterial Stiffening in Patients with Acute Decompensated Heart Failure?

    Science.gov (United States)

    Lala, Radu Ioan; Darabantiu, Dan; Pilat, Luminita; Puschita, Maria

    2016-02-01

    Heart failure is accompanied by abnormalities in ventricular-vascular interaction due to increased myocardial and arterial stiffness. Galectin-3 is a recently discovered biomarker that plays an important role in myocardial and vascular fibrosis and heart failure progression. The aim of this study was to determine whether galectin-3 is correlated with arterial stiffening markers and impaired ventricular-arterial coupling in decompensated heart failure patients. A total of 79 inpatients with acute decompensated heart failure were evaluated. Serum galectin-3 was determined at baseline, and during admission, transthoracic echocardiography and measurements of vascular indices by Doppler ultrasonography were performed. Elevated pulse wave velocity and low arterial carotid distensibility are associated with heart failure in patients with preserved ejection fraction (p = 0.04, p = 0.009). Pulse wave velocity, carotid distensibility and Young's modulus did not correlate with serum galectin-3 levels. Conversely, raised galectin-3 levels correlated with an increased ventricular-arterial coupling ratio (Ea/Elv) p = 0.047, OR = 1.9, 95% CI (1.0‑3.6). Increased galectin-3 levels were associated with lower rates of left ventricular pressure rise in early systole (dp/dt) (p=0.018) and raised pulmonary artery pressure (p = 0.046). High galectin-3 levels (p = 0.038, HR = 3.07) and arterial pulmonary pressure (p = 0.007, HR = 1.06) were found to be independent risk factors for all-cause mortality and readmissions. This study showed no significant correlation between serum galectin-3 levels and arterial stiffening markers. Instead, high galectin-3 levels predicted impaired ventricular-arterial coupling. Galectin-3 may be predictive of raised pulmonary artery pressures. Elevated galectin-3 levels correlate with severe systolic dysfunction and together with pulmonary hypertension are independent markers of outcome.

  1. Multifuel rotary aircraft engine

    Science.gov (United States)

    Jones, C.; Berkowitz, M.

    1980-01-01

    The broad objectives of this paper are the following: (1) to summarize the Curtiss-Wright design, development and field testing background in the area of rotary aircraft engines; (2) to briefly summarize past activity and update development work in the area of stratified charge rotary combustion engines; and (3) to discuss the development of a high-performance direct injected unthrottled stratified charge rotary combustion aircraft engine. Efficiency improvements through turbocharging are also discussed.

  2. Aircraft to aircraft intercomparison during SEMAPHORE

    Science.gov (United States)

    Lambert, Dominique; Durand, Pierre

    1998-10-01

    During the Structure des Echanges Mer-Atmosphère, Propriétés des Hétérogénéités Océaniques: Recherche Expérimentale (SEMAPHORE) experiment, performed in the Azores region in 1993, two French research aircraft were simultaneously used for in situ measurements in the atmospheric boundary layer. We present the results obtained from one intercomparison flight between the two aircraft. The mean parameters generally agree well, although the temperature has to be slightly shifted in order to be in agreement for the two aircraft. A detailed comparison of the turbulence parameters revealed no bias. The agreement is good for variances and is satisfactory for fluxes and skewness. A thorough study of the errors involved in flux computation revealed that the greatest accuracy is obtained for latent heat flux. Errors in sensible heat flux are considerably greater, and the worst results are obtained for momentum flux. The latter parameter, however, is more accurate than expected from previous parameterizations.

  3. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    over the poles. The system consists of a constellation of 4 geostationary satellites covering the earth and delivering its signals to the aircraft at S band (2.52 -2.67 GHz). The S-band spectrum is ideal for this application since it is allocated on a primary basis by the ITU for global broadcast service. The AirTV service is expected to begin in 2004 and should be unencumbered by adjacent satellite interference due to near completion of the ITU coordination process. Each satellite will deliver four 20 Mbps QPSK data streams consisting of multiplexed compressed digital video channels and IP data over the full global beam coverage. The 80 Mbps capacity of each satellite will provide approximately 60 video channels while still allocating 40 Mbits to data services. The combined constellation capacity of 320 Mbits will significantly exceed the capacity of any similar existing or currently planned global satellite system. In addition, the simplicity of the 4-satellite approach is the most cost effective means to deliver high bandwidth globally. Return links, which are required for internet service, will be provided through the existing Inmarsat Aero-H system already onboard virtually all long haul aircraft and will provide return data rates from the aircraft as high as 432 kbps. integrated receiver/decoder (IRD) assembly. The phased array antenna, a key technology element, is being developed by AirTV's strategic partner, CMC Electronics. This antenna is a scaled version of CMC's Inmarsat Aero H antenna and is capable of scanning to 5 degrees above the horizon. Wide angle scanning up to 85 degrees from zenith is necessary for aircraft traversing the northernmost latitudes on transoceanic routes. AirTV has designed both the satellite coverage and aircraft antenna performance to ensure that high signal quality is maintained along all non-polar airline routes. AirTV will be the future of aeronautical broadband delivery. It has been designed specifically for global services and

  4. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  5. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  6. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  7. A study of methods of prediction and measurement of the transmission sound through the walls of light aircraft

    Science.gov (United States)

    Forssen, B.; Wang, Y. S.; Crocker, M. J.

    1981-12-01

    Several aspects were studied. The SEA theory was used to develop a theoretical model to predict the transmission loss through an aircraft window. This work mainly consisted of the writing of two computer programs. One program predicts the sound transmission through a plexiglass window (the case of a single partition). The other program applies to the case of a plexiglass window window with a window shade added (the case of a double partition with an air gap). The sound transmission through a structure was measured in experimental studies using several different methods in order that the accuracy and complexity of all the methods could be compared. Also, the measurements were conducted on the simple model of a fuselage (a cylindrical shell), on a real aircraft fuselage, and on stiffened panels.

  8. Residual life and strength estimates of aircraft structural components with MSD/MED

    Science.gov (United States)

    Singh, Ripudaman; Park, Jai H.; Atluri, Satya N.

    1994-01-01

    Economic and safe operation of the flight vehicles flying beyond their initial design life calls for an in-depth structural integrity evaluation of all components with potential for catastrophic damages. Fuselage panels with cracked skin and/or stiffening elements is one such example. A three level analytical approach is developed to analyze the pressurized fuselage stiffened shell panels with damaged skin or stiffening elements. A global finite element analysis is first carried out to obtain the load flow pattern through the damaged panel. As an intermediate step, the damaged zone is treated as a spatially three-dimensional structure modeled by plate and shell finite elements, with all the neighboring elements that can alter the stress state at the crack tip. This is followed by the Schwartz-Neumann alternating method for local analysis to obtain the relevant crack tip parameters that govern the onset of fracture and the crack growth. The methodology developed is generic in nature and aims at handling a large fraction of problem areas identified by the Industry Committee on Wide-Spread Fatigue Damage.

  9. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M [Kawasaki Heavy Industries Ltd., Kobe (Japan)

    1995-03-01

    Recently the international relationship has been playing an important role in the research, development and production of the aircraft gas turbine. The YSX, which is supposed to be the 100-seat class commercial aircraft, has been planned by Japan Aircraft Development (JADC) as an international cooperative project. Recently many western aeroengine companies have offered the collaboration of small turbofan engines which would be installed on YSX to Japanese aeroengine companies (IHI, KHI and MHI). The YSX is powered by 16,000-20,000 1bs thrust class engines. As for medium turbofan engine (V2500), the V 2500 family of 22,000 to 30,000 1bs thrust has been developed since 1983 through international collaboration by seven aeroengine companies in five nations. In this paper, the recent Japan`s activities of the research, development and production with viewing the world-wide movement, are described. 6 figs.

  10. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  11. Analysis of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle of individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.

  12. Stiffeners in variational-difference method for calculating shells with complex geometry

    Directory of Open Access Journals (Sweden)

    Ivanov Vyacheslav Nikolaevich

    2014-05-01

    Full Text Available We have already considered an introduction of reinforcements in the variational-difference method (VDM of shells analysis with complex shape. At the moment only ribbed shells of revolution and shallow shells can be calculated with the help of developed analytical and finite-difference methods. Ribbed shells of arbitrary shape can be calculated only using the finite element method (FEM. However there are problems, when using FEM, which are absent in finite- and variational-difference methods: rigid body motion; conforming trial functions; parameterization of a surface; independent stress strain state. In this regard stiffeners are entered in VDM. VDM is based on the Lagrange principle - the principle of minimum total potential energy. Stress-strain state of ribs is described by the Kirchhoff-Clebsch theory of curvilinear bars: tension, bending and torsion of ribs are taken into account. Stress-strain state of shells is described by the Kirchhoff-Love theory of thin elastic shells. A position of points of the middle surface is defined by curvilinear orthogonal coordinates α, β. Curved ribs are situated along coordinate lines. Strain energy of ribs is added into the strain energy to account for ribs. A matrix form of strain energy of ribs is formed similar to a matrix form of the strain energy of the shell. A matrix of geometrical characteristics of a rib is formed from components of matrices of geometric characteristics of a shell. A matrix of mechanical characteristics of a rib contains rib’s eccentricity and geometrical characteristics of a rib’s section. Derivatives of displacements in the strain vector are replaced with finite-difference relations after the middle surface of a shell gets covered with a grid (grid lines coincide with the coordinate lines of principal curvatures. By this case the total potential energy functional becomes a function of strain nodal displacements. Partial derivatives of unknown nodal displacements are

  13. AIRCRAFT MAINTENANCE HANGAR

    Directory of Open Access Journals (Sweden)

    GEAMBASU Gabriel George

    2017-05-01

    Full Text Available The paper presents the maintenance process that is done on an airplane, at a certain period of time, or after a number of flight hours or cycles and describes the checks performed behind each inspection. The first part of research describes the aircraft maintenance process that has to be done after an updated maintenance manual according with aircraft type, followed by a short introduction about maintenance hangar. The second part of the paper presents a hangar design with a foldable roof and walls, which can be folded or extended, over an airplane when a maintenance process is done, or depending on weather condition.

  14. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  15. Setting and stiffening of cementitious components in Cast Stone waste form for disposal of secondary wastes from the Hanford waste treatment and immobilization plant

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chul-Woo; Chun, Jaehun, E-mail: jaehun.chun@pnnl.gov; Um, Wooyong; Sundaram, S.K.; Westsik, Joseph H.

    2013-04-01

    Cast Stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from the Hanford Waste Treatment and Immobilization Plant. However, no study has been performed to understand the flow and stiffening behavior, which is essential to ensure proper workability and is important to safety in a nuclear waste field-scale application. X-ray diffraction, rheology, and ultrasonic wave reflection methods were used to understand the specific phase formation and stiffening of Cast Stone. Our results showed a good correlation between rheological properties of the fresh mixture and phase formation in Cast Stone. Secondary gypsum formation was observed with low concentration simulants, and the formation of gypsum was suppressed in high concentration simulants. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. Highlights: • A combination of XRD, UWR, and rheology gives a better understanding of Cast Stone. • Stiffening of Cast Stone was strongly dependent on the concentration of simulant. • A drastic change in stiffening of Cast Stone was found at 1.56 M Na concentration.

  16. Finite Element and Analytical Analysis of Cracks in Thick Stiffened Plates Repaired with a Single Sided Composite Patch

    Science.gov (United States)

    2014-06-01

    DC,Tech. Rep. CG-D-05–00, 2000. [16] S. Kou, Welding Metallurgy , 2nd edition, Hoboken: Wiley Interscience, 2003. [17] C. Poe, “Stress intensity...continuous aluminum superstructure welded to the deck. The shape of the superstructure created numerous stress concentration areas. Of the greatest concern...study as it will help provide a conservative estimate. In marine applications almost all stiffening members are attached by welding . Unlike a

  17. Erection of the stiffening girder of the Akashi Kaikyo bridge; Akashi Kaikyo Ohashi hokoketa (sono 2) koji no genchi seko

    Energy Technology Data Exchange (ETDEWEB)

    Otsuki, M.; Inoue, M.; Ueno, Y.; Matsumura, T.; Oe, S. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)

    1998-12-20

    The Akashi Kaikyo Bridge is 3,911m long with a center span of 1,991m, making it the longest suspension bridge in the world. Much careful attention has been given to the erection planning details in order to construct the bridge to withstand the harsh environmental conditions of that area. This report details the characteristics of the bridge stiffening girder and erection procedure, and the effects of the Hyogoken-Nanbu Earthquake. (author)

  18. The ring-stiffened shell of the ISAR II nuclear power plant natural-draught cooling tower

    International Nuclear Information System (INIS)

    Form, J.

    1986-01-01

    The natural-draught cooling tower of the ISAR II nuclear power plant is one of the largest in the world. The bid specifications provided for an unstiffened cooling tower shell. For the execution, however, it was decided to adopt a shell with three additional stiffening rings. The present contribution deals with the static and dynamic calculations of the execution and, in particular, with the working technique employed for the construction of the rings. (author)

  19. Composite materials for aircraft structures

    National Research Council Canada - National Science Library

    Baker, A. A; Dutton, Stuart; Kelly, Donald

    2004-01-01

    ... materials for aircraft structures / Alan Baker, Stuart Dutton, and Donald Kelly- 2nd ed. p. cm. - (Education series) Rev. ed. of: Composite materials for aircraft structures / edited by B. C. Hos...

  20. Aircraft Engine Thrust Estimator Design Based on GSA-LSSVM

    Science.gov (United States)

    Sheng, Hanlin; Zhang, Tianhong

    2017-08-01

    In view of the necessity of highly precise and reliable thrust estimator to achieve direct thrust control of aircraft engine, based on support vector regression (SVR), as well as least square support vector machine (LSSVM) and a new optimization algorithm - gravitational search algorithm (GSA), by performing integrated modelling and parameter optimization, a GSA-LSSVM-based thrust estimator design solution is proposed. The results show that compared to particle swarm optimization (PSO) algorithm, GSA can find unknown optimization parameter better and enables the model developed with better prediction and generalization ability. The model can better predict aircraft engine thrust and thus fulfills the need of direct thrust control of aircraft engine.

  1. Residual Strength Pressure Tests and Nonlinear Analyses of Stringer- and Frame-Stiffened Aluminum Fuselage Panels with Longitudinal Cracks

    Science.gov (United States)

    Young, Richard D.; Rouse, Marshall; Ambur, Damodar R.; Starnes, James H., Jr.

    1999-01-01

    The results of residual strength pressure tests and nonlinear analyses of stringer- and frame-stiffened aluminum fuselage panels with longitudinal cracks are presented. Two types of damage are considered: a longitudinal crack located midway between stringers, and a longitudinal crack adjacent to a stringer and along a row of fasteners in a lap joint that has multiple-site damage (MSD). In both cases, the longitudinal crack is centered on a severed frame. The panels are subjected to internal pressure plus axial tension loads. The axial tension loads are equivalent to a bulkhead pressure load. Nonlinear elastic-plastic residual strength analyses of the fuselage panels are conducted using a finite element program and the crack-tip-opening-angle (CTOA) fracture criterion. Predicted crack growth and residual strength results from nonlinear analyses of the stiffened fuselage panels are compared with experimental measurements and observations. Both the test and analysis results indicate that the presence of MSD affects crack growth stability and reduces the residual strength of stiffened fuselage shells with long cracks.

  2. AFM-based detection of glycocalyx degradation and endothelial stiffening in the db/db mouse model of diabetes.

    Science.gov (United States)

    Targosz-Korecka, Marta; Jaglarz, Magdalena; Malek-Zietek, Katarzyna E; Gregorius, Aleksandra; Zakrzewska, Agnieszka; Sitek, Barbara; Rajfur, Zenon; Chlopicki, Stefan; Szymonski, Marek

    2017-11-21

    Degradation of the glycocalyx and stiffening of endothelium are important pathophysiological components of endothelial dysfunction. However, to our knowledge, these events have not been investigated in tandem in experimental diabetes. Here, the mechanical properties of the glycocalyx and endothelium in ex vivo mouse aorta were determined simultaneously in indentation experiments with an atomic force microscope (AFM) for diabetic db/db and control db/+ mice at ages of 11-19 weeks. To analyze highly heterogeneous aorta samples, we developed a tailored classification procedure of indentation data based on a bi-layer brush model supplemented with Hertz model for quantification of nanomechanics of endothelial regions with and without the glycocalyx surface. In db/db mice, marked endothelial stiffening and reduced glycocalyx coverage were present already in 11-week-old mice and persisted in older animals. In contrast, reduction of the effective glycocalyx length was progressive and was most pronounced in 19-week-old db/db mice. The reduction of the glycocalyx length correlated with an increasing level of glycated haemoglobin and decreased endothelial NO production. In conclusion, AFM nanoindentation analysis revealed that stiffening of endothelial cells and diminished glycocalyx coverage occurred in early diabetes and were followed by the reduction of the glycocalyx length that correlated with diabetes progression.

  3. Long Range Aircraft Trajectory Prediction

    OpenAIRE

    Magister, Tone

    2009-01-01

    The subject of the paper is the improvement of the aircraft future trajectory prediction accuracy for long-range airborne separation assurance. The strategic planning of safe aircraft flights and effective conflict avoidance tactics demand timely and accurate conflict detection based upon future four–dimensional airborne traffic situation prediction which is as accurate as each aircraft flight trajectory prediction. The improved kinematics model of aircraft relative flight considering flight ...

