WorldWideScience

Sample records for integral membrane plasminogen

  1. ROLE OF GENE POLYMORFISM OF PLASMINOGEN ACTIVATOR INGIBITOR TYPE I AS A RISK FACTOR FOR PREMATURE RUPTURE OF MEMBRANE AT TERM PREGNANCY

    Directory of Open Access Journals (Sweden)

    M. G. Nikolayeva

    2013-01-01

    Full Text Available The retrospective study was designed to identify association of premature rupture of the fetal membranes (PROM with carrying polymorphisms in genes encoding folate metabolism and hemostasis in 717 women. More than one hundred potential predictors were analyzed including carriage of thrombogenic genes polymorphisms and genes encoding folate metabolism: FV[Arg506Gln], F II [20210 G/A], MTHFR [Ala222Val], (PAI-I[-675 5G/4G]. Study revealed that plasminogen activator ingibitor-1 gene polymorphism increases significantly the risk of premature rupture of the fetal membranes in term pregnancy (PROM: heterozygous plasminogen activator ingibitor-1 gene polymorphism is associated with 3.6-fold (95% CI 2.4–5.4; p < 0.001, homozygous plasminogen activator ingibitor-1 gene polymorphism – with 1.7-fold (95% CI 1.1–2.6; p = 0.01 risk rise of PROM.

  2. Plasminogen Activator Inhibitor-1 Controls Vascular Integrity by Regulating VE-Cadherin Trafficking.

    Directory of Open Access Journals (Sweden)

    Anna E Daniel

    Full Text Available Plasminogen activator inhibitor-1 (PAI-1, a serine protease inhibitor, is expressed and secreted by endothelial cells. Patients with PAI-1 deficiency show a mild to moderate bleeding diathesis, which has been exclusively ascribed to the function of PAI-1 in down-regulating fibrinolysis. We tested the hypothesis that PAI-1 function plays a direct role in controlling vascular integrity and permeability by keeping endothelial cell-cell junctions intact.We utilized PAI-039, a specific small molecule inhibitor of PAI-1, to investigate the role of PAI-1 in protecting endothelial integrity. In vivo inhibition of PAI-1 resulted in vascular leakage from intersegmental vessels and in the hindbrain of zebrafish embryos. In addition PAI-1 inhibition in human umbilical vein endothelial cell (HUVEC monolayers leads to a marked decrease of transendothelial resistance and disrupted endothelial junctions. The total level of the endothelial junction regulator VE-cadherin was reduced, whereas surface VE-cadherin expression was unaltered. Moreover, PAI-1 inhibition reduced the shedding of VE-cadherin. Finally, we detected an accumulation of VE-cadherin at the Golgi apparatus.Our findings indicate that PAI-1 function is important for the maintenance of endothelial monolayer and vascular integrity by controlling VE-cadherin trafficking to and from the plasma membrane. Our data further suggest that therapies using PAI-1 antagonists like PAI-039 ought to be used with caution to avoid disruption of the vessel wall.

  3. PLASMINOGEN ACTIVATOR OF YERSINIA PESTIS

    Directory of Open Access Journals (Sweden)

    V. V. Evseeva

    2015-01-01

    Full Text Available Plague has been the cause of three pandemics and has led to the death of millions of people. Plague is a typical zoonosis caused by Yersinia pestis that circulates in populations of wild rodents inhabiting natural plague foci on all continents except for Australia. Transmission of plague is provided by flea bites. Circulation of Y. pestis in natural plague foci is supported by a numerous of pathogenicity factors. This review explores one of them, plasminogen activator Pla. This protein is one of representatives of omptins, a family of enterobacterial outer membrane proteases that are responsible for colonization of specific organs or even infection generalization as a result of successful overcoming of the host innate immunity. The review reflects the history of its discovery and studying of its genetic control, biosynthesis, isolation and purification, physicochemical properties. Highly purified preparations of plasminogen activator are deficient in enzymatic activities but renaturation in the presence of Y. pestis lipooligosaccharide restores enzymatic properties of Pla. This pathogenicity factor is absent in representatives of the most ancient phylogenetic group of the plague pathogen, bv. caucasica, while the ancestor of other groups of Y. pestis subsp. microtus obtained in result of horizontal transfer Pla isoform with characteristics similar to properties of omptins from the less virulent enterobacteria. After that in the course of microevolution the “classic” isoform of Pla with increased protease activity was selected that is typical of all highly virulent for humans strains of Y. pestis subsp. pestis. The “classic” isoform of Pla Y. pestis is functionally similar to mammalian plasminogen activators transforming plasminogen into plasmin with the help of limited proteolysis. Pla protease activating plasminogen and also degrading the main plasmin inhibitor — α2-antiplasmin and, respectively, determining Y. pestis ability to lyse

  4. Ligneous Periodontitis in a Child with Plasminogen Deficiency ...

    African Journals Online (AJOL)

    Ligneous periodontitis (LP), a rare periodontal disease, is seen secondary to plasminogen deficiency and fibrin deposition. It is characterized by nodular gingival enlargements and progressive destructive membranous periodontal disease. It generally ends with the early loss of teeth. Defective fibrinolysis and abnormal ...

  5. Ligneous Periodontitis in a Child with Plasminogen Deficiency

    African Journals Online (AJOL)

    2018-01-30

    Jan 30, 2018 ... Ligneous periodontitis (LP), a rare periodontal disease, is seen secondary to plasminogen deficiency and fibrin deposition. It is characterized by nodular gingival enlargements and progressive destructive membranous periodontal disease. It generally ends with the early loss of teeth. Defective fibrinolysis ...

  6. Structure, function and expression on blood and bone marrow cells of the urokinase-type plasminogen activator receptor, uPAR

    DEFF Research Database (Denmark)

    Plesner, T; Behrendt, N; Ploug, M

    1997-01-01

    patients with the rare blood disease paroxysmal nocturnal hemoglobinuria (PNH) that fail to express glycosyl-phosphatidylinositol-anchored proteins including uPAR, show a very significantly reduced transmigration over an endothelial barrier. Cell-associated plasminogen activation by PNH......Several important functions have been assigned to the receptor for urokinase-type plasminogen activator, uPAR. As implied by the name, uPAR was first identified as a high affinity cellular receptor for urokinase plasminogen activator (uPA). It mediates the binding of the zymogen, pro......-uPA, to the plasma membrane where trace amounts of plasmin will initiate a series of events referred to as "reciprocal zymogen activation" where plasmin converts pro-uPA to the active enzyme, uPA, which in turn converts plasma membrane-associated plasminogen to plasmin. This is an efficient machinery to generate...

  7. Assessment of plasminogen synthesis in vitro by mouse tumor cells using a competition radioimmunoassay for mouse plasminogen

    International Nuclear Information System (INIS)

    Roblin, R.O.; Bell, T.E.; Young, P.L.

    1978-01-01

    A sensitive, specific competition radioimmunoassay for mouse plasmin(ogen) has been developed in order to determine whether mouse tumor cells can synthesize plasminogen in vitro. The rabbit anti-BALB/c mouse plasminogen antibodies used in the assay react with the plasminogen present in serum from BALB/c, C3H, AKR and C57BL/6 mice, and also recognized mouse plasmin. The competition radiommunoassay can detect as little as 50 ng of mouse plasminogen. No competition was observed with preparations of fetal calf, human and rabbit plasminogens. A variety of virus-transformed and mouse tumor cell lines were all found to contain less than 100 ng mouse plasminogen/mg of cell extract protein. Thus, if the plasminogen activator/plasmin system is important in the growth or movement of this group of tumor cells, the cells will be dependent upon the circulatory system of the host for their plasminogen supply. (Auth.)

  8. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression.

    Science.gov (United States)

    Tsai, Shih-Jen

    2017-12-22

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Furthermore, the neurotrophic hypothesis of depression postulates that compromised neurotrophin brain-derived neurotrophic factor (BDNF) function is directly involved in the pathophysiology of depression. In the brain, the proteolytic cleavage of proBDNF, a BDNF precursor, to mature BDNF through plasmin represents one mechanism that can change the direction of BDNF action. We also discuss the implications of tissue-type plasminogen activator and plasminogen activator inhibitor-1 alterations as biomarkers for major depressive disorder. Using drugs that increase tissue-type plasminogen activator or decrease plasminogen activator inhibitor-1 levels may open new avenues to develop conceptually novel therapeutic strategies for depression treatment.

  9. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays.

    Directory of Open Access Journals (Sweden)

    Marlien Pieters

    Full Text Available Due to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable on various plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays. Blood samples were collected from 151 individuals and centrifuged at 352 and 1500 g to obtain plasma with varying numbers of platelet. In a follow-up study, blood samples were collected from an additional 23 individuals, from whom platelet-poor (2000 g, platelet-containing (352 g and platelet-rich plasma (200 g were prepared and analysed as fresh-frozen and after five defrost-refreeze cycles (to determine the contribution of in vitro platelet degradation. Plasminogen activator inhibitor-1 activity, plasminogen activator inhibitor-1 antigen, tissue plasminogen activator/plasminogen activator inhibitor-1 complex, plasma clot lysis time, β-thromboglobulin and plasma platelet count were analysed. Platelet α-granule release (plasma β-thromboglobulin showed a significant association with plasminogen activator inhibitor-1 antigen levels but weak associations with plasminogen activator inhibitor-1 activity and a functional marker of fibrinolysis, clot lysis time. Upon dividing the study population into quartiles based on β-thromboglobulin levels, plasminogen activator inhibitor-1 antigen increased significantly across the quartiles while plasminogen activator inhibitor-1 activity and clot lysis time tended to increase in the 4th quartile only. In the follow-up study, plasma plasminogen activator inhibitor-1 antigen was also significantly influenced by platelet count in a concentration-dependent manner. Plasma plasminogen activator inhibitor-1 antigen levels increased further after complete platelet degradation. Residual platelets in plasma significantly influence plasma plasminogen activator inhibitor-1 antigen levels mainly

  10. Role of tissue-type plasminogen activator and plasminogen activator inhibitor-1 in psychological stress and depression

    OpenAIRE

    Tsai, Shih-Jen

    2017-01-01

    Major depressive disorder is a common illness worldwide, but the pathogenesis of the disorder remains incompletely understood. The tissue-type plasminogen activator-plasminogen proteolytic cascade is highly expressed in the brain regions involved in mood regulation and neuroplasticity. Accumulating evidence from animal and human studies suggests that tissue-type plasminogen activator and its chief inhibitor, plasminogen activator inhibitor-1, are related to stress reaction and depression. Fur...

  11. The effects of residual platelets in plasma on plasminogen activator inhibitor-1 and plasminogen activator inhibitor-1-related assays

    NARCIS (Netherlands)

    M. Pieters (Marlien); S.A. Barnard (Sunelle A.); D.T. Loots (Du Toit); D.C. Rijken (Dingeman)

    2017-01-01

    textabstractDue to controversial evidence in the literature pertaining to the activity of plasminogen activator inhibitor-1 in platelets, we examined the effects of residual platelets present in plasma (a potential pre-analytical variable) on various plasminogen activator inhibitor-1 and plasminogen

  12. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor

    DEFF Research Database (Denmark)

    Behrendt, Niels; List, Karin; Andreasen, Peter A

    2003-01-01

    The reciprocal pro-enzyme activation system of plasmin, urokinase-type plasminogen activator (uPA) and their respective zymogens is a potent mechanism in the generation of extracellular proteolytic activity. Plasminogen activator inhibitor type 1 (PAI-1) acts as a negative regulator. This system...... is complicated by a poorly understood intrinsic reactivity of the uPA pro-enzyme (pro-uPA) before proteolytic activation, directed against both plasminogen and PAI-1. We have studied the integrated activation mechanism under the repression of PAI-1 in a purified system. A covalent reaction between pro...

  13. Plasminogen and angiostatin interact with heat shock proteins.

    Science.gov (United States)

    Dudani, Anil K; Mehic, Jelica; Martyres, Anthony

    2007-06-01

    Previous studies from this laboratory have demonstrated that plasminogen and angiostatin bind to endothelial cell (EC) surface-associated actin via their kringles in a specific manner. Heat shock proteins (hsps) like hsp 27 are constitutively expressed by vascular ECs and regulate actin polymerization, cell growth, and migration. Since many hsps have also been found to be highly abundant on cell surfaces and there is evidence that bacterial surface hsps may interact with human plasminogen, the purpose of this study was to determine whether human plasminogen and angiostatin would interact with human hsps. ELISAs were developed in our laboratory to assess these interactions. It was observed that plasminogen bound to hsps 27, 60, and 70. In all cases, binding was inhibited (85-90%) by excess (50 mM) lysine indicating kringle involvement. Angiostatin predominantly bound to hsp 27 and to hsp 70 in a concentration- and kringle-dependent manner. As observed previously for actin, there was concentration-dependent inhibition of angiostatin's interaction with hsp 27 by plasminogen. In addition, 30-fold molar excess actin inhibited (up to 50%), the interaction of plasminogen with all hsps. However, 30-fold molar excess actin could only inhibit the interaction of angiostatin with hsp 27 by 15-20%. Collectively, these data indicate that (i) while plasminogen interacts specifically with hsp 27, 60, and 70, angiostatin interacts predominantly with hsp 27 and to some extent with hsp 70; (ii) plasminogen only partially displaces angiostatin's binding to hsp 27 and (iii) actin only partially displaces plasminogen/angiostatin binding to hsps. It is conceivable therefore that surface-associated hsps could mediate the binding of these ligands to cells like ECs.

  14. Plasminogen stimulates propagation of protease-resistant prion protein in vitro.

    Science.gov (United States)

    Mays, Charles E; Ryou, Chongsuk

    2010-12-01

    To clarify the role of plasminogen as a cofactor for prion propagation, we conducted functional assays using a cell-free prion protein (PrP) conversion assay termed protein misfolding cyclic amplification (PMCA) and prion-infected cell lines. Here, we report that plasminogen stimulates propagation of the protease-resistant scrapie PrP (PrP(Sc)). Compared to control PMCA conducted without plasminogen, addition of plasminogen in PMCA using wild-type brain material significantly increased PrP conversion, with an EC(50) = ∼56 nM. PrP conversion in PMCA was substantially less efficient with plasminogen-deficient brain material than with wild-type material. The activity stimulating PrP conversion was specific for plasminogen and conserved in its kringle domains. Such activity was abrogated by modification of plasminogen structure and interference of PrP-plasminogen interaction. Kinetic analysis of PrP(Sc) generation demonstrated that the presence of plasminogen in PMCA enhanced the PrP(Sc) production rate to ∼0.97 U/μl/h and reduced turnover time to ∼1 h compared to those (∼0.4 U/μl/h and ∼2.5 h) obtained without supplementation. Furthermore, as observed in PMCA, plasminogen and kringles promoted PrP(Sc) propagation in ScN2a and Elk 21(+) cells. Our results demonstrate that plasminogen functions in stimulating conversion processes and represents the first cellular protein cofactor that enhances the hypothetical mechanism of prion propagation.

  15. Characterization of tissue plasminogen activator binding proteins isolated from endothelial cells and other cell types

    International Nuclear Information System (INIS)

    Beebe, D.P.; Wood, L.L.; Moos, M.

    1990-01-01

    Human tissue plasminogen activator (t-PA) was shown to bind specifically to human osteosarcoma cells (HOS), and human epidermoid carcinoma cells (A-431 cells). Crosslinking studies with DTSSP demonstrated high molecular weight complexes (130,000) between 125 I-t-PA and cell membrane protein on human umbilical vein endothelial cells (HUVEC), HOS, and A-431 cells. A 48-65,000 molecular weight complex was demonstrated after crosslinking t-PA peptide (res. 7-20) to cells. Ligand blotting of cell lysates which had been passed over a t-PA affinity column revealed binding of t-PA to 54,000 and 95,000 molecular weight proteins. Several t-PA binding proteins were identified in immunopurified cell lysates, including tubulin beta chain, plasminogen activator inhibitor type 1 and single chain urokinase

  16. The X-ray Crystal Structure of Full-Length Human Plasminogen

    Directory of Open Access Journals (Sweden)

    Ruby H.P. Law

    2012-03-01

    Full Text Available Plasminogen is the proenzyme precursor of the primary fibrinolytic protease plasmin. Circulating plasminogen, which comprises a Pan-apple (PAp domain, five kringle domains (KR1-5, and a serine protease (SP domain, adopts a closed, activation-resistant conformation. The kringle domains mediate interactions with fibrin clots and cell-surface receptors. These interactions trigger plasminogen to adopt an open form that can be cleaved and converted to plasmin by tissue-type and urokinase-type plasminogen activators. Here, the structure of closed plasminogen reveals that the PAp and SP domains, together with chloride ions, maintain the closed conformation through interactions with the kringle array. Differences in glycosylation alter the position of KR3, although in all structures the loop cleaved by plasminogen activators is inaccessible. The ligand-binding site of KR1 is exposed and likely governs proenzyme recruitment to targets. Furthermore, analysis of our structure suggests that KR5 peeling away from the PAp domain may initiate plasminogen conformational change.

  17. Does plasminogen activator inhibitor-1 drive lymphangiogenesis?

    DEFF Research Database (Denmark)

    Bruyère, Françoise; Melen-Lamalle, Laurence; Blacher, Silvia

    2010-01-01

    The purpose of this study is to explore the function of plasminogen activator inhibitor-1 (PAI-1) during pathological lymphangiogenesis. PAI-1, the main physiological inhibitor of plasminogen activators is involved in pathological angiogenesis at least by controlling extracellular proteolysis and...

  18. Cloning and expression of the receptor for human urokinase plasminogen activator, a central molecule in cell surface, plasmin dependent proteolysis

    DEFF Research Database (Denmark)

    Roldan, A.L.; Cubellis, M.V.; Masucci, M.T.

    1990-01-01

    , and therefore the capacity of cells to migrate and invade neighboring tissues. We have isolated a 1.4 kb cDNA clone coding for the entire human uPAR. An oligonucleotide synthesized on the basis of the N-terminal sequence of the purified protein was used to screen a cDNA library made from SV40 transformed human......, a size very close to that of the cloned cDNA. Expression of the uPAR cDNA in mouse cells confirms that the clone is complete and expresses a functional uPA binding protein, located on the cell surface and with properties similar to the human uPAR. Caseinolytic plaque assay, immunofluorescence analysis......The surface receptor for urokinase plasminogen activator (uPAR) has been recognized in recent years as a key molecule in regulating plasminogen mediated extracellular proteolysis. Surface plasminogen activation controls the connections between cells, basement membrane and extracellular matrix...

  19. Composite membrane with integral rim

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2015-01-27

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  20. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  1. Stability of the octameric structure affects plasminogen-binding capacity of streptococcal enolase.

    Directory of Open Access Journals (Sweden)

    Amanda J Cork

    Full Text Available Group A Streptococcus (GAS is a human pathogen that has the potential to cause invasive disease by binding and activating human plasmin(ogen. Streptococcal surface enolase (SEN is an octameric α-enolase that is localized at the GAS cell surface. In addition to its glycolytic role inside the cell, SEN functions as a receptor for plasmin(ogen on the bacterial surface, but the understanding of the molecular basis of plasmin(ogen binding is limited. In this study, we determined the crystal and solution structures of GAS SEN and characterized the increased plasminogen binding by two SEN mutants. The plasminogen binding ability of SENK312A and SENK362A is ~2- and ~3.4-fold greater than for the wild-type protein. A combination of thermal stability assays, native mass spectrometry and X-ray crystallography approaches shows that increased plasminogen binding ability correlates with decreased stability of the octamer. We propose that decreased stability of the octameric structure facilitates the access of plasmin(ogen to its binding sites, leading to more efficient plasmin(ogen binding and activation.

  2. Treating domestic sewage by Integrated Inclined-Plate-Membrane bio-reactor

    Science.gov (United States)

    Song, Li Ming; Wang, Zi; Chen, Lei; Zhong, Min; Dong, Zhan Feng

    2017-12-01

    Membrane fouling shorten the service life of the membrane and increases aeration rate for membrane surface cleaning. Two membrane bio-reactors, one for working and another for comparing, were set up to evaluate the feasibility of alleviating membrane fouling and improving wastewater treatment efficiency by integrating inclined-plate precipitation and membrane separation. The result show that: (1) Inclined-plate in reactor had a good effect on pollutant removal of membrane bioreactor. The main role of inclined-plate is dividing reactor space and accelerating precipitation. (2) Working reactor have better performance in COD, TN and TP removal, which can attribute to that working reactor (integrated inclined-plate-Membrane bioreactor) takes both advantages of membrane separation and biological treatment. When influent COD, TP and TN concentration is 163-248 mg/L, 2.08-2.81 mg/L and 24.38-30.49 mg/L in working reactor, effluent concentration is 27-35 mg/L, 0.53-0.59 mg/L and 11.28-11.56 mg/L, respectively. (3) Membrane fouling was well alleviated in integrated inclined-plate-Membrane bioreactor, and membrane normal service time is significantly longer than that in comparing reactor, which can attribute to accelerating precipitation of inclined-plate. In summary, integrated inclined-plate-Membrane bioreactor is a promising technology to alleviating membrane fouling and improving wastewater treatment efficiency, having good performance and bright future in application.

  3. Neutrophil glycoprotein Mo1 is an integral membrane protein of plasma membranes and specific granules

    International Nuclear Information System (INIS)

    Stevenson, K.B.; Nauseef, W.M.; Clark, R.A.

    1987-01-01

    The glucoprotein Mo1 has previously been demonstrated to be on the cell surface and in the specific granule fraction of neutrophils and to be translocated to the cell surface during degranulation. It is not known, however, whether Mo1 is an integral membrane protein or a soluble, intragranular constituent loosely associated with the specific granule membrane. Purified neutrophils were disrupted by nitrogen cavitation and separated on Percoll density gradients into four fractions enriched for azurophilic granules, specific granules, plasma membrane, and cytosol, respectively. The glycoproteins in these fractions were labeled with 3 H-borohydride reduction, extracted with Triton X-114, and immunoprecipitated with 60.3, an anti-Mo1 monoclonal antibody. Mo1 was detected only in the specific granule and plasma membrane fractions and partitioned exclusively into the detergent-rich fraction consistent with Mo1 being an integral membrane protein. In addition, treatment of specific granule membranes with a high salt, high urea buffer to remove adsorbed or peripheral proteins failed to dissociate Mo1. These data support the hypothesis that Mo1 is an integral membrane protein of plasma and specific granule membranes in human neutrophils

  4. Escherichia coli lipoprotein binds human plasminogen via an intramolecular domain

    Directory of Open Access Journals (Sweden)

    Tammy eGonzalez

    2015-10-01

    Full Text Available Escherichia coli lipoprotein (Lpp is a major cellular component that exists in two distinct states, bound-form and free-form. Bound-form Lpp is known to interact with the periplasmic bacterial cell wall, while free-form Lpp is localized to the bacterial cell surface. A function for surface-exposed Lpp has yet to be determined. We hypothesized that the presence of C-terminal lysines in the surface-exposed region of Lpp would facilitate binding to the host zymogen plasminogen, a protease commandeered by a number of clinically important bacteria. Recombinant Lpp was synthesized and the binding of Lpp to plasminogen, the effect of various inhibitors on this binding, and the effects of various mutations of Lpp on Lpp-plasminogen interactions were examined. Additionally, the ability of Lpp-bound plasminogen to be converted to active plasmin was analyzed. We determined that Lpp binds plasminogen via an atypical domain located near the center of mature Lpp that may not be exposed on the surface of intact E. coli according to the current localization model. Finally, we found that plasminogen bound by Lpp can be converted to active plasmin. While the consequences of Lpp binding plasminogen are unclear, these results prompt further investigation of the ability of surface exposed Lpp to interact with host molecules such as extracellular matrix components and complement regulators, and the role of these interactions in infections caused by E. coli and other bacteria.

  5. Organic membrane photonic integrated circuits (OMPICs).

    Science.gov (United States)

    Amemiya, Tomohiro; Kanazawa, Toru; Hiratani, Takuo; Inoue, Daisuke; Gu, Zhichen; Yamasaki, Satoshi; Urakami, Tatsuhiro; Arai, Shigehisa

    2017-08-07

    We propose the concept of organic membrane photonic integrated circuits (OMPICs), which incorporate various functions needed for optical signal processing into a flexible organic membrane. We describe the structure of several devices used within the proposed OMPICs (e.g., transmission lines, I/O couplers, phase shifters, photodetectors, modulators), and theoretically investigate their characteristics. We then present a method of fabricating the photonic devices monolithically in an organic membrane and demonstrate the operation of transmission lines and I/O couplers, the most basic elements of OMPICs.

  6. Seahorse-derived peptide suppresses invasive migration of HT1080 fibrosarcoma cells by competing with intracellular α-enolase for plasminogen binding and inhibiting uPA-mediated activation of plasminogen.

    Science.gov (United States)

    Kim, Yong-Tae; Kim, Se-kwon; Jeon, You-Jin; Park, Sun Joo

    2014-12-01

    α-Enolase is a glycolytic enzyme and a surface receptor for plasminogen. α-Enolase-bound plasminogen promotes tumor cell invasion and cancer metastasis by activating plasmin and consequently degrading the extracellular matrix degradation. Therefore, α-enolase and plasminogen are novel targets for cancer therapy. We found that the amino acid sequence of a peptide purified from enzymatic hydrolysates of seahorse has striking similarities to that of α-enolase. In this study, we report that this peptide competes with cellular α-enolase for plasminogen binding and suppresses urokinase plasminogen activator (uPA)-mediated activation of plasminogen, which results in decreased invasive migration of HT1080 fibrosarcoma cells. In addition, the peptide treatment decreased the expression levels of uPA compared to that of untreated controls. These results provide new insight into the mechanism by which the seahorse-derived peptide suppresses invasive properties of human cancer cells. Our findings suggest that this peptide could emerge as a potential therapeutic agent for cancer.

  7. Canine Plasminogen: Spectral Responses to Changes in 6-Aminohexanoate and Temperature

    Directory of Open Access Journals (Sweden)

    Jack A. Kornblatt

    2007-01-01

    Full Text Available We studied the near UV absorption spectrum of canine plasminogen. There are 19 tryptophans, 19 phenylalanines and 34 tyrosines in the protein. 4th derivative spectra optimized for either tryptophan or tyrosine give a measure of the polarity of the environments of these two aromatic amino acids. Plasminogen at temperatures between 0 °C and 37 °C exists as a mixture of four conformations: closed-relaxed, open-relaxed, closed-compact, and open-compact. The closed to open transition is driven by addition of ligand to a site on the protein. The relaxed to compact transition is driven by increasing temperature from 0 °C to above 15–20 °C.When the conformation of plasminogen is mainly closed-relaxed, the 4th derivative spectra suggest that the average tryptophan environment is similar to a solution of 20% methanol at the same temperature. Under the same conditions, 4th derivative spectra suggest that the average tyrosine environment is similar to water. These apparent polarities change as the plasminogen is forced to assume the other conformations. We try to rationalize the information based on the known portions of the plasminogen structure.Abbreviations: 6-AH: 6-aminohexanoate, a homolog of lysine; DPGN: dog plasminogen; HPGN: human plasminogen. NTP: the N-terminal peptide of DPGN (It consists of the fi rst 77 amino acids in the protein.

  8. Photonic Activation of Plasminogen induced by low dose UVB

    DEFF Research Database (Denmark)

    Correia, Manuel Guiherme L.P. Marins; Snabe, Torben; Thiagarajan, Viruthachalam

    2015-01-01

    that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å......). Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase...

  9. Characterization of a plasminogen activator from human melanoma cells cultured in vitro

    International Nuclear Information System (INIS)

    Heussen, C.

    1982-08-01

    This thesis describes the work that have been done on the isolation and characterization of a plasminogen activator, Mel-PA, that is released by human melanoma cells cultured in vitro. This enzyme was compared to the urinary plasminogen activator, urokinase. The human melanoma cell line released large amounts of Mel-PA into the surrounding medium when cultured under serum-free conditions. These cells released only one type of plasminogen activator. A technique was developed in which plasminogen activators were seperated electrophoretically and detected in polyacrylamide gel slabs. Mel-PA was concentrated and partially purified by affinity chromatography on benzamidine-sepharose. A study of the distribution of plasminogen activators in tissues and body fluids showed that all mammals examined had two immunochemically distinct plasminogen activators that corresponded, in their distribution, to the urokinase-like and Mel-PA like enzymes of man. A comparitive study of the kinetic behaviour of Mel-PA and urokinase showed numerous differences between the catalytic activities of these two enzymes

  10. Glu- and Lys-forms of plasminogen differentially affect phosphatidylserine exposure on the platelet surface

    Directory of Open Access Journals (Sweden)

    D. D. Zhernossekov

    2017-04-01

    Full Text Available Plasminogen/plasmin system is known for its ability to support hemostatic balance of blood. However, plasminogen may be considered as an adhesive ligand and in this way could affect the functioning of blood cells. We showed that exogenous Lys-plasminogen, but not its Glu-form, inhibited platelet aggregation and suppressed platelet α-granule secretion. The aim of this work was to investigate the influence of Glu- and Lys-form of plasminogen on the formation of platelet procoagulant surface using phosphatidylserine exposure as a marker. Human platelets were obtained from human platelet-rich plasma (donors were healthy volunteers, men aged 30-40 years by gel-filtration on Sepharose 2B. Phosphatidylserine exposure on the platelet surface was evaluated by flow cytometry with FITC-conjugated annexin A5. Glu- and Lys-plasminogen have different impact on the platelet functioning. Exogenous Lys-plasminogen has no significant effect on phosphatidylserine exposure, while Glu-plasminogen increases phosphatidylserine exposure on the surface of thrombin- and collagen-activated human platelets. Glu-plasminogen can be considered as a co-stimulator of agonist-induced platelet secretion and procoagulant surface formation. Meanwhile effects of Lys-plasminogen are probably directed at platelet-platelet interactions and not related to agonist-stimulated pro-apoptotic changes. The observed different effects of Glu- and Lys-plasminogen on phosphatidylserine exposure can be explained by their structural peculiarities.

  11. Plasminogen and angiostatin levels in female benign breast lesions

    Directory of Open Access Journals (Sweden)

    A. A. Tykhomyrov

    2015-10-01

    Full Text Available It is known that benign breast tissue exhibit relatively low angiogenic capacity. Activation of angiogenesis in mammary pre-malignant lesions could be associated with disease progression and high risk of transformation into the breast cancer. However, insight into the underlying molecular mechanisms involved in angiogenesis regulation in non-cancerous breast pathologies is still poorly defined. The purpose of the present study was to determine levels of plasminogen and its proteolytic fragments (angiostatins in mammary dysplasia (mastopathy and breast cyst and benign neoplasms (fibroadenomas. Plasminogen and angiostatins were analyzed using immunoblotting and quantified by densitometric scanning. The significant increase in plasminogen levels was found in fibrocystic, cysts, and non-proliferatious fibroadenoma masses (4.7-, 3.7-, and 3.5-fold, respectively compared to healthy breast tissues (control. In the same benign lesions, 6.7-, 4-, and 3.7-fold increase in plasminogen 50 kDa fragment (angiostatin levels as compared with control were also observed. Activation of matrix metalloproteinase-9, which was detected using gelatine zymography, could be responsible for plasminogen cleavage and abundance of angiostatin in fibrocystic and cyst masses. In contrast, dramatic decrease of both plasminogen and angiostatin levels (3.8- and 5.3-folds, respectively was shown in tissues of proliferatious form of fibroadenoma in comparison with that of the dormant type of this neoplasm. Based on the obtained results, we concluded that angiostatin, a potent vessel growth inhibitor and anti-inflammatory molecule, can play a crucial role in pathophysiology of non-cancerous breast diseases. Further studies are needed to evaluate potential diagnostic and clinical implications of these proteins for prediction and therapy of benign breast pathologies.

  12. Measurement of human tissue-type plasminogen activator by a two-site immunoradiometric assay

    International Nuclear Information System (INIS)

    Rijken, D.C.; Juhan-Vague, I.; De Cock, F.; Collen, D.

    1983-01-01

    A two-site immunoradiometric assay for human extrinsic (tissue-type) plasminogen activator was developed by using rabbit antibodies raised against plasminogen activator purified from human melanoma cell culture fluid. Samples of 100 μl containing 1 to 100 ng/ml plasminogen activator were incubated in the wells of polyvinyl chloride microtiter plates coated with antibody. The amount of bound extrinsic plasminogen activator was quantitated by the subsequent binding of 125 I-labeled affinospecific antibody. The mean level of plasma samples taken at rest was 6.6 +/- 2.9 ng/ml (n = 54). This level increased approximately threefold by exhaustive physical exercise, venous occlusion, or infusion of DDAVP. Extrinsic plasminogen activator in plasma is composed of a fibrin-adsorbable and active component (1.9 +/- 1.1 ng/ml, n = 54, in resting conditions) and an inactive component that does not bind to a fibrin clot (probably extrinsic plasminogen activator-proteinase inhibitor complexes). The fibrin-adsorbable fraction increased approximately fivefold to eightfold after physical exercise, venous occlusion, or DDAVP injections. Potential applications of the immunoradiometric assay are illustrated by the measurement of extrinsic plasminogen activator in different tissue extracts, body fluids, and cell culture fluids and in oocyte translation products after injection with mRNA for plasminogen activator

  13. An Integrated Membrane Process for Butenes Production

    Directory of Open Access Journals (Sweden)

    Leonardo Melone

    2016-11-01

    Full Text Available Iso-butene is an important material for the production of chemicals and polymers. It can take part in various chemical reactions, such as hydrogenation, oxidation and other additions owing to the presence of a reactive double bond. It is usually obtained as a by-product of a petroleum refinery, by Fluidized Catalytic Cracking (FCC of naphtha or gas-oil. However, an interesting alternative to iso-butene production is n-butane dehydroisomerization, which allows the direct conversion of n-butane via dehydrogenation and successive isomerization. In this work, a simulation analysis of an integrated membrane system is proposed for the production and recovery of butenes. The dehydroisomerization of n-butane to iso-butene takes place in a membrane reactor where the hydrogen is removed from the reaction side with a Pd/Ag alloys membrane. Afterwards, the retentate and permeate post-processing is performed in membrane separation units for butenes concentration and recovery. Four different process schemes are developed. The performance of each membrane unit is analyzed by appropriately developed performance maps, to identify the operating conditions windows and the membrane permeation properties required to maximize the recovery of the iso-butene produced. An analysis of integrated systems showed a yield of butenes higher than the other reaction products with high butenes recovery in the gas separation section, with values of molar concentration between 75% and 80%.

  14. Levels of plasminogen activator inhibitor type 1 and urokinase plasminogen activator receptor in non-small cell lung cancer as measured by quantitative ELISA and semiquantitative immunohistochemistry

    DEFF Research Database (Denmark)

    Pappot, Helle; Skov, Birgit Guldhammer; Pyke, Charles

    1997-01-01

    The components of the plasminogen activation system have been reported to have prognostic impact in several cancer types, e.g. breast-, colon-, gastric- and lung cancer. Most of these studies have used quantification by enzyme-linked immunosorbent assay (ELISA) on tumour tissue extracts. However......, results in non-small cell lung cancer (NSCLC) studies obtained by quantitative ELISA and semiquantitative immunohistochemistry differ. If the prognostic value of the components of the plasminogen activation system is to be exploited clinically in the future, it is important to choose an easy and valid...... methodology. In the present study we investigated levels of plasminogen activator inhibitor type 1 (PAI-I) and urokinase plasminogen activator receptor (uPAR), as quantitated by ELISA in tumour extracts from 64 NSCLC patients (38 squamous cell carcinomas, 26 adenocarcinomas), and compared them to staining...

  15. InP membrane on silicon integration technology

    NARCIS (Netherlands)

    Smit, M.K.

    2013-01-01

    Integration of light sources in silicon photonics is usually done with an active InP-based layer stack on a silicon-based photonic circuit-layer. InP Membrane On Silicon (IMOS) technology integrates all functionality in a single InP-based layer.

  16. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 in breast cancer - correlation with traditional prognostic factors

    Directory of Open Access Journals (Sweden)

    Lampelj Maja

    2015-12-01

    Full Text Available Background. Urokinase plasminogen activator (uPA and plasminogen activator inhibitor type-1 (PAI-1 play a key role in tumour invasion and metastasis. High levels of both proteolytic enzymes are associated with poor prognosis in breast cancer patients. The purpose of this study was to evaluate the correlation between traditional prognostic factors and uPA and PAI-1 expression in primary tumour of breast cancer patients.

  17. Surface-associated plasminogen binding of Cryptococcus neoformans promotes extracellular matrix invasion.

    Directory of Open Access Journals (Sweden)

    Jamal Stie

    2009-06-01

    Full Text Available The fungal pathogen Cryptococcus neoformans is a leading cause of illness and death in persons with predisposing factors, including: malignancies, solid organ transplants, and corticosteroid use. C. neoformans is ubiquitous in the environment and enters into the lungs via inhalation, where it can disseminate through the bloodstream and penetrate the central nervous system (CNS, resulting in a difficult to treat and often-fatal infection of the brain, called meningoencephalitis. Plasminogen is a highly abundant protein found in the plasma component of blood and is necessary for the degradation of fibrin, collagen, and other structural components of tissues. This fibrinolytic system is utilized by cancer cells during metastasis and several pathogenic species of bacteria have been found to manipulate the host plasminogen system to facilitate invasion of tissues during infection by modifying the activation of this process through the binding of plasminogen at their surface.The invasion of the brain and the central nervous system by penetration of the protective blood-brain barrier is a prerequisite to the establishment of meningoencephalitis by the opportunistic fungal pathogen C. neoformans. In this study, we examined the ability of C. neoformans to subvert the host plasminogen system to facilitate tissue barrier invasion. Through a combination of biochemical, cell biology, and proteomic approaches, we have shown that C. neoformans utilizes the host plasminogen system to cross tissue barriers, providing support for the hypothesis that plasminogen-binding may contribute to the invasion of the blood-brain barrier by penetration of the brain endothelial cells and underlying matrix. In addition, we have identified the cell wall-associated proteins that serve as plasminogen receptors and characterized both the plasminogen-binding and plasmin-activation potential for this significant human pathogen.The results of this study provide evidence for the

  18. Pivotal role of tissue plasminogen activator in the mechanism of action of electroconvulsive therapy.

    Science.gov (United States)

    Hoirisch-Clapauch, Silvia; Mezzasalma, Marco A U; Nardi, Antonio E

    2014-02-01

    Electroconvulsive therapy is an important treatment option for major depressive disorders, acute mania, mood disorders with psychotic features, and catatonia. Several hypotheses have been proposed as electroconvulsive therapy's mechanism of action. Our hypothesis involves many converging pathways facilitated by increased synthesis and release of tissue-plasminogen activator. Human and animal experiments have shown that tissue-plasminogen activator participates in many mechanisms of action of electroconvulsive therapy or its animal variant, electroconvulsive stimulus, including improved N-methyl-D-aspartate receptor-mediated signaling, activation of both brain-derived neurotrophic factor and vascular endothelial growth factor, increased bioavailability of zinc, purinergic release, and increased mobility of dendritic spines. As a result, tissue-plasminogen activator helps promote neurogenesis in limbic structures, modulates synaptic transmission and plasticity, improves cognitive function, and mediates antidepressant effects. Notably, electroconvulsive therapy seems to influence tissue-plasminogen activator metabolism. For example, electroconvulsive stimulus increases the expression of glutamate decarboxylase 65 isoform in γ-aminobutyric acid-releasing neurons, which enhances the release of tissue-plasminogen activator, and the expression of p11, a protein involved in plasminogen and tissue-plasminogen activator assembling. This paper reviews how electroconvulsive therapy correlates with tissue-plasminogen activator. We suggest that interventions aiming at increasing tissue-plasminogen activator levels or its bioavailability - such as daily aerobic exercises together with a carbohydrate-restricted diet, or normalization of homocysteine levels - be evaluated in controlled studies assessing response and remission duration in patients who undergo electroconvulsive therapy.

  19. The nature of interactions between tissue-type plasminogen activator and platelets

    International Nuclear Information System (INIS)

    Torr, S.R.; Winters, K.J.; Santoro, S.A.; Sobel, B.E.

    1990-01-01

    To elucidate interactions responsible for inhibition of aggregation of platelets in platelet-rich plasma (PRP) harvested from whole blood preincubated with t-PA, experiments were performed with PRP and washed platelets under diverse conditions of preincubation. Both ADP and collagen induced aggregation were inhibited in PRP unless aprotinin had been added to the preincubated whole blood concomitantly with t-PA. However, in washed platelets prepared after the same exposure aggregation was intact. When washed platelets were supplemented with fibrinogen degradation products (FDPs) in concentrations simulating those in whole blood preincubated with t-PA, aggregation induced with either ADP or collagen was inhibited. Thus, the inhibition in PRP depended on generation of FDPs by activated plasminogen. The functional integrity of surface glycoprotein (GP) IIb/IIIa receptors in washed platelets was documented by autoradiography after SDS-PAGE of surface labeled GPs and by fibrinogen binding despite preincubation of the whole blood or washed platelets themselves with t-PA and plasminogen as long as exogenous calcium (greater than or equal to 0.1 microM) was present. In contrast, when calcium was absent, the platelet GP IIb/IIIa receptor was rendered susceptible to degradation by plasmin, and aggregation was inhibited by preincubation at 37 degrees C even if aprotinin was present when aggregation was being assayed. These observations reconcile disparate results in the literature from studies in vivo and in vitro by demonstrating that inhibition of aggregation of platelets in PRP and in whole blood reflects indirect effects of plasminogen activation rather than direct effects of t-PA or plasmin on the platelets themselves

  20. Photonic activation of plasminogen induced by low dose UVB.

    Directory of Open Access Journals (Sweden)

    Manuel Correia

    Full Text Available Activation of plasminogen to its active form plasmin is essential for several key mechanisms, including the dissolution of blood clots. Activation occurs naturally via enzymatic proteolysis. We report that activation can be achieved with 280 nm light. A 2.6 fold increase in proteolytic activity was observed after 10 min illumination of human plasminogen. Irradiance levels used are in the same order of magnitude of the UVB solar irradiance. Activation is correlated with light induced disruption of disulphide bridges upon UVB excitation of the aromatic residues and with the formation of photochemical products, e.g. dityrosine and N-formylkynurenine. Most of the protein fold is maintained after 10 min illumination since no major changes are observed in the near-UV CD spectrum. Far-UV CD shows loss of secondary structure after illumination (33.4% signal loss at 206 nm. Thermal unfolding CD studies show that plasminogen retains a native like cooperative transition at ~70 ºC after UV-illumination. We propose that UVB activation of plasminogen occurs upon photo-cleavage of a functional allosteric disulphide bond, Cys737-Cys765, located in the catalytic domain and in van der Waals contact with Trp761 (4.3 Å. Such proximity makes its disruption very likely, which may occur upon electron transfer from excited Trp761. Reduction of Cys737-Cys765 will result in likely conformational changes in the catalytic site. Molecular dynamics simulations reveal that reduction of Cys737-Cys765 in plasminogen leads to an increase of the fluctuations of loop 760-765, the S1-entrance frame located close to the active site. These fluctuations affect the range of solvent exposure of the catalytic triad, particularly of Asp646 and Ser74, which acquire an exposure profile similar to the values in plasmin. The presented photonic mechanism of plasminogen activation has the potential to be used in clinical applications, possibly together with other enzymatic treatments for the

  1. Integration of lateral porous silicon membranes into planar microfluidics.

    Science.gov (United States)

    Leïchlé, Thierry; Bourrier, David

    2015-02-07

    In this work, we present a novel fabrication process that enables the monolithic integration of lateral porous silicon membranes into single-layer planar microchannels. This fabrication technique relies on the patterning of local electrodes to guide pore formation horizontally within the membrane and on the use of silicon-on-insulator substrates to spatially localize porous silicon within the channel depth. The feasibility of our approach is studied by current flow analysis using the finite element method and supported by creating 10 μm long mesoporous membranes within 20 μm deep microchannels. The fabricated membranes are demonstrated to be potentially useful for dead-end microfiltration by adequately retaining 300 nm diameter beads while macromolecules such as single-stranded DNA and immunoglobulin G permeate the membrane. The experimentally determined fluidic resistance is in accordance with the theoretical value expected from the estimated pore size and porosity. The work presented here is expected to greatly simplify the integration of membranes capable of size exclusion based separation into fluidic devices and opens doors to the use of porous silicon in planar lab on a chip devices.

  2. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity

    DEFF Research Database (Denmark)

    Nielsen, Søren B; Otzen, Daniel Erik

    2010-01-01

    We have studied the impact of an 18-residue cationic antimicrobial peptide Novicidin (Nc) on the structure and integrity of partially anionic lipid membranes using oriented circular dichroism (OCD), quartz crystal microbalance with dissipation (QCM-D), dual polarization interferometry (DPI......), calcein dye leakage and fluorescence spectroscopy. OCD consistently showed that Nc is bound in an alpha-helical, surface bound state over a range of peptide to lipid (P/L) ratios up to approximately 1:15. Realignment of Nc at higher P/L ratios correlates to loss of membrane integrity as shown by Laurdan...... concentration, probably through formation of transient pores or transient disruption of the membrane integrity, followed by more extensive membrane disintegration at higher P/L ratios....

  3. Selection and characterization of camelid nanobodies towards urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Kaczmarek, Jakub; Skottrup, Peter Durand

    2015-01-01

    Urokinase-type plasminogen activator (uPA) is a trypsin-like serine protease that plays a vital role in extracellular conversion of inactive plasminogen into catalytically active plasmin. Activated plasmin facilitates the release of several proteolytic enzymes, which control processes like perice...

  4. Fibrin-Enhanced Canonical Wnt Signaling Directs Plasminogen Expression in Cementoblasts

    Directory of Open Access Journals (Sweden)

    Saeed Ur Rahman

    2017-11-01

    Full Text Available Cementum is a mineralized layer on the tooth’s root surface and facilitates the biomechanical anchoring of fibrous connective tissues as a part of tooth-supportive complexes. Previously, we observed that OCCM30 cementoblasts cultured on fibrin matrices underwent apoptosis due to fibrin degradation through the expression of proteases. Here, we demonstrated that OCCM30 on fibrin matrices (OCCM30-fibrin enhanced canonical Wnt signaling, which directed to plasminogen expression. The OCCM30-fibrin showed higher levels of Wnt3a expression, nuclear translocation of β-catenin, and T-cell factor (TCF optimal motif (TOP reporter activity than the cells on tissue culture dishes (OCCM30-TCD, indicating that the OCCM30-fibrin enhanced canonical Wnt/β-catenin signaling. Also, OCCM30-fibrin expressed biomineralization-associated markers at higher levels than OCCM30-TCD, of which levels were further increased with LiCl, a Wnt signaling activator. The OCCM30 cementoblasts simultaneously showed that high levels of plasminogen, a critical component of fibrinolysis, were expressed in the OCCM30-fibrin. Activation of canonical Wnt signaling with LiCl treatment or with forced lymphoid enhancer factor 1 (LEF1-expression increased the expression of plasminogen. On the contrary, the inhibition of canonical Wnt signaling with siRNAs against Wnt3a or β-catenin abrogated fibrin-enhanced plasminogen expression. Furthermore, there are three conserved putative response elements for the LEF1/β-catenin complex in the plasminogen proximal promoter regions (−900 to +54. Site-directed mutations and chromatin immunoprecipitation indicated that canonical Wnt signaling directed plasminogen expression. Taken together, this study suggests that fibrin-based materials can modulate functional periodontal formations in controlling cementoblast differentiation and fibrin degradation.

  5. Lysosomal degradation of receptor-bound urokinase-type plasminogen activator is enhanced by its inhibitors in human trophoblastic choriocarcinoma cells

    DEFF Research Database (Denmark)

    Jensen, Poul Henning; Christensen, Erik Ilsø; Ebbesen, P.

    1990-01-01

    We have studied the effect of plasminogen activator inhibitors PAI-1 and PAI-2 on the binding of urokinase-type plasminogen activator (u-PA) to its receptor in the human choriocarcinoma cell line JAR. With 125I-labeled ligands in whole-cell binding assays, both uncomplexed u-PA and u......, with the highest density of grains over the membrane at cell-cell interphases, but, after incubation at 37 degrees C, 17 and 27% of the grains for u-PA and u-PA-PAI-1 complexes, respectively, appeared over lysosomal-like bodies. These findings suggest that the u-PA receptor possesses a clearance function......-PA-inhibitor complexes bound to the receptor with a Kd of approximately 100 pM at 4 degrees C. Transferring the cells to 37 degrees C led to degradation to amino acids of up to 50% of the cell-bound u-PA-inhibitor complexes, whereas the degradation of uncomplexed u-PA was 15%; the remaining ligand was recovered...

  6. Plasminogen alleles influence susceptibility to invasive aspergillosis.

    Directory of Open Access Journals (Sweden)

    Aimee K Zaas

    2008-06-01

    Full Text Available Invasive aspergillosis (IA is a common and life-threatening infection in immunocompromised individuals. A number of environmental and epidemiologic risk factors for developing IA have been identified. However, genetic factors that affect risk for developing IA have not been clearly identified. We report that host genetic differences influence outcome following establishment of pulmonary aspergillosis in an exogenously immune suppressed mouse model. Computational haplotype-based genetic analysis indicated that genetic variation within the biologically plausible positional candidate gene plasminogen (Plg; Gene ID 18855 correlated with murine outcome. There was a single nonsynonymous coding change (Gly110Ser where the minor allele was found in all of the susceptible strains, but not in the resistant strains. A nonsynonymous single nucleotide polymorphism (Asp472Asn was also identified in the human homolog (PLG; Gene ID 5340. An association study within a cohort of 236 allogeneic hematopoietic stem cell transplant (HSCT recipients revealed that alleles at this SNP significantly affected the risk of developing IA after HSCT. Furthermore, we demonstrated that plasminogen directly binds to Aspergillus fumigatus. We propose that genetic variation within the plasminogen pathway influences the pathogenesis of this invasive fungal infection.

  7. Partial amino acid sequence of apolipoprotein(a) shows that it is homologous to plasminogen

    International Nuclear Information System (INIS)

    Eaton, D.L.; Fless, G.M.; Kohr, W.J.; McLean, J.W.; Xu, Q.T.; Miller, C.G.; Lawn, R.M.; Scanu, A.M.

    1987-01-01

    Apolipoprotein(a) [apo(a)] is a glycoprotein with M/sub r/ ∼ 280,000 that is disulfide linked to apolipoprotein B in lipoprotein(a) particles. Elevated plasma levels of lipoprotein(a) are correlated with atherosclerosis. Partial amino acid sequence of apo(a) shows that it has striking homology to plasminogen. Plasminogen is a plasma serine protease zymogen that consists of five homologous and tandemly repeated domains called kringles and a trypsin-like protease domain. The amino-terminal sequence obtained for apo(a) is homologous to the beginning of kringle 4 but not the amino terminus of plasminogen. Apo(a) was subjected to limited proteolysis by trypsin or V8 protease, and fragments generated were isolated and sequenced. Sequences obtained from several of these fragments are highly (77-100%) homologous to plasminogen residues 391-421, which reside within kringle 4. Analysis of these internal apo(a) sequences revealed that apo(a) may contain at least two kringle 4-like domains. A sequence obtained from another tryptic fragment also shows homology to the end of kringle 4 and the beginning of kringle 5. Sequence data obtained from the two tryptic fragments shows homology with the protease domain of plasminogen. One of these sequences is homologous to the sequences surrounding the activation site of plasminogen. Plasminogen is activated by the cleavage of a specific arginine residue by urokinase and tissue plasminogen activator; however, the corresponding site in apo(a) is a serine that would not be cleaved by tissue plasminogen activator or urokinase. Using a plasmin-specific assay, no proteolytic activity could be demonstrated for lipoprotein(a) particles. These results suggest that apo(a) contains kringle-like domains and an inactive protease domain

  8. Mapping the topographic epitope landscape on the urokinase plasminogen activator receptor (uPAR) by surface plasmon resonance and X-ray crystallography

    DEFF Research Database (Denmark)

    Zhao, Baoyu; Gandhi, Sonu; Yuan, Cai

    2015-01-01

    The urokinase-type plasminogen activator receptor (uPAR or CD87) is a glycolipid-anchored membrane protein often expressed in the microenvironment of invasive solid cancers and high levels are generally associated with poor patient prognosis (Kriegbaum et al., 2011 [1]). uPAR is organized as a dy...... of these mAbs by X-ray crystallography alone and in complex with uPAR [deposited in the PDB database as 4QTH and 4QTI, respectively]....

  9. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Determining Human Clot Lysis Time (in vitro with Plasminogen/Plasmin from Four Species (Human, Bovine, Goat, and Swine

    Directory of Open Access Journals (Sweden)

    Omaira Cañas Bermúdez

    2015-05-01

    Full Text Available Cardiovascular disease is the leading cause of death worldwide, including failures in the plasminogen/plasmin system which is an important factor in poor lysis of blood clots. This article studies the fibrinolytic system in four species of mammals, and it identifies human plasminogen with highest thrombolysis efficiency. It examines plasminogen from four species (human, bovine, goat, and swine and identifies the most efficient one in human clot lysis in vitro. All plasminogens were identically purified by affinity chromatography. Human fibrinogen was purified by fractionation with ethanol. The purification of both plasminogen and fibrinogen was characterized by one-dimensional SDS-PAGE (10%. Human clot formation in vitro and its dissolution by plasminogen/plasmin consisted of determining lysis time from clot formation to its dilution. Purification of proteins showed greater than 95% purity, human plasminogen showed greater ability to lyse clot than animal plasminogen. The article concludes that human plasminogen/plasmin has the greatest catalysis and efficiency, as it dissolves human clot up to three times faster than that of irrational species.

  11. Topography of the high-affinity lysine binding site of plasminogen as defined with a specific antibody probe

    International Nuclear Information System (INIS)

    Miles, L.A.; Plow, E.F.

    1986-01-01

    An antibody population that reacted with the high-affinity lysine binding site of human plasminogen was elicited by immunizing rabbits with an elastase degradation product containing kringles 1-3 (EDP I). This antibody was immunopurified by affinity chromatography on plasminogen-Sepharose and elution with 0.2 M 6-aminohexanoic acid. The eluted antibodies bound [ 125 I]EDP I, [ 125 I]Glu-plasminogen, and [ 125 I]Lys-plasminogen in radioimmunoassays, and binding of each ligand was at least 99% inhibited by 0.2 M 6-aminohexanoic acid. The concentrations for 50% inhibition of [ 125 I]EDP I binding by tranexamic acid, 6-aminohexanoic acid, and lysine were 2.6, 46, and l730 μM, respectively. Similar values were obtained with plasminogen and suggested that an unoccupied high-affinity lysine binding site was required for antibody recognition. The antiserum reacted exclusively with plasminogen derivatives containing the EDP I region and did not react with those lacking an EDP I region, or with tissue plasminogen activator or prothrombin, which also contains kringles. By immunoblotting analyses, a chymotryptic degradation product of M/sub r/ 20,000 was derived from EDP I that retained reactivity with the antibody. α 2 -Antiplasmin inhibited the binding of radiolabeled EDP I, Glu-plasminogen, or Lys-plasminogen by the antiserum, suggesting that the recognized site is involved in the noncovalent interaction of the inhibitor with plasminogen. The binding of [ 125 I]EDP I to fibrin was also inhibited by the antiserum. The observations provide independent evidence for the role of the high-affinity lysine binding site in the functional interactions of plasminogen with its primary substrate and inhibitor

  12. Spin chain from membrane and the Neumann-Rosochatius integrable system

    International Nuclear Information System (INIS)

    Bozhilov, P.

    2007-01-01

    We find membrane configurations in AdS 4 xS 7 , which correspond to the continuous limit of the SU(2) integrable spin chain, considered as a limit of the SU(3) spin chain, arising in N=4 SYM in four dimensions, dual to strings in AdS 5 xS 5 . We also discuss the relationship with the Neumann-Rosochatius integrable system at the level of Lagrangians, comparing the string and membrane cases

  13. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  14. Prevotella intermedia stimulates tissue-type plasminogen activator and plasminogen activator inhibitor-2 expression via multiple signaling pathways in human periodontal ligament cells.

    Science.gov (United States)

    Guan, Su-Min; He, Jian-Jun; Zhang, Ming; Shu, Lei

    2011-06-01

    Prevotella intermedia is an important periodontal pathogen that induces various inflammatory and immune responses. In this study, we investigated the effects of P. intermedia on the plasminogen system in human periodontal ligament (hPDL) cells and explored the signaling pathways involved. Using semi-quantitative reverse transcription (RT)-PCR and quantitative real-time RT-qPCR, we demonstrated that P. intermedia challenge increased tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor (PAI)-2 expression in a concentration- and time-dependent manner, but exerted no influence on urokinase-type plasminogen activator and PAI-1mRNA expression in hPDL cells. Prevotella intermedia stimulation also enhanced tPA protein secretion as confirmed by enzyme-linked immunosorbent assay. Western blot results revealed that P. intermedia treatment increased phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38 kinase (p38). ERK, JNK and protein kinase C inhibitors significantly attenuated the P. intermedia-induced tPA and PAI-2 expression. Furthermore, p38 and phosphatidylinositol 3-kinase inhibitors markedly decreased PAI-2 expression, whereas they showed no or little inhibition on tPA expression. In contrast, inhibition of protein kinase A greatly enhanced the upregulatory effect of P. intermedia on tPA and PAI-2 expression. Our results suggest that P. intermedia may contribute to periodontal tissue destruction by upregulating tPA and PAI-2 expression in hPDL cells via multiple signaling pathways. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  15. Plasma soluble urokinase plasminogen activator receptor in children with urinary tract infection

    DEFF Research Database (Denmark)

    Wittenhagen, Per; Andersen, Jesper Brandt; Hansen, Anita

    2011-01-01

    In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection.......In this prospective study we investigated the role of plasma levels of soluble urokinase plasminogen activator receptor (suPAR) in children with urinary tract infection....

  16. Angiostatin generating capacity and anti-tumour effects of D-penicillamine and plasminogen activators.

    NARCIS (Netherlands)

    Groot-Besseling, R. de; Ruers, T.J.M.; Lamers-Elemans, I.L.; Maass, C.N.; Waal, R.M.W. de; Westphal, J.R.

    2006-01-01

    BACKGROUND: Upregulation of endogenous angiostatin levels may constitute a novel anti-angiogenic, and therefore anti-tumor therapy. In vitro, angiostatin generation is a two-step process, starting with the conversion of plasminogen to plasmin by plasminogen activators (PAs). Next, plasmin excises

  17. Affinity purification of recombinant human plasminogen activator ...

    African Journals Online (AJOL)

    Affinity purification of recombinant human plasminogen activator from ... Screening antibody was performed using rhPA milk in an ELISA-elution assay. ... useful for purifying other tPA mutants or other novel recombinant milkderived proteins.

  18. HAMLET interacts with lipid membranes and perturbs their structure and integrity.

    Science.gov (United States)

    Mossberg, Ann-Kristin; Puchades, Maja; Halskau, Øyvind; Baumann, Anne; Lanekoff, Ingela; Chao, Yinxia; Martinez, Aurora; Svanborg, Catharina; Karlsson, Roger

    2010-02-23

    Cell membrane interactions rely on lipid bilayer constituents and molecules inserted within the membrane, including specific receptors. HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of partially unfolded alpha-lactalbumin (HLA) and oleic acid that is internalized by tumor cells, suggesting that interactions with the phospholipid bilayer and/or specific receptors may be essential for the tumoricidal effect. This study examined whether HAMLET interacts with artificial membranes and alters membrane structure. We show by surface plasmon resonance that HAMLET binds with high affinity to surface adherent, unilamellar vesicles of lipids with varying acyl chain composition and net charge. Fluorescence imaging revealed that HAMLET accumulates in membranes of vesicles and perturbs their structure, resulting in increased membrane fluidity. Furthermore, HAMLET disrupted membrane integrity at neutral pH and physiological conditions, as shown by fluorophore leakage experiments. These effects did not occur with either native HLA or a constitutively unfolded Cys-Ala HLA mutant (rHLA(all-Ala)). HAMLET also bound to plasma membrane vesicles formed from intact tumor cells, with accumulation in certain membrane areas, but the complex was not internalized by these vesicles or by the synthetic membrane vesicles. The results illustrate the difference in membrane affinity between the fatty acid bound and fatty acid free forms of partially unfolded HLA and suggest that HAMLET engages membranes by a mechanism requiring both the protein and the fatty acid. Furthermore, HAMLET binding alters the morphology of the membrane and compromises its integrity, suggesting that membrane perturbation could be an initial step in inducing cell death.

  19. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    the influence of membrane fouling. Previously, the REED and fermentation processes have been modeled and investigated separately (Prado- Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated process design and control structure development has been proposed (Prado...... to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  20. Antibiotic modulation of the plasminogen binding ability of viridans group streptococci.

    Science.gov (United States)

    Teles, Cristina; Smith, Andrew; Lang, Sue

    2012-01-01

    The ability of viridans group streptococci to bind human plasminogen and its subsequent activation into plasmin may contribute to the pathogenesis of infective endocarditis (IE) by leading to a decreased stability of the streptococcal vegetation and facilitating dehiscence of emboli. At levels greater than or equal to their MICs, penicillin, vancomycin, and linezolid are efficacious in the treatment of streptococcal endocarditis. However, at sub-MICs, antibiotics can modulate the expression of bacterial genes, including virulence-associated genes, which can have counterproductive effects on the treatment of endocarditis. The effects of 1/8× and 1/4× MICs of penicillin, vancomycin, and linezolid on the plasminogen binding ability of IE isolates Streptococcus mitis 881/956, Streptococcus oralis 12601, and Streptococcus sanguinis 12403 were assessed phenotypically and the expression of plasminogen receptors α-enolase and glyceraldehyde 3-phosphate dehydrogenase of S. oralis 12601 when exposed to 1/4× MIC of penicillin, was analyzed through quantitative reverse transcription (qRT)-PCR. The plasminogen binding ability of S. mitis 881/956 and S. sanguinis 12403 remained unaffected by exposure to sub-MICs of all of the antibiotics tested, while that of S. oralis 12601 was significantly enhanced by all of the antibiotics tested at sub-MICs. qRT-PCR analysis of S. oralis 12601 demonstrated an upregulation of the eno and gapdh genes, indicating an overexpression of plasminogen receptors. These findings suggest that for some endocarditis isolates, the effect of antibiotic sub-MICs, in addition to a reduced antibacterial effect, may influence the clinical response to nonsurgical therapy. It remains difficult to accurately predict isolate responses to sub-MIC antimicrobials since there appears to be interspecies variation.