  4. Enhancing Combat Survivability of Existing Unmanned Aircraft Systems

    Science.gov (United States)

    2008-12-01

    1 With efforts underway to develop rules integrating UAS’s into the National Airspace System, and...realizing that Federal Aviation Administration rule -making authority applied only to "aircraft," the term Remotely Operated Aircraft (ROA) was coined in...http://www.af.mil/factsheets/factsheet.asp?id=122 [10] Peter La Franchi , “US study recommends self-protection for UAVs”, Flight International, 7

  5. Considerations on radiation protection of aircraft crew in Brazil

    International Nuclear Information System (INIS)

    Federico, C.A.; Goncalez, O.L.

    2011-01-01

    This paper discuss the guidelines existing in the ICRP documents related to radiation protection applied to the aircraft crew and it is presented a brief report on the evolution of these studies in this field, and also the regulations already adopted by the integrating of the European Union, Canada and USA. Also, are presented some peculiarities of Brazilian air space and the legislation applied to work with ionizing radiation, discussing the general aspects of radiation protection applied to the aircraft crew in Brazil

  6. Unmanned Aircraft Systems Roadmap, 2005-2030

    Science.gov (United States)

    2005-01-01

    UCAV Unmanned Combat Air Vehicle ISS Integrated Sensor Suite UCS Unmanned Control System ITU International Telecommunications Union UFO UHF...RDC) at Groton, CT. These have included alien and drug interdiction along the Texas coast and in the Caribbean, UA launch and recovery systems...altitude aircraft and UA; and narrowband services to support mobile and handheld services as a replacement or follow-on for the UHF Follow-On ( UFO

  7. Automation of the aircraft design process

    Science.gov (United States)

    Heldenfels, R. R.

    1974-01-01

    The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.

  8. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  9. Optimization of Reinforced Concrete Reservoir with Circumferential Stiffeners Strips by Particle Swarm Algorithm

    Directory of Open Access Journals (Sweden)

    GholamReza Havaei

    2015-09-01

    Full Text Available Reinforced concrete reservoirs (RCR have been used extensively in municipal and industrial facilities for several decades. The design of these structures requires that attention be given not only to strength requirements, but to serviceability requirements as well. These types of structures will be square, round, and oval reinforced concrete structures which may be above, below, or partially below ground. The main challenge is to design concrete liquid containing structures which will resist the extremes of seasonal temperature changes, a variety of loading conditions, and remain liquid tight for useful life of 50 to 60 years. In this study, optimization is performed by particle swarm algorithm basd on structural design. Firstly by structural analysis all range of shell thickness and areas of rebar find. In the second step by parameter identification system interchange algorithm, source code which developed in particle swarm algorithm by MATLAB software linked to analysis software. Therefore best and optimized thicknesses and total area of bars for each element find. Lastly with circumferential stiffeners structure optimize and show 19% decrease in weight of rebar, 20% decrease in volume of concrete, and 13% minimum cost reduction in construction procedure compared with conventional 10,000 m3 RCR structures.

  10. Skeletal stiffening in an amphibious fish out of water is a response to increased body weight.

    Science.gov (United States)

    Turko, Andy J; Kültz, Dietmar; Fudge, Douglas; Croll, Roger P; Smith, Frank M; Stoyek, Matthew R; Wright, Patricia A

    2017-10-15

    Terrestrial animals must support their bodies against gravity, while aquatic animals are effectively weightless because of buoyant support from water. Given this evolutionary history of minimal gravitational loading of fishes in water, it has been hypothesized that weight-responsive musculoskeletal systems evolved during the tetrapod invasion of land and are thus absent in fishes. Amphibious fishes, however, experience increased effective weight when out of water - are these fishes responsive to gravitational loading? Contrary to the tetrapod-origin hypothesis, we found that terrestrial acclimation reversibly increased gill arch stiffness (∼60% increase) in the amphibious fish Kryptolebias marmoratus when loaded normally by gravity, but not under simulated microgravity. Quantitative proteomics analysis revealed that this change in mechanical properties occurred via increased abundance of proteins responsible for bone mineralization in other fishes as well as in tetrapods. Type X collagen, associated with endochondral bone growth, increased in abundance almost ninefold after terrestrial acclimation. Collagen isoforms known to promote extracellular matrix cross-linking and cause tissue stiffening, such as types IX and XII collagen, also increased in abundance. Finally, more densely packed collagen fibrils in both gill arches and filaments were observed microscopically in terrestrially acclimated fish. Our results demonstrate that the mechanical properties of the fish musculoskeletal system can be fine-tuned in response to changes in effective body weight using biochemical pathways similar to those in mammals, suggesting that weight sensing is an ancestral vertebrate trait rather than a tetrapod innovation. © 2017. Published by The Company of Biologists Ltd.

  11. Effect of High-Fat Diet upon Inflammatory Markers and Aortic Stiffening in Mice

    Directory of Open Access Journals (Sweden)

    Andre Bento Chaves Santana

    2014-01-01

    Full Text Available Changes in lifestyle such as increase in high-fat food consumption are an important cause for vascular diseases. The present study aimed to investigate the involvement of ACE and TGF-β in the aorta stiffness induced by high-fat diet. C57BL/6 male mice were divided in two groups according to their diet for 8 weeks: standard diet (ST and high-fat diet (HF. At the end of the protocol, body weight gain, adipose tissue content, serum lipids and glucose levels, and aorta morphometric and biochemical measurements were performed. Analysis of collagen fibers by picrosirius staining of aorta slices showed that HF diet promoted increase of thin (55% and thick (100% collagen fibers deposition and concomitant disorganization of these fibers orientations in the aorta vascular wall (50%. To unravel the mechanism involved, myeloperoxidase (MPO and angiotensin I converting enzyme (ACE were evaluated by protein expression and enzyme activity. HF diet increased MPO (90% and ACE (28% activities, as well as protein expression of ACE. TGF-β was also increased in aorta tissue of HF diet mice after 8 weeks. Altogether, we have observed that the HF diet-induced aortic stiffening may be associated with increased oxidative stress damage and activation of the RAS in vascular tissue.

  12. Topological optimization of opening fence brackets on ring-stiffened cylindrical shell

    Directory of Open Access Journals (Sweden)

    SONG Xiaofei

    2018-02-01

    Full Text Available [Objectives] Stress concentration is prone to take place at connections between the opening fence and ring ribs of a ring-stiffened cylindrical shell under external pressure. [Methods] In this paper, a topological optimization method for the brackets that connect the fence to the ring ribs is proposed in order to effectively reduce the local high stress in the brackets. The sub-model technique is used to analyze the stress of the connecting brackets. In the design, the connection brackets are used as design variables and the stress of the shell, fence and ribs are used as constraints. The maximum stress of the bracket is minimized as the objective function. The topology optimization results are engineered to obtain the final form of the brackets. [Results] The calculation results show that brackets of which the panel is partially widened can effectively reduce the stress concentration position of the opening fence transverse offset if the side of the bracket away from the longitudinal section is longer; the opening fence is offset relative to the brackets, and the symmetrical design of the brackets is feasible. [Conclusions] This research provides a reference for similar structural design.

  13. Stiffening of Red Blood Cells Induced by Cytoskeleton Disorders: A Joint Theory-Experiment Study.

    Science.gov (United States)

    Lai, Lipeng; Xu, Xiaofeng; Lim, Chwee Teck; Cao, Jianshu

    2015-12-01

    The functions and elasticities of the cell are largely related to the structures of the cytoskeletons underlying the lipid bilayer. Among various cell types, the red blood cell (RBC) possesses a relatively simple cytoskeletal structure. Underneath the membrane, the RBC cytoskeleton takes the form of a two-dimensional triangular network, consisting of nodes of actins (and other proteins) and edges of spectrins. Recent experiments focusing on the malaria-infected RBCs (iRBCs) show that there is a correlation between the elongation of spectrins in the cytoskeletal network and the stiffening of the iRBCs. Here we rationalize the correlation between these two observations by combining the wormlike chain model for single spectrins and the effective medium theory for the network elasticity. We specifically focus on how the disorders in the cytoskeletal network affect its macroscopic elasticity. Analytical and numerical solutions from our model reveal that the stiffness of the membrane increases with increasing end-to-end distances of spectrins, but has a nonmonotonic dependence on the variance of the end-to-end distance distributions. These predictions are verified quantitatively by our atomic force microscopy and micropipette aspiration measurements of iRBCs. The model may, from a molecular level, provide guidelines for future identification of new treatment methods for RBC-related diseases, such as malaria infection. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Monte Carlo reliability analysis of tophat stiffened composite plate structures under out of plane loading

    International Nuclear Information System (INIS)

    Sobey, A.J.; Blake, J.I.R.; Shenoi, R.A.

    2013-01-01

    Composite materials are often utilised for their high strength to weight ratio, excellent corrosion resistance, etc. but are also characterised by variabilities and uncertainties in their mechanical properties owing to the material make-up, process and fabrication techniques. It is essential that modelling techniques continue to be developed to take account of these variabilities and uncertainties and as more complicated structures are developed it is important to have rapid assessment methods to determine the reliability of these structures. Grillage analysis methods have been previously used for assessment of tophat stiffened composite structures using simple failure criteria. As new criteria are introduced, such as by the World Wide Failure Exercise, the response of more complex topologies must be introduced. This paper therefore assesses the reliability of composite grillages using Navier grillage method incorporating up to date failure criteria. An example, taken from boatbuilding, is used to show the results of using these more complex assessment methods showing that it is of high importance to use the correct assessment criteria.

  15. Non-linear general instability of ring-stiffened conical shells under external hydrostatic pressure

    International Nuclear Information System (INIS)

    Ross, C T F; Kubelt, C; McLaughlin, I; Etheridge, A; Turner, K; Paraskevaides, D; Little, A P F

    2011-01-01

    The paper presents the experimental results for 15 ring-stiffened circular steel conical shells, which failed by non-linear general instability. The results of these investigations were compared with various theoretical analyses, including an ANSYS eigen buckling analysis and another ANSYS analysis; which involved a step-by-step method until collapse; where both material and geometrical nonlinearity were considered. The investigation also involved an analysis using BS5500 (PD 5500), together with the method of Ross of the University of Portsmouth. The ANSYS eigen buckling analysis tended to overestimate the predicted buckling pressures; whereas the ANSYS nonlinear results compared favourably with the experimental results. The PD5500 analysis was very time consuming and tended to grossly underestimate the experimental buckling pressures and in some cases, overestimate them. In contrast to PD5500 and ANSYS, the design charts of Ross of the University of Portsmouth were the easiest of all these methods to use and generally only slightly underestimated the experimental collapse pressures. The ANSYS analyses gave some excellent graphical displays.

  16. A low-frequency chip-scale optomechanical oscillator with 58 kHz mechanical stiffening and more than 100th-order stable harmonics.

    Science.gov (United States)

    Huang, Yongjun; Flores, Jaime Gonzalo Flor; Cai, Ziqiang; Yu, Mingbin; Kwong, Dim-Lee; Wen, Guangjun; Churchill, Layne; Wong, Chee Wei

    2017-06-29

    For the sensitive high-resolution force- and field-sensing applications, the large-mass microelectromechanical system (MEMS) and optomechanical cavity have been proposed to realize the sub-aN/Hz 1/2 resolution levels. In view of the optomechanical cavity-based force- and field-sensors, the optomechanical coupling is the key parameter for achieving high sensitivity and resolution. Here we demonstrate a chip-scale optomechanical cavity with large mass which operates at ≈77.7 kHz fundamental mode and intrinsically exhibiting large optomechanical coupling of 44 GHz/nm or more, for both optical resonance modes. The mechanical stiffening range of ≈58 kHz and a more than 100 th -order harmonics are obtained, with which the free-running frequency instability is lower than 10 -6 at 100 ms integration time. Such results can be applied to further improve the sensing performance of the optomechanical inspired chip-scale sensors.

  17. Aircrafts' taxi noise emission

    NARCIS (Netherlands)

    Asensio, C.; Pagan Munoz, Raul; López, J.M.

    2008-01-01

    An investigation has been conducted, with the objective of creating a database of inputs that can be used with noise prediction software, to evaluate noise of aircraft taxing movements and community noise exposure levels. The acoustic consultant can use these data with any of the software packages,

  18. Aircraft parameter estimation

    Indian Academy of Sciences (India)

    With the evolution of high performance modern aircraft and spiraling developmental and experimental costs, the importance of flight validated databases for flight control design applications and for flight simulators has increased significantly in the recent past. Ground-based and in-flight simulators are increasingly used not ...

  19. Load event: Aircraft crash

    International Nuclear Information System (INIS)

    Fritsch, H.

    1985-01-01

    The bibliography includes 48 quotations, up to the year 1983, on the following issues: Experiments and computational methods. Design load for the dimensioning of reinforced concrete buildings and components with respect to the dynamic load in the event of an aircraft crash. (orig./HP) [de

  20. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    Directory of Open Access Journals (Sweden)

    Gino Rinaldi

    2012-01-01

    Full Text Available Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be present in all of that type of aircraft. This safety protocol and its associated unscheduled maintenance requirement drive up the operational costs of the fleet and limit the availability of the aircraft. Hence, there is an opportunity at present for developing novel sensing technologies and schemes to aid in shifting time-based maintenance schedules towards condition-based maintenance procedures. In this work, part of the ongoing development of a multiparameter integrated corrosion sensor is presented. It consists of carbon nanotube/polyaniline polymer sensors and commercial-off-the-shelf sensors. It is being developed primarily for monitoring environmental and material factors for the purpose of providing a means to more accurately assess the structural integrity of aerospace aluminium alloys through fusion of multiparameter sensor data. Preliminary experimental test results are presented for chloride ion concentration, hydrogen gas evolution, humidity variations, and material degradation.

  1. Access improvement to aircraft passengers' hand luggage.

    Science.gov (United States)

    Alberda, W; Kampinga, O; Kassels, R; van Kester, R; Noriega, J; Vink, P

    2015-01-01

    Efficient use of space and passenger comfort in aircraft interiors are major issues. There is not much research available about the flying experience regarding passengers' personal belongings. The objective of this study is to explore concepts within the current aircraft seats which improve the passenger experience related to their personal belongings like wallets, mobile phones and laptops. Through on-site observations, interviews and online questionnaires, data regarding the number of personal belongings taken into the airplane and opinions about access to hand luggage were gathered. These data were used to develop different concepts to optimize the aircraft interior, which were evaluated by passengers. Almost every passenger carries a phone (88%), wallet (94%), travel documents (98%) and keys (76%) with them and they like to have these stored close by. Passengers rate the concept that provides integrated storage in the tray table of the aircraft seat the best. Extra storage possibility in the table-tray seems a promising solution according to the passengers.

  2. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  3. Aircraft engines. IV

    Energy Technology Data Exchange (ETDEWEB)

    Ruffles, P C

    1989-01-01

    Configurational design and thermodynamic performance gain trends are projected into the next 50 years, in view of the growing interest of aircraft manufacturers in both larger and more efficient high-bypass turbofan engines for subsonic flight and variable cycle engines for supersonic flight. Ceramic- and metal-matrix composites are envisioned as the key to achievement of turbine inlet temperatures 300 C higher than the 1400 C which is characteristic of the state-of-the-art, with the requisite high stiffness, strength, and low density. Such fiber-reinforced materials can be readily tailored to furnish greatest strength in a specific direction of loading. Large, low-density engines are critical elements of future 1000-seat aircraft.

  4. Aircraft engine pollution reduction.

    Science.gov (United States)

    Rudey, R. A.

    1972-01-01

    The effect of engine operation on the types and levels of the major aircraft engine pollutants is described and the major factors governing the formation of these pollutants during the burning of hydrocarbon fuel are discussed. Methods which are being explored to reduce these pollutants are discussed and their application to several experimental research programs are pointed out. Results showing significant reductions in the levels of carbon monoxide, unburned hydrocarbons, and oxides of nitrogen obtained from experimental combustion research programs are presented and discussed to point out potential application to aircraft engines. An experimental program designed to develop and demonstrate these and other advanced, low pollution combustor design methods is described. Results that have been obtained to date indicate considerable promise for reducing advanced engine exhaust pollutants to levels significantly below current engines.

  5. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    International Nuclear Information System (INIS)

    Oliveira, Cláudio L N; Suki, Béla; Bates, Jason H T

    2014-01-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c<0.3, B(N,c) exhibits exponential growth from its initial value according to B(N,c)≈B 0 exp(2c)[1+c β ln(N a I )], where β=0.994± 0.024 and a I =0.54±0.026. For intermediate concentrations of stiffening, 0.3⩽c⩽0.8, another exponential rule describes the bulk modulus as B(N,c)=4B 0 exp[a II (c−c c )], where a II and c c are parameters that depend on N. For c>0.8, B(N,c) is linear in c and independent of N, such that B(N,c)=100 B 0 −100a III (1−c)B 0

  6. Combat Aircraft Maneuverability.

    Science.gov (United States)

    1981-12-01

    rodynamique, propulsion, rdsistance den structures, etc ... - lea m~thodes d’essaia an soufflerie, aur banca au aol, sur simulateurs. A un niveau de synthbse...Dunstan Graham, "Aircraft Dynamics and Automatic Control," Princeton University Press , Princeton, N.J., 1973. 9. Hoh, Roger H., Thomas T. Myers...discussion of the roll coupling problem" Progress in Aerospace Sciences, Vol 15, Pergamon Press , Oxford 1974 17-8 (6] R.W. KLOPPENSTEIN "Zeroes of

  7. Angiotensin II-induced arterial thickening, fibrosis and stiffening involves elevated arginase function.

    Directory of Open Access Journals (Sweden)

    Anil Bhatta

    Full Text Available Arterial stiffness (AS is an independent risk factor for cardiovascular morbidity/mortality. Smooth muscle cell (SMC proliferation and increased collagen synthesis are key features in development of AS. Arginase (ARG, an enzyme implicated in many cardiovascular diseases, can compete with nitric oxide (NO synthase for their common substrate, L-arginine. Increased arginase can also provide ornithine for synthesis of polyamines via ornithine decarboxylase (ODC and proline/collagen via ornithine aminotransferase (OAT, leading to vascular cell proliferation and collagen formation, respectively. We hypothesized that elevated arginase activity is involved in Ang II-induced arterial thickening, fibrosis, and stiffness and that limiting its activity can prevent these changes.We tested this by studies in mice lacking one copy of the ARG1 gene that were treated with angiotensin II (Ang II, 4 weeks. Studies were also performed in rat aortic Ang II-treated SMC. In WT mice treated with Ang II, we observed aortic stiffening (pulse wave velocity and aortic and coronary fibrosis and thickening that were associated with increases in ARG1 and ODC expression/activity, proliferating cell nuclear antigen, hydroxyproline levels, and collagen 1 protein expression. ARG1 deletion prevented each of these alterations. Furthermore, exposure of SMC to Ang II (1 μM, 48 hrs increased ARG1 expression, ARG activity, ODC mRNA and activity, cell proliferation, collagen 1 protein expression and hydroxyproline content. Treatment with ABH prevented these changes.Arginase 1 is crucially involved in Ang II-induced SMC proliferation and arterial fibrosis and stiffness and represents a promising therapeutic target.

  8. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-03-01

    Current developmental activities of aircraft gas turbines in Japan are reviewed. V2500-A5 engine with thrust of 30,000 LBF is scheduled to be used for real aircraft in 1994, and intensive developmental activities are also proceeding in larger engines over 90,000 LBF. Recently, developmental programs of engines for 75-100 seat aircraft have been actively discussed, and Japanese engine makers are having discussions towards international collaboration. Such engines will be high bypass turbofans of 12,000-22,000 LBF. Development of SST/HST engines in a speed range from subsonic to Mach 5 is under the initiative of the Agency of Industrial Science and Technology. The Technical Research and Development Institute of Japan, Defence Agency achieved the target thrust of 3.4 tons in the small turbofan engine program, and the small turboshaft engine for small helicopters is also under development. Both National Aerospace Laboratory (NAL) and Institute of Space and Aeronautical Science (ISAS) are now conducting the research programs on turbo-ramjet engines under a component test phase. 1 fig.

  9. Aircraft family design using enhanced collaborative optimization

    Science.gov (United States)

    Roth, Brian Douglas

    Significant progress has been made toward the development of multidisciplinary design optimization (MDO) methods that are well-suited to practical large-scale design problems. However, opportunities exist for further progress. This thesis describes the development of enhanced collaborative optimization (ECO), a new decomposition-based MDO method. To support the development effort, the thesis offers a detailed comparison of two existing MDO methods: collaborative optimization (CO) and analytical target cascading (ATC). This aids in clarifying their function and capabilities, and it provides inspiration for the development of ECO. The ECO method offers several significant contributions. First, it enhances communication between disciplinary design teams while retaining the low-order coupling between them. Second, it provides disciplinary design teams with more authority over the design process. Third, it resolves several troubling computational inefficiencies that are associated with CO. As a result, ECO provides significant computational savings (relative to CO) for the test cases and practical design problems described in this thesis. New aircraft development projects seldom focus on a single set of mission requirements. Rather, a family of aircraft is designed, with each family member tailored to a different set of requirements. This thesis illustrates the application of decomposition-based MDO methods to aircraft family design. This represents a new application area, since MDO methods have traditionally been applied to multidisciplinary problems. ECO offers aircraft family design the same benefits that it affords to multidisciplinary design problems. Namely, it simplifies analysis integration, it provides a means to manage problem complexity, and it enables concurrent design of all family members. In support of aircraft family design, this thesis introduces a new wing structural model with sufficient fidelity to capture the tradeoffs associated with component

  10. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    Science.gov (United States)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  11. The research of optical windows used in aircraft sensor systems

    International Nuclear Information System (INIS)

    Zhou Feng; Li Yan; Tang Tian-Jin

    2012-01-01

    The optical windows used in aircrafts protect their imaging sensors from environmental effects. Considering the imaging performance, flat surfaces are traditionally used in the design of optical windows. For aircrafts operating at high speeds, the optical windows should be relatively aerodynamic, but a flat optical window may introduce unacceptably high drag to the airframes. The linear scanning infrared sensors used in aircrafts with, respectively, a flat window, a spherical window and a toric window in front of the aircraft sensors are designed and compared. Simulation results show that the optical design using a toric surface has the integrated advantages of field of regard, aerodynamic drag, narcissus effect, and imaging performance, so the optical window with a toric surface is demonstrated to be suited for this application. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  12. Setting and Stiffening of Cementitious Components in Cast Stone Waste Form for Disposal of Secondary Wastes from the Hanford waste treatment and immobilization plant

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Chul-Woo; Chun, Jaehun; Um, Wooyong; Sundaram, S. K.; Westsik, Joseph H.

    2013-04-01

    Cast stone is a cementitious waste form, a viable option to immobilize secondary nuclear liquid wastes generated from Hanford vitrification plant. While the strength and radioactive technetium leaching of different waste form candidates have been reported, no study has been performed to understand the flow and stiffening behavior of Cast Stone, which is essential to ensure the proper workability, especially considering necessary safety as a nuclear waste form in a field scale application. The rheological and ultrasonic wave reflection (UWR) measurements were used to understand the setting and stiffening Cast Stone batches. X-ray diffraction (XRD) was used to find the correlation between specific phase formation and the stiffening of the paste. Our results showed good correlation between rheological properties of the fresh Cast Stone mixture and phase formation during hydration of Cast Stone. Secondary gypsum formation originating from blast furnace slag was observed in Cast Stone made with low concentration simulants. The formation of gypsum was suppressed in high concentration simulants. It was found that the stiffening of Cast Stone was strongly dependent on the concentration of simulant. A threshold concentration for the drastic change in stiffening was found at 1.56 M Na concentration.

  13. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    Science.gov (United States)

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  15. 78 FR 67799 - Qualification, Service, and Use of Crewmembers and Aircraft Dispatchers

    Science.gov (United States)

    2013-11-12

    ... and aircraft dispatcher training reflects that integrated operating environment. Since the publication... control systems, and unusual attitudes that result from flight control malfunctions and uncommanded flight... manipulate the aircraft controls and flight navigators are no longer used in part 121 operations, the FAA...

  16. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A.G.; Stordal, F.; Knudsen, S. [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  17. Chemistry in aircraft plumes

    Energy Technology Data Exchange (ETDEWEB)

    Kraabol, A G; Stordal, F; Knudsen, S [Norwegian Inst. for Air Research, Kjeller (Norway); Konopka, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Wessling (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    An expanding plume model with chemistry has been used to study the chemical conversion of NO{sub x} to reservoir species in aircraft plumes. The heterogeneous conversion of N{sub 2}O{sub 5} to HNO{sub 3}(s) has been investigated when the emissions take place during night-time. The plume from an B747 has been simulated. During a ten-hour calculation the most important reservoir species was HNO{sub 3} for emissions at noon. The heterogeneous reactions had little impact on the chemical loss of NO{sub x} to reservoir species for emissions at night. (author) 4 refs.

  18. Commercial Aircraft Protection

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-26

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  19. A network model of correlated growth of tissue stiffening in pulmonary fibrosis

    Science.gov (United States)

    Oliveira, Cláudio L. N.; Bates, Jason H. T.; Suki, Béla

    2014-06-01

    During the progression of pulmonary fibrosis, initially isolated regions of high stiffness form and grow in the lung tissue due to collagen deposition by fibroblast cells. We have previously shown that ongoing collagen deposition may not lead to significant increases in the bulk modulus of the lung until these local remodeled regions have become sufficiently numerous and extensive to percolate in a continuous path across the entire tissue (Bates et al 2007 Am. J. Respir. Crit. Care Med. 176 617). This model, however, did not include the possibility of spatially correlated deposition of collagen. In the present study, we investigate whether spatial correlations influence the bulk modulus in a two-dimensional elastic network model of lung tissue. Random collagen deposition at a single site is modeled by increasing the elastic constant of the spring at that site by a factor of 100. By contrast, correlated collagen deposition is represented by stiffening the springs encountered along a random walk starting from some initial spring, the rationale being that excess collagen deposition is more likely in the vicinity of an already stiff region. A combination of random and correlated deposition is modeled by performing random walks of length N from randomly selected initial sites, the balance between the two processes being determined by N. We found that the dependence of bulk modulus, B(N,c), on both N and the fraction of stiff springs, c, can be described by a strikingly simple set of empirical equations. For c0.8, B(N,c) is linear in c and independent of N, such that B(N,c)=100\\;{{B}_{0}}-100{{a}_{III}}(1-c){{B}_{0}}, where {{a}_{III}}=2.857. For small concentrations, the physiologically most relevant regime, the forces in the network springs are distributed according to a power law. When c = 0.3, the exponent of this power law increases from -4.5, when N = 1, and saturates to about -2, as N increases above 40. These results suggest that the spatial correlation of

  20. Aircraft vulnerability analysis by modelling and simulation

    CSIR Research Space (South Africa)

    Willers, CJ

    2014-09-01

    Full Text Available attributable to misuse of the weapon or to missile performance restrictions. This paper analyses some of the factors affecting aircraft vulnerability and demonstrates a structured analysis of the risk and aircraft vulnerability problem. The aircraft...

  1. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  2. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener

    Directory of Open Access Journals (Sweden)

    Yun-Kyu An

    2016-09-01

    Full Text Available This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  3. Stripe-PZT Sensor-Based Baseline-Free Crack Diagnosis in a Structure with a Welded Stiffener.

    Science.gov (United States)

    An, Yun-Kyu; Shen, Zhiqi; Wu, Zhishen

    2016-09-16

    This paper proposes a stripe-PZT sensor-based baseline-free crack diagnosis technique in the heat affected zone (HAZ) of a structure with a welded stiffener. The proposed technique enables one to identify and localize a crack in the HAZ using only current data measured using a stripe-PZT sensor. The use of the stripe-PZT sensor makes it possible to significantly improve the applicability to real structures and minimize man-made errors associated with the installation process by embedding multiple piezoelectric sensors onto a printed circuit board. Moreover, a new frequency-wavenumber analysis-based baseline-free crack diagnosis algorithm minimizes false alarms caused by environmental variations by avoiding simple comparison with the baseline data accumulated from the pristine condition of a target structure. The proposed technique is numerically as well as experimentally validated using a plate-like structure with a welded stiffener, reveling that it successfully identifies and localizes a crack in HAZ.

  4. Remote monitoring of bond line defects between a composite panel and a stiffener using distributed piezoelectric sensors

    Science.gov (United States)

    Yu, Xudong; Fan, Zheng; Puliyakote, Sreedhar; Castaings, Michel

    2018-03-01

    Structural health monitoring (SHM) using ultrasonic guided waves has proven to be attractive for the identification of damage in composite plate-like structures, due to its realization of both significant propagation distances and reasonable sensitivity to defects. However, topographical features such as bends, lap joints, and bonded stiffeners are often encountered in these structures, and they are susceptible to various types of defects as a consequence of stress concentration and cyclic loading during the service life. Therefore, the health condition of such features has to be assessed effectively to ensure the safe operation of the entire structure. This paper proposes a novel feature guided wave (FGW) based SHM strategy, in which proper FGWs are exploited as a screening tool to rapidly interrogate the representative stiffener-adhesive bond-composite skin assembly. An array of sensors permanently attached to the vicinity of the feature is used to capture scattered waves from the localized damage occurring in the bond line. This technique is combined with an imaging approach, and the damage reconstruction is achieved by the synthetic focusing algorithm using these scattered signals. The proposed SHM scheme is implemented in both the 3D finite element simulation and the experiment, and the results are in good agreement, demonstrating the feasibility of such SHM strategy.

  5. Experimental investigation of the influence of internal frames on the vibroacoustic behavior of a stiffened cylindrical shell using wavenumber analysis

    Science.gov (United States)

    Meyer, V.; Maxit, L.; Renou, Y.; Audoly, C.

    2017-09-01

    The understanding of the influence of non-axisymmetric internal frames on the vibroacoustic behavior of a stiffened cylindrical shell is of high interest for the naval or aeronautic industries. Several numerical studies have shown that the non-axisymmetric internal frame can increase the radiation efficiency significantly in the case of a mechanical point force. However, less attention has been paid to the experimental verification of this statement. That is why this paper proposes to compare the radiation efficiency estimated experimentally for a stiffened cylindrical shell with and without internal frames. The experimental process is based on scanning laser vibrometer measurements of the vibrations on the surface of the shell. A transform of the vibratory field in the wavenumber domain is then performed. It allows estimating the far-field radiated pressure with the stationary phase theorem. An increase of the radiation efficiency is observed in the low frequencies. Analysis of the velocity field in the physical and wavenumber spaces allows highlighting the coupling of the circumferential orders at the origin of the increase in the radiation efficiency.

  6. Design for aircraft impact

    International Nuclear Information System (INIS)

    Kar, A.K.

    1978-01-01

    Aircraft impact against nuclear power plant structures leads to both local and overall effects on the structure. Among the local effects, backface spalling is most important. The overall effects of impact on structural stability are commonly evaluated in terms of the adequacy of the structure in flexure and shear. Empirical formulas are presented for the determination of local effects of aircraft impact on nuclear power plant facilities. The formulas lead to easy and reasonable estimates of the thickness required to prevent backface spalling. The impactive load depends upon the collapse load of the fuselage, its collapse mechanism, mass distribution and the impact velocity. A simplified method is given for evaluating the design load. The time history, obtained by the proposed method, closely resembles those obtained by more rigorous methods. Procedures for obtaining shear and flexural strengths of concrete walls or roofs, subjected to impact, are provided. The span-to-depth ratio is considered. Recommendations are made on the available ductility ratio and structural behavior. (Author)

  7. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  8. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    Science.gov (United States)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  9. ERGONOMIC DESIGN OF AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    CÎMPIAN Ionuţ

    2012-09-01

    Full Text Available This paper presents a model for an ergonomic design of an aircraft cockpit with the specification and verification with respect to the new European Aviation Safety Agency (EASA and Federal Aviation Administration (FAA requirements. The goal is to expressing the concepts on which the aircraft cockpit design are based.

  10. ERGONOMIC DESIGN OF AIRCRAFT COCKPIT

    Directory of Open Access Journals (Sweden)

    CÎMPIAN Ionuţ

    2011-06-01

    Full Text Available This paper presents a model for an ergonomic design of an aircraft cockpit with the specification and verification with respect to the new European Aviation Safety Agency (EASA and Federal Aviation Administration (FAA requirements. The goal is to expressing the concepts on which the aircraft cockpit design is based.

  11. SYSTEM OF GUARANTEED RESOLUTION OF DYNAMIC CONFLICTS OF AIRCRAFTS IN REAL TIME

    Directory of Open Access Journals (Sweden)

    Svitlana Pavlova

    2017-03-01

    Full Text Available Purpose: The present work is devoted to improving of flight safety in civil aviation by creating and implementing a new system of resolution of dynamic conflict of aircrafts. The developed system is aimed at ensuring a guaranteed level of safety when resolution of rarefied conflict situations of aircraft in real-time. Methods: The proposed system is based on a new method of conflict resolution of aircraft on the basis of the theory of invariance. Results: The development of the system of conflict resolution of aircraft in real time and the implementation of the respective algorithms such control will ensure effective prevention of dangerous approaches. Discussion: The system is implemented as single unified equipment using satellite and radar navigation systems that will ensure the positioning of aircraft in real time. Provided that the system should be installed on all aircraft and integrated on board to properly ensure its functionality and interact with navigation systems.

  12. Intelligent Aircraft Damage Assessment, Trajectory Planning, and Decision-Making under Uncertainty

    Science.gov (United States)

    Lopez, Israel; Sarigul-Klijn, Nesrin

    Situational awareness and learning are necessary to identify and select the optimal set of mutually non-exclusive hypothesis in order to maximize mission performance and adapt system behavior accordingly. This paper presents a hierarchical and decentralized approach for integrated damage assessment and trajectory planning in aircraft with uncertain navigational decision-making. Aircraft navigation can be safely accomplished by properly addressing the following: decision-making, obstacle perception, aircraft state estimation, and aircraft control. When in-flight failures or damage occur, rapid and precise decision-making under imprecise information is required in order to regain and maintain control of the aircraft. To achieve planned aircraft trajectory and complete safe landing, the uncertainties in system dynamics of the damaged aircraft need to be learned and incorporated at the level of motion planning. The damaged aircraft is simulated via a simplified kinematic model. The different sources and perspectives of uncertainties in the damage assessment process and post-failure trajectory planning are presented and classified. The decision-making process for an emergency motion planning and landing is developed via the Dempster-Shafer evidence theory. The objective of the trajectory planning is to arrive at a target position while maximizing the safety of the aircraft given uncertain conditions. Simulations are presented for an emergency motion planning and landing that takes into account aircraft dynamics, path complexity, distance to landing site, runway characteristics, and subjective human decision.