  1. Performance of integrated bioelectrochemical membrane reactor: Energy recovery, pollutant removal and membrane fouling alleviation

    Science.gov (United States)

    Dong, Yue; He, Weihua; Li, Chao; Liang, Dandan; Qu, Youpeng; Han, Xiaoyu; Feng, Yujie

    2018-04-01

    A novel hybrid bioelectrochemical membrane reactor with integrated microfiltration membrane as the separator between electrodes is developed for domestic wastewater treatment. After accumulation of biofilm, the organic pollutants are mainly degraded in anodic compartment, and microfiltration membrane blocks the adverse leakage of dissolved oxygen from aerated cathodic compartment. The maximum system power output is restricted by gas-water ratio following a Monod-like relationship. Within the tested gas-water ratios ranging from 0.6 to 42.9, the half-saturation constant (KQ) is 5.9 ± 0.9 with a theoretic maximum power density of 20.4 ± 1.0 W m-3. Energy balance analysis indicates an appropriate gas-water ratio regulation (from 2.3 to 28.6) for cathodic compartment is necessary to obtain positive energy output for the system. A maximum net electricity output is 9.09 × 10-3 kWh m-3 with gas-water ratio of 17.1. Notably, the system achieves the chemical oxygen demand removal of 98.3 ± 0.3%, ammonia nitrogen removal of 99.6 ± 0.1%, and total nitrogen removal of 80.0 ± 0.9%. This work verifies an effective integration of microfiltration membrane into bioelectrochemical system as separator for high-quality effluent and provides an insight into the operation and regulation of biocathode system for effective electrical energy output.

  2. High yield cell-free production of integral membrane proteins without refolding or detergents.

    Science.gov (United States)

    Wuu, Jessica J; Swartz, James R

    2008-05-01

    Integral membrane proteins act as critical cellular components and are important drug targets. However, difficulties in producing membrane proteins have hampered investigations of structure and function. In vivo production systems are often limited by cell toxicity, and previous in vitro approaches have required unnatural folding pathways using detergents or lipid solutions. To overcome these limitations, we present an improved cell-free expression system which produces high yields of integral membrane proteins without the use of detergents or refolding steps. Our cell-free reaction activates an Escherichia coli-derived cell extract for transcription and translation. Purified E. coli inner membrane vesicles supply membrane-bound components and the lipid environment required for insertion and folding. Using this system, we demonstrated successful synthesis of two complex integral membrane transporters, the tetracycline pump (TetA) and mannitol permease (MtlA), in yields of 570+/-50 microg/mL and 130+/-30 microg/mL of vesicle-associated protein, respectively. These yields are up to 400 times typical in vivo concentrations. Insertion and folding of these proteins are verified by sucrose flotation, protease digestion, and activity assays. Whereas TetA incorporates efficiently into vesicle membranes with over two-thirds of the synthesized protein being inserted, MtlA yields appear to be limited by insufficient concentrations of a membrane-associated chaperone.

  3. Functional properties of the recombinant kringle-2 domain of tissue plasminogen activator produced in Escherichia coli

    International Nuclear Information System (INIS)

    Wilhelm, O.G.; Jaskunas, S.R.; Vlahos, C.J.; Bang, N.U.

    1990-01-01

    The kringle-2 domain (residues 176-262) of tissue-type plasminogen activator (t-PA) was cloned and expressed in Escherichia coli. The recombinant peptide, which concentrated in cytoplasmic inclusion bodies, was isolated, solubilized, chemically refolded, and purified by affinity chromatography on lysine-Sepharose to apparent homogeneity. [35S]Cysteine-methionine-labeled polypeptide was used to study the interactions of kringle-2 with lysine, fibrin, and plasminogen activator inhibitor-1. The kringle-2 domain bound to lysine-Sepharose and to preformed fibrin with a Kd = 104 +/- 6.2 microM (0.86 +/- 0.012 binding site) and a Kd = 4.2 +/- 1.05 microM (0.80 +/- 0.081 binding site), respectively. Competition experiments and direct binding studies showed that the kringle-2 domain is required for the formation of the ternary t-PA-plasminogen-intact fibrin complex and that the association between the t-PA kringle-2 domain and fibrin does not require plasmin degradation of fibrin and exposure of new COOH-terminal lysine residues. We also observed that kringle-2 forms a complex with highly purified guanidine-activated plasminogen activator inhibitor-1, dissociable by 0.2 M epsilon-aminocaproic acid. The kringle-2 polypeptide significantly inhibited tissue plasminogen activator/plasminogen activator inhibitor-1 interaction. The kringle-2 domain bound to plasminogen activator inhibitor-1 in a specific and saturable manner with a Kd = 0.51 +/- 0.055 microM (0.35 +/- 0.026 binding site). Therefore, the t-PA kringle-2 domain is important for the interaction of t-PA not only with fibrin, but also with plasminogen activator inhibitor-1 and thus represents a key structure in the regulation of fibrinolysis

  4. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    Science.gov (United States)

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Mhp182 (P102) binds fibronectin and contributes to the recruitment of plasmin(ogen) to the Mycoplasma hyopneumoniae cell surface.

    Science.gov (United States)

    Seymour, Lisa M; Jenkins, Cheryl; Deutscher, Ania T; Raymond, Benjamin B A; Padula, Matthew P; Tacchi, Jessica L; Bogema, Daniel R; Eamens, Graeme J; Woolley, Lauren K; Dixon, Nicholas E; Walker, Mark J; Djordjevic, Steven P

    2012-01-01

    Mycoplasma hyopneumoniae is a major, economically damaging respiratory pathogen. Although M. hyopneumoniae cells bind plasminogen, the identification of plasminogen-binding surface proteins and the biological ramifications of acquiring plasminogen requires further investigation. mhp182 encodes a highly expressed 102 kDa protein (P102) that undergoes proteolytic processing to generate surface-located N-terminal 60 kDa (P60) and C-terminal 42 kDa (P42) proteins of unknown function. We show that recombinant P102 (rP102) binds plasminogen at physiologically relevant concentrations (K(D) ~ 76 nM) increasing the susceptibility of plasmin(ogen) to activation by tissue-specific plasminogen activator (tPA). Recombinant proteins constructed to mimic P60 (rP60) and P42 (rP42) also bound plasminogen at physiologically significant levels. M. hyopneumoniae surface-bound plasminogen was activated by tPA and is able to degrade fibrinogen, demonstrating the biological functionality of M. hyopneumoniae-bound plasmin(ogen) upon activation. Plasmin(ogen) was readily detected in porcine ciliated airways and plasmin levels were consistently higher in bronchoalveolar lavage fluid from M. hyopneumoniae-infected animals. Additionally, rP102 and rP42 bind fibronectin with K(D) s of 26 and 33 nM respectively and recombinant P102 proteins promote adherence to porcine kidney epithelial-like cells. The multifunctional binding ability of P102 and activation of M. hyopneumoniae-sequestered plasmin(ogen) by an exogenous activator suggests P102 plays an important role in virulence. © 2011 Blackwell Publishing Ltd.

  6. Immunohistochemical analysis of the gingiva with periodontitis of type I plasminogen deficiency compared to gingiva with gingivitis and periodontitis and healthy gingiva.

    Science.gov (United States)

    Kurtulus Waschulewski, Idil; Gökbuget, Aslan Y; Christiansen, Nina M; Ziegler, Maike; Schuster, Volker; Wahl, Gerhard; Götz, Werner

    2016-12-01

    Type I plasminogen deficiency (Plgdef) is an uncommon chronic inflammation of mucous membranes. Gingival enlargements usually proceed with progressive periodontal destruction and tooth-loss. Plasmin(ogen)-independent enzymatic mechanisms for fibrin clearance have already been discussed in the literature. Our primary objective was to verify, immunohistochemically, the occurrence of different enzymatic factors involved in tissue breakdown of inflamed compared to healthy gingiva. Secondly, we tried to find out, if these patients have a similar microbiological profile to the patients with known gingivitis and periodontitis. Immunohistochemical analysis of enzymes elastase, plasminogen (plg), cathepsin G, matrix-metalloproteinase (MMP)-3 and MMP-7 and of glycoprotein fibrinogen were performed with gingival tissues from 3 healthy controls, 8 patients with Plgdef and 3 patients with gingivitis and periodontitis. Furthermore, plaque from 5 patients with plasminogen deficiency were also obtained to determine the microbiological profile. Significantly high numbers of elastase positive leukocytes were detected in all samples. Staining for MMP-3 and MMP-7 was seen in samples with gingivitis and periodontitis with a stronger staining in samples with periodontitis by Plgdef. Fibrinogen was detectable in all samples. Staining for plg was stronger in samples with periodontitis than in other samples. Staining for cathepsin G was weak in gingivitis and periodontitis. Subgingival microbial flora showed elevated colony forming units of Prevotella intermedia/nigrescens, Fusobacterium spp., Eikenella corrodens, Porphyromonas gingivalis and viridans streptococci. Strong staining of elastase, MMP-3 and MMP-7 and weak staining of plg in Plgdef samples supports the plasmin(ogen) - independent fibrin clearance. Similar subgingival microbiological flora was observed in periodontitis with Plgdef as in other periodontal diseases. Further investigations should determine the exact pathomechanism

  7. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V. A., E-mail: vishal.shah@warwick.ac.uk; Gammon, P. M. [Department of Engineering, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R. [Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chávez-Ángel, E. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Department of Physics, UAB, 08193 Bellaterra (Barcelona) (Spain); Shchepetov, A.; Prunnila, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  8. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    International Nuclear Information System (INIS)

    Shah, V. A.; Gammon, P. M.; Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Chávez-Ángel, E.; Shchepetov, A.; Prunnila, M.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.

    2014-01-01

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm 2 . We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials

  9. Plasminogen fragments K 1-3 and K 5 bind to different sites in fibrin fragment DD.

    Science.gov (United States)

    Grinenko, T V; Kapustianenko, L G; Yatsenko, T A; Yusova, O I; Rybachuk, V N

    2016-01-01

    Specific plasminogen-binding sites of fibrin molecule are located in Аα148-160 regions of C-terminal domains. Plasminogen interaction with these sites initiates the activation process of proenzyme and subsequent fibrin lysis. In this study we investigated the binding of plasminogen fragments K 1-3 and K 5 with fibrin fragment DD and their effect on Glu-plasminogen interaction with DD. It was shown that the level of Glu-plasminogen binding to fibrin fragment DD is decreased by 50-60% in the presence of K 1-3 and K 5. Fragments K 1-3 and K 5 have high affinity to fibrin fragment DD (Kd is 0.02 for K 1-3 and 0.054 μМ for K 5). K 5 interaction is independent and K 1-3 is partly dependent on C-terminal lysine residues. K 1-3 interacts with complex of fragment DD-immobilized K 5 as well as K 5 with complex of fragment DD-immobilized K 1-3. The plasminogen fragments do not displace each other from binding sites located in fibrin fragment DD, but can compete for the interaction. The results indicate that fibrin fragment DD contains different binding sites for plasminogen kringle fragments K 1-3 and K 5, which can be located close to each other. The role of amino acid residues of fibrin molecule Аα148-160 region in interaction with fragments K 1-3 and K 5 is discussed.

  10. Plasminogen activators in inflammation and sepsis.

    Science.gov (United States)

    Pechlaner, Ch

    2002-01-01

    Mortality of severe sepsis remains at 40% to 50%. Intensive efforts over the past two decades have only marginally improved outcome. Improving outcome in sepsis depends on understanding its pathophysiology, which involves triggers, responses of the organism, and dysfunction. Stress, injury, or infection trigger host responses, including local and systemic orchestrated mechanisms. Dysfunction and outcome depend on both trigger and response. Blood coagulation, inflammation, immunity, and fibrinolysis are critical components of the organism's responses. Understanding their role in sepsis pathophysiology is the key to effective treatment. Relevant studies were identified by a systematic literature search, complemented by manual search of individual citations. Using PubMed, 'sepsis' yields more than 62,000 references, 'plasminogen activators' more than 21,000. The selection of citations was guided by preference for reviews that expand important threads of argumentation. Single original studies were included when relevant to critical points. This analytical review describes the essential elements of pathophysiology and the current status of sepsis treatment. Based on this context, an emerging therapeutic option will be discussed: plasminogen activators.

  11. Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity

    DEFF Research Database (Denmark)

    Larsen, Anna Karina; Malinska, Dominika; Koszela-Piotrowska, Izabela

    2012-01-01

    The 25 kDa branched polyethylenimine (PEI) is a highly efficient synthetic polycation used in transfection protocols, but also triggers mitochondrial-mediated apoptotic cell death processes where the mechanistic issues are poorly understood. We now demonstrate that PEI in a concentration- and time......-dependent manner can affect functions (membrane potential, swelling and respiration) and ultrastructural integrity of freshly isolated rat liver mitochondria. The threshold concentration for detection of PEI-mediated impairment of rat liver mitochondrial functions is 3 µg/mL, however, lower PEI levels still exert...... some effects on mitochondrial morphology and respiration, and these may be related to the inherent membrane perturbing properties of this polycation. The PEI-mediated mitochondrial swelling phase is biphasic, with a fast decaying initial period (most prominent from 4 µg/mL PEI) followed by a slower...

  12. Association of lipids with integral membrane surface proteins of Mycoplasma hyorhinis

    International Nuclear Information System (INIS)

    Bricker, T.M.; Boyer, M.J.; Keith, J.; Watson-McKown, R.; Wise, K.S.

    1988-01-01

    Triton X-114 (TX-114)-phase fractionation was used to identify and characterize integral membrane surface proteins of the wall-less procaryote Mycoplasma hyorhinis GDL. Phase fractionation of mycoplasmas followed by analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed selective partitioning of approximately 30 [ 35 S]methionine-labeled intrinsic membrane proteins into the TX-114 phase. Similar analysis of [ 3 H]palmitate-labeled cells showed that approximately 20 proteins of this organism were associated with lipid, all of which also efficiently partitioned as integral membrane components into the detergent phase. Immunoblotting and immunoprecipitation of TX-114-phase proteins from 125 I-surface-labeled cells with four monoclonal antibodies to distinct surface epitopes of M. hyorhinis identified surface proteins p120, p70, p42, and p23 as intrinsic membrane components. Immunoprecipitation of [ 3 H]palmitate-labeled TX-114-phase proteins further established that surface proteins p120, p70, and p23 (a molecule that mediates complement-dependent mycoplasmacidal monoclonal antibody activity) were among the lipid-associated proteins of this organism. Two of these proteins, p120 and p123, were acidic (pI less than or equal to 4.5), as shown by two-dimensional isoelectric focusing. This study established that M. hyorhinis contains an abundance of integral membrane proteins tightly associated with lipids and that many of these proteins are exposed at the external surface of the single limiting plasma membrane. Monoclonal antibodies are reported that will allow detailed analysis of the structure and processing of lipid-associated mycoplasma proteins

  13. Transfer Printed Nanomembranes for Heterogeneously Integrated Membrane Photonics

    Directory of Open Access Journals (Sweden)

    Hongjun Yang

    2015-11-01

    Full Text Available Heterogeneous crystalline semiconductor nanomembrane (NM integration is investigated for single-layer and double-layer Silicon (Si NM photonics, III-V/Si NM lasers, and graphene/Si NM total absorption devices. Both homogeneous and heterogeneous integration are realized by the versatile transfer printing technique. The performance of these integrated membrane devices shows, not only intact optical and electrical characteristics as their bulk counterparts, but also the unique light and matter interactions, such as Fano resonance, slow light, and critical coupling in photonic crystal cavities. Such a heterogeneous integration approach offers tremendous practical application potentials on unconventional, Si CMOS compatible, and high performance optoelectronic systems.

  14. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  15. Reduction of canine plasminogen leads to an expanded molecule which precipitates.

    Directory of Open Access Journals (Sweden)

    Jack A Kornblatt

    Full Text Available Canine plasminogen is made up of seven domains. In each domain there are several cysteines that are linked by disulfide bonds. Reduction of a limited number of the cystines destabilizes the protein such that it precipitates. The bond or bonds that are broken provide about 14 kcal of stabilization energy. Circular dichroism and dynamic light scattering indicate that there is probably an intermediate that is formed prior to precipitation and that the intermediate is somewhat larger than the compact form of plasminogen.

  16. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  17. Thermoelectric integrated membrane evaporation water recovery technology

    Science.gov (United States)

    Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.

    1982-01-01

    The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.

  18. The lysosomal membrane protein SCAV-3 maintains lysosome integrity and adult longevity

    Science.gov (United States)

    Li, Yuan; Chen, Baohui; Zou, Wei; Wang, Xin; Wu, Yanwei; Zhao, Dongfeng; Sun, Yanan; Liu, Yubing

    2016-01-01

    Lysosomes degrade macromolecules and recycle metabolites as well as being involved in diverse processes that regulate cellular homeostasis. The lysosome is limited by a single phospholipid bilayer that forms a barrier to separate the potent luminal hydrolases from other cellular constituents, thus protecting the latter from unwanted degradation. The mechanisms that maintain lysosomal membrane integrity remain unknown. Here, we identified SCAV-3, the Caenorhabditis elegans homologue of human LIMP-2, as a key regulator of lysosome integrity, motility, and dynamics. Loss of scav-3 caused rupture of lysosome membranes and significantly shortened lifespan. Both of these phenotypes were suppressed by reinforced expression of LMP-1 or LMP-2, the C. elegans LAMPs, indicating that longevity requires maintenance of lysosome integrity. Remarkably, reduction in insulin/insulin-like growth factor 1 (IGF-1) signaling suppressed lysosomal damage and extended the lifespan in scav-3(lf) animals in a DAF-16–dependent manner. Our data reveal that SCAV-3 is essential for preserving lysosomal membrane stability and that modulation of lysosome integrity by the insulin/IGF-1 signaling pathway affects longevity. PMID:27810910

  19. Endotoxin induction of an inhibitor of plasminogen activator in bovine pulmonary artery endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-05

    The effects of bacterial lipopolysaccharide (endotoxin) on the fibrinolytic activity of bovine pulmonary artery endothelial cells were examined. Endotoxin suppressed the net fibrinolytic activity of cell extracts and conditioned media in a dose-dependent manner. The effects of endotoxin required at least 6 h for expression. Cell extracts and conditioned media contained a 44-kDa urokinase-like plasminogen activator. Media also contained multiple plasminogen activators with molecular masses of 65-75 and 80-100 kDa. Plasminogen activators in extracts and media were unchanged by treatment of cells with endotoxin. Diisopropyl fluorophosphate (DFP)-abolished fibrinolytic activity of extracts and conditioned media. DFP-treated samples from endotoxin-treated but not untreated cells inhibited urokinase and tissue plasminogen activator, but not plasmin. Inhibitory activity was lost by incubation at pH 3 or heating to 56/sup 0/C for 10 min. These treatments did not affect inhibitory activity of fetal bovine serum. Incubation of /sup 125/I-urokinase with DFP-treated medium from endotoxin-treated cells produced an inactive complex with an apparent molecular mass of 80-85 kDa.

  20. SCM, a novel M-like protein from Streptococcus canis, binds (mini)-plasminogen with high affinity and facilitates bacterial transmigration.

    Science.gov (United States)

    Fulde, Marcus; Rohde, Manfred; Hitzmann, Angela; Preissner, Klaus T; Nitsche-Schmitz, D Patric; Nerlich, Andreas; Chhatwal, Gursharan Singh; Bergmann, Simone

    2011-03-15

    Streptococcus canis is an important zoonotic pathogen capable of causing serious invasive diseases in domestic animals and humans. In the present paper we report the binding of human plasminogen to S. canis and the recruitment of proteolytically active plasmin on its surface. The binding receptor for plasminogen was identified as a novel M-like protein designated SCM (S. canis M-like protein). SPR (surface plasmon resonance) analyses, radioactive dot-blot analyses and heterologous expression on the surface of Streptococcus gordonii confirmed the plasminogen-binding capability of SCM. The binding domain was located within the N-terminus of SCM, which specifically bound to the C-terminal part of plasminogen (mini-plasminogen) comprising kringle domain 5 and the catalytic domain. In the presence of urokinase, SCM mediated plasminogen activation on the bacterial surface that was inhibited by serine protease inhibitors and lysine amino acid analogues. Surface-bound plasmin effectively degraded purified fibrinogen as well as fibrin clots, resulting in the dissolution of fibrin thrombi. Electron microscopic illustration and time-lapse imaging demonstrated bacterial transmigration through fibrinous thrombi. The present study has led, for the first time, to the identification of SCM as a novel receptor for (mini)-plasminogen mediating the fibrinolytic activity of S. canis.

  1. The Complement Binding and Inhibitory Protein CbiA of Borrelia miyamotoi Degrades Extracellular Matrix Components by Interacting with Plasmin(ogen

    Directory of Open Access Journals (Sweden)

    Ngoc T. T. Nguyen

    2018-02-01

    Full Text Available The emerging relapsing fever spirochete Borrelia (B. miyamotoi is transmitted by ixodid ticks and causes the so-called hard tick-borne relapsing fever or B. miyamotoi disease (BMD. More recently, we identified a surface-exposed molecule, CbiA exhibiting complement binding and inhibitory capacity and rendering spirochetes resistant to complement-mediated lysis. To gain deeper insight into the molecular principles of B. miyamotoi-host interaction, we examined CbiA as a plasmin(ogen receptor that enables B. miyamotoi to interact with the serine protease plasmin(ogen. Recombinant CbiA was able to bind plasminogen in a dose-dependent fashion. Moreover, lysine residues appear to play a crucial role in the protein-protein interaction as binding of plasminogen was inhibited by the lysine analog tranexamic acid as well as increasing ionic strength. Of relevance, plasminogen bound to CbiA can be converted by urokinase-type plasminogen activator (uPa to active plasmin which cleaved both, the chromogenic substrate S-2251 and its physiologic substrate fibrinogen. Concerning the involvement of specific amino acids in the interaction with plasminogen, lysine residues located at the C-terminus are frequently involved in the binding as reported for various other plasminogen-interacting proteins of Lyme disease spirochetes. Lysine residues located within the C-terminal domain were substituted with alanine to generate single, double, triple, and quadruple point mutants. However, binding of plasminogen to the mutated CbiA proteins was not affected, suggesting that lysine residues distant from the C-terminus might be involved in the interaction.

  2. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    International Nuclear Information System (INIS)

    Highsmith, R.F.; Gallaher, M.J.

    1986-01-01

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive 125 I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface

  3. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor

    KAUST Repository

    Fortunato, Luca

    2016-10-07

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. © 2016 Elsevier Ltd

  4. Integrated approach to characterize fouling on a flat sheet membrane gravity driven submerged membrane bioreactor.

    Science.gov (United States)

    Fortunato, Luca; Jeong, Sanghyun; Wang, Yiran; Behzad, Ali R; Leiknes, TorOve

    2016-12-01

    Fouling in membrane bioreactors (MBR) is acknowledged to be complex and unclear. An integrated characterization methodology was employed in this study to understand the fouling on a gravity-driven submerged MBR (GD-SMBR). It involved the use of different analytical tools, including optical coherence tomography (OCT), liquid chromatography with organic carbon detection (LC-OCD), total organic carbon (TOC), flow cytometer (FCM), adenosine triphosphate analysis (ATP) and scanning electron microscopy (SEM). The three-dimensional (3D) biomass morphology was acquired in a real-time through non-destructive and in situ OCT scanning of 75% of the total membrane surface directly in the tank. Results showed that the biomass layer was homogeneously distributed on the membrane surface. The amount of biomass was selectively linked with final destructive autopsy techniques. The LC-OCD analysis indicated the abundance of low molecular weight (LMW) organics in the fouling composition. Three different SEM techniques were applied to investigate the detailed fouling morphology on the membrane. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. The effectiveness of styrene-maleic acid (SMA) copolymers for solubilisation of integral membrane proteins from SMA-accessible and SMA-resistant membranes.

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; Foster, Nicholas; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2017-10-01

    Solubilisation of biological lipid bilayer membranes for analysis of their protein complement has traditionally been carried out using detergents, but there is increasing interest in the use of amphiphilic copolymers such as styrene maleic acid (SMA) for the solubilisation, purification and characterisation of integral membrane proteins in the form of protein/lipid nanodiscs. Here we survey the effectiveness of various commercially-available formulations of the SMA copolymer in solubilising Rhodobacter sphaeroides reaction centres (RCs) from photosynthetic membranes. We find that formulations of SMA with a 2:1 or 3:1 ratio of styrene to maleic acid are almost as effective as detergent in solubilising RCs, with the best solubilisation by short chain variants (membranes was uniformly low, but could be increased through a variety of treatments to increase the lipid:protein ratio. However, proteins isolated from such membranes comprised clusters of complexes in small membrane patches rather than individual proteins. We conclude that short-chain 2:1 and 3:1 formulations of SMA are the most effective in solubilising integral membrane proteins, but that solubilisation efficiencies are strongly influenced by the size of the target protein and the density of packing of proteins in the membrane. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Studies on improved integrated membrane-based chromatographic process for bioseparation

    Science.gov (United States)

    Xu, Yanke

    To improve protein separation and purification directly from a fermentation broth, a novel membrane filtration-cum-chromatography device configuration having a relatively impermeable coated zone near the hollow fiber module outlet has been developed. The integrated membrane filtration-cum-chromatography unit packed with chromatographic beads on the shell side of the hollow fiber unit enjoys the advantages of both membrane filtration and chromatography; it allows one to load the chromatographic media directly from the fermentation broth or lysate and separate the adsorbed proteins through the subsequent elution step in a cyclic process. Interfacial polymerization was carried out to coat the bottom section of the hollow fiber membrane while leaving the rest of the hollow fiber membrane unaffected. Myoglobin (Mb), bovine serum albumin (BSA) and a-lactalbumin (a-LA) were used as model proteins in binary mixtures. Separation behaviors of binary protein mixtures were studied in devices using either an ultrafiltration (UF) membrane or a microfiltration (MF) membrane. Experimental results show that the breakthrough time and the protein loading capacities were dramatically improved after coating in both UF and MF modules. For a synthetic yeast fermentation broth feed, the Mb and a-LA elution profiles for the four consecutive cyclic runs were almost superimposable. Due to the lower transmembrane flux in this device plus the periodical washing-elution during the chromatographic separation, fouling was not a problem as it is in conventional microfiltration. A mathematical model describing the hydrodynamic and protein loading behaviors of the integrated device using UF membrane with a coated zone was developed. The simulation results for the breakthrough agree well with the experimental breakthrough curves. The optimal length of the coated zone was obtained from the simulation. A theoretical analysis of the protein mass transfer was performed using a diffusion-convection model

  7. Effect of Two Lipoprotein (a-Associated Genetic Variants on Plasminogen Levels and Fibrinolysis

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-11-01

    Full Text Available Two genetic variants (rs3798220 and rs10455872 in the apolipoprotein (a gene (LPA have been implicated in cardiovascular disease (CVD, presumably through their association with lipoprotein (a [Lp(a] levels. While Lp(a is recognized as a lipoprotein with atherogenic and thrombogenic characteristics, it is unclear whether or not the two Lp(a-associated genetic variants are also associated with markers of thrombosis (i.e., plasminogen levels and fibrinolysis. In the present study, we genotyped the two genetic variants in 2919 subjects of the Old Order Amish (OOA and recruited 146 subjects according to the carrier and noncarrier status for rs3798220 and rs10455872, and also matched for gender and age. We measured plasma Lp(a and plasminogen levels in these subjects, and found that the concentrations of plasma Lp(a were 2.62- and 1.73-fold higher in minor allele carriers of rs3798220 and rs10455872, respectively, compared with noncarriers (P = 2.04 × 10−17 and P = 1.64 × 10−6, respectively. By contrast, there was no difference in plasminogen concentrations between carriers and noncarriers of rs3798220 and rs10455872. Furthermore, we observed no association between carrier status of rs3798220 or rs10455872 with clot lysis time. Finally, plasminogen mRNA expression in liver samples derived from 76 Caucasian subjects was not significantly different between carriers and noncarriers of these two genetic variants. Our results provide further insight into the mechanism of action behind two genetic variants previously implicated in CVD risk and show that these polymorphisms are not major modulating factors for plasma plasminogen levels and fibrinolysis.

  8. Development of a preprototype thermoelectric integrated membrane evaporation subsystem for water recovery

    Science.gov (United States)

    Winkler, H. E.; Roebelen, G. J., Jr.

    1980-01-01

    A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.

  9. The significance of fibrin binding by plasminogen activator inhibitor 1 for the mechanism of tissue-type plasminogen activator-mediated fibrinolysis

    NARCIS (Netherlands)

    Stringer, H. A.; Pannekoek, H.

    1995-01-01

    The specific, reversible interaction between plasminogen activator inhibitor 1 (PAI-1) and intact fibrin polymers was studied using both purified components and isolated activated platelets as a source of PAI-1. A key reagent in these experiments is a PAI-1 mutant, having its P1 reactive center

  10. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    Science.gov (United States)

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Presence of urokinase plasminogen activator, its inhibitor and receptor in small cell lung cancer and non-small cell lung cancer

    DEFF Research Database (Denmark)

    Pappot, H.; Pfeiffer, P.; Grøndahl Hansen, J.

    1997-01-01

    Spreading of cancer cells is dependent on the combined action of several proteolytic enzymes, such as serine proteases, comprising the urokinase pathway of plasminogen activation. Previous studies of lung cancer indicate that expression, localization and prognostic impact of the components...... of the plasminogen activation system differ in the different non-small cell lung cancer (NSCLC) types, whereas the expression of the components in small cell lung cancer (SCLC) has only sparingly been investigated. In the present study we investigate the presence of the components of the plasminogen activation...... that the plasminogen activation system could play a role in this type of cancer during invasion. In addition a difference in the levels of the components of the plasminogen activation system in NSCLC and SCLC is found, which could contribute to the differences in biology....

  12. Effects of Bloom-Forming Algae on Fouling of Integrated Membrane Systems in Seawater Desalination

    Science.gov (United States)

    Ladner, David Allen

    2009-01-01

    Combining low- and high-pressure membranes into an integrated membrane system is an effective treatment strategy for seawater desalination. Low-pressure microfiltration (MF) and ultrafiltration (UF) membranes remove particulate material, colloids, and high-molecular-weight organics leaving a relatively foulant-free salt solution for treatment by…

  13. Thrombin-specific inactivation of endothelial cell derived plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Highsmith, R.F.; Gallaher, M.J.

    1986-03-05

    Although thrombin (T) has diverse functions in the overall hemostatic mechanism, relatively little is known about its direct effect on components of the fibrinolytic enzyme system. The authors have investigated the interaction of T with plasminogen activators (PA) derived from bovine aortic endothelial cells (EC) in culture (2-5th passage, preconfluent monolayers). Varying concentrations of purified bovine or human thrombin were added to EC-conditioned media (CM). CM + T mixtures were assayed at various times for PA activity using purified plasminogen and a sensitive /sup 125/I-fibrinogenolytic or caseinolytic assay. T (5 nM), but not plasmin or trypsin at equivalent concentrations, resulted in a time-dependent inhibition of the PA activity in CM. T had no effect on the PA activity of urokinase, streptokinase or preformed plasmin. The ability of T to inactivate the EC-derived PA was abolished by prior treatment of T with active site-directed reagents. SDS-PAGE and zymography with copolymerized fibrinogen and plasminogen revealed further specificity in that only one of the multiple-molecular weight forms of PA present in EC-CM was inactivated by T. The authors conclude that in a highly specific fashion, T inactivates the predominant PA present in EC-CM by limited proteolysis. Thus, another potentially important function of T is suggested which may have particular significance in the temporal regulation of coagulation and fibrinolysis at the blood-endothelium interface.

  14. Tissue-type plasminogen activator contributes to remodeling of the rat ductus arteriosus

    Science.gov (United States)

    Saito, Junichi; Nicho, Naoki; Zheng, Yun-Wen; Ichikawa, Yasuhiro; Ito, Satoko; Umemura, Masanari; Fujita, Takayuki; Ito, Shuichi; Taniguchi, Hideki; Asou, Toshihide; Masuda, Munetaka; Ishikawa, Yoshihiro

    2018-01-01

    Aims The ductus arteriosus (DA) closes after birth to adapt to the robust changes in hemodynamics, which require intimal thickening (IT) to occur. The smooth muscle cells of the DA have been reported to play important roles in IT formation. However, the roles of the endothelial cells (ECs) have not been fully investigated. We herein focused on tissue-type plasminogen activator (t-PA), which is a DA EC dominant gene, and investigated its contribution to IT formation in the DA. Methods and results ECs from the DA and aorta were isolated from fetal rats using fluorescence-activated cell sorting. RT-PCR showed that the t-PA mRNA expression level was 2.7-fold higher in DA ECs than in aortic ECs from full-term rat fetuses (gestational day 21). A strong immunoreaction for t-PA was detected in pre-term and full-term rat DA ECs. t-PA-mediated plasminogen-plasmin conversion activates gelatinase matrix metalloproteinases (MMPs). Gelatin zymography revealed that plasminogen supplementation significantly promoted activation of the elastolytic enzyme MMP-2 in rat DA ECs. In situ zymography demonstrated that marked gelatinase activity was observed at the site of disruption in the internal elastic laminae (IEL) in full-term rat DA. In a three-dimensional vascular model, EC-mediated plasminogen-plasmin conversion augmented the IEL disruption. In vivo administration of plasminogen to pre-term rat fetuses (gestational day 19), in which IT is poorly formed, promoted IEL disruption accompanied by gelatinase activation and enhanced IT formation in the DA. Additionally, experiments using five human DA tissues demonstrated that the t-PA expression level was 3.7-fold higher in the IT area than in the tunica media. t-PA protein expression and gelatinase activity were also detected in the IT area of the human DAs. Conclusion t-PA expressed in ECs may help to form IT of the DA via activation of MMP-2 and disruption of IEL. PMID:29304073

  15. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla......The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous...... with the glycosylation sites could be excluded as explanation for the differential reactivity. The latency transition of non-glycosylated, but not of glycosylated PAI-1, was strongly accelerated by a non-ionic detergent. The different biochemical properties of glycosylated and non-glycosylated PAI-1 depended...

  16. Integrated investigation approach for determining mechanical properties of poly-silicon membranes

    OpenAIRE

    Brueckner, J.; Dehe, A.; Auerswald, E.; Dudek, R.; Michel, B.; Rzepka, S.

    2014-01-01

    A methodology is presented for determining mechanical properties of free-standing thin films such as poly-silicon membranes. The integrated investigation approach comprises test structure development, mechanical testing, and numerical simulation. All membrane test structures developed and manufactured consist of the same material but have different stiffness due to variations in the geometric design. The mechanical tests apply microscopic loads utilizing a nanoindentation tool. Young's modulu...

  17. Integrable systems from membranes on AdS4 x S7

    International Nuclear Information System (INIS)

    Bozhilov, P.

    2008-01-01

    We describe how Neumann and Neumann-Rosochatius type integrable systems, as well as the continuous limit of the SU(2) integrable spin chain, can be obtained from membranes on AdS 4 x S 7 background, in the framework of AdS/CFT correspondence. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  18. Membrane skeletal proteins and their integral membrane protein anchors are targets for tyrosine and threonine kinases in Euglena.

    Science.gov (United States)

    Fazio, M J; Da Silva, A C; Rosiere, T K; Bouck, G B

    1995-01-01

    Proteins of the membrane skeleton of Euglena gracilis were extensively phosphorylated in vivo and in vitro after incubation with [32P]-orthophosphate or gamma-[32P] ATP. Endogenous protein threonine/serine activity phosphorylated the major membrane skeletal proteins (articulins) and the putative integral membrane protein (IP39) anchor for articulins. The latter was also the major target for endogenous protein tyrosine kinase activity. A cytoplasmic domain of IP39 was specifically phosphorylated, and removal of this domain with papain eliminated the radiolabeled phosphoamino acids and eliminated or radically shifted the PI of the multiple isoforms of IP39. In gel kinase assays IP39 autophosphorylated and a 25 kDa protein which does not autophosphorylate was identified as a threonine/serine (casein) kinase. Plasma membranes from the membrane skeletal protein complex contained threonine/serine (casein) kinase activity, and cross-linking experiments suggested that IP39 was the likely source for this membrane activity. pH optima, cation requirements and heparin sensitivity of the detergent solubilized membrane activity were determined. Together these results suggest that protein kinases may be important modulators of protein assembly and function of the membrane skeleton of these protistan cells.

  19. Investigating the role of viral integral membrane proteins in promoting the assembly of nepovirus and comovirus replication factories

    Directory of Open Access Journals (Sweden)

    Helene eSanfacon

    2013-01-01

    Full Text Available Formation of plant virus membrane-associated replication factories requires the association of viral replication proteins and viral RNA with intracellular membranes, the recruitment of host factors and the modification of membranes to form novel structures that house the replication complex. Many viruses encode integral membrane proteins that act as anchors for the replication complex. These hydrophobic proteins contain trans-membrane domains and/or amphipathic helices that associate with the membrane and modify its structure. The comovirus Co-Pro and NTP-binding (NTB, putative helicase proteins and the cognate nepovirus X2 and NTB proteins are among the best characterized plant virus integral membrane replication proteins and are functionally related to the picornavirus 2B, 2C and 3A membrane proteins. The identification of membrane-association domains and analysis of the membrane topology of these proteins is discussed. The evidence suggesting that these proteins have the ability to induce membrane proliferation, alter the structure and integrity of intracellular membranes and modulate the induction of symptoms in infected plants is also reviewed. Finally, areas of research that need further investigation are highlighted.

  20. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  1. α-Synuclein oligomers induced by docosahexaenoic acid affect membrane integrity.

    Directory of Open Access Journals (Sweden)

    Chiara Fecchio

    Full Text Available A key feature of Parkinson disease is the aggregation of α-synuclein and its intracellular deposition in fibrillar form. Increasing evidence suggests that the pathogenicity of α-synuclein is correlated with the activity of oligomers formed in the early stages of its aggregation process. Oligomers toxicity seems to be associated with both their ability to bind and affect the integrity of lipid membranes. Previously, we demonstrated that α-synuclein forms oligomeric species in the presence of docosahexaenoic acid and that these species are toxic to cells. Here we studied how interaction of these oligomers with membranes results in cell toxicity, using cellular membrane-mimetic and cell model systems. We found that α-synuclein oligomers are able to interact with large and small unilamellar negatively charged vesicles acquiring an increased amount of α-helical structure, which induces small molecules release. We explored the possibility that oligomers effects on membranes could be due to pore formation, to a detergent-like effect or to fibril growth on the membrane. Our biophysical and cellular findings are consistent with a model where α-synuclein oligomers are embedded into the lipid bilayer causing transient alteration of membrane permeability.

  2. Monitoring of chemotherapy successfulness of Platina/Taxol chemotherapy protocol by using determination of serum urokinase plasminogen activator (uPA and soluble urokinase plasminogen activator receptor (suPAR in patients with ovarian carcinoma FIGO II

    Directory of Open Access Journals (Sweden)

    Dženita Ljuca

    2007-05-01

    Full Text Available In about 70% of cases, ovarian carcinoma has been diagnosed at an advanced stage. Invasion and metastasis of solid tumors request protease activity resulting in basal membrane destruction and surrounding matrix. In that process, urokinase plasminogen activator (uPA and its receptor, urokinase plasminogen activator receptor (suPAR play a key role, that via plasmin activation lead to basal membrane and matrix degradation in surrounding of the tumor, enable to its invasion and metastasis. Determination of serum concentration of those tumor markers can be useful in preoperative as well as in postoperative period. Their serum concentrations in ovarian cancer patients may help in good monitoring of remission or progression during chemotherapy treatment. In late 1950s and eariy 1960s, when it was found out that malignant ovarian tumors were chemosensitive, their chemotherapy treatment has begun. In the beginning it was used only mono-therapy, and by discovering new cytostatics it was replaced by poly-chemotherapy. Now days, in the therapy of advanced stages of ovarian carcinoma combination of cisplatine or carboplatine with paclitaxel is considering as standard treatment. Aim of this study was to determine serum uPA, suPAR and CEA in FIGO II and III patients with different histo-logical type (serous, mucinous, clear cell tumor before and after PT chemotherapy protocol during following three cycles. In this prospective study we have analyzed 17 patients with ovarian carcinoma, those have been after surgery treated by chemotherapy. Serum levels of uPA and suPAR have been determined by ELISA-test (Imubind uPA, Imubind uPAR, American Diagnostica, and CEA by OPUS Imunoassay method. Results of this study have shown that uPA, suPAR and CEA met criteria for prognostic markers for monitoring of successful-ness of platina/taxol chemotherapy protocol for serous, mucinous and clear cell tumor FIGO II and III stage of ovarian carcinoma. In case of PT chemotherapy

  3. First integrals of the axisymmetric shape equation of lipid membranes

    Science.gov (United States)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  4. Gingival crevicular fluid tissue/blood vessel-type plasminogen activator and plasminogen activator inhibitor-2 levels in patients with rheumatoid arthritis: effects of nonsurgical periodontal therapy.

    Science.gov (United States)

    Kurgan, Ş; Önder, C; Balcı, N; Fentoğlu, Ö; Eser, F; Balseven, M; Serdar, M A; Tatakis, D N; Günhan, M

    2017-06-01

    The aim of this study was to evaluate the effect of nonsurgical periodontal therapy on clinical parameters and gingival crevicular fluid levels of tissue/blood vessel-type plasminogen activator (t-PA) and plasminogen activator inhibitor-2 (PAI-2) in patients with periodontitis, with or without rheumatoid arthritis (RA). Fifteen patients with RA and chronic periodontitis (RA-P), 15 systemically healthy patients with chronic periodontitis (H-P) and 15 periodontally and systemically healthy volunteers (C) were included in the study. Plaque index, gingival index, probing pocket depth, clinical attachment level, bleeding on probing, gingival crevicular fluid t-PA and PAI-2 levels, erythrocyte sedimentation rate, serum C-reactive protein and disease activity score were evaluated at baseline and 3 mo after mechanical nonsurgical periodontal therapy. All periodontal clinical parameters were significantly higher in the RA-P and H-P groups compared with the C group (p periodontitis groups (p periodontitis and RA, nonsurgical periodontal therapy reduced the pretreatment gingival crevicular fluid t-PA levels, which were significantly correlated with gingival crevicular fluid PAI-2 levels. The significantly higher t-PA and PAI-2 gingival crevicular fluid levels in periodontal patients, regardless of systemic status, suggest that the plasminogen activating system plays a role in the disease process of periodontitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Dietary omega-3 polyunsaturated fatty acids induce plasminogen activator activity and DNA damage in rabbit spermatozoa.

    Science.gov (United States)

    Kokoli, A N; Lavrentiadou, S N; Zervos, I A; Tsantarliotou, M P; Georgiadis, M P; Nikolaidis, E A; Botsoglou, N; Boscos, C M; Taitzoglou, I A

    2017-12-01

    The aim of this study was to determine the effect(s) of dietary omega-3 polyunsaturated fatty acids (ω-3 PUFA) on rabbit semen. Adult rabbit bucks were assigned to two groups that were given two diets, a standard diet (control) and a diet supplemented with ω-3 PUFA. Sperm samples were collected from all bucks with the use of an artificial vagina in 20-day intervals, for a total period of 120 days. The enrichment of membranes in ω-3 PUFA was manifested by the elevation of the 22:5 ω-3 (docosapentaenoic acid [DPA]) levels within 40 days. This increase in DPA content did not affect semen characteristics (i.e., concentration, motility and viability). However, it was associated with the induction of lipid peroxidation in spermatozoa, as determined on the basis of the malondialdehyde content. Lipid peroxidation was associated with DNA fragmentation in ω-3 PUFA-enriched spermatozoa and a concomitant increase in plasminogen activator (PA) activity. The effects of ω-3 PUFA on sperm cells were evident within 40 days of ω-3 PUFA dietary intake and exhibited peack values on day 120. Our findings suggest that an ω-3 PUFA-rich diet may not affect semen characteristics; however, it may have a negative impact on the oxidative status and DNA integrity of the spermatozoa, which was associated with an induction of PAs activity. © 2017 Blackwell Verlag GmbH.

  6. INTRASURGICAL MICROSCOPE-INTEGRATED SPECTRAL DOMAIN OPTICAL COHERENCE TOMOGRAPHY-ASSISTED MEMBRANE PEELING.

    Science.gov (United States)

    Falkner-Radler, Christiane I; Glittenberg, Carl; Gabriel, Max; Binder, Susanne

    2015-10-01

    To evaluate microscope-integrated intrasurgical spectral domain optical coherence tomography during macular surgery in a prospective monocenter study. Before pars plana vitrectomy and before, during, and after membrane peeling, 512 × 128 macular cube scans were performed using a Carl Zeiss Meditec Cirrus high-definition OCT system adapted to the optical pathway of a Zeiss OPMI VISU 200 surgical microscope and compared with retinal staining. The study included 51 patients with epiretinal membranes, with 8 of those having additional lamellar macular holes, 11 patients with vitreomacular traction, and 8 patients with full-thickness macular holes. Intraoperative spectral domain optical coherence tomography allowed performing membrane peeling without using retinal dyes in 40% of cases (28 of 70 patients). No residual membranes were found in 94.3% of patients (66 of 70 patients) in intrasurgical spectral domain optical coherence tomography and subsequent (re)staining. In patients with vitreomacular traction, intrasurgical spectral domain optical coherence tomography scans facilitated decisions on the need for an intraocular tamponade after membrane peeling. Intraoperative spectral domain optical coherence tomography was comparable with retinal dyes in confirming success after membrane peeling. However, the visualization of flat membranes was better after staining.

  7. Biochemical Importance of Glycosylation of Plasminogen Activator Inhibitor-1

    DEFF Research Database (Denmark)

    Gils, Ann; Pedersen, Katrine Egelund; Skottrup, Peter Durand

    2003-01-01

    The serpin plasminogen activator inhibitor-1 (PAI-1) is a potential target for anti-thrombotic and anti-cancer therapy. PAI-1 has 3 potential sites for N-linked glycosylation. We demonstrate here that PAI-1 expressed recombinantly or naturally by human cell lines display a heterogeneous glycosyla...

  8. Effect of purified, soluble urokinase receptor on the plasminogen-prourokinase activation system

    DEFF Research Database (Denmark)

    Behrendt, N; Danø, K

    1996-01-01

    The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration of the cas......The extracellular proteolytic pathway mediated by the urokinase plasminogen activator (uPA) is a cascade system, initiated by activation of the zymogen, pro-uPA. Pro-uPA as well as uPA binds to the cellular uPA receptor (uPAR) which has a central function in cell-dependent acceleration...

  9. The Tobacco mosaic virus Movement Protein Associates with but Does Not Integrate into Biological Membranes

    Science.gov (United States)

    Peiró, Ana; Martínez-Gil, Luis; Tamborero, Silvia; Pallás, Vicente

    2014-01-01

    ABSTRACT Plant positive-strand RNA viruses require association with plant cell endomembranes for viral translation and replication, as well as for intra- and intercellular movement of the viral progeny. The membrane association and RNA binding of the Tobacco mosaic virus (TMV) movement protein (MP) are vital for orchestrating the macromolecular network required for virus movement. A previously proposed topological model suggests that TMV MP is an integral membrane protein with two putative α-helical transmembrane (TM) segments. Here we tested this model using an experimental system that measured the efficiency with which natural polypeptide segments were inserted into the ER membrane under conditions approximating the in vivo situation, as well as in planta. Our results demonstrated that the two hydrophobic regions (HRs) of TMV MP do not span biological membranes. We further found that mutations to alter the hydrophobicity of the first HR modified membrane association and precluded virus movement. We propose a topological model in which the TMV MP HRs intimately associate with the cellular membranes, allowing maximum exposure of the hydrophilic domains of the MP to the cytoplasmic cellular components. IMPORTANCE To facilitate plant viral infection and spread, viruses encode one or more movement proteins (MPs) that interact with ER membranes. The present work investigated the membrane association of the 30K MP of Tobacco mosaic virus (TMV), and the results challenge the previous topological model, which predicted that the TMV MP behaves as an integral membrane protein. The current data provide greatly needed clarification of the topological model and provide substantial evidence that TMV MP is membrane associated only at the cytoplasmic face of the membrane and that neither of its domains is integrated into the membrane or translocated into the lumen. Understanding the topology of MPs in the ER is vital for understanding the role of the ER in plant virus transport

  10. Integrating complex functions: coordination of nuclear pore complex assembly and membrane expansion of the nuclear envelope requires a family of integral membrane proteins.

    Science.gov (United States)

    Schneiter, Roger; Cole, Charles N

    2010-01-01

    The nuclear envelope harbors numerous large proteinaceous channels, the nuclear pore complexes (NPCs), through which macromolecular exchange between the cytosol and the nucleoplasm occurs. This double-membrane nuclear envelope is continuous with the endoplasmic reticulum and thus functionally connected to such diverse processes as vesicular transport, protein maturation and lipid synthesis. Recent results obtained from studies in Saccharomyces cerevisiae indicate that assembly of the nuclear pore complex is functionally dependent upon maintenance of lipid homeostasis of the ER membrane. Previous work from one of our laboratories has revealed that an integral membrane protein Apq12 is important for the assembly of functional nuclear pores. Cells lacking APQ12 are viable but cannot grow at low temperatures, have aberrant NPCs and a defect in mRNA export. Remarkably, these defects in NPC assembly can be overcome by supplementing cells with a membrane fluidizing agent, benzyl alcohol, suggesting that Apq12 impacts the flexibility of the nuclear membrane, possibly by adjusting its lipid composition when cells are shifted to a reduced temperature. Our new study now expands these findings and reveals that an essential membrane protein, Brr6, shares at least partially overlapping functions with Apq12 and is also required for assembly of functional NPCs. A third nuclear envelope membrane protein, Brl1, is related to Brr6, and is also required for NPC assembly. Because maintenance of membrane homeostasis is essential for cellular survival, the fact that these three proteins are conserved in fungi that undergo closed mitoses, but are not found in metazoans or plants, may indicate that their functions are performed by proteins unrelated at the primary sequence level to Brr6, Brl1 and Apq12 in cells that disassemble their nuclear envelopes during mitosis.

  11. Genetics Home Reference: complete plasminogen activator inhibitor 1 deficiency

    Science.gov (United States)

    ... well studied in a large family belonging to the Old Order Amish population of eastern and southern Indiana. Additional cases in North ... Human plasminogen activator inhibitor-1 (PAI-1) deficiency: characterization of a large kindred with a null mutation in the PAI-1 gene. Blood. 1997 Jul 1;90( ...

  12. Membrane with integrated spacer

    NARCIS (Netherlands)

    Balster, J.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2010-01-01

    Many membrane processes are severely influenced by concentration polarisation. Turbulence promoting spacers placed in between the membranes can reduce the diffusional resistance of concentration polarisation by inducing additional mixing. Electrodialysis (ED) used for desalination suffers from

  13. Prevention of ligneous conjunctivitis by topical and subconjunctival fresh frozen plasma.

    Science.gov (United States)

    Tabbara, Khalid F

    2004-08-01

    To present a case of ligneous conjunctivitis where the recurrence of membranous conjunctivitis was prevented by subconjunctival and topical instillation of fresh frozen plasma. Interventional case report. A case of ligneous conjunctivitis with multiple recurrences since the age of 3 years developed recurrent membranous conjunctivitis after transconjunctival levator recession. Blood plasminogen activity was determined. The membrane was excised, and the membrane reappeared 4 days later. The patient was treated with excision of the membrane and subconjunctival injection of fresh frozen plasma and topical fresh frozen plasma. Plasminogen activity of the fresh frozen plasma was normal. Plasminogen blood functional activity was 52% (normal is 80%-120%). The patient had complete remission with no recurrences of membranous conjunctivitis after topical and subconjunctival fresh frozen plasma. Prophylactic use of topical and subconjunctival fresh frozen plasma may help in the prevention of membranes in susceptible patients with plasminogen deficiency.

  14. Staphylococcus aureus manganese transport protein C (MntC is an extracellular matrix- and plasminogen-binding protein.

    Directory of Open Access Journals (Sweden)

    Natália Salazar

    Full Text Available Infections caused by Staphylococcus aureus--particularly nosocomial infections--represent a great concern. Usually, the early stage of pathogenesis consists on asymptomatic nasopharynx colonization, which could result in dissemination to other mucosal niches or invasion of sterile sites, such as blood. This pathogenic route depends on scavenging of nutrients as well as binding to and disrupting extracellular matrix (ECM. Manganese transport protein C (MntC, a conserved manganese-binding protein, takes part in this infectious scenario as an ion-scavenging factor and surprisingly as an ECM and coagulation cascade binding protein, as revealed in this work. This study showed a marked ability of MntC to bind to several ECM and coagulation cascade components, including laminin, collagen type IV, cellular and plasma fibronectin, plasminogen and fibrinogen by ELISA. The MntC binding to plasminogen appears to be related to the presence of surface-exposed lysines, since previous incubation with an analogue of lysine residue, ε-aminocaproic acid, or increasing ionic strength affected the interaction between MntC and plasminogen. MntC-bound plasminogen was converted to active plasmin in the presence of urokinase plasminogen activator (uPA. The newly released plasmin, in turn, acted in the cleavage of the α and β chains of fibrinogen. In conclusion, we describe a novel function for MntC that may help staphylococcal mucosal colonization and establishment of invasive disease, through the interaction with ECM and coagulation cascade host proteins. These data suggest that this potential virulence factor could be an adequate candidate to compose an anti-staphylococcal human vaccine formulation.

  15. Gene expression of fibrinolytic factors urokinase plasminogen activator and plasminogen activator inhibitor-1 in rabbit temporo-mandibular joint cartilage with disc displacement.

    Science.gov (United States)

    Zhan, Jing; Gu, Zhi-yuan; Wu, Li-qun; Zhang, Yin-kai; Hu, Ji-an

    2005-06-20

    The urokinase plasminogen activator system is believed to play an important role in degradation of the extracellular matrix associated with cartilage and bone destruction; however its precise roles in temporomandibular disorders have not yet been clarified. The aims of this study were to investigate the gene expression of fibrinolytic factors urokinase plasminogen activator (uPA) and plasminogen activator inhibitor-1 (PAI-1) in the articular cartilage of rabbit temporomandibular joint (TMJ) with disc displacement (DD) and to probe the relationship between fibrinolytic activity and cartilage remodeling. Disc displacement of right joints was performed in 36 of 78 rabbits under investigation. The animals were sacrificed at 4 days and 1, 2, 4, 8 and 12 weeks after surgery, respectively. The right joints of these animals were harvested and processed for the examination of mRNA expression of uPA and PAI-1 in articular cartilage using in situ hybridization techniques. The expression of uPA and PAI-1 was co-expressed weakly in the chondrocytes from transitive zone to hypertrophic zone and mineralized zone, while no hybridizing signals were shown in proliferative zone and superficial zone in control rabbits. The most striking was the up-regulation of uPA and PAI-1 mRNA in 4-day rabbits postoperatively at the onset of cartilage degeneration. The strongest hybridizing signals for uPA and PAI-1 were seen in 2-week rabbits postoperatively. After 2 weeks, the expression of uPA and PAI-1 began to decrease and reached nearly normal level at 12 weeks. The expression of the uPA/PAI-1 system coincides with the pathological changes in condylar cartilage after DD. The uPA/PAI-1 system may be one of the essential mediators in articular cartilage remodeling.

  16. Integration of oxygen membranes for oxygen production in cement plants

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Søgaard, Martin; Hjuler, Klaus

    2015-01-01

    The present paper describes the integration of oxygen membranes in cement plants both from an energy, exergy and economic point of view. Different configurations for oxygen enrichment of the tertiary air for combustion in the pre-calciner and full oxy-fuel combustion in both pre-calciner and kiln...

  17. An enzyme-immunobinding assay for fast screening of expression of tissue plasminogen activator cDNA in E. coli

    International Nuclear Information System (INIS)

    Tang, J.C.T.; Li, S.H.

    1984-01-01

    Tissue plasminogen activator (TPA) has been isolated from normal human tissues and certain human cell lines in culture. The enzyme is a serine protease which converts an inactive zymogen, plasminogen to plasmin, and causes lysis of fibrin clots. The high affinity of TPA for fibrin indicates that it is a potential thrombolytic agent and is superior to urokinase-like plasminogen activators. Recently, TPA has been cloned and expressed in E. coli. Using TPA as a model protein, the authors report here the development of a direct, sensitive enzyme-immunoassay for the screening of a cDNA expression library using specific antibodies and peroxidase-labeled second antibody

  18. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  19. Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism.

    Science.gov (United States)

    Stubblefield, William B; Alves, Nathan J; Rondina, Matthew T; Kline, Jeffrey A

    2016-01-01

    We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA)-catalyzed clot lysis time (CLT) in patients with intermediate-risk pulmonary embolism (PE). Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI), plasminogen activator Inhibitor 1 (PAI-1), thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT) was assessed by both thromboelastography (TEG) and turbidimetry (A405). Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec). Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT. The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.

  20. Construction and expression of a recombinant antibody-targeted plasminogen activator

    International Nuclear Information System (INIS)

    Schnee, J.M.; Runge, M.S.; Matsueda, G.A.; Hudson, N.W.; Seidman, J.G.; Haber, E.; Quertermous, T.

    1987-01-01

    Covalent linkage of tissue-type plasminogen activator (t-PA) to a monoclonal antibody specific for the fibrin β chain (anti-fibrin 59D8) results in a thrombolytic agent that is more specific and more potent that t-PA alone. To provide a ready source of this hybrid molecule and to allow tailoring of the active moieties for optimal activity, the authors have engineered a recombinant version of the 59D8-t-PA conjugate. The rearranged 59D8 heavy chain gene was cloned and combined in the expression vector pSV2gpt with sequence coding for a portion of the γ2b constant region and the catalytic β chain of t-PA. This construct was transfected into heavy chain loss variant cells derived form the 59D8 hybridoma. Recombinant protein was purified by affinity chromatography and analyzed with electrophoretic transfer blots and radioimmunoassay. These revealed a 65-kDa heavy chain-t-PA fusion protein that is secreted in association with the 59D8 light chain in the form of a 170-kDa disulfide-linked dimer. Chromogenic substrate assays showed the fusion protein to have 70% of the peptidolytic activity of native t-PA and to activate plasminogen as efficiently as t-PA. IN a competitive binding assay, reconstituted antibody was shown to have a binding profile similar to that of native 59D8. Thus, by recombinant techniques, they have produced a hybrid protein capable of high affinity fibrin binding and plasminogen activation

  1. Fabrication and characterization of an integrated ionic device from suspended polypyrrole and alamethicin-reconstituted lipid bilayer membranes

    International Nuclear Information System (INIS)

    Northcutt, Robert; Sundaresan, Vishnu-Baba

    2012-01-01

    Conducting polymers are electroactive materials that undergo conformal relaxation of the polymer backbone in the presence of an electrical field through ion exchange with solid or aqueous electrolytes. This conformal relaxation and the associated morphological changes make conducting polymers highly suitable for actuation and sensing applications. Among smart materials, bioderived active materials also use ion transport for sensing and actuation functions via selective ion transport. The transporter proteins extracted from biological cell membranes and reconstituted into a bilayer lipid membrane in bioderived active materials regulate ion transport for engineering functions. The protein transporter reconstituted in the bilayer lipid membrane is referred to as the bioderived membrane and serves as the active component in bioderived active materials. Inspired by the similarities in the physics of transduction in conducting polymers and bioderived active materials, an integrated ionic device is formed from the bioderived membrane and the conducting polymer membrane. This ionic device is fabricated into a laminated thin-film membrane and a common ion that can be processed by the bioderived and the conducting polymer membranes couple the ionic function of these two membranes. An integrated ionic device, fabricated from polypyrrole (PPy) doped with sodium dodecylbenzenesulfonate (NaDBS) and an alamethicin-reconstituted DPhPC bilayer lipid membrane, is presented in this paper. A voltage-gated sodium current regulates the electrochemical response in the PPy(DBS) layer. The integrated device is fabricated on silicon-based substrates through microfabrication, electropolymerization, and vesicle fusion, and ionic activity is characterized through electrochemical measurements. (paper)

  2. Tranexamic acid, an inhibitor of plasminogen activation, reduces urinary collagen cross-link excretion in both experimental and rheumatoid arthritis

    NARCIS (Netherlands)

    Ronday, H.K.; TeKoppele, J.M.; Greenwald, R.A.; Moak, S.A.; Roos, J.A.D.M. de; Dijkmans, B.A.C.; Breedveld, F.C.; Verheijen, J.H.

    1998-01-01

    The plasminogen activation system is one of the enzyme systems held responsible for bone and cartilage degradation in rheumatoid arthritis (RA). In this study, we evaluated the effect of tranexamic acid (TEA), an inhibitor of plasminogen activation, on urinary collagen cross-link excretion and

  3. Two distinct expression patterns of urokinase, urokinase receptor and plasminogen activator inhibitor-1 in colon cancer liver metastases

    DEFF Research Database (Denmark)

    Illemann, Martin; Bird, Nigel; Majeed, Ali

    2009-01-01

    Metastatic growth and invasion by colon cancer cells in the liver requires the ability of the cancer cells to interact with the new tissue environment. Plasmin(ogen) is activated on cell surfaces by urokinase-type PA (uPA), and is regulated by uPAR and plasminogen activator inhibitor-1 (PAI-1). T...