  13. Aircraft Icing Weather Data Reporting and Dissemination System

    Science.gov (United States)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  14. Energy conservation aircraft design and operational procedures

    Energy Technology Data Exchange (ETDEWEB)

    Poisson-Quinton, P.

    1978-01-01

    The paper reviews studies associated with improved fuel efficiency. Several aircraft design concepts are described including: (1) increases in aerodynamic efficiency through decreased friction drag, parasitic drag, and drag due to lift, (2) structural efficiency and the implementation of composite materials, (3) active control technology, (4) the optimization of airframe-engine integration, and (5) VTOL and STOL concepts. Consideration is also given to operational procedures associated with flight management, terminal-area operations, and the influence of environmental noise constraints on fuel economy.

  15. A generic tool for cost estimating in aircraft design

    NARCIS (Netherlands)

    Castagne, S.; Curran, R.; Rothwell, A.; Price, M.; Benard, E.; Raghunathan, S.

    2008-01-01

    A methodology to estimate the cost implications of design decisions by integrating cost as a design parameter at an early design stage is presented. The model is developed on a hierarchical basis, the manufacturing cost of aircraft fuselage panels being analysed in this paper. The manufacturing cost

  16. Non-Parametric, Closed-Loop Testing of Autonomy in Unmanned Aircraft Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Phase I program aims to develop new methods to support safety testing for integration of Unmanned Aircraft Systems into the National Airspace (NAS) with...

  17. Real-Time Noise Prediction of V/STOL Aircraft in Maneuvering Flight, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a plan for enhancing and integrating new breakthrough technologies to provide accurate real-time noise prediction of V/STOL aircraft in...

  18. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  19. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  20. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  1. Research on Free Vibration Frequency Characteristics of Rotating Functionally Graded Material Truncated Conical Shells with Eccentric Functionally Graded Material Stringer and Ring Stiffeners

    Directory of Open Access Journals (Sweden)

    Dao Van Dung

    Full Text Available Abstract In this research work, an exact analytical solution for frequency characteristics of the free vibration of rotating functionally graded material (FGM truncated conical shells reinforced by eccentric FGM stringers and rings has been investigated by the displacement function method. Material properties of shell and stiffeners are assumed to be graded in the thickness direction according to a simple power law distribution. The change of spacing between stringers is considered. Using the Donnell shell theory, Leckhnisky smeared stiffeners technique and taking into account the influences of centrifugal force and Coriolis acceleration the governing equations are derived. For stiffened FGM conical shells, it is difficult that free vibration equations are a couple set of three variable coefficient partial differential equations. By suitable transformations and applying Galerkin method, this difficulty is overcome in the paper. The sixth order polynomial equation for w is obtained and it is used to analyze the frequency characteristics of rotating ES-FGM conical shells. Effects of stiffener, geometrics parameters, cone angle, vibration modes and rotating speed on frequency characteristics of the shell forward and backward wave are discussed in detail. The present approach proves to be reliable and accurate by comparing with published results available in the literature.

  2. Damage detection strategies for aircraft shell-like structures based on propagation guided elastic waves

    International Nuclear Information System (INIS)

    Zak, A; Ostachowicz, W; Krawczuk, M

    2011-01-01

    Damage of aircraft structural elements in any form always present high risks. Failures of these elements can be caused by various reasons including material fatigue or impact leading to damage initiation and growth. Detection of these failures at their earliest stage of development, estimation of their size and location, are one of the most crucial factors for each damage detection method. Structural health monitoring strategies based on propagation of guided elastic waves in structures and wave interaction with damage related discontinuities are very promising tools that offer not only damage detection capabilities, but are also meant to provide precise information about the state of the structures and their remaining lifetime. Because of that various techniques are employed to simulate and mimic the wave-discontinuity interactions. The use of various types of sensors, their networks together with sophisticated contactless measuring techniques are investigated both numerically and experimentally. Certain results of numerical simulations obtained by the use of the spectral finite element method are presented by the authors and related with propagation of guided elastic waves in shell-type aircraft structures. Two types of structures are considered: flat 2D panels with or without stiffeners and 3D shell structures. The applicability of two different damage detection approaches is evaluated in order to detect and localise damage in these structures. Selected results related with the use of laser scanning vibrometry are also presented and discussed by the authors.

  3. 40 CFR 87.6 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Aircraft safety. 87.6 Section 87.6... POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.6 Aircraft safety. The provisions of... met within the specified time without creating a safety hazard. ...

  4. Dual-Use Transducer for Use with a Boundary-Stiffened Panel and Method of Using the Same

    Science.gov (United States)

    Schiller, Noah H. (Inventor); Cabell, Randolph H. (Inventor)

    2011-01-01

    A transducer for use with a boundary-stiffened panel has an inter-digitated electrode (IDE) and a piezoelectric wafer portion positioned therebetween. The IDE and/or the wafer portion are triangular, with one edge or side aligned with a boundary edge of the panel. The transducer generates and transmits an output force to the panel in response to an input voltage signal from a sensor, which can be another transducer as described above or an accelerometer. A controller can generate an output force signal in response to the input voltage signal to help cancel the input voltage signal. A method of using the transducer minimizes vibration in the panel by connecting multiple transducers around a perimeter thereof. Motion is measured at different portions of the panel, and a voltage signal determined from the motion is transmitted to the transducers to generate an output force at least partially cancelling or damping the motion.

  5. BUCLASP 2: A computer program for instability analysis of biaxially loaded composite stiffened panels and other structures

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP2 is described. The program is intended for linear instability analyses of structures such as unidirectionally stiffened panels. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plant strip elements can be analyzed. The loadings considered are combinations of axial compressive loads and in-plane transverse loads. The two parallel ends of the panel must be simply supported and arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. This manual consists of instructions for use of the program with sample problems, including input and output information. The theoretical basis of BUCLASP2 and correlations of calculated results with known solutions, are presented.

  6. A Simplified Model for the Effect of Weld-Induced Residual Stresses on the Axial Ultimate Strength of Stiffened Plates

    Science.gov (United States)

    Chen, Bai-Qiao; Guedes Soares, C.

    2018-03-01

    The present work investigates the compressive axial ultimate strength of fillet-welded steel-plated ship structures subjected to uniaxial compression, in which the residual stresses in the welded plates are calculated by a thermo-elasto-plastic finite element analysis that is used to fit an idealized model of residual stress distribution. The numerical results of ultimate strength based on the simplified model of residual stress show good agreement with those of various methods including the International Association of Classification Societies (IACS) Common Structural Rules (CSR), leading to the conclusion that the simplified model can be effectively used to represent the distribution of residual stresses in steel-plated structures in a wide range of engineering applications. It is concluded that the widths of the tension zones in the welded plates have a quasi-linear behavior with respect to the plate slenderness. The effect of residual stress on the axial strength of the stiffened plate is analyzed and discussed.

  7. Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam

    Science.gov (United States)

    Hadi, Bambang K.; Nuril, Yogie S.

    2018-04-01

    The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.

  8. Fire resistant aircraft seat program

    Science.gov (United States)

    Fewell, L. A.

    1979-01-01

    Foams, textiles, and thermoformable plastics were tested to determine which materials were fire retardant, and safe for aircraft passenger seats. Seat components investigated were the decorative fabric cover, slip covers, fire blocking layer, cushion reinforcement, and the cushioning layer.

  9. Western Pacific Typhoon Aircraft Fixes

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Western Pacific typhoon aircraft reconnaissance data from the years 1946 - 1965 and 1978, excluding 1952, were transcribed from original documents, or copy of...

  10. Flow Control Enabled Aircraft Design

    National Research Council Canada - National Science Library

    Nangia, Rajendar

    2004-01-01

    ...: Many future advanced aircraft concepts being considered by the Air Force fall outside the current aerodynamic design practice and will rely heavily on the use of flow control technology to optimize flight performance...

  11. Aortic Blood Flow Reversal Determines Renal Function: Potential Explanation for Renal Dysfunction Caused by Aortic Stiffening in Hypertension.

    Science.gov (United States)

    Hashimoto, Junichiro; Ito, Sadayoshi

    2015-07-01

    Aortic stiffness determines the glomerular filtration rate (GFR) and predicts the progressive decline of the GFR. However, the underlying pathophysiological mechanism remains obscure. Recent evidence has shown a close link between aortic stiffness and the bidirectional (systolic forward and early diastolic reverse) flow characteristics. We hypothesized that the aortic stiffening-induced renal dysfunction is attributable to altered central flow dynamics. In 222 patients with hypertension, Doppler velocity waveforms were recorded at the proximal descending aorta to calculate the reverse/forward flow ratio. Tonometric waveforms were recorded to measure the carotid-femoral (aortic) and carotid-radial (peripheral) pulse wave velocities, to estimate the aortic pressure from the radial waveforms, and to compute the aortic characteristic impedance. In addition, renal hemodynamics was evaluated by duplex ultrasound. The estimated GFR was inversely correlated with the aortic pulse wave velocity, reverse/forward flow ratio, pulse pressure, and characteristic impedance, whereas it was not correlated with the peripheral pulse wave velocity or mean arterial pressure. The association between aortic pulse wave velocity and estimated GFR was independent of age, diabetes mellitus, hypercholesterolemia, and antihypertensive medication. However, further adjustment for the aortic reverse/forward flow ratio and pulse pressure substantially weakened this association, and instead, the reverse/forward flow ratio emerged as the strongest determinant of estimated GFR (P=0.001). A higher aortic reverse/forward flow ratio was also associated with lower intrarenal forward flow velocities. These results suggest that an increase in aortic flow reversal (ie, retrograde flow from the descending thoracic aorta toward the aortic arch), caused by aortic stiffening and impedance mismatch, reduces antegrade flow into the kidney and thereby deteriorates renal function. © 2015 American Heart Association

  12. Normal and Fibrotic Rat Livers Demonstrate Shear Strain Softening and Compression Stiffening: A Model for Soft Tissue Mechanics.

    Directory of Open Access Journals (Sweden)

    Maryna Perepelyuk

    Full Text Available Tissues including liver stiffen and acquire more extracellular matrix with fibrosis. The relationship between matrix content and stiffness, however, is non-linear, and stiffness is only one component of tissue mechanics. The mechanical response of tissues such as liver to physiological stresses is not well described, and models of tissue mechanics are limited. To better understand the mechanics of the normal and fibrotic rat liver, we carried out a series of studies using parallel plate rheometry, measuring the response to compressive, extensional, and shear strains. We found that the shear storage and loss moduli G' and G" and the apparent Young's moduli measured by uniaxial strain orthogonal to the shear direction increased markedly with both progressive fibrosis and increasing compression, that livers shear strain softened, and that significant increases in shear modulus with compressional stress occurred within a range consistent with increased sinusoidal pressures in liver disease. Proteoglycan content and integrin-matrix interactions were significant determinants of liver mechanics, particularly in compression. We propose a new non-linear constitutive model of the liver. A key feature of this model is that, while it assumes overall liver incompressibility, it takes into account water flow and solid phase compressibility. In sum, we report a detailed study of non-linear liver mechanics under physiological strains in the normal state, early fibrosis, and late fibrosis. We propose a constitutive model that captures compression stiffening, tension softening, and shear softening, and can be understood in terms of the cellular and matrix components of the liver.

  13. Neural networks for aircraft control

    Science.gov (United States)

    Linse, Dennis

    1990-01-01

    Current research in Artificial Neural Networks indicates that networks offer some potential advantages in adaptation and fault tolerance. This research is directed at determining the possible applicability of neural networks to aircraft control. The first application will be to aircraft trim. Neural network node characteristics, network topology and operation, neural network learning and example histories using neighboring optimal control with a neural net are discussed.

  14. Aircraft Evaluation Using Stochastic Duels

    Science.gov (United States)

    2017-09-01

    for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and...Fighter aircraft systems and weapons designs are known to involve substantial capital investment . Due to possible budget constraints in the U.S. Navy, the...of fighter aircraft to analysts and decision-makers before they invest further resources into larger-scale, higher-resolution simulations for

  15. Commercial transport aircraft composite structures

    Science.gov (United States)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  16. Control Design for a Generic Commercial Aircraft Engine

    Science.gov (United States)

    Csank, Jeffrey; May, Ryan D.

    2010-01-01

    This paper describes the control algorithms and control design process for a generic commercial aircraft engine simulation of a 40,000 lb thrust class, two spool, high bypass ratio turbofan engine. The aircraft engine is a complex nonlinear system designed to operate over an extreme range of environmental conditions, at temperatures from approximately -60 to 120+ F, and at altitudes from below sea level to 40,000 ft, posing multiple control design constraints. The objective of this paper is to provide the reader an overview of the control design process, design considerations, and justifications as to why the particular architecture and limits have been chosen. The controller architecture contains a gain-scheduled Proportional Integral controller along with logic to protect the aircraft engine from exceeding any limits. Simulation results illustrate that the closed loop system meets the Federal Aviation Administration s thrust response requirements

  17. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Anderson, M R; Miake-Lye, R C; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A A; Buriko, Y I [Scientific Research Center ` Ecolen` , Moscow (Russian Federation)

    1998-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  18. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  19. Buckling of steel containment shells. Task 4. Use of the PANDA program for simple buckling analyses of stiffened cylindrical shells. Final report, 25 August 1980-30 September 1982

    International Nuclear Information System (INIS)

    Bushnell, D.

    1982-12-01

    Under Task 4 the PANDA computer program was modified to permit calculation of critical load interaction curves for buckling of stiffened cylindrical shells with stiffeners running axially or circumferentially or both. Knockdown factors for geometric imperfections and plasticity reduction factors were introduced so that interaction curves can now be calculated for imperfect elastic-plastic shells. The knockdown factors and plasticity reduction factors are computed from a modified form of ASME Code Case N-284. The new version of PANDA was checked by making numerous comparisons with tests on fabricated stiffened cylinders

  20. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  1. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    Science.gov (United States)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  2. A Collection of Nonlinear Aircraft Simulations in MATLAB

    Science.gov (United States)

    Garza, Frederico R.; Morelli, Eugene A.

    2003-01-01

    Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.

  3. Optimal trajectories of aircraft and spacecraft

    Science.gov (United States)

    Miele, A.

    1990-01-01

    Work done on algorithms for the numerical solutions of optimal control problems and their application to the computation of optimal flight trajectories of aircraft and spacecraft is summarized. General considerations on calculus of variations, optimal control, numerical algorithms, and applications of these algorithms to real-world problems are presented. The sequential gradient-restoration algorithm (SGRA) is examined for the numerical solution of optimal control problems of the Bolza type. Both the primal formulation and the dual formulation are discussed. Aircraft trajectories, in particular, the application of the dual sequential gradient-restoration algorithm (DSGRA) to the determination of optimal flight trajectories in the presence of windshear are described. Both take-off trajectories and abort landing trajectories are discussed. Take-off trajectories are optimized by minimizing the peak deviation of the absolute path inclination from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. Abort landing trajectories are optimized by minimizing the peak drop of altitude from a reference value. The survival capability of an aircraft in a severe windshear is discussed, and the optimal trajectories are found to be superior to both constant pitch trajectories and maximum angle of attack trajectories. Spacecraft trajectories, in particular, the application of the primal sequential gradient-restoration algorithm (PSGRA) to the determination of optimal flight trajectories for aeroassisted orbital transfer are examined. Both the coplanar case and the noncoplanar case are discussed within the frame of three problems: minimization of the total characteristic velocity; minimization of the time integral of the square of the path inclination; and minimization of the peak heating rate. The solution of the second problem is called nearly-grazing solution, and its merits are pointed out as a useful

  4. Airfoil optimization for morphing aircraft

    Science.gov (United States)

    Namgoong, Howoong

    Continuous variation of the aircraft wing shape to improve aerodynamic performance over a wide range of flight conditions is one of the objectives of morphing aircraft design efforts. This is being pursued because of the development of new materials and actuation systems that might allow this shape change. The main purpose of this research is to establish appropriate problem formulations and optimization strategies to design an airfoil for morphing aircraft that include the energy required for shape change. A morphing aircraft can deform its wing shape, so the aircraft wing has different optimum shapes as the flight condition changes. The actuation energy needed for moving the airfoil surface is modeled and used as another design objective. Several multi-objective approaches are applied to a low-speed, incompressible flow problem and to a problem involving low-speed and transonic flow. The resulting solutions provide the best tradeoff between low drag, high energy and higher drag, low energy sets of airfoil shapes. From this range of solutions, design decisions can be made about how much energy is needed to achieve a desired aerodynamic performance. Additionally, an approach to model aerodynamic work, which would be more realistic and may allow using pressure on the airfoil to assist a morphing shape change, was formulated and used as part of the energy objective. These results suggest that it may be possible to design a morphing airfoil that exploits the airflow to reduce actuator energy.