  4. CipA of Acinetobacter baumannii Is a Novel Plasminogen Binding and Complement Inhibitory Protein.

    Science.gov (United States)

    Koenigs, Arno; Stahl, Julia; Averhoff, Beate; Göttig, Stephan; Wichelhaus, Thomas A; Wallich, Reinhard; Zipfel, Peter F; Kraiczy, Peter

    2016-05-01

    Acinetobacter baumannii is an emerging opportunistic pathogen, responsible for up to 10% of gram-negative, nosocomial infections. The global increase of multidrug-resistant and pan-resistant Acinetobacter isolates presents clinicians with formidable challenges. To establish a persistent infection,A. baumannii must overcome the detrimental effects of complement as the first line of defense against invading microorganisms. However, the immune evasion principles underlying serum resistance inA. baumannii remain elusive. Here, we identified a novel plasminogen-binding protein, termed CipA. Bound plasminogen, upon conversion to active plasmin, degraded fibrinogen and complement C3b and contributed to serum resistance. Furthermore, CipA directly inhibited the alternative pathway of complement in vitro, irrespective of its ability to bind plasminogen. A CipA-deficient mutant was efficiently killed by human serum and showed a defect in the penetration of endothelial monolayers, demonstrating that CipA is a novel multifunctional protein that contributes to the pathogenesis ofA. baumannii. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Plasminogen activator activity and plasma-coagulum lysis measured by use of optimized fibrin gel structure preformed in microtiter plates

    DEFF Research Database (Denmark)

    Sidelmann, Johannes Jakobsen; Jespersen, J; Gram, J

    1995-01-01

    We introduce a new fibrin plate assay performed in microtiter plates. By means of spectroscopic studies we optimized the structure of the fibrin gel and then used the optimized fibrin gel to determine plasminogen activator activity. Plasminogen activator solutions were applied on top of the fibri...

  6. Human plasminogen binding protein tetranectin

    DEFF Research Database (Denmark)

    Kastrup, J S; Rasmussen, H; Nielsen, B B

    1997-01-01

    The recombinant human plasminogen binding protein tetranectin (TN) and the C-type lectin CRD of this protein (TN3) have been crystallized. TN3 crystallizes in the tetragonal space group P4(2)2(1)2 with cell dimensions a = b = 64.0, c = 75.7 A and with one molecule per asymmetric unit. The crystals...... to at least 2.5 A. A full data set has been collected to 3.0 A. The asymmetric unit contains one monomer of TN. Molecular replacement solutions for TN3 and TN have been obtained using the structure of the C-type lectin CRD of rat mannose-binding protein as search model. The rhombohedral space group indicates...

  7. Accessibility of receptor-bound urokinase to type-1 plasminogen activator inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Cubellis, M.V.; Andreasen, P.; Ragno, P.; Mayer, M.; Dano, K.; Blasi, F. (Univ. of Copenhagen (Denmark))

    1989-07-01

    Urokinase plasminogen activator (uPA) interacts with a surface receptor and with specific inhibitors, such as plasminogen activator inhibitor type 1 (PAI-1). These interactions are mediated by two functionally independent domains of the molecule: the catalytic domain (at the carboxyl terminus) and the growth factor domain (at the amino terminus). The authors have now investigated whether PAI-1 can bind and inhibit receptor-bound uPA. Binding of {sup 125}I-labeled ATF (amino-terminal fragment of uPA) to human U937 monocyte-like cells can be competed for by uPA-PAI-1 complexes, but not by PAI-1 alone. Preformed {sup 125}I-labeled uPA-PAI-1 complexes can bind to uPA receptor with the same binding specificity as uPA. PAI-1 also binds to, and inhibits the activity of, receptor-bound uPA in U937 cells, as shown in U937 cells by a caseinolytic plaque assay. Plasminogen activator activity of these cells is dependent on exogenous uPA, is competed for by receptor-binding diisopropyl fluorophosphate-treated uPA, and is inhibited by the addition of PAI-1. In conclusion, in U937 cells the binding to the receptor does not shield uPA from the action of PAI-1. The possibility that in adherent cells a different localization of PAI-1 and uPA leads to protection of uPA from PAI-1 is to be considered.

  8. CCR5 internalisation and signalling have different dependence on membrane lipid raft integrity.

    Science.gov (United States)

    Cardaba, Clara Moyano; Kerr, Jason S; Mueller, Anja

    2008-09-01

    The chemokine receptor, CCR5, acts as a co-receptor for human immunodeficiency virus entry into cells. CCR5 has been shown to be targeted to cholesterol- and sphingolipid-rich membrane microdomains termed lipid rafts or caveolae. Cholesterol is essential for CCL4 binding to CCR5 and for keeping the conformational integrity of the receptor. Filipin treatment leads to loss of caveolin-1 from the membrane and therefore to a collapse of the caveolae. We have found here that sequestration of membrane cholesterol with filipin did not affect receptor signalling, however a loss of ligand-induced internalisation of CCR5 was observed. Cholesterol extraction with methyl-beta-cyclodextrin (MCD) reduced signalling through CCR5 as measured by release of intracellular Ca(2+) and completely abolished the inhibition of forskolin-stimulated cAMP accumulation with no effect on internalisation. Pertussis toxin (PTX) treatment inhibited the intracellular release of calcium that is transduced via Galphai G-proteins. Depletion of cholesterol destroyed microdomains in the membrane and switched CCR5/G-protein coupling to a PTX-independent G-protein. We conclude that cholesterol in the membrane is essential for CCR5 signalling via the Galphai G-protein subunit, and that integrity of lipid rafts is not essential for effective CCR5 internalisation however it is crucial for proper CCR5 signal transduction via Galphai G-proteins.

  9. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf; Li, Qingfeng

    Polymer electrolyte membrane fuel cell (PEMFC) technology based on Nafion membranes can operate at temperatures around 80°C. The new development in the field is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th......, and system integration of the high temperature PEMFC. The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer, afterburner...... and power management system, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 120-220°C, with a single cell performance target of 0.7 A/cm² at a cell...

  10. Neumann and Neumann-Rosochatius integrable systems from membranes on AdS4 x S7

    International Nuclear Information System (INIS)

    Bozhilov, Plamen

    2007-01-01

    It is known that large class of classical string solutions in the type IIB AdS 5 x S 5 background is related to the Neumann and Neumann-Rosochatius integrable systems, including spiky strings and giant magnons. It is also interesting if these integrable systems can be associated with some membrane configurations in M-theory. We show here that this is indeed the case by presenting explicitly several types of membrane embedding in AdS 4 x S 7 with the searched properties

  11. Activation of pro-urokinase and plasminogen on human sarcoma cells

    DEFF Research Database (Denmark)

    Stephens, R W; Pöllänen, J; Tapiovaara, H

    1989-01-01

    from the cells with tranexamic acid, an analogue of lysine. The bound plasmin was the result of plasminogen activation on the cell surface; plasmin activity was not taken up onto cells after deliberate addition of plasmin to the serum-containing medium. The cell surface plasmin formation was inhibited...

  12. Expression of urokinase plasminogen activator, its receptor and type-1 inhibitor in malignant and benign prostate tissue

    DEFF Research Database (Denmark)

    Usher, Pernille Autzen; Thomsen, Ole Frøkjær; Iversen, Peter

    2005-01-01

    The plasminogen activation (PA) cascade participates in degradation of extracellular matrix during cancer invasion. We have studied the expression of urokinase-type plasminogen activator (uPA) mRNA, uPA receptor (uPAR) mRNA and immunoreactivity, and type-1 plasminogen activator inhibitor (PAI-1) m......RNA and immunoreactivity in 16 prostate adenocarcinomas and 9 benign prostate hyperplasias. uPA mRNA and uPAR mRNA expression were found in 9 and 8 of the adenocarcinomas, respectively, and in 7 and 6 of the benign hyperplasias, respectively. In both malignant and benign lesions, expression of these 2 m...... proximity to cancer cell islands. No immunoreactivity and/or mRNA expression of uPA, uPAR or PAI-1 was observed in cancer cells or in other epithelial cells in any of the cases....

  13. Variable Resistance to Plasminogen Activator Initiated Fibrinolysis for Intermediate-Risk Pulmonary Embolism.

    Directory of Open Access Journals (Sweden)

    William B Stubblefield

    Full Text Available We examine the clinical significance and biomarkers of tissue plasminogen activator (tPA-catalyzed clot lysis time (CLT in patients with intermediate-risk pulmonary embolism (PE.Platelet-poor, citrated plasma was obtained from patients with PE. Healthy age- and sex-matched patients served as disease-negative controls. Fibrinogen, α2-antiplasmin, plasminogen, thrombin activatable fibrinolysis inhibitor (TAFI, plasminogen activator Inhibitor 1 (PAI-1, thrombin time and D-dimer were quantified. Clotting was induced using CaCl2, tissue factor, and phospholipid. Lysis was induced using 60 ng/mL tPA. Time to 50% clot lysis (CLT was assessed by both thromboelastography (TEG and turbidimetry (A405.Compared with disease-negative controls, patients with PE exhibited significantly longer mean CLT on TEG (+2,580 seconds, 95% CI 1,380 to 3,720 sec. Patients with PE and a short CLT who were treated with tenecteplase had increased risk of bleeding, whereas those with long CLT had significantly worse exercise tolerance and psychometric testing for quality of life at 3 months. A multivariate stepwise removal regression model selected PAI-1 and TAFI as predictive biomarkers of CLT.The CLT from TEG predicted increased risk of bleeding and clinical failure with tenecteplase treatment for intermediate-risk PE. Plasmatic PAI-1 and TAFI were independent predictors of CLT.

  14. Urokinase Plasminogen Activator Receptor–PET with 68Ga-NOTA-AE105

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-01-01

    Urokinase plasminogen activator receptor (uPAR) is a key component in proteolysis and extracellular matrix degradation during cancer invasion and metastasis. uPAR overexpression is an important biomarker for aggressiveness in several solid tumors and provides independent clinical information...... biomarker in cancer....

  15. Tumor necrosis factor increases the production of plasminogen activator inhibitor in human endothelial cells in vitro and in rats in vivo

    NARCIS (Netherlands)

    Hinsbergh, V.W.M. van; Kooistra, T.; Berg, E.A. van den; Princen, H.M.G.; Fiers, W.; Emeis, J.J.

    1988-01-01

    The vascular endothelium plays an important role in fibrinolysis by producing tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor (PAI). The monokine tumor necrosis factor (human recombinant TNF) increased the production of PAI by cultured human endothelial cells from

  16. Integration of membrane filtration and photoelectrocatalysis using a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane for enhanced water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Guanlong; Chen, Shuo, E-mail: shuochen@dlut.edu.cn; Yu, Hongtao; Quan, Xie

    2015-12-15

    Highlights: • Membrane filtration was integrated with photoelectrocatalysis for water treatment. • This integrated process (PECM) displays good antifouling capacity in NOMs removal. • PECM process enables efficient removal of chemical contaminants (e.g., RhB). • Enhanced charge separation of PECM process leads to its improved performance. - Abstract: Coupling membrane filtration with photocatalysis provides multifunction involving filtration and photocatalytic degradation for removing pollutants from water, but the performance of photocatalytic membrane is limited due to the quick recombination of photogenerated electron-holes in photocatalytic layer. Herein, a TiO{sub 2}/carbon/Al{sub 2}O{sub 3} membrane was designed and constructed through sequentially depositing graphitic carbon layer with good electro-conductivity and TiO{sub 2} nanoparticles layer with photocatalytic activity on Al{sub 2}O{sub 3} membrane support. When light irradiated on the membrane with a voltage supply, the photogenerated electrons could be drained from photocatalytic layer and separated with holes efficiently, thus endowing the membrane with photoelectrocatalytic function. Membrane performance tests indicated that the photoelectrocatalytic membrane filtration (PECM) showed improved removal of natural organic matters (NOMs) and permeate flux with increasing voltage supply. For PECM process at 1.0 V, its NOMs removal was 1.2 or 1.7 times higher than that of filtration with UV irradiation or filtration alone, and its stable permeate flux was 1.3 or 3 times higher than that of filtration with UV irradiation or filtration alone. Moreover, the PECM process exhibited special advantage in removing organic chemicals (e.g., Rhodamine B), which displayed 1.3 or 3 times higher removal than that of filtration with UV irradiation or filtration alone.

  17. A Printed Equilibrium Dialysis Device with Integrated Membranes for Improved Binding Affinity Measurements.

    Science.gov (United States)

    Pinger, Cody W; Heller, Andrew A; Spence, Dana M

    2017-07-18

    Equilibrium dialysis is a simple and effective technique used for investigating the binding of small molecules and ions to proteins. A three-dimensional (3D) printer was used to create a device capable of measuring binding constants between a protein and a small ion based on equilibrium dialysis. Specifically, the technology described here enables the user to customize an equilibrium dialysis device to fit their own experiments by choosing membranes of various material and molecular-weight cutoff values. The device has dimensions similar to that of a standard 96-well plate, thus being amenable to automated sample handlers and multichannel pipettes. The device consists of a printed base that hosts multiple windows containing a porous regenerated-cellulose membrane with a molecular-weight cutoff of ∼3500 Da. A key step in the fabrication process is a print-pause-print approach for integrating membranes directly into the windows subsequently inserted into the base. The integrated membranes display no leaking upon placement into the base. After characterizing the system's requirements for reaching equilibrium, the device was used to successfully measure an equilibrium dissociation constant for Zn 2+ and human serum albumin (K d = (5.62 ± 0.93) × 10 -7 M) under physiological conditions that is statistically equal to the constants reported in the literature.

  18. Molecular adaptation of a plant-bacterium outer membrane protease towards plague virulence factor Pla

    Science.gov (United States)

    2011-01-01

    Background Omptins are a family of outer membrane proteases that have spread by horizontal gene transfer in Gram-negative bacteria that infect vertebrates or plants. Despite structural similarity, the molecular functions of omptins differ in a manner that reflects the life style of their host bacteria. To simulate the molecular adaptation of omptins, we applied site-specific mutagenesis to make Epo of the plant pathogenic Erwinia pyrifoliae exhibit virulence-associated functions of its close homolog, the plasminogen activator Pla of Yersinia pestis. We addressed three virulence-associated functions exhibited by Pla, i.e., proteolytic activation of plasminogen, proteolytic degradation of serine protease inhibitors, and invasion into human cells. Results Pla and Epo expressed in Escherichia coli are both functional endopeptidases and cleave human serine protease inhibitors, but Epo failed to activate plasminogen and to mediate invasion into a human endothelial-like cell line. Swapping of ten amino acid residues at two surface loops of Pla and Epo introduced plasminogen activation capacity in Epo and inactivated the function in Pla. We also compared the structure of Pla and the modeled structure of Epo to analyze the structural variations that could rationalize the different proteolytic activities. Epo-expressing bacteria managed to invade human cells only after all extramembranous residues that differ between Pla and Epo and the first transmembrane β-strand had been changed. Conclusions We describe molecular adaptation of a protease from an environmental setting towards a virulence factor detrimental for humans. Our results stress the evolvability of bacterial β-barrel surface structures and the environment as a source of progenitor virulence molecules of human pathogens. PMID:21310089

  19. Determination of plasminogen/plasmin system components and indicators of lipoproteins oxidative modification under arterial hypertension

    Directory of Open Access Journals (Sweden)

    O. I. Yusova

    2018-02-01

    Full Text Available The present study was investigated of levels of oxidative modification of lipoproteins and content of plasminogen/plasmin system components – tissue-type plasminogen activator (t-PA and plasminogen activators inhibitor-1 (PAI-I, in patients with stage II arterial hypertension (AHT and resistant form. It was established that t-PA level in blood plasma of the patients is 2 times lower under stage II hypertension than normal and 2.5 times lower under resistant AHT. The inhibitor activity is 1.5 and 2 times higher consequently. It is concluded that patients with AHT have a decreased fibrinolytic potential, which can cause thrombotic states. Our evaluation showed a significant accumulation of products of lipid and protein oxidation, decrease of activity of antioxidant enzymes and changes of the activity of high density-lipoproteins-associated enzymes (decrease of paraoxonase-1 activity, increase of myeloperoxidase activity. Oxidized lipoproteins, t-PA and PAI-1 can be used as prognostic markers of development of complications and for evaluating the efficacy of therapy in patients with arterial hypertension.

  20. The cell-free integration of a polytopic mitochondrial membrane protein into liposomes occurs cotranslationally and in a lipid-dependent manner.

    Directory of Open Access Journals (Sweden)

    Ashley R Long

    Full Text Available The ADP/ATP Carrier (AAC is the most abundant transporter of the mitochondrial inner membrane. The central role that this transporter plays in cellular energy production highlights the importance of understanding its structure, function, and the basis of its pathologies. As a means of preparing proteoliposomes for the study of membrane proteins, several groups have explored the use of cell-free translation systems to facilitate membrane protein integration directly into preformed unilamellar vesicles without the use of surfactants. Using AAC as a model, we report for the first time the detergent-free reconstitution of a mitochondrial inner membrane protein into liposomes using a wheat germ-based in vitro translation system. Using a host of independent approaches, we demonstrate the efficient integration of AAC into vesicles with an inner membrane-mimetic lipid composition and, more importantly, that the integrated AAC is functionally active in transport. By adding liposomes at different stages of the translation reaction, we show that this direct integration is obligatorily cotranslational, and by synthesizing stable ribosome-bound nascent chain intermediates, we show that the nascent AAC polypeptide interacts with lipid vesicles while ribosome-bound. Finally, we show that the presence of the phospholipid cardiolipin in the liposomes specifically enhances AAC translation rate as well as the efficiency of vesicle association and integration. In light of these results, the possible mechanisms of liposome-assisted membrane protein integration during cell-free translation are discussed with respect to the mode of integration and the role of specific lipids.

  1. An integrated membrane system for the biocatalytic production of 3′-sialyllactose from dairy by-products

    DEFF Research Database (Denmark)

    Luo, Jianquan; Nordvang, Rune Thorbjørn; Morthensen, Sofie Thage

    2014-01-01

    An integrated membrane system was investigated for the production of 30-sialyllactose by an engineered sialidase using casein glycomacropeptide (CGMP) and lactose as substrates. CGMP was purified by ultrafiltration (UF) to remove any small molecules present and then an enzymatic membrane reactor ...

  2. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    DEFF Research Database (Denmark)

    Javanainen, Matti; Martinez-Seara, Hector; Metzler, Ralf

    2017-01-01

    of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes......-like dependence D ∝ 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different......The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbrück (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D ∝ ln(1/R). However, instead...

  3. Integrated antibacterial and antifouling surfaces via cross-linking chitosan-g-eugenol/zwitterionic copolymer on electrospun membranes.

    Science.gov (United States)

    Li, Zhenguang; Hu, Wenhong; Zhao, Yunhui; Ren, Lixia; Yuan, Xiaoyan

    2018-04-27

    Integrated antibacterial and antifouling surfaces in favor of avoiding implant-related infections are necessarily required for biomaterials when they contact with the body fluid. In this work, an antibacterial and antifouling membrane was developed via cross-linking chitosan-g-eugenol and the zwitterionic copolymer poly(sulfobetaine methylacrylate-co-2-aminoethyl methacrylate) on the electrospun polycarbonate urethane substrate using genipin as a cross-linker. Antibacterial assays demonstrated that the prepared membranes had efficient antibacterial activity with 92.8 ± 2.5% and 95.2 ± 1.3% growth inhibition rates against Escherichia coli and Staphylococcus aureus, respectively. The investigations on antifouling activity and hemocompatibility of the membranes showed significant resistances to bacterial attachment, non-specific protein adsorption and platelet adhesion, and presented lower hemolytic activity and good anticoagulant activity as well. Moreover, cell culture assays indicated that the prepared membranes exerted no obvious cytotoxicity with more than 80% of relative L929 fibroblast viability. Therefore, the membranes with integrated antibacterial and antifouling properties could be potentially applied in promising indwelling devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Localization of urokinase-type plasminogen activator receptor on U937 cells

    DEFF Research Database (Denmark)

    Hansen, S H; Behrendt, N; Danø, K

    1990-01-01

    The binding of human urokinase-type plasminogen activator (u-PA) to the surface of the human monocytic cell line U937 was studied by immunological detection of bound u-PA or binding of biotinylated diisopropyl fluorophosphate-inactivated human u-PA visualized by light or electron microscopy...

  5. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands

    DEFF Research Database (Denmark)

    Pedersen, Katrine E; Einholm, Anja P; Christensen, Anni

    2003-01-01

    Negatively charged organochemical inactivators of the anti-proteolytic activity of plasminogen activator inhibitor-1 (PAI-1) convert it to inactive polymers. As investigated by native gel electrophoresis, the size of the PAI-1 polymers ranged from dimers to multimers of more than 20 units. As com...

  6. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    International Nuclear Information System (INIS)

    Leissner, Philippe; Verjat, Thibault; Bachelot, Thomas; Paye, Malick; Krause, Alexander; Puisieux, Alain; Mougin, Bruno

    2006-01-01

    One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA) and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1). In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS) and Breast Cancer specific Survival (BCS) were significantly shorter in patients expressing high levels of PAI-1 mRNA (p < 0.0001; p < 0.0001; respectively). In Cox multivariate analysis, the level of PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR) = 10.12; p = 0.0002) and for BCS (HR = 13.17; p = 0.0003). Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41) nor with BCS (p = 0.19). In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer

  7. Prognostic significance of urokinase plasminogen activator and plasminogen activator inhibitor-1 mRNA expression in lymph node- and hormone receptor-positive breast cancer

    Directory of Open Access Journals (Sweden)

    Krause Alexander

    2006-08-01

    Full Text Available Abstract Background One of the most thoroughly studied systems in relation to its prognostic relevance in patients with breast cancer, is the plasminogen activation system that comprises of, among others, the urokinase Plasminogen Activator (uPA and its main inhibitor, the Plasminogen Activator Inhibitor-1 (PAI-1. In this study, we investigated the prognostic value of uPA and PAI-1 at the mRNA level in lymph node- and hormone receptor-positive breast cancer. Methods The study included a retrospective series of 87 patients with hormone-receptor positive and axillary lymph node-positive breast cancer. All patients received radiotherapy, adjuvant anthracycline-based chemotherapy and five years of tamoxifen treatment. The median patient age was 54 and the median follow-up time was 79 months. Distant relapse occurred in 30 patients and 22 patients died from breast cancer during follow-up. We investigated the prognostic value of uPA and PAI-1 at the mRNA level as measured by real-time quantitative RT-PCR. Results uPA and PAI-1 gene expression was not found to be correlated with any of the established clinical and pathological factors. Metastasis-free Survival (MFS and Breast Cancer specific Survival (BCS were significantly shorter in patients expressing high levels of PAI-1 mRNA (p PAI-1 mRNA appeared to be the strongest prognostic factor for MFS (Hazard Ratio (HR = 10.12; p = 0.0002 and for BCS (HR = 13.17; p = 0.0003. Furthermore, uPA gene expression was not significantly associated neither with MFS (p = 0.41 nor with BCS (p = 0.19. In a Cox-multivariate regression analysis, uPA expression did not demonstrate significant independent prognostic value. Conclusion These findings indicate that high PAI-1 mRNA expression represents a strong and independent unfavorable prognostic factor for the development of metastases and for breast cancer specific survival in a population of hormone receptor- and lymph node-positive breast cancer patients.

  8. FAD oxidizes the ERO1-PDI electron transfer chain: The role of membrane integrity

    International Nuclear Information System (INIS)

    Papp, Eszter; Nardai, Gabor; Mandl, Jozsef; Banhegyi, Gabor; Csermely, Peter

    2005-01-01

    The molecular steps of the electron transfer in the endoplasmic reticulum from the secreted proteins during their oxidation are relatively unknown. We present here that flavine adenine dinucleotide (FAD) is a powerful oxidizer of the oxidoreductase system, Ero1 and PDI, besides the proteins of rat liver microsomes and HepG2 hepatoma cells. Inhibition of FAD transport hindered the action of FAD. Microsomal membrane integrity was mandatory for all FAD-related oxidation steps downstream of Ero1. The PDI inhibitor bacitracin could inhibit FAD-mediated oxidation of microsomal proteins and PDI, but did not hinder the FAD-driven oxidation of Ero1. Our data demonstrated that Ero1 can utilize FAD as an electron acceptor and that FAD-driven protein oxidation goes through the Ero1-PDI pathway and requires the integrity of the endoplasmic reticulum membrane. Our findings prompt further studies to elucidate the membrane-dependent steps of PDI oxidation and the role of FAD in redox folding

  9. Structure determination of an integral membrane protein at room temperature from crystals in situ

    International Nuclear Information System (INIS)

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-01-01

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines

  10. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  11. Towards a fully integrated indium-phosphide membrane on silicon photonics platform

    NARCIS (Netherlands)

    van Engelen, J.P.; Pogoretskiy, V.; Smit, M.K.; van der Tol, J.J.G.M.; Jiao, Y.

    2017-01-01

    Recently a uni-traveling-carrier photodetector with high speed (> 67GHz) and a high-gain optical amplifier (110/cm at 4 kA/cm2) have been demonstrated using the InP membrane-on-Silicon (IMOS) integration technology. Passives in IMOS have shown features comparable to SOI platforms due to the tight

  12. Integrated forward osmosis-membrane distillation process for human urine treatment.

    Science.gov (United States)

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Pinelo, Manuel; Samanta, Kama

    2011-01-01

    present a continuous membrane microbioreactor prototype for development of enzyme catalyzed degradation of pectin. Membrane reactors are becoming increasingly important for the novel ‘biorefining’ type of processes that either require product removal to avoid product inhibition or rest on partial...... hydrolysis of the substrate to obtain e.g. value-added oligosaccharides from complex biopolymers. The microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) and designed as a loop reactor (working volume approximately 190μL) integrated...... with a regenerated cellulose membrane for separation of low molecular weight products. The main technical considerations and challenges related to establishing the continuous membrane microbioreactor are discussed. The workability of the prototype was validated by comparing the process data at microscale to those...

  14. Tissue-type plasminogen activator-binding RNA aptamers inhibiting low-density lipoprotein receptor family-mediated internalisation.

    Science.gov (United States)

    Bjerregaard, Nils; Bøtkjær, Kenneth A; Helsen, Nicky; Andreasen, Peter A; Dupont, Daniel M

    2015-07-01

    Recombinant tissue-type plasminogen activator (tPA, trade name Alteplase), currently the only drug approved by the US Food and Drug Administration and the European Medicines Agency for the treatment of cerebral ischaemic stroke, has been implicated in a number of adverse effects reportedly mediated by interactions with the low-density lipoprotein (LDL) family receptors, including neuronal cell death and an increased risk of cerebral haemorrhage. The tissue-type plasminogen activator is the principal initiator of thrombolysis in human physiology, an effect that is mediated directly via localised activation of the plasmin zymogen plasminogen at the surface of fibrin clots in the vascular lumen. Here, we sought to identify a ligand to tPA capable of inhibiting the relevant LDL family receptors without interfering with the fibrinolytic activity of tPA. Systematic evolution of ligands by exponential enrichment (SELEX) was employed to isolate tPA-binding RNA aptamers, which were characterised in biochemical assays of tPA association to low density lipoprotein receptor-related protein-1 (LRP-1, an LDL receptor family member); tPA-mediated in vitro and ex vivo clot lysis; and tPA-mediated plasminogen activation in the absence and presence of a stimulating soluble fibrin fragment. Two aptamers, K18 and K32, had minimal effects on clot lysis, but were able to efficiently inhibit tPA-LRP-1 association and LDL receptor family-mediated endocytosis in human vascular endothelial cells and astrocytes. These observations suggest that coadministration alongside tPA may be a viable strategy to improve the safety of thrombolytic treatment of cerebral ischaemic stroke by restricting tPA activity to the vascular lumen.

  15. Risk assessment of Giardia from a full scale MBR sewage treatment plant caused by membrane integrity failure.

    Science.gov (United States)

    Zhang, Yu; Chen, Zhimin; An, Wei; Xiao, Shumin; Yuan, Hongying; Zhang, Dongqing; Yang, Min

    2015-04-01

    Membrane bioreactors (MBR) are highly efficient at intercepting particles and microbes and have become an important technology for wastewater reclamation. However, many pathogens can accumulate in activated sludge due to the long residence time usually adopted in MBR, and thus may pose health risks when membrane integrity problems occur. This study presents data from a survey on the occurrence of water-borne Giardia pathogens in reclaimed water from a full-scale wastewater treatment plant with MBR experiencing membrane integrity failure, and assessed the associated risk for green space irrigation. Due to membrane integrity failure, the MBR effluent turbidity varied between 0.23 and 1.90 NTU over a period of eight months. Though this turbidity level still met reclaimed water quality standards (≤5 NTU), Giardia were detected at concentrations of 0.3 to 95 cysts/10 L, with a close correlation between effluent turbidity and Giardia concentration. All β-giardin gene sequences of Giardia in the WWTP influents were genotyped as Assemblages A and B, both of which are known to infect humans. An exponential dose-response model was applied to assess the risk of infection by Giardia. The risk in the MBR effluent with chlorination was 9.83×10(-3), higher than the acceptable annual risk of 1.0×10(-4). This study suggested that membrane integrity is very important for keeping a low pathogen level, and multiple barriers are needed to ensure the biological safety of MBR effluent. Copyright © 2015. Published by Elsevier B.V.

  16. Dynamic changes in plasma tissue plasminogen activator, plasminogen activator inhibitor-1 and beta-thromboglobulin content in ischemic stroke.

    Science.gov (United States)

    Zhuang, Ping; Wo, Da; Xu, Zeng-Guang; Wei, Wei; Mao, Hui-ming

    2015-07-01

    The aim of this paper is to investigate the corresponding variations of plasma tissue plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1) activities, and beta-thromboglobulin (β-TG) content in patients during different stages of ischemic stroke. Ischemic stroke is a common disease among aging people and its occurrence is associated with abnormalities in the fibrinolytic system and platelet function. However, few reports focus on the dynamic changes in the plasma fibrinolytic system and β-TG content in patients with ischemic stroke. Patients were divided into three groups: acute, convalescent and chronic. Plasma t-PA and PAI-1 activities were determined by chromogenic substrate analysis and plasma β-TG content was detected by radioimmunoassay. Patients in the acute stage of ischemic stroke had significantly increased levels of t-PA activity and β-TG content, but PAI-1 activity was significantly decreased. Negative correlations were found between plasma t-PA and PAI-1 activities and between plasma t-PA activity and β-TG content in patients with acute ischemic stroke. There were significant differences in plasma t-PA and PAI-1 activities in the aged control group, as well as in the acute, convalescent and chronic groups. It can be speculated that the increased activity of t-PA in patients during the acute stage was the result of compensatory function, and that the increase in plasma β-TG level not only implies the presence of ischemic stroke but is likely a cause of ischemic stroke. During the later stages of ischemic stroke, greater attention is required in monitoring levels of PAI-1. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Subcellular localization and logistics of integral membrane protein biogenesis in Escherichia coli.

    Science.gov (United States)

    Bogdanov, Mikhail; Aboulwafa, Mohammad; Saier, Milton H

    2013-01-01

    Transporters catalyze entry and exit of molecules into and out of cells and organelles, and protein-lipid interactions influence their activities. The bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS) catalyzes transport-coupled sugar phosphorylation as well as nonvectorial sugar phosphorylation in the cytoplasm. The vectorial process is much more sensitive to the lipid environment than the nonvectorial process. Moreover, cytoplasmic micellar forms of these enzyme-porters have been identified, and non-PTS permeases have similarly been shown to exist in 'soluble' forms. The latter porters exhibit lipid-dependent activities and can adopt altered topologies by simply changing the lipid composition. Finally, intracellular membranes and vesicles exist in Escherichia coli leading to the following unanswered questions: (1) what determines whether a PTS permease catalyzes vectorial or nonvectorial sugar phosphorylation? (2) How do phospholipids influence relative amounts of the plasma membrane, intracellular membrane, inner membrane-derived vesicles and cytoplasmic micelles? (3) What regulates the route(s) of permease insertion and transfer into and between the different subcellular sites? (4) Do these various membranous forms have distinct physiological functions? (5) What methods should be utilized to study the biogenesis and interconversion of these membranous structures? While research concerning these questions is still in its infancy, answers will greatly enhance our understanding of protein-lipid interactions and how they control the activities, conformations, cellular locations and biogenesis of integral membrane proteins. Copyright © 2013 S. Karger AG, Basel.

  18. Enablers of the implementation of tissue plasminogen activator in acute stroke care: a cross-sectional survey.

    Directory of Open Access Journals (Sweden)

    Alice Grady

    Full Text Available To assess emergency physicians' perceptions of individual and system enablers to the use of tissue Plasminogen Activator in acute stroke.Australian fellows and trainees of Australasian College for Emergency Medicine completed a 57-item online survey assessing enablers to implementation of evidence-based practice across six domains: knowledge, skills, modelling, monitoring, feedback, and maintenance. Demographic and workplace characteristics were obtained. Descriptive statistics were calculated to describe demographic and workplace characteristics of responders, and survey responses. Each domain received an overall score (% based on the number of responders agreeing with all items within the domain.A total of 429 (13% Australasian College for Emergency Medicine members responded. 17.7% of respondents reported they and/or their workplace met all knowledge-related enablers, however only 2.3% had all skill-related enablers in place. Of respondents who decide which patients receive tissue Plasminogen Activator treatment, 18.1% agreed that all maintenance-related enablers are in place at their hospital, compared to 6.6% for those who do not decide which patients receive tissue Plasminogen Activator treatment. None of the respondents had all items in place cross all domains.Even when allowing for the low response rate, it seems likely there is a lack of individual and system enablers supporting the implementation of best-practice stroke care in a number of Australian hospitals. Quality improvement programs could target all domains, particularly the skills-training and feedback emergency physicians receive, to aid implementation of tissue Plasminogen Activator treatment for acute stroke.

  19. Monitoring changes in membrane polarity, membrane integrity, and intracellular ion concentrations in Streptococcus pneumoniae using fluorescent dyes.

    Science.gov (United States)

    Clementi, Emily A; Marks, Laura R; Roche-Håkansson, Hazeline; Håkansson, Anders P

    2014-02-17

    Membrane depolarization and ion fluxes are events that have been studied extensively in biological systems due to their ability to profoundly impact cellular functions, including energetics and signal transductions. While both fluorescent and electrophysiological methods, including electrode usage and patch-clamping, have been well developed for measuring these events in eukaryotic cells, methodology for measuring similar events in microorganisms have proven more challenging to develop given their small size in combination with the more complex outer surface of bacteria shielding the membrane. During our studies of death-initiation in Streptococcus pneumoniae (pneumococcus), we wanted to elucidate the role of membrane events, including changes in polarity, integrity, and intracellular ion concentrations. Searching the literature, we found that very few studies exist. Other investigators had monitored radioisotope uptake or equilibrium to measure ion fluxes and membrane potential and a limited number of studies, mostly in Gram-negative organisms, had seen some success using carbocyanine or oxonol fluorescent dyes to measure membrane potential, or loading bacteria with cell-permeant acetoxymethyl (AM) ester versions of ion-sensitive fluorescent indicator dyes. We therefore established and optimized protocols for measuring membrane potential, rupture, and ion-transport in the Gram-positive organism S. pneumoniae. We developed protocols using the bis-oxonol dye DiBAC4(3) and the cell-impermeant dye propidium iodide to measure membrane depolarization and rupture, respectively, as well as methods to optimally load the pneumococci with the AM esters of the ratiometric dyes Fura-2, PBFI, and BCECF to detect changes in intracellular concentrations of Ca(2+), K(+), and H(+), respectively, using a fluorescence-detection plate reader. These protocols are the first of their kind for the pneumococcus and the majority of these dyes have not been used in any other bacterial

  20. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The new development in the field of polymer electrolyte membrane fuel cell (PEMFC) is high temperature PEMFC for operation above 100°C, which has been successfully demonstrated through the previous EC Joule III and the 5th framework programme. New challenges are encountered, bottlenecks for the new...... technology have been identified, and new concepts and solutions have been provisionally identified. FURIM is directed at tackling these key issues by concentrating on the further materials development, compatible technologies, and system integration of the high temperature PEMFC. The strategic developments...... of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3) integration of the HT-PEMFC stack...

  1. Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    NARCIS (Netherlands)

    Song, Ci; Burgess, Stephen; Eicher, John D.; O'Donnell, Christopher J.; Johnson, Andrew D.; Huang, Jie; Sabater-Lleal, Maria; Asselbergs, Folkert W.; Tregouet, David-Alexandre; Shin, So Youn; Ding, Jingzhong; Baumert, Jens; Oudot-Mellakh, Tiphaine; Folkersen, Lasse; Smith, Nicholas L.; Williams, Scott M; Ikram, Mohammad Arfan; Kleber, Marcus E.; Becker, Diane M.; Truong, Vinh; Mychaleckyj, Josyf C.; Tang, Weihong; Yang, Qiong; Sennblad, Bengt; Moore, Jason H; Williams, Frances M.K.; Dehghan, Abbas; Silbernagel, Günther; Schrijvers, Elisabeth M.C.; Smith, Shelly; Karakas, Mahir; Tofler, Geoffrey H.; Silveira, Angela; Navis, Gerjan J.; Lohman, Kurt; Chen, Ming Huei; Peters, Annette; Goel, Anuj; Hopewell, Jemma C.; Chambers, John C.; Saleheen, Danish; Lundmark, Per; Psaty, Bruce M.; Strawbridge, Rona J.; Boehm, Bernhard O.; Carter, Angela M.; Meisinger, Christa; Peden, John F.; Bis, Joshua C.; McKnight, Barbara; Öhrvik, John; Taylor, Kent D.; Franzosi, Maria Grazia; Seedorf, Udo; Collins, Rory; Franco-Cereceda, Anders; Syvänen, Ann-Christine; Goodall, Alison H.; Yanek, Lisa R.; Cushman, Mary; Müller-Nurasyid, Martina; Folsom, Aaron R.; Basu, Saonli; Matijevic, Nena; van Gilst, Wiek H.; Kooner, Jaspal S.; Danesh, John; Clarke, Robert; Meigs, James B; Kathiresan, Sekar; Reilly, Muredach P; Klopp, Norman; Harris, Tamara B.; Winkelmann, Bernhard R.; Grant, Peter J.; Hillege, Hans L.; Watkins, Hugh; Spector, Timothy D; Becker, Lewis C; Tracy, Russell P.; März, Winfried; Uitterlinden, Andre G; Eriksson, Per; Cambien, Francois; Morange, Pierre Emmanuel; Koenig, Wolfgang; Soranzo, Nicole; van der Harst, Pim; Liu, Yongmei; Hamsten, Anders; Ehret, Georg B.; Munroe, Patricia B.; Rice, Kenneth M.; Bochud, Murielle; Chasman, Daniel I.; Smith, Albert V.; Tobin, Martin D; Verwoert, Germaine C; Hwang, Shih-Jen; Pihur, Vasyl; Vollenweider, Peter; O'Reilly, Paul F.; Amin, Najaf; Bragg-Gresham, Jennifer L.; Teumer, Alexander; Glazer, Nicole L.; Launer, Lenore J.; Zhao, Jing Hua; Aulchenko, Yurii S.; Heath, Simon; Sõber, Siim; Parsa, Afshin; Luan, Jian'an; Arora, Pankaj; Zhang, Feng; Lucas, Gavin; Hicks, Andrew A.; Jackson, Anne U.; Tanaka, Toshiko; Wild, Sarah H.; Rudan, Igor; Igl, Wilmar; Milaneschi, Yuri; Parker, Alex N.; Fava, Cristiano; Fox, Ervin R.; Kumari, Meena; Go, Min Jin; Linda Kao, Wen Hong; Sjögren, Marketa; Vinay, D. G.; Alexander, Myriam; Tabara, Yasuharu; Shaw-Hawkins, Sue; Whincup, Peter H.; Shi, Gang; Kuusisto, Johanna; Tayo, Bamidele O.; Seielstad, Mark; Sim, Xueling; Nguyen, Khanh Dung Hoang; Lehtimäki, Terho; Matullo, Giuseppe; Wu, Ying; Gaunt, Tom R.; Onland-Moret, N. Charlotte; Cooper, Matthew N.; Platou, Carl G P; Org, Elin; Hardy, Rebecca; Dahgam, Santosh; Palmen, Jutta; Vitart, Veronique; Braund, Peter S; Kuznetsova, Tatiana; Uiterwaal, Cuno S.P.M.; Adeyemo, Adebowale; Palmas, Walter R.; Campbell, Harry; Ludwig, Barbara; Tomaszewski, Maciej; Tzoulaki, Ioanna; Palmer, Nicholette D.; Aspelund, Thor; Garcia, Melissa; Chang, Yen Pei C.; O'Connell, Jeffrey R.; Steinle, Nanette I.; Grobbee, Diederick E.; Arking, Dan E.; Kardia, Sharon L. R.; Morrison, Alanna C.; Hernandez, Dena G.; Najjar, Samer; McArdle, Wendy L.; Hadley, David; Brown, Morris J; Connell, John M; Hingorani, Aroon D.; Day, Ian N M; Lawlor, Debbie A.; Beilby, John P.; Lawrence, Robert W.; Ongen, Halit; Dreisbach, Albert W; Li, Yali; Young, J. Hunter; Kähönen, Mika; Viikari, Jorma S.; Adair, Linda S.; Lee, Nanette R.; Olden, Matthias; Pattaro, Cristian; Hoffman Bolton, Judith A.; Köttgen, Anna; Bergmann, Sven; Mooser, Vincent; Chaturvedi, Nish; Frayling, Timothy M.; Islam, Muhammad; Jafar, Tazeen H.; Erdmann, Jeanette; Kulkarni, Smita R.; Bornstein, Stefan R.; Grässler, Jürgen; Groop, Leif C.; Voight, Benjamin F; Kettunen, Johannes; Howard, Philip; Taylor, Andrew; Guarrera, Simonetta; Ricceri, Fulvio; Emilsson, Valur; Plump, Andrew; Barroso, Inês; Khaw, Kay Tee; Weder, Alan B.; Hunt, Steven C.; Sun, Yan V.; Bergman, Richard N.; Collins, Francis S.; Bonnycastle, Lori L.; Scott, Laura J; Stringham, Heather M.; Peltonen, Leena; Perola, Markus; Vartiainen, Erkki; Brand, Stefan Martin; Staessen, Jan A.; Wang, Thomas J.; Burton, Paul R.; Artigas, Maria Soler; Dong, Yanbin; Snieder, Harold; Wang, Xiaoling; Zhu, Haidong; Lohman, Kurt; Rudock, Megan E.; Heckbert, Susan R; Wiggins, Kerri L.; Doumatey, Ayo; Shriner, Daniel; Veldre, Gudrun; Viigimaa, Margus; Kinra, Sanjay; Prabhakaran, Dorairaj; Tripathy, Vikal; Langefeld, Carl D.; Rosengren, Annika; Thelle, Dag S.; Corsi, Anna Maria; Singleton, Andrew; Forrester, Terrence; Hilton, Gina; McKenzie, Colin A.; Salako, Tunde; Iwai, Naoharu; Kita, Yoshikuni; Ogihara, Toshio; Ohkubo, Takayoshi; Okamura, Tomonori; Ueshima, Hirotsugu; Umemura, Satoshi; Eyheramendy, Susana; Meitinger, Thomas; Wichmann, H-Erich; Cho, Yoon Shin; Kim, Hyung Lae; Lee, Jong-Young; Scott, James; Sehmi, Joban S.; Zhang, Weihua; Hedblad, Bo; Nilsson, Peter M.; Smith, George Davey; Wong, Andrew; Narisu, Narisu; Stančáková, Alena; Raffel, Leslie J.; Yao, Jie; Schwartz, Stephen M.; Arfan Ikram, M.; Longstreth, W.T. jr.; Mosley, Thomas H; Seshadri, Sudha; Shrine, Nick R.G.; Wain, Louise V.; Morken, Mario A.; Swift, Amy J.; Laitinen, Jaana; Prokopenko, Inga; Zitting, Paavo; Cooper, Jackie A.; Humphries, Steve E.; Rasheed, Asif; Bakker, Stephan J. L.; Janipalli, Charles S.; Mani, K. Radha; Yajnik, Chittaranjan S.; Mattace-Raso, Francesco U.S.; Oostra, Ben A.; Demirkan, Ayse; Isaacs, Aaron; Rivadeneira, Fernando; Lakatta, Edward G; Orru, Marco; Scuteri, Angelo; Ala-Korpela, Mika; Kangas, Antti J.; Lyytikäinen, Leo-Pekka; Soininen, Pasi; Tukiainen, Taru; Würtz, Peter; Ong, Rick Twee Hee; Dörr, Marcus; Kroemer, Heyo K; Völker, Uwe; Völzke, Henry; Galan, Pilar; Hercberg, Serge; Lathrop, Mark; Zelenika, Diana; Deloukas, Panos; Mangino, Massimo; Zhai, Guangju; Meschia, James F.; Nalls, Michael A.; Sharma, Pankaj; Terzic, Janos; Kumar, M. V.Kranthi; Denniff, Matthew; Zukowska-Szczechowska, Ewa; Wagenknecht, Lynne E.; Fowkes, F. Gerald R.; Charchar, Fadi J; Schwarz, Peter E. H.; Hayward, Caroline; Guo, Xiuqing; Rotimi, Charles N.; Bots, Michiel L.; Brand, Eva; Samani, Nilesh J.; Polasek, Ozren; Talmud, Philippa J.; Nyberg, Fredrik; Kuh, Diana; Laan, Maris; Hveem, Kristian; Palmer, Lyle J.; van der Schouw, Yvonne T.; Casas, Juan P.; Mohlke, Karen L.; Vineis, Paolo; Raitakari, Olli T.; Ganesh, Santhi K.; Wong, Tien-Yin; Shyong Tai, E.; Cooper, Richard S.; Laakso, Markku; Rao, Dabeeru C.; Morris, Richard W.; Dominiczak, Anna F.; Kivimaki, Mika; Marmot, Michael G.; Miki, Tetsuro; Chandak, Giriraj R.; Coresh, Josef; Navis, Gerjan J.; Salomaa, Veikko; Han, Bok-Ghee; Zhu, Xiaofeng; Melander, Olle; Ridker, Paul M.; Bandinelli, Stefania; Gyllensten, Ulf B.; Wright, Alan F.; Wilson, James F.; Ferrucci, Luigi; Farrall, Martin; Tuomilehto, Jaakko; Pramstaller, Peter P.; Elosua, Roberto; Sijbrands, Eric J. G.; Altshuler, David; Loos, Ruth J. F.; Gieger, Christian; Meneton, Pierre; Wareham, Nicholas J.; Gudnason, Vilmundur; Rotter, Jerome I.; Rettig, Rainer; Uda, Manuela; Strachan, David P.; Witteman, Jacqueline C M; Hartikainen, Anna-Liisa; Beckmann, Jacques S.; Boerwinkle, Eric; Vasan, Ramachandran S; Boehnke, Michael; Larson, Martin G.; Järvelin, Marjo-Riitta; Abecasis, Gonçalo R.; Chakravarti, Aravinda; Elliott, Paul; Van Duijn, Cornelia M.; Newton-Cheh, Christopher; Levy, Daniel; Caulfield, Mark J.; Johnson, Toby; van der Lugt, Aad; Shuldiner, Alan R.; Hofman, Albert; Kraja, Aldi T.; Uitterlinden, Andre G; Ziegler, Andreas; Newman, Anne B; Schillert, Arne; Oostra, Ben A.; Thorsson, Bolli; Mitchell, Braxton D.; Fox, Caroline S.; White, Charles C.; Ballantyne, Christie; Van Duijn, Cornelia M.; Herrington, David M.; O'Leary, Daniel H.; Siscovick, David S.; Couper, David J; Halperin, Eran; Stoegerer, Eva Maria; Ernst, Florian; Krestin, Gabriel P.; Homuth, Georg; Heiss, Gerardo; Usala, Gianluca; Eiriksdottir, Gudny; Shen, Haiqing; Erich Wichmann, H.; Schmidt, Helena; Borecki, Ingrid B.; Markus, Hugh S.; Witteman, Jacqueline C.; Lüdemann, Jan; Huffman, Jennifer E.; Murabito, Joanne M.; Thiery, Joachim; Seissler, Jochen; Massaro, Joseph M.; Polak, Joseph F.; Cunningham, Julie; North, Kari E.; Petrovic, Katja E; Rice, Kenneth M.; Adrienne Cupples, L.; Bielak, Lawrence F.; Launer, Lenore J.; de Andrade, Mariza; Feitosa, Mary F.; Kavousi, Maryam; Sitzer, Matthias; Oudkerk, Matthijs; Province, Michael A.; Nalls, Michael A.; Franceschini, Nora; Peyser, Patricia A.; Wolf, Philip A.; Zhang, Qunyuan; Wild, Philipp S; Schnabel, Renate B.; D'Agostino, Ralph B.; Chilukoti, Ravi Kumar; Schmidt, Reinhold; Sanna, Serena; Demissie, Serkalem; Sigurdsson, Sigurdur; Blankenberg, Stefan; Bevan, Steve; Elias-Smale, Suzette E.; Zeller, Tanja; Illig, Thomas; Münzel, Thomas; Howard, Timothy D.; Hoffmann, Udo; Schminke, Ulf; Nambi, Vijay; Post, Wendy S.; Rathmann, Wolfgang; Li, Xia; Cheng, Yu Ching

    2017-01-01

    Background--Plasminogen activator inhibitor type 1 (PAI-1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI-1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association

  2. Seawater desalination with solar-energy-integrated vacuum membrane distillation system

    Directory of Open Access Journals (Sweden)

    Fang Wang

    2017-03-01

    Full Text Available This study designed and tested a novel type of solar-energy-integrated vacuum membrane distillation (VMD system for seawater desalination under actual environmental conditions in Wuhan, China. The system consists of eight parts: a seawater tank, solar collector, solar cooker, inclined VMD evaporator, circulating water vacuum pump, heat exchanger, fresh water tank, and brine tank. Natural seawater was used as feed and a hydrophobic hollow-fiber membrane module was used to improve seawater desalination. The experiment was conducted during a typical summer day. Results showed that when the highest ambient temperature was 33 °C, the maximum value of the average solar intensity was 1,080 W/m2. The system was able to generate 36 kg (per m2 membrane module distilled fresh water during 1 day (7:00 am until 6:00 pm, the retention rate was between 99.67 and 99.987%, and electrical conductivity was between 0.00276 and 0.0673 mS/cm. The average salt rejection was over 90%. The proposed VMD system shows favorable potential application in desalination of brackish waters or high-salt wastewater treatment, as well.

  3. Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity

    Directory of Open Access Journals (Sweden)

    Jeon Hyejin

    2012-06-01

    Full Text Available Abstract Background Plasminogen activator inhibitor type 1 (PAI-1 is the primary inhibitor of urokinase type plasminogen activators (uPA and tissue type plasminogen activators (tPA, which mediate fibrinolysis. PAI-1 is also involved in the innate immunity by regulating cell migration and phagocytosis. However, little is known about the role of PAI-1 in the central nervous system. Methods In this study, we identified PAI-1 in the culture medium of mouse mixed glial cells by liquid chromatography and tandem mass spectrometry. Secretion of PAI-1 from glial cultures was detected by ELISA and western blotting analysis. Cell migration was evaluated by in vitro scratch-wound healing assay or Boyden chamber assay and an in vivo stab wound injury model. Phagocytic activity was measured by uptake of zymosan particles. Results The levels of PAI-1 mRNA and protein expression were increased by lipopolysaccharide and interferon-γ stimulation in both microglia and astrocytes. PAI-1 promoted the migration of microglial cells in culture via the low-density lipoprotein receptor-related protein (LRP 1/Janus kinase (JAK/signal transducer and activator of transcription (STAT1 axis. PAI-1 also increased microglial migration in vivo when injected into mouse brain. PAI-1-mediated microglial migration was independent of protease inhibition, because an R346A mutant of PAI-1 with impaired PA inhibitory activity also promoted microglial migration. Moreover, PAI-1 was able to modulate microglial phagocytic activity. PAI-1 inhibited microglial engulfment of zymosan particles in a vitronectin- and Toll-like receptor 2/6-dependent manner. Conclusion Our results indicate that glia-derived PAI-1 may regulate microglial migration and phagocytosis in an autocrine or paracrine manner. This may have important implications in the regulation of brain microglial activities in health and disease.

  4. Integrated Wireless Monitoring and Control System in Reverse Osmosis Membrane Desalination Plants

    Directory of Open Access Journals (Sweden)

    Al Haji Ahmad

    2015-01-01

    Full Text Available The operational processes of the Reverse Osmosis (RO membrane desalination plants require continuous monitoring through the constant attendance of operators to ensure proper productivity and minimize downtime and prevent membrane failure. Therefore, the plant must be equipped with a control system that monitors and controls the operational variables. Monitoring and controlling the affecting parameters are critical to the evaluation of the performance of the desalination plant, which will help the operator find and resolve problems immediately. Therefore, this paper was aimed at developing an RO unit by utilizing a wireless sensor network (WSN system. Hence, an RO pilot plant with a feed capacity of 1.2 m3/h was utilized, commissioned, and tested in Kuwait to assess and verify the performance of the integrated WSN in RO membrane desalination system. The investigated system allowed the operators to remotely monitor the operational process of the RO system. The operational data were smoothly recorded and monitored. Furthermore, the technical problems were immediately determined, which reduced the time and effort in rectifying the technical problems relevant to the RO performance. The manpower requirements of such treatment system were dramatically reduced by about 50%. Based on a comparison between manual and wireless monitoring operational processes, the availability of the integrated RO unit with a wireless monitoring was increased by 10%

  5. Nanowire-integrated microporous silicon membrane for continuous fluid transport in micro cooling device

    International Nuclear Information System (INIS)

    So, Hongyun; Pisano, Albert P.; Cheng, Jim C.

    2013-01-01

    We report an efficient passive micro pump system combining the physical properties of nanowires and micropores. This nanowire-integrated microporous silicon membrane was created to feed coolant continuously onto the surface of the wick in a micro cooling device to ensure it remains hydrated and in case of dryout, allow for regeneration of the system. The membrane was fabricated by photoelectrochemical etching to form micropores followed by hydrothermal growth of nanowires. This study shows a promising approach to address thermal management challenges for next generation electronic devices with absence of external power

  6. Jet and ultrasonic nebulization of single chain urokinase plasminogen activator (scu-PA)

    DEFF Research Database (Denmark)

    Münster, Anna-Marie; Bendstrup, E; Jensen, J.I.

    2000-01-01

    locally by nebulization in a recombinant zymogen form as single chain urokinase plasminogen activator (scu-PA). We aimed to characterize the particle size distribution, drug output, and enzymatic activity of scu-PA after nebulization with a Ventstream jet nebulizer (Medic-Aid, Bognor Regis, UK) and a Syst...

  7. Analysis of five streptokinase formulations using the euglobulin lysis test and the plasminogen activation assay

    Directory of Open Access Journals (Sweden)

    Couto L.T.

    2004-01-01

    Full Text Available Streptokinase, a 47-kDa protein isolated and secreted by most group A, C and G ß-hemolytic streptococci, interacts with and activates human protein plasminogen to form an active complex capable of converting other plasminogen molecules to plasmin. Our objective was to compare five streptokinase formulations commercially available in Brazil in terms of their activity in the in vitro tests of euglobulin clot formation and of the hydrolysis of the plasmin-specific substrate S-2251(TM. Euglobulin lysis time was determined using a 96-well microtiter plate. Initially, human thrombin (10 IU/ml and streptokinase were placed in individual wells, clot formation was initiated by the addition of plasma euglobulin, and turbidity was measured at 340 nm every 30 s. In the second assay, plasminogen activation was measured using the plasmin-specific substrate S-2251(TM. Streptase(TM was used as the reference formulation because it presented the strongest fibrinolytic activity in the euglobulin lysis test. The Unitinase(TM and Solustrep(TM formulations were the weakest, showing about 50% activity compared to the reference formulation. All streptokinases tested activated plasminogen but significant differences were observed. In terms of total S-2251(TM activity per vial, Streptase(TM (75.7 ± 5.0 units and Streptonase(TM (94.7 ± 4.6 units had the highest activity, while Unitinase(TM (31.0 ± 2.4 units and Strek(TM (32.9 ± 3.3 units had the weakest activity. Solustrep(TM (53.3 ± 2.7 units presented intermediate activity. The variations among the different formulations for both euglobulin lysis test and chromogenic substrate hydrolysis correlated with the SDS-PAGE densitometric results for the amount of 47-kDa protein. These data show that the commercially available clinical streptokinase formulations vary significantly in their in vitro activity. Whether these differences have clinical implications needs to be investigated.

  8. Estriol-induced fibrinolysis due to the activation of plasminogen to plasmin by nitric oxide synthesis in platelets.

    Science.gov (United States)

    Jana, Pradipta; Maiti, Smarajit; Kahn, Nighat N; Sinha, Asru K

    2015-04-01

    Estriol, an oestrogen, at 0.6 nmol/l was reported to inhibit ADP-induced platelet aggregation through nitric oxide synthesis. As nitric oxide has been reported to cause fibrinolysis due to the activation of plasminogen to plasmin, the role of estriol as a fibrinolytic agent was investigated. Also, the mechanism of estriol-induced nitric oxide synthesis in anucleated platelets was investigated. The estriol-induced lysis of platelet-rich plasma (PRP) clot was determined by photography of the clot lysis and by the assay of fibrin degradation products in the lysate and was obtained by SDS-PAGE. Nitric oxide was determined by methemoglobin method. The platelet membrane protein was isolated from the platelets by using Triton X-100 (0.05% v/v). The binding of estriol to the protein was determined by Scatchard plot by using an ELISA for estriol. Estriol at 0.6 nmol/l was found to lyse the clotted PRP due to fibrinolysis that produced fibrin degradation products in the lysate. The amino acid analysis of the platelet membrane protein, which resembles with nitric oxide synthase (NOS) activity, was activated nearly 10-fold over the control in the presence of estriol and was identified to be a human serum albumin precursor (Mr. 69 kDa) that binds to estriol with Kd1 of 6.0 × 10 mol/l and 39 ± 2 molecules of estriol bound the NOS molecule. The estriol-induced nitric oxide is capable of inducing fibrinolysis of the clotted PRP. The binding of estriol to platelet membrane NOS activated the enzyme in the absence of DNA in the platelet.

  9. Bicyclic peptide inhibitor of urokinase-type plasminogen activator

    DEFF Research Database (Denmark)

    Roodbeen, Renée; Jensen, Berit Paaske; Jiang, Longguang

    2013-01-01

    The development of protease inhibitors for pharmacological intervention has taken a new turn with the use of peptide-based inhibitors. Here, we report the rational design of bicyclic peptide inhibitors of the serine protease urokinase-type plasminogen activator (uPA), based on the established...... investigated the solution structures of the bicyclic peptide by NMR spectroscopy to map possible conformations. An X-ray structure of the bicyclic-peptide-uPA complex confirmed an interaction similar to that for the previous upain-1/upain-2-uPA complexes. These physical studies of the peptide...

  10. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  11. Proteolysis of plasminogen activator inhibitor-1 by Yersinia pestis remodulates the host environment to promote virulence.

    Science.gov (United States)

    Eddy, J L; Schroeder, J A; Zimbler, D L; Caulfield, A J; Lathem, W W

    2016-09-01

    Essentials Effect of plasminogen activator inhibitor (PAI)-1 on plague and its Y. pestis cleavage is unknown. An intranasal mouse model of infection was used to determine the role of PAI-1 in pneumonic plague. PAI-1 is cleaved and inactivated by the Pla protease of Y. pestis in the lung airspace. PAI-1 impacts both bacterial outgrowth and the immune response to respiratory Y. pestis infection. Click to hear Dr Bock discuss pathogen activators of plasminogen. Background The hemostatic regulator plasminogen activator inhibitor-1 (PAI-1) inactivates endogenous plasminogen activators and aids in the immune response to bacterial infection. Yersinia pestis, the causative agent of plague, produces the Pla protease, a virulence factor that is required during plague. However, the specific hemostatic proteins cleaved by Pla in vivo that contribute to pathogenesis have not yet been fully elucidated. Objectives To determine whether PAI-1 is cleaved by the Pla protease during pneumonic plague, and to define the impact of PAI-1 on Y. pestis respiratory infection in the presence or absence of Pla. Methods An intranasal mouse model of pneumonic plague was used to assess the levels of total and active PAI-1 in the lung airspace, and the impact of PAI-1 deficiency on bacterial pathogenesis, the host immune response and plasmin generation following infection with wild-type or ∆pla Y. pestis. Results We found that Y. pestis cleaves and inactivates PAI-1 in the lungs in a Pla-dependent manner. The loss of PAI-1 enhances Y. pestis outgrowth in the absence of Pla, and is associated with increased conversion of plasminogen to plasmin. Furthermore, we found that PAI-1 regulates immune cell recruitment, cytokine production and tissue permeability during pneumonic plague. Conclusions Our data demonstrate that PAI-1 is an in vivo target of the Pla protease in the lungs, and that PAI-1 is a key regulator of the pulmonary innate immune response. We conclude that the inactivation of PAI-1 by Y

  12. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    Science.gov (United States)

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  13. Recovery of flavonoids from orange press liquor by an integrated membrane process.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-08-11

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g-1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g-1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g-1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g-1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  14. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  15. The soluble urokinase plasminogen activator receptor and its fragments in venous ulcers

    DEFF Research Database (Denmark)

    Ahmad, Anwar; Saha, Prakash; Evans, Colin

    2015-01-01

    OBJECTIVE: Activation of proteolytic mechanisms at the cell surface through the activity of urokinase-type plasminogen activator (uPA) bound to its receptor, uPAR, is an important process in wound healing. The soluble forms of uPAR (suPAR and its fragments I, II, and III) have nonproteolytic func...

  16. Recombinant tissue plasminogen activator as a novel treatment option for infective endocarditis: a retrospective clinical study in 32 children.