  5. Aurora Flight Sciences' Perseus B Remotely Piloted Aircraft in Flight

    Science.gov (United States)

    1998-01-01

    from a mobile flight control station on the ground. A Global Positioning System (GPS) unit provides navigation data for continuous and precise location during flight. The ground control station features dual independent consoles for aircraft control and systems monitoring. A flight termination system, required for all remotely piloted aircraft being flown in military-restricted airspace, includes a parachute system deployed on command plus a C-Band radar beacon and a Mode-C transponder to aid in location. Dryden has provided hanger and office space for the Perseus B aircraft and for the flight test development team when on site for flight or ground testing. NASA's ERAST project is developing aeronautical technologies for a new generation of remotely piloted and autonomous aircraft for a variety of upper-atmospheric science missions and commercial applications. Dryden is the lead center in NASA for ERAST management and operations. Perseus B is approximately 25 feet long, has a wingspan of 71.5 feet, and stands 12 feet high. Perseus B is powered by a Rotax 914, four-cylinder piston engine mounted in the mid-fuselage area and integrated with an Aurora-designed three-stage turbocharger, connected to a lightweight two-blade propeller.

  6. Locating industrial VOC sources with aircraft observations

    International Nuclear Information System (INIS)

    Toscano, P.; Gioli, B.; Dugheri, S.; Salvini, A.; Matese, A.; Bonacchi, A.; Zaldei, A.; Cupelli, V.; Miglietta, F.

    2011-01-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. - Highlights: → Flight plan aimed at sampling industrial area at various altitudes and locations. → SPME sampling strategy was based on plume detection by means of CO 2 . → Concentrations obtained were lower than the limit values or below the detection limit. → Scan mode highlighted presence of γ-butyrolactone (GBL) compound. → Gaussian dispersion modelling was used to estimate GBL source location and strength. - An integrated strategy based on atmospheric aircraft observations and dispersion modelling was developed, aimed at estimating spatial location and strength of VOC point source emissions in industrial areas.

  7. Deicing System Protects General Aviation Aircraft

    Science.gov (United States)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  8. Damage identification using guided waves on a composite skin-stiffener structure

    NARCIS (Netherlands)

    Loendersloot, R.; Battley, M.; Tinga, T.

    2016-01-01

    The potential of using guided waves for damage detection in composite materials has been proven by many researches in the past few years and in particular by the cases studies of the European project SARISTU. In that project integration methods for the piezoelectric wafer active sensors (PWAS),

  9. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  10. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  11. Systems Analysis Initiated for All-Electric Aircraft Propulsion

    Science.gov (United States)

    Kohout, Lisa L.

    2003-01-01

    A multidisciplinary effort is underway at the NASA Glenn Research Center to develop concepts for revolutionary, nontraditional fuel cell power and propulsion systems for aircraft applications. There is a growing interest in the use of fuel cells as a power source for electric propulsion as well as an auxiliary power unit to substantially reduce or eliminate environmentally harmful emissions. A systems analysis effort was initiated to assess potential concepts in an effort to identify those configurations with the highest payoff potential. Among the technologies under consideration are advanced proton exchange membrane (PEM) and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. Prior to this effort, the majority of fuel cell analysis done at Glenn was done for space applications. Because of this, a new suite of models was developed. These models include the hydrogen-air PEM fuel cell; internal reforming solid oxide fuel cell; balance-of-plant components (compressor, humidifier, separator, and heat exchangers); compressed gas, cryogenic, and liquid fuel storage tanks; and gas turbine/generator models for hybrid system applications. Initial mass, volume, and performance estimates of a variety of PEM systems operating on hydrogen and reformate have been completed for a baseline general aviation aircraft. Solid oxide/turbine hybrid systems are being analyzed. In conjunction with the analysis efforts, a joint effort has been initiated with Glenn s Computer Services Division to integrate fuel cell stack and component models with the visualization environment that supports the GRUVE lab, Glenn s virtual reality facility. The objective of this work is to provide an environment to assist engineers in the integration of fuel cell propulsion systems into aircraft and provide a better understanding of the interaction between system components and the resulting effect on the overall design and performance of the aircraft. Initially, three

  12. Prefabricated Vertical Drain (PVD) and Deep Cement Mixing (DCM)/Stiffened DCM (SDCM) techniques for soft ground improvement

    Science.gov (United States)

    Bergado, D. T.; Long, P. V.; Chaiyaput, S.; Balasubramaniam, A. S.

    2018-04-01

    Soft ground improvement techniques have become most practical and popular methods to increase soil strength, soil stiffness and reduce soil compressibility including the soft Bangkok clay. This paper focuses on comparative performances of prefabricated vertical drain (PVD) using surcharge, vacuum and heat preloading as well as the cement-admixed clay of Deep Cement Mixing (DCM) and Stiffened DCM (SDCM) methods. The Vacuum-PVD can increase the horizontal coefficient of consolidation, Ch, resulting in faster rate of settlement at the same magnitudes of settlement compared to Conventional PVD. Several field methods of applying vacuum preloading are also compared. Moreover, the Thermal PVD and Thermal Vacuum PVD can increase further the coefficient of horizontal consolidation, Ch, with the associated reduction of kh/ks values by reducing the drainage retardation effects in the smear zone around the PVD which resulted in faster rates of consolidation and higher magnitudes of settlements. Furthermore, the equivalent smear effect due to non-uniform consolidation is also discussed in addition to the smear due to the mechanical installation of PVDs. In addition, a new kind of reinforced deep mixing method, namely Stiffened Deep Cement Mixing (SDCM) pile is introduced to improve the flexural resistance, improve the field quality control, and prevent unexpected failures of the Deep Cement Mixing (DCM) pile. The SDCM pile consists of DCM pile reinforced with the insertion of precast reinforced concrete (RC) core. The full scale test embankment on soft clay improved by SDCM and DCM piles was also analysed. Numerical simulations using the 3D PLAXIS Foundation finite element software have been done to understand the behavior of SDCM and DCM piles. The simulation results indicated that the surface settlements decreased with increasing lengths of the RC cores, and, at lesser extent, increasing sectional areas of the RC cores in the SDCM piles. In addition, the lateral movements

  13. Alternative general-aircraft engines

    Science.gov (United States)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  14. Model of aircraft noise adaptation

    Science.gov (United States)

    Dempsey, T. K.; Coates, G. D.; Cawthorn, J. M.

    1977-01-01

    Development of an aircraft noise adaptation model, which would account for much of the variability in the responses of subjects participating in human response to noise experiments, was studied. A description of the model development is presented. The principal concept of the model, was the determination of an aircraft adaptation level which represents an annoyance calibration for each individual. Results showed a direct correlation between noise level of the stimuli and annoyance reactions. Attitude-personality variables were found to account for varying annoyance judgements.

  15. THE PROBLEMS OF PERFORMANCE MONITORING TO TAKLE THE TASKS OF THE AIRCRAFT CONTINUED AIRWORTHINESS

    Directory of Open Access Journals (Sweden)

    Yu. M. Chinyuchin

    2017-01-01

    Full Text Available Improving of the aircraft continued airworthiness system is currently becoming of particular importance applied both to aircraft of domestic and foreign production, used in civil aviation of Russia. This article discusses the background and content of the tasks for long-haul aircraft continued airworthiness, which presents a challenge directly related to the provision of intensive, regular, economically viable, and safe operation of assigned airline fleet. A special place among the problems of continued airworthiness is held by the creation and organization of mechanisms and methods of resource status and age of the assigned airline fleet monitoring to manage its forecasting and timely updates. Not least important among the issues of resource and age structure monitoring to be considered is the need to improve the design of aircraft, taking into account preliminary technical and economic feasibility assessment of its modifications in the interests of the operator. A deep study of the contents of the monitoring allows to develop up-to-date methodological and scientific basis for building an integrated system of aircraft resource management and timing services. This system is developed based on the integrated approach that allows to provide a solution to the entire set of problems presented in this article and faced by professionals and scientists involved in the aircraft maintenance programs development on the stages of their design and manufacturing and long operation of aircraft continued airworthiness.

  16. Development of an Unmanned Aircraft Systems Program: ACUASI

    Science.gov (United States)

    Webley, P. W.; Cahill, C. F.; Rogers, M.; Hatfield, M. C.

    2017-12-01

    The Alaska Center for Unmanned Aircraft Systems Integration (ACUASI) has developed a comprehensive program that incorporates pilots, flight/mission planners, geoscientists, university undergraduate and graduate students, and engineers together as one. We lead and support unmanned aircraft system (UAS) missions for geoscience research, emergency response, humanitarian needs, engineering design, and policy development. We are the University of Alaska's UAS research program, lead the Federal Aviation Administration (FAA) Pan-Pacific UAS Test Range Complex (PPUTRC) with Hawaii, Oregon, and Mississippi and in 2015 became a core member of the FAA Center of Excellence for UAS Research, managed by Mississippi State University. ACUASI's suite of aircraft include small hand-launched/vertical take-off and landing assets for short-term rapid deployment to large fixed-wing gas powered systems that provide multiple hours of flight time. We have extensive experience in Arctic and sub-Arctic environments and will present on how we have used our aircraft and payloads in numerous missions that include beyond visual line of sight flights, mapping the river ice-hazard in Alaska during spring break-up, and providing UAS-based observations for local Alaskans to navigate through the changing ice shelf of Northern Alaska. Several sensor developments of interest in the near future include building payloads for thermal infrared mapping at high spatial resolutions, combining forward and nadir looking cameras on the same UAS aircraft for topographic mapping, and using neutral density and narrow band filters to map very high temperature thermally active hazards, such as forest fires and volcanic eruptions. The ACUASI team working together provide us the experience, tools, capabilities, and personnel to build and maintain a world class research center for unmanned aircraft systems as well as support both real-time operations and geoscience research.

  17. Aircraft Crash Survival Design Guide. Volume 5. Aircraft Postcrash Survival

    Science.gov (United States)

    1980-01-01

    neck Access door toprille capm enrFuel tank Figue 3. Fangblefiler eckinsalgbelati n. A-j L)n wal Aircraft skin Frangible filler neck Failure plane...This is because a number of major assumptions must be made in the extrapolation: the smoke generated is uniformly distri- buted and is independent

  18. Cosmic Radiation - An Aircraft Manufacturer's View

    International Nuclear Information System (INIS)

    Hume, C.

    1999-01-01

    The relevance and context of cosmic radiation to an aircraft maker Airbus Industrie are outlined. Some future developments in aircraft and air traffic are described, along with their possible consequences for exposure. (author)

  19. NASA Johnson Space Center Aircraft Operations Division

    Science.gov (United States)

    Bakalyar, John A.

    2018-01-01

    This presentation provides a high-level overview of JSC aircraft and missions. The capabilities, including previous missions and support team, for the Super Guppy Transport (SGT) aircraft are highlighted.

  20. Estimation of nuclear power plant aircraft hazards

    International Nuclear Information System (INIS)

    Gottlieb, P.

    1978-01-01

    The standard procedures for estimating aircraft risk to nuclear power plants provide a conservative estimate, which is adequate for most sites, which are not close to airports or heavily traveled air corridors. For those sites which are close to facilities handling large numbers of aircraft movements (airports or corridors), a more precise estimate of aircraft impact frequency can be obtained as a function of aircraft size. In many instances the very large commercial aircraft can be shown to have an acceptably small impact frequency, while the very small general aviation aircraft will not produce sufficiently serious impact to impair the safety-related functions. This paper examines the in between aircraft: primarily twin-engine, used for business, pleasure, and air taxi operations. For this group of aircraft the total impact frequency was found to be approximately once in one million years, the threshold above which further consideration of specific safety-related consequences would be required

  1. Versatile Electric Propulsion Aircraft Testbed, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — An all-electric aircraft testbed is proposed to provide a dedicated development environment for the rigorous study and advancement of electrically powered aircraft....

  2. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    Science.gov (United States)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  3. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    Science.gov (United States)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  4. Improving the Aircraft Design Process Using Web-based Modeling and Simulation

    Science.gov (United States)

    Reed, John A.; Follen, Gregory J.; Afjeh, Abdollah A.

    2003-01-01

    Designing and developing new aircraft systems is time-consuming and expensive. Computational simulation is a promising means for reducing design cycle times, but requires a flexible software environment capable of integrating advanced multidisciplinary and muitifidelity analysis methods, dynamically managing data across heterogeneous computing platforms, and distributing computationally complex tasks. Web-based simulation, with its emphasis on collaborative composition of simulation models, distributed heterogeneous execution, and dynamic multimedia documentation, has the potential to meet these requirements. This paper outlines the current aircraft design process, highlighting its problems and complexities, and presents our vision of an aircraft design process using Web-based modeling and simulation.

  5. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    Science.gov (United States)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  6. Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels

    Directory of Open Access Journals (Sweden)

    Fang Li

    2017-11-01

    Full Text Available This paper proposes a hybrid WAAM (wire arc additive manufacturing and milling process (HWMP, and highlights its application in the fabrication of stiffened panels that have wide applications in aviation, aerospace, and automotive industries, etc. due to their light weight and strong load-bearing capability. In contrast to existing joining or machining methods, HWMP only deposits stiffeners layer-by-layer onto an existing thin plate, followed by minor milling of the irregular surfaces, which provides the possibility to significantly improve material utilization and efficiency without any loss of surface quality. In this paper, the key performances of HWMP in terms of surface quality, material utilization and efficiency are evaluated systematically, which are the results of the comprehensive effects of the deposition parameters (e.g., travel speed, wire-feed rate and the milling parameters (e.g., spindle speed, tool-feed rate. In order to maximize its performances, the optimization is also performed to find the best combination of the deposition and the milling parameters. The case study shows that HWMP with the optimal process parameters improves the material utilization by 57% and the efficiency by 32% compared against the traditional machining method. Thus, HWMP is believed to be a more environmental friendly and sustainable method for the fabrication of stiffened panels or other similar structures.

  7. Effect of Web Holes and Bearing Stiffeners on Flexural-Shear Interaction Strength of Steel Cold-Formed C-Channel Sections

    Directory of Open Access Journals (Sweden)

    Iman Faridmehr

    Full Text Available Abstract This paper presents an investigation on interaction equation between the required flexural strength, M, and the required shear strength, V, of cold-formed C-channels with web holes and bearing stiffeners. The primarily shear condition test was employed to study total 8 back to back lipped C channel sections of 95 and 100 mm depth when bearing stiffeners and circular holes were placed at center and both ends of specimens. The interaction equation were evaluated via Direct Strength Method, DSM, in accordance with the American Iron and Steel Institute for the design of cold-formed steel structural members, AISI 2007. A nonlinear finite element model was developed and verified against the test results in terms of failure buckling modes. It was concluded that the M-V interaction equation for specimens with web stiffeners was conservative where these specimens experienced plastic failure mode rather than local (Msl or distortional (Msd buckling mode. Moreover, the results indicated that proposed M-V interaction equation calculated by local buckling strength (Msl adequately predicted the behavior of specimens with circular web holes.

  8. Some trends in aircraft design: Structures

    Science.gov (United States)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  9. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    OpenAIRE

    Stanislav Vladimirovich Daletskiy; Stanislav Stanislavovich Daletskiy

    2017-01-01

    The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is ...

  10. REPAIR TECHNOLOGY OF THE COMPOSITE WING OF A LIGHT PLANE DAMAGED DURING AN AIRCRAFT CRASH

    Directory of Open Access Journals (Sweden)

    Andrzej ŚWIĄTONIOWSKI

    2016-09-01

    Full Text Available The increasing use of composite structures in aircraft constructions has made it necessary to develop repair methods that will restore the component’s original design strength without compromising its structural integrity. In this paper, the complex repair technology of the composite wing of a light plane, which was damaged during an aircraft crash, is described. The applied repair scheme should meet all the original design requirements for the plane structure.

  11. Desaid : the development of an expert system for aircraft initial design

    OpenAIRE

    Nah, Seung-Hyeog

    1991-01-01

    As all engineering works are a blend of theory and empiricism, aircraft design, by its nature, represents a mixture of aircraft designer's knowledge obtained from aeronautical engineering disciplines and its usage combined with his experience. This means not only the application but also the integration of all the fundamental knowledge of aerodynamics, structure, propulsion, stability and control, operational and economic aspects, etc., based upon the designer's jud...

  12. Application of Powered High Lift Systems to STOL Aircraft Design.

    Science.gov (United States)

    1979-09-01

    century by da Vinci, an English - man named Sir George Cayley first attempted to integrate the features of the helicopter and the airplane. In 1843 his...horizontal flight Jun 1959 WEIGHT: 6500 LBS ENGINES: (1) SNECMA ATAR 101 E.V. Turbojet of 8155 lbs thrust LAYOUT: See Fig. 21 COMMENTS: SNECMA was engaged...34 ATAR VOLANT" test vehicle fitted with an annular wing to permit transition to horizontal flight. The aircraft was controlled from a tilting ejec- tion

  13. Robust Adaptive Neural Control of Morphing Aircraft with Prescribed Performance

    OpenAIRE

    Wu, Zhonghua; Lu, Jingchao; Shi, Jingping; Liu, Yang; Zhou, Qing

    2017-01-01

    This study proposes a low-computational composite adaptive neural control scheme for the longitudinal dynamics of a swept-back wing aircraft subject to parameter uncertainties. To efficiently release the constraint often existing in conventional neural designs, whose closed-loop stability analysis always necessitates that neural networks (NNs) be confined in the active regions, a smooth switching function is presented to conquer this issue. By integrating minimal learning parameter (MLP) tech...

  14. Development of composite aircraft components in INCDT COMOTI, Bucharest

    Directory of Open Access Journals (Sweden)

    Raluca VOICU

    2012-12-01

    Full Text Available This paper presents the recent research activities within INCDT COMOTI, in the composite materials field. The author makes a short introduction of this field and presents an example of application developed within the composite materials laboratory from INCDT COMOTI, targeting the aeronautic field. The aircraft component is a stator blade made of CFRP composites, integrating new active noise reduction technologies and manufactured by means of the autoclave technology.