    Science.gov (United States)

    Levitas, Aviva; Krymko, Hanna; Richardson, Justin; Zalzstein, Eli; Ioffe, Viktoriya

    2016-01-01

    Infective endocarditis is a life-threatening infectious syndrome, with high morbidity and mortality. Current treatments for infective endocarditis include intravenous antibiotics, surgery, and involve a lengthy hospital stay. We hypothesised that adjunctive recombinant tissue plasminogen activator treatment for infective endocarditis may facilitate faster resolution of vegetations and clearance of positive blood cultures, and therefore decrease morbidity and mortality. This retrospective study included follow-up of patients, from 1997 through 2014, including clinical presentation, causative organism, length of treatment, morbidity, and mortality. We identified 32 patients, all of whom were diagnosed with endocarditis and were treated by recombinant tissue plasminogen activator. Among all, 27 patients (93%) had positive blood cultures, with the most frequent organisms being Staphylococcus epidermis (nine patients), Staphylococcus aureus (six patients), and Candida (nine patients). Upon treatment, in 31 patients (97%), resolution of vegetations and clearance of blood cultures occurred within hours to few days. Out of 32 patients, one patient (3%) died and three patients (9%) suffered embolic or haemorrhagic events, possibly related to the recombinant tissue plasminogen activator. None of the patients required surgical intervention to assist vegetation resolution. In conclusion, it appears that recombinant tissue plasminogen activator may become an adjunctive treatment for infective endocarditis and may decrease morbidity as compared with current guidelines. Prospective multi-centre studies are required to validate our findings.

  17. Role for ribosome-associated complex and stress-seventy subfamily B (RAC-Ssb) in integral membrane protein translation.

    Science.gov (United States)

    Acosta-Sampson, Ligia; Döring, Kristina; Lin, Yuping; Yu, Vivian Y; Bukau, Bernd; Kramer, Günter; Cate, Jamie H D

    2017-12-01

    Targeting of most integral membrane proteins to the endoplasmic reticulum is controlled by the signal recognition particle, which recognizes a hydrophobic signal sequence near the protein N terminus. Proper folding of these proteins is monitored by the unfolded protein response and involves protein degradation pathways to ensure quality control. Here, we identify a new pathway for quality control of major facilitator superfamily transporters that occurs before the first transmembrane helix, the signal sequence recognized by the signal recognition particle, is made by the ribosome. Increased rates of translation elongation of the N-terminal sequence of these integral membrane proteins can divert the nascent protein chains to the ribosome-associated complex and stress-seventy subfamily B chaperones. We also show that quality control of integral membrane proteins by ribosome-associated complex-stress-seventy subfamily B couples translation rate to the unfolded protein response, which has implications for understanding mechanisms underlying human disease and protein production in biotechnology. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    International Nuclear Information System (INIS)

    Shaw, George J; Dhamija, Ashima; Bavani, Nazli; Wagner, Kenneth R; Holland, Christy K

    2007-01-01

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T ≤ 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss Δm(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E eff of 42.0 ± 0.9 kJ mole -1 . E eff approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole -1 . A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies

  19. Arrhenius temperature dependence of in vitro tissue plasminogen activator thrombolysis

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, George J [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Dhamija, Ashima [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Bavani, Nazli [Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Wagner, Kenneth R [Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States); Holland, Christy K [Department of Biomedical Engineering, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0769 (United States)

    2007-06-07

    Stroke is a devastating disease and a leading cause of death and disability. Currently, the only FDA approved therapy for acute ischemic stroke is the intravenous administration of the thrombolytic medication, recombinant tissue plasminogen activator (tPA). However, this treatment has many contraindications and can have dangerous side effects such as intra-cerebral hemorrhage. These treatment limitations have led to much interest in potential adjunctive therapies, such as therapeutic hypothermia (T {<=} 35 deg. C) and ultrasound enhanced thrombolysis. Such interest may lead to combining these therapies with tPA to treat stroke, however little is known about the effects of temperature on the thrombolytic efficacy of tPA. In this work, we measure the temperature dependence of the fractional clot mass loss {delta}m(T) resulting from tPA exposure in an in vitro human clot model. We find that the temperature dependence is well described by an Arrhenius temperature dependence with an effective activation energy E{sub eff} of 42.0 {+-} 0.9 kJ mole{sup -1}. E{sub eff} approximates the activation energy of the plasminogen-to-plasmin reaction of 48.9 kJ mole{sup -1}. A model to explain this temperature dependence is proposed. These results will be useful in predicting the effects of temperature in future lytic therapies.

  20. Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) in breast cancer - correlation with traditional prognostic factors

    International Nuclear Information System (INIS)

    Lampelj, Maja; Arko, Darja; Cas-Sikosek, Nina; Kavalar, Rajko; Ravnik, Maja; Jezersek-Novakovic, Barbara; Dobnik, Sarah; Dovnik, Nina Fokter; Takac, Iztok

    2015-01-01

    Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor type-1 (PAI-1) play a key role in tumour invasion and metastasis. High levels of both proteolytic enzymes are associated with poor prognosis in breast cancer patients. The purpose of this study was to evaluate the correlation between traditional prognostic factors and uPA and PAI-1 expression in primary tumour of breast cancer patients. 606 primary breast cancer patients were enrolled in the prospective study in the Department of gynaecological oncology and breast oncology at the University Medical Centre Maribor between the years 2004 and 2010. We evaluated the traditional prognostic factors (age, menopausal status, tumour size, pathohistological type, histologic grade, lymph node status, lymphovascular invasion and hormone receptor status), together with uPA and PAI-1. We used Spearman’s rank correlation, Mann Whitney U test and χ 2 test for statistical analysis. Our findings indicate a positive correlation between uPA and tumour size (p < 0.001), grade (p < 0.001), histological type (p < 0.001), lymphovascular invasion (p = 0.01) and a negative correlation between uPA and hormone receptor status (p < 0.001). They also indicate a positive correlation between PAI-1 and tumour size (p = 0.004), grade (p < 0.001), pathohistological type (p < 0.001) and negative correlation between PAI-1 and hormone receptor status (p = 0.002). Our study showed a relationship between uPA and PAI-1 and traditional prognostic factors. Their role as prognostic and predictive factors remains to be further evaluated

  1. Integrated gasification gas combined cycle plant with membrane reactors: Technological and economical analysis

    International Nuclear Information System (INIS)

    Amelio, Mario; Morrone, Pietropaolo; Gallucci, Fausto; Basile, Angelo

    2007-01-01

    In the present work, the capture and storage of carbon dioxide from the fossil fuel power plant have been considered. The main objective was to analyze the thermodynamic performances and the technological aspects of two integrated gasification gas combined cycle plants (IGCC), as well as to give a forecast of the investment costs for the plants and the resulting energy consumptions. The first plant considered is an IGCC* plant (integrated gasification gas combined cycle plant with traditional shift reactors) characterized by the traditional water gas shift reactors and a CO 2 physical adsorption system followed by the power section. The second one is an IGCC M plant (integrated gasification gas combined cycle plant with membrane reactor) where the coal thermal input is the same as the first one, but the traditional shift reactors and the physical adsorption unit are replaced by catalytic palladium membrane reactors (CMR). In the present work, a mono-dimensional computational model of the membrane reactor was proposed to simulate and evaluate the capability of the IGCC M plant to capture carbon dioxide. The energetic performances, efficiency and net power of the IGCC* and IGCC M plants were, thus, compared, assuming as standard a traditional IGCC plant without carbon dioxide capture. The economical aspects of the three plants were compared through an economical analysis. Since the IGCC* and IGCC M plants have additional costs related to the capture and disposal of the carbon dioxide, a Carbon Tax (adopted in some countries like Sweden) proportional to the number of kilograms of carbon dioxide released in the environment was assumed. According to the economical analysis, the IGCC M plant proved to be more convenient than the IGCC* one

  2. Integrated membrane distillation-crystallization: process design and cost estimations for seawater treatment and fluxes of single salt solutions

    NARCIS (Netherlands)

    Creusen, R.J.M.; Medevoort, J. van; Roelands, C.P.M.; Renesse van Duivenbode, J.A.D. van; Hanemaaijer, J.H.; Leerdam, R.C. van

    2013-01-01

    The goal of this research is to design an integrated membrane distillation-crystallization (MDC) process for desalination of seawater with pure water and dry salts as the only products. The process is based on a combination of membrane distillation (MD) and osmotic distillation (OD) steps with

  3. Analysis of the binding of pro-urokinase and urokinase-plasminogen activator inhibitor-1 complex to the low density lipoprotein receptor-related protein using a Fab fragment selected from a phage-displayed Fab library

    NARCIS (Netherlands)

    Horn, I. R.; Moestrup, S. K.; van den Berg, B. M.; Pannekoek, H.; Nielsen, M. S.; van Zonneveld, A. J.

    1995-01-01

    The low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor (LRP) mediates endocytosis of a number of structurally unrelated ligands, including complexes of plasminogen activator inhibitor type 1 (PAI-1) and tissue-type plasminogen activator (t-PA) or urokinase plasminogen

  4. Identification and characterization of Taenia solium enolase as a plasminogen-binding protein.

    Science.gov (United States)

    Ayón-Núñez, Dolores A; Fragoso, Gladis; Espitia, Clara; García-Varela, Martín; Soberón, Xavier; Rosas, Gabriela; Laclette, Juan P; Bobes, Raúl J

    2018-06-01

    The larval stage of Taenia solium (cysticerci) is the causal agent of human and swine cysticercosis. When ingested by the host, T. solium eggs are activated and hatch in the intestine, releasing oncospheres that migrate to various tissues and evolve into cysticerci. Plasminogen (Plg) receptor proteins have been reported to play a role in migration processes for several pathogens. This work is aimed to identify Plg-binding proteins in T. solium cysticerci and determine whether T. solium recombinant enolase (rTsEnoA) is capable of specifically binding and activating human Plg. To identify Plg-binding proteins, a 2D-SDS-PAGE ligand blotting was performed, and recognized spots were identified by MS/MS. Seven proteins from T. solium cysticerci were found capable of binding Plg: fascicilin-1, fasciclin-2, enolase, MAPK, annexin, actin, and cytosolic malate dehydrogenase. To determine whether rTsEnoA binds human Plg, a ligand blotting was performed and the results were confirmed by ELISA both in the presence and absence of εACA, a competitive Plg inhibitor. Finally, rTsEnoA-bound Plg was activated to plasmin in the presence of tPA. To better understand the evolution of enolase isoforms in T. solium, a phylogenetic inference analysis including 75 enolase amino acid sequences was conducted. The origin of flatworm enolase isoforms, except for Eno4, is independent of their vertebrate counterparts. Therefore, herein we propose to designate tapeworm protein isoforms as A, B, C, and 4. In conclusion, recombinant enolase showed a strong plasminogen binding and activating activity in vitro. T. solium enolase could play a role in parasite invasion along with other plasminogen-binding proteins. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Dual role for plasminogen activator inhibitor type 1 as soluble and as matricellular regulator of epithelial alveolar cell wound healing.

    Science.gov (United States)

    Maquerlot, François; Galiacy, Stephane; Malo, Michel; Guignabert, Christophe; Lawrence, Daniel A; d'Ortho, Maria-Pia; Barlovatz-Meimon, Georgia

    2006-11-01

    Epithelium repair, crucial for restoration of alveolo-capillary barrier integrity, is orchestrated by various cytokines and growth factors. Among them keratinocyte growth factor plays a pivotal role in both cell proliferation and migration. The urokinase plasminogen activator (uPA) system also influences cell migration through proteolysis during epithelial repair. In addition, the complex formed by uPAR-uPA and matrix-bound plasminogen activator inhibitor type-1 (PAI-1) exerts nonproteolytic roles in various cell types. Here we present new evidence about the dual role of PAI-1 under keratinocyte growth factor stimulation using an in vitro repair model of rat alveolar epithelial cells. Besides proteolytic involvement of the uPA system, the availability of matrix-bound-PAI-1 is also required for an efficient healing. An unexpected decrease of healing was shown when PAI-1 activity was blocked. However, the proteolytic action of uPA and plasmin were still required. Moreover, immediately after wounding, PAI-1 was dramatically increased in the newly deposited matrix at the leading edge of wounds. We thus propose a dual role for PAI-1 in epithelial cell wound healing, both as a soluble inhibitor of proteolysis and also as a matrix-bound regulator of cell migration. Matrix-bound PAI-1 could thus be considered as a new member of the matricellular protein family.

  6. Stability of transmembrane amyloid β-peptide and membrane integrity tested by molecular modeling of site-specific Aβ42 mutations.

    Directory of Open Access Journals (Sweden)

    Chetan Poojari

    Full Text Available Interactions of the amyloid β-protein (Aβ with neuronal cell membranes, leading to the disruption of membrane integrity, are considered to play a key role in the development of Alzheimer's disease. Natural mutations in Aβ42, such as the Arctic mutation (E22G have been shown to increase Aβ42 aggregation and neurotoxicity, leading to the early-onset of Alzheimer's disease. A correlation between the propensity of Aβ42 to form protofibrils and its effect on neuronal dysfunction and degeneration has been established. Using rational mutagenesis of the Aβ42 peptide it was further revealed that the aggregation of different Aβ42 mutants in lipid membranes results in a variety of polymorphic aggregates in a mutation dependent manner. The mutant peptides also have a variable ability to disrupt bilayer integrity. To further test the connection between Aβ42 mutation and peptide-membrane interactions, we perform molecular dynamics simulations of membrane-inserted Aβ42 variants (wild-type and E22G, D23G, E22G/D23G, K16M/K28M and K16M/E22G/D23G/K28M mutants as β-sheet monomers and tetramers. The effects of charged residues on transmembrane Aβ42 stability and membrane integrity are analyzed at atomistic level. We observe an increased stability for the E22G Aβ42 peptide and a decreased stability for D23G compared to wild-type Aβ42, while D23G has the largest membrane-disruptive effect. These results support the experimental observation that the altered toxicity arising from mutations in Aβ is not only a result of the altered aggregation propensity, but also originates from modified Aβ interactions with neuronal membranes.

  7. Activity and expression of urokinase-type plasminogen activator and matrix metalloproteinases in human colorectal cancer

    International Nuclear Information System (INIS)

    Kim, Tae-Dong; Song, Kyoung-Sub; Li, Ge; Choi, Hoon; Park, Hae-Duck; Lim, Kyu; Hwang, Byung-Doo; Yoon, Wan-Hee

    2006-01-01

    Matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and urokinase-type plasminogen activator (uPA) are involved in colorectal cancer invasion and metastasis. There is still debate whether the activity of MMP-2 and MMP-9 differs between tumors located in the colon and rectum. We designed this study to determine any differences in the expression of MMP-2, MMP-9 and uPA system between colon and rectal cancer tissues. Cancer tissue samples were obtained from colon carcinoma (n = 12) and rectal carcinomas (n = 10). MMP-2 and MMP-9 levels were examined using gelatin zymography and Western blotting; their endogenous inhibitors, tissue inhibitor of metalloproteinase-2 (TIMP-2) and tissue inhibitor of metalloproteinase-1 (TIMP-1), were assessed by Western blotting. uPA, uPAR and PAI-1 were examined using enzyme-linked immunosorbent assay (ELISA). The activity of uPA was assessed by casein-plasminogen zymography. In both colon and rectal tumors, MMP-2, MMP-9 and TIMP-1 protein levels were higher than in corresponding paired normal mucosa, while TIMP-2 level in tumors was significantly lower than in normal mucosa. The enzyme activities or protein levels of MMP-2, MMP-9 and their endogenous inhibitors did not reach a statistically significant difference between colon and rectal cancer compared with their normal mucosa. In rectal tumors, there was an increased activity of uPA compared with the activity in colon tumors (P = 0.0266), however urokinase-type plasminogen activator receptor (uPAR) and plasminogen activator inhibitor-1 (PAI-1) showed no significant difference between colon and rectal cancer tissues. These findings suggest that uPA may be expressed differentially in colon and rectal cancers, however, the activities or protein levels of MMP-2, MMP-9, TIMP-1, TIMP-2, PAI-1 and uPAR are not affected by tumor location in the colon or the rectum

  8. Formation of integral asymmetric membranes of AB diblock and ABC triblock copolymers by phase inversion.

    Science.gov (United States)

    Jung, Adina; Filiz, Volkan; Rangou, Sofia; Buhr, Kristian; Merten, Petra; Hahn, Janina; Clodt, Juliana; Abetz, Clarissa; Abetz, Volker

    2013-04-12

    The formation of integral asymmetric membranes from ABC triblock terpolymers by non-solvent-induced phase separation is shown. They are compared with the AB diblock copolymer precursors. Triblock terpolymers of polystyrene-block-poly(2-vinylpyridine)-block-poly(ethylene oxide) (PS-b-P2VP-b-PEO) with two compositions are investigated. The third block supports the formation of a membrane in a case, where the corresponding diblock copolymer does not form a good membrane. In addition, the hydrophilicity is increased by the third block and due to the hydroxyl group the possibility of post-functionalization is given. The morphologies are imaged by scanning electron microscopy. The influence of the PEO on the membrane properties is analyzed by water flux, retention, and dynamic contact angle measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Technetium labelled plasminogen activator - a potential reagent for thrombus detection

    Energy Technology Data Exchange (ETDEWEB)

    Paulsma-De Waal, J.H.; Boer, A.C. de; Cox, P.H.; Pillay, M.; Stassen, J.H.; Collen, D.

    1987-12-01

    The preparation of a technetium labelled plasminogen activator complex using a solid phase labelling technique is described. The labelled complex showed no significant loss of fibrinolytic activity in vitro and showed in vivo a rapid uptake in thrombi in an animal model and in human volunteer patients with known thrombi when injected into a vein draining to the thrombotic region. Systemic injection showed no uptake in the thrombi probably due to rapid sequestration of the complex by the liver.

  10. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies

    DEFF Research Database (Denmark)

    Bøtkjær, Kenneth Alrø; Fogh, Sarah; Bekes, Erin C

    2011-01-01

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types......, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active u......PA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems...

  11. Inactivation of single-chain urokinase-type plasminogen activator by thrombin in human subjects

    NARCIS (Netherlands)

    Braat, E. A.; Levi, M. [=Marcel M.; Bos, R.; Haverkate, F.; Lassen, M. R.; de Maat, M. P.; Rijken, D. C.

    1999-01-01

    Thrombin cleaves single-chain urokinase-type plasminogen activator (scu-PA) into a virtually inactive two-chain form (tcu-PA/T), a process that may protect a blood clot from early fibrinolysis. It is not known under what circumstances tcu-PA/T can be generated in vivo. We have studied the occurrence

  12. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility

    Science.gov (United States)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  13. Plasminogen-induced aggregation of PANC-1 cells requires conversion to plasmin and is inhibited by endogenous plasminogen activator inhibitor-1.

    Science.gov (United States)

    Deshet, Naamit; Lupu-Meiri, Monica; Espinoza, Ingrid; Fili, Oded; Shapira, Yuval; Lupu, Ruth; Gershengorn, Marvin C; Oron, Yoram

    2008-09-01

    PANC-1 cells express proteinase-activated receptors (PARs)-1, -2, and respond to their activation by transient elevation of cytosolic [Ca(2+)] and accelerated aggregation (Wei et al., 2006, J Cell Physiol 206:322-328). We studied the effect of plasminogen (PGN), an inactive precursor of the PAR-1-activating protease, plasmin (PN) on aggregation of pancreatic adenocarcinoma (PDAC) cells. A single dose of PGN time- and dose-dependently promoted PANC-1 cells aggregation in serum-free medium, while PN did not. PANC-1 cells express urokinase plasminogen activator (uPA), which continuously converted PGN to PN. This activity and PGN-induced aggregation were inhibited by the uPA inhibitor amiloride. PGN-induced aggregation was also inhibited by alpha-antiplasmin and by the PN inhibitor epsilon-aminocaproic acid (EACA). Direct assay of uPA activity revealed very low rate, markedly enhanced in the presence of PGN. Moreover, in PGN activator inhibitor 1-deficient PANC-1 cells, uPA activity and PGN-induced aggregation were markedly potentiated. Two additional human PDAC cell lines, MiaPaCa and Colo347, were assayed for PGN-induced aggregation. Both cell lines responded by aggregation and exhibited PGN-enhanced uPA activity. We hypothesized that the continuous conversion of PGN to PN by endogenous uPA is limited by PN's degradation and negatively controlled by endogenously produced PAI-1. Indeed, we found that PANC-1 cells inactivate PN with t1/2 of approximately 7 h, while the continuous addition of PN promoted aggregation. Our data suggest that PANC-1 cells possess intrinsic, PAI-1-sensitive mechanism for promotion of aggregation and differentiation by prolonged exposure to PGN and, possibly, additional precursors of PARs agonists.

  14. Integrating Microbial Electrochemical Technology with Forward Osmosis and Membrane Bioreactors: Low-Energy Wastewater Treatment, Energy Recovery and Water Reuse

    KAUST Repository

    Werner, Craig M.

    2014-06-01

    Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative water resource, capturing part of this energy and reclaiming the water would offset or even eliminate energy requirements for wastewater treatment and provide a means to augment traditional water supplies. Microbial electrochemical technology is a novel technology platform that uses bacteria capable of producing an electric current outside of the cell to recover energy from wastewater. These bacteria do not require oxygen to respire but instead use an insoluble electrode as their terminal electron acceptor. Two types of microbial electrochemical technologies were investigated in this dissertation: 1) a microbial fuel cell that produces electricity; and 2) a microbial electrolysis cell that produces hydrogen with the addition of external power. On their own, microbial electrochemical technologies do not achieve sufficiently high treatment levels. Innovative approaches that integrate microbial electrochemical technologies with emerging and established membrane-based treatment processes may improve the overall extent of wastewater treatment and reclaim treated water. Forward osmosis is an emerging low-energy membrane-based technology for seawater desalination. In forward osmosis water is transported across a semipermeable membrane driven by an osmotic gradient. The microbial osmotic fuel cell described in this dissertation integrates a microbial fuel cell with forward osmosis to achieve wastewater treatment, energy recovery and partial desalination. This system required no aeration and generated more power than conventional microbial fuel cells using ion exchange membranes by minimizing electrochemical losses. Membrane bioreactors incorporate semipermeable membranes within a biological wastewater

  15. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi.

    Directory of Open Access Journals (Sweden)

    Tomasz Brzoska

    Full Text Available The fibrinolytic system plays a pivotal role in the regulation of hemostasis; however, it remains unclear how and when the system is triggered to induce thrombolysis. Using intra-vital confocal fluorescence microscopy, we investigated the process of plasminogen binding to laser-induced platelet-rich microthrombi generated in the mesenteric vein of transgenic mice expressing green fluorescent protein (GFP. The accumulation of GFP-expressing platelets as well as exogenously infused Alexa Fluor 568-labeled Glu-plasminogen (Glu-plg on the injured vessel wall was assessed by measuring the increase in the corresponding fluorescence intensities. Glu-plg accumulated in a time-dependent manner in the center of the microthrombus, where phosphatidylserine is exposed on platelet surfaces and fibrin formation takes place. The rates of binding of Glu-plg in the presence of ε-aminocaproic acid and carboxypeptidase B, as well as the rates of binding of mini-plasminogen lacking kringle domains 1-4 and lysine binding sites, were significantly lower than that of Glu-plg alone, suggesting that the binding was dependent on lysine binding sites. Furthermore, aprotinin significantly suppressed the accumulation of Glu-plg, suggesting that endogenously generated plasmin activity is a prerequisite for the accumulation. In spite of the endogenous generation of plasmin and accumulation of Glu-plg in the center of microthrombi, the microthrombi did not change in size during the 2-hour observation period. When human tissue plasminogen activator was administered intravenously, Glu-plg further accumulated and the microthrombi were lysed. Glu-plg appeared to accumulate in the center of microthrombi in the early phase of microthrombus formation, and plasmin activity and lysine binding sites were required for this accumulation.

  16. Urokinase plasminogen activator receptor on invasive cancer cells: A prognostic factor in distal gastric adenocarcinoma

    DEFF Research Database (Denmark)

    Alpizar, Warner Enrique Alpizar; Christensen, Ib Jarle; Santoni-Rugiu, Eric

    2012-01-01

    Gastric cancer is the second cancer causing death worldwide. The five-year survival for this malignancy is below 25% and few parameters have shown an impact on the prognosis of the disease. The receptor for urokinase plasminogen activator (uPAR) is involved in extracellular matrix degradation...... by mediating cell surface associated plasminogen activation, and its presence on gastric cancer cells is linked to micrometastasis and poor prognosis. Using immunohistochemistry, the prognostic significance of uPAR was evaluated in tissue samples from a retrospective series of 95 gastric cancer patients. u...... association between the expression of uPAR on tumor cells in the peripheral invasion zone and overall survival of gastric cancer patients (HR = 2.16; 95% CI: 1.13-4.14; p = 0.02). Multivariate analysis showed that uPAR immunoreactivity in cancer cells at the invasive front is an independent prognostic factor...

  17. Safety and Efficacy of Intrapleural Tissue Plasminogen Activator and DNase during Extended Use in Complicated Pleural Space Infections

    Directory of Open Access Journals (Sweden)

    Jason R. McClune

    2016-01-01

    Full Text Available The use of intrapleural therapy with tissue plasminogen activator and DNase improves outcomes in patients with complicated pleural space infections. However, little data exists for the use of combination intrapleural therapy after the initial dosing period of six doses. We sought to describe the safety profile and outcomes of intrapleural therapy beyond this standard dosing. A retrospective review of patients receiving intrapleural therapy with tissue plasminogen activator and DNase was performed at two institutions. We identified 101 patients from January 2013 to August 2015 receiving intrapleural therapy for complicated pleural space infection. The extended use of intrapleural tissue plasminogen activator and DNase therapy beyond six doses was utilized in 20% (20/101 of patients. The mean number of doses in those undergoing extended dosing was 9.8 (range of 7–16. Within the population studied there appears to be no statistically significant increased risk of complications, need for surgical referral, or outcome differences when comparing those receiving standard or extended dosing intrapleural therapy. Future prospective study of intrapleural therapy as an alternative option for patients who fail initial pleural drainage and are unable to tolerate/accept a surgical intervention appears a potential area of study.

  18. Composite poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex for immunoassay. The case of plasminogen.

    Science.gov (United States)

    Miksa, B; Wilczynska, M; Cierniewski, C; Basinska, T; Slomkowski, S

    1995-01-01

    Poly(methyl methacrylate-methacrylic acid-2-hydroxyethyl methacrylate) latex (ACRYLAT) was synthesized by radical precipitation polymerization. The mass median diameter (MMD) and the geometrical standard deviation (GSD) of the ACRYLAT particles were 138 nm and 1.2, respectively. The concentration of the titrable carboxylic groups in the surface layer of latex particles was equal to 8.41 x 10(-6) mol m-2. Latex was able to bind up to 2.82 x 10(-7) mol of 1-aminopyrene per 1 m2 of the surface of the latex particles due to the ionic interactions between carboxylate anions and ammonium cations of protonated 1-aminopyrene. ACRYLAT was able to immobilize covalently human serum albumin in amounts up to 0.23 mg m-2. Aggregation of ACRYLAT with immobilized HSA, induced with specific antibodies (anti-HSA), was investigated turbidimetrically. The results indicated that in the model turbidimetric immunoassay, ACRYLAT coated with HSA can be used for the detection of anti-HSA in the goat anti-HSA serum diluted from 50 to 7000-fold. Immobilization of rabbit antibodies to plasminogen (anti-Plg) to ACRYLAT via the epsilon-aminocaproic acid linkers provided particles which were used for the development of the turbidimetric immunoassay for plasminogen. In this assay plasminogen could be detected in concentration ranging from 0.75 to 75 micrograms ml-1 in the blood plasma.

  19. Effect of commercial long-term extenders on metabolic activity and membrane integrity of boar spermatozoa stored at 17 degrees C.

    Science.gov (United States)

    Dziekońska, A; Fraser, L; Majewska, A; Lecewicz, M; Zasiadczyk, Ł; Kordan, W

    2013-01-01

    This study was aimed to analyze the metabolic activity and membrane integrity of boar spermatozoa following storage in long-term semen extenders. Boar semen was diluted with Androhep EnduraGuard (AeG), DILU-Cell (DC), SafeCell Plus (SCP) and Vitasem LD (VLD) extenders and stored for 10 days at 17 degrees C. Parameters of the analyzed sperm metabolic activity included total motility (TMOT), progressive motility (PMOT), high mitochondrial membrane potential (MMP) and ATP content, whereas those of the membrane integrity included plasma membrane integrity (PMI) and normal apical ridge (NAR) acrosome. Extender type was a significant (P semen storage. In all extenders the metabolic activity and membrane integrity of the stored spermatozoa decreased continuously over time. Among the four analyzed extenders, AeG and SCP showed the best performance in terms of TMOT and PMI on Days 5, 7 and 10 of storage. Marked differences in the proportions of spermatozoa with high MMP were observed between the extenders, particularly on Day 10 of storage. There were not any marked differences in sperm ATP content between the extenders, regardless of the storage time. Furthermore, the percentage of spermatozoa with NAR acrosomes decreased during prolonged storage, being markedly lower in DC-diluted semen compared with semen diluted with either AeG or SCP extender. The results of this study indicated that components of the long-term extenders have different effects on the sperm functionality and prolonged semen longevity by delaying the processes associated with sperm ageing during liquid storage.

  20. In vitro and in vivo antiangiogenic activity of a novel deca-peptide derived from human tissue-type plasminogen activator kringle 2

    International Nuclear Information System (INIS)

    Su, Li; Xu, Xun; Zhao, Hui; Gu, Qing; Zou, Haidong

    2010-01-01

    A synthetic deca-peptide corresponding to the amino acid sequence Arg 54 -Trp 63 of human tissue-type plasminogen activator (t-PA) kringle 2 domain, named TKII-10, is produced and tested for its ability to inhibit endothelial cell proliferation, migration, tube formation in vitro, and angiogenesis in vivo. At the same time, another peptide TKII-10S composed of the same 10 amino acids as TKII-10, but in a different sequence, is also produced and tested. The results show that TKII-10 potently inhibits VEGF-stimulated endothelial cell migration and tube formation in a dose-dependent, as well as sequence-dependent, manner in vitro while it is inactive in inhibiting endothelial cell proliferation. Furthermore, TKII-10 potently inhibits angiogenesis in chick chorioallantoic membrane and mouse cornea. The middle four amino acids DGDA in their sequence play an important role in TKII-10 angiogenesis inhibition . These results suggest that TKII-10 is a novel angiogenesis inhibitor that may serve as a prototype for antiangiogenic drug development.

  1. Functional role of proteolytic cleavage at arginine-275 of human tissue plasminogen activator as assessed by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Tate, K.M.; Higgins, D.L.; Holmes, W.E.; Winkler, M.E.; Heyneker, H.L.; Vehar, G.A.

    1987-01-01

    Activation of the zymogen form of a serine protease is associated with a conformational change that follows proteolysis at a specific site. Tissue-type plasminogen activator (t-PA) is homologous to mammalian serine proteases and contains an apparent activation cleavage site at arginine-275. To clarify the functional consequences of cleavage at arginine-275 of t-PA, site-specific mutagenesis was performed to convert arginine-275 to a glutamic acid. The mutant enzyme (designated Arg-275 → Glu t-PA) could be converted to the two-chain form by Staphylococcus aureus V8 protease but not by plasmin. The one-chain form was 8 times less active against the tripeptide substrate H-D-isoleucyl-L-prolyl-L-arginine-rho-nitroanilide (S-2288), and the ability of the enzyme to activate plasminogen in the absence of fibrinogen was reduced 20-50 times compared to the two-chain form. In contrast, one-chain Arg-275 → Glu t-PA has equal activity to the two-chain form when assayed in the presence of physiological levels of fibrinogen and plasminogen. Fibrin bound significantly more of the one-chain form of t-PA than the two-chain form for both the wild-type and mutated enzymes. One- and two-chain forms of the wild-type and mutated plasminogen activators slowly formed complexes with plasma protease inhibitors, although the one-chain forms showed decreased complex formation with → 2 -macroglobulin. The one-chain form of t-PA therefore is fully functional under physiologic conditions and has a increased fibrin binding compared to the two-chain form

  2. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    International Nuclear Information System (INIS)

    Sawaya, R.; Rayford, A.; Kono, S.; Rao, J.S.; Ang, K.K.; Feng, Y.; Stephens, L.C.

    1994-01-01

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days' irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs

  3. Elevated levels of plasminogen activators in the pathogenesis of delayed radiation damage in rat cervical spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Sawaya, R.; Rayford, A.; Kono, S.; Rao, J.S.; Ang, K.K.; Feng, Y.; Stephens, L.C. [Univ. of Texas, Houston, TX (United States)

    1994-06-01

    The pathophysiology of the cellular basis of radiation-induced demyelination and white-matter necrosis of the central nervous system (CNS) is poorly understood. Preliminary data suggest that tissue damage is partly mediated through changes in the proteolytic enzymes. In this study, we irradiated rat cervical spinal cords with single doses of 24 Gy of 18 MV photons or 20 MeV electrons and measured the levels of plasminogen activators at days 2, 7, 30, 60, 90, 120, 130 and 145 after irradiation, using appropriate controls at each time. Fibrin zymography revealed fibrinolytic bands representing molecular weights of 68,000 and 48,000 in controls and irradiated samples; these bands increased significantly at days 120, 130 and 145 after irradiation. Inhibition of these enzymatic bands with specific antibodies against tissue-type plasminogen activator (tPA) and amiloride, an inhibitor for urokinase plasminogen activator (uPA), confirmed that these bands were tPA and uPA. Enzymatic levels quantified by densitometry showed a twofold elevation in the levels of tPA and more than a tenfold increase in uPA after 120 days` irradiation. Activity of uPA was increased threefold by day 2 and increased steadily with time compared to nonirradiated control samples. Enzyme-linked immunosorbent assay (ELISA) also showed a threefold increase in the tPA content in the extracts of irradiated rat cervical spinal cords at days 120, 130 and 145. This study adds additional information to the proposed role of plasminogen activators in the pathogenic pathways of radiation damage in the CNS. 38 refs., 6 figs.

  4. Catalytic, Conductive Bipolar Membrane Interfaces through Layer-by-Layer Deposition for the Design of Membrane-Integrated Artificial Photosynthesis Systems.

    Science.gov (United States)

    McDonald, Michael B; Freund, Michael S; Hammond, Paula T

    2017-11-23

    In the presence of an electric field, bipolar membranes (BPMs) are capable of initiating water disassociation (WD) within the interfacial region, which can make water splitting for renewable energy in the presence of a pH gradient possible. In addition to WD catalytic efficiency, there is also the need for electronic conductivity in this region for membrane-integrated artificial photosynthesis (AP) systems. Graphene oxide (GO) was shown to catalyze WD and to be controllably reduced, which resulted in electronic conductivity. Layer-by-layer (LbL) film deposition was employed to improve GO film uniformity in the interfacial region to enhance WD catalysis and, through the addition of a conducting polymer in the process, add electronic conductivity in a hybrid film. Three different deposition methods were tested to optimize conducting polymer synthesis with the oxidant in a metastable solution and to yield the best film properties. It was found that an approach that included substrate dipping in a solution containing the expected final monomer/oxidant ratio provided the most predictable film growth and smoothest films (by UV/Vis spectroscopy and atomic force microscopy/scanning electron microscopy, respectively), whereas dipping in excess oxidant or co-spraying the oxidant and monomer produced heterogeneous films. Optimized films were found to be electronically conductive and produced a membrane ohmic drop that was acceptable for AP applications. Films were integrated into the interfacial region of BPMs and revealed superior WD efficiency (≥1.4 V at 10 mA cm -2 ) for thinner films (<10 bilayers≈100 nm) than for either the pure GO catalyst or conducting polymer individually, which indicated that there was a synergistic effect between these materials in the structure configured by the LbL method. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Integral and peripheral association of proteins and protein complexes with Yersinia pestis inner and outer membranes

    Directory of Open Access Journals (Sweden)

    Bunai Christine L

    2009-02-01

    Full Text Available Abstract Yersinia pestis proteins were sequentially extracted from crude membranes with a high salt buffer (2.5 M NaBr, an alkaline solution (180 mM Na2CO3, pH 11.3 and membrane denaturants (8 M urea, 2 M thiourea and 1% amidosulfobetaine-14. Separation of proteins by 2D gel electrophoresis was followed by identification of more than 600 gene products by MS. Data from differential 2D gel display experiments, comparing protein abundances in cytoplasmic, periplasmic and all three membrane fractions, were used to assign proteins found in the membrane fractions to three protein categories: (i integral membrane proteins and peripheral membrane proteins with low solubility in aqueous solutions (220 entries; (ii peripheral membrane proteins with moderate to high solubility in aqueous solutions (127 entries; (iii cytoplasmic or ribosomal membrane-contaminating proteins (80 entries. Thirty-one proteins were experimentally associated with the outer membrane (OM. Circa 50 proteins thought to be part of membrane-localized, multi-subunit complexes were identified in high Mr fractions of membrane extracts via size exclusion chromatography. This data supported biologically meaningful assignments of many proteins to the membrane periphery. Since only 32 inner membrane (IM proteins with two or more predicted transmembrane domains (TMDs were profiled in 2D gels, we resorted to a proteomic analysis by 2D-LC-MS/MS. Ninety-four additional IM proteins with two or more TMDs were identified. The total number of proteins associated with Y. pestis membranes increased to 456 and included representatives of all six β-barrel OM protein families and 25 distinct IM transporter families.

  6. Roles of tissue plasminogen activator and its inhibitor in proliferative diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    Shu-Ling; Wu; Dong-Mei; Zhan; Shu-Hong; Xi; Xiang-Lian; He

    2014-01-01

    AIM:To investigate the role of tissue plasminogen activator(t-PA) and plasminogen activator inhibitor(PAI)in proliferative diabetic retinopathy(PDR) and to discuss the correlations among t-PA, PAI and vascular endothelial growth factor(VEGF) expressions.METHODS:A total of 36 vitreous samples were collected from 36 patients with PDR(PDR group), and 17 vitreous samples from 17 patients with idiopathic macular hole were used as control. The concentrations of t-PA, PAI and VEGF in samples were determined by ELISA method. The correlations among t-PA, PAI and VEGF expressions were discussed.RESULTS:The concentrations of t-PA, PAI and VEGF in the PDR group were significantly higher than those in the control group(P <0.001). The t-PA and PAI expressions were highly correlated with the VEGF expression(P <0.001).CONCLUSION:In addition to VEGF, a variety of bioactive substances, such as t-PA and PAI, are involved in the pathogenesis involved in the angiogenesis of PDR.VEGF can activate t-PA expression, resulting in collagen tissue degradation and angiogenesis. VEGF may also activate the mechanism for endogenous anti-neovascularization.

  7. Very Low Surface Energy (Membrane Separations: An Integrated Polymer Chemistry/Engineering Approach and The Influence of Backpulsing on Fouling Properties of Novel Nanofiltration Membranes for Wastewater Remediation

    National Research Council Canada - National Science Library

    Freeman, Benny

    1998-01-01

    ...: An Integrated Polymer Chemistry/Engineering Approach, is to explore several new classes of polymeric materials to identify promising routes for developing low-fouling nanofiltration membranes for wastewater remediation...

  8. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  9. Effects of alpha-lipoic acids on sperm membrane integrity during liquid storage of boar semen

    Directory of Open Access Journals (Sweden)

    Laura Parlapan

    2015-05-01

    Full Text Available Preliminary studies have shown that sperm membrane from swine shows high sensitivity to cryopreservation process, causing a dramatic reduction in sperm quality. This has been attributed to the production of reactive oxygen species, that cause lipid peroxidation in sperm membranes. The aim of the present study was to minimize the oxidative attack by adding different concentration of alpha-lipoic acid into the sperm liquid storage at 17ºC for 7 days. Freshly ejaculated boar semen was diluted with Beltsville Thawing Solution (BTS and supplemented with 5 levels of alpha-lipoic  acid (0.015, 0.02, 0.05, 0.1, 0.15 mmol/ml. The membrane integrity was evaluated at days 0, 1, 3, 5 and 7 of liquid preservation, using flow cytometer FACSCanto II (BD Biociencias systems. The experiment indicate that supplementation of alpha-lipoic  acid to the semen liquid storage extender improve sperm membrane

  10. Integration of ceramic membrane and compressed air-assisted solvent extraction (CASX) for metal recovery.

    Science.gov (United States)

    Li, Chi-Wang; Chiu, Chun-Hao; Lee, Yu-Cheng; Chang, Chia-Hao; Lee, Yu-Hsun; Chen, Yi-Ming

    2010-01-01

    In our previous publications, compressed air-assisted solvent extraction process (CASX) was developed and proved to be kinetically efficient process for metal removal. In the current study, CASX with a ceramic MF membrane integrated for separation of spent solvent was employed to remove and recover metal from wastewater. MF was operated either in crossflow mode or dead-end with intermittent flushing mode. Under crossflow mode, three distinct stages of flux vs. TMP (trans-membrane pressure) relationship were observed. In the first stage, flux increases with increasing TMP which is followed by the stage of stable flux with increasing TMP. After reaching a threshold TMP which is dependent of crossflow velocity, flux increases again with increasing TMP. At the last stage, solvent was pushed through membrane pores as indicated by increasing permeate COD. In dead-end with intermittent flushing mode, an intermittent flushing flow (2 min after a 10-min or a 30-min dead-end filtration) was incorporated to reduce membrane fouling by flush out MSAB accumulated on membrane surface. Effects of solvent concentration and composition were also investigated. Solvent concentrations ranging from 0.1 to 1% (w/w) have no adverse effect in terms of membrane fouling. However, solvent composition, i.e. D(2)EHPA/kerosene ratio, shows impact on membrane fouling. The type of metal extractants employed in CASX has significant impact on both membrane fouling and the quality of filtrate due to the differences in their viscosity and water solubility. Separation of MSAB was the limiting process controlling metal removal efficiency, and the removal efficiency of Cd(II) and Cr(VI) followed the same trend as that for COD.

  11. Transgenic chickens expressing human urokinase-type plasminogen activator.

    Science.gov (United States)

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  12. Direct effects of ionizing radiation on integral membrane proteins. Noncovalent energy transfer requires specific interpeptide interactions

    International Nuclear Information System (INIS)

    Jhun, E.; Jhun, B.H.; Jones, L.R.; Jung, C.Y.

    1991-01-01

    The 12 transmembrane alpha helices (TMHs) of human erythrocyte glucose transporter were individually cut by pepsin digestion as membrane-bound 2.5-3.5-kDa peptide fragments. Radiation-induced chemical degradation of these fragments showed an average target size of 34 kDa. This is 10-12 x larger than the average size of an individual TMH, demonstrating that a significant energy transfer occurs among these TMHs in the absence of covalent linkage. Heating this TMH preparation at 100 degree C for 15 min reduced the target size to 5 kDa or less, suggesting that the noncovalent energy transfer requires specific helix-helix interactions. Purified phospholamban, a small (6-kDa) integral membrane protein containing a single TMH, formed a pentameric assembly in sodium dodecyl sulfate. The chemical degradation target size of this phospholamban pentamer was 5-6 kDa, illustrating that not all integral membrane protein assemblies permit intersubunit energy transfer. These findings together with other published observations suggest strongly that significant noncovalent energy transfer can occur within the tertiary and quaternary structure of membrane proteins and that as yet undefined proper molecular interactions are required for such covalent energy transfer. Our results with pepsin-digested glucose transporter also illustrate the importance of the interhelical interaction as a predominating force in maintaining the tertiary structure of a transmembrane protein

  13. Hemorrhagic shock impairs myocardial cell volume regulation and membrane integrity in dogs

    International Nuclear Information System (INIS)

    Horton, J.W.

    1987-01-01

    An in vitro myocardial slice technique was used to quantitate alterations in cell volume regulation and membrane integrity after 2 h or hemorrhagic shock. After in vitro incubation in Krebs-Ringer-phosphate medium containing trace [ 14 C]inulin, values (ml H 2 O/g dry wt) for control nonshocked myocardial slices were 4.03 /plus minus/ 0.11 (SE) for total water, 2.16 /plus minus/ 0.07 for inulin impermeable space, and 1.76 /plus minus/ 0.15 for inulin diffusible space. Shocked myocardial slices showed impaired response to cold incubation. After 2 h of in vivo shock, total tissue water, inulin diffusible space, and inulin impermeable space increased significantly for subendocardium, whereas changes in subepicardium parameters were minimal. Shock-induced cellular swelling was accompanied by an increased total tissue sodium, but no change in tissue potassium. Calcium entry blockade in vivo significantly reduced subendocardial total tissue water as compared with shock-untreated dogs. In addition, calcium entry blockade reduced shock-induced increases in inulin diffusible space. In vitro myocardial slice studies confirm alterations in subendocardial membrane integrity after 2 h of in vivo hemorrhagic shock. Shock-induced abnormalities in myocardial cell volume regulation are reduced by calcium entry blockade in vivo

  14. Lipid bilayer-bound conformation of an integral membrane beta barrel protein by multidimensional MAS NMR

    International Nuclear Information System (INIS)

    Eddy, Matthew T.; Su, Yongchao; Silvers, Robert; Andreas, Loren; Clark, Lindsay; Wagner, Gerhard; Pintacuda, Guido; Emsley, Lyndon; Griffin, Robert G.

    2015-01-01

    The human voltage dependent anion channel 1 (VDAC) is a 32 kDa β-barrel integral membrane protein that controls the transport of ions across the outer mitochondrial membrane. Despite the determination of VDAC solution and diffraction structures, a structural basis for the mechanism of its function is not yet fully understood. Biophysical studies suggest VDAC requires a lipid bilayer to achieve full function, motivating the need for atomic resolution structural information of VDAC in a membrane environment. Here we report an essential step toward that goal: extensive assignments of backbone and side chain resonances for VDAC in DMPC lipid bilayers via magic angle spinning nuclear magnetic resonance (MAS NMR). VDAC reconstituted into DMPC lipid bilayers spontaneously forms two-dimensional lipid crystals, showing remarkable spectral resolution (0.5–0.3 ppm for 13 C line widths and <0.5 ppm 15 N line widths at 750 MHz). In addition to the benefits of working in a lipid bilayer, several distinct advantages are observed with the lipid crystalline preparation. First, the strong signals and sharp line widths facilitated extensive NMR resonance assignments for an integral membrane β-barrel protein in lipid bilayers by MAS NMR. Second, a large number of residues in loop regions were readily observed and assigned, which can be challenging in detergent-solubilized membrane proteins where loop regions are often not detected due to line broadening from conformational exchange. Third, complete backbone and side chain chemical shift assignments could be obtained for the first 25 residues, which comprise the functionally important N-terminus. The reported assignments allow us to compare predicted torsion angles for VDAC prepared in DMPC 2D lipid crystals, DMPC liposomes, and LDAO-solubilized samples to address the possible effects of the membrane mimetic environment on the conformation of the protein. Concluding, we discuss the strengths and weaknesses of the reported

  15. Antibacterial Effect of Gallic Acid against Aeromonas hydrophila and Aeromonas sobria Through Damaging Membrane Integrity.

    Science.gov (United States)

    Lu, Jing; Wang, Zhenning; Ren, Mengrou; Huang, Guoren; Fang, Baochen; Bu, Xiujuan; Liu, Yanhui; Guan, Shuang

    In the study, we investigated the antibacterial activity and mechanism of gallic acid against Aeromonas hydrophila and Aeromonas sobria. Gallic acid showed strong antimicrobial activity against the two bacteria. Furthermore, the antibacterial mechanism of gallic acid (0, 3, 6, 12 mM) was performed by membrane integrity assay and scanning electron microscopy (SEM) assay. The results showed that gallic acid notably increased the released material absorption value at 260, 280 nm and electric conductivity in a dose-dependent manner. Moreover, the SEM assay showed that gallic acid induced severe shrink of bacterial intima and irregular morphology in a dose-dependent manner. The SDS-PAGE profiles further confirmed that gallic acid could damage bacterial cells. These results indicated gallic acid exhibited antibacterial effect by destroying membrane integrity of A. hydrophila and A. sobria. Hence, gallic acid has great potential as a new natural food preservative in food fresh-keeping and storage.

  16. Critical review of membrane bioreactor models--part 2: hydrodynamic and integrated models.

    Science.gov (United States)

    Naessens, W; Maere, T; Ratkovich, N; Vedantam, S; Nopens, I

    2012-10-01

    Membrane bioreactor technology exists for a couple of decades, but has not yet overwhelmed the market due to some serious drawbacks of which operational cost due to fouling is the major contributor. Knowledge buildup and optimisation for such complex systems can heavily benefit from mathematical modelling. In this paper, the vast literature on hydrodynamic and integrated MBR modelling is critically reviewed. Hydrodynamic models are used at different scales and focus mainly on fouling and only little on system design/optimisation. Integrated models also focus on fouling although the ones including costs are leaning towards optimisation. Trends are discussed, knowledge gaps identified and interesting routes for further research suggested. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Integration of mixed conducting membranes in an oxygen–steam biomass gasification process

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Soprani, Stefano; Søgaard, Martin

    2013-01-01

    . The two configurations demonstrating the highest efficiency are then thermally integrated into an oxygen– steam biomass gasification plant. The energy demand for oxygen production and the membrane area required for a 6 MWth biomass plant are calculated for different operating conditions. Increasing......Oxygen–steam biomass gasification produces a high quality syngas with a high H2/CO ratio that is suitable for upgrading to liquid fuels. Such a gas is also well suited for use in conjunction with solid oxide fuel cells giving rise to a system yielding high electrical efficiency based on biomass...... distillation, especially for small to medium scale plants. This paper examines different configurations for oxygen production using MIEC membranes where the oxygen partial pressure difference is achieved by creating a vacuum on the permeate side, compressing the air on the feed side or a combination of the two...

  18. Technetium-99m-labeled recombinant tissue plasminogen activator for the imaging of emboli in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Akihiro; Itoh, Kazuo; Tsukamoto, Eriko; Furudate, Masayori; Kamiyama, Hiroyasu; Abe, Hiroshi [Hokkaido Univ., Sapporo (Japan). School of Medicine

    1993-07-01

    Tissue-type plasminogen activator (t-PA) effectively lyses activate thrombus by direct action. Recombinant t-PA (rt-PA) was labeled with technetium-99m ([sup 99m]Tc) to investigate the in vivo binding to fibrin clots in a feline cerebral embolism model created by insertion of an artificial fibrin clot within the carotid artery. [sup 99m]Tc-rt-PA administered intravenously provided clearer imaging of clots after priming with cold rt-PA, with uptake peaking 5-10 minutes after the injection. [sup 99m]Tc-labeled human serum albumin was not retained at clot sites. Systemically administered [sup 99m]Tc-rt-PA binds to fibrin clots within carotid arteries in our feline model. Our results suggest that the interaction of intrinsic plasminogen activator inhibitors with extrinsically administered rt-PA may regulate the demonstration of a clot, although the precise mechanism is unclear. (author).

  19. Insulin alters the target size of the peripheral cyclic AMP phosphodiesterase but not the integral cyclic GMP-stimulated cyclic AMP phosphodiesterase in liver plasma membranes

    International Nuclear Information System (INIS)

    Wallace, A.V.; Martin, B.R.; Houslay, M.D.

    1990-01-01

    Radiation inactivation of the two high affinity cyclic AMP phosphodiesterases (PDE) found in liver plasma membranes afforded an estimation of their molecular target sizes in situ. The activity of the peripheral plasma membrane PDE decayed as a single exponential with a target size corresponding to a monomer of circa 54 kDa. The integral, cyclic GMP-stimulated PDE decayed as a dimer of circa 125 kDa. Preincubation of plasma membranes with insulin (10nM), prior to irradiation, caused the target size of only the peripheral plasma membrane PDE to increase. We suggest that insulin addition causes the peripheral plasma membrane PDE to alter its coupling to an integral plasma membrane protein with a target size of circa 90 kDa

  20. Promotion of Wound Healing by an Agonist of Adenosine A2A Receptor Is Dependent on Tissue Plasminogen Activator.

    Science.gov (United States)

    Montesinos, M Carmen; Desai-Merchant, Avani; Cronstein, Bruce N

    2015-12-01

    Impaired wound healing, as it occurs in diabetes mellitus or long-term corticoid treatment, is commonly associated with disability, diminished quality of life, and high economic costs. Selective agonists of the A2A receptor subtype of adenosine, an endogenous regulator of inflammation, promote tissue repair in animal models, both healthy and with impaired healing. Plasmin-mediated proteolysis of fibrin and other matrix proteins is essential for cell migration at sites of injury. Since adenosine A2A receptor activation increases plasminogen activator release from macrophages and mast cells, we studied the effect of a selective agonist, CGS-21680, on full-thickness excisional wound closure in wild-type, urokinase plasminogen activator (uPA)-deficient, and tissue plasminogen activator (tPA)-deficient mice. Wound closure was impaired in tPA- and uPA-deficient mice as compared with wild-type mice, and topical application of CGS-21680 significantly increased the rate at which wounds closed in wild-type mice and uPA-deficient mice, but not in tPA-deficient mice. Immunostaining of tissue sections showed that tPA was present in endothelial cells and histiocytes by day 3 post-wound and also by day 6. In contrast, uPA was more prominent in these cell types only by day 6 post-wound. Our results confirm that plasminogen activation contributes to wound repair and are consistent with the hypothesis that adenosine A2A receptor activation promotes wound closure by a mechanism that depends upon tPA, but not uPA. Moreover, our results suggest that topical adenosine A2A receptor agonists may be useful in promotion of wound closure in patients with impaired wound healing.

  1. Phenotypic overlap between MMP-13 and the plasminogen activation system during wound healing in mice

    DEFF Research Database (Denmark)

    Juncker-Jensen, Anna; Lund, Leif R

    2011-01-01

    combined completely prevent wound healing. Both urokinase-type plasminogen activator and several matrix metallo proteinases (MMPs), such as MMP-3, -9 and -13, are expressed in the leading-edge keratinocytes of skin wounds, which may account for this phenotypic overlap between these classes of proteases....

  2. The Biochemistry and Regulation of S100A10: A Multifunctional Plasminogen Receptor Involved in Oncogenesis

    Directory of Open Access Journals (Sweden)

    Patricia A. Madureira

    2012-01-01

    Full Text Available The plasminogen receptors mediate the production and localization to the cell surface of the broad spectrum proteinase, plasmin. S100A10 is a key regulator of cellular plasmin production and may account for as much as 50% of cellular plasmin generation. In parallel to plasminogen, the plasminogen-binding site on S100A10 is highly conserved from mammals to fish. S100A10 is constitutively expressed in many cells and is also induced by many diverse factors and physiological stimuli including dexamethasone, epidermal growth factor, transforming growth factor-α, interferon-γ, nerve growth factor, keratinocyte growth factor, retinoic acid, and thrombin. Therefore, S100A10 is utilized by cells to regulate plasmin proteolytic activity in response to a wide diversity of physiological stimuli. The expression of the oncogenes, PML-RARα and KRas, also stimulates the levels of S100A10, suggesting a role for S100A10 in pathophysiological processes such as in the oncogenic-mediated increases in plasmin production. The S100A10-null mouse model system has established the critical role that S100A10 plays as a regulator of fibrinolysis and oncogenesis. S100A10 plays two major roles in oncogenesis, first as a regulator of cancer cell invasion and metastasis and secondly as a regulator of the recruitment of tumor-associated cells, such as macrophages, to the tumor site.

  3. General Approach to Identifying Potential Targets for Cancer Imaging by Integrated Bioinformatics Analysis of Publicly Available Genomic Profiles

    Directory of Open Access Journals (Sweden)

    Yongliang Yang

    2011-03-01

    Full Text Available Molecular imaging has moved to the forefront of drug development and biomedical research. The identification of appropriate imaging targets has become the touchstone for the accurate diagnosis and prognosis of human cancer. Particularly, cell surface- or membrane-bound proteins are attractive imaging targets for their aberrant expression, easily accessible location, and unique biochemical functions in tumor cells. Previously, we published a literature mining of potential targets for our in-house enzyme-mediated cancer imaging and therapy technology. Here we present a simple and integrated bioinformatics analysis approach that assembles a public cancer microarray database with a pathway knowledge base for ascertaining and prioritizing upregulated genes encoding cell surface- or membrane-bound proteins, which could serve imaging targets. As examples, we obtained lists of potential hits for six common and lethal human tumors in the prostate, breast, lung, colon, ovary, and pancreas. As control tests, a number of well-known cancer imaging targets were detected and confirmed by our study. Further, by consulting gene-disease and protein-disease databases, we suggest a number of significantly upregulated genes as promising imaging targets, including cell surface-associated mucin-1, prostate-specific membrane antigen, hepsin, urokinase plasminogen activator receptor, and folate receptors. By integrating pathway analysis, we are able to organize and map “focused” interaction networks derived from significantly dysregulated entity pairs to reflect important cellular functions in disease processes. We provide herein an example of identifying a tumor cell growth and proliferation subnetwork for prostate cancer. This systematic mining approach can be broadly applied to identify imaging or therapeutic targets for other human diseases.

  4. Ethanol production in an integrated fermentation/membrane system. Process simulations and economics

    Energy Technology Data Exchange (ETDEWEB)

    Groot, W J; Kraayenbrink, M R; Lans, R.G.J.M. van der; Luyben, K C.A.M. [Delft Univ. of Technology (Netherlands). Dept. of Biochemical Engineering

    1993-01-01

    Four systems comprising of an ethanol fermentation integrated with microfiltration and/or pervaporation, and a conventional continuous culture, were compared with respect to the performance of the fermentation and economics. The processes are compared on the basis of the same kinetic model. It is found that cell retention by microfiltration leads to lower production costs, compared to a conventional continuous culture. Pervaporation becomes profitable at a high selectivity of ethanol/water separation and low membrane prices. (orig.).

  5. Relationships between activators and inhibitors of plasminogen, and the progression of small abdominal aortic aneurysms

    DEFF Research Database (Denmark)

    Lindholt, Jes Sanddal; Jørgensen, B; Shi, G-P

    2003-01-01

    plasmin is a common activator of the known proteolytic systems involved in the aneurysmal degradation, and is reported to be associated with the expansion of abdominal aortic aneurysms (AAA). The aim of this study was to study the activating pathways of plasminogen as predictors of the progression...

  6. Quantitative PET of human urokinase-type plasminogen activator receptor with 64Cu-DOTA-AE105

    DEFF Research Database (Denmark)

    Persson, Morten; Madsen, Jacob; Østergaard, Søren

    2012-01-01

    Expression levels of the urokinase-type plasminogen activator receptor (uPAR) represent an established biomarker for poor prognosis in a variety of human cancers. The objective of the present study was to explore whether noninvasive PET can be used to perform a quantitative assessment of expressi...

  7. Soluble urokinase-type plasminogen activator receptor forms in plasma as markers of atherosclerotic plaque vulnerability

    DEFF Research Database (Denmark)

    Olson, Fredrik J; Thurison, Tine; Ryndel, Mikael

    2009-01-01

    OBJECTIVES:: To test if circulating forms of the soluble urokinase-type plasminogen activator receptor (suPAR) are potential biomarkers of plaque vulnerability. DESIGN AND METHODS:: Plasma concentrations of suPAR(I-III), suPAR(II-III) and uPAR(I) were measured by time-resolved fluorescence immuno...

  8. A novel clot lysis assay for recombinant plasminogen activator.

    Science.gov (United States)

    Jamialahmadi, Oveis; Fazeli, Ahmad; Hashemi-Najafabadi, Sameereh; Fazeli, Mohammad Reza

    2015-03-01

    Recombinant plasminogen activator (r-PA, reteplase) is an engineered variant of alteplase. When expressed in E. coli, it appears as inclusion bodies that require refolding to recover its biological activity. An important step following refolding is to determine the activity of refolded protein. Current methods for enzymatic activity of thrombolytic drugs are costly and complex. Here a straightforward and low-cost clot lysis assay was developed. It quantitatively measures the activity of the commercial reteplase and is also capable of screening refolding conditions. As evidence for adequate accuracy and sensitivity of the current assay, r-PA activity measurements are shown to be comparable to those obtained from chromogenic substrate assay.

  9. Effect of storage in short--and long-term commercial semen extenders on the motility, plasma membrane and chromatin integrity of boar spermatozoa.

    Science.gov (United States)

    De Ambrogi, Marco; Ballester, Juan; Saravia, Fernando; Caballero, Ignacio; Johannisson, Anders; Wallgren, Margareta; Andersson, Magnus; Rodriguez-Martinez, Heriberto

    2006-10-01

    For artificial insemination (AI) in pigs, preservation of liquid boar semen at 16-20 degrees C is still common practice as sperm cryopreservation remains suboptimal in this species. To meet the different needs of the swine industry, several extenders have been developed to preserve semen in liquid form for short--and long-term storage. In the present study, three different commercial extenders devised for short-term (BTS+) or long-term preservation (MR-A and X-Cell), were used to test whether storage of semen from four mature, fertile boars at 17 degrees C for 96 h would affect sperm characteristics relevant for fertility, such as motility, membrane integrity and chromatin stability. Computer-assisted sperm analysis, and stainings with the acylated membrane dye SYBR-14/propidium iodide, and acridine orange in connection with flow cytometry were used to evaluate these variables. Percentages of total motile spermatozoa decreased slightly, but significantly, after 72-96 h. While membrane integrity values varied during the period of study, no significant changes in either membrane integrity or chromatin stability were, however, registered. This suggests a customary 96-day storage at 17 degrees C in these extenders was too short an interval to cause losses of integrity in nuclear DNA in the boar population studied.

  10. The human receptor for urokinase plasminogen activator. NH2-terminal amino acid sequence and glycosylation variants

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Ploug, M

    1990-01-01

    The receptor for human urokinase-type plasminogen activator (u-PA) was purified from phorbol 12-myristate 13-acetate-stimulated U937 cells by temperature-induced phase separation of detergent extracts, followed by affinity chromatography with immobilized diisopropyl fluorophosphate-treated u...