  15. Study and Evaluation of Current and Future Aircraft Loaders

    Science.gov (United States)

    1986-08-01

    detonation intense Electromagnetic Pulse Eergy (DIP) is gene - rated which could seriously affect the electronic equipment. 2-105 The intense...speciality efforts, such as integrated logistics support (ILS), human factors engineering ( HFE ), and reliability, availability and m aintainability...task analyiis is outlined in detail in Appendix C: Human Fac- tors Enqineering Study and Evaluation of Current and Future Aircraft Loaders. The HFE

  16. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  17. 31 CFR 560.528 - Aircraft safety.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Aircraft safety. 560.528 Section 560..., Authorizations and Statements of Licensing Policy § 560.528 Aircraft safety. Specific licenses may be issued on a... the safety of civil aviation and safe operation of U.S.-origin commercial passenger aircraft. ...

  18. Impact analysis of composite aircraft structures

    Science.gov (United States)

    Pifko, Allan B.; Kushner, Alan S.

    1993-01-01

    The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.

  19. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  20. Analyses of Aircraft Responses to Atmospheric Turbulence

    NARCIS (Netherlands)

    Van Staveren, W.H.J.J.

    2003-01-01

    The response of aircraft to stochastic atmospheric turbulence plays an important role in aircraft-design (load calculations), Flight Control System (FCS) design and flight-simulation (handling qualities research and pilot training). In order to simulate these aircraft responses, an accurate

  1. Composite multi-modal vibration control for a stiffened plate using non-collocated acceleration sensor and piezoelectric actuator

    International Nuclear Information System (INIS)

    Li, Shengquan; Li, Juan; Mo, Yueping; Zhao, Rong

    2014-01-01

    A novel active method for multi-mode vibration control of an all-clamped stiffened plate (ACSP) is proposed in this paper, using the extended-state-observer (ESO) approach based on non-collocated acceleration sensors and piezoelectric actuators. Considering the estimated capacity of ESO for system state variables, output superposition and control coupling of other modes, external excitation, and model uncertainties simultaneously, a composite control method, i.e., the ESO based vibration control scheme, is employed to ensure the lumped disturbances and uncertainty rejection of the closed-loop system. The phenomenon of phase hysteresis and time delay, caused by non-collocated sensor/actuator pairs, degrades the performance of the control system, even inducing instability. To solve this problem, a simple proportional differential (PD) controller and acceleration feed-forward with an output predictor design produce the control law for each vibration mode. The modal frequencies, phase hysteresis loops and phase lag values due to non-collocated placement of the acceleration sensor and piezoelectric patch actuator are experimentally obtained, and the phase lag is compensated by using the Smith Predictor technology. In order to improve the vibration control performance, the chaos optimization method based on logistic mapping is employed to auto-tune the parameters of the feedback channel. The experimental control system for the ACSP is tested using the dSPACE real-time simulation platform. Experimental results demonstrate that the proposed composite active control algorithm is an effective approach for suppressing multi-modal vibrations. (paper)

  2. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    Science.gov (United States)

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  3. Loss of an actin crosslinker uncouples cell spreading from cell stiffening on gels with a gradient of stiffness

    Science.gov (United States)

    Wen, Qi; Byfield, Fitzroy J.; Nordstrom, Kerstin; Arratia, Paulo E.; Miller, R. Tyler; Janmey, Paul A.

    2009-03-01

    We use microfluidics techniques to produce gels with a gradient of stiffness to show the essential function of the actin crosslinker filamin A in cell responses to mechanical stimuli. M2 melanoma cells null for filamin A do not alter their adherent area in response to increased substrate stiffness when they link to the substrate only through collagen receptors, but change adherent area normally when bound through fibronectin receptors. In contrast, filamin A-replete A7 cells change adherent area on both substrates and respond more strongly to collagen 1-coated gels than to fibronectin-coated gels. A7 cells alter their stiffness, as measured by atomic force microscopy, to match the elastic modulus of the substrate immediately adjacent to them on the gradient. M2 cells, in contrast, maintain a constant stiffness on all substrates that is as low as that of A7 cells on the softest gels achievable (1000 Pa). By contrasting the responses of these cell types to different adhesive substrates, cell spreading can be dissociated from stiffening.

  4. BUCLASP 3: A computer program for stresses and buckling of heated composite stiffened panels and other structures, user's manual

    Science.gov (United States)

    Tripp, L. L.; Tamekuni, M.; Viswanathan, A. V.

    1973-01-01

    The use of the computer program BUCLASP3 is described. The code is intended for thermal stress and instability analyses of structures such as unidirectionally stiffened panels. There are two types of instability analyses that can be effected by PAINT; (1) thermal buckling, and (2) buckling due to a specified inplane biaxial loading. Any structure that has a constant cross section in one direction, that may be idealized as an assemblage of beam elements and laminated flat and curved plate strip-elements can be analyzed. The two parallel ends of the panel must be simply supported, whereas arbitrary elastic boundary conditions may be imposed along any one or both external longitudinal side. Any variation in the temperature rise (from ambient) through the cross section of a panel is considered in the analyses but it must be assumed that in the longitudinal direction the temperature field is constant. Load distributions for the externally applied inplane biaxial loads are similar in nature to the permissible temperature field.

  5. Anomalous phonon stiffening associated with the (1 1 1) antiphase boundary in L12 Ni3Al

    International Nuclear Information System (INIS)

    Manga, Venkateswara Rao; Shang, Shun-Li; Wang, William Yi; Wang, Yi; Liang, Jiang; Crespi, Vincent H.; Liu, Zi-Kui

    2015-01-01

    Antiphase boundaries (APBs) play a crucial role in the anomalous yield behavior exhibited by Ni 3 Al with L1 2 structure. We investigated the changes in the vibrational properties associated with the formation of (0 0 1) and (1 1 1) APBs in Ni 3 Al by employing first-principles calculations. The phonon density of states of Ni 3 Al with and without (0 0 1) and (1 1 1) APBs revealed an interesting result: the (0 0 1) APB softens the phonons in its vicinity, while the (1 1 1) stiffens them. We also calculated the finite-temperature (0 0 1) and (1 1 1) APB Gibbs free energies from the first-principles quasi-harmonic approximation. The vibrational entropy of formation is positive (e.g. 0.053 mJ K −1 m −2 at 300 K) for the (0 0 1) APB and is negative (e.g. −0.0157 mJ K −1 m −2 at 300 K) for the (1 1 1) APB over the entire temperature range. We also find a significant change in the thermal electronic free energy due to the creation of the (0 0 1) or (1 1 1) APB. The anisotropy ratio of the APB energies, i.e. the ratio of the (1 1 1) APB free energy to the (0 0 1) APB free energy, changes from 2.9 at 300 K to 15.9 at 1000 K

  6. Phonon stiffen and soften at zigzag- and armchair-dominated edges of exfoliated bilayer graphene ribbon presented by Raman spectra

    Science.gov (United States)

    Xia, Minggang; Zhou, Xiaohua; Xin, Duqiang; Xu, Qiang

    2018-01-01

    The Raman spectra at the edge of the exfoliated bilayer graphene ribbon (GR) were investigated in detail. Results show that both G and 2D phonons stiffen (wave number increases) at zigzag-dominated edge, while they soften at armchair-dominated edge compared with those at the middle position in the GR. Furthermore, the full widths at half maximum intensity of both G and 2D Raman peaks narrow at the zigzag-dominated edge, while they broaden at the armchair-dominated edge. The stiffness and softness are attributed to the C-C bonds at the edge. For zigzag-dominated edge, the stiffness may originate in the increase of the force constant induced by the shrinking of C-C bond. For armchair-dominated edge, the softness may be due to the decrease of the force constant induced by the unsaturated hanging bonds at edge, which is different from Kohn anomaly and charge doping. The analysis is in agreement well with others calculation results about C-C bonds and the edge energy. These results may be useful to understand physical properties at the bilayer graphene edge and for applications in the device by taking advantage of the edge states in bilayer graphene.

  7. Glyphosate-induced stiffening of HaCaT keratinocytes, a Peak Force Tapping study on living cells.

    Science.gov (United States)

    Heu, Celine; Berquand, Alexandre; Elie-Caille, Celine; Nicod, Laurence

    2012-04-01

    The skin is the first physiological barrier, with a complex constitution, that provides defensive functions against multiple physical and chemical aggressions. Glyphosate is an extensively used herbicide that has been shown to increase the risk of cancer. Moreover there is increasing evidence suggesting that the mechanical phenotype plays an important role in malignant transformation. Atomic force microscopy (AFM) has emerged within the last decade as a powerful tool for providing a nanometer-scale resolution imaging of biological samples. Peak Force Tapping (PFT) is a newly released AFM-based investigation technique allowing extraction of chemical and mechanical properties from a wide range of samples at a relatively high speed and a high resolution. The present work uses the PFT technology to investigate HaCaT keratinocytes, a human epidermal cell line, and offers an original approach to study chemically-induced changes in the cellular mechanical properties under near-physiological conditions. These experiments indicate glyphosate induces cell membrane stiffening, and the appearance of cytoskeleton structures at a subcellular level, for low cytotoxic concentrations whereas cells exposed to IC50 (inhibitory concentration 50%) treatment exhibit control-like mechanical behavior despite obvious membrane damages. Quercetin, a well-known antioxidant, reverses the glyphosate-induced mechanical phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Radar Detectability of Light Aircraft

    Science.gov (United States)

    1976-04-01

    a vestigial blind speed at 121 knots. Aircraft radial velocity compon- ents for the flights discussed here varied between zero and 125 knots. Typi.cal...the contributions of Mr. D.M. Selwyn who designed the digital recording equipment and organized the flight tests, and Dr. A.W.R. Gilchrist who edited

  9. CFD for hypersonic airbreathing aircraft

    Science.gov (United States)

    Kumar, Ajay

    1989-01-01

    A general discussion is given on the use of advanced computational fluid dynamics (CFD) in analyzing the hypersonic flow field around an airbreathing aircraft. Unique features of the hypersonic flow physics are presented and an assessment is given of the current algorithms in terms of their capability to model hypersonic flows. Several examples of advanced CFD applications are then presented.

  10. Aircraft Fuel Cell Power Systems

    Science.gov (United States)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  11. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  12. Adapting existing training standards for unmanned aircraft: finding ways to train staff for unmanned aircraft operations

    CSIR Research Space (South Africa)

    Burger, CR

    2011-09-01

    Full Text Available - unmanned aircraft; pilot training. I. INTRODUCTION Unmanned aircraft offer flexibility not found in manned aircraft. They can be made smaller and cheaper to operate. They offer payload advantages relative to small manned aircraft. They can also perform... certificate to non-state users. To facilitate useful operations by UAs, future operations must be subject to no more than routine notification (e.g. an ATC flight plan), just like manned aircraft already are. Before such operations can be established, some...

  13. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  14. NASGRO 3.0: A Software for Analyzing Aging Aircraft

    Science.gov (United States)

    Mettu, S. R.; Shivakumar, V.; Beek, J. M.; Yeh, F.; Williams, L. C.; Forman, R. G.; McMahon, J. J.; Newman, J. C., Jr.

    1999-01-01

    Structural integrity analysis of aging aircraft is a critical necessity in view of the increasing numbers of such aircraft in general aviation, the airlines and the military. Efforts are in progress by NASA, the FAA and the DoD to focus attention on aging aircraft safety. The present paper describes the NASGRO software which is well-suited for effectively analyzing the behavior of defects that may be found in aging aircraft. The newly revised Version 3.0 has many features specifically implemented to suit the needs of the aircraft community. The fatigue crack growth computer program NASA/FLAGRO 2.0 was originally developed to analyze space hardware such as the Space Shuttle, the International Space Station and the associated payloads. Due to popular demand, the software was enhanced to suit the needs of the aircraft industry. Major improvements in Version 3.0 are the incorporation of the ability to read aircraft spectra of unlimited size, generation of common aircraft fatigue load blocks, and the incorporation of crack-growth models which include load-interaction effects such as retardation due to overloads and acceleration due to underloads. Five new crack-growth models, viz., generalized Willenborg, modified generalized Willenborg, constant closure model, Walker-Chang model and the deKoning-Newman strip-yield model, have been implemented. To facilitate easier input of geometry, material properties and load spectra, a Windows-style graphical user interface has been developed. Features to quickly change the input and rerun the problem as well as examine the output are incorporated. NASGRO has been organized into three modules, the crack-growth module being the primary one. The other two modules are the boundary element module and the material properties module. The boundary-element module provides the ability to model and analyze complex two-dimensional problems to obtain stresses and stress-intensity factors. The material properties module allows users to store and

  15. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes.

    Science.gov (United States)

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda

    2017-07-15

    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte

  16. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Science.gov (United States)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  17. 3D flyable curves for an autonomous aircraft

    Science.gov (United States)

    Bestaoui, Yasmina

    2012-11-01

    The process of conducting a mission for an autonomous aircraft includes determining the set of waypoints (flight planning) and the path for the aircraft to fly (path planning). The autonomous aircraft is an under-actuated system, having less control inputs than degrees of freedom and has two nonholonomic (non integrable) kinematic constraints. Consequently, the set of feasible trajectories will be restricted and the problem of trajectory generation becomes more complicated than a simple interpolation. Care must be taken in the selection of the basic primitives to respect the kinematic and dynamic limitations. The topic of this paper is trajectory generation using parametric curves. The problem can be formulated as follows: to lead the autonomous aircraft from an initial configuration qi to a final configuration qf in the absence of obstacles, find a trajectory q(t) for 0 ≤t ≤ T. The trajectory can be broken down into a geometric path q(s), s being the curvilinear abscissa and s=s(t) a temporal function. In 2D the curves fall into two categories: • Curves whose coordinates have a closed form expressions, for example B-splines, quintic polynomials or polar splines. • Curves whose curvature is a function of their arc length for example clothoids, cubic spirals, quintic or intrinsic splines. Some 3D solutions will be presented in this paper and their effectiveness discussed towards the problem in hand.

  18. Probing Aircraft Flight Test Hazard Mitigation for the Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Research Team

    Science.gov (United States)

    Kelly, Michael J.

    2013-01-01

    The Alternative Fuel Effects on Contrails & Cruise Emissions (ACCESS) Project Integration Manager requested in July 2012 that the NASA Engineering and Safety Center (NESC) form a team to independently assess aircraft structural failure hazards associated with the ACCESS experiment and to identify potential flight test hazard mitigations to ensure flight safety. The ACCESS Project Integration Manager subsequently requested that the assessment scope be focused predominantly on structural failure risks to the aircraft empennage raft empennage.

  19. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  20. Perspectives on Highly Adaptive or Morphing Aircraft

    Science.gov (United States)

    McGowan, Anna-Maria R.; Vicroy, Dan D.; Busan, Ronald C.; Hahn, Andrew S.

    2009-01-01

    The ability to adapt to different flight conditions has been fundamental to aircraft design since the Wright Brothers first flight. Over a hundred years later, unconventional aircraft adaptability, often called aircraft morphing has become a topic of considerable renewed interest. In the past two decades, this interest has been largely fuelled by advancements in multi-functional or smart materials and structures. However, highly adaptive or morphing aircraft is certainly a cross-discipline challenge that stimulates a wide range of design possibilities. This paper will review some of the history of morphing aircraft including recent research programs and discuss some perspectives on this work.

  1. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  2. OPTIMAL AIRCRAFT TRAJECTORIES FOR SPECIFIED RANGE

    Science.gov (United States)

    Lee, H.

    1994-01-01

    For an aircraft operating over a fixed range, the operating costs are basically a sum of fuel cost and time cost. While minimum fuel and minimum time trajectories are relatively easy to calculate, the determination of a minimum cost trajectory can be a complex undertaking. This computer program was developed to optimize trajectories with respect to a cost function based on a weighted sum of fuel cost and time cost. As a research tool, the program could be used to study various characteristics of optimum trajectories and their comparison to standard trajectories. It might also be used to generate a model for the development of an airborne trajectory optimization system. The program could be incorporated into an airline flight planning system, with optimum flight plans determined at takeoff time for the prevailing flight conditions. The use of trajectory optimization could significantly reduce the cost for a given aircraft mission. The algorithm incorporated in the program assumes that a trajectory consists of climb, cruise, and descent segments. The optimization of each segment is not done independently, as in classical procedures, but is performed in a manner which accounts for interaction between the segments. This is accomplished by the application of optimal control theory. The climb and descent profiles are generated by integrating a set of kinematic and dynamic equations, where the total energy of the aircraft is the independent variable. At each energy level of the climb and descent profiles, the air speed and power setting necessary for an optimal trajectory are determined. The variational Hamiltonian of the problem consists of the rate of change of cost with respect to total energy and a term dependent on the adjoint variable, which is identical to the optimum cruise cost at a specified altitude. This variable uniquely specifies the optimal cruise energy, cruise altitude, cruise Mach number, and, indirectly, the climb and descent profiles. If the optimum

  3. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 2: Technology aircraft

    Science.gov (United States)

    1975-01-01

    Technology flight vehicles were defined for three different approaches which demonstrate the concept and characteristics of the multipurpose aircraft established for Navy missions. The propulsion system used for the various technology flight vehicles was representative of that established for the multipurpose aircraft. Existing J97-GE100 gas generators were selected based on cost, availability and exhaust characteristics. The LF459 fans were also selected and are compatible with both technology and operational vehicles. To comply with the design guideline safety criteria, it was determined that three gas generators were required to provide engine out safety in the hover flight mode. The final propulsion system established for the technology aircraft was three existing J97 gas generators powering three LF459 fans. Different aircraft candidates were evaluated for application to the three designated design approaches. Each configuration was evaluated on the basis of (1) propulsion system integration, (2) modification required, (3) pilot's visibility, (4) payload volume, and (5) adaptability to compatible location of center-of-gravity/aerodynamic center and thrust center.