  11. Metabolic dysfunction and unabated respiration precede the loss of membrane integrity during dehydration of germinating radicles

    NARCIS (Netherlands)

    Leprince, O.; Harren, F.J.M.; Alberda, M.; Hoekstra, F.A.

    2000-01-01

    This study shows that dehydration induces imbalanced metabolism before loss of membrane integrity in desiccation-sensitive germinated radicles. Using a photoacoustic detection system, responses of CO2 emission and fermentation to drying were analyzed non-invasively in desiccation-tolerant and

  12. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180)

    DEFF Research Database (Denmark)

    Behrendt, Niels

    2004-01-01

    The breakdown of the barriers formed by extracellular matrix proteins is a pre-requisite for all processes of tissue remodeling. Matrix degradation reactions take part in specific physiological events in the healthy organism but also represent a crucial step in cancer invasion. These degradation...... on the surface of various cell types that serves to bind the urokinase plasminogen activator and localize the activation reactions in the proteolytic cascade system of plasminogen activation. uPARAP is an integral membrane protein with a pronounced role in the internalization of collagen for intracellular...... degradation. Both receptors have additional functions that are currently being unraveled. The present discussion of uPAR and uPARAP is centered on their protein structure and molecular and cellular function....

  13. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties

    Science.gov (United States)

    Nguyen, Leonard T.; Vogel, Hans J.

    2016-01-01

    Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein’s α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties. PMID:27554435

  14. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Profiling of integral membrane proteins and their post translational modifications using high-resolution mass spectrometry

    Science.gov (United States)

    Souda, Puneet; Ryan, Christopher M.; Cramer, William A.; Whitelegge, Julian

    2011-01-01

    Integral membrane proteins pose challenges to traditional proteomics approaches due to unique physicochemical properties including hydrophobic transmembrane domains that limit solubility in aqueous solvents. A well resolved intact protein molecular mass profile defines a protein’s native covalent state including post-translational modifications, and is thus a vital measurement toward full structure determination. Both soluble loop regions and transmembrane regions potentially contain post-translational modifications that must be characterized if the covalent primary structure of a membrane protein is to be defined. This goal has been achieved using electrospray-ionization mass spectrometry (ESI-MS) with low-resolution mass analyzers for intact protein profiling, and high-resolution instruments for top-down experiments, toward complete covalent primary structure information. In top-down, the intact protein profile is supplemented by gas-phase fragmentation of the intact protein, including its transmembrane regions, using collisionally activated and/or electroncapture dissociation (CAD/ECD) to yield sequence-dependent high-resolution MS information. Dedicated liquid chromatography systems with aqueous/organic solvent mixtures were developed allowing us to demonstrate that polytopic integral membrane proteins are amenable to ESI-MS analysis, including top-down measurements. Covalent post-translational modifications are localized regardless of their position in transmembrane domains. Top-down measurements provide a more detail oriented high-resolution description of post-transcriptional and post-translational diversity for enhanced understanding beyond genomic translation. PMID:21982782

  16. Pericyte protection by edaravone after tissue plasminogen activator treatment in rat cerebral ischemia

    Science.gov (United States)

    Deguchi, Kentaro; Liu, Ning; Liu, Wentao; Omote, Yoshio; Kono, Syoichiro; Yunoki, Taijun; Deguchi, Shoko; Yamashita, Toru; Ikeda, Yoshio; Abe, Koji

    2014-01-01

    Pericytes play a pivotal role in contraction, mediating inflammation and regulation of blood flow in the brain. In this study, changes of pericytes in the neurovascular unit (NVU) were examined in relation to the effects of exogenous tissue plasminogen activator (tPA) and a free radical scavenger, edaravone. Immunohistochemistry and Western blot analyses showed that the overlap between platelet-derived growth factor receptor β-positive pericytes and N-acetylglucosamine oligomers (NAGO)-positive endothelial cells increased significantly at 4 days after 90 min of transient middle cerebral artery occlusion (tMCAO). The number of pericytes and the overlap with NAGO decreased with tPA but recovered with edaravone 4 days after tMCAO with proliferation. Thus, tPA treatment damaged pericytes, resulting in the detachment from astrocytes and a decrease in glial cell line-derived neurotrophic factor secretion. However, treatment with edaravone greatly improved tPA-induced damage to pericytes. The present study demonstrates that exogenous tPA strongly damages pericytes and destroys the integrity of the NVU, but edaravone treatment can greatly ameliorate such damage after acute cerebral ischemia in rats. © 2014 The Authors. Journal of Neuroscience Research Published by Wiley Periodicals, Inc. PMID:24938625

  17. Platelets retain high levels of active plasminogen activator inhibitor 1.

    Directory of Open Access Journals (Sweden)

    Helén Brogren

    Full Text Available The vascular fibrinolytic system is crucial for spontaneous lysis of blood clots. Plasminogen activator inhibitor 1 (PAI-1, the principal inhibitor of the key fibrinolytic enzyme tissue-type plasminogen activator (tPA, is present in platelets at high concentrations. However, the majority of PAI-1 stored in platelets has been considered to be inactive. Our recent finding (Brogren H, et al. Blood 2004 that PAI-1 de novo synthesized in platelets remained active for over 24 h, suggested that PAI-1 stored in the α-granules might be active to a larger extent than previously reported. To re-evaluate this issue, we performed experiments where the fraction of active PAI-1 was estimated by analyzing the tPA-PAI-1 complex formation. In these experiments platelets were lysed with Triton X-100 in the presence of serial dilutions of tPA and subsequently the tPA-PAI-1 complex was evaluated by Western blot. Also, using a non-immunologic assay, tPA was labeled with (125I, and (125I-tPA and (125I-tPA-PAI-1 was quantified by scintigraphy. Interestingly, both methods demonstrated that the majority (>50% of platelet PAI-1 is active. Further analyses suggested that pre-analytical procedures used in previous studies (sonication or freezing/thawing may have substantially reduced the activity of platelet PAI-1, which has lead to an underestimation of the proportion of active PAI-1. Our in vitro results are more compatible with the role of PAI-1 in clot stabilization as demonstrated in physiological and pathophysiological studies.

  18. Cell-induced potentiation of the plasminogen activation system is abolished by a monoclonal antibody that recognizes the NH2-terminal domain of the urokinase receptor

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ellis, V

    1991-01-01

    We have raised four monoclonal antibodies recognizing different epitopes within the human cell-surface receptor for urokinase-type plasminogen activator (u-PA). One of these antibodies completely abolishes the potentiation of plasmin generation observed upon incubation of the zymogens pro......-u-PA and plasminogen with U937 cells. This antibody, which is also the only one to completely inhibit the binding of DFP-inactivated [125I]-u-PA to U937 cells, is directed against the u-PA binding NH2-terminal domain of u-PAR, a well-defined fragment formed by limited chymotrypsin digestion of purified u......-PAR, demonstrating the functional independence of the u-PA binding domain as well as the critical role of u-PAR in the assembly of the cell-surface plasminogen activation system....

  19. Tunable integration of absorption-membrane-adsorption for efficiently separating low boiling gas mixtures near normal temperature

    Science.gov (United States)

    Liu, Huang; Pan, Yong; Liu, Bei; Sun, Changyu; Guo, Ping; Gao, Xueteng; Yang, Lanying; Ma, Qinglan; Chen, Guangjin

    2016-01-01

    Separation of low boiling gas mixtures is widely concerned in process industries. Now their separations heavily rely upon energy-intensive cryogenic processes. Here, we report a pseudo-absorption process for separating low boiling gas mixtures near normal temperature. In this process, absorption-membrane-adsorption is integrated by suspending suitable porous ZIF material in suitable solvent and forming selectively permeable liquid membrane around ZIF particles. Green solvents like water and glycol were used to form ZIF-8 slurry and tune the permeability of liquid membrane surrounding ZIF-8 particles. We found glycol molecules form tighter membrane while water molecules form looser membrane because of the hydrophobicity of ZIF-8. When using mixing solvents composed of glycol and water, the permeability of liquid membrane becomes tunable. It is shown that ZIF-8/water slurry always manifests remarkable higher separation selectivity than solid ZIF-8 and it could be tuned to further enhance the capture of light hydrocarbons by adding suitable quantity of glycol to water. Because of its lower viscosity and higher sorption/desorption rate, tunable ZIF-8/water-glycol slurry could be readily used as liquid absorbent to separate different kinds of low boiling gas mixtures by applying a multistage separation process in one traditional absorption tower, especially for the capture of light hydrocarbons. PMID:26892255

  20. Kinetic characterization of tissue-type plasminogen activator (t-PA) and t-PA deletion mutants

    NARCIS (Netherlands)

    de Vries, C. [=Carlie J. M.; Veerman, H.; Nesheim, M. E.; Pannekoek, H.

    1991-01-01

    The binding of t-PA to fibrin is mediated both by its "finger" (F) and its "kringle 2" (K2) domain. In addition, these domains are involved in the stimulation of t-PA activity by fibrin. We analyzed the kinetic characteristics of Glu-plasminogen activation by t-PA and a set of t-PA deletion mutants

  1. Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis

    International Nuclear Information System (INIS)

    Bazzi, Zainab A.; Lanoue, Danielle; El-Youssef, Mouhanned; Romagnuolo, Rocco; Tubman, Janice; Cavallo-Medved, Dora; Porter, Lisa A.; Boffa, Michael B.

    2016-01-01

    Thrombin activatable fibrinolysis inhibitor (TAFI) is a plasma zymogen, which can be converted to activated TAFI (TAFIa) through proteolytic cleavage by thrombin, plasmin, and most effectively thrombin in complex with the endothelial cofactor thrombomodulin (TM). TAFIa is a carboxypeptidase that cleaves carboxyl terminal lysine and arginine residues from protein and peptide substrates, including plasminogen-binding sites on cell surface receptors. Carboxyl terminal lysine residues play a pivotal role in enhancing cell surface plasminogen activation to plasmin. Plasmin has many critical functions including cleaving components of the extracellular matrix (ECM), which enhances invasion and migration of cancer cells. We therefore hypothesized that TAFIa could act to attenuate metastasis. To assess the role of TAFIa in breast cancer metastasis, in vitro migration and invasion assays, live cell proteolysis and cell proliferation using MDA-MB-231 and SUM149 cells were carried out in the presence of a TAFIa inhibitor, recombinant TAFI variants, or soluble TM. Inhibition of TAFIa with potato tuber carboxypeptidase inhibitor increased cell invasion, migration and proteolysis of both cell lines, whereas addition of TM resulted in a decrease in all these parameters. A stable variant of TAFIa, TAFIa-CIIYQ, showed enhanced inhibitory effects on cell invasion, migration and proteolysis. Furthermore, pericellular plasminogen activation was significantly decreased on the surface of MDA-MB-231 and SUM149 cells following treatment with various concentrations of TAFIa. Taken together, these results indicate a vital role for TAFIa in regulating pericellular plasminogen activation and ultimately ECM proteolysis in the breast cancer microenvironment. Enhancement of TAFI activation in this microenvironment may be a therapeutic strategy to inhibit invasion and prevent metastasis of breast cancer cells

  2. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer.

    Science.gov (United States)

    Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul

    2017-10-01

    Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. An Integrated Framework Advancing Membrane Protein Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Rebecca F Alford

    2015-09-01

    Full Text Available Membrane proteins are critical functional molecules in the human body, constituting more than 30% of open reading frames in the human genome. Unfortunately, a myriad of difficulties in overexpression and reconstitution into membrane mimetics severely limit our ability to determine their structures. Computational tools are therefore instrumental to membrane protein structure prediction, consequently increasing our understanding of membrane protein function and their role in disease. Here, we describe a general framework facilitating membrane protein modeling and design that combines the scientific principles for membrane protein modeling with the flexible software architecture of Rosetta3. This new framework, called RosettaMP, provides a general membrane representation that interfaces with scoring, conformational sampling, and mutation routines that can be easily combined to create new protocols. To demonstrate the capabilities of this implementation, we developed four proof-of-concept applications for (1 prediction of free energy changes upon mutation; (2 high-resolution structural refinement; (3 protein-protein docking; and (4 assembly of symmetric protein complexes, all in the membrane environment. Preliminary data show that these algorithms can produce meaningful scores and structures. The data also suggest needed improvements to both sampling routines and score functions. Importantly, the applications collectively demonstrate the potential of combining the flexible nature of RosettaMP with the power of Rosetta algorithms to facilitate membrane protein modeling and design.

  4. Long-term stability of recombinant tissue plasminogen activator at -80 C

    Directory of Open Access Journals (Sweden)

    Sperling Matthew

    2009-06-01

    Full Text Available Abstract Background Recombinant tissue plasminogen activator (tPA is a thrombolytic widely used clinically in the treatment of acute thrombotic disease such as ischemic stroke, myocardial infarction, and deep venous thrombosis. This has led to much interest in tPA based lytic therapies leading to laboratory based in-vitro and in-vivo investigations using this drug. However, tPA reconstituted in solution exhibits full activity for only 6–8 hours, according to the manufacturer. Therefore, methods to store reconstituted tPA for long durations while maintaining activity would be of assistance to laboratories using this enzyme. Findings In this work, the enzymatic activity of tPA stored at -80 C over time was measured, using an ELISA technique that measured the amount of active tPA bound to plasminogen activator inhibitor 1 (PAI-1 in a given sample. Sample of tPA solution mixed to a concentration of 1 (mg/ml were stored in cryogenic vials at -80 C for up to 7 years. For a given sample, aliquots were assayed for tPA activity, and compared with a tPA standard to determine relative enzymatic activity. Results are reported as means with standard errors, and 12 measurements were performed for each sample age. Conclusion There was no decrease in tPA activity for samples stored up to 7 years. Such cryogenic storage is a viable method for the preservation of tPA solution for laboratory investigations of tPA-based lytic therapies.

  5. In vitro and in vivo antiangiogenic activity of a novel deca-peptide derived from human tissue-type plasminogen activator kringle 2

    Energy Technology Data Exchange (ETDEWEB)

    Su, Li; Xu, Xun; Zhao, Hui; Gu, Qing [Department of Ophthalmology, Shanghai First People' s Hospital, Affiliate of Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200080 (China); Zou, Haidong, E-mail: zouhaidong@hotmail.com [Department of Ophthalmology, Shanghai First People' s Hospital, Affiliate of Shanghai Jiaotong University, No. 100 Haining Road, Shanghai 200080 (China)

    2010-06-11

    A synthetic deca-peptide corresponding to the amino acid sequence Arg{sup 54}-Trp{sup 63} of human tissue-type plasminogen activator (t-PA) kringle 2 domain, named TKII-10, is produced and tested for its ability to inhibit endothelial cell proliferation, migration, tube formation in vitro, and angiogenesis in vivo. At the same time, another peptide TKII-10S composed of the same 10 amino acids as TKII-10, but in a different sequence, is also produced and tested. The results show that TKII-10 potently inhibits VEGF-stimulated endothelial cell migration and tube formation in a dose-dependent, as well as sequence-dependent, manner in vitro while it is inactive in inhibiting endothelial cell proliferation. Furthermore, TKII-10 potently inhibits angiogenesis in chick chorioallantoic membrane and mouse cornea. The middle four amino acids DGDA in their sequence play an important role in TKII-10 angiogenesis inhibition{sub .} These results suggest that TKII-10 is a novel angiogenesis inhibitor that may serve as a prototype for antiangiogenic drug development.

  6. Bolus dose response characteristics of single chain urokinase plasminogen activator and tissue plasminogen activator in a dog model of arterial thrombosis.

    Science.gov (United States)

    Badylak, S F; Voytik, S; Klabunde, R E; Henkin, J; Leski, M

    1988-11-15

    Tissue plasminogen activator (t-PA) and single chain urokinase-plasminogen activator (scu-PA) are relatively "fibrin-specific" thrombolytic drugs with short plasma half lives of 6-8 minutes. Most treatment regimens with these agents utilize a bolus injection followed by continuous drug infusion, usually combined with anticoagulant therapy. The purpose of this study was to establish the dose-response characteristics for scu-PA and t-PA, when given as a single intravenous bolus injection, in a dog model of arterial thrombosis. Eight groups of 6 dogs each were given one of the following doses of scu-PA (mg/kg): 0.20, 0.50, 1.00, 2.00; or t-PA: 0.05, 0.10, 0.20; or an equivalent amount of saline (control group). All doses were given as a single bolus injection 60 minutes after formation of a totally occlusive femoral artery thrombus. Thrombolysis was measured by monitoring the continuous decrement of 125I activity from a radiolabelled thrombus. Ninety minutes after drug injection, all scu-PA treated dogs showed greater thrombolysis (30%, 45%, 56%, and 67%, respectively) than the control group (15%, p less than 0.01). The 0.10 and 0.20 mg/kg t-PA treated dogs showed greater thrombolysis (35% and 49%, respectively) than the control group (15%, p less than 0.01). Both scu-PA and t-PA caused a partial and dose-dependent decrease in alpha 2-antiplasmin activity but scu-PA caused a greater depletion (72% vs. 18%, respectively, p less than 0.05) at 60 minutes after the highest dose of drug administration. Both drugs showed a longer than expected thrombolytic effect based upon the known half lives. Neither drug caused significant changes in the prothrombin time, activated partial thromboplastin time, thrombin time, hematocrit, platelet count, or fibrin degradation product concentration. Single bolus injections of scu-PA and t-PA produce safe and effective thrombolysis in this dog model of arterial thrombosis.

  7. Soluble urokinase plasminogen activator receptor as a prognostic marker in men participating in prostate cancer screening

    DEFF Research Database (Denmark)

    Kjellman, A; Akre, O; Gustafsson, O

    2011-01-01

    BACKGROUND: The urokinase plasminogen activator (uPA) system is involved in tissue remodelling processes and is up-regulated in many types of malignancies. We investigated whether serum levels of different forms of soluble uPA receptor (suPAR) are associated with survival and in particular with p...

  8. Imaging of Prostate Cancer Using Urokinase-Type Plasminogen Activator Receptor PET

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2017-01-01

    Urokinase-type plasminogen activator receptor (uPAR) overexpression is an important biomarker for aggressiveness in cancer including prostate cancer (PC) and provides independent clinical information in addition to prostate-specific antigen and Gleason score. This article focuses on uPAR PET...... as a new diagnostic and prognostic imaging biomarker in PC. Many preclinical uPAR-targeted PET imaging studies using AE105 in cancer models have been undertaken with promising results. A major breakthrough was obtained with the recent human translation of uPAR PET in using 64Cu- and 68Ga-labelled versions...

  9. Proteasome-mediated degradation of integral inner nuclear membrane protein emerin in fibroblasts lacking A-type lamins

    International Nuclear Information System (INIS)

    Muchir, Antoine; Massart, Catherine; Engelen, Baziel G. van; Lammens, Martin; Bonne, Gisele; Worman, Howard J.

    2006-01-01

    We previously identified and characterized a homozygous LMNA nonsense mutation leading to the absence of A-type lamins in a premature neonate who died at birth. We show here that the absence of A-type lamins is due to degradation of the aberrant mRNA transcript with a premature termination codon. In cultured fibroblasts from the subject with the homozygous LMNA nonsense mutation, there was a decreased steady-state expression of the integral inner nuclear membrane proteins emerin and nesprin-1α associated with their mislocalization to the bulk endoplasmic reticulum and a hyperphosphorylation of emerin. To determine if decreased emerin expression occurred post-translationally, we treated cells with a selective proteasome inhibitor and observed an increase in expression. Our results show that mislocalization of integral inner nuclear membrane proteins to the endoplasmic reticulum in human cells lacking A-type lamins leads to their degradation and provides the first evidence that their degradation is mediated by the proteasome

  10. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa.

    Science.gov (United States)

    Prapaiwan, N; Tharasanit, T; Punjachaipornpol, S; Yamtang, D; Roongsitthichai, A; Moonarmart, W; Kaeoket, K; Manee-In, S

    2016-05-01

    Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL) has been reported to have a cryoprotective property for sperm cryopreservation. However, the effects of LDL on dog epididymal spermatozoa during cryopreservation have not yet been investigated. This study aimed to investigate the effects of LDL on epididymal spermatozoa quality following cryopreservation and thawing. After routine castration of 12 dogs, caudal epididymides from individuals were separated from the testes and cut into a few pieces in a Tris-buffer. Spermatozoa recovered from each sample were examined at once for sperm quality and divided into six groups of extender: no LDL, 20% egg yolk, 4%, 8%, 16%, and 24% LDL, before cryopreservation. The sperm aliquots were then equilibrated and conventionally frozen. After thawing, sperm motility, morphology, plasma membrane integrity, and acrosome integrity were evaluated. The results revealed that 4% LDL and 20% egg yolk yielded significantly higher sperm motility (57.69% and 52.69%, respectively, p<0.05) than other LDLs. In addition, 4% LDL yielded the significantly highest plasma membrane integrity (70.54%, p<0.05). In conclusion, the supplementation of 4% LDL in Tris-glucose extender could be applied for cryopreservation of canine epididymal spermatozoa.

  11. Low-density Lipoprotein Improves Motility and Plasma Membrane Integrity of Cryopreserved Canine Epididymal Spermatozoa

    Directory of Open Access Journals (Sweden)

    N. Prapaiwan

    2016-05-01

    Full Text Available Cryopreservation of caudal epididymal spermatozoa is an effective technique to conserve genetic potentials of superior dogs when it is not possible to collect ejaculated spermatozoa. Although hen egg yolk is commonly supplemented into the semen extender, active substances within the egg yolk which protect sperm against cryoinjury remain to be discovered. Among its compositions, low-density lipoprotein (LDL has been reported to have a cryoprotective property for sperm cryopreservation. However, the effects of LDL on dog epididymal spermatozoa during cryopreservation have not yet been investigated. This study aimed to investigate the effects of LDL on epididymal spermatozoa quality following cryopreservation and thawing. After routine castration of 12 dogs, caudal epididymides from individuals were separated from the testes and cut into a few pieces in a Tris-buffer. Spermatozoa recovered from each sample were examined at once for sperm quality and divided into six groups of extender: no LDL, 20% egg yolk, 4%, 8%, 16%, and 24% LDL, before cryopreservation. The sperm aliquots were then equilibrated and conventionally frozen. After thawing, sperm motility, morphology, plasma membrane integrity, and acrosome integrity were evaluated. The results revealed that 4% LDL and 20% egg yolk yielded significantly higher sperm motility (57.69% and 52.69%, respectively, p<0.05 than other LDLs. In addition, 4% LDL yielded the significantly highest plasma membrane integrity (70.54%, p<0.05. In conclusion, the supplementation of 4% LDL in Tris-glucose extender could be applied for cryopreservation of canine epididymal spermatozoa.

  12. Micro-coil NMR to monitor optimization of the reconstitution conditions for the integral membrane protein OmpW in detergent micelles

    International Nuclear Information System (INIS)

    Stanczak, Pawel; Zhang Qinghai; Horst, Reto; Serrano, Pedro; Wüthrich, Kurt

    2012-01-01

    Optimization of aqueous solutions of the integral membrane protein (IMP) OmpW for NMR structure determination has been monitored with micro-coil NMR, which enables the acquisition of NMR spectra using only micrograms of protein and detergent. The detergent 30-Fos (2-undecylphosphocholine) was found to yield the best 2D [ 15 N, 1 H]-TROSY correlation NMR spectra of [ 2 H, 15 N]-labeled OmpW. For the OmpW structure determination we then optimized the 30-Fos concentration, the sample temperature and long-time stability, and the deuteration level of the protein. Some emerging guidelines for reconstitution of β-barrel integral membrane proteins in structural biology are discussed.

  13. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    DEFF Research Database (Denmark)

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice ...

  14. 3D pressure field in lipid membranes and membrane-protein complexes

    DEFF Research Database (Denmark)

    Ollila, O H Samuli; Risselada, H Jelger; Louhivuori, Martti

    2009-01-01

    We calculate full 3D pressure fields for inhomogeneous nanoscale systems using molecular dynamics simulation data. The fields represent systems with increasing level of complexity, ranging from semivesicles and vesicles to membranes characterized by coexistence of two phases, including also...... a protein-membrane complex. We show that the 3D pressure field is distinctly different for curved and planar bilayers, the pressure field depends strongly on the phase of the membrane, and that an integral protein modulates the tension and elastic properties of the membrane....

  15. Diffusion of Integral Membrane Proteins in Protein-Rich Membranes

    Czech Academy of Sciences Publication Activity Database

    Javanainen, M.; Martinez-Seara, Hector; Metzler, R.; Vattulainen, I.

    2017-01-01

    Roč. 8, č. 17 (2017), s. 4308-4313 ISSN 1948-7185 R&D Projects: GA ČR(CZ) GBP208/12/G016 Institutional support: RVO:61388963 Keywords : giant unilamellar vesicles * single-molecule tracking * lipid bilayer membranes Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 9.353, year: 2016

  16. Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation: Membrane Fouling.

    Science.gov (United States)

    Iorhemen, Oliver Terna; Hamza, Rania Ahmed; Tay, Joo Hwa

    2016-06-15

    The membrane bioreactor (MBR) has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  17. A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment

    International Nuclear Information System (INIS)

    Wang, Yong-Peng; Liu, Xian-Wei; Li, Wen-Wei; Li, Feng; Wang, Yun-Kun; Sheng, Guo-Ping; Zeng, Raymond J.; Yu, Han-Qing

    2012-01-01

    Highlights: ► An MFC–MBR integrated system for wastewater treatment and electricity generation. ► Stable electricity generation during 1000-h continuous operation. ► Low-cost electrode, separator and filter materials were adopted. -- Abstract: Microbial fuel cell (MFC) and membrane bioreactor (MBR) are both promising technologies for wastewater treatment, but both with limitations. In this study, a novel MFC–MBR integrated system, which combines the advantages of the individual systems, was proposed for simultaneous wastewater treatment and energy recovery. The system favored a better utilization of the oxygen in the aeration tank of MBR by the MFC biocathode, and enabled a high effluent quality. Continuous and stable electricity generation, with the average current of 1.9 ± 0.4 mA, was achieved over a long period of about 40 days. The maximum power density reached 6.0 W m −3 . Moreover, low-cost materials were used for the reactor construction. This integrated system shows great promise for practical wastewater treatment application.

  18. Urine albumin is a superior predictor of preeclampsia compared to urine plasminogen in type I diabetes patients

    DEFF Research Database (Denmark)

    Nielsen, Lise Hald; Jensen, Boye L; Fuglsang, Jens

    2018-01-01

    Pregnant women with type I diabetes mellitus (T1DM) are at increased risk of developing preeclampsia (PE). Plasminogen is aberrantly filtrated from plasma into tubular fluid in PE patients and activated to plasmin. Plasmin activates the epithelial sodium channel in the collecting ducts potentially...

  19. An integrated field-effect microdevice for monitoring membrane transport in Xenopus laevis oocytes via lateral proton diffusion.

    Directory of Open Access Journals (Sweden)

    Daniel Felix Schaffhauser

    Full Text Available An integrated microdevice for measuring proton-dependent membrane activity at the surface of Xenopus laevis oocytes is presented. By establishing a stable contact between the oocyte vitelline membrane and an ion-sensitive field-effect (ISFET sensor inside a microperfusion channel, changes in surface pH that are hypothesized to result from facilitated proton lateral diffusion along the membrane were detected. The solute diffusion barrier created between the sensor and the active membrane area allowed detection of surface proton concentration free from interference of solutes in bulk solution. The proposed sensor mechanism was verified by heterologously expressing membrane transport proteins and recording changes in surface pH during application of the specific substrates. Experiments conducted on two families of phosphate-sodium cotransporters (SLC20 & SLC34 demonstrated that it is possible to detect phosphate transport for both electrogenic and electroneutral isoforms and distinguish between transport of different phosphate species. Furthermore, the transport activity of the proton/amino acid cotransporter PAT1 assayed using conventional whole cell electrophysiology correlated well with changes in surface pH, confirming the ability of the system to detect activity proportional to expression level.

  20. [Effect of damage integrity rat brain synaptic membranes on the functional activity GABA(A)-receptor/Cl(-)-ionophore complex in the CNC].

    Science.gov (United States)

    Rebrov, I G; Kalinina, M V

    2013-01-01

    Functional activity of the CGABA(A)-receptor/Cl(-) ionophore complex was investigated the muscimol-stimulated entry of the radioactive isotope 36Cl(-) in synaptoneurosomes in changing the structure and permeability of neuronal membranes. Integrity of the membranes was damaged by removal of Ca(+2) and Mg(+2) from the incubation medium and by the method of freezing-thawing synaptoneurosomes. In both cases, an increase in basal 36Cl(-) entry into synaptoneurosomes, indicating increased nonspecific permeability of neuronal membranes, and decreased activity the CABA(A)-receptor/Cl(-) ionophore complex. The conclusion about the relationship of processes damage neuronal membranes and reducing the inhibitory processes in the epileptic focus.

  1. Multichannel detection of ionic currents through two nanopores fabricated on integrated Si3N4 membranes.

    Science.gov (United States)

    Yanagi, Itaru; Akahori, Rena; Aoki, Mayu; Harada, Kunio; Takeda, Ken-Ichi

    2016-08-16

    Integration of solid-state nanopores and multichannel detection of signals from each nanopore are effective measures for realizing high-throughput nanopore sensors. In the present study, we demonstrated fabrication of Si3N4 membrane arrays and the simultaneous measurement of ionic currents through two nanopores formed in two adjacent membranes. Membranes with thicknesses as low as 6.4 nm and small nanopores with diameters of less than 2 nm could be fabricated using the poly-Si sacrificial-layer process and multilevel pulse-voltage injection. Using the fabricated nanopore membranes, we successfully achieved simultaneous detection of clear ionic-current blockades when single-stranded short homopolymers (poly(dA)60) passed through two nanopores. In addition, we investigated the signal crosstalk and leakage current among separated chambers. When two nanopores were isolated on the front surface of the membrane, there was no signal crosstalk or leakage current between the chambers. However, when two nanopores were isolated on the backside of the Si substrate, signal crosstalk and leakage current were observed owing to high-capacitance coupling between the chambers and electrolysis of water on the surface of the Si substrate. The signal crosstalk and leakage current could be suppressed by oxidizing the exposed Si surface in the membrane chip. Finally, the observed ionic-current blockade when poly(dA)60 passed through the nanopore in the oxidized chip was approximately half of that observed in the non-oxidized chip.

  2. Interactions of plasminogen activator inhibitor-1 with vitronectin involve an extensive binding surface and induce mutual conformational rearrangements

    DEFF Research Database (Denmark)

    Blouse, Grant E; Dupont, Daniel Miotto; Schar, Christine R

    2009-01-01

    In order to explore early events during the association of plasminogen activator inhibitor-1 (PAI-1) with its cofactor vitronectin, we have applied a robust strategy that combines protein engineering, fluorescence spectroscopy, and rapid reaction kinetics. Fluorescence stopped-flow experiments de...

  3. Interconversion of Active and Inactive Conformations of Urokinase-Type Plasminogen Activator

    DEFF Research Database (Denmark)

    Liu, Zhuo; Kromann-Hansen, Tobias; Lund, Ida K

    2012-01-01

    The catalytic activity of serine proteases depends on a salt-bridge between the amino group of residue 16 and the side chain of Asp194. The salt-bridge stabilizes the oxyanion hole and the S1 specificity pocket of the protease. Some serine proteases exist in only partially active forms, in which...... the amino group of residue 16 is exposed to the solvent. Such a partially active state is assumed by a truncated form of the murine urokinase-type plasminogen activator (muPA), consisting of residues 16-243. Here we investigated the allosteric interconversion between partially active states and the fully...

  4. Low plasminogen activator inhibitor-1 levels in thyroid carcinoma: uPA/PAI-1 paradox in cancer proggression

    Directory of Open Access Journals (Sweden)

    Bekir Ucan

    2017-06-01

    Conclusions: Serum PAI-1 levels were lower in patients with papillary thyroid carcinoma. Our results might support the thesis of PAI-1 is expected to suppress cancer progression due to its ability to inhibit urokinase plasminogen activator activity. [J Contemp Med 2017; 7(2.000: 121-125

  5. Hydrogen Selective Exfoliated Zeolite Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Tsapatsis, Michael [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Daoutidis, Prodromos [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Elyassi, Bahman [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Lima, Fernando [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Iyer, Aparna [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Agrawal, Kumar [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science; Sabnis, Sanket [Univ. of Minnesota, Minneapolis, MN (United States). Department of Chemical Engineering and Materials Science

    2015-04-06

    The objective of this project was to develop and evaluate an innovative membrane technology at process conditions that would be representative of Integrated Gasification Combined Cycle (IGCC) advanced power generation with pre-combustion capture of carbon dioxide (CO2). This research focused on hydrogen (H2)-selective zeolite membranes that could be utilized to separate conditioned syngas into H2-rich and CO2-rich components. Both experiments and process design and optimization calculations were performed to evaluate the concept of ultra-thin membranes made from zeolites nanosheets. In this work, efforts in the laboratory were made to tackle two fundamental challenges in application of zeolite membranes in harsh industrial environments, namely, membrane thickness and membrane stability. Conventional zeolite membranes have thicknesses in the micron range, limiting their performance. In this research, we developed a method for fabrication of ultimately thin zeolite membranes based on zeolite nanosheets. A range of layered zeolites (MWW, RWR, NSI structure types) suitable for hydrogen separation was successfully exfoliated to their constituent nanosheets. Further, membranes were made from one of these zeolites, MWW, to demonstrate the potential of this group of materials. Moreover, long-term steam stability of these zeolites (up to 6 months) was investigated in high concentrations of steam (35 mol% and 95 mole%), high pressure (10 barg), and high temperatures (350 °C and 600 °C) relevant to conditions of water-gas-shift and steam methane reforming reactions. It was found that certain nanosheets are stable, and that stability depends on the concentration of structural defects. Additionally, models that represent a water-gas-shift (WGS) membrane reactor equipped with the zeolite membrane were developed for systems studies. These studies had the aim of analyzing the effect of the membrane reactor integration into IGCC plants

  6. Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW column

    Directory of Open Access Journals (Sweden)

    Sakhre Vandana

    2016-03-01

    Full Text Available The paper proposes a novel process integration for biodiesel blend in the Membrane assisted Reactive Divided Wall Distillation (MRDW column. Biodiesel is a green fuel and grade of biodiesel blend is B20 (% which consist of 20% biodiesel and rest 80% commercial diesel. Instead of commercial diesel, Tertiary Amyl Ethyl Ether (TAEE was used as an environment friendly fuel for blending biodiesel. Biodiesel and TAEE were synthesized in a pilot scale reactive distillation column. Dual reactive distillation and MRDW were simulated using aspen plus. B20 (% limit calculation was performed using feed flow rates of both TAEE and biodiesel. MRDW was compared with dual reactive distillation column and it was observed that MRDW is comparatively cost effective and suitable in terms of improved heat integration and flow pattern.

  7. Antibody-mediated targeting of the urokinase-type plasminogen activator proteolytic function neutralizes fibrinolysis in vivo

    DEFF Research Database (Denmark)

    Lund, Ida K; Jögi, Annika; Rønø, Birgitte

    2008-01-01

    highly potent and inhibitory anti-uPA mAbs (mU1 and mU3). Both mAbs recognize epitopes located on the B-chain of uPA that encompasses the catalytic site. In enzyme activity assays in vitro, mU1 blocked uPA-catalyzed plasminogen activation as well as plasmin-mediated pro-uPA activation, whereas mU3 only...

  8. VIABILITY AND PLASMA MEMBRANE INTEGRITY OF THE SPOTTED BUFFALO EPIDIDYMAL SPERMATOZOA AFTER THAWING WITH THE ADDITION OF DEXTROSE INTO THE EXTENDER

    Directory of Open Access Journals (Sweden)

    M. RIZAL

    2009-01-01

    Full Text Available h e objective of this study was to obtain the viability and plasma membrane integrity of the spotted buff alo epididymal sperm after addition of dextrose into Andromed® extender. Spermatozoa that have been collected from cauda epididymis were diluted with Andromed® extender as control (K and Andromed® + 0.2% dextrose (P1 and Andromed® + 0.4% dextrose (P2 as treatments. h e results showed that the quality of epididymal spermatozoa decreased during cryopreservation process. h e percentage of motility after thawing in P1 (46% and P2 (46.67% were signifi cantly higher (P<0.05 compared to K (41% as well as the percentage of live sperm in P1 (58.8% and P2 (60% compared to K (52.2%. h e percentage of membrane integrity in P1, P2 and K were 67.4; 66.8 and 68 %, respectively. In conclusion, the addition of 0.2 and 0.4% of dextrose into Andromed® acted as an extra cellular cryoprotectant and could maintain the viability and membrane integrity of the spotted buff alo epididymal spermatozoa after thawing.

  9. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  10. A membrane stirrer for product recovery and substrate feeding.

    Science.gov (United States)

    Femmer, T; Carstensen, F; Wessling, M

    2015-02-01

    During fermentation processes, in situ product recovery (ISPR) using submerged membranes allows a continuous operation mode with effective product removal. Continuous recovery reduces product inhibition and organisms in the reactor are not exposed to changing reaction conditions. For an effective in situ product removal, submerged membrane systems should have a sufficient large membrane area and an anti-fouling concept integrated in a compact device for the limited space in a lab-scale bioreactor. We present a new membrane stirrer with integrated filtration membranes on the impeller blades as well as an integrated gassing concept in an all-in-one device. The stirrer is fabricated by rapid prototyping and is equipped with a commercial micromesh membrane. Filtration performance is tested using a yeast cell suspension with different stirring speeds and aeration fluxes. We reduce membrane fouling by backflushing through the membrane with the product stream. © 2014 Wiley Periodicals, Inc.

  11. Membrane Bioreactor (MBR Technology for Wastewater Treatment and Reclamation: Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Oliver Terna Iorhemen

    2016-06-01

    Full Text Available The membrane bioreactor (MBR has emerged as an efficient compact technology for municipal and industrial wastewater treatment. The major drawback impeding wider application of MBRs is membrane fouling, which significantly reduces membrane performance and lifespan, resulting in a significant increase in maintenance and operating costs. Finding sustainable membrane fouling mitigation strategies in MBRs has been one of the main concerns over the last two decades. This paper provides an overview of membrane fouling and studies conducted to identify mitigating strategies for fouling in MBRs. Classes of foulants, including biofoulants, organic foulants and inorganic foulants, as well as factors influencing membrane fouling are outlined. Recent research attempts on fouling control, including addition of coagulants and adsorbents, combination of aerobic granulation with MBRs, introduction of granular materials with air scouring in the MBR tank, and quorum quenching are presented. The addition of coagulants and adsorbents shows a significant membrane fouling reduction, but further research is needed to establish optimum dosages of the various coagulants/adsorbents. Similarly, the integration of aerobic granulation with MBRs, which targets biofoulants and organic foulants, shows outstanding filtration performance and a significant reduction in fouling rate, as well as excellent nutrients removal. However, further research is needed on the enhancement of long-term granule integrity. Quorum quenching also offers a strong potential for fouling control, but pilot-scale testing is required to explore the feasibility of full-scale application.

  12. Integral design method for simple and small Mars lander system using membrane aeroshell

    Science.gov (United States)

    Sakagami, Ryo; Takahashi, Ryohei; Wachi, Akifumi; Koshiro, Yuki; Maezawa, Hiroyuki; Kasai, Yasko; Nakasuka, Shinichi

    2018-03-01

    To execute Mars surface exploration missions, spacecraft need to overcome the difficulties of the Mars entry, descent, and landing (EDL) sequences. Previous landing missions overcame these challenges with complicated systems that could only be executed by organizations with mature technology and abundant financial resources. In this paper, we propose a novel integral design methodology for a small, simple Mars lander that is achievable even by organizations with limited technology and resources such as universities or emerging countries. We aim to design a lander (including its interplanetary cruise stage) whose size and mass are under 1 m3 and 150 kg, respectively. We adopted only two components for Mars EDL process: a "membrane aeroshell" for the Mars atmospheric entry and descent sequence and one additional mechanism for the landing sequence. The landing mechanism was selected from the following three candidates: (1) solid thrusters, (2) aluminum foam, and (3) a vented airbag. We present a reasonable design process, visualize dependencies among parameters, summarize sizing methods for each component, and propose the way to integrate these components into one system. To demonstrate the effectiveness, we applied this methodology to the actual Mars EDL mission led by the National Institute of Information and Communications Technology (NICT) and the University of Tokyo. As a result, an 80 kg class Mars lander with a 1.75 m radius membrane aeroshell and a vented airbag was designed, and the maximum landing shock that the lander will receive was 115 G.

  13. Effect of acclimation medium on cell viability, membrane integrity and ability to consume malic acid in synthetic wine by oenological Lactobacillus plantarum strains.

    Science.gov (United States)

    Bravo-Ferrada, B M; Tymczyszyn, E E; Gómez-Zavaglia, A; Semorile, L

    2014-02-01

    The aim of this work was to evaluate the effect of acclimation on the viability, membrane integrity and the ability to consume malic acid of three oenological strains of Lactobacillus plantarum. Cultures in the stationary phase were inoculated in an acclimation medium (Accl.) containing 0, 6 or 10% v/v ethanol and incubated 48 h at 28°C. After incubation, cells were harvested by centrifugation and inoculated in a synthetic wine, containing 14% v/v ethanol and pH 3.5 at 28°C. Viability and membrane integrity were determined by flow cytometry (FC) using carboxyfluorescein diacetate (cFDA) and propidium iodide. Bacterial growth and malic acid consumption were monitored in a synthetic wine during 15 days. In nonacclimated strains, the damage of bacterial membranes produced a dramatic decrease in microbial viability in synthetic wine. In contrast, survival of strains previously acclimated in Accl. with 6 and 10% v/v ethanol was noticeable higher. Therefore, acclimation with ethanol increased the cultivability in synthetic wine and consequently, the consumption of l-malic acid after 15 days of growth. Acclimation of oenological strains in media containing ethanol prior to wine inoculation significantly decreases the membrane damage and improves viability in the harsh wine conditions. The role of membrane integrity is crucial to warrant the degradation of l-malic acid. The efficiency of multiparametric FC in monitoring viability and membrane damage along with the malic acid consumption has a strong impact on winemaking because it represents a useful tool for a quick and highly reliable evaluation of oenological parameters. © 2013 The Society for Applied Microbiology.

  14. Comparison and analysis of membrane fouling between flocculent sludge membrane bioreactor and granular sludge membrane bioreactor.

    Directory of Open Access Journals (Sweden)

    Wang Jing-Feng

    Full Text Available The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs, two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.

  15. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun

    2014-01-01

    to eliminate the sequential utilization of mixed sugar and feedback inhibition during batch fermentation, membrane integrated repeated batch fermentation (MIRB) was used to improve LA productivity. With MIRB, a high cell density was obtained and the simultaneous fermentation of glucose, xylose and arabinose...

  16. Urokinase-type plasminogen activator receptor (uPAR), tissue factor (TF) and epidermal growth factor receptor (EGFR)

    DEFF Research Database (Denmark)

    Christensen, Anders; Kiss, Katalin; Lelkaitis, Giedrius

    2017-01-01

    Background: Tumor-specific biomarkers are a prerequisite for the development of targeted imaging and therapy in oral squamous cell carcinoma (OSCC). urokinase-type Plasminogen Activator Receptor (uPAR), Tissue Factor (TF) and Epidermal Growth Factor Receptor (EGFR) are three biomarkers that exhib...... with a reduced survival. uPAR seems to be a prognostic biomarker in oral cancer....

  17. Influence of estrogenic pesticides on membrane integrity and membrane transfer of monosaccharide into the human red cell

    International Nuclear Information System (INIS)

    Ingermann, R.L.

    1989-01-01

    Some natural and synthetic estrogens inhibit carrier-mediated transport of glucose into human red blood cells and membrane vesicles from the placenta. The inhibitory action of these estrogens on transport appears to be a direct effect at the membrane and does not involve receptor binding and protein synthesis. It is not clear, however, whether such inhibition is a common feature among estrogenic agents. Several chlorinated hydrocarbon pesticides have been shown to possess estrogenic activity. These pesticides could have inhibitory effects on the human sodium-independent glucose transporter. Owing to the apparent importance of this membrane transporter in human tissues, direct interaction of hormones and xenobiotics with the glucose transporter is of fundamental significance. Some pesticides have been shown to alter membrane structure directly and alter the passive permeability of membranes. Whether the estrogenic pesticides influence passive diffusion of sugars across membranes has not been established. Finally, preliminary observations have suggested that some estrogens and pesticides have lytic effects on intact cells. Consequently, this study focuses on the ability of several estrogens and estrogenic pesticides to disrupt the cell membrane, influence the monosaccharide transporter, and alter the rate of monosaccharide permeation through the membrane by simple diffusion

  18. A Proteomics Approach to Membrane Trafficking

    NARCIS (Netherlands)

    Groen, A.J.; Vries, de S.C.; Lilley, K.S.

    2008-01-01

    Membrane trafficking, including that of integral membrane proteins as well as peripherally associated proteins, appears to be a vital process common to all eukaryotes. An important element of membrane trafficking is to determine the protein composition of the various endomembrane compartments. A

  19. Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli.

    Science.gov (United States)

    Link, A James; Skretas, Georgios; Strauch, Eva-Maria; Chari, Nandini S; Georgiou, George

    2008-10-01

    G protein-coupled receptors (GPCRs) are notoriously difficult to express, particularly in microbial systems. Using GPCR fusions with the green fluorescent protein (GFP), we conducted studies to identify bacterial host effector genes that result in a general and significant enhancement in the amount of membrane-integrated human GPCRs that can be produced in Escherichia coli. We show that coexpression of the membrane-bound AAA+ protease FtsH greatly enhances the expression yield of four different class I GPCRs, irrespective of the presence of GFP. Using this new expression system, we produced 0.5 and 2 mg/L of detergent-solubilized and purified full-length central cannabinoid receptor (CB1) and bradykinin receptor 2 (BR2) in shake flask cultures, respectively, two proteins that had previously eluded expression in microbial systems.

  20. Evaluation of Serum Fibrinogen, Plasminogen, α2-Anti-Plasmin, and Plasminogen Activator Inhibitor Levels (PAI and Their Correlation with Presence of Retinopathy in Patients with Type 1 DM

    Directory of Open Access Journals (Sweden)

    Sefika Burcak Polat

    2014-01-01

    Full Text Available Background. Diabetic retinopathy (DR is the leading cause of blindness in the world. Retinopathy can still progress despite optimal metabolic control. The aim of the study was to determine whether different degrees of DR (proliferative or nonproliferative were associated with abnormally modulated hemostatic parameters in patients with T1DM. Method. 52 T1DM patients and 40 healthy controls were enrolled in the study. Patients were subdivided into three categories. Group I was defined as those without retinopathy, group II with NPRP, and group III with PRP. We compared these subgroups with each other and the control group (Group IV according to the serum fibrinogen, plasminogen, alpha2-anti-plasmin (α2-anti-plasmin, and PAI. Results. We detected that PAI-1, serum fibrinogen, and plasminogen levels were similar between the diabetic and control groups (P=0.209, P=0.224, and P=0.244, resp., whereas α2-anti-plasmin was higher in Groups I, II, and III compared to the control group (P<0.01, P<0.05, and P<0.001, resp.. There was a positive correlation between serum α2-anti-plasmin and HbA1c levels (r=0,268, P=0.031. Conclusion. To our knowledge there is scarce data in the literature about α2-anti-plasmin levels in type 1 diabetes. A positive correlation between α2-anti-plasmin with HbA1c suggests that fibrinolytic markers may improve with disease regulation and better glycemic control.

  1. Association of Geographical Factors With Administration of Tissue Plasminogen Activator for Acute Ischemic Stroke

    OpenAIRE

    Kunisawa, Susumu; Morishima, Toshitaka; Ukawa, Naoto; Ikai, Hiroshi; Otsubo, Tetsuya; Ishikawa, Koichi B.; Yokota, Chiaki; Minematsu, Kazuo; Fushimi, Kiyohide; Imanaka, Yuichi

    2013-01-01

    Background Intravenous tissue plasminogen activator (tPA) is an effective treatment for acute ischemic stroke if administered within a few hours of stroke onset. Because of this time restriction, tPA administration remains infrequent. Ambulance use is an effective strategy for increasing tPA administration but may be influenced by geographical factors. The objectives of this study are to investigate the relationship between tPA administration and ambulance use and to examine how patient trave...

  2. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  3. Spacesuit Water Membrane Evaporator Integration with the ISS Extravehicular Mobility Unit

    Science.gov (United States)

    Margiott, Victoria; Boyle, Robert

    2014-01-01

    NASA has developed a Solid Water Membrane Evaporation (SWME) to provide cooling for the next generation spacesuit. The current spacesuit team has looked at this technology from the standpoint of using the ISS EMU to demonstrate the SWME technology while EVA, and from the standpoint of augmenting EMU cooling in the case of a fouled EMU cooling system. One approach to increasing the TRL of the system is to incorporate this hardware with the existing EMU. Several integration issues were addressed to support a potential demonstration of the SWME with the existing EMU. Systems analysis was performed to assess the capability of the SWME to maintain crewmember cooling and comfort as a replacement for sublimation. The materials of the SWME were reviewed to address compatibility with the EMU. Conceptual system placement and integration with the EMU via an EVA umbilical system to ensure crew mobility and Airlock egress were performed. A concept of operation for EVA use was identified that is compatible with the existing system. This concept is extensible as a means to provide cooling for the existing EMU. The cooling system of one of the EMUs on orbit has degraded, with the root cause undetermined. Should there be a common cause resident on ISS, this integration could provide a means to recover cooling capability for EMUs on orbit.

  4. Comparison of tissue plasminogen activator administration management between Telestroke Network hospitals and academic stroke centers: the Telemedical Pilot Project for Integrative Stroke Care in Bavaria/Germany.

    Science.gov (United States)

    Audebert, Heinrich J; Kukla, Christian; Vatankhah, Bijan; Gotzler, Berthold; Schenkel, Johannes; Hofer, Stephan; Fürst, Andrea; Haberl, Roman L

    2006-07-01

    Systemic thrombolysis is the only therapy proven to be effective for ischemic stroke. Telemedicine may help to extend its use. However, concerns remain whether management and safety of tissue plasminogen activator (tPA) administration after telemedical consultation are equivalent in less experienced hospitals compared with tPA administration in academic stroke centers. During the second year of the ongoing Telemedical Pilot Project for Integrative Stroke Care, all systemic thrombolyses in stroke patients of the 12 regional clinics and the 2 stroke centers were recorded prospectively. Patients' demographics, stroke severity (National Institutes of Health Stroke Scale), frequency of administration, time management, protocol violations, and safety were included in the analysis. In 2004, 115 of 4727 stroke or transient ischemic attack patients (2.4%) in the community hospitals and 110 of 1889 patients in the stroke centers (5.8%) received systemic thrombolysis. Prehospital latencies were shorter in the regional hospitals despite longer distances. Door to needle times were shorter in the stroke centers. Although blood pressure was controlled more strictly in community hospitals, symptomatic intracerebral hemorrhage rate (7.8%) was higher (P=0.14) than in stroke centers (2.7%) but still within the range of the National Institute of Neurological Disorders and Stroke trial. In-hospital mortality rate was low in community hospitals (3.5%) and in stroke centers (4.5%). Although with a lower rate of systemic thrombolysis, there was no evidence of lower treatment quality in the remote hospitals. With increasing numbers of tPA administration and growing training effects, the telestroke concept promises better coverage of systemic thrombolysis in nonurban areas.

  5. Downregulation of Extracellular Matrix Metalloproteinase Inducer by scFv-M6-1B9 Intrabody Suppresses Cervical Cancer Invasion Through Inhibition of Urokinase-Type Plasminogen Activator.

    Science.gov (United States)

    Panich, Tipattaraporn; Tragoolpua, Khajornsak; Pata, Supansa; Tayapiwatana, Chatchai; Intasai, Nutjeera

    2017-02-01

    Overexpression of extracellular matrix metalloproteinase inducer (EMMPRIN) accelerates tumor invasion and metastasis via activation of matrix metalloproteinases (MMPs) and urokinase-type plasminogen activator (uPA) expression. The authors were interested in whether the scFv-M6-1B9 intrabody against EMMPRIN that retains EMMPRIN in endoplasmic reticulum could be a potential tool to suppress cervical cancer invasion through inhibition of uPA. The chimeric adenoviral vector Ad5/F35-scFv-M6-1B9 was transferred into human cervical carcinoma HeLa cells to produce the scFv-M6-1B9 intrabody against EMMPRIN. Cell surface expression of EMMPRIN, the membrane-bound uPA, the enzymatic activity of secreted uPA, and the invasion ability were analyzed. The scFv-M6-1B9 intrabody successfully diminished the cell surface expression of EMMPRIN and the membrane-bound uPA on HeLa cells. uPA activity from tissue culture media of EMMPRIN-downregulated HeLa cells was decreased. The invasion ability of HeLa cells harboring scFv-M6-1B9 intrabody was also suppressed. These results suggested that the scFv-M6-1B9 intrabody might represent a potential approach for invasive cervical cancer treatment. The application of scFv-M6-1B9 intrabody in animal experiments and preclinical studies would be investigated further.

  6. Crosslinking of fihrinogen by factor XIHa exposes fibrin-specific epitopes and induces enhanced plasminogen activation by t-PA

    NARCIS (Netherlands)

    Nieuwenhuizen, W.; Voskuilen, M.; Kevin, R.; Siebenlis; Michael, W.; Mosesson

    1996-01-01

    'Fibrin-specific'epitopes 'Aαl48-160' and 'γ312-324' are exposed when fibrinogen (Fbg) is converted to fibrin (Fb). Particularly, polymerized Fb enhances the t-PA-mediated plasminogen activation. Fb polymerization involves 'D:E' assembly, end-to-end self-association ('D:D') and interactions between

  7. Introduction of lysine and clot binding properties in the kringle one domain of tissue-type plasminogen activator

    NARCIS (Netherlands)

    Bakker, A.H.F.; Greef, W. van der; Rehberg, E.F.; Marotti, K.R.; Verheijen, J.H.

    1993-01-01

    Despite the high overall similarity in primary structure between kringle one (K1) and kringle two (K2) of tissue-type plasminogen activator (t-PA) there exists an enormous functional difference. It is thought that, in contrast to K1, K2 mediates lysine binding and fibrin binding and is involved in

  8. Annexin A4 and A6 induce membrane curvature and constriction during cell membrane repair

    DEFF Research Database (Denmark)

    Boye, Theresa Louise; Maeda, Kenji; Pezeshkian, Weria

    2017-01-01

    Efficient cell membrane repair mechanisms are essential for maintaining membrane integrity and thus for cell life. Here we show that the Ca2+- and phospholipid-binding proteins annexin A4 and A6 are involved in plasma membrane repair and needed for rapid closure of micron-size holes. We demonstrate...... that annexin A4 binds to artificial membranes and generates curvature force initiated from free edges, whereas annexin A6 induces constriction force. In cells, plasma membrane injury and Ca2+ influx recruit annexin A4 to the vicinity of membrane wound edges where its homo-trimerization leads to membrane...... that induction of curvature force around wound edges is an early key event in cell membrane repair....

  9. Studies on the mechanism of fibrate-inhibited expression of plasminogen activator inhibitor-1 in cultured hepatocytes from cynomolgus monkey

    NARCIS (Netherlands)

    Arts, J.; Kooistra, T.

    1997-01-01

    Fibrates are widely used drugs in hyperlipidemic disorders. In addition to lowering serum triglyceride levels, fibrates have also been shown to reduce elevated plasma plasminogen activator inhibitor-1 (PAI-1) levels in vivo. We demonstrate that fibrates suppress PAI-1 synthesis in cultured

  10. Relative Abundance of Integral Plasma Membrane Proteins in Arabidopsis Leaf and Root Tissue Determined by Metabolic Labeling and Mass Spectrometry

    Science.gov (United States)

    Bernfur, Katja; Larsson, Olaf; Larsson, Christer; Gustavsson, Niklas

    2013-01-01

    Metabolic labeling of proteins with a stable isotope (15N) in intact Arabidopsis plants was used for accurate determination by mass spectrometry of differences in protein abundance between plasma membranes isolated from leaves and roots. In total, 703 proteins were identified, of which 188 were predicted to be integral membrane proteins. Major classes were transporters, receptors, proteins involved in membrane trafficking and cell wall-related proteins. Forty-one of the integral proteins, including nine of the 13 isoforms of the PIP (plasma membrane intrinsic protein) aquaporin subfamily, could be identified by peptides unique to these proteins, which made it possible to determine their relative abundance in leaf and root tissue. In addition, peptides shared between isoforms gave information on the proportions of these isoforms. A comparison between our data for protein levels and corresponding data for mRNA levels in the widely used database Genevestigator showed an agreement for only about two thirds of the proteins. By contrast, localization data available in the literature for 21 of the 41 proteins show a much better agreement with our data, in particular data based on immunostaining of proteins and GUS-staining of promoter activity. Thus, although mRNA levels may provide a useful approximation for protein levels, detection and quantification of isoform-specific peptides by proteomics should generate the most reliable data for the proteome. PMID:23990937

  11. Combined lysis of thrombus with ultrasound and systemic tissue plasminogen activator for emergent revascularization in acute ischemic stroke (CLOTBUST-ER)

    DEFF Research Database (Denmark)

    Schellinger, Peter D; Alexandrov, Andrei V; Barreto, Andrew D

    2015-01-01

    events. CONCLUSIONS: Since intravenous recombinant tissue-plasminogen-activator remains the only medical therapy to reverse ischemic stroke applicable in the emergency department, our trial will determine if the additional use of transcranial ultrasound improves functional outcomes in patients...

  12. Removal of Pharmaceutical and Personal Care Products (PPCPs) from Municipal Waste Water with Integrated Membrane Systems, MBR-RO/NF.

    Science.gov (United States)

    Wang, Yonggang; Wang, Xu; Li, Mingwei; Dong, Jing; Sun, Changhong; Chen, Guanyi

    2018-02-05

    This study focuses on the application of combining membrane bioreactor (MBR) treatment with reverse osmosis (RO) or nanofiltration (NF) membrane treatment for removal of pharmaceuticals and personal care products (PPCPs) in municipal wastewater. Twenty-seven PPCPs were measured in real influent with lowest average concentration being trimethoprim (7.12 ng/L) and the highest being caffeine (18.4 ng/L). The results suggest that the MBR system effectively removes the PPCPs with an efficiency of between 41.08% and 95.41%, and that the integrated membrane systems, MBR-RO/NF, can achieve even higher removal rates of above 95% for most of them. The results also suggest that, due to the differences in removal mechanisms of NF/RO membrane, differences of removal rates exist. In this study, the combination of MBR-NF resulted in the removal of 13 compounds to below detection limits and MBR-RO achieved even better results with removal of 20 compounds to below detection limits.

  13. Studies of radiation induced membrane damage in lymphocytes using fluorescent probes

    International Nuclear Information System (INIS)

    Nikesch, W.

    1974-01-01

    The fluorescent probes perylene (PER), 1-anilino-8-naphthalene sulfonic acid (ANS), and fluorescein diacetate (FDA) were used to investigate membrane changes caused by ionizing radiation. Probe response to various other perturbations (variation of pH, temperature, and salt concentration, and treatment with phythohemagglutinin (PHA) and saponins) was also investigated to better understand membrane-probe interactions. ANS was used to probe the membrane surface, PER to probe the membrane interior, and FDA to investigate membrane integrity. Polarization of fluorescent light from ANS and PER was used to investigate the microviscosity and order of the membrane surface and interior respectively. Irradiated cells (600 R) were shown to have a decreased rate of hydrolysis of FDA probably due to cytoplasmic changes effecting the enzymatic reaction. Also evident was an increase in loss of intracellular fluorescein and a decrease in PER polarization indicating that the cells have a decreased membrane integrity, possibly the result of an increased disorganization of the phospholipid hydrocarbon chains in the membrane interior. Experiments with PHA link the decreased membrane integrity with the eventual interphase death of the cells. In general it is shown that the fluorescent probes ANS, PER, and FDA provide useful ways to investigate order and microviscosity in the cell membrane surface and interior, membrane surface charges, internal membrane polarity changes, and membrane integrity. (U.S.)

  14. Novel Tripod Amphiphiles for Membrane Protein Analysis

    DEFF Research Database (Denmark)

    Chae, Pil Seok; Kruse, Andrew C; Gotfryd, Kamil

    2013-01-01

    Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution...

  15. Glycosaminoglycans affect the interaction of human plasma kallikrein with plasminogen, factor XII and inhibitors

    Directory of Open Access Journals (Sweden)

    Gozzo A.J.

    2003-01-01

    Full Text Available Human plasma kallikrein, a serine proteinase, plays a key role in intrinsic blood clotting, in the kallikrein-kinin system, and in fibrinolysis. The proteolytic enzymes involved in these processes are usually controlled by specific inhibitors and may be influenced by several factors including glycosaminoglycans, as recently demonstrated by our group. The aim of the present study was to investigate the effect of glycosaminoglycans (30 to 250 µg/ml on kallikrein activity on plasminogen and factor XII and on the inhibition of kallikrein by the plasma proteins C1-inhibitor and antithrombin. Almost all available glycosaminoglycans (heparin, heparan sulfate, bovine and tuna dermatan sulfate, chondroitin 4- and 6-sulfates reduced (1.2 to 3.0 times the catalytic efficiency of kallikrein (in a nanomolar range on the hydrolysis of plasminogen (0.3 to 1.8 µM and increased (1.9 to 7.7 times the enzyme efficiency in factor XII (0.1 to 10 µM activation. On the other hand, heparin, heparan sulfate, and bovine and tuna dermatan sulfate improved (1.2 to 3.4 times kallikrein inhibition by antithrombin (1.4 µM, while chondroitin 4- and 6-sulfates reduced it (1.3 times. Heparin and heparan sulfate increased (1.4 times the enzyme inhibition by the C1-inhibitor (150 nM.

  16. Two-step treatment of harmful industrial wastewater: an analysis of microbial reactor with integrated membrane retention for benzene and toluene removal

    Directory of Open Access Journals (Sweden)

    Trusek-Holownia Anna

    2015-12-01

    Full Text Available Standards for highly toxic and carcinogenic pollutants impose strict guidelines, requiring values close to zero, regarding the degradation of such pollutants in industrial streams. In many cases, classic bioremoval processes fail. Therefore, we proposed a stream leaving the microbial membrane bioreactor (MBR that is directed to an additional membrane separation mode (NF/RO. Under certain conditions, the integrated process not only benefits the environment but may also increase the profitability of the bioreactor operation. An appropriate model was developed and tested in which the bioremoval of benzene and toluene by Pseudomonas fluorescens was used as an example. This paper presents equations for selecting the operation parameters of the integrated system to achieve the expected degree of industrial wastewater purification.

  17. Evaluation of the specificity of antigen assays for plasminogen activator inhibitor 1 : Comparison of two new commercial kits

    NARCIS (Netherlands)

    Huisman, L.G.M.; Meijer, P.; Griensven, J. van; Kluft, C.

    1992-01-01

    t-PA depleted citrated plasma was used to prepare standards of different molecular forms of plasminogen activator inhibitor 1 (PAI-1). These standards were used to evaluate the specificity of two new PAI-1 antigen assays: the TintElize PAI-1 antigen assay (cat. no. 210221) and the Innotest PAI-1.

  18. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  19. Thermo-economic analysis of integrated membrane-SMR ITM-oxy-combustion hydrogen and power production plant

    International Nuclear Information System (INIS)

    Sanusi, Yinka S.; Mokheimer, Esmail M.A.; Habib, Mohamed A.

    2017-01-01

    Highlights: •A methane reforming reactor integrated to an oxy-combustion plant is proposed. •Co-production of power and hydrogen was investigated and presented. •Optimal thermo-economic operating conditions of the system were identified and presented. •The ion transport membrane oxygen separation unit has the highest capital cost. •The combustor has the highest exergy destruction. -- Abstract: The demand for hydrogen has greatly increased in the last decade due to the stringent regulations enacted to address environmental pollution concerns. Natural gas reforming is currently the most mature technology for large-scale hydrogen production. However, it is usually associated with greenhouse gas emissions. As part of the strategies to reduce greenhouse gas emissions, new designs need to be developed to integrate hydrogen production facilities that are based on natural gas reforming with carbon capture facilities. In this study, we carried out energy, exergy and economic analysis of hydrogen production in a steam methane reforming reactor integrated with an oxy-combustion plant for co-production of power and hydrogen. The results show that the overall system efficiency and hydrogen production efficiency monotonically increase with increasing the combustor exit temperature (CET), increasing the amount of hydrogen extracted and decreasing the auxiliary fuel added to the system. The optimal thermo-economic operating conditions of the system were obtained as reformer pressure of 15 bar, auxiliary fuel factor of 0.8 and hydrogen extraction factor of 0.6. The production cost of hydrogen using the proposed system, under these optimal operating conditions, is within the range suggested by the International Energy Agency (IEA). Further analysis shows that the capital cost of the membrane-air separation unit (ITM) has the major share in the total investment cost of the system and constitutes 37% of the total capital cost of the system at the CET of 1500 K. The exergy

  20. Basilar Artery Thrombosis in a Child Treated With Intravenous Tissue Plasminogen Activator and Endovascular Mechanical Thrombectomy

    DEFF Research Database (Denmark)

    Topsøe, Jakob Fink; Sonnenborg, Laura; Larsen, Line Lunde

    2013-01-01

    Basilar artery occlusion in children is rare. It has a high mortality and morbidity if recanalization is not achieved before extensive brainstem infarction has occurred. An 11-year-old boy presented with a clinical and radiological "top-of-the-basilar" syndrome. Intravenous tissue plasminogen act...... thrombolysis (4.5 hours), the present case suggests that bridging therapy in pediatric basilar artery occlusion can be safe and effective....

  1. Tissue Plasminogen Activator Induction in Purkinje Neurons After Cerebellar Motor Learning

    Science.gov (United States)

    Seeds, Nicholas W.; Williams, Brian L.; Bickford, Paula C.

    1995-12-01

    The cerebellar cortex is implicated in the learning of complex motor skills. This learning may require synaptic remodeling of Purkinje cell inputs. An extracellular serine protease, tissue plasminogen activator (tPA), is involved in remodeling various nonneural tissues and is associated with developing and regenerating neurons. In situ hybridization showed that expression of tPA messenger RNA was increased in the Purkinje neurons of rats within an hour of their being trained for a complex motor task. Antibody to tPA also showed the induction of tPA protein associated with cerebellar Purkinje cells. Thus, the induction of tPA during motor learning may play a role in activity-dependent synaptic plasticity.

  2. Surface modification of polysulfone membranes applied for a membrane reactor with immobilized alcohol dehydrogenase

    DEFF Research Database (Denmark)

    Hoffmann, Christian; Silau, Harald; Pinelo, Manuel

    2018-01-01

    activated by lithiation followed by functionalization with acid chlorides at 0 °C, permitting modification of commercial PSf membranes without compromising the mechanical integrity of the membrane. Post-functionalization polymer grafting was illustrated through both, a “grafting from” approach by surface...... initiated atom transfer radical polymerization (SI-ATRP) and by a “grafting to” approach exploiting Cu(I) catalyzed 1,3-cycloadditions of alkynes with azides (CuAAC) introducing hydrophilic polymers onto the membrane surface. Poly(1-vinyl imidazole) (pVim) grafted membranes were exploited as support...

  3. Challege and Opportunities of Membrane Bioelctrochemical Reactors for Wastewater Treatment

    OpenAIRE

    Li, Jian

    2016-01-01

    Microbial fuel cells (MFCs) are potentially advantageous as an energy-efficient approach for wastewater treatment. Integrating membrane filtration with MFCs could be a viable option for advanced wastewater treatment with a low energy input. Such an integration is termed as membrane bioelectrochemical reactors (MBERs). Comparing to the conventional membrane bioreactors or anaerobic membrane bioreactors, MBER could be a competitive technology, due to the its advantages on energy consumption and...

  4. Functional role of the extracellular N-terminal domain of neuropeptide Y subfamily receptors in membrane integration and agonist-stimulated internalization.

    Science.gov (United States)

    Lindner, Diana; Walther, Cornelia; Tennemann, Anja; Beck-Sickinger, Annette G

    2009-01-01

    The N terminus is the most variable element in G protein-coupled receptors (GPCRs), ranging from seven residues up to approximately 5900 residues. For family B and C GPCRs it is described that at least part of the ligand binding site is located within the N terminus. Here we investigated the role of the N terminus in the neuropeptide Y receptor family, which belongs to the class A of GPCRs. We cloned differentially truncated Y receptor mutants, in which the N terminus was partially or completely deleted. We found, that eight amino acids are sufficient for full ligand binding and signal transduction activity. Interestingly, we could show that no specific amino acids but rather the extension of the first transmembrane helix by any residues is sufficient for receptor activity but also for membrane integration in case of the hY(1) and the hY(4) receptors. In contrast, the complete deletion of the N terminus in the hY(2) receptors resulted in a mutant that is fully integrated in the membrane but does not bind the ligand very well and internalizes much slower compared to the wild type receptor. Interestingly, also these effects could be reverted by any N-terminal extension. Accordingly, the most important function of the N termini seems to be the stabilization of the first transmembrane helix to ensure the correct receptor structure, which obviously is essential for ligand binding, integration into the cell membrane and receptor internalization.

  5. Ion transport through biological membranes an integrated theoretical approach

    CERN Document Server

    Mackey, Michael C

    1975-01-01

    This book illustrates some of the ways physics and mathematics have been, and are being, used to elucidate the underlying mechan­ isms of passive ion movement through biological membranes in general, and the membranes of excltable cells in particular. I have made no effort to be comprehensive in my introduction of biological material and the reader interested in a brief account of single cell electro­ physlology from a physically-oriented biologists viewpoint will find the chapters by Woodbury (1965) an excellent introduction. Part I is introductory in nature, exploring the basic electrical properties of inexcitable and excitable cell plasma membranes. Cable theory is utilized to illustrate the function of the non-decrementing action potential as a signaling mechanism for the long range trans­ mission of information in the nervous system, and to gain some in­ sight into the gross behaviour of neurons. The detailed analysis of Hodgkin and Huxley on the squid giant axon membrane ionic conductance properties...

  6. Analysis of Protein-Membrane Interactions

    DEFF Research Database (Denmark)

    Kemmer, Gerdi Christine

    Cellular membranes are complex structures, consisting of hundreds of different lipids and proteins. These membranes act as barriers between distinct environments, constituting hot spots for many essential functions of the cell, including signaling, energy conversion, and transport. These functions....... Discovered interactions were then probed on the level of the membrane using liposome-based assays. In the second part, a transmembrane protein was investigated. Assays to probe activity of the plasma membrane ATPase (Arabidopsis thaliana H+ -ATPase isoform 2 (AHA2)) in single liposomes using both giant...... are implemented by soluble proteins reversibly binding to, as well as by integral membrane proteins embedded in, cellular membranes. The activity and interaction of these proteins is furthermore modulated by the lipids of the membrane. Here, liposomes were used as model membrane systems to investigate...

  7. Exergy analysis of the biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Kasemanand, Sarunyou; Im-orb, Karittha; Tippawan, Phanicha; Wiyaratn, Wisitsree; Arpornwichanop, Amornchai

    2017-01-01

    Highlights: • A biogas reforming and fuel cell integrated process is considered. • Energy and exergy analyses of the integrated process are performed. • Increasing the nickel oxide-to-biogas ratio decreases the exergy efficiency. • The exergy destruction of the fuel cell increases with increasing cell temperature. • The exergy efficiency of the process is improved when heat integration is applied. - Abstract: A biogas sorption-enhanced chemical looping reforming process integrated with a high-temperature proton exchange membrane fuel cell is analyzed. Modeling of such an integrated process is performed by using a flowsheet simulator (Aspen plus). The exergy analysis is performed to evaluate the energy utilization efficiency of each unit and that of the integrated process. The effect of steam and nickel oxide to biogas ratios on the exergetic performance of the stand-alone biogas sorption-enhanced chemical looping reforming process is investigated. The total exergy destruction increases as the steam or nickel oxide to biogas ratio increases. The main exergy destruction is found at the air reactor. For the high-temperature proton exchange membrane fuel cell, the main exergy destruction is found at the cathode. The total exergy destruction increases when cell temperature increases, whereas the inverse effect is found when the current density is considered as a key parameter. Regarding the exergy efficiency, the results show opposite trend to the exergy destruction. The heat integration analysis is performed to improve the exergetic performance. It is found that the integrated process including the heat integration system can improve the exergy destruction and exergy efficiency of 48% and 60%, respectively.

  8. Fibrin-specific and effective clot lysis requires both plasminogen activators and for them to be in a sequential rather than simultaneous combination.

    Science.gov (United States)

    Pannell, R; Li, S; Gurewich, V

    2017-08-01

    Thrombolysis with tissue plasminogen activator (tPA) has been a disappointment and has now been replaced by an endovascular procedure whenever possible. Nevertheless, thrombolysis remains the only means by which circulation in a thrombosed artery can be restored rapidly. In contrast to tPA monotherapy, endogenous fibrinolysis uses both tPA and urokinase plasminogen activator (uPA), whose native form is a proenzyme, prouPA. This combination is remarkably effective as evidenced by the fibrin degradation product, D-dimer, which is invariably present in plasma. The two activators have complementary mechanisms of plasminogen activation and are synergistic in combination. Since tPA initiates fibrinolysis when released from the vessel wall and prouPA is in the blood, they induce fibrinolysis sequentially. It was postulated that this may be more effective and fibrin-specific. The hypothesis was tested in a model of clot lysis in plasma in which a clot was first exposed to tPA for 5 min, washed and incubated with prouPA. Lysis was compared with that of clots incubated with both activators simultaneously. The sequential combination was almost twice as effective and caused less fibrinogenolysis than the simultaneous combination (p < 0.0001) despite having significantly less tPA, as a result of the wash. A mechanism is described by which this phenomenon can be explained. The findings are believed to have significant therapeutic implications.

  9. Serum levels of soluble urokinase plasminogen activator receptor is associated with parasitemia in children with acute Plasmodium falciparum malaria infection

    DEFF Research Database (Denmark)

    Perch, M; Kofoed, P; Fischer, TK

    2004-01-01

    Serum levels of soluble urokinase plasminogen activator receptor (suPAR) are significantly elevated and of prognostic value in patients suffering from serious infectious diseases such as HIV and tuberculosis. Our objective was to investigate suPAR levels during symptomatic malaria infection and 7...

  10. Structure and physical properties of bio membranes and model membranes

    International Nuclear Information System (INIS)

    Tibor Hianik

    2006-01-01

    Bio membranes belong to the most important structures of the cell and the cell organelles. They play not only structural role of the barrier separating the external and internal part of the membrane but contain also various functional molecules, like receptors, ionic channels, carriers and enzymes. The cell membrane also preserves non-equilibrium state in a cell which is crucial for maintaining its excitability and other signaling functions. The growing interest to the bio membranes is also due to their unique physical properties. From physical point of view the bio membranes, that are composed of lipid bilayer into which are incorporated integral proteins and on their surface are anchored peripheral proteins and polysaccharides, represent liquid s crystal of smectic type. The bio membranes are characterized by anisotropy of structural and physical properties. The complex structure of bio membranes makes the study of their physical properties rather difficult. Therefore several model systems that mimic the structure of bio membranes were developed. Among them the lipid monolayers at an air-water interphase, bilayer lipid membranes, supported bilayer lipid membranes and liposomes are most known. This work is focused on the introduction into the physical word of the bio membranes and their models. After introduction to the membrane structure and the history of its establishment, the physical properties of the bio membranes and their models are stepwise presented. The most focus is on the properties of lipid monolayers, bilayer lipid membranes, supported bilayer lipid membranes and liposomes that were most detailed studied. This lecture has tutorial character that may be useful for undergraduate and graduate students in the area of biophysics, biochemistry, molecular biology and bioengineering, however it contains also original work of the author and his co-worker and PhD students, that may be useful also for specialists working in the field of bio membranes and model

  11. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    Science.gov (United States)

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  12. Analysis of a two-domain binding site for the urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex in low-density-lipoprotein-receptor-related protein.

    Science.gov (United States)

    Andersen, O M; Petersen, H H; Jacobsen, C; Moestrup, S K; Etzerodt, M; Andreasen, P A; Thøgersen, H C

    2001-07-01

    The low-density-lipoprotein-receptor (LDLR)-related protein (LRP) is composed of several classes of domains, including complement-type repeats (CR), which occur in clusters that contain binding sites for a multitude of different ligands. Each approximately 40-residue CR domain contains three conserved disulphide linkages and an octahedral Ca(2+) cage. LRP is a scavenging receptor for ligands from extracellular fluids, e.g. alpha(2)-macroglobulin (alpha(2)M)-proteinase complexes, lipoprotein-containing particles and serine proteinase-inhibitor complexes, like the complex between urokinase-type plasminogen activator (uPA) and the plasminogen activator inhibitor-1 (PAI-1). In the present study we analysed the interaction of the uPA-PAI-1 complex with an ensemble of fragments representing a complete overlapping set of two-domain fragments accounting for the ligand-binding cluster II (CR3-CR10) of LRP. By ligand blotting, solid-state competition analysis and surface-plasmon-resonance analysis, we demonstrate binding to multiple CR domains, but show a preferential interaction between the uPA-PAI-1 complex and a two-domain fragment comprising CR domains 5 and 6 of LRP. We demonstrate that surface-exposed aspartic acid and tryptophan residues at identical positions in the two homologous domains, CR5 and CR6 (Asp(958,CR5), Asp(999,CR6), Trp(953,CR5) and Trp(994,CR6)), are critical for the binding of the complex as well as for the binding of the receptor-associated protein (RAP) - the folding chaperone/escort protein required for transport of LRP to the cell surface. Accordingly, the present work provides (1) an identification of a preferred binding site within LRP CR cluster II; (2) evidence that the uPA-PAI-1 binding site involves residues from two adjacent protein domains; and (3) direct evidence identifying specific residues as important for the binding of uPA-PAI-1 as well as for the binding of RAP.

  13. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater.

    Science.gov (United States)

    Liu, Jinmeng; Wang, Xinhua; Wang, Zhiwei; Lu, Yuqin; Li, Xiufen; Ren, Yueping

    2017-03-01

    Microbial fuel cells (MFCs) and forward osmosis (FO) are two emerging technologies with great potential for energy-efficient wastewater treatment. In this study, anaerobic acidification and FO membrane were simultaneously integrated into an air-cathode MFC (AAFO-MFC) for enhancing bio-electricity and water recovery from low-strength wastewater. During a long-term operation of approximately 40 days, the AAFO-MFC system achieved a continuous and relatively stable power generation, and the maximum power density reached 4.38 W/m 3 . The higher bio-electricity production in the AAFO-MFC system was mainly due to the accumulation of ethanol resulted from anaerobic acidification process and the rejection of FO membrane. In addition, a proper salinity environment in the system controlled by the addition of MF membrane enhanced the electricity production. Furthermore, the AAFO-MFC system produced a high quality effluent, with the removal rates of organic matters and total phosphorus of more than 97%. However, the nitrogen removal was limited for the lower rejection of FO membrane. The combined biofouling and inorganic fouling were responsible for the lower water flux of FO membrane, and the Desulfuromonas sp. utilized the ethanol for bio-electricity production was observed in the anode. These results substantially improve the prospects for simultaneous wastewater treatment and energy recovery, and further studies are needed to optimize the system integration and operating parameters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers

    International Nuclear Information System (INIS)

    Mote, Kaustubh R.; Gopinath, T.; Traaseth, Nathaniel J.; Kitchen, Jason; Gor’kov, Peter L.; Brey, William W.; Veglia, Gianluigi

    2011-01-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1 H- 15 N dipolar couplings (DC) and 15 N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([ 1 H, 15 N]-SE-PISEMA-PDSD). The incorporation of 2D 15 N/ 15 N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15 N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.

  15. Interaction of urokinase A chain with the receptor of human keratinocytes stimulates release of urokinase-like plasminogen activator

    Energy Technology Data Exchange (ETDEWEB)

    Fibbi, G.; Magnelli, L.; Pucci, M.; Del Rosso, M. (Florence Univ. (Italy))

    1990-03-01

    On the basis of a fibrinolytic assay with {sup 125}I-fibrin, zymography, and immunoprobing with anti-human urokinase antibody, the authors have observed that the in vitro established NCTC human keratinocyte cell line releases into the culture medium a 54,000-Da plasminogen activator which is indistinguishable from human urokinase. Only the early release following the washing of keratinocyte monolayers is accounted for by secretion of preformed enzyme, while late secretory events require the de novo synthesis of urokinase. The released enzyme can interact by autocriny with its own receptor present on keratinocytes. The addition to the keratinocyte culture medium of the urokinase A chain can stimulate a concentration-dependent urokinase oversecretion, which is not paralleled by oversecretion of plasminogen activator inhibitor-1. Since stimulation of urokinase production can be obtained by an A chain concentration which was previously shown to be efficient in inducing keratinocyte mobilization in an in vitro migration model system, they hypothesize that this mechanism may be important in vivo during the process of wound repair.

  16. Further Improvement and System Integration of High Temperature Polymer Electrolyte Membrane Fuel Cells

    DEFF Research Database (Denmark)

    Li, Qingfeng; Jensen, Jens Oluf

    The strategic developments of the FURIM are in three steps: (1) further improvement of the high temperature polymer membranes and related materials; (2) development of technological units including fuel cell stack, hydrocarbon reformer and afterburner, that are compatible with the HT-PEMFC; and (3......) integration of the HT-PEMFC stack with these compatible subunits. The main goal of the project is a 2kWel HT-PEMFC stack operating in a temperature range of 150-200°C, with a single cell performance target of 0.7 A/cm² at a cell voltage around 0.6 V. The target durability is more than 5,000 hours...

  17. Osmotically and thermally isolated forward osmosis-membrane distillation (fo-md) integrated module for water treatment applications

    KAUST Repository

    Ghaffour, Noreddine

    2016-09-01

    An integrated forward osmosis-membrane distillation (FO-MD) module and systems and methods incorporating the module is disclosed providing higher efficiencies and using less energy. The FO-MD module is osmotically and thermally isolated. The isolation can prevent mixing of FO draw solution/FO permeate and MD feed, and minimize dilution of FO draw solution and cooling of MD feed. The module provides MD feed solution and FO draw solution streams that flow in the same module but are separated by an isolation barrier. The osmotically and thermally isolated FO-MD integrated module, systems and methods offer higher driving forces of both FO and MD processes, higher recovery, and wider application than previously proposed hybrid FO- MD systems.

  18. Osmotically and thermally isolated forward osmosis-membrane distillation (fo-md) integrated module for water treatment applications

    KAUST Repository

    Ghaffour, NorEddine; Francis, Lijo; Li, Zhenyu; Valladares, Rodrigo; Alsaadi, Ahmad S.; Ghdaib, Muhannad Abu; Amy, Gary L.

    2016-01-01

    An integrated forward osmosis-membrane distillation (FO-MD) module and systems and methods incorporating the module is disclosed providing higher efficiencies and using less energy. The FO-MD module is osmotically and thermally isolated. The isolation can prevent mixing of FO draw solution/FO permeate and MD feed, and minimize dilution of FO draw solution and cooling of MD feed. The module provides MD feed solution and FO draw solution streams that flow in the same module but are separated by an isolation barrier. The osmotically and thermally isolated FO-MD integrated module, systems and methods offer higher driving forces of both FO and MD processes, higher recovery, and wider application than previously proposed hybrid FO- MD systems.

  19. Regulation of multispanning membrane protein topology via post-translational annealing.

    Science.gov (United States)

    Van Lehn, Reid C; Zhang, Bin; Miller, Thomas F

    2015-09-26

    The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis.

  20. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  1. Studies on functional and structural role of urokinase receptor and other components of the plasminogen activation system in malignancy

    DEFF Research Database (Denmark)

    Weidle, U H; Wöllisch, E; Rønne, E

    1994-01-01

    ) in the intratumoral extracellular matrix and plasminogen activator inhibitor type II (PAI-2) in tumour cells and stromal cells. In order to investigate the role of u-PAR as a prognostic marker, we have developed an assay for quantitation of the receptor. As a first step towards structural investigations, we have...

  2. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  3. The outer membrane protein assembly machinery of Neisseria meningitidis

    NARCIS (Netherlands)

    Volokhina, E.B.|info:eu-repo/dai/nl/304837202

    2009-01-01

    Gram-negative bacteria are characterized by a cell envelope consisting of an inner membrane (IM) and an outer membrane (OM), which are separated by the peptidoglycan-containing periplasm. While the integral IM proteins are alpha-helical, all but one known integral OM proteins (OMPs) are

  4. Motoneurons have different membrane resistance during fictive scratching and weight support

    DEFF Research Database (Denmark)

    Perreault, Marie-Claude

    2002-01-01

    locomotion; central pattern generator; spinal cord; synaptic integration; membrane conductance; glycine; postsynaptic inhibition; chloride......locomotion; central pattern generator; spinal cord; synaptic integration; membrane conductance; glycine; postsynaptic inhibition; chloride...

  5. Recent Advances on Carbon Molecular Sieve Membranes (CMSMs and Reactors

    Directory of Open Access Journals (Sweden)

    Margot A. Llosa Tanco

    2016-08-01

    Full Text Available Carbon molecular sieve membranes (CMSMs are an important alternative for gas separation because of their ease of manufacture, high selectivity due to molecular sieve separation, and high permeance. The integration of separation by membranes and reaction in only one unit lead to a high degree of process integration/intensification, with associated benefits of increased energy, production efficiencies and reduced reactor or catalyst volume. This review focuses on recent advances in carbon molecular sieve membranes and their applications in membrane reactors.

  6. Effects of High Hydrostatic Pressure on Escherichia coli Ultrastructure, Membrane Integrity and Molecular Composition as Assessed by FTIR Spectroscopy and Microscopic Imaging Techniques

    Directory of Open Access Journals (Sweden)

    María Prieto-Calvo

    2014-12-01

    Full Text Available High hydrostatic pressure (HHP is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50–900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200–900 cm−1, mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  7. Effects of high hydrostatic pressure on Escherichia coli ultrastructure, membrane integrity and molecular composition as assessed by FTIR spectroscopy and microscopic imaging techniques.

    Science.gov (United States)

    Prieto-Calvo, María; Prieto, Miguel; López, Mercedes; Alvarez-Ordóñez, Avelino

    2014-12-18

    High hydrostatic pressure (HHP) is a novel food processing technology that is considered as an attractive alternative to conventional heat treatments for the preservation of foods, due to its lethal effects on pathogenic and spoilage microorganisms, while causing minor effects on food quality and sensorial attributes. This study is aimed at investigating how HHP treatments at varying intensities in the range 50-900 MPa affect the viability, membrane integrity, ultrastructure and molecular composition of Escherichia coli. Results of membrane integrity tests (measurement of cellular leakage and monitoring of propidium iodide uptake through fluorescence microscopy) and ultrastructural observations by transmission electron microscopy demonstrated that HHP gave rise to cellular enlargement, membrane damage or detachment, DNA and protein denaturation and loss of intracellular contents. Fourier-transform infrared (FTIR) spectroscopy analyses evidenced minor changes in molecular composition in response to high pressures, which were mostly observed on the spectral region w4 (1200-900 cm-1), mainly informative of carbohydrates and polysaccharides of the cell wall. These findings suggest that exposure of E. coli cells to HHP causes alterations in their physical integrity while producing minor modifications in biochemical cellular composition. The current study increases the knowledge on the mechanisms of E. coli inactivation by HHP and provides valuable information for the design of more effective food preservation regimes based on the integration of mild HHP in combination with other food preservation strategies into a multi-target hurdle technology approach.

  8. Enhancement of the thrombolytic efficacy of prourokinase by lys-plasminogen in a dog model of arterial thrombosis.

    Science.gov (United States)

    Badylak, S F; Voytik, S L; Henkin, J; Burke, S E; Sasahara, A A; Simmons, A

    1991-05-01

    Current findings suggest that the efficacy of thrombolytic therapy may be limited by the availability of active forms of plasminogen at the thrombus site. The purpose of this study was to determine if the systemic administration of 0.5 mg kg-1 glu-plasminogen (glu-plg) or 0.5 mg kg-1 lys-plasminogen (lys-plg) could safely increase the efficacy of a single intravenous bolus injection of 50,000 U kg-1 prourokinase (proUK) in a dog model of arterial thrombosis. Thrombolysis was measured by monitoring the continuous decrement of 125I-gamma emissions from a radiolabeled thrombus. Reflow was evaluated by direct visual examination. Forty dogs (mean wt 10.3 +/- 2 kg) were randomly sorted into 4 groups of 10 each. The dogs in each group were given either saline plus saline, saline plus proUK, glu-plg plus proUK, or lys-plg plus proUK 60 minutes after formation of an occlusive arterial thrombus. Ninety minutes after drug administration the dogs receiving saline plus proUK, glu-plg plus proUK, and the lys-plg plus proUK showed greater thrombolysis (41%, 43%, and 66%, respectively) than the control (saline plus saline) group (15%, P less than 0.01). The lys-plg plus proUK treatment caused greater lysis than the saline plus proUK or the glu-plg plus proUK treatment (P less than 0.05). All of the dogs (10/10) receiving lys-plg plus proUK had patent vessels at the end of the 90 minute monitoring period, whereas only 4/10 and 5/10 vessels were patent in the saline plus proUK and glu-plg plus proUK groups, respectively. None of the dogs in the saline plus saline group had patent vessels. No significant changes were observed in the various coagulation parameters tested for any of the 4 treatment groups. The results show that lys-plg can safely increase the thrombolytic efficacy of proUK.

  9. Exploring soluble urokinase plasminogen activator receptor and its relationship with arterial stiffness in a bi-ethnic population: the SAfrEIC-study

    DEFF Research Database (Denmark)

    Schutte, Aletta E; Myburgh, Anélda; Olsen, Michael Hecht

    2012-01-01

    INTRODUCTION: Elevated soluble urokinase-type plasminogen activator receptor (suPAR) indicates an inflammatory state caused by conditions such as HIV and cancer. Recently suPAR was identified as an indicator of cardiovascular disease (CVD). CVD is highly prevalent in black South Africans...

  10. Organization of the gene coding for human protein C inhibitor (plasminogen activator inhibitor-3). Assignment of the gene to chromosome 14

    NARCIS (Netherlands)

    Meijers, J. C.; Chung, D. W.

    1991-01-01

    Protein C inhibitor (plasminogen activator inhibitor-3) is a plasma glycoprotein and a member of the serine proteinase inhibitor superfamily. In the present study, the human gene for protein C inhibitor was isolated and characterized from three independent phage that contained overlapping inserts

  11. Salvage intraosseous thrombolysis and extracorporeal membrane oxygenation for massive pulmonary embolism

    Directory of Open Access Journals (Sweden)

    Luke Cameron Northey

    2015-01-01

    Full Text Available Intraosseous access is an alternative route of pharmacotherapy during cardiopulmonary resuscitation. Extracorporeal membrane oxygenation (ECMO provides cardiac and respiratory support when conventional therapies fail. This case reports the use of intraosseous thrombolysis and ECMO in a patient with acute massive pulmonary embolism (PE. A 34-year-old female presented to the emergency department with sudden onset severe shortness of breath. Due to difficulty establishing intravenous access, an intraosseous needle was inserted into the left tibia. Echocardiography identified severe right ventricular dilatation with global systolic impairment and failure, indicative of PE. Due to the patient′s hemodynamic compromise a recombinant tissue plasminogen activator (Alteplase bolus was administered through the intraosseous route. After transfer to the intensive care unit, venous-arterial ECMO was initiated as further therapy. The patient recovered and was discharged 36 days after admission. This is the first report of combination intraosseous thrombolysis and ECMO as salvage therapy for massive PE.

  12. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  13. Cathepsin activities and membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling.

    Science.gov (United States)

    Zhang, T; Rawson, D M; Tosti, L; Carnevali, O

    2008-04-01

    This study investigated enzymatic activity of cathepsins and the membrane integrity of zebrafish (Danio rerio) oocytes after freezing to -196 degrees C using controlled slow cooling. Stage III oocytes (>0.5mm), obtained through dissection of anaesthetised female fish and desegregation of ovarian cumulus, were exposed to 2M methanol or 2M DMSO (both prepared in Hank's medium) for 30min at 22 degrees C before being loaded into 0.5ml plastic straws and placed into a programmable cooler. After controlled slow freezing, samples were plunged into liquid nitrogen (LN) and held for at least 10min, and thawed by immersing straws into a 27 degrees C water bath for 10s. Thawed oocytes were washed twice in Hank's medium. Cathepsin activity and membrane integrity of oocytes were assessed both after cryoprotectant treatment at 22 degrees C and after freezing in LN. Cathepsin B and L colorimetric analyses were performed using substrates Z-Arg-ArgNNap and Z-Phe-Arg-4MbetaNA-HCl, respectively, and 2-naphthylamine and 4-methoxy-2-naphthylamine were used as standards. Cathepsin D activity was performed by analysing the level of hydrolytic action on haemoglobin. Oocytes membrane integrity was assessed using 0.2% Trypan blue staining for 5min. Analysis of cathepsin activities showed that whilst the activity of cathepsin B and D was not affected by 2M DMSO treatment, their activity was lowered when treated with 2M methanol. Following freezing to -196 degrees C, the activity of all cathepsins (B, D and L) was significantly decreased in both 2M DMSO and 2M methanol. Trypan blue staining showed that 63.0+/-11.3% and 72.7+/-5.2% oocytes membrane stayed intact after DMSO and methanol treatment for 30min at 22 degrees C, respectively, whilst 14.9+/-2.6% and 1.4+/-0.8% stayed intact after freezing in DMSO and methanol to -196 degrees C. The results indicate that cryoprotectant treatment and freezing modified the activities of lysosomal enzymes involved in oocyte maturation and yolk

  14. Palladium based membranes and membrane reactors for hydrogen production and purification : An overview of research activities at Tecnalia and TU/e

    NARCIS (Netherlands)

    Fernandez, E.; Helmi Siasi Farimani, A.; Medrano Jimenez, J.A.; Coenen, K.T.; Arratibel Plazaola, A.; Melendez Rey, J.; de Nooijer, N.C.A.; Viviente, J.L.; Zuniga, J.; van Sint Annaland, M.; Gallucci, F.; Pacheco Tanaka, D.A.

    2017-01-01

    In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such

  15. Ceramic membranes for gas processing in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. [University of Queensland, Brisbane, Qld. (Australia)

    2010-07-01

    Pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H{sub 2}, enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H{sub 2} from the syngas stream at high temperatures. They also allow CO{sub 2} to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO{sub 2} storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.

  16. Intelligent Membranes: Dream or Reality?

    Directory of Open Access Journals (Sweden)

    Annarosa Gugliuzza

    2013-07-01

    Full Text Available Intelligent materials are claimed to overcome current drawbacks associated with the attainment of high standards of life, health, security and defense. Membrane-based sensors represent a category of smart systems capable of providing a large number of benefits to different markets of textiles, biomedicine, environment, chemistry, agriculture, architecture, transport and energy. Intelligent membranes can be characterized by superior sensitivity, broader dynamic range and highly sophisticated mechanisms of autorecovery. These prerogatives are regarded as the result of multi-compartment arrays, where complementary functions can be accommodated and well-integrated. Based on the mechanism of “sense to act”, stimuli-responsive membranes adapt themselves to surrounding environments, producing desired effects such as smart regulation of transport, wetting, transcription, hydrodynamics, separation, and chemical or energy conversion. Hopefully, the design of new smart devices easier to manufacture and assemble can be realized through the integration of sensing membranes with wireless networks, looking at the ambitious challenge to establish long-distance communications. Thus, the transfer of signals to collecting systems could allow continuous and real-time monitoring of data, events and/or processes.

  17. Activity ranking of synthetic analogs targeting vascular endothelial growth factor receptor 2 by an integrated cell membrane chromatography system.

    Science.gov (United States)

    Wang, Dongyao; Lv, Diya; Chen, Xiaofei; Liu, Yue; Ding, Xuan; Jia, Dan; Chen, Langdong; Zhu, Zhenyu; Cao, Yan; Chai, Yifeng

    2015-12-01

    Evaluating the biological activities of small molecules represents an important part of the drug discovery process. Cell membrane chromatography (CMC) is a well-developed biological chromatographic technique. In this study, we have developed combined SMMC-7721/CMC and HepG2/CMC with high-performance liquid chromatography and time-of-flight mass spectrometry to establish an integrated screening platform. These systems was subsequently validated and used for evaluating the activity of quinazoline compounds, which were designed and synthesized to target vascular endothelial growth factor receptor 2. The inhibitory activities of these compounds towards this receptor were also tested using a classical caliper mobility shift assay. The results revealed a significant correlation between these two methods (R(2) = 0.9565 or 0.9420) for evaluating the activities of these compounds. Compared with traditional methods of evaluating the activities analogous compounds, this integrated cell membrane chromatography screening system took less time and was more cost effective, indicating that it could be used as a practical method in drug discovery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.

    Science.gov (United States)

    Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2012-10-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

  19. Prognostic value of plasma soluble urokinase plasminogen activator receptor (suPAR) in Danish patients with recurrent epithelial ovarian cancer (REOC)

    DEFF Research Database (Denmark)

    Begum, Farah Diba; Høgdall, Estrid V S; Riisbo, Rikke

    2006-01-01

    The level of the soluble urokinase plasminogen activator receptor (suPAR) is elevated in tumour tissue from several types of cancer. This is the first study aiming to predict the prognosis for survival by the use of a pre-chemotherapeutic plasma suPAR value in 71 patients with recurrent epithelial...

  20. Factors Determining the Oxygen Permeability of Biological Membranes: Oxygen Transport Across Eye Lens Fiber-Cell Plasma Membranes.

    Science.gov (United States)

    Subczynski, Witold Karol; Widomska, Justyna; Mainali, Laxman

    2017-01-01

    Electron paramagnetic resonance (EPR) spin-label oximetry allows the oxygen permeability coefficient to be evaluated across homogeneous lipid bilayer membranes and, in some cases, across coexisting membrane domains without their physical separation. The most pronounced effect on oxygen permeability is observed for cholesterol, which additionally induces the formation of membrane domains. In intact biological membranes, integral proteins induce the formation of boundary and trapped lipid domains with a low oxygen permeability. The effective oxygen permeability coefficient across the intact biological membrane is affected not only by the oxygen permeability coefficients evaluated for each lipid domain but also by the surface area occupied by these domains in the membrane. All these factors observed in fiber cell plasma membranes of clear human eye lenses are reviewed here.

  1. High-density lipoprotein-based therapy reduces the hemorrhagic complications associated with tissue plasminogen activator treatment in experimental stroke.

    Science.gov (United States)

    Lapergue, Bertrand; Dang, Bao Quoc; Desilles, Jean-Philippe; Ortiz-Munoz, Guadalupe; Delbosc, Sandrine; Loyau, Stéphane; Louedec, Liliane; Couraud, Pierre-Olivier; Mazighi, Mikael; Michel, Jean-Baptiste; Meilhac, Olivier; Amarenco, Pierre

    2013-03-01

    We have previously reported that intravenous injection of high-density lipoproteins (HDLs) was neuroprotective in an embolic stroke model. We hypothesized that HDL vasculoprotective actions on the blood-brain barrier (BBB) may decrease hemorrhagic transformation-associated with tissue plasminogen activator (tPA) administration in acute stroke. We used tPA alone or in combination with HDLs in vivo in 2 models of focal middle cerebral artery occlusion (MCAO) (embolic and 4-hour monofilament MCAO) and in vitro in a model of BBB. Sprague-Dawley rats were submitted to MCAO, n=12 per group. The rats were then randomly injected with tPA (10 mg/kg) or saline with or without human plasma purified-HDL (10 mg/kg). The therapeutic effects of HDL and BBB integrity were assessed blindly 24 hours later. The integrity of the BBB was also tested using an in vitro model of human cerebral endothelial cells under oxygen-glucose deprivation. tPA-treated groups had significantly higher mortality and rate of hemorrhagic transformation at 24 hours in both MCAO models. Cotreatment with HDL significantly reduced stroke-induced mortality versus tPA alone (by 42% in filament MCAO, P=0.009; by 73% in embolic MCAO, P=0.05) and tPA-induced intracerebral parenchymal hematoma (by 92% in filament MCAO, by 100% in embolic MCAO; Phemorrhagic transformation in rat models of MCAO. Both in vivo and in vitro results support the vasculoprotective action of HDLs on BBB under ischemic conditions.

  2. Photothermal IR spectroscopy with perforated membrane micromechanical resonators

    DEFF Research Database (Denmark)

    Kurek, Maksymilian

    -IR method. In order to overcome them, string resonators were replaced by membranes. A reliable sampling technique was maintained by adding perforation to membranes and thereby essentially getting membrane porous filters. Membranes gave also access to fully integrated magnetic transduction that allowed...... for significant shrinkage and simplification of the system. An analytical model of a locally heated membrane was developed and confirmed through FEM simulations. Then, low stress silicon nitride perforated membranes were fabricated and characterized using two different experimental setups that employed optical...

  3. Characterization of human endothelial cell urokinase-type plasminogen activator receptor protein and messenger RNA

    DEFF Research Database (Denmark)

    Barnathan, E S; Kuo, A; Karikó, K

    1990-01-01

    Human umbilical vein endothelial cells in culture (HUVEC) express receptors for urokinase-type plasminogen activators (u-PA). The immunochemical nature of this receptor and its relationship to u-PA receptors expressed by other cell types is unknown. Cross-linking active site-blocked u-PA to HUVEC...... an endothelial cell cDNA library using the polymerase chain reaction (PCR) and oligonucleotide primers corresponding to the DNA sequence of the receptor cloned from transformed human fibroblasts (Roldan et al, EMBO J 9:467, 1990). The size of the cDNA (approximately 1,054 base pairs, bp) and the presence...

  4. The association between the 4G/5G polymorphism in the promoter of the plasminogen activator inhibitor-1 gene and extension of postsurgical calf vein thrombosis.

    Science.gov (United States)

    Ferrara, Filippo; Meli, Francesco; Raimondi, Francesco; Montalto, Salvatore; Cospite, Valentina; Novo, Giuseppina; Novo, Salvatore

    2013-04-01

    The objective of this study was to evaluate whether the presence of a plasminogen activator inhibitor type 1 (PAI-1) promoter polymorphism 4G/5G could significantly influence the proximal extension of vein thrombosis in spite of anticoagulant treatment in patients with calf vein thrombosis (CVT) following orthopaedic, urological and abdominal surgery. We studied 168 patients with CVT, who had undergone orthopaedic, urological and abdominal surgery, subdivided as follows: first, 50 patients with thrombosis progression; second, 118 patients without thrombosis progression. The 4G/5G polymorphism of the plasminogen activator inhibitor 1 was evaluated in all patients and in 70 healthy matched controls. We also studied PAI-1 activity in plasma. The presence of 4G/5G genotype was significantly increased in the group of patients with the extension of thrombotic lesions and was associated with an increase in CVT extension risk (odds ratio adjusted for sex 2.692; 95% confidence interval 1.302-4.702). Moreover, we observed a significant increase of PAI-1 plasma activity in patients with extension of thrombotic lesion vs. patients without extension (P=0.0001). Patients with 4G/5G genotype in the promoter of the plasminogen activator inhibitor - 1 gene present a higher risk of extension of thrombotic lesions.

  5. Integrated membrane and microbial fuel cell technologies for enabling energy-efficient effluent Re-use in power plants.

    Science.gov (United States)

    Shrestha, Namita; Chilkoor, Govinda; Xia, Lichao; Alvarado, Catalina; Kilduff, James E; Keating, John J; Belfort, Georges; Gadhamshetty, Venkataramana

    2017-06-15

    Municipal wastewater is an attractive alternative to freshwater sources to meet the cooling water needs of thermal power plants. Here we offer an energy-efficient integrated microbial fuel cell (MFC)/ultrafiltration (UF) process to purify primary clarifier effluent from a municipal wastewater treatment plant for use as cooling water. The microbial fuel cell was shown to significantly reduce chemical oxygen demand (COD) in the primary settled wastewater effluent upstream of the UF module, while eliminating the energy demand required to deliver dissolved oxygen in conventional aerobic treatment. We investigated surface modification of the UF membranes to control fouling. Two promising hydrophilic monomers were identified in a high-throughput search: zwitterion (2-(Methacryloyloxy)-ethyl-dimethyl-(3-sulfopropyl ammoniumhydroxide, abbreviated BET SO 3 - ), and amine (2-(Methacryloyloxy) ethyl trimethylammonium chloride, abbreviated N(CH 3 ) 3 + ). Monomers were grafted using UV-induced polymerization on commercial poly (ether sulfone) membranes. Filtration of MFC effluent by membranes modified with BET SO 3 - and N(CH 3 ) 3 + exhibited a lower rate of resistance increase and lower energy consumption than the commercially available membrane. The MFC/UF process produced high quality cooling water that meets the Electrical Power Research Institute (EPRI) recommendations for COD, a suite of metals (Fe, Al, Cu, Zn, Si, Mn, S, Ca and Mg), and offered extremely low corrosion rates (<0.05 mm/yr). A series of AC and DC diagnostic tests were used to evaluate the MFC performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Lysosomal enlargement and lysosomal membrane destabilisation in mussel digestive cells measured by an integrative index

    International Nuclear Information System (INIS)

    Izagirre, Urtzi; Marigomez, Ionan

    2009-01-01

    Lysosomal responses (enlargement and membrane destabilisation) in mussel digestive cells are well-known environmental stress biomarkers in pollution effects monitoring in marine ecosystems. Presently, in laboratory and field studies, both responses were measured separately (in terms of lysosomal volume density - Vv - and labilisation period -LP) and combined (lysosomal response index - LRI) in order to contribute to their understanding and to develop an index useful for decisions makers. LRI integrates Vv and LP, which are not necessarily dependent lysosomal responses. It is unbiased and more sensitive than Vv and LP alone and diminishes background due to confounding factors. LRI provides a simple numerical index (consensus reference = 0; critical threshold = 1) directly related to the pollution impact degree. Moreover, LRI can be represented in a way that allows the interpretation of lysosomal responses, which is useful for environmental scientists. - Lysosomal responses to pollutants measured by an integrative index.

  7. A novel gas separation integrated membrane bioreactor to evaluate the impact of self-generated biogas recycling on continuous hydrogen fermentation

    International Nuclear Information System (INIS)

    Bakonyi, Péter; Buitrón, Germán; Valdez-Vazquez, Idania; Nemestóthy, Nándor; Bélafi-Bakó, Katalin

    2017-01-01

    Highlights: • A Gas Separation Membrane Bioreactor was designed to improve H_2 production. • Headspace gas after enrichment by PDMS membranes was used for reactor sparging. • Stripping the bioreactor with a CO_2-enriched gas enhanced the H_2 fermentation. - Abstract: A Gas Separation Membrane Bioreactor (GSMBR) by integrating membrane technology with a continuous biohydrogen fermenter was designed. The feasibility of this novel configuration for the improvement of hydrogen production capacity was tested by stripping the fermentation liquor with CO_2- and H_2-enriched gases, obtained directly from the bioreactor headspace. The results indicated that sparging the bioreactor with the CO_2-concentrated fraction of the membrane separation unit (consisting of two PDMS modules) enhanced the steady-state H_2 productivity (8.9–9.2 L H_2/L-d) compared to the membrane-less control CSTR to be characterized with 6.96–7.35 L H_2/L-d values. On the other hand, purging with the H_2-rich gas strongly depressed the achievable productivity (2.7–3.03 L H_2/L-d). Microbial community structure and soluble metabolic products were monitored to assess the GSMBR behavior. The study demonstrated that stripping the bioH_2 fermenter with its own, self-generated atmosphere after adjusting its composition (to higher CO_2-content) can be a promising way to intensify dark fermentative H_2 evolution.

  8. Micro direct methanol fuel cell with perforated silicon-plate integrated ionomer membrane

    DEFF Research Database (Denmark)

    Larsen, Jackie Vincent; Dalslet, Bjarke Thomas; Johansson, Anne-Charlotte Elisabeth Birgitta

    2014-01-01

    This article describes the fabrication and characterization of a silicon based micro direct methanol fuel cell using a Nafion ionomer membrane integrated into a perforated silicon plate. The focus of this work is to provide a platform for micro- and nanostructuring of a combined current collector...... at a perforation ratio of 40.3%. The presented fuel cells also show a high volumetric peak power density of 2 mW cm−3 in light of the small system volume of 480 μL, while being fully self contained and passively feed....... and catalytic electrode. AC impedance spectroscopy is utilized alongside IV characterization to determine the influence of the plate perforation geometries on the cell performance. It is found that higher ratios of perforation increases peak power density, with the highest achieved being 2.5 mW cm−2...

  9. Membrane Technologies in Wine Industry: An Overview.

    Science.gov (United States)

    El Rayess, Youssef; Mietton-Peuchot, Martine

    2016-09-09

    Membrane processes are increasingly reported for various applications in wine industry such as microfiltration, electrodialysis, and reverse osmosis, but also emerging processes as bipolar electrodialysis and membrane contactor. Membrane-based processes are playing a critical role in the field of separation/purification, clarification, stabilization, concentration, and de-alcoholization of wine products. They begin to be an integral part of the winemaking process. This review will provide an overview of recent developments, applications, and published literature in membrane technologies applied in wine industry.

  10. Mapping of unfolding states of integral helical membrane proteins by GPS-NMR and scattering techniques

    DEFF Research Database (Denmark)

    Calcutta, Antonello; Jessen, Christian M; Behrens, Manja Annette

    2012-01-01

    induced by unfolding of an integral membrane protein, namely TFE-induced unfolding of KcsA solubilized by the n-dodecyl ß-d-maltoside (DDM) surfactant is investigated by the recently introduced GPS-NMR (Global Protein folding State mapping by multivariate NMR) (Malmendal et al., PlosONE 5, e10262 (2010......)) along with dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS). GPS-NMR is used as a tool for fast analysis of the protein unfolding processes upon external perturbation, and DLS and SAXS are used for further structural characterization of the unfolding states. The combination allows...

  11. Enhancing Membrane Protein Identification Using a Simplified Centrifugation and Detergent-Based Membrane Extraction Approach.

    Science.gov (United States)

    Zhou, Yanting; Gao, Jing; Zhu, Hongwen; Xu, Jingjing; He, Han; Gu, Lei; Wang, Hui; Chen, Jie; Ma, Danjun; Zhou, Hu; Zheng, Jing

    2018-02-20

    Membrane proteins may act as transporters, receptors, enzymes, and adhesion-anchors, accounting for nearly 70% of pharmaceutical drug targets. Difficulties in efficient enrichment, extraction, and solubilization still exist because of their relatively low abundance and poor solubility. A simplified membrane protein extraction approach with advantages of user-friendly sample processing procedures, good repeatability and significant effectiveness was developed in the current research for enhancing enrichment and identification of membrane proteins. This approach combining centrifugation and detergent along with LC-MS/MS successfully identified higher proportion of membrane proteins, integral proteins and transmembrane proteins in membrane fraction (76.6%, 48.1%, and 40.6%) than in total cell lysate (41.6%, 16.4%, and 13.5%), respectively. Moreover, our method tended to capture membrane proteins with high degree of hydrophobicity and number of transmembrane domains as 486 out of 2106 (23.0%) had GRAVY > 0 in membrane fraction, 488 out of 2106 (23.1%) had TMs ≥ 2. It also provided for improved identification of membrane proteins as more than 60.6% of the commonly identified membrane proteins in two cell samples were better identified in membrane fraction with higher sequence coverage. Data are available via ProteomeXchange with identifier PXD008456.

  12. Unruptured Cerebral Aneurysm Detected after Intravenous Tissue Plasminogen Activator for Stroke

    Directory of Open Access Journals (Sweden)

    Yukihiro Yoneda

    2009-06-01

    Full Text Available Therapeutic guidelines of intravenous thrombolysis with tissue plasminogen activator (tPA for hyperacute ischemic stroke are very strict. Because of potential higher risk of bleeding complications, the presence of unruptured cerebral aneurysm is a contraindication for systemic thrombolysis with tPA. According to the standard CT criteria, a 66-year-old woman who suddenly developed aphasia and hemiparesis received intravenous tPA within 3 h after ischemic stroke. Magnetic resonance angiography during tPA infusion was performed and the presence of a small unruptured cerebral aneurysm was suspected at the anterior communicating artery. Delayed cerebral angiography confirmed an aneurysm with a size of 7 mm. The patient did not experience any adverse complications associated with the aneurysm. Clinical experiences of this kind of accidental off-label thrombolysis may contribute to modify the current rigid tPA guidelines for stroke.

  13. Soluble Urokinase-Type Plasminogen Activator Receptor Levels in Patients With Schizophrenia

    DEFF Research Database (Denmark)

    Nielsen, Jimmi; Røge, Rasmus; Pristed, Sofie Gry

    2015-01-01

    PAR) is a protein that can be measured in blood samples and reflects the levels of inflammatory activity. It has been associated with mortality and the development of type 2 diabetes and cardiovascular disease. METHODS: suPAR levels in patients with schizophrenia were compared to healthy controls from the Danish......BACKGROUND: The etiology of schizophrenia remains largely unknown but alterations in the immune system may be involved. In addition to the psychiatric symptoms, schizophrenia is also associated with up to 20 years reduction in life span. Soluble urokinase-type plasminogen activator receptor (su...... Blood Donor Study. SuPAR levels were dichotomized at >4.0 ng/ml, which is considered the threshold for low grade inflammation. A multiple logistic regression model was used and adjusted for age, sex, and current smoking. RESULTS: In total we included 1009 subjects, 105 cases with schizophrenia (10...

  14. The role of the lysyl binding site of tissue-type plasminogen activator in the interaction with a forming fibrin clot

    NARCIS (Netherlands)

    Bakker, A.H.F.; Weening-Verhoeff, E.J.D.; Verheijen, J.H.

    1995-01-01

    To describe the role of the lysyl binding site in the interaction of tissue-type plasminogen activator (t-PA, FGK1K2P) with a forming fibrin clot, we performed binding experiments with domain deletion mutants GK1K2P, K2P, and the corresponding point mutants lacking the lysyl binding site in the

  15. Effects of hepatitis B virus S protein exposure on sperm membrane integrity and functions.

    Directory of Open Access Journals (Sweden)

    XiangJin Kang

    Full Text Available BACKGROUND: Hepatitis B is a public health problem worldwide. Viral infection can affect a man's fertility, but only scant information about the influence of hepatitis B virus (HBV infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs on human sperm membrane integrity and functions. METHODS/PRINCIPAL FINDINGS: Reactive oxygen species (ROS, lipid peroxidation (LP, total antioxidant capacity (TAC and phosphatidylserine (PS externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL assays and flow cytometric analyses were performed. (1 After 3 h incubation with 25 µg/ml of HBs, the average rates of ROS positive cells, annexin V-positive/propidium iodide (PI-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA in the sperm cells exposed to 50 µg/ml of HBs for 3 h was significantly higher than that in the control (P<0.05-0.01. (2 HBs increased the MDA levels and the numbers of ROS positive cells, annexin V-positive/PI-negative cells, caspases-3, -8, -9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3 HBs monoclonal antibody (MAb and N-Acetylcysteine (NAC reduced the number of ROS-positive sperm cells. (4 HBs decreased the TAC levels in sperm cells in a dose-dependent manner. CONCLUSION: HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation of caspases, and DNA fragmentation, resulting in increased apoptosis of sperm cells and loss of sperm membrane integrity and causing sperm dysfunctions.

  16. The story of an exceptional serine protease, tissue-type plasminogen activator (tPA).

    Science.gov (United States)

    Hébert, M; Lesept, F; Vivien, D; Macrez, R

    2016-03-01

    The only acute treatment of ischemic stroke approved by the health authorities is tissue recombinant plasminogen activator (tPA)-induced thrombolysis. Under physiological conditions, tPA, belonging to the serine protease family, is secreted by endothelial and brain cells (neurons, astrocytes, microglia, oligodendrocytes). Although revascularisation induced by tPA is beneficial during a stroke, research over the past 20 years shows that tPA can also be deleterious for the brain parenchyma. Thus, in this review of the literature, after a brief history on the discovery of tPA, we reviewed current knowledge of mechanisms by which tPA can influence brain function in physiological and pathological conditions. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Tissue integrity is essential for ectopic implantation of human endometrium in the chicken chorioallantoic membrane.

    Science.gov (United States)

    Nap, Annemiek W; Groothuis, Patrick G; Demir, Ayse Y; Maas, Jacques W M; Dunselman, Gerard A J; de Goeij, Anton F P M; Evers, Johannes L H

    2003-01-01

    Not all women with patent tubes develop clinically manifest endometriosis. Quality and quantity of endometrium in retrograde menstruation may be the determining factor in the development of the disease. We hypothesize that retrograde shedding of endometrial fragments with preserved integrity facilitates implantation of endometrium in ectopic locations, resulting in endometriotic lesion development. We evaluate the impact of tissue integrity on the success of endometriosis-like lesion development in the chicken embryo chorioallantoic membrane (CAM) model. Menstrual and non-menstrual (cyclic) endometrium were collected by biopsy, and either minced or enzymatically dispersed. Spontaneously shed menstrual effluent was collected by a menstrual cup, and cells and tissue were isolated. We evaluated whether infiltration or lesion formation in the CAM occurred after transplantation of endometrium onto the CAM. Transplantation of biopsied menstrual and cyclic endometrium fragments, and of endometrium fragments >1 mm(3) isolated from menstrual effluent, resulted in lesion formation. Transplantation of endometrial cells isolated from menstrual effluent did not lead to lesion formation. After transplantation of digested biopsied cyclic endometrium, infiltration in the CAM but no lesions were observed. In the CAM assay, integrity of tissue architecture determines success of implantation of human endometrium in ectopic locations.

  18. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  19. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  20. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    OpenAIRE

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding t...

  1. Mammalian protein secretion without signal peptide removal. Biosynthesis of plasminogen activator inhibitor-2 in U-937 cells

    International Nuclear Information System (INIS)

    Ye, R.D.; Wun, T.C.; Sadler, J.E.

    1988-01-01

    Plasminogen activator inhibitor-2 (PAI-2) is a serine protease inhibitor that regulates plasmin generation by inhibiting urokinase and tissue plasminogen activator. The primary structure of PAI-2 suggests that it may be secreted without cleavage of a single peptide. To confirm this hypothesis we have studied the glycosylation and secretion of PAI-2 in human monocytic U-937 cells by metabolic labeling, immunoprecipitation, glycosidase digestion, and protein sequencing. PAI-2 is variably glycosylated on asparagine residues to yield intracellular intermediates with zero, one, two, or three high mannose-type oligosaccharide units. Secretion of the N-glycosylated species began by 1 h of chase and the secreted molecules contained both complex-type N-linked and O-linked oligosaccharides. Enzymatically deglycosylated PAI-2 had an electrophoretic mobility identical to that of the nonglycosylated precursor and also to that of PAI-2 synthesized in vitro in a rabbit reticulocyte lysate from synthetic mRNA derived from full length PAI-2 cDNA. The amino-terminal protein sequence of secreted PAI-2 began with the initiator methionine residue. These results indicate that PAI-2 is glycosylated and secreted efficiently without the cleavage of a signal peptide. PAI-2 shares this property with its nearest homologue in the serine protease inhibitor family, chicken ovalbumin, and appears to be the first well characterized example of this phenomenon among natural mammalian proteins

  2. Evaluation of Time-Temperature Integrators (TTIs) with Microorganism-Entrapped Microbeads Produced Using Homogenization and SPG Membrane Emulsification Techniques.

    Science.gov (United States)

    Rahman, A T M Mijanur; Lee, Seung Ju; Jung, Seung Won

    2015-12-28

    A comparative study was conducted to evaluate precision and accuracy in controlling the temperature dependence of encapsulated microbial time-temperature integrators (TTIs) developed using two different emulsification techniques. Weissela cibaria CIFP 009 cells, immobilized within 2% Na-alginate gel microbeads using homogenization (5,000, 7,000, and 10,000 rpm) and Shirasu porous glass (SPG) membrane technologies (10 μm), were applied to microbial TTIs. The prepared micobeads were characterized with respect to their size, size distribution, shape and morphology, entrapment efficiency, and bead production yield. Additionally, fermentation process parameters including growth rate were investigated. The TTI responses (changes in pH and titratable acidity (TA)) were evaluated as a function of temperature (20°C, 25°C, and 30°C). In comparison with conventional methods, SPG membrane technology was able not only to produce highly uniform, small-sized beads with the narrowest size distribution, but also the bead production yield was found to be nearly 3.0 to 4.5 times higher. However, among the TTIs produced using the homogenization technique, poor linearity (R(2)) in terms of TA was observed for the 5,000 and 7,000 rpm treatments. Consequently, microbeads produced by the SPG membrane and by homogenization at 10,000 rpm were selected for adjusting the temperature dependence. The Ea values of TTIs containing 0.5, 1.0, and 1.5 g microbeads, prepared by SPG membrane and conventional methods, were estimated to be 86.0, 83.5, and 76.6 kJ/mol, and 85.5, 73.5, and 62.2 kJ/mol, respectively. Therefore, microbial TTIs developed using SPG membrane technology are much more efficient in controlling temperature dependence.

  3. Evaluation of a weight-adjusted single-bolus plasminogen activator in patients with myocardial infarction - A double-blind, randomized angiographic trial of lanoteplase versus alteplase

    NARCIS (Netherlands)

    den Heijer, P; Vermeer, F; Ambrosioni, E; Sadowski, Z; Lopez-Sendon, JL; von Essen, R; Beaufils, P; Thadani, U; Adgey, J; Pierard, L; Brinker, J; Davies, RF; Smalling, RW; Wallentin, L; Caspi, A; Pangerl, A; Trickett, L; Hauck, C; Henry, D; Chew, P

    1998-01-01

    Background-Lanoteplase (nPA) is a rationally designed variant of tissue plasminogen activator with greater fibrinolytic potency and slower plasma clearance than alteplase. Methods and Results-InTIME (Intravenous nPA for Treatment of Infarcting Myocardium Early), a multicenter, double-blind,

  4. Lsa30, a novel adhesin of Leptospira interrogans binds human plasminogen and the complement regulator C4bp.

    Science.gov (United States)

    Souza, Natalie M; Vieira, Monica L; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Nascimento, Ana L T O

    2012-09-01

    Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  6. Fabrication and Characterisation of Membrane-Based Gold Electrodes

    DEFF Research Database (Denmark)

    Bakmand, Tanya; Kwasny, Dorota; Dimaki, Maria

    2015-01-01

    This work presents a versatile, membrane based electrochemical sensor with thin film electrodes fabricated through Ebeam evaporation directly on porous materials (membranes). Here, the fabrication of the electrodes is described along with possible methods for integration in fluidic systems...

  7. Small RNAs controlling outer membrane porins

    DEFF Research Database (Denmark)

    Valentin-Hansen, Poul; Johansen, Jesper; Rasmussen, Anders A

    2007-01-01

    are key regulators of environmental stress. Recent work has revealed an intimate interplay between small RNA regulation of outer membrane proteins and the stress-induced sigmaE-signalling system, which has an essential role in the maintenance of the integrity of the outer membrane.......Gene regulation by small non-coding RNAs has been recognized as an important post-transcriptional regulatory mechanism for several years. In Gram-negative bacteria such as Escherichia coli and Salmonella, these RNAs control stress response and translation of outer membrane proteins and therefore...

  8. Dependence of plasmin-mediated degradation of platelet adhesive receptors on temperature and Ca2+

    International Nuclear Information System (INIS)

    Winters, K.J.; Eisenberg, P.R.; Jaffe, A.S.; Santoro, S.A.