  4. Social-Ecological Soundscapes: Examining Aircraft-Harvester-Caribou Conflict in Arctic Alaska

    Science.gov (United States)

    Stinchcomb, Taylor R.

    quantify interactions and provide baseline data that may foster mitigation discourses among stakeholders. In Chapter 2, I employed a soundscape-ecology approach to address concerns about aircraft activity expressed by the Alaska Native community of Nuiqsut. Nuiqsut faces the greatest volume of aircraft activity of any community in Arctic Alaska because of its proximity to intensive oil and gas activity. However, information on when and where these aircraft are flying is unavailable to residents, managers, and researchers. I worked closely with Nuiqsut residents to deploy acoustic monitoring systems along important caribou harvest corridors during the peak of caribou harvest, from early June through late August 2016. This method successfully captured aircraft sound and the community embraced my science for addressing local priorities. I found aircraft activity levels near Nuiqsut and surrounding oil developments (12 daily events) to be approximately six times greater than in areas over 30 km from the village (two daily events). Aircraft sound disturbance was 26 times lower in undeveloped areas (Noise Free Interval =13 hrs) than near human development (NFI = 0.5 hrs). My study provided baseline data on aircraft activity and noise levels. My research could be used by stakeholders and managers to develop conflict avoidance agreements and minimize interference with traditional harvest practices. Soundscape methods could be adapted to rural regions across Alaska that may be experiencing conflict with aircraft or other sources of noise that disrupt human-wildlife interactions. By quantifying aircraft activity using a soundscape approach, I demonstrated a novel application of an emerging field in ecology and provided the first scientific data on one dimension of a larger social-ecological system. Future soundscape studies should be integrated with research on both harvester and caribou behaviors to understand how the components within this system are interacting over space and

  5. A chip-scale integrated cavity-electro-optomechanics platform

    DEFF Research Database (Denmark)

    Winger, M.; Blasius, T. D.; Mayer Alegre, T. P.

    2011-01-01

    We present an integrated optomechanical and electromechanical nanocavity, in which a common mechanical degree of freedom is coupled to an ultrahigh-Q photonic crystal defect cavity and an electrical circuit. The system allows for wide-range, fast electrical tuning of the optical nanocavity...... resonances, and for electrical control of optical radiation pressure back-action effects such as mechanical amplification (phonon lasing), cooling, and stiffening. These sort of integrated devices offer a new means to efficiently interconvert weak microwave and optical signals, and are expected to pave...

  6. Vibroacoustic Tailoring of a Rod-Stiffened Composite Fuselage Panel with Multidisciplinary Considerations

    Science.gov (United States)

    Allen, Albert R.; Przekop, Adam

    2015-01-01

    An efficient multi-objective design tailoring procedure seeking to improve the vibroacoustic performance of a fuselage panel while maintaining or reducing weight is presented. The structure considered is the pultruded rod stitched efficient unitized structure, a highly integrated composite structure concept designed for a noncylindrical, next-generation flight vehicle fuselage. Modifications to a baseline design are evaluated within a six-parameter design space including spacing, flange width, and web height for both frame and stringer substructure components. The change in sound power radiation attributed to a design change is predicted using finite-element models sized and meshed for analyses in the 500 Hz, 1 kHz, and 2 kHz octave bands. Three design studies are carried out in parallel while considering a diffuse acoustic field excitation and two types of turbulent boundary-layer excitation. Kriging surrogate models are used to reduce the computational costs of resolving the vibroacoustic and weight objective Pareto fronts. The resulting Pareto optimal designs are then evaluated under a static pressurization ultimate load to assess structural strength and stability. Results suggest that choosing alternative configurations within the considered design space can reduce weight and improve vibroacoustic performance without compromising strength and stability of the structure under the static load condition considered, but the tradeoffs are significantly influenced by the spatial characteristics of the assumed excitation field.

  7. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    Science.gov (United States)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  8. Development of fuel cell systems for aircraft applications based on synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pasel, J.; Samsun, R.C.; Doell, C.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany)

    2010-07-01

    At present, in the aviation sector considerable scientific project work deals with the development of fuel cell systems based on synthetic fuels to be integrated in future aircraft. The benefits of fuel cell systems in aircraft are various. They offer the possibility to simplify the aircraft layout. Important systems, i.e. the gas turbine powered auxiliary power unit (APU) for electricity supply, the fuel tank inserting system and the water tank, can be substituted by one single system, the fuel cell system. Additionally, the energy demand for ice protection can be covered assisted by fuel cell systems. These measures reduce the consumption of jet fuel, increase aircraft efficiency and allow the operation at low emissions. Additionally, the costs for aircraft related investments, for aircraft maintenance and operation can be reduced. On the background of regular discussions about environmental concerns (global warming) of kerosene Jet A-1 and its availability, which might be restricted in a few years, the aircraft industry is keen to employ synthetic, sulfur-free fuels such as Fischer-Tropsch fuels. These comprise Bio-To-Liquid and Gas-To-Liquid fuels. Within this field of research the Institute of Energy Research (IEF-3) in Juelich develops complete and compact fuel cell systems based on the autothermal reforming of these kinds of fuels in cooperation with industry. This paper reports about this work. (orig.)

  9. The microburst - Hazard to aircraft

    Science.gov (United States)

    Mccarthy, J.; Serafin, R.

    1984-01-01

    In encounters with microbursts, low altitude aircraft first encounter a strong headwind which increases their wing lift and altitude; this phenomenon is followed in short succession by a decreasing headwind component, a downdraft, and finally a strong tailwind that catastrophically reduces wing lift and precipitates a crash dive. It is noted that the potentially lethal low altitude wind shear of a microburst may lie in apparently harmless, rain-free air beneath a cloud base. Occasionally, such tell-tale signs as localized blowing of ground dust may be sighted in time. Microbursts may, however, occur in the heavy rain of a thunderstorm, where they will be totally obscured from view. Wind shear may be detected by an array of six anemometers and vanes situated in the vicinity of an airport, and by Doppler radar equipment at the airport or aboard aircraft.

  10. Test and Analysis Correlation of a Large-Scale, Orthogrid-Stiffened Metallic Cylinder without Weld Lands

    Science.gov (United States)

    Rudd, Michelle T.; Hilburger, Mark W.; Lovejoy, Andrew E.; Lindell, Michael C.; Gardner, Nathaniel W.; Schultz, Marc R.

    2018-01-01

    The NASA Engineering Safety Center (NESC) Shell Buckling Knockdown Factor Project (SBKF) was established in 2007 by the NESC with the primary objective to develop analysis-based buckling design factors and guidelines for metallic and composite launch-vehicle structures.1 A secondary objective of the project is to advance technologies that have the potential to increase the structural efficiency of launch-vehicles. The SBKF Project has determined that weld-land stiffness discontinuities can significantly reduce the buckling load of a cylinder. In addition, the welding process can introduce localized geometric imperfections that can further exacerbate the inherent buckling imperfection sensitivity of the cylinder. Therefore, single-piece barrel fabrication technologies can improve structural efficiency by eliminating these weld-land issues. As part of this effort, SBKF partnered with the Advanced Materials and Processing Branch (AMPB) at NASA Langley Research Center (LaRC), the Mechanical and Fabrication Branch at NASA Marshall Space Flight Center (MSFC), and ATI Forged Products to design and fabricate an 8-ft-diameter orthogrid-stiffened seamless metallic cylinder. The cylinder was subjected to seven subcritical load sequences (load levels that are not intended to induce test article buckling or material failure) and one load sequence to failure. The purpose of this test effort was to demonstrate the potential benefits of building cylindrical structures with no weld lands using the flow-formed manufacturing process. This seamless barrel is the ninth 8-ft-diameter metallic barrel and the first single-piece metallic structure to be tested under this program.

  11. Force spectroscopy measurements show that cortical neurons exposed to excitotoxic agonists stiffen before showing evidence of bleb damage.

    Directory of Open Access Journals (Sweden)

    Shan Zou

    Full Text Available In ischemic and traumatic brain injury, hyperactivated glutamate (N-methyl-D-aspartic acid, NMDA and sodium (Nav channels trigger excitotoxic neuron death. Na(+, Ca(++ and H2O influx into affected neurons elicits swelling (increased cell volume and pathological blebbing (disassociation of the plasma membrane's bilayer from its spectrin-actomyosin matrix. Though usually conflated in injured tissue, cell swelling and blebbing are distinct processes. Around an injury core, salvageable neurons could be mildly swollen without yet having suffered the bleb-type membrane damage that, by rendering channels leaky and pumps dysfunctional, exacerbates the excitotoxic positive feedback spiral. Recognizing when neuronal inflation signifies non-lethal osmotic swelling versus blebbing should further efforts to salvage injury-penumbra neurons. To assess whether the mechanical properties of osmotically-swollen versus excitotoxically-blebbing neurons might be cytomechanically distinguishable, we measured cortical neuron elasticity (gauged via atomic force microscopy (AFM-based force spectroscopy upon brief exposure to hypotonicity or to excitotoxic agonists (glutamate and Nav channel activators, NMDA and veratridine. Though unperturbed by solution exchange per se, elasticity increased abruptly with hypotonicity, with NMDA and with veratridine. Neurons then invariably softened towards or below the pre-treatment level, sometimes starting before the washout. The initial channel-mediated stiffening bespeaks an abrupt elevation of hydrostatic pressure linked to NMDA or Nav channel-mediated ion/H2O fluxes, together with increased [Ca(++]int-mediated submembrane actomyosin contractility. The subsequent softening to below-control levels is consistent with the onset of a lethal level of bleb damage. These findings indicate that dissection/identification of molecular events during the excitotoxic transition from stiff/swollen to soft/blebbing is warranted and should be

  12. Increased rate of arterial stiffening with obesity in adolescents: a five-year follow-up study.

    Directory of Open Access Journals (Sweden)

    Frida Dangardt

    Full Text Available BACKGROUND: We prospectively and longitudinally determined the effects of childhood obesity on arterial stiffening and vascular wall changes. Changes in arterial stiffness measured as pulse wave velocity (PWV and vascular morphology of the radial (RA and dorsal pedal arteries (DPA were examined in obese adolescents compared to lean subjects in a 5-year follow-up study. METHODOLOGY/PRINCIPAL FINDINGS: A total of 28 obese subjects and 14 lean controls participated in both baseline (14 years old and follow-up studies. PWV was measured by tonometer (SphygmoCor® and recorded at RA and carotid artery, respectively. Intima thickness (IT, intima-media thickness (IMT and RA and DPA diameters were measured using high-resolution ultrasound (Vevo 770™. Over the course of 5 years, PWV increased by 25% in the obese subjects as compared to 3% in the controls (p = 0.01. Diastolic blood pressure (DBP increased by 23% in the obese subjects as opposed to 6% in controls (p = 0.009. BMI increased similarly in both groups, as did the IT and IMT. The change in PWV was strongly associated to the baseline BMI z -score (r = 0.51, p<0.001, as was the change in DBP (r = 0.50, p = 0.001. CONCLUSIONS/SIGNIFICANCE: During the transition from early to late adolescence, there was a general increase in arterial stiffness, which was aggravated by childhood obesity. The increase in arterial stiffness and DBP after 5 years was closely correlated to the baseline BMI z -score, indicating that childhood obesity has an adverse impact on vascular adaptation.

  13. Small Aircraft Data Distribution System

    Science.gov (United States)

    Chazanoff, Seth L.; Dinardo, Steven J.

    2012-01-01

    The CARVE Small Aircraft Data Distribution System acquires the aircraft location and attitude data that is required by the various programs running on a distributed network. This system distributes the data it acquires to the data acquisition programs for inclusion in their data files. It uses UDP (User Datagram Protocol) to broadcast data over a LAN (Local Area Network) to any programs that might have a use for the data. The program is easily adaptable to acquire additional data and log that data to disk. The current version also drives displays using precision pitch and roll information to aid the pilot in maintaining a level-level attitude for radar/radiometer mapping beyond the degree available by flying visually or using a standard gyro-driven attitude indicator. The software is designed to acquire an array of data to help the mission manager make real-time decisions as to the effectiveness of the flight. This data is displayed for the mission manager and broadcast to the other experiments on the aircraft for inclusion in their data files. The program also drives real-time precision pitch and roll displays for the pilot and copilot to aid them in maintaining the desired attitude, when required, during data acquisition on mapping lines.

  14. Inlet Trade Study for a Low-Boom Aircraft Demonstrator

    Science.gov (United States)

    Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.

    2016-01-01

    Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.

  15. Development and testing of airfoils for high-altitude aircraft

    Science.gov (United States)

    Drela, Mark (Principal Investigator)

    1996-01-01

    Specific tasks included airfoil design; study of airfoil constraints on pullout maneuver; selection of tail airfoils; examination of wing twist; test section instrumentation and layout; and integrated airfoil/heat-exchanger tests. In the course of designing the airfoil, specifically for the APEX test vehicle, extensive studies were made over the Mach and Reynolds number ranges of interest. It is intended to be representative of airfoils required for lightweight aircraft operating at extreme altitudes, which is the primary research objective of the APEX program. Also considered were thickness, pitching moment, and off-design behavior. The maximum ceiling parameter M(exp 2)C(sub L) value achievable by the Apex-16 airfoil was found to be a strong constraint on the pullout maneuver. The NACA 1410 and 2410 airfoils (inverted) were identified as good candidates for the tail, with predictable behavior at low Reynolds numbers and good tolerance to flap deflections. With regards to wing twist, it was decided that a simple flat wing was a reasonable compromise. The test section instrumentation consisted of surface pressure taps, wake rakes, surface-mounted microphones, and skin-friction gauges. Also, a modest wind tunnel test was performed for an integrated airfoil/heat-exchanger configuration, which is currently on Aurora's 'Theseus' aircraft. Although not directly related to the APEX tests, the aerodynamics or heat exchangers has been identified as a crucial aspect of designing high-altitude aircraft and hence is relevant to the ERAST program.

  16. Preliminary results on the fracture analysis of multi-site cracking of lap joints in aircraft skins

    Science.gov (United States)

    Beuth, J. L., Jr.; Hutchinson, John W.

    1992-07-01

    Results of a fracture mechanics analysis relevant to fatigue crack growth at rivets in lap joints of aircraft skins are presented. Multi-site damage (MSD) is receiving increased attention within the context of problems of aging aircraft. Fracture analyses previously carried out include small-scale modeling of rivet/skin interactions, larger-scale two-dimensional models of lap joints similar to that developed here, and full scale three-dimensional models of large portions of the aircraft fuselage. Fatigue testing efforts have included flat coupon specimens, two-dimensional lap joint tests, and full scale tests on specimens designed to closely duplicate aircraft sections. Most of this work is documented in the proceedings of previous symposia on the aging aircraft problem. The effect MSD has on the ability of skin stiffeners to arrest the growth of long skin cracks is a particularly important topic that remains to be addressed. One of the most striking features of MSD observed in joints of some test sections and in the joints of some of the older aircraft fuselages is the relative uniformity of the fatigue cracks from rivet to rivet along an extended row of rivets. This regularity suggests that nucleation of the cracks must not be overly difficult. Moreover, it indicates that there is some mechanism which keeps longer cracks from running away from shorter ones, or, equivalently, a mechanism for shorter cracks to catch-up with longer cracks. This basic mechanism has not been identified, and one of the objectives of the work is to see to what extent the mechanism is revealed by a fracture analysis of the MSD cracks. Another related aim is to present accurate stress intensity factor variations with crack length which can be used to estimate fatigue crack growth lifetimes once cracks have been initiated. Results are presented which illustrate the influence of load shedding from rivets with long cracks to neighboring rivets with shorter cracks. Results are also included

  17. OPTIMAL TRAFFIC MANAGEMENT FOR AIRCRAFT APPROACHING THE AERODROME LANDING AREA

    Directory of Open Access Journals (Sweden)

    Igor B. Ivenin

    2018-01-01

    Full Text Available The research proposes a mathematical optimization approach of arriving aircraft traffic at the aerodrome zone. The airfield having two parallel runways, capable of operating independently of each other, is modeled. The incoming traffic of aircraft is described by a Poisson flow of random events. The arriving aircraft are distributed by the air traffic controller between two runways. There is one approach flight path for each runway. Both approach paths have a common starting point. Each approach path has a different length. The approach trajectories do not overlap. For each of the two approach procedures, the air traffic controller sets the average speed of the aircraft. The given model of airfield and airfield zone is considered as the two-channel system of mass service with refusals in service. Each of the two servicing units includes an approach trajectory, a glide path and a runway. The servicing unit can be in one of two states – free and busy. The probabilities of the states of the servicing units are described by the Kolmogorov system of differential equations. The number of refusals in service on the simulated time interval is used as criterion for assessment of mass service system quality of functioning. This quality of functioning criterion is described by an integral functional. The functions describing the distribution of aircraft flows between the runways, as well as the functions describing the average speed of the aircraft, are control parameters. The optimization problem consists in finding such values of the control parameters for which the value of the criterion functional is minimal. To solve the formulated optimization problem, the L.S. Pontryagin maximum principle is applied. The form of the Hamiltonian function and the conjugate system of differential equations is given. The structure of optimal control has been studied for two different cases of restrictions on the control of the distribution of incoming aircraft

  18. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  19. Modification of a liquid hydrogen tank for integrated refrigeration and storage

    Science.gov (United States)

    Swanger, A. M.; Jumper, K. M.; Fesmire, J. E.; Notardonato, W. U.