    1990-01-01

    The effects of activation of plasminogen by streptokinase and tissue-type-plasminogen activator on platelet activation and the membrane glycoproteins (GPs) that mediate platelet adhesion and aggregation are not yet fully defined. To clarify effects on platelets during activation of plasminogen in vitro, we used monoclonal antibodies (MoAbs), flow cytometry, and platelets surface-labeled with 125 I to characterize changes in receptors for fibrinogen (GPIIb-IIIa), von Willebrand factor (GPIb), and collagen (GPIa-IIa). Activation of plasminogen in plasma with pharmacologic concentrations of plasminogen activators did not degrade GPIIb-IIIa or GPIb, and caused only a modest decrease in GPIa. In washed platelets GPIIb-IIIa was extensively degraded by plasmin at 37 degrees C in the absence of exogenous Ca 2+ , conditions that destabilize the IIb-IIIa complex. Degradation of GPIb in washed platelets displayed a similar although less-marked dependence on temperature and the absence of Ca 2+ . The binding of activation-specific MoAbs did not increase during activation of plasminogen in plasma. We conclude that during pharmacologic fibrinolysis, reported inhibition of platelet function in plasma is not due to degradation of platelet-adhesive receptors. In addition, platelet activation observed during thrombolytic therapy does not appear to be a direct consequence of plasminogen activation

  9. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  10. Inhibition of plasminogen activator inhibitor-1 activity results in promotion of endogenous thrombolysis and inhibition of thrombus extension in models of experimental thrombosis

    NARCIS (Netherlands)

    Levi, M. [=Marcel M.; Biemond, B. J.; van Zonneveld, A. J.; ten Cate, J. W.; Pannekoek, H.

    1992-01-01

    We investigated the effect of inhibition of plasminogen activator inhibitor-1 (PAI-1) activity by a murine monoclonal anti-human PAI-1 antibody (MAI-12) on in vitro thrombolysis and on in vivo thrombolysis and thrombus extension in an experimental animal model for thrombosis. Thrombolysis, mediated

  11. Plasminogen activator inhibitor-1 released from activated platelets plays a key role in thrombolysis resistance. Studies with thrombi generated in the Chandler loop

    NARCIS (Netherlands)

    Stringer, H. A.; van Swieten, P.; Heijnen, H. F.; Sixma, J. J.; Pannekoek, H.

    1994-01-01

    To investigate the potential role of plasminogen activator inhibitor-1 (PAI-1), which is released from the alpha-granules of activated platelets, in thrombolysis resistance, we employed a model (the "Chandler loop") that mimics the formation of arterial thrombi in vivo and that can be manipulated in

  12. Urokinase-type plasminogen activator receptor plays a role in neutrophil migration during lipopolysaccharide-induced peritoneal inflammation but not during Escherichia coli-induced peritonitis

    NARCIS (Netherlands)

    Renckens, Rosemarijn; Roelofs, Joris J. T. H.; Florquin, Sandrine; van der Poll, Tom

    2006-01-01

    BACKGROUND: Urokinase-type plasminogen activator receptor (uPAR) is expressed on many different cells, including leukocytes. uPAR has been implicated to play a role in neutrophil migration to sites of inflammation. METHODS: To determine the role that uPAR plays in neutrophil recruitment in response

  13. Expression and activity of the urokinase plasminogen activator system in canine primary brain tumors

    Directory of Open Access Journals (Sweden)

    Rossmeisl JH

    2017-04-01

    Full Text Available John H Rossmeisl,1–3 Kelli Hall-Manning,4 John L Robertson,1,3,5 Jamie N King,1,2 Rafael V Davalos,3,5 Waldemar Debinski,3 Subbiah Elankumaran6,† 1Veterinary and Comparative Neuro-Oncology Laboratory, 2Department of Small Animal Clinical Sciences, 3The Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston-Salem, NC, 4Virginia Tech Animal Laboratory Services, Virginia-Maryland College of Veterinary Medicine, 5Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, 6Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA†The authors regret to advise of the passing of Dr Subbiah Elankumaran prior to publicationBackground: The expression of the urokinase plasminogen activator receptor (uPAR, a glycosylphosphatidylinositol-anchored protein family member, and the activity of its ligand, urokinase-type plasminogen activator (uPA, have been associated with the invasive and metastatic potentials of a variety of human brain tumors through their regulation of extracellular matrix degradation. Domesticated dogs develop naturally occurring brain tumors that share many clinical, phenotypic, molecular, and genetic features with their human counterparts, which has prompted the use of the dogs with spontaneous brain tumors as models to expedite the translation of novel brain tumor therapeutics to humans. There is currently little known regarding the role of the uPA system in canine brain tumorigenesis. The objective of this study was to characterize the expression of uPAR and the activity of uPA in canine brain tumors as justification for the development of uPAR-targeted brain tumor therapeutics in dogs.Methods: We investigated the expression of uPAR in 37 primary canine brain tumors using immunohistochemistry, Western blotting, real

  14. Probing lipid membrane electrostatics

    Science.gov (United States)

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  15. Muscle intermediate filaments and their links to membranes and membranous organelles

    International Nuclear Information System (INIS)

    Capetanaki, Yassemi; Bloch, Robert J.; Kouloumenta, Asimina; Mavroidis, Manolis; Psarras, Stelios

    2007-01-01

    Intermediate filaments (IFs) play a key role in the integration of structure and function of striated muscle, primarily by mediating mechanochemical links between the contractile apparatus and mitochondria, myonuclei, the sarcolemma and potentially the vesicle trafficking apparatus. Linkage of all these membranous structures to the contractile apparatus, mainly through the Z-disks, supports the integration and coordination of growth and energy demands of the working myocyte, not only with force transmission, but also with de novo gene expression, energy production and efficient protein and lipid trafficking and targeting. Desmin, the most abundant and intensively studied muscle intermediate filament protein, is linked to proper costamere organization, myoblast and stem cell fusion and differentiation, nuclear shape and positioning, as well as mitochondrial shape, structure, positioning and function. Similar links have been established for lysosomes and lysosome-related organelles, consistent with the presence of widespread links between IFs and membranous structures and the regulation of their fusion, morphology and stabilization necessary for cell survival

  16. Structure of an E. coli integral membrane sulfurtransferase and its structural transition upon SCN− binding defined by EPR-based hybrid method

    Science.gov (United States)

    Ling, Shenglong; Wang, Wei; Yu, Lu; Peng, Junhui; Cai, Xiaoying; Xiong, Ying; Hayati, Zahra; Zhang, Longhua; Zhang, Zhiyong; Song, Likai; Tian, Changlin

    2016-01-01

    Electron paramagnetic resonance (EPR)-based hybrid experimental and computational approaches were applied to determine the structure of a full-length E. coli integral membrane sulfurtransferase, dimeric YgaP, and its structural and dynamic changes upon ligand binding. The solution NMR structures of the YgaP transmembrane domain (TMD) and cytosolic catalytic rhodanese domain were reported recently, but the tertiary fold of full-length YgaP was not yet available. Here, systematic site-specific EPR analysis defined a helix-loop-helix secondary structure of the YagP-TMD monomers using mobility, accessibility and membrane immersion measurements. The tertiary folds of dimeric YgaP-TMD and full-length YgaP in detergent micelles were determined through inter- and intra-monomer distance mapping and rigid-body computation. Further EPR analysis demonstrated the tight packing of the two YgaP second transmembrane helices upon binding of the catalytic product SCN−, which provides insight into the thiocyanate exportation mechanism of YgaP in the E. coli membrane. PMID:26817826

  17. A micromachined membrane-based active probe for biomolecular mechanics measurement

    Science.gov (United States)

    Torun, H.; Sutanto, J.; Sarangapani, K. K.; Joseph, P.; Degertekin, F. L.; Zhu, C.

    2007-04-01

    A novel micromachined, membrane-based probe has been developed and fabricated as assays to enable parallel measurements. Each probe in the array can be individually actuated, and the membrane displacement can be measured with high resolution using an integrated diffraction-based optical interferometer. To illustrate its application in single-molecule mechanics experiments, this membrane probe was used to measure unbinding forces between L-selectin reconstituted in a polymer-cushioned lipid bilayer on the probe membrane and an antibody adsorbed on an atomic force microscope cantilever. Piconewton range forces between single pairs of interacting molecules were measured from the cantilever bending while using the membrane probe as an actuator. The integrated diffraction-based optical interferometer of the probe was demonstrated to have floor for frequencies as low as 3 Hz with a differential readout scheme. With soft probe membranes, this low noise level would be suitable for direct force measurements without the need for a cantilever. Furthermore, the probe membranes were shown to have 0.5 µm actuation range with a flat response up to 100 kHz, enabling measurements at fast speeds.

  18. Composite membranes and methods for making same

    Science.gov (United States)

    Routkevitch, Dmitri; Polyakov, Oleg G

    2012-07-03

    Composite membranes that are adapted for separation, purification, filtration, analysis, reaction and sensing. The composite membranes can include a porous support structure having elongate pore channels extending through the support structure. The composite membrane also includes an active layer comprising an active layer material, where the active layer material is completely disposed within the pore channels between the surfaces of the support structure. The active layer is intimately integrated within the support structure, thus enabling great robustness, reliability, resistance to mechanical stress and thermal cycling, and high selectivity. Methods for the fabrication of composite membranes are also provided.

  19. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1995-01-01

    PA receptor, uPAR, is a cell-surface protein which plays an important role in the localization and regulation of these processes. In the present article a number of established conclusions concerning the structure and function of uPAR are presented, and in addition various models are discussed which might...... explain additional observations for which the mechanisms involved have not yet been clarified experimentally. uPAR is a highly glycosylated, 3-domain protein, anchored in the plasma membrane by a glycolipid moiety. The domain organization is important for efficient ligand-binding, and the NH2-terminal...

  20. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature. PMID:27571209

  1. Integrated Microfluidic Membrane Transistor Utilizing Chemical Information for On-Chip Flow Control.

    Science.gov (United States)

    Frank, Philipp; Schreiter, Joerg; Haefner, Sebastian; Paschew, Georgi; Voigt, Andreas; Richter, Andreas

    2016-01-01

    Microfluidics is a great enabling technology for biology, biotechnology, chemistry and general life sciences. Despite many promising predictions of its progress, microfluidics has not reached its full potential yet. To unleash this potential, we propose the use of intrinsically active hydrogels, which work as sensors and actuators at the same time, in microfluidic channel networks. These materials transfer a chemical input signal such as a substance concentration into a mechanical output. This way chemical information is processed and analyzed on the spot without the need for an external control unit. Inspired by the development electronics, our approach focuses on the development of single transistor-like components, which have the potential to be used in an integrated circuit technology. Here, we present membrane isolated chemical volume phase transition transistor (MIS-CVPT). The device is characterized in terms of the flow rate from source to drain, depending on the chemical concentration in the control channel, the source-drain pressure drop and the operating temperature.

  2. Targeting the autolysis loop of urokinase-type plasminogen activator with conformation-specific monoclonal antibodies.

    Science.gov (United States)

    Botkjaer, Kenneth A; Fogh, Sarah; Bekes, Erin C; Chen, Zhuo; Blouse, Grant E; Jensen, Janni M; Mortensen, Kim K; Huang, Mingdong; Deryugina, Elena; Quigley, James P; Declerck, Paul J; Andreasen, Peter A

    2011-08-15

    Tight regulation of serine proteases is essential for their physiological function, and unbalanced states of protease activity have been implicated in a variety of human diseases. One key example is the presence of uPA (urokinase-type plasminogen activator) in different human cancer types, with high levels correlating with a poor prognosis. This observation has stimulated efforts into finding new principles for intervening with uPA's activity. In the present study we characterize the so-called autolysis loop in the catalytic domain of uPA as a potential inhibitory target. This loop was found to harbour the epitopes for three conformation-specific monoclonal antibodies, two with a preference for the zymogen form pro-uPA, and one with a preference for active uPA. All three antibodies were shown to have overlapping epitopes, with three common residues being crucial for all three antibodies, demonstrating a direct link between conformational changes of the autolysis loop and the creation of a catalytically mature active site. All three antibodies are potent inhibitors of uPA activity, the two pro-uPA-specific ones by inhibiting conversion of pro-uPA to active uPA and the active uPA-specific antibody by shielding the access of plasminogen to the active site. Furthermore, using immunofluorescence, the conformation-specific antibodies mAb-112 and mAb-12E6B10 enabled us to selectively stain pro-uPA or active uPA on the surface of cultured cells. Moreover, in various independent model systems, the antibodies inhibited tumour cell invasion and dissemination, providing evidence for the feasibility of pharmaceutical intervention with serine protease activity by targeting surface loops that undergo conformational changes during zymogen activation. © The Authors Journal compilation © 2011 Biochemical Society

  3. Plasminogen activator inhibitor-1 suppresses endogenous fibrinolysis in a canine model of pulmonary embolism

    International Nuclear Information System (INIS)

    Reilly, C.F.; Fujita, T.; Hutzelmann, J.E.; Mayer, E.J.; Shebuski, R.J.

    1991-01-01

    Plasminogen activator inhibitor-1 (PAI-1), the specific, fast-acting inhibitor of tissue-type plasminogen activator (t-PA), binds to fibrin and has been found in high concentrations within arterial thrombi. These findings suggest that the localization of PAI-1 to a thrombus protects that same thrombus from fibrinolysis. In this study, clot-bound PAI-1 was assessed for its ability to suppress clot lysis in vivo. Autologous, canine whole blood clots were formed in the presence of increasing amounts of activated PAI-1 (0-30 micrograms/ml). Approximately 6-8% of the PAI-1 bound to the clots under the experimental conditions. Control and PAI-1-enriched clots containing iodine-125-labeled fibrin (ogen) were homogenized, washed to remove nonbound elements, and delivered to the lungs of anesthetized dogs where the homogenates subsequently underwent lysis by the endogeneous fibrinolytic system. 125I-labeled fibrin degradation products appeared in the blood of control animals within 10 minutes and were maximal by 90 minutes. PAI-1 reduced fibrin degradation product release in a dose-responsive manner at all times between 30 minutes and 5 hours (greater than or equal to 76% inhibition at 30 minutes, PAI-1 greater than or equal to 6 micrograms/ml). PAI-1 also suppressed D-dimer release from clots containing small amounts of human fibrin (ogen). t-PA administration attenuated the effects of PAI-1, whereas latent PAI-1 (20 micrograms/ml) had no effect on clot lysis. Blood levels of PA and PAI activity remained unaltered during these experiments. The results indicate that PAI-1 markedly inhibits endogenous fibrinolysis in vivo and, moreover, suggest that the localization of PAI-1 to a forming thrombus is an important physiological mechanism for subsequent thrombus stabilization

  4. TISSUE INHIBITOR OF METALLOPROTEINASE 1, MATRIX METALLOPROTEINASE 9, ALPHA-1 ANTITRYPSIN, METALLOTHIONEIN AND UROKINASE TYPE PLASMINOGEN ACTIVATOR RECEPTOR IN SKIN BIOPSIES FROM PATIENTS AFFECTED BY AUTOIMMUNE BLISTERING DISEASES

    Directory of Open Access Journals (Sweden)

    Ana Maria Abreu Velez

    2013-07-01

    Full Text Available Introduction: Proteinases and proteinase inhibitors have been described to play a role in autoimmune skin blistering diseases. We studied skin lesional biopsies from patients affected by several autoimmune skin blistering diseases for proteinases and proteinase inhibitors. Methods: We utilized immunohistochemistry to evaluate biopsies for alpha-1-antitrypsin, human matrix metalloproteinase 9 (MMP9, human tissue inhibitor of metalloproteinases 1 (TIMP-1, metallothionein and urokinase type plasminogen activator receptor (uPAR. We tested 30 patients affected by endemic pemphigus, 30 controls from the endemic area, and 15 normal controls. We also tested 30 biopsies from patients with bullous pemphigoid (BP, 20 with pemphigus vulgaris (PV, 8 with pemphigus foliaceus, and 14 with dermatitis herpetiformis (DH. Results: Contrary to findings in the current literature, most autoimmune skin blistering disease biopsies were negative for uPAR and MMP9. Only some chronic patients with El Bagre-EPF were positive to MMP9 in the dermis, in proximity to telocytes. TIMP-1 and metallothionein were positive in half of the biopsies from BP patients at the basement membrane of the skin, within several skin appendices, in areas of dermal blood vessel inflammation and within dermal mesenchymal-epithelial cell junctions.

  5. Data in support of a central role of plasminogen activator inhibitor-2 polymorphism in recurrent cardiovascular disease risk in the setting of high HDL cholesterol and C-reactive protein using Bayesian network modeling

    Directory of Open Access Journals (Sweden)

    James P. Corsetti

    2016-09-01

    Full Text Available Data is presented that was utilized as the basis for Bayesian network modeling of influence pathways focusing on the central role of a polymorphism of plasminogen activator inhibitor-2 (PAI-2 on recurrent cardiovascular disease risk in patients with high levels of HDL cholesterol and C-reactive protein (CRP as a marker of inflammation, “Influences on Plasminogen Activator Inhibitor-2 Polymorphism-Associated Recurrent Cardiovascular Disease Risk in Patients with High HDL Cholesterol and Inflammation” (Corsetti et al., 2016; [1]. The data consist of occurrence of recurrent coronary events in 166 post myocardial infarction patients along with 1. clinical data on gender, race, age, and body mass index; 2. blood level data on 17 biomarkers; and 3. genotype data on 53 presumptive CVD-related single nucleotide polymorphisms. Additionally, a flow diagram of the Bayesian modeling procedure is presented along with Bayesian network subgraphs (root nodes to outcome events utilized as the data from which PAI-2 associated influence pathways were derived (Corsetti et al., 2016; [1]. Keywords: Recurrent cardiovascular disease risk, Pathophysiology, Plasminogen activator inhibitor-2, Bayesian network

  6. The vascular basement membrane in the healthy and pathological brain.

    Science.gov (United States)

    Thomsen, Maj S; Routhe, Lisa J; Moos, Torben

    2017-10-01

    The vascular basement membrane contributes to the integrity of the blood-brain barrier (BBB), which is formed by brain capillary endothelial cells (BCECs). The BCECs receive support from pericytes embedded in the vascular basement membrane and from astrocyte endfeet. The vascular basement membrane forms a three-dimensional protein network predominantly composed of laminin, collagen IV, nidogen, and heparan sulfate proteoglycans that mutually support interactions between BCECs, pericytes, and astrocytes. Major changes in the molecular composition of the vascular basement membrane are observed in acute and chronic neuropathological settings. In the present review, we cover the significance of the vascular basement membrane in the healthy and pathological brain. In stroke, loss of BBB integrity is accompanied by upregulation of proteolytic enzymes and degradation of vascular basement membrane proteins. There is yet no causal relationship between expression or activity of matrix proteases and the degradation of vascular matrix proteins in vivo. In Alzheimer's disease, changes in the vascular basement membrane include accumulation of Aβ, composite changes, and thickening. The physical properties of the vascular basement membrane carry the potential of obstructing drug delivery to the brain, e.g. thickening of the basement membrane can affect drug delivery to the brain, especially the delivery of nanoparticles.

  7. Outer membrane protein functions as integrator of protein import and DNA inheritance in mitochondria

    Science.gov (United States)

    Käser, Sandro; Oeljeklaus, Silke; Týč, Jiří; Vaughan, Sue; Warscheid, Bettina; Schneider, André

    2016-01-01

    Trypanosomatids are one of the earliest diverging eukaryotes that have fully functional mitochondria. pATOM36 is a trypanosomatid-specific essential mitochondrial outer membrane protein that has been implicated in protein import. Changes in the mitochondrial proteome induced by ablation of pATOM36 and in vitro assays show that pATOM36 is required for the assembly of the archaic translocase of the outer membrane (ATOM), the functional analog of the TOM complex in other organisms. Reciprocal pull-down experiments and immunofluorescence analyses demonstrate that a fraction of pATOM36 interacts and colocalizes with TAC65, a previously uncharacterized essential component of the tripartite attachment complex (TAC). The TAC links the single-unit mitochondrial genome to the basal body of the flagellum and mediates the segregation of the replicated mitochondrial genomes. RNAi experiments show that pATOM36, in line with its dual localization, is not only essential for ATOM complex assembly but also for segregation of the replicated mitochondrial genomes. However, the two functions are distinct, as a truncated version of pATOM36 lacking the 75 C-terminal amino acids can rescue kinetoplast DNA missegregation but not the lack of ATOM complex assembly. Thus, pATOM36 has a dual function and integrates mitochondrial protein import with mitochondrial DNA inheritance. PMID:27436903

  8. Urokinase-type plasminogen activator: a new target for male contraception?

    Science.gov (United States)

    Qin, Ying; Han, Yan; Xiong, Cheng-Liang; Li, Hong-Gang; Hu, Lian; Zhang, Ling

    2015-01-01

    Urokinase-type plasminogen activator (uPA) is closely related to male reproduction. With the aim of investigating the possibility for uPA as a potential contraceptive target, in the present work, Kunming male mice were immunized by human uPA subcutaneous injection at three separate doses for 3 times. Then the potency of the anti-human uPA antibody in serum was analyzed, and mouse fertility was evaluated. Serum antibody titers for human uPA in immunized groups all reached 1:10,240 or higher levels by enzyme linked immunosorbent assay, and mating experiments revealed that pregnancy rates and the mean number of embryos implanted after mating declined obviously (P male mice. Sperm function tests suggested that the sperm concentration, sperm viability, sperm motility, and in vitro fertilization rate for the cauda epididymis sperm in uPA-immunized groups were lower than those in the controls (P male mice could effectively reduce their fertility, and uPA could become a new target for immunocontraception in male contraceptive development.

  9. IMPACTS OF TISSUE-TYPE PLASMINOGEN ACTIVATOR (TPA ON NEURONAL SURVIVAL

    Directory of Open Access Journals (Sweden)

    Arnaud eChevilley

    2015-10-01

    Full Text Available Tissue-type plasminogen activator (tPA a serine protease is constituted of five functional domains through which it interacts with different substrates, binding proteins and receptors. In the last years, great interest has been given to the clinical relevance of targeting tPA in different diseases of the central nervous system, in particular stroke. Among its reported functions in the central nervous system, tPA displays both neurotrophic and neurotoxic effects. How can the protease mediate such opposite functions remain unclear but several hypotheses have been proposed. These include an influence of the degree of maturity and/or the type of neurons, of the level of tPA, of its origin (endogenous or exogenous or of its form (single chain tPA versus two chain tPA. In this review, we will provide a synthetic snapshot of our current knowledge regarding the natural history of tPA and discuss how it sustains its pleiotropic functions with focus on excitotoxic/ischemic neuronal death and neuronal survival.

  10. Binding of the urokinase-type plasminogen activator to its cell surface receptor is inhibited by low doses of suramin

    DEFF Research Database (Denmark)

    Behrendt, N; Rønne, E; Danø, K

    1993-01-01

    micrograms/ml when using U937 cells and a ligand concentration of 0.3 nM. This concentration of the drug is well below the serum levels found in suramin-treated patients. Inhibition of binding was also demonstrated at the molecular level, using chemical cross-linking or an enzyme-linked immunosorbent assay...... to the anti-invasive properties of suramin by destroying the cellular potential for localized plasminogen activation and proteolytic matrix degradation....

  11. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor

    International Nuclear Information System (INIS)

    Antalis, T.M.; Clark, M.A.; Barnes, T.; Lehrbach, P.R.; Devine, P.L.; Schevzov, G.; Goss, N.H.; Stephens, R.W.; Tolstoshev, P.

    1988-01-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A) + RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the λ P/sub L/ promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated M/sub r/ of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators

  12. Urokinase vs Tissue-Type Plasminogen Activator for Thrombolytic Evacuation of Spontaneous Intracerebral Hemorrhage in Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Yuqian Li

    2017-08-01

    Full Text Available Spontaneous intracerebral hemorrhage (ICH is a devastating form of stroke, which leads to a high rate of mortality and poor neurological outcomes worldwide. Thrombolytic evacuation with urokinase-type plasminogen activator (uPA or tissue-type plasminogen activator (tPA has been showed to be a hopeful treatment for ICH. However, to the best of our knowledge, no clinical trials were reported to compare the efficacy and safety of these two fibrinolytics administrated following minimally invasive stereotactic puncture (MISP in patients with spontaneous basal ganglia ICH. Therefore, the authors intended here to evaluate the differential impact of uPA and tPA in a retrospective study. In the present study, a total of 86 patients with spontaneous ICH in basal ganglia using MISP received either uPA (uPA group, n = 45 or tPA (tPA group, n = 41, respectively. The clinical baseline characteristics prior to the operation were collected. In addition, therapeutic responses were assessed by the short-term outcomes within 30 days postoperation, as well as long-term outcomes at 1 year postoperation. Our findings showed that, in comparison with tPA, uPA was able to better promote hematoma evacuation and ameliorate perihematomal edema, but the differences were not statistically significant. Moreover, the long-term functional outcomes of both groups were similar, with no statistical difference. In conclusion, these results provide evidence supporting that uPA and tPA are similar in the efficacy and safety for thrombolytic evacuation in combination with MISP in patients with spontaneous basal ganglia ICH.

  13. Profiling the outer membrane proteome during growth and development of the social bacterium Myxococcus xanthus by selective biotinylation and analyses of outer membrane vesicles.

    Science.gov (United States)

    Kahnt, Jörg; Aguiluz, Kryssia; Koch, Jürgen; Treuner-Lange, Anke; Konovalova, Anna; Huntley, Stuart; Hoppert, Michael; Søgaard-Andersen, Lotte; Hedderich, Reiner

    2010-10-01

    Social behavior in the bacterium Myxococcus xanthus relies on contact-dependent activities involving cell-cell and cell-substratum interactions. To identify outer membrane proteins that have a role in these activities, we profiled the outer membrane proteome of growing and starving cells using two strategies. First, outer membrane proteins were enriched by biotinylation of intact cells using the reagent NHS (N-hydroxysuccinimide)-PEO(12) (polyethylene oxide)-biotin with subsequent membrane solubilization and affinity chromatography. Second, the proteome of outer membrane vesicles (OMV) was determined. Comparisons of detected proteins show that these methods have different detection profiles and together provide a comprehensive view of the outer membrane proteome. From 362 proteins identified, 274 (76%) were cell envelope proteins including 64 integral outer membrane proteins and 85 lipoproteins. The majority of these proteins were of unknown function. Among integral outer membrane proteins with homologues of known function, TonB-dependent transporters comprise the largest group. Our data suggest novel functions for these transporters. Among lipoproteins with homologues of known function, proteins with hydrolytic functions comprise the largest group. The luminal load of OMV was enriched for proteins with hydrolytic functions. Our data suggest that OMV have functions in predation and possibly in transfer of intercellular signaling molecules between cells.

  14. High speed municipal sewage treatment in microbial fuel cell integrated with anaerobic membrane filtration system.

    Science.gov (United States)

    Lee, Y; Oa, S W

    2014-01-01

    A cylindrical two chambered microbial fuel cell (MFC) integrated with an anaerobic membrane filter was designed and constructed to evaluate bioelectricity generation and removal efficiency of organic substrate (glucose or domestic wastewater) depending on organic loading rates (OLRs). The MFC was continuously operated with OLRs 3.75, 5.0, 6.25, and 9.38 kg chemical oxygen demand (COD)/(m(3)·d) using glucose as a substrate, and the cathode chamber was maintained at 5-7 mg/L of dissolved oxygen. The optimal OLR was found to be 6.25 kgCOD/(m(3)·d) (hydraulic retention time (HRT) 1.9 h), and the corresponding voltage and power density averaged during the operation were 0.15 V and 13.6 mW/m(3). With OLR 6.25 kgCOD/(m(3)·d) using domestic wastewater as a substrate, the voltage and power reached to 0.13 V and 91 mW/m(3) in the air cathode system. Even though a relatively short HRT of 1.9 h was applied, stable effluent could be obtained by the membrane filtration system and the following air purging. In addition, the short HRT would provide economic benefit in terms of reduction of construction and operating costs compared with a conventional aerobic treatment process.

  15. Microporous Silica Based Membranes for Desalination

    Directory of Open Access Journals (Sweden)

    João C. Diniz da Costa

    2012-09-01

    Full Text Available This review provides a global overview of microporous silica based membranes for desalination via pervaporation with a focus on membrane synthesis and processing, transport mechanisms and current state of the art membrane performance. Most importantly, the recent development and novel concepts for improving the hydro-stability and separating performance of silica membranes for desalination are critically examined. Research into silica based membranes for desalination has focussed on three primary methods for improving the hydro-stability. These include incorporating carbon templates into the microporous silica both as surfactants and hybrid organic-inorganic structures and incorporation of metal oxide nanoparticles into the silica matrix. The literature examined identified that only metal oxide silica membranes have demonstrated high salt rejections under a variety of feed concentrations, reasonable fluxes and unaltered performance over long-term operation. As this is an embryonic field of research several target areas for researchers were discussed including further improvement of the membrane materials, but also regarding the necessity of integrating waste or solar heat sources into the final process design to ensure cost competitiveness with conventional reverse osmosis processes.

  16. Infrared emission of a freestanding plasmonic membrane

    Science.gov (United States)

    Monshat, Hosein; Liu, Longju; McClelland, John; Biswas, Rana; Lu, Meng

    2018-01-01

    This paper reports a free-standing plasmonic membrane as a thermal emitter in the near- and mid-infrared regions. The plasmonic membrane consists of an ultrathin gold film perforated with a two-dimensional array of holes. The device was fabricated using an imprint and transfer process and fixed on a low-emissivity metal grid. The thermal radiation characteristics of the plasmonic membrane can be engineered by controlling the array period and the thickness of the gold membrane. Plasmonic membranes with two different periods were designed using electromagnetic simulation and then characterized for their transmission and infrared radiation properties. The free-standing membranes exhibit extraordinary optical transmissions with the resonant transmission coefficient as high as 76.8%. After integration with a customized heater, the membranes demonstrate narrowband thermal emission in the wavelength range of 2.5 μm to 5.5 μm. The emission signatures, including peak emission wavelength and bandwidth, are associated with the membrane geometry. The ultrathin membrane infrared emitter can be adopted in applications, such as chemical analysis and thermal imaging.

  17. Osmotic versus conventional membrane bioreactors integrated with reverse osmosis for water reuse: Biological stability, membrane fouling, and contaminant removal.

    Science.gov (United States)

    Luo, Wenhai; Phan, Hop V; Xie, Ming; Hai, Faisal I; Price, William E; Elimelech, Menachem; Nghiem, Long D

    2017-02-01

    This study systematically compares the performance of osmotic membrane bioreactor - reverse osmosis (OMBR-RO) and conventional membrane bioreactor - reverse osmosis (MBR-RO) for advanced wastewater treatment and water reuse. Both systems achieved effective removal of bulk organic matter and nutrients, and almost complete removal of all 31 trace organic contaminants investigated. They both could produce high quality water suitable for recycling applications. During OMBR-RO operation, salinity build-up in the bioreactor reduced the water flux and negatively impacted the system biological treatment by altering biomass characteristics and microbial community structure. In addition, the elevated salinity also increased soluble microbial products and extracellular polymeric substances in the mixed liquor, which induced fouling of the forward osmosis (FO) membrane. Nevertheless, microbial analysis indicated that salinity stress resulted in the development of halotolerant bacteria, consequently sustaining biodegradation in the OMBR system. By contrast, biological performance was relatively stable throughout conventional MBR-RO operation. Compared to conventional MBR-RO, the FO process effectively prevented foulants from permeating into the draw solution, thereby significantly reducing fouling of the downstream RO membrane in OMBR-RO operation. Accumulation of organic matter, including humic- and protein-like substances, as well as inorganic salts in the MBR effluent resulted in severe RO membrane fouling in conventional MBR-RO operation. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  18. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  19. Bioconjugation of recombinant tissue plasminogen activator to magnetic nanocarriers for targeted thrombolysis

    Directory of Open Access Journals (Sweden)

    Yang HW

    2012-10-01

    Full Text Available Hung-Wei Yang,1,* Mu-Yi Hua,1,* Kun-Ju Lin,2,* Shiaw-Pyng Wey,3 Rung-Ywan Tsai,4 Siao-Yun Wu,5 Yi-Ching Lu,5 Hao-Li Liu,6 Tony Wu,7 Yunn-Hwa Ma5 1Chang Gung Molecular Medicine Research Center, Department of Chemical and Materials Engineering, 2Molecular Imaging Center, Department of Nuclear Medicine, Chang Gung Memorial Hospital, Kuei-Shan, Tao-Yuan, Taiwan, Republic of China; 3Department of Medical Imaging and Radiological Sciences, 4Electronics and Optoelectronics Research Laboratories, Industrial Technology Research Institute, Hsin-chu, Taiwan, Republic of China; 5Department of Physiology and Pharmacology and Healthy Aging Research Center, 6Department of Electrical Engineering, Chang Gung University, Kuei-Shan, Tao-Yuan, Taiwan, Republic of China; 7Department of Neurology, Chang Gung University College of Medicine and Memorial Hospital, Tao-Yuan, Taiwan, Republic of China*These authors contributed equally to this workAbstract: Low-toxicity magnetic nanocarriers (MNCs composed of a shell of poly [aniline-co-N-(1-one-butyric acid aniline] over a Fe3O4 magnetic nanoparticle core were developed to carry recombinant tissue plasminogen activator (rtPA in MNC-rtPA for targeted thrombolysis. With an average diameter of 14.8 nm, the MNCs exerted superparamagnetic properties. Up to 276 µg of active rtPA was immobilized per mg of MNCs, and the stability of the immobilized rtPA was greatly improved during storage at 4°C and 25°C. In vitro thrombolysis testing with a tubing system demonstrated that magnet-guided MNC-rtPA showed significantly improved thrombolysis compared with free rtPA and reduced the clot lysis time from 39.2 ± 3.2 minutes to 10.8 ± 4.2 minutes. In addition, magnet-guided MNC-rtPA at 20% of the regular rtPA dose restored blood flow within 15–25 minutes of treatment in a rat embolism model without triggering hematological toxicity. In conclusion, this improved system is based on magnetic targeting accelerated thrombolysis and is

  20. Ophiobolin A from Bipolaris oryzae Perturbs Motility and Membrane Integrities of Porcine Sperm and Induces Cell Death on Mammalian Somatic Cell Lines

    Directory of Open Access Journals (Sweden)

    Ottó Bencsik

    2014-09-01

    Full Text Available Bipolaris oryzae is a phytopathogenic fungus causing a brown spot disease in rice, and produces substance that strongly perturbs motility and membrane integrities of boar spermatozoa. The substance was isolated from the liquid culture of the fungal strain using extraction and a multi-step semi-preparative HPLC procedures. Based on the results of mass spectrometric and 2D NMR techniques, the bioactive molecule was identified as ophiobolin A, a previously described sesterterpene-type compound. The purified ophiobolin A exhibited strong motility inhibition and viability reduction on boar spermatozoa. Furthermore, it damaged the sperm mitochondria significantly at sublethal concentration by the dissipation of transmembrane potential in the mitochondrial inner membrane, while the plasma membrane permeability barrier remained intact. The study demonstrated that the cytotoxicity of ophiobolin A toward somatic cell lines is higher by 1–2 orders of magnitude compared to other mitochondriotoxic mycotoxins, and towards sperm cells unique by replacing the progressive motility by shivering tail beating at low exposure concentration.

  1. Mitofilin complexes: conserved organizers of mitochondrial membrane architecture.

    Science.gov (United States)

    Zerbes, Ralf M; van der Klei, Ida J; Veenhuis, Marten; Pfanner, Nikolaus; van der Laan, Martin; Bohnert, Maria

    2012-11-01

    Mitofilin proteins are crucial organizers of mitochondrial architecture. They are located in the inner mitochondrial membrane and interact with several protein complexes of the outer membrane, thereby generating contact sites between the two membrane systems of mitochondria. Within the inner membrane, mitofilins are part of hetero-oligomeric protein complexes that have been termed the mitochondrial inner membrane organizing system (MINOS). MINOS integrity is required for the maintenance of the characteristic morphology of the inner mitochondrial membrane, with an inner boundary region closely apposed to the outer membrane and cristae membranes, which form large tubular invaginations that protrude into the mitochondrial matrix and harbor the enzyme complexes of the oxidative phosphorylation machinery. MINOS deficiency comes along with a loss of crista junction structures and the detachment of cristae from the inner boundary membrane. MINOS has been conserved in evolution from unicellular eukaryotes to humans, where alterations of MINOS subunits are associated with multiple pathological conditions.

  2. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  3. Modeling a Membrane: Using Engineering Design to Simulate Cell Transport Processes

    Science.gov (United States)

    Mason, Kevin; Evans, Brian

    2017-01-01

    The "plasma membrane," which controls what comes in and goes out of a cell, is integral to maintaining homeostasis. Cell transport of small molecules across the cell membrane happens in several different ways. Some small, nonpolar molecules cross the plasma membrane along the concentration gradient directly through the "phospholipid…

  4. Degradation of tissue-type plasminogen activator by human monocyte- derived macrophages is mediated by the mannose receptor and by the low- density lipoprotein receptor-related protein

    NARCIS (Netherlands)

    Noorman, F.; Braat, E.A.M.; Rijken, D.C.

    1995-01-01

    The balance of tissue-type plasminogen activator (t-PA) production and degradation determines its concentration in blood and tissues. Disturbance of this balance may result in either increased or decreased proteolysis. In the present study, we identified the receptor systems involved in the

  5. Cell-type specific DNA-protein interactions at the tissue-type plasminogen activator promoter in human endothelial and HeLa cells in vivo and in vitro

    NARCIS (Netherlands)

    Arts, J.; Herr, I.; Lansink, M.; Angel, P.; Kooistra, T.

    1997-01-01

    Tissue-type plasminogen activator (t-PA) gene expression in human endothelial cells and HeLa cells is stimulated by the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) at the level of transcription. To study the mechanism of transcriptional regulation, we have characterized a

  6. Integration of membrane distillation into traditional salt farming method: Process development and modelling

    Science.gov (United States)

    Hizam, S.; Bilad, M. R.; Putra, Z. A.

    2017-10-01

    Farmers still practice the traditional salt farming in many regions, particularly in Indonesia. This archaic method not only produces low yield and poor salt quality, it is also laborious. Furthermore, the farming locations typically have poor access to fresh water and are far away from electricity grid, which restrict upgrade to a more advanced technology for salt production. This paper proposes a new concept of salt harvesting method that improves the salt yield and at the same time facilitates recovery of fresh water from seawater. The new concept integrates solar powered membrane distillation (MD) and photovoltaic cells to drive the pumping. We performed basic solar still experiments to quantify the heat flux received by a pond. The data were used as insight for designing the proposed concept, particularly on operational strategy and the most effective way to integrate MD. After the conceptual design had been developed, we formulated mass and energy balance to estimate the performance of the proposed concept. Based on our data and design, it is expected that the system would improve the yield and quality of the salt production, maximizing fresh water harvesting, and eventually provides economical gain for salt farmers hence improving their quality of life. The key performance can only be measured via experiment using gain output ratio as performance indicator, which will be done in a future study.

  7. Pressure effects on lipids and bio-membrane assemblies

    Directory of Open Access Journals (Sweden)

    Nicholas J. Brooks

    2014-11-01

    Full Text Available Membranes are amongst the most important biological structures; they maintain the fundamental integrity of cells, compartmentalize regions within them and play an active role in a wide range of cellular processes. Pressure can play a key role in probing the structure and dynamics of membrane assemblies, and is also critical to the biology and adaptation of deep-sea organisms. This article presents an overview of the effect of pressure on the mesostructure of lipid membranes, bilayer organization and lipid–protein assemblies. It also summarizes recent developments in high-pressure structural instrumentation suitable for experiments on membranes.

  8. Proton Conductivity and Operational Features Of PBI-Based Membranes

    DEFF Research Database (Denmark)

    Qingfeng, Li; Jensen, Jens Oluf; Precht Noyé, Pernille

    2005-01-01

    As an approach to high temperature operation of PEMFCs, acid-doped PBI membranes are under active development. The membrane exhibits high proton conductivity under low water contents at temperatures up to 200°C. Mechanisms of proton conduction for the membranes have been proposed. Based on the me...... on the membranes fuel cell tests have been demonstrated. Operating features of the PBI cell include no humidification, high CO tolerance, better heat utilization and possible integration with fuel processing units. Issues for further development are also discussed....

  9. Purification and partial characterization of analogous 26-kDa rat submandibular and parotid gland integral membrane phosphoproteins that may have a role in exocytosis.

    Science.gov (United States)

    Quissell, D O; Deisher, L M

    1992-04-01

    Rat submandibular and parotid gland exocytosis is primarily controlled by beta-adrenergic receptor stimulation. Although its precise role in the regulation of salivary gland exocytosis is not fully understood, protein phosphorylation, mediated by the activation of cAMP-dependent protein kinase, may be directly involved. Previous studies suggest that analogous 26-kDa integral membrane phosphoproteins may play a direct role in regulating exocytosis. Studies were here undertaken to purify and partially characterize both phosphoproteins. After endogenous phosphorylation with 32P, subcellular fraction and solubilization of the microsomal fraction in n-octyl beta-glucopyranoside, the 26-kDa integral membrane phosphoproteins were purified by high performance liquid chromatography (HPLC), followed by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and electroelution of the proteins. Amino acid analysis indicated a significant number of serine amino acids: N-terminal sequence data demonstrated a high level of homology; and trypsin digestion followed by reversed-phase HPLC indicated the possibility of multiple phosphorylation sites.

  10. Integration of biological method and membrane technology in treating palm oil mill effluent

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yejian; YAN Li; QIAO Xiangli; CHI Lina; NIU Xiangjun; MEI Zhijian; ZHANG Zhenjia

    2008-01-01

    Palm oil industry is the most important agro-industry in Malaysia, but its by-product-palm oil mill effluent (POME), posed a great threat to water environment. In the past decades, several treatment and disposal methods have been proposed and investigated to solve this problem. A two-stage pilot-scale plant was designed and constructed for POME treatment. Anaerobic digestion and aerobic biodegradation constituted the first biological stage, while ultrafiltration (UF) and reverse osmosis (RO) membrane units were combined as the second membrane separation stage. In the anaerobic expanded granular sludge bed (EGSB) reactor, about 43% organic matter in POME was converted into biogas, and COD reduction efficiency reached 93% and 22% in EGSB and the following aerobic reactor, respectively. With the treatment in the first biological stage, suspended solids and oil also decreased to a low degree. All these alleviated the membrane fouling and prolonged the membrane life. In the membrane process unit, almost all the suspended solids were captured by UF membranes, while RO membrane excluded most of the dissolved solids or inorganic salts from RO permeate. After the whole treatment processes, organic matter in POME expressed by BOD and COD was removed almost thoroughly. Suspended solids and color were not detectable in RO permeate any more, and mineral elements only existed in trace amount (except for K and Na). The high-quality effluent was crystal clear and could be used as the boiler feed water.

  11. Plasminogen activator inhibitor-2 in patients with monocytic leukemia.

    Science.gov (United States)

    Scherrer, A; Kruithof, E K; Grob, J P

    1991-06-01

    Plasma and tumor cells from 103 patients with leukemia or lymphoma at initial presentation were investigated for the presence of plasminogen activator inhibitor-2 (PAI-2) antigen, a potent inhibitor of urokinase. PAI-2 was detected in plasma and leukemic cells of the 21 patients with leukemia having a monocytic component [acute myelomonocytic (M4), acute monoblastic (M5), and chronic myelomonocytic leukemias], and in the three patients with acute undifferentiated myeloblastic leukemia (M0). In contrast, this serine protease inhibitor was undetectable in 79 patients with other subtypes of acute myeloid leukemia or other hematological malignancies. Serial serum PAI-2 determinations in 16 patients with acute leukemia at presentation, during therapy, remission, and relapse revealed that in the five patients with M4-M5, elevated PAI-2 levels rapidly normalized under therapy and during remission, but increased again in the patients with a relapse associated with an M4-M5 phenotype. Thus, PAI-2 seems to be a marker highly specific for the active stages of monocytic leukemia, i.e. presentation and relapse. The presence of PAI-2 in the plasma and cells of patients with M0 may give a clue to a monocytic origin of these cells.

  12. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  13. Cloning and expression of a cDNA coding for a human monocyte-derived plasminogen activator inhibitor.

    Science.gov (United States)

    Antalis, T M; Clark, M A; Barnes, T; Lehrbach, P R; Devine, P L; Schevzov, G; Goss, N H; Stephens, R W; Tolstoshev, P

    1988-02-01

    Human monocyte-derived plasminogen activator inhibitor (mPAI-2) was purified to homogeneity from the U937 cell line and partially sequenced. Oligonucleotide probes derived from this sequence were used to screen a cDNA library prepared from U937 cells. One positive clone was sequenced and contained most of the coding sequence as well as a long incomplete 3' untranslated region (1112 base pairs). This cDNA sequence was shown to encode mPAI-2 by hybrid-select translation. A cDNA clone encoding the remainder of the mPAI-2 mRNA was obtained by primer extension of U937 poly(A)+ RNA using a probe complementary to the mPAI-2 coding region. The coding sequence for mPAI-2 was placed under the control of the lambda PL promoter, and the protein expressed in Escherichia coli formed a complex with urokinase that could be detected immunologically. By nucleotide sequence analysis, mPAI-2 cDNA encodes a protein containing 415 amino acids with a predicted unglycosylated Mr of 46,543. The predicted amino acid sequence of mPAI-2 is very similar to placental PAI-2 (3 amino acid differences) and shows extensive homology with members of the serine protease inhibitor (serpin) superfamily. mPAI-2 was found to be more homologous to ovalbumin (37%) than the endothelial plasminogen activator inhibitor, PAI-1 (26%). Like ovalbumin, mPAI-2 appears to have no typical amino-terminal signal sequence. The 3' untranslated region of the mPAI-2 cDNA contains a putative regulatory sequence that has been associated with the inflammatory mediators.

  14. Plasma membrane and salinity tolerance of barley plants

    International Nuclear Information System (INIS)

    Al-Rahmani, F. H.; Al-Mashhadani, M. S.; Al-Delemee, N. H.

    1997-01-01

    Barley cultivar, California Mario ut, was grown in a nutrient solution containing increasing Nacl concentrations up to 250 mm. The effect of Nacl on growth, mineral compost ion ant integrity of the plasma membrane was studied. Growth of the shoot'and root was stimulated or little affected by 10 and 20 ml Nacl. Further increase in Nacl concentrations depressed the growth. The depression was conspicuous between 100 and 250 mm Nacl. Increasing Nacl concentration decreased potassium content in the shoots and roots and led to steep increase in sodium accumulation. The integrity of the plasma membrane was measured in term of potassium leakage from the root tips. Rapid leakage of potassium was obtained at Nacl concentrations ranging from 100 to 250 mm. At the same concentrations of Nacl, adenosine triphosphatase activity in the root tips was increased. Results indicate that the plasma membrane of root cells was damaged by the increased levels of salinity. It was concluded that the plasma membrane of root cells is the primary site of salinity toxicity. (authors). 40 refs., 5 tabs. 3 figs

  15. Fibrate-modulated expression of fibrinogen, plasminogen activator inhibitor-1 and apolipoprotein A-I in cultured cynomolgus monkey hepatocytes. Role of the peroxisome proliferator-activated receptor-α

    NARCIS (Netherlands)

    Kockx, M.; Princen, H.M.G.; Kooistra, T.

    1998-01-01

    Fibrates are used to lower plasma triglycerides and cholesterol levels in hyperlipidemic patients. In addition, fibrates have been found to alter the plasma concentrations of fibrinogen, plasminogen activator inhibitor-1 (PAI-1) and apolipoprotein A-I (apo A-I). We have investigated the in vitro

  16. Step-by-step seeding procedure for preparing HKUST-1 membrane on porous α-alumina support.

    Science.gov (United States)

    Nan, Jiangpu; Dong, Xueliang; Wang, Wenjin; Jin, Wanqin; Xu, Nanping

    2011-04-19

    Metal-organic framework (MOF) membranes have attracted considerable attention because of their striking advantages in small-molecule separation. The preparation of an integrated MOF membrane is still a major challenge. Depositing a uniform seed layer on a support for secondary growth is a main route to obtaining an integrated MOF membrane. A novel seeding method to prepare HKUST-1 (known as Cu(3)(btc)(2)) membranes on porous α-alumina supports is reported. The in situ production of the seed layer was realized in step-by-step fashion via the coordination of H(3)btc and Cu(2+) on an α-alumina support. The formation process of the seed layer was observed by ultraviolet-visible absorption spectroscopy and atomic force microscopy. An integrated HKUST-1 membrane could be synthesized by the secondary hydrothermal growth on the seeded support. The gas permeation performance of the membrane was evaluated. © 2011 American Chemical Society

  17. A label-free photoelectrochemical biosensor for urokinase-type plasminogen activator detection based on a g-C3N4/CdS nanocomposite.

    Science.gov (United States)

    Liu, Xing-Pei; Chen, Jing-Shuai; Mao, Chang-Jie; Niu, He-Lin; Song, Ji-Ming; Jin, Bao-Kang

    2018-09-26

    Herein, we established a novel ultrasensitive photoelectrochemical biosensor for detecting urokinase-type plasminogen activator (u-PA), based on a g-C 3 N 4 /CdS nanocomposite. The prepared nanocomposite was characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, ultraviolet-visible absorption spectroscopy, and Fourier transform infrared spectroscopy, thus indicating that the nanocomposite was prepared successfully. In the typical process, the prepared nanocomposite was deposited on the surface of a bare FTO electrode. After being air-dried, the g-C 3 N 4 /CdS nanocomposite modified electrode was successively incubated with antibody against urokinase-type plasminogen activator and the blocking agent BSA to produce a photoelectrochemical biosensor for u-PA. In the presence of target u-PA antigen, the photocurrent response of the prepared biosensor electrode decreased significantly. The proposed novel photoelectrochemical biosensor exhibited good sensitivity, specificity, and reproducibility for u-PA detection, and a low detection limit of 33 fg mL -1 , ranging from 1 μg mL -1 -0.1 pg mL -1 . The proposed strategy should provide a promising method for detection of other biomarkers. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Does intravenous administration of recombinant tissue plasminogen activator for ischemic stroke can cause inferior myocardial infarction?

    Directory of Open Access Journals (Sweden)

    Mostafa Almasi

    2016-06-01

    Full Text Available Recombinant tissue plasminogen activator (rTPA is one of the main portions of acute ischemic stroke management, but unfortunately has some complications. Myocardial infarction (MI is a hazardous complication of administration of intravenous rTPA that has been reported recently. A 78-year-old lady was admitted for elective coronary artery bypass graft surgery. On the second day of admission, she developed acute left hemiparesis and intravenous rTPA was administered within 120 minutes. Three hours later, she has had chest pain. Rescue percutaneous coronary intervention was performed on right coronary artery due to diagnosis of inferior MI, and the symptoms were resolved.

  19. Integrated Microbial Electrolysis Cell (MEC) with an anaerobic Membrane Bioreactor (MBR) for low strength wastewater treatment, energy harvesting and water reclamation

    KAUST Repository

    Jimenez Sandoval, Rodrigo J.

    2013-11-01

    Shortage of potable water is a problem that affects many nations in the world and it will aggravate in a near future if pertinent actions are not carried out. Decrease in consumption, improvements in water distribution systems to avoid losses and more efficient water treatment processes are some actions that can be implemented to attack this problem. Membrane technology and biological processes are used in wastewater treatment to achieve high water quality standards. Some other technologies, besides water treatment, attempt to obtain energy from organic wastes present in water. In this study, a proof-of-concept was accomplished demonstrating that a Microbial Electrolysis Cell can be fully integrated with a Membrane Bioreactor to achieve wastewater treatment and harvest energy. Conductive hollow fiber membranes made of nickel functioned as both filter material for treated water reclamation and as a cathode to catalyze hydrogen production reaction. The produced hydrogen was subsequently converted into methane by hydrogenotrophic methanogens. Organic removal was 98.9% irrespective of operation mode. Maximum volumetric hydrogen production rate was 0.2 m3/m3d, while maximum current density achieved was 6.1 A/m2 (based on cathode surface area). Biofouling, an unavoidable phenomenon in traditional MBRs, can be minimized in this system through self-cleaning approach of hybrid membranes by hydrogen production. The increased rate of hydrogen evolution at high applied voltage (0.9 V) reduces the membrane fouling. Improvements can be done in the system to make it as a promising net energy positive technology for the low strength wastewater treatment.

  20. The liberated domain I of urokinase plasminogen activator receptor--a new tumour marker in small cell lung cancer

    DEFF Research Database (Denmark)

    Almasi, Charlotte E; Drivsholm, Lars; Pappot, Helle

    2013-01-01

    The prognosis of small cell lung cancer (SCLC) remains poor with a 5-year survival rate of 4-6%. In non-small cell lung cancer (NSCLC), high levels of intact and cleaved forms of the receptor for urokinase plasminogen activator (uPAR) are significantly associated with short overall survival. Our...... measured using time-resolved fluorescence immunoassays (TR-FIA 1-3). Assessment of association of the uPAR forms to overall survival (OS) was done using Cox regression analysis adjusted for clinical covariates [age, gender, stage, lactate dehydrogenase (LDH), WHO performance status (PS)]. Multivariate...

  1. Lactobacillus casei combats acid stress by maintaining cell membrane functionality.

    Science.gov (United States)

    Wu, Chongde; Zhang, Juan; Wang, Miao; Du, Guocheng; Chen, Jian

    2012-07-01

    Lactobacillus casei strains have traditionally been recognized as probiotics and frequently used as adjunct culture in fermented dairy products where lactic acid stress is a frequently encountered environmental condition. We have investigated the effect of lactic acid stress on the cell membrane of L. casei Zhang [wild type (WT)] and its acid-resistant mutant Lbz-2. Both strains were grown under glucose-limiting conditions in chemostats; following challenge by low pH, the cell membrane stress responses were investigated. In response to acid stress, cell membrane fluidity decreased and its fatty acid composition changed to reduce the damage caused by lactic acid. Compared with the WT, the acid-resistant mutant exhibited numerous survival advantages, such as higher membrane fluidity, higher proportions of unsaturated fatty acids, and higher mean chain length. In addition, cell integrity analysis showed that the mutant maintained a more intact cellular structure and lower membrane permeability after environmental acidification. These results indicate that alteration in membrane fluidity, fatty acid distribution, and cell integrity are common mechanisms utilized by L. casei to withstand severe acidification and to reduce the deleterious effect of lactic acid on the cell membrane. This detailed comparison of cell membrane responses between the WT and mutant add to our knowledge of the acid stress adaptation and thus enable new strategies to be developed aimed at improving the industrial performance of this species under acid stress.

  2. Synthetic membrane-targeted antibiotics.

    Science.gov (United States)

    Vooturi, S K; Firestine, S M

    2010-01-01

    Antimicrobial resistance continues to evolve and presents serious challenges in the therapy of both nosocomial and community-acquired infections. The rise of resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA) and vancomycin-resistant enterococci (VRE) suggests that antimicrobial resistance is an inevitable evolutionary response to antimicrobial use. This highlights the tremendous need for antibiotics against new bacterial targets. Agents that target the integrity of bacterial membrane are relatively novel in the clinical armamentarium. Daptomycin, a lipopeptide is a classical example of membrane-bound antibiotic. Nature has also utilized this tactic. Antimicrobial peptides (AMPs), which are found in all kingdoms, function primarily by permeabilizing the bacterial membrane. AMPs have several advantages over existing antibiotics including a broad spectrum of activity, rapid bactericidal activity, no cross-resistance with the existing antibiotics and a low probability for developing resistance. Currently, a small number of peptides have been developed for clinical use but therapeutic applications are limited because of poor bioavailability and high manufacturing cost. However, their broad specificity, potent activity and lower probability for resistance have spurred the search for synthetic mimetics of antimicrobial peptides as membrane-active antibiotics. In this review, we will discuss the different classes of synthetic membrane-bound antibiotics published since 2004.

  3. Transferable, conductive TiO{sub 2} nanotube membranes for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohua [School of Energy and Environment, Anhui University of Technology, Maanshan 243002 (China); Department of Micro and Nano Systems Technology, Vestfold University College, Horten 3184 (Norway); Chen, Ting [School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Sun, Yunlan; Chen, Guang [School of Energy and Environment, Anhui University of Technology, Maanshan 243002 (China); Wang, Kaiying, E-mail: Kaiying.Wang@hbv.no [Department of Micro and Nano Systems Technology, Vestfold University College, Horten 3184 (Norway)

    2014-08-30

    Graphical abstract: An optoelectronic device with vertical architecture offers straight conducting filaments for electron transportation. - Highlights: • Highly porous TiO{sub 2} nanotube membranes are prepared by two-step anodization. • An optoelectronic device is integrated with photocurrent transportation along the nanotube axial. • Straight conducting nano-filaments are beneficial for electron transportation. • Photoconductive performances are demonstrated under front/back-illumination. - Abstract: We report a facile approach for preparing free-standing and crystalline TiO{sub 2} nanotube membranes (TNMs) by taking advantage of differential mechanical stress between two anodic layers. The membrane exhibits visible light transmittance (∼40%) and UV absorption (∼99%) with good flexibility, which is favorable to integrate with substrates in optoelectronics. A sandwich-type device is assembled through stacking the membrane and substrates. The dependence of current-perpendicular-to-membrane vs applied voltage shows a remarkable photoconductive performance for both front and back illumination. The photocurrent value increases ∼2 or 3 orders magnitude under UV light radiation as compared to that in darkness. The photoresponse is arisen from high internal gain caused by hole trapping along the nanotube walls. This work is crucial for understanding intrinsic optical properties of nanostructured membranes.

  4. Role of membranes and membrane reactors in the hydrogen supply of fuel cells for transports

    Energy Technology Data Exchange (ETDEWEB)

    Julbe, A.; Guizard, Ch. [Institut Europeen des Membranes, UMII, Lab. des Materiaux et des Procedes Membranaires, CNRS UMR 5635, 34 - Montpellier (France)

    2000-07-01

    Production, storage and supply of high-purity hydrogen as a clean and efficient fuel is central to fuel cells technology, in particular in vehicle traction. Actually, technologies for handling liquefied or gaseous hydrogen in transports are not available so that a number of alternative fuels are considered with the aim of in-situ generation of hydrogen through catalytic processes. The integrated concept of membrane reactors (MRs) can greatly benefit to these technologies. Particular emphasis is put on inorganic membranes and their role in MRs performance for H{sub 2} production.

  5. Atividade de plasmina e plasminogênio no leite longa vida com alta e baixa contagem de células somáticas durante o armazenamento Activity of plasmin and plasminogen in ultra high temperature milk with high and low somatic cell counts during storage

    Directory of Open Access Journals (Sweden)

    Carlos Humberto Corassin

    2010-12-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da contagem de células somáticas (CCS do leite na atividade de plasmina e plasminogênio durante o período de armazenamento do leite longa vida integral. Os leites crus foram categorizados em grupos de CCS de baixa (342.000-487.000 células mL-1 e alta contagem (603.000-808.000 células mL-1. Dois lotes de leite longa vida em cada categoria de CCS foram analisados para determinação de plasmina e plasminogênio após 10, 30, 60, 90 e 120 dias de armazenamento em temperatura ambiente. Para a fabricação do leite longa vida, o leite cru foi submetido à pasteurização rápida seguida da esterilização industrial do leite por injeção de vapor pelo método direto e embalagem asséptica do produto. A CCS não apresentou efeitos sobre as características físico-químicas do leite cru, e nem sobre a atividade de plasmina e plasminogênio nos leites cru e longa vida, armazenados por 120 dias. Entretanto, independentemente da CCS, a atividade de plasmina e plasminogênio aumentou no leite longa vida ao longo do armazenamento, indicando a possibilidade de aumento da proteólise no produto durante sua vida de prateleira.This study aimed to evaluate the effect of somatic cell counts (SCC in milk on plasmin and plasminogen activities of ultra high temperature (UHT milk during storage. Raw milks were categorized in SCC groups of low (342,000-487,000 cells mL-1 and high cells (603,000-808,000 cells mL-1. Two replicates of UHT milks within each SCC category were analyzed for plasmin and plasminogen activities after 10, 30, 60, 90 and 120 days of storage at room temperature. For manufacture of UHT milk, raw milk was pasteurized and sterilized by direct vapor injection process, followed by aseptic packaging. SCC had no effect on physical-chemical characteristics of raw milk, and on plasmin or plasminogen activities in raw and UHT milks during 120 days of storage. However, independently of the SCC in raw milk

  6. Facile fabrication of Ag dendrite-integrated anodic aluminum oxide membrane as effective three-dimensional SERS substrate

    Science.gov (United States)

    Zhang, Cong-yun; Lu, Ya; Zhao, Bin; Hao, Yao-wu; Liu, Ya-qing

    2016-07-01

    A novel surface enhanced Raman scattering (SERS)-active substrate has been successfully developed, where Ag-dendrites are assembled on the surface and embedded in the channels of anodic aluminum oxide (AAO) membrane, via electrodeposition in AgNO3/PVP aqueous system. Reaction conditions were systematically investigated to attain the best Raman enhancement. The growth mechanism of Ag dendritic nanostructures has been proposed. The Ag dendrite-integrated AAO membrane with unique hierarchical structures exhibits high SERS activity for detecting rhodamine 6G with a detection limit as low as 1 × 10-11 M. Furthermore, the three-dimensional (3D) substrates display a good reproducibility with the average intensity variations at the major Raman peak less than 12%. Most importantly, the 3D SERS substrates without any surface modification show an outstanding SERS response for the molecules with weak affinity for noble metal surfaces. The potential application for the detection of polycyclic aromatic hydrocarbons (PAHs) was evaluated with fluoranthene as Raman target molecule and a sensitive SERS detection with a limit down to 10-8 M was reached. The 3D SERS-active substrate shows promising potential for rapid detection of trace organic pollutants even weak affinity molecules in the environment.

  7. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.

    Science.gov (United States)

    Shah, Anup D; Inder, Kerry L; Shah, Alok K; Cristino, Alexandre S; McKie, Arthur B; Gabra, Hani; Davis, Melissa J; Hill, Michelle M

    2016-10-07

    Lipid rafts are dynamic membrane microdomains that orchestrate molecular interactions and are implicated in cancer development. To understand the functions of lipid rafts in cancer, we performed an integrated analysis of quantitative lipid raft proteomics data sets modeling progression in breast cancer, melanoma, and renal cell carcinoma. This analysis revealed that cancer development is associated with increased membrane raft-cytoskeleton interactions, with ∼40% of elevated lipid raft proteins being cytoskeletal components. Previous studies suggest a potential functional role for the raft-cytoskeleton in the action of the putative tumor suppressors PTRF/Cavin-1 and Merlin. To extend the observation, we examined lipid raft proteome modulation by an unrelated tumor suppressor opioid binding protein cell-adhesion molecule (OPCML) in ovarian cancer SKOV3 cells. In agreement with the other model systems, quantitative proteomics revealed that 39% of OPCML-depleted lipid raft proteins are cytoskeletal components, with microfilaments and intermediate filaments specifically down-regulated. Furthermore, protein-protein interaction network and simulation analysis showed significantly higher interactions among cancer raft proteins compared with general human raft proteins. Collectively, these results suggest increased cytoskeleton-mediated stabilization of lipid raft domains with greater molecular interactions as a common, functional, and reversible feature of cancer cells.

  8. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    Science.gov (United States)

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Youngdeuk

    2016-05-03

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m2 of evacuated-tube collectors and 10 m3 seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  10. Differential effects of tissue plasminogen activator and streptokinase on infarct size and on rate of enzyme release: influence of early infarct related artery patency : The GUSTO Enzyme Substudy

    NARCIS (Netherlands)

    T. Baardman (Taco); W.T. Hermens (Wim); G.P. Molhoek; G. Grollier (Gilles); M.E. Pfisterer (Matthias); M.L. Simoons (Maarten); T. Lenderink (Timo)

    1996-01-01

    textabstractBACKGROUND: The recent international GUSTO trial of 41,021 patients with acute myocardial infarction demonstrated improved 90-min infarct related artery patency as well as reduced mortality in patients treated with an accelerated regimen of tissue plasminogen activator, compared to

  11. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.

    Science.gov (United States)

    Talaeipour, M; Nouri, J; Hassani, A H; Mahvi, A H

    2017-01-01

    hybrid system of those parameters and ions included salinity 78.65, TDS 76.52, EC 76.42, Cl 63.95, and Na 70.91. Comparing rejection percent in three above-mentioned methods, it could be concluded that, in reverse osmosis process, ions and non-ion parameters rejection ability were rather better than nanofiltration process, and also better in hybrid compared to reverse osmosis process. The results reported in this paper indicate that the integration of membrane nanofiltration with reverse osmosis (hybrid NF/RO) can be completed by each other probably to remove salinity, TDS, EC, Cl, and Na.

  12. Iron Deprivation Affects Drug Susceptibilities of Mycobacteria Targeting Membrane Integrity

    Directory of Open Access Journals (Sweden)

    Rahul Pal

    2015-01-01

    Full Text Available Multidrug resistance (MDR acquired by Mycobacterium tuberculosis (MTB through continuous deployment of antitubercular drugs warrants immediate search for novel targets and mechanisms. The ability of MTB to sense and become accustomed to changes in the host is essential for survival and confers the basis of infection. A crucial condition that MTB must surmount is iron limitation, during the establishment of infection, since iron is required by both bacteria and humans. This study focuses on how iron deprivation affects drug susceptibilities of known anti-TB drugs in Mycobacterium smegmatis, a “surrogate of MTB.” We showed that iron deprivation leads to enhanced potency of most commonly used first line anti-TB drugs that could be reverted upon iron supplementation. We explored that membrane homeostasis is disrupted upon iron deprivation as revealed by enhanced membrane permeability and hypersensitivity to membrane perturbing agent leading to increased passive diffusion of drug and TEM images showing detectable differences in cell envelope thickness. Furthermore, iron seems to be indispensable to sustain genotoxic stress suggesting its possible role in DNA repair machinery. Taken together, we for the first time established a link between cellular iron and drug susceptibility of mycobacteria suggesting iron as novel determinant to combat MDR.

  13. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    Science.gov (United States)

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Integrating nanohybrid membranes of reduced graphene oxide: chitosan: silica sol gel with fiber optic SPR for caffeine detection

    Science.gov (United States)

    Kant, Ravi; Tabassum, Rana; Gupta, Banshi D.

    2017-05-01

    Caffeine is the most popular psychoactive drug consumed in the world for improving alertness and enhancing wakefulness. However, caffeine consumption beyond limits can result in lot of physiological complications in human beings. In this work, we report a novel detection scheme for caffeine integrating nanohybrid membranes of reduced graphene oxide (rGO) in chitosan modified silica sol gel (rGO: chitosan: silica sol gel) with fiber optic surface plasmon resonance. The chemically synthesized nanohybrid membrane forming the sensing route has been dip coated over silver coated unclad central portion of an optical fiber. The sensor works on the mechanism of modification of dielectric function of sensing layer on exposure to analyte solution which is manifested in terms of red shift in resonance wavelength. The concentration of rGO in polymer network of chitosan and silica sol gel and dipping time of the silver coated probe in the solution of nanohybrid membrane have been optimized to extricate the supreme performance of the sensor. The optimized sensing probe possesses a reasonably good sensitivity and follows an exponentially declining trend within the entire investigating range of caffeine concentration. The sensor boasts of an unparalleled limit of detection value of 1.994 nM and works well in concentration range of 0-500 nM with a response time of 16 s. The impeccable sensor methodology adopted in this work combining fiber optic SPR with nanotechnology furnishes a novel perspective for caffeine determination in commercial foodstuffs and biological fluids.

  15. Large-Aperture Membrane Active Phased-Array Antennas

    Science.gov (United States)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    Large-aperture phased-array microwave antennas supported by membranes are being developed for use in spaceborne interferometric synthetic aperture radar systems. There may also be terrestrial uses for such antennas supported on stationary membranes, large balloons, and blimps. These antennas are expected to have areal mass densities of about 2 kg/sq m, satisfying a need for lightweight alternatives to conventional rigid phased-array antennas, which have typical areal mass densities between 8 and 15 kg/sq m. The differences in areal mass densities translate to substantial differences in total mass in contemplated applications involving aperture areas as large as 400 sq m. A membrane phased-array antenna includes patch antenna elements in a repeating pattern. All previously reported membrane antennas were passive antennas; this is the first active membrane antenna that includes transmitting/receiving (T/R) electronic circuits as integral parts. Other integral parts of the antenna include a network of radio-frequency (RF) feed lines (more specifically, a corporate feed network) and of bias and control lines, all in the form of flexible copper strip conductors on flexible polymeric membranes. Each unit cell of a prototype antenna (see Figure 1) contains a patch antenna element and a compact T/R module that is compatible with flexible membrane circuitry. There are two membrane layers separated by a 12.7-mm air gap. Each membrane layer is made from a commercially available flexible circuit material that, as supplied, comprises a 127-micron-thick polyimide dielectric layer clad on both sides with 17.5-micron-thick copper layers. The copper layers are patterned into RF, bias, and control conductors. The T/R module is located on the back side of the ground plane and is RF-coupled to the patch element via a slot. The T/R module is a hybrid multilayer module assembled and packaged independently and attached to the membrane array. At the time of reporting the information for

  16. Characterization of membrane association of Rinderpest virus matrix protein

    International Nuclear Information System (INIS)

    Subhashri, R.; Shaila, M.S.

    2007-01-01

    Paramyxovirus matrix protein is believed to play a crucial role in the assembly and maturation of the virus particle by bringing the major viral components together at the budding site in the host cell. The membrane association capability of many enveloped virus matrix proteins has been characterized to be their intrinsic property. In this work, we have characterized the membrane association of Rinderpest virus matrix (M) protein. The M protein of Rinderpest virus when expressed in the absence of other viral proteins is present both in the cytoplasm and plasma membrane. When expressed as GFP fusion protein, the M protein gets localized into plasma membrane protrusions. High salt and alkaline conditions resulted in partial dissociation of M protein from cell membrane. Thus, M protein behaves like an integral membrane protein although its primary structure suggests it to be a peripheral membrane protein

  17. Lipid corralling and poloxamer squeeze-out in membranes

    DEFF Research Database (Denmark)

    Wu, G.H.; Majewski, J.; Ege, C.

    2004-01-01

    Using x-ray scattering measurements we have quantitatively determined the effect of poloxamer 188 (P188), a polymer known to seal damaged membranes, on the structure of lipid monolayers. P188 selectively inserts into low lipid-density regions of the membrane and "corrals" lipid molecules to pack...... tightly, leading to unexpected Bragg peaks at low nominal lipid density and inducing lipid/poloxamer phase separation. At tighter lipid packing, the once inserted P188 is squeezed out, allowing the poloxamer to gracefully exit when the membrane integrity is restored....

  18. The Association of Plasminogen Activator Inhibitor Type 1 (PAI-1) Level and PAI-1 4G/5G Gene Polymorphism with the Formation and the Grade of Endometrial Cancer.

    Science.gov (United States)

    Yıldırım, Malik Ejder; Karakuş, Savas; Kurtulgan, Hande Küçük; Kılıçgün, Hasan; Erşan, Serpil; Bakır, Sevtap

    2017-08-01

    Plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor (Serpine 1), and it inhibits both tissue plasminogen activator and urokinase plasminogen activator which are important in fibrinolysis. We aimed to find whether there is a possible association between PAI-1 level, PAI-1 4G/5G polymorphism, and endometrial cancer. PAI-1 levels in peripheral blood were determined in 82 patients with endometrial carcinoma and 76 female healthy controls using an enzyme-linked immunoassay (ELISA). Then, the genomic DNA was extracted and screened by reverse hybridization procedure (Strip assay) to detect PAI 1 4G/5G polymorphism. The levels of PAI-1 in the patients were higher statistically in comparison to controls (P 5G polymorphism was quite different between patients and controls (P = 0.008), and 4G allelic frequency was significantly higher in the patients of endometrial cancer than in controls (P = 0.026). We found significant difference between Grade 1 and Grade 2+3 patients in terms of the PAI-1 levels (P = 0.047). There was no association between PAI-1 4G/5G polymorphism and the grades of endometrial cancer (P = 0.993). Our data suggest that the level of PAI-1 and PAI-1 4G/5G gene polymorphism are effective in the formation of endometrial cancer. PAI-1 levels are also associated with the grades of endometrial cancer.

  19. Linking Cellular Mechanisms to Behavior: Entorhinal Persistent Spiking and Membrane Potential Oscillations May Underlie Path Integration, Grid Cell Firing, and Episodic Memory

    Directory of Open Access Journals (Sweden)

    Michael E. Hasselmo

    2008-01-01

    Full Text Available The entorhinal cortex plays an important role in spatial memory and episodic memory functions. These functions may result from cellular mechanisms for integration of the afferent input to entorhinal cortex. This article reviews physiological data on persistent spiking and membrane potential oscillations in entorhinal cortex then presents models showing how both these cellular mechanisms could contribute to properties observed during unit recording, including grid cell firing, and how they could underlie behavioural functions including path integration. The interaction of oscillations and persistent firing could contribute to encoding and retrieval of trajectories through space and time as a mechanism relevant to episodic memory.

  20. Inhibitory effect of berberine on the invasion of human lung cancer cells via decreased productions of urokinase-plasminogen activator and matrix metalloproteinase-2

    International Nuclear Information System (INIS)

    Peng, P.-L.; Hsieh, Y.-S.; Wang, C.-J.; Hsu, J.-L.; Chou, F.-P.

    2006-01-01

    Berberine, a compound isolated from medicinal herbs, has been reported with many pharmacological effects related to anti-cancer and anti-inflammation capabilities. In this study, we observed that berberine exerted a dose- and time-dependent inhibitory effect on the motility and invasion ability of a highly metastatic A549 cells under non-cytotoxic concentrations. In cancer cell migration and invasion process, matrix-degrading proteinases are required. A549 cell treated with berberine at various concentrations showed reduced ECM proteinases including matrix metalloproteinase-2 (MMP2) and urokinase-plasminogen activator (u-PA) by gelatin and casein zymography analysis. The inhibitory effect is likely to be at the transcriptional level, since the reduction in the transcripts levels was corresponding to the proteins. Moreover, berberine also exerted its action via regulating tissue inhibitor of metalloproteinase-2 (TIMP-2) and urokinase-plasminogen activator inhibitor (PAI). The upstream mediators of the effect involved c-jun, c-fos and NF-κB, as evidenced by reduced phosphorylation of the proteins. These findings suggest that berberine possesses an anti-metastatic effect in non-small lung cancer cell and may, therefore, be helpful in clinical treatment

  1. STUDY OF HEARING OUTCOMES IN SUDDEN SENSORINEURAL HEARING LOSS TREATED WITH TISSUE PLASMINOGEN ACTIVATOR (TPA

    Directory of Open Access Journals (Sweden)

    Rama Krishna

    2015-09-01

    Full Text Available Sudden Sensorineural Hearing Loss (SSHNL is a clinical condition that requires immediate management. There are many treatment options, which may not always revert the hearing to normal. Not only recording the degree of hearing loss, but also establishing the concurrent dysfunction of saccule by VEMP has facilitated a new approach to treatment strategy. Recombinant tissue Plasminogen Activator ((rtPA proved its efficacy in stroke and subsequently considered an option in the management of ISSNHL. The curren t study, conducted at different centres, on 15 patients utilized rtPA. The results showed a promising trend when saccular pathology is also evident by VEMP in association with Hearing loss. We recommend use of rtPA as primary modality in cases of ISSNHL wi th Saccular involvement.

  2. Polymeric membranes for guided bone regeneration.

    Science.gov (United States)

    Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca

    2011-10-01

    In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Stability of integral membrane proteins under high hydrostatic pressure: the LH2 and LH3 antenna pigment-protein complexes from photosynthetic bacteria.

    Science.gov (United States)

    Kangur, Liina; Timpmann, Kõu; Freiberg, Arvi

    2008-07-03

    The bacteriochlorophyll a-containing LH2 and LH3 antenna complexes are the integral membrane proteins that catalyze the photosynthetic process in purple photosynthetic bacteria. The LH2 complex from Rhodobacter sphaeroides shows characteristic strong absorbance at 800 and 850 nm due to the pigment molecules confined in two separate areas of the protein. In the LH3 complex from Rhodopesudomonas acidophila the corresponding bands peak at 800 and 820 nm. Using the bacteriochlorophyll a cofactors as intrinsic probes to monitor local changes in the protein structure, we investigate spectral responses of the antenna complexes to very high hydrostatic pressures up to 2.5 GPa when embedded into natural membrane environment or extracted with detergent. We first demonstrate that high pressure does induce significant alterations to the tertiary structure of the proteins not only in proximity of the 800 nm-absorbing bacteriochlorophyll a molecules known previously (Gall, A.; et al. Biochemistry 2003, 42, 13019) but also of the 850 nm- and 820 nm-absorbing molecules, including breakage of the hydrogen bond they are involved in. The membrane-protected complexes appear more resilient to damaging effects of the compression compared with the complexes extracted into mixed detergent-buffer environment. Increased resistance of the isolated complexes is observed at high protein concentration resulting aggregation as well as when cosolvent (glycerol) is added into the solution. These stability variations correlate with ability of penetration of the surrounding polar solvent (water) into the hydrophobic protein interiors, being thus the principal reason of the pressure-induced denaturation of the proteins. Considerable variability of elastic properties of the isolated complexes was also observed, tentatively assigned to heterogeneous protein packing in detergent micelles. While a number of the isolated complexes release most of their bacteriochlorophyll a content under high pressure

  4. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    Science.gov (United States)

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  5. PET imaging of urokinase-type plasminogen activator receptor (uPAR) in prostate cancer

    DEFF Research Database (Denmark)

    Skovgaard, Dorthe; Persson, Morten; Kjaer, Andreas

    2016-01-01

    Overexpression of urokinase-type plasminogen activator receptors (uPAR) represents an important biomarker for aggressiveness in most common malignant diseases, including prostate cancer (PC). Accordingly, uPAR expression either assessed directly in malignant PC tissue or assessed directly in plasma...... and prognostic imaging method. In this review, we will focus on the recent development of uPAR PET and the relevance within prostate cancer imaging. Novel antibody and small-molecule radiotracers-targeting uPAR, including a series of uPAR-targeting PET ligands, based on the high affinity peptide ligand AE105......, have been synthesized and tested in vitro and in vivo in preclinical murine xenograft models and, recently, in a first-ever clinical uPAR PET study in cancer patients, including patients with PC. In this phase I study, a high and specific uptake of the tracer 64Cu-DOTA-AE105 was found in both primary...

  6. Reasons for the lack of benefit of immediate angioplasty during recombinant tissue plasminogen activator therapy for acute myocardial infarction: a regional wall motion analysis. European Cooperative Study Group

    NARCIS (Netherlands)

    Arnold, A. E.; Serruys, P. W.; Rutsch, W.; Simoons, M. L.; de Bono, D. P.; Tijssen, J. G.; Lubsen, J.; Verstraete, M.

    1991-01-01

    Regional ventricular wall motion analysis utilizing three different methods was performed on predischarge left ventriculograms from 291 of 367 patients enrolled in a randomized trial of single chain recombinant tissue-type plasminogen activator (rt-PA), aspirin and heparin with and without immediate

  7. Sickle Mice Are Sensitive to Hypoxia/Ischemia-Induced Stroke but Respond to Tissue-Type Plasminogen Activator Treatment.

    Science.gov (United States)

    Sun, Yu-Yo; Lee, Jolly; Huang, Henry; Wagner, Mary B; Joiner, Clinton H; Archer, David R; Kuan, Chia-Yi

    2017-12-01

    The effects of lytic stroke therapy in patients with sickle cell anemia are unknown, although a recent study suggested that coexistent sickle cell anemia does not increase the risk of cerebral hemorrhage. This finding calls for systemic analysis of the effects of thrombolytic stroke therapy, first in humanized sickle mice, and then in patients. There is also a need for additional predictive markers of sickle cell anemia-associated vasculopathy. We used Doppler ultrasound to examine the carotid artery of Townes sickle mice tested their responses to repetitive mild hypoxia-ischemia- and transient hypoxia-ischemia-induced stroke at 3 or 6 months of age, respectively. We also examined the effects of tPA (tissue-type plasminogen activator) treatment in transient hypoxia-ischemia-injured sickle mice. Three-month-old sickle cell (SS) mice showed elevated resistive index in the carotid artery and higher sensitivity to repetitive mild hypoxia-ischemia-induced cerebral infarct. Six-month-old SS mice showed greater resistive index and increased flow velocity without obstructive vasculopathy in the carotid artery. Instead, the cerebral vascular wall in SS mice showed ectopic expression of PAI-1 (plasminogen activator inhibitor-1) and P-selectin, suggesting a proadhesive and prothrombotic propensity. Indeed, SS mice showed enhanced leukocyte and platelet adherence to the cerebral vascular wall, broader fibrin deposition, and higher mortality after transient hypoxia-ischemia. Yet, post-transient hypoxia-ischemia treatment with tPA reduced thrombosis and mortality in SS mice. Sickle mice are sensitive to hypoxia/ischemia-induced cerebral infarct but benefit from thrombolytic treatment. An increased resistive index in carotid arteries may be an early marker of sickle cell vasculopathy. © 2017 American Heart Association, Inc.

  8. The Use of Tissue Plasminogen Activator in the Treatment of Wallenberg Syndrome Caused by Vertebral Artery Dissection.

    Science.gov (United States)

    Salerno, Alexis; Cotter, Bradford V; Winters, Michael E

    2017-05-01

    Acute cerebrovascular accident (CVA) is a devastating cause of patient morbidity and mortality. Up to 10% of acute CVAs in young patients are caused by dissection of the vertebral or carotid artery. Wallenberg syndrome results from a CVA in the vertebral or posterior inferior artery of the cerebellum and manifests as various degrees of cerebellar dysfunction. The administration of a thrombolytic medication has been recommended in the treatment of patients with stroke caused by cervical artery dissection. Surprisingly, there is scant literature on the use of this medication in the treatment of this condition. We describe a 42-year-old man with the sudden onset of headache, left-sided neck pain, vomiting, nystagmus, and ataxia 1 h after completing a weightlifting routine. Computed tomography angiography revealed a grade IV left vertebral artery injury with a dissection flap extending distally and resulting in complete occlusion. Subsequent magnetic resonance imaging and angiography demonstrated acute left cerebellar and lateral medullary infarcts, consistent with Wallenberg syndrome. The patient was treated with tissue plasminogen activator, which failed to resolve his symptoms. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Emergency physicians frequently manage patients with acute CVAs. For select patients, the administration of tissue plasminogen activator can improve outcomes. However, the risk of major hemorrhage with this medication is significant. Cervical artery dissection is an important cause of acute stroke in young patients and is often missed on initial presentation. It is imperative for the emergency physician to consider acute cervical artery dissection as a cause of stroke and to be knowledgeable regarding the efficacy of thrombolytic medications for this condition. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Isolation of monodisperse nanodisc-reconstituted membrane proteins using free flow electrophoresis

    DEFF Research Database (Denmark)

    Justesen, Bo Højen; Laursen, Tomas; Weber, Gerhard

    2013-01-01

    Free flow electrophoresis is used for rapid and high-recovery isolation of homogeneous preparations of functionally active membrane proteins inserted into nanodiscs. The approach enables isolation of integral and membrane anchored proteins and is also applicable following introduction of, e...

  10. Plasma levels of intact and cleaved urokinase plasminogen activator receptor (uPAR) in men with clinically localised prostate cancer

    DEFF Research Database (Denmark)

    Kristensen, Gitte; Berg, Kasper Drimer; Lippert, Solvej

    2017-01-01

    Aims: Lymph node metastasis (N1) is an adverse prognostic factor for men with clinically localised prostate cancer (PCa), but the prediction of N1 disease remains difficult. Urokinase plasminogen activator receptor (uPAR) plays an important role in angiogenesis and tumorigenesis. We analysed...... analysis and quantified using the areas under the ROC curve (AUC).Results: All soluble uPAR levels were significantly (p=0.03) higher in patients with N1 disease compared with patients with N0/x disease. ROC curves including clinical tumour stage, biopsy Gleason score, prostate-specific antigen and percent...

  11. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  12. Final Report - Membranes and MEA's for Dry, Hot Operating Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hamrock, Steven J

    2011-06-30

    The focus of this program was to develop a new Proton Exchange Membrane (PEM) which can operate under hotter, dryer conditions than the state of the art membranes today and integrate it into a Membrane Electrode Assembly (MEA). These MEA's should meet the performance and durability requirements outlined in the solicitation, operating under low humidification conditions and at temperatures ranging from -20ºC to 120ºC, to meet 2010 DOE technical targets for membranes. This membrane should operate under low humidification conditions and at temperatures ranging from -20ºC to 120ºC in order to meet DOE HFCIT 2010 commercialization targets for automotive fuel cells. Membranes developed in this program may also have improved durability and performance characteristics making them useful in stationary fuel cell applications. The new membranes, and the MEA's comprising them, should be manufacturable at high volumes and at costs which can meet industry and DOE targets. This work included: A) Studies to better understand factors controlling proton transport within the electrolyte membrane, mechanisms of polymer degradation (in situ and ex situ) and membrane durability in an MEA; B) Development of new polymers with increased proton conductivity over the range of temperatures from -20ºC to 120ºC and at lower levels of humidification and with improved chemical and mechanical stability; C) Development of new membrane additives for increased durability and conductivity under these dry conditions; D) Integration of these new materials into membranes and membranes into MEA's, including catalyst and gas diffusion layer selection and integration; E) Verification that these materials can be made using processes which are scalable to commercial volumes using cost effective methods; F) MEA testing in single cells using realistic automotive testing protocols. This project addresses technical barriers A (Durability) and C (Performance) from the Fuel Cells section of the

  13. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli; Saikaly, Pascal; Logan, B.E.

    2017-01-01

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  14. Simultaneous nitrogen and organics removal using membrane aeration and effluent ultrafiltration in an anaerobic fluidized membrane bioreactor

    KAUST Repository

    Ye, Yaoli

    2017-08-03

    Dissolved methane and a lack of nutrient removal are two concerns for treatment of wastewater using anaerobic fluidized bed membrane bioreactors (AFMBRs). Membrane aerators were integrated into an AFMBR to form an Aeration membrane fluidized bed membrane bioreactor (AeMFMBR) capable of simultaneous removal of organic matter and ammonia without production of dissolved methane. Good effluent quality was obtained with no detectable suspended solids, 93±5% of chemical oxygen demand (COD) removal to 14±11 mg/L, and 74±8% of total ammonia (TA) removal to 12±3 mg-N/L for domestic wastewater (COD of 193±23 mg/L and TA of 49±5 mg-N/L) treatment. Nitrate and nitrite concentrations were always low (< 1 mg-N/L) during continuous flow treatment. Membrane fouling was well controlled by fluidization of the granular activated carbon (GAC) particles (transmembrane pressures maintained <3 kPa). Analysis of the microbial communities suggested that nitrogen removal was due to nitrification and denitrification based on the presence of microorganisms associated with these processes.

  15. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms

    Science.gov (United States)

    Widdows, Kate L.; Panitchob, Nuttanont; Crocker, Ian P.; Please, Colin P.; Hanson, Mark A.; Sibley, Colin P.; Johnstone, Edward D.; Sengers, Bram G.; Lewis, Rohan M.; Glazier, Jocelyn D.

    2015-01-01

    Uptake of system L amino acid substrates into isolated placental plasma membrane vesicles in the absence of opposing side amino acid (zero-trans uptake) is incompatible with the concept of obligatory exchange, where influx of amino acid is coupled to efflux. We therefore hypothesized that system L amino acid exchange transporters are not fully obligatory and/or that amino acids are initially present inside the vesicles. To address this, we combined computational modeling with vesicle transport assays and transporter localization studies to investigate the mechanisms mediating [14C]l-serine (a system L substrate) transport into human placental microvillous plasma membrane (MVM) vesicles. The carrier model provided a quantitative framework to test the 2 hypotheses that l-serine transport occurs by either obligate exchange or nonobligate exchange coupled with facilitated transport (mixed transport model). The computational model could only account for experimental [14C]l-serine uptake data when the transporter was not exclusively in exchange mode, best described by the mixed transport model. MVM vesicle isolates contained endogenous amino acids allowing for potential contribution to zero-trans uptake. Both L-type amino acid transporter (LAT)1 and LAT2 subtypes of system L were distributed to MVM, with l-serine transport attributed to LAT2. These findings suggest that exchange transporters do not function exclusively as obligate exchangers.—Widdows, K. L., Panitchob, N., Crocker, I. P., Please, C. P., Hanson, M. A., Sibley, C. P., Johnstone, E. D., Sengers, B. G., Lewis, R. M., Glazier, J. D. Integration of computational modeling with membrane transport studies reveals new insights into amino acid exchange transport mechanisms. PMID:25761365

  16. Biomimetic membranes for sensor and separation applications

    CERN Document Server

    2012-01-01

    This book addresses the possibilities and challenges in mimicking biological membranes and creating membrane-based sensor and separation devices. It covers recent advances in developing biomimetic membranes for technological applications with a focus on the use of integral membrane protein mediated transport. It describes the fundamentals of biosensing as well as separation and shows how the two processes work together in biological systems. The book provides an overview of the current state of the art, points to areas that need further investigation and anticipates future directions in the field. Biomimetics is a truly cross-disciplinary approach and this is exemplified by the challenges in mimicking osmotic processes as they occur in nature using aquaporin protein water channels as central building blocks. In the development of a biomimetic sensor/separation technology, both channel and carrier proteins are important and examples of how these may be reconstituted and controlled in biomimetic membranes are ...

  17. Functional dynamics of cell surface membrane proteins.

    Science.gov (United States)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    Science.gov (United States)

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  19. Protease-activated receptor 2 (PAR2) is upregulated by Acanthamoeba plasminogen activator (aPA) and induces proinflammatory cytokine in human corneal epithelial cells.

    Science.gov (United States)

    Tripathi, Trivendra; Abdi, Mahshid; Alizadeh, Hassan

    2014-05-29

    Acanthamoeba plasminogen activator (aPA) is a serine protease elaborated by Acanthamoeba trophozoites that facilitates the invasion of trophozoites to the host and contributes to the pathogenesis of Acanthamoeba keratitis (AK). The aim of this study was to explore if aPA stimulates proinflammatory cytokine in human corneal epithelial (HCE) cells via the protease-activated receptors (PARs) pathway. Acanthamoeba castellanii trophozoites were grown in peptone-yeast extract glucose for 7 days, and the supernatants were collected and centrifuged. The aPA was purified using the fast protein liquid chromatography system, and aPA activity was determined by zymography assays. Human corneal epithelial cells were incubated with or without aPA (100 μg/mL), PAR1 agonists (thrombin, 10 μM; TRAP-6, 10 μM), and PAR2 agonists (SLIGRL-NH2, 100 μM; AC 55541, 10 μM) for 24 and 48 hours. Inhibition of PAR1 and PAR2 involved preincubating the HCE cells for 1 hour with the antagonist of PAR1 (SCH 79797, 60 μM) and PAR2 (FSLLRY-NH2, 100 μM) with or without aPA. Human corneal epithelial cells also were preincubated with PAR1 and PAR2 antagonists and then incubated with or without PAR1 agonists (thrombin and TRAP-6) and PAR2 agonists (SLIGRL-NH2 and AC 55541). Expression of PAR1 and PAR2 was examined by quantitative RT-PCR (qRT-PCR), flow cytometry, and immunocytochemistry. Interleukin-8 expression was quantified by qRT-PCR and ELISA. Human corneal epithelial cells constitutively expressed PAR1 and PAR2 mRNA. Acanthamoeba plasminogen activator and PAR2 agonists significantly upregulated PAR2 mRNA expression (1- and 2-fold, respectively) (P aPA, and PAR2 agonists induced PAR2 mRNA expression in HCE cells (P aPA, significantly upregulated PAR1 mRNA expression, which was significantly inhibited by PAR1 antagonist in HCE cells. Acanthamoeba plasminogen activator and PAR2 agonists stimulated IL-8 mRNA expression and protein production, which is significantly diminished by PAR2 antagonist

  20. Integrated test plan for the field demonstration of the supported liquid membrane unit

    International Nuclear Information System (INIS)

    Dunks, K.L.; Hodgson, K.M.

    1995-06-01

    This Integrated Test Plan describes the operation and testing of a hybrid reverse osmosis (RO)/coupled transport (CT) groundwater remediation test unit, also referred to as the Environmental Restoration Technology Demonstrations at the Hanford Site. The SLM will be used to remove uranium, technetium-99, and nitrate from a selected groundwater source at the Hanford Site. The overall purpose of this test is to determine the efficiency of the RO/CT membranes operating in a hybrid unit, the ease of operating and maintaining the SLM, and the amount of secondary waste generated as a result of processing. The goal of the SLM is to develop a RO/CT process that will be applicable for removing contaminants from almost any contaminated water. This includes the effluents generated as part of the day-to-day operation of most any US Department of Energy (DOE) site. The removal of contaminants from the groundwaters before they reach the Columbia River or offsite extraction wells will reduce the risk that the population will be exposed to these compounds and will reduce the cost of subsequent groundwater cleanup

  1. Fluorescent multiple staining and CASA system to assess boar sperm viability and membranes integrity in short and long-term extenders

    OpenAIRE

    F. Cremonesi; A. Meucci; A. Lange-Consiglio

    2013-01-01

    The aim of this study was to assess the effect on boar spermatozoa quality of in vitro storage in short and long-term extenders by fluorescent multiple staining (FMS) and computer assisted semen analyzer (CASA). Fresh ejaculates from three healthy, sexually mature boars were diluted with equal volumes of six short-term or three long-term commercial extenders and stored at 19?C for 6 days (short-term) or 12 days (long-term). The integrity of spermatozoa membranes was analyzed by FMS using prop...

  2. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    Science.gov (United States)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to membranes may be non-porous or porous (with controllable pore sizes from 200 nm to technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  3. Field-effect detection using phospholipid membranes -Topical Review

    Directory of Open Access Journals (Sweden)

    Chiho Kataoka-Hamai and Yuji Miyahara

    2010-01-01

    Full Text Available The application of field-effect devices to biosensors has become an area of intense research interest. An attractive feature of field-effect sensing is that the binding or reaction of biomolecules can be directly detected from a change in electrical signals. The integration of such field-effect devices into cell membrane mimics may lead to the development of biosensors useful in clinical and biotechnological applications. This review summarizes recent studies on the fabrication and characterization of field-effect devices incorporating model membranes. The incorporation of black lipid membranes and supported lipid monolayers and bilayers into semiconductor devices is described.

  4. EM Task 9 - Centrifugal membrane filtration

    International Nuclear Information System (INIS)

    Stepan, Daniel J.; Stevens, Bradley G.; Hetland, Melanie D.

    1999-01-01

    The overall project consists of several integrated research phases related to the applicability, continued development, demonstration, and commercialization of the SpinTek centrifugal membrane filtration process. Work performed during this reporting period consisted of Phase 2 evaluation of the SpinTek centrifugal membrane filtration technology and Phase 3, Technology Partnering. During Phase 1 testing conducted at the EERC using the SpinTek ST-IIL unit operating on a surrogate tank waste, a solids cake developed on the membrane surface. The solids cake was observed where linear membrane velocities were less than 17.5 ft/s and reduced the unobstructed membrane surface area up to 25%, reducing overall filtration performance. The primary goal of the Phase 2 research effort was to enhance filtration performance through the development and testing of alternative turbulence promoter designs. The turbulence promoters were designed to generate a shear force across the entire membrane surface sufficient to maintain a self-cleaning membrane capability and improve filtration efficiency and long-term performance. Specific Phase 2 research activities included the following: System modifications to accommodate an 11-in.-diameter, two-disk rotating membrane assembly; Development and fabrication of alternative turbulence promoter designs; Testing and evaluation of the existing and alternative turbulence promoters under selected operating conditions using a statistically designed test matrix; and Data reduction and analysis; The objective of Phase 3 research was to demonstrate the effectiveness of SpinTek's centrifugal membrane filtration as a pretreatment to remove suspended solids from a liquid waste upstream of 3M's WWL cartridge technology for the selective removal of technetium (Tc)

  5. Quantitation of the receptor for urokinase plasminogen activator by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ploug, M

    1994-01-01

    variant of uPAR, suPAR, has been constructed by recombinant technique and the protein content of a purified suPAR standard preparation was determined by amino acid composition analysis. The sensitivity of the assay (0.6 ng uPAR/ml) is strong enough to measure uPAR in extracts of cultured cells and cancer......Binding of the urokinase plasminogen activator (uPA) to a specific cell surface receptor (uPAR) plays a crucial role in proteolysis during tissue remodelling and cancer invasion. An immunosorbent assay for the quantitation of uPAR has now been developed. This assay is based on two monoclonal...... antibodies recognizing the non-ligand binding part of this receptor, and it detects both free and occupied uPAR, in contrast to ligand-binding assays used previously. In a variant of the assay, the occupied fraction of uPAR is selectively detected with a uPA antibody. To be used as a standard, a soluble...

  6. Models of dynamic extraction of lipid tethers from cell membranes

    International Nuclear Information System (INIS)

    Nowak, Sarah A; Chou, Tom

    2010-01-01

    When a ligand that is bound to an integral membrane receptor is pulled, the membrane and the underlying cytoskeleton can deform before either the membrane delaminates from the cytoskeleton or the ligand detaches from the receptor. If the membrane delaminates from the cytoskeleton, it may be further extruded and form a membrane tether. We develop a phenomenological model for this process by assuming that deformations obey Hooke's law up to a critical force at which the cell membrane locally detaches from the cytoskeleton and a membrane tether forms. We compute the probability of tether formation and show that tethers can be extruded only within an intermediate range of force loading rates and pulling velocities. The mean tether length that arises at the moment of ligand detachment is computed as are the force loading rates and pulling velocities that yield the longest tethers

  7. CO₂ Capture Membrane Process for Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [Research Triangle Inst. International, Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Inst. International, Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. International, Research Triangle Park, NC (United States)

    2012-04-01

    permeance greater than 300 gas permeation units (GPU) targeted; - Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO₂ permeance than current commercial polycarbonate membranes; - Development and fabrication of membrane hollow fibers and modules from candidate polymers; - Development of a CO₂ capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and - Techno-economic evaluation of the "best" integrated CO₂ capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO₂ capture with 95% captured CO₂ purity.

  8. Plants and fungi in the era of heterogeneous plasma membranes.

    Science.gov (United States)

    Opekarová, M; Malinsky, J; Tanner, W

    2010-09-01

    Examples from yeast and plant cells are described that show that their plasma membrane is laterally compartmented. Distinct lateral domains encompassing both specific lipids and integral proteins coexist within the plane of the plasma membrane. The compartments are either spatially stable and include distinct sets of proteins, or they are transiently formed to accomplish diverse functions. They are not related to lipid rafts or their clusters, as defined for mammalian cells. This review summarises only well-documented compartments of plasma membranes from plants and fungi, which have been recognised using microscopic approaches. In several cases, physiological functions of the membrane compartmentation are revealed.

  9. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  10. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  11. Inhibitory effect of amiloride on the urokinase plasminogen activators in prostatic cancer.

    Science.gov (United States)

    Ray, P; Bhatti, R; Gadarowski, J; Bell, N; Nasruddin, S

    1998-01-01

    The diuretic drug amiloride (AMLD), which competitively inhibits the catalytic activity of urokinase plasminogen activators (UPA), was used to study its effects on the proteolytic enzymes implicated in the invasiveness and metastases in a prostatic tumor model carrying two different sublines of adenocarcinoma of the prostate. Our data showed that UPA activity was significantly higher, both in the cytosol and pellet of R3327-AT3, a fast-growing highly metastatic and androgen-insensitive tumor, as compared to the G3327-G subline, a slow-growing nonmetastatic tumor of the prostate. The UPA activity in AT3 tumor dropped when the rats were treated with AMLD for 3 weeks. The UPA activity in the sera and tumor effusions from rats with AT3 tumor was significantly higher as compared to those with G subline tumor. The number of pulmonary metastatic foci was the same in untreated rats as compared to those treated with AMLD. The lymph node inspection after 3 weeks revealed no secondary tumor in the AMLD-treated group. The role of UPA in the metastases of prostate cancer is discussed.

  12. Effect of magnetized extender on sperm membrane integrity and development of oocytes in vitro fertilized with liquid storage boar semen.

    Science.gov (United States)

    Lee, Sang-Hee; Park, Choon-Keun

    2015-03-01

    The objective of this study was to evaluate the effect of a magnetized extender on sperm membrane damage and development of oocytes in vitro fertilized with liquid storage boar semen. Before semen dilution, extender was flowed through a neodymium magnet (0, 2000, 4000 and 6000G) for 5min and collected semen was preserved for 168h at 18°C. In results, plasma membrane integrity with live sperm was significantly higher in semen treated with extenders magnetized at 4000G than sperm treated with extenders magnetized at 0G during semen preservation for 120-168h (psemen treated with extenders magnetized at 4000 and 6000G compared to 0 and 2000G during semen preservation for 168h (psemen treated with extenders magnetized at 2000G than other groups during semen preservation for 168h. The ability of semen to achieve successful in vitro fertilization was also not significantly different among the groups during preservation. However, when the semen was preserved for 168h, the blastocyst formation rates were significantly higher at 6000G compared to 0 and 2000G (psemen extender could protect the sperm membrane from damage, and improve the ability of rates of in vitro blastocyst development and magnetized semen diluter is beneficial for long liquid preservation of boar semen. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Nanoengineered membranes for controlled transport

    Science.gov (United States)

    Doktycz, Mitchel J [Oak Ridge, TN; Simpson, Michael L [Knoxville, TN; McKnight, Timothy E [Greenback, TN; Melechko, Anatoli V [Oak Ridge, TN; Lowndes, Douglas H [Knoxville, TN; Guillorn, Michael A [Knoxville, TN; Merkulov, Vladimir I [Oak Ridge, TN

    2010-01-05

    A nanoengineered membrane for controlling material transport (e.g., molecular transport) is disclosed. The membrane includes a substrate, a cover definining a material transport channel between the substrate and the cover, and a plurality of fibers positioned in the channel and connected to an extending away from a surface of the substrate. The fibers are aligned perpendicular to the surface of the substrate, and have a width of 100 nanometers or less. The diffusion limits for material transport are controlled by the separation of the fibers. In one embodiment, chemical derivitization of carbon fibers may be undertaken to further affect the diffusion limits or affect selective permeability or facilitated transport. For example, a coating can be applied to at least a portion of the fibers. In another embodiment, individually addressable carbon nanofibers can be integrated with the membrane to provide an electrical driving force for material transport.

  14. Comparison of membrane electroporation and protein denature in response to pulsed electric field with different durations.

    Science.gov (United States)

    Huang, Feiran; Fang, Zhihui; Mast, Jason; Chen, Wei

    2013-05-01

    In this paper, we compared the minimum potential differences in the electroporation of membrane lipid bilayers and the denaturation of membrane proteins in response to an intensive pulsed electric field with various pulse durations. Single skeletal muscle fibers were exposed to a pulsed external electric field. The field-induced changes in the membrane integrity (leakage current) and the Na channel currents were monitored to identify the minimum electric field needed to damage the membrane lipid bilayer and the membrane proteins, respectively. We found that in response to a relatively long pulsed electric shock (longer than the membrane intrinsic time constant), a lower membrane potential was needed to electroporate the cell membrane than for denaturing the membrane proteins, while for a short pulse a higher membrane potential was needed. In other words, phospholipid bilayers are more sensitive to the electric field than the membrane proteins for a long pulsed shock, while for a short pulse the proteins become more vulnerable. We can predict that for a short or ultrashort pulsed electric shock, the minimum membrane potential required to start to denature the protein functions in the cell plasma membrane is lower than that which starts to reduce the membrane integrity. Copyright © 2013 Wiley Periodicals, Inc.

  15. Integration of sand and membrane filtration systems for iron and pesticide removal without chemical addition

    DEFF Research Database (Denmark)

    Kowalski, Krysztof; Madsen, Henrik Tækker; Søgaard, Erik Gydesen

    2013-01-01

    the content of key foulants, the techniques can be used as a pre-treatment for nanofiltration and low pressure reverse osmosis that has proved to be capable of removing pesticides. It was found that a lower fouling potential could be obtained by using the membranes, but that sand filter was better at removing......Pilot plant investigations of sand and membrane filtration (MF/UF/NF/LPRO) have been performed to treat groundwater polluted with pesticides. The results show that simple treatment, with use of aeration and sand filtration or MF/UF membranes, does not remove pesticides. However, by reducing...... manganese and dissolved organic matter. The results indicate that combining aeration; sand filtration and membrane techniques might be a good option for pesticide removal without any addition of chemicals and minimized membrane maintenance....

  16. Biomimetic polymeric membranes for water treatment

    DEFF Research Database (Denmark)

    Habel, Joachim Erich Otto

    This project is about the interplay of the three major components of aquaporin based biomimetic polymeric membranes (ABPMs): Aquaporins (AQPs), amphiphilic block copolymers, serving as a vesicular matrix for the hydrophobic AQP exterior (proteopolymersomes) and a polymeric membrane as embedment....... The interplay of proteopolymersomes and polymeric mesh support (in this case polyethersulfone, PES) was examined via integration of proteopolymersomes in an active layer (AL) formed by interfacial polymerisation between a linker molecule in aqueous phase and another in organic phase on top of the PES....... The resulting thin-film composite (TFC) membrane was analyzed via cross-flow forward osmosis (FO), scanning electron microscopy (SEM), fourier-transformed infrared spectroscopy (FTIR), as well as in the non-supported form over FTIR and a specialized microfluidic visualization approach. Where no clear dierences...

  17. 1H NMR structural characterization of a recombinant kringle 2 domain from human tissue-type plasminogen activator

    International Nuclear Information System (INIS)

    Byeon, I.J.L.; Llinas, M.; Kelley, R.F.

    1989-01-01

    The kringle 2 domain of human tissue-type plasminogen activator (t-PA) has been characterized via 1 H NMR spectroscopy at 300 and 620 MHz. The experiments were performed on the isolated domain obtained by expression of the 174-263 portion of t-PA in Escherichia coli. The spectrum of t-Pa kringle 2 is characteristic of a globular structure and shows overall similarity to that of the plasminogen (PGN) kringle 4. Spectral comparison with human and bovine PGN kringle 4 identified side-chain resonances from Leu 46 , which afford a fingerprint of kringle folding, and from most of the aromatic ring spin systems. Ligand-binding studies confirm that t-PA kringle 2 binds L-lysine with an association constant K a ∼ 11.9 mM -1 . The data indicate that homologous or conserved residues relative to those that compose the lysine-binding sites of PGN kringles 1 and 4 are involved in the binding of L-lysine to t-PA kringle 2. These include Tyr 36 and, within the kringle inner loop, Trp 62 , His 64 , Trp 72 , and Tyr 74 . Several labile NH protons of t-PA kringle 2 exhibit retarded H-exchange kinetics, requiring more than a week in 2 H 2 O for full deuteration in the presence of L-lysine at 37 degree C. This reveals that kringle 2 is endowed with a compact, dynamically stable conformation. Proton Overhauser experiments in 1 H 2 O, centered on well-resolved NH resonances between 9.8 and 12 ppm, identify signals arising from the His 48a imidazole NH3 proton and the three Trp indole NH1 protons. Overall, the data indicate a highly structured conformation for the recombinant t-PA kringle 2 that is closely related to that of the previously investigated PGN kringles 1, 4, and 5

  18. Ceramic membrane ultrafiltration of natural surface water with ultrasound enhanced backwashing.

    Science.gov (United States)

    Boley, A; Narasimhan, K; Kieninger, M; Müller, W-R

    2010-01-01

    Ultrafiltration membrane cleaning with ultrasound enhanced backwashing was investigated with two ceramic membrane systems in parallel. One of them was subjected to ultrasound during backwashing, the other acted as a reference system. The feed water was directly taken from a creek with a sedimentation process as only pre-treatment. The cleaning performance was improved with ultrasound but after 3 weeks of operation damages occurred on the membranes. These effects were studied with online measurements of flux, trans-membrane-pressure and temperature, but also with integrity tests, turbidity measurements and visual examination.

  19. NATO Advanced Study Institute on Synthetic Membranes : Science, Engineering and Applications

    CERN Document Server

    Lonsdale, H; Pinho, M

    1986-01-01

    The chapters in this book are based upon lectures given at the NATO Advanced Study Institute on Synthetic Membranes (June 26-July 8, 1983, Alcabideche, Portugal), which provided an integrated presentation of syn­ thetic membrane science and technology in three broad areas. Currently available membrane formation mechanisms are reviewed, as well as the manner in which synthesis conditions can be controlled to achieve desired membrane structures. Membrane performance in a specific separa­ tionprocess involves complex phenomena, the understanding of which re­ quires a multidisciplinary approach encompassing polymer chemistry, phys­ ical chemistry, and chemical engineering. Progress toward a global understanding of membrane phenomena is described in chapters on the principles of membrane transport. The chapters on membrane processes and applications highlight both established and emerging membrane processes, and elucidate their myriad applications. It is our hope that this book will be an enduring, comprehensi...

  20. Modeling of an integrated fermentation/membrane extraction process for the production of 2-phenylethanol and 2-phenylethylacetate.

    Science.gov (United States)

    Adler, Philipp; Hugen, Thorsten; Wiewiora, Marzena; Kunz, Benno

    2011-03-07

    An unstructured model for an integrated fermentation/membrane extraction process for the production of the aroma compounds 2-phenylethanol and 2-phenylethylacetate by Kluyveromyces marxianus CBS 600 was developed. The extent to which this model, based only on data from the conventional fermentation and separation processes, provided an estimation of the integrated process was evaluated. The effect of product inhibition on specific growth rate and on biomass yield by both aroma compounds was approximated by multivariate regression. Simulations of the respective submodels for fermentation and the separation process matched well with experimental results. With respect to the in situ product removal (ISPR) process, the effect of reduced product inhibition due to product removal on specific growth rate and biomass yield was predicted adequately by the model simulations. Overall product yields were increased considerably in this process (4.0 g/L 2-PE+2-PEA vs. 1.4 g/L in conventional fermentation) and were even higher than predicted by the model. To describe the effect of product concentration on product formation itself, the model was extended using results from the conventional and the ISPR process, thus agreement between model and experimental data improved notably. Therefore, this model can be a useful tool for the development and optimization of an efficient integrated bioprocess. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. The immune marker soluble urokinase plasminogen activator receptor is associated with new-onset diabetes in non-smoking women and men

    DEFF Research Database (Denmark)

    Haugaard, S B; Andersen, O; Hansen, T W

    2012-01-01

    Aim: To explore the putative association of new-onset diabetes and the soluble urokinase plasminogen activator receptor (suPAR), which is a new and stable plasma marker of immune function and low-grade inflammation. This association has been previously suggested by using the less sensitive...... International Classification of Disease system to detect incident diabetes in the Danish MONICA 10 cohort. Methods: The Danish National Diabetes Register enabled more accurate identification of incident diabetes during a median follow-up of 13.8 years in the Danish MONICA 10 cohort (n = 2353 generally healthy......-onset diabetes (P...

  2. The ER in 3-D: a multifunctional dynamic membrane network

    OpenAIRE

    Friedman, Jonathan R.; Voeltz, Gia K.

    2011-01-01

    The endoplasmic reticulum (ER) is a large, singular, membrane-bound organelle that has an elaborate 3-D structure with a diversity of structural domains. It contains regions that are flat and cisternal, ones that are highly curved and tubular, and others adapted to form contact with nearly every other organelle and with the plasma membrane. ER 3-D structure is determined by both integral ER membrane proteins and by interactions with the cytoskeleton. Here, we describe some of the factors that...

  3. Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: Hydrogen and power generation

    International Nuclear Information System (INIS)

    Chutichai, Bhawasut; Authayanun, Suthida; Assabumrungrat, Suttichai; Arpornwichanop, Amornchai

    2013-01-01

    The PEMFC (proton exchange membrane fuel cell) is expected to play a significant role in next-generation energy systems. Because most hydrogen that is used as a fuel for PEMFCs is derived from the reforming of natural gas, the use of renewable energy sources such as biomass to produce this hydrogen offers a promising alternative. This study is focused on the performance analysis of an integrated biomass gasification and PEMFC system. The combined heat and power generation output of this integrated system is designed for residential applications, taking into account thermal and electrical demands. A flowsheet model of the integrated PEMFC system is developed and employed to analyze its performance with respect to various key operating parameters. A purification process consisting of a water–gas shift reactor and a preferential oxidation reactor is also necessary in order to reduce the concentration of CO in the synthesis gas to below 10 ppm for subsequent use in the PEMFC. The effect of load level on the performance of the PEMFC system is investigated. Based on an electrical load of 5 kW, it is found that the electrical efficiency of the PEMFC integrated system is 22%, and, when waste heat recovery is considered, the total efficiency of the PEMFC system is 51%. - Highlights: • Performance of a biomass gasification and PEMFC integrated system is analyzed. • A flowsheet model of the PEMFC integrated system is developed. • Effect of biomass sources and key parameters on hydrogen and power generation is presented. • The PEMFC integrated system is designed for small-scale power demand. • Effect of load changes on the performance of PEMFC is investigated

  4. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  5. Electrospun polyurethane membranes for Tissue Engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Laís P., E-mail: lagabriel@gmail.com [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil); Rodrigues, Ana Amélia [National Institute of Biofabrication, Campinas (Brazil); Department of Medical Sciences, University of Campinas, Campinas (Brazil); Macedo, Milton; Jardini, André L.; Maciel Filho, Rubens [National Institute of Biofabrication, Campinas (Brazil); Department of Chemical Engineering, University of Campinas, Campinas (Brazil)

    2017-03-01

    Tissue Engineering proposes, among other things, tissue regeneration using scaffolds integrated with biological molecules, growth factors or cells for such regeneration. In this research, polyurethane membranes were prepared using the electrospinning technique in order to obtain membranes to be applied in Tissue Engineering, such as epithelial, drug delivery or cardiac applications. The influence of fibers on the structure and morphology of the membranes was studied using scanning electron microscopy (SEM), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), and the thermal stability was analyzed by thermogravimetry analysis (TGA). In vitro cells attachment and proliferation was investigated by SEM, and in vitro cell viability was studied by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays and Live/Dead® assays. It was found that the membranes present an homogeneous morphology, high porosity, high surface area/volume ratio, it was also observed a random fiber network. The thermal analysis showed that the membrane degradation started at 254 °C. In vitro evaluation of fibroblasts cells showed that fibroblasts spread over the membrane surface after 24, 48 and 72 h of culture. This study supports the investigation of electrospun polyurethane membranes as biocompatible scaffolds for Tissue Engineering applications and provides some guidelines for improved biomaterials with desired properties.

  6. Synthesis of zeolite NaA membrane from fused fly ash extract.

    Science.gov (United States)

    Ameh, Alechine E; Musyoka, Nicholas M; Fatoba, Ojo O; Syrtsova, Daria A; Teplyakov, Vladimir V; Petrik, Leslie F

    2016-01-01

    Zeolite-NaA membranes were synthesized from an extract of fused South African fly ash on a porous titanium support by a secondary growth method. The influence of the synthesis molar regime on the formation of zeolite NaA membrane layer was investigated. Two synthesis mixtures were generated by adding either aluminium hydroxide or sodium aluminate to the fused fly ash extract. The feedstock material and the synthesized membranes were characterized by X-diffraction (XRD), scanning electron microscopy (SEM) and X-ray fluorescence spectroscopy (XRF). It was found by XRD and SEM that the cubic crystals of a typical zeolite NaA with a dense intergrown layer was formed on the porous Ti support. The study shows that the source of Al used had an effect on the membrane integrity as sodium aluminate provided the appropriate amount of Na(+) to form a coherent membrane of zeolite NaA, whereas aluminium hydroxide did not. Morphological, the single hydrothermal stage seeded support formed an interlocked array of zeolite NaA particles with neighbouring crystals. Also, a robust, continuous and well-intergrown zeolite NaA membrane was formed with neighbouring crystals of zeolite fused to each other after the multiple stage synthesis. The synthesized membrane was permeable to He (6.0 × 10(6) L m(-2)h(-1) atm(-1)) and CO2 (5.6 × 10(6) L m(-2)h(-1) atm(-1)), which indicate that the layer of the membrane was firmly attached to the porous Ti support. Membrane selectivity was maintained showing membrane integrity with permselectivity of 1.1, showing that a waste feedstock, fly ash, could be utilized for preparing robust zeolite NaA membranes on Ti support.

  7. Membranes for Redox Flow Battery Applications

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-01-01

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention. PMID:24958177

  8. Membranes for redox flow battery applications.

    Science.gov (United States)

    Prifti, Helen; Parasuraman, Aishwarya; Winardi, Suminto; Lim, Tuti Mariana; Skyllas-Kazacos, Maria

    2012-06-19

    The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  9. Membranes for Redox Flow Battery Applications

    Directory of Open Access Journals (Sweden)

    Maria Skyllas-Kazacos

    2012-06-01

    Full Text Available The need for large scale energy storage has become a priority to integrate renewable energy sources into the electricity grid. Redox flow batteries are considered the best option to store electricity from medium to large scale applications. However, the current high cost of redox flow batteries impedes the wide spread adoption of this technology. The membrane is a critical component of redox flow batteries as it determines the performance as well as the economic viability of the batteries. The membrane acts as a separator to prevent cross-mixing of the positive and negative electrolytes, while still allowing the transport of ions to complete the circuit during the passage of current. An ideal membrane should have high ionic conductivity, low water intake and excellent chemical and thermal stability as well as good ionic exchange capacity. Developing a low cost, chemically stable membrane for redox flow cell batteries has been a major focus for many groups around the world in recent years. This paper reviews the research work on membranes for redox flow batteries, in particular for the all-vanadium redox flow battery which has received the most attention.

  10. Nattokinase-promoted tissue plasminogen activator release from human cells.

    Science.gov (United States)

    Yatagai, Chieko; Maruyama, Masugi; Kawahara, Tomoko; Sumi, Hiroyuki

    2008-01-01

    When heated to a temperature of 70 degrees C or higher, the strong fibrinolytic activity of nattokinase in a solution was deactivated. Similar results were observed in the case of using Suc-Ala-Ala-Pro-Phe-pNA and H-D-Val-Leu-Lys-pNA, which are synthetic substrates of nattokinase. In the current study, tests were conducted on the indirect fibrinolytic effects of the substances containing nattokinase that had been deactivated through heating at 121 degrees C for 15 min. Bacillus subtilis natto culture solutions made from three types of bacteria strain were heat-treated and deactivated, and it was found that these culture solutions had the ability to generate tissue plasminogen activators (tPA) from vascular endothelial cells and HeLa cells at certain concentration levels. For example, it was found that the addition of heat-treated culture solution of the Naruse strain (undiluted solution) raises the tPA activity of HeLa cells to about 20 times that of the control. Under the same conditions, tPA activity was raised to a level about 5 times higher for human vascular endothelial cells (HUVEC), and to a level about 24 times higher for nattokinase sold on the market. No change in cell count was observed for HeLa cells and HUVEC in the culture solution at these concentrations, and the level of activity was found to vary with concentration. Copyright 2009 S. Karger AG, Basel.

  11. Bacterial Reaction Centers Purified with Styrene Maleic Acid Copolymer Retain Native Membrane Functional Properties and Display Enhanced Stability**

    Science.gov (United States)

    Swainsbury, David J K; Scheidelaar, Stefan; van Grondelle, Rienk; Killian, J Antoinette; Jones, Michael R

    2014-01-01

    Integral membrane proteins often present daunting challenges for biophysical characterization, a fundamental issue being how to select a surfactant that will optimally preserve the individual structure and functional properties of a given membrane protein. Bacterial reaction centers offer a rare opportunity to compare the properties of an integral membrane protein in different artificial lipid/surfactant environments with those in the native bilayer. Here, we demonstrate that reaction centers purified using a styrene maleic acid copolymer remain associated with a complement of native lipids and do not display the modified functional properties that typically result from detergent solubilization. Direct comparisons show that reaction centers are more stable in this copolymer/lipid environment than in a detergent micelle or even in the native membrane, suggesting a promising new route to exploitation of such photovoltaic integral membrane proteins in device applications. PMID:25212490

  12. A nanoporous gold membrane for sensing applications

    Directory of Open Access Journals (Sweden)

    Swe Zin Oo

    2016-03-01

    Full Text Available Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. Keywords: Nanopore, Polymer sphere, Gold membrane, Plasmons, Sensing, SERS

  13. Proteomic analysis reveals the diversity and complexity of membrane proteins in chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Jaiswal Dinesh Kumar

    2012-10-01

    Full Text Available Abstract Background Compartmentalization is a unique feature of eukaryotes that helps in maintaining cellular homeostasis not only in intra- and inter-organellar context, but also between the cells and the external environment. Plant cells are highly compartmentalized with a complex metabolic network governing various cellular events. The membranes are the most important constituents in such compartmentalization, and membrane-associated proteins play diverse roles in many cellular processes besides being part of integral component of many signaling cascades. Results To obtain valuable insight into the dynamic repertoire of membrane proteins, we have developed a proteome reference map of a grain legume, chickpea, using two-dimensional gel electrophoresis. MALDI-TOF/TOF and LC-ESI-MS/MS analysis led to the identification of 91 proteins involved in a variety of cellular functions viz., bioenergy, stress-responsive and signal transduction, metabolism, protein synthesis and degradation, among others. Significantly, 70% of the identified proteins are putative integral membrane proteins, possessing transmembrane domains. Conclusions The proteomic analysis revealed many resident integral membrane proteins as well as membrane-associated proteins including those not reported earlier. To our knowledge, this is the first report of membrane proteome from aerial tissues of a crop plant. The findings may provide a better understanding of the biochemical machinery of the plant membranes at the molecular level that might help in functional genomics studies of different developmental pathways and stress-responses.

  14. Thermodynamic free energy methods to investigate shape transitions in bilayer membranes.

    Science.gov (United States)

    Ramakrishnan, N; Tourdot, Richard W; Radhakrishnan, Ravi

    2016-06-01

    The conformational free energy landscape of a system is a fundamental thermodynamic quantity of importance particularly in the study of soft matter and biological systems, in which the entropic contributions play a dominant role. While computational methods to delineate the free energy landscape are routinely used to analyze the relative stability of conformational states, to determine phase boundaries, and to compute ligand-receptor binding energies its use in problems involving the cell membrane is limited. Here, we present an overview of four different free energy methods to study morphological transitions in bilayer membranes, induced either by the action of curvature remodeling proteins or due to the application of external forces. Using a triangulated surface as a model for the cell membrane and using the framework of dynamical triangulation Monte Carlo, we have focused on the methods of Widom insertion, thermodynamic integration, Bennett acceptance scheme, and umbrella sampling and weighted histogram analysis. We have demonstrated how these methods can be employed in a variety of problems involving the cell membrane. Specifically, we have shown that the chemical potential, computed using Widom insertion, and the relative free energies, computed using thermodynamic integration and Bennett acceptance method, are excellent measures to study the transition from curvature sensing to curvature inducing behavior of membrane associated proteins. The umbrella sampling and WHAM analysis has been used to study the thermodynamics of tether formation in cell membranes and the quantitative predictions of the computational model are in excellent agreement with experimental measurements. Furthermore, we also present a method based on WHAM and thermodynamic integration to handle problems related to end-point-catastrophe that are common in most free energy methods.

  15. Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices

    Science.gov (United States)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2016-10-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organs-on-a-chip," which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass-based devices