    2015-12-01

    The modification and outfitting of a 125,000-liter liquid hydrogen tank was performed to provide integrated refrigeration and storage capability. These functions include zero boil-off, liquefaction, and densification and therefore require provisions for sub-atmospheric tank pressures within the vacuum-jacketed, multilayer insulated tank. The primary structural modification was to add stiffening rings inside the inner vessel. The internal stiffening rings were designed, built, and installed per the ASME Boiler and Pressure Vessel Code, Section VIII, to prevent collapse in the case of vacuum jacket failure in combination with sub-atmospheric pressure within the tank. For the integrated refrigeration loop, a modular, skeleton-type heat exchanger, with refrigerant temperature instrumentation, was constructed using the stiffening rings as supports. To support the system thermal performance testing, three custom temperature rakes were designed and installed along the 21-meter length of the tank, once again using rings as supports. The temperature rakes included a total of 20 silicon diode temperature sensors mounted both vertically and radially to map the bulk liquid temperature within the tank. The tank modifications were successful and the system is now operational for the research and development of integrated refrigeration technology.

  20. mTOR (Mechanistic Target of Rapamycin) Inhibition Decreases Mechanosignaling, Collagen Accumulation, and Stiffening of the Thoracic Aorta in Elastin-Deficient Mice.

    Science.gov (United States)

    Jiao, Yang; Li, Guangxin; Li, Qingle; Ali, Rahmat; Qin, Lingfeng; Li, Wei; Qyang, Yibing; Greif, Daniel M; Geirsson, Arnar; Humphrey, Jay D; Tellides, George

    2017-09-01

    Elastin deficiency because of heterozygous loss of an ELN allele in Williams syndrome causes obstructive aortopathy characterized by medial thickening and fibrosis and consequent aortic stiffening. Previous work in Eln -null mice with a severe arterial phenotype showed that inhibition of mTOR (mechanistic target of rapamycin), a key regulator of cell growth, lessened the aortic obstruction but did not prevent early postnatal death. We investigated the effects of mTOR inhibition in Eln -null mice partially rescued by human ELN that manifest a less severe arterial phenotype and survive long term. Thoracic aortas of neonatal and juvenile mice with graded elastin deficiency exhibited increased signaling through both mTOR complex 1 and 2. Despite lower predicted wall stress, there was increased phosphorylation of focal adhesion kinase, suggestive of greater integrin activation, and increased transforming growth factor-β-signaling mediators, associated with increased collagen expression. Pharmacological blockade of mTOR by rapalogs did not improve luminal stenosis but reduced mechanosignaling (in delayed fashion after mTOR complex 1 inhibition), medial collagen accumulation, and stiffening of the aorta. Rapalog administration also retarded somatic growth, however, and precipitated neonatal deaths. Complementary, less-toxic strategies to inhibit mTOR via altered growth factor and nutrient responses were not effective. In addition to previously demonstrated therapeutic benefits of rapalogs decreasing smooth muscle cell proliferation in the absence of elastin, we find that rapalogs also prevent aortic fibrosis and stiffening attributable to partial elastin deficiency. Our findings suggest that mTOR-sensitive perturbation of smooth muscle cell mechanosensing contributes to elastin aortopathy. © 2017 American Heart Association, Inc.

  1. Flight control optimization from design to assessment application on the Cessna Citation X business aircraft =

    Science.gov (United States)

    Boughari, Yamina

    New methodologies have been developed to optimize the integration, testing and certification of flight control systems, an expensive process in the aerospace industry. This thesis investigates the stability of the Cessna Citation X aircraft without control, and then optimizes two different flight controllers from design to validation. The aircraft's model was obtained from the data provided by the Research Aircraft Flight Simulator (RAFS) of the Cessna Citation business aircraft. To increase the stability and control of aircraft systems, optimizations of two different flight control designs were performed: 1) the Linear Quadratic Regulation and the Proportional Integral controllers were optimized using the Differential Evolution algorithm and the level 1 handling qualities as the objective function. The results were validated for the linear and nonlinear aircraft models, and some of the clearance criteria were investigated; and 2) the Hinfinity control method was applied on the stability and control augmentation systems. To minimize the time required for flight control design and its validation, an optimization of the controllers design was performed using the Differential Evolution (DE), and the Genetic algorithms (GA). The DE algorithm proved to be more efficient than the GA. New tools for visualization of the linear validation process were also developed to reduce the time required for the flight controller assessment. Matlab software was used to validate the different optimization algorithms' results. Research platforms of the aircraft's linear and nonlinear models were developed, and compared with the results of flight tests performed on the Research Aircraft Flight Simulator. Some of the clearance criteria of the optimized H-infinity flight controller were evaluated, including its linear stability, eigenvalues, and handling qualities criteria. Nonlinear simulations of the maneuvers criteria were also investigated during this research to assess the Cessna

  2. Thermal comfort assessment in civil aircraft cabins

    OpenAIRE

    Pang Liping; Qin Yue; Liu Dong; Liu Meng

    2014-01-01

    Aircraft passengers are more and demanding in terms of thermal comfort. But it is not yet easy for aircraft crew to control the environment control system (ECS) that satisfies the thermal comfort for most passengers due to a number of causes. This paper adopts a corrected predicted mean vote (PMV) model and an adaptive model to assess the thermal comfort conditions for 31 investigated flights and draws the conclusion that there does exist an uncomfortable thermal phenomenon in civil aircraft ...

  3. Industrial approach to piezoelectric damping of large fighter aircraft components

    Science.gov (United States)

    Simpson, John; Schweiger, Johannes

    1998-06-01

    Different concepts to damp structural vibrations of the vertical tail of fighter aircraft are reported. The various requirements for a vertical tail bias an integrated approach for the design. Several active vibrations suppression concepts had been investigated during the preparatory phase of a research program shared by Daimler-Benz Aerospace Military Aircraft (Dasa), Daimler-Benz Forschung (DBF) and Deutsche Forschungsandstalt fuer Luftund Raumfahrt (DLR). Now in the main phase of the programme, four concepts were finally chosen: two concepts with aerodynamic control surfaces and two concepts with piezoelectric components. One piezo concept approach will be described rigorously, the other concepts are briefly addressed. In the Dasa concept, thin surface piezo actuators are set out carefully to flatten the dynamic portion of the combined static and dynamic maximum bending moment loading case directly in the shell structure. The second piezo concept by DLR involves pre-loaded lead zirconate titanate (PZT)-block actuators at host structure fixtures. To this end a research apparatus was designed and built as a full scale simplified fin box with carbon fiber reinformed plastic skins and an aluminium stringer-rib substructure restrained by relevant aircraft fixtures. It constitutes a benchmark 3D-structural impedance. The engineering design incorporates 7kg of PZT surface actuators. The structural system then should be excited to more than 15mm tip displacement amplitude. This prepares the final step to total A/C integration. Typical analysis methods using cyclic thermal analogies adapted to induced load levels are compared. Commercial approaches leading onto basic state space model interpretation wrt. actuator sizing and positioning, structural integrity constraints, FE-validation and testing are described. Both piezoelectric strategies are aimed at straight open-loop performance related to concept weight penalty and input electric power. The required actuators, power

  4. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    , and compare the steady state performance of rigid and flexible-winged aircraft. We present an intuitive but very useful notion, called the effective dihedral, which allows us to extend some of the stability and performance results derived for rigid aircraft to flexible aircraft. In the process, we identify the extent of flexibility needed to induce substantial performance benefits, and conversely the extent to which results derived for rigid aircraft apply to a flexible aircraft. We demonstrate, interestingly enough, that wing flexibility actually causes a deterioration in the maximum achievable turn rate when the sideslip is regulated. We also present experimental results which help demonstrate the capability of wing dihedral for control and for executing maneuvers such as slow, rapid descent and perching. Open loop as well as closed loop experiments are performed to demonstrate (a) the effectiveness of symmetric dihedral for flight path angle control, (b) yaw control using asymmetric dihedral, and (c) the elements of perching. Using a simple order of magnitude analysis, we derive conditions under which the wing is structurally statically stable, as well as conditions under which there exists time scale separation between the bending and twisting dynamics. We show that the time scale separation depends on the geometry of the wing cross section, the Poisson's ratio of the wing material, the flight speed and the aspect ratio of the wing. We design independent control laws for bending and twisting. A key contribution of this thesis is the formulation of a partial differential equation (PDE) boundary control problem for wing deformation. PDE-backstepping is used to derive tracking and exponentially stabilizing boundary control laws for wing twist which ensure that a weighted integral of the wing twist (net lift or the rolling moment) tracks the desired time-varying reference input. We show that a control law which only ensures tracking of a weighted integral improves the

  5. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  6. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The Soft Shell-Hardcore approach to nuclear power plant auxiliary structure design was developed to attenuate the crash effects of impacting aircraft. This report is an initial investigation into defining the important structural features involved that would allow the Soft Shell-Hardcore design to successfully sustain the postulated aircraft impact. Also specified for purposes of this study are aircraft impact locations and the type and velocity of impacting aircraft. The purpose of this initial investigation is to determine the feasibility of the two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model

  7. Alternate Fuels for Use in Commercial Aircraft

    Science.gov (United States)

    Daggett, David L.; Hendricks, Robert C.; Walther, Rainer; Corporan, Edwin

    2008-01-01

    The engine and aircraft Research and Development (R&D) communities have been investigating alternative fueling in near-term, midterm, and far-term aircraft. A drop in jet fuel replacement, consisting of a kerosene (Jet-A) and synthetic fuel blend, will be possible for use in existing and near-term aircraft. Future midterm aircraft may use a biojet and synthetic fuel blend in ultra-efficient airplane designs. Future far-term engines and aircraft in 50-plus years may be specifically designed to use a low- or zero-carbon fuel. Synthetic jet fuels from coal, natural gas, or other hydrocarbon feedstocks are very similar in performance to conventional jet fuel, yet the additional CO2 produced during the manufacturing needs to be permanently sequestered. Biojet fuels need to be developed specifically for jet aircraft without displacing food production. Envisioned as midterm aircraft fuel, if the performance and cost liabilities can be overcome, biofuel blends with synthetic jet or Jet-A fuels have near-term potential in terms of global climatic concerns. Long-term solutions address dramatic emissions reductions through use of alternate aircraft fuels such as liquid hydrogen or liquid methane. Either of these new aircraft fuels will require an enormous change in infrastructure and thus engine and airplane design. Life-cycle environmental questions need to be addressed.

  8. NDT applications in the aircraft industry

    International Nuclear Information System (INIS)

    Aguilar, E.C.

    1994-01-01

    Non-destructive testing (NDT) in the aircraft industry is used primarily to detect process defects in the manufacturing stage and failure defects in the in-service stage. Inspection techniques such as X- or gamma ray radiography are used for examination. Eddy current and ultrasonic are applied for examination, fluorescent penetrant and magnetic particles are applied for examination of aircraft and engine. With the wide scope of application, this paper discussed one type of NDT that is much used in aircraft being the latest technique in aircraft manufacturing. 1 fig

  9. Analysis of Fleet Readiness Center Southwest Concept Integration: New-Employee Orientation and Communication Processes

    National Research Council Canada - National Science Library

    Clemmons, Francini R; Falconieri, Holly M

    2007-01-01

    Fleet Readiness Center Southwest has embraced integration of personnel and processes from Aircraft Intermediate Maintenance Departments and Naval Aviation Depots supporting Naval Aviation Maintenance...

  10. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  11. Titanium fasteners. [for aircraft industry

    Science.gov (United States)

    Phillips, J. L.

    1972-01-01

    Titanium fasteners are used in large quantities throughout the aircraft industry. Most of this usage is in aluminum structure; where titanium structure exists, titanium fasteners are logically used as well. Titanium fasteners offer potential weight savings to the designer at a cost of approximately $30 per pound of weight saved. Proper and least cost usage must take into consideration type of fastener per application, galvanic couples and installation characteristics of protective coatings, cosmetic appearance, paint adhesion, installation forces and methods available and fatigue performance required.

  12. Aircraft Icing Handbook. Volume 1

    Science.gov (United States)

    1991-03-01

    Maryland - . . . Kohiman Aviation, Lawrence , Kansas Ohio State University, Columbus, Ohio .I --- t-r 1-- - -t I.Q,,- t ../e . Pratt and Whitney...lower; about six percent at -22 ’F (-30 *C). 1.2.3 Variations with Season The summer or warm season months create large warm air masses which can...on Aircraft Surfaces," NASA TM 87184, May 1986. 2-54 Hausman , R.J. and Turnock, S.R., "Investigation of Surface Water Behavior During Glaze Ice

  13. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    Science.gov (United States)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  14. Formulation and demonstration of a robust mean variance optimization approach for concurrent airline network and aircraft design

    Science.gov (United States)

    Davendralingam, Navindran

    Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is

  15. Development and validation of bonded composite doubler repairs for commercial aircraft.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    repair using a substandard design and a flawed installation. In addition, the new Sol-Gel surface preparation technique was evaluated. Fatigue coupon tests produced Sol-Gel results that could be compared with a large performance database from conventional, riveted repairs. It was demonstrated that not only can composite doublers perform well in severe off-design conditions (low doubler stiffness and presence of defects in doubler installation) but that the Sol-Gel surface preparation technique is easier and quicker to carry out while still producing optimum bonding properties. Nondestructive inspection (NDI) methods were developed so that the potential for disbond and delamination growth could be monitored and crack growth mitigation could be quantified. The NDI methods were validated using full-scale test articles and the FedEx aircraft installations. It was demonstrated that specialized NDI techniques can detect flaws in composite doubler installations before they reach critical size. Probability of Detection studies were integrated into the FedEx training in order to quantify the ability of aircraft maintenance depots to properly monitor these repairs. In addition, Boeing Structural Repair and Nondestructive Testing Manuals were modified to include composite doubler repair and inspection procedures. This report presents the results from the FedEx Pilot Program that involved installation and surveillance of numerous repairs on operating aircraft. Results from critical NDI evaluations are reported in light of damage tolerance assessments for bonded composite doublers. This work has produced significant interest from airlines and aircraft manufacturers. The successful Pilot Program produced flight performance history to establish the durability of bonded composite patches as a permanent repair on commercial aircraft structures. This report discusses both the laboratory data and Pilot Program results from repair installations on operating aircraft to introduce composite

  16. GRAPHICAL MODELS OF THE AIRCRAFT MAINTENANCE PROCESS

    Directory of Open Access Journals (Sweden)

    Stanislav Vladimirovich Daletskiy

    2017-01-01

    Full Text Available The aircraft maintenance is realized by a rapid sequence of maintenance organizational and technical states, its re- search and analysis are carried out by statistical methods. The maintenance process concludes aircraft technical states con- nected with the objective patterns of technical qualities changes of the aircraft as a maintenance object and organizational states which determine the subjective organization and planning process of aircraft using. The objective maintenance pro- cess is realized in Maintenance and Repair System which does not include maintenance organization and planning and is a set of related elements: aircraft, Maintenance and Repair measures, executors and documentation that sets rules of their interaction for maintaining of the aircraft reliability and readiness for flight. The aircraft organizational and technical states are considered, their characteristics and heuristic estimates of connection in knots and arcs of graphs and of aircraft organi- zational states during regular maintenance and at technical state failure are given. It is shown that in real conditions of air- craft maintenance, planned aircraft technical state control and maintenance control through it, is only defined by Mainte- nance and Repair conditions at a given Maintenance and Repair type and form structures, and correspondingly by setting principles of Maintenance and Repair work types to the execution, due to maintenance, by aircraft and all its units mainte- nance and reconstruction strategies. The realization of planned Maintenance and Repair process determines the one of the constant maintenance component. The proposed graphical models allow to reveal quantitative correlations between graph knots to improve maintenance processes by statistical research methods, what reduces manning, timetable and expenses for providing safe civil aviation aircraft maintenance.

  17. New entrants and overcapacity: lessons from regional aircraft manufacturing

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2010-01-01

    The commercial aircraft manufacturing industry has been largely dominated by the advanced economies in North America and Western Europe. During recent decades, several emerging economies have invested heavily in the commercial aircraft industry, notably in regional aircraft manufacturing. This paper

  18. 77 FR 23382 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-04-19

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD was prompted by the manufacturer's..., contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support, Mailstop s581a, 6900...

  19. 77 FR 41889 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-07-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... airworthiness directive (AD) for Sikorsky Aircraft Corporation (Sikorsky) Model S-92A helicopters. This AD... identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager, Commercial Technical Support...

  20. 77 FR 49710 - Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters

    Science.gov (United States)

    2012-08-17

    ... Airworthiness Directives; Sikorsky Aircraft Corporation Helicopters AGENCY: Federal Aviation Administration (FAA... Aircraft Corporation (Sikorsky) Model S-76A helicopters to require modifying the electric rotor brake (ERB... service information identified in this AD, contact Sikorsky Aircraft Corporation, Attn: Manager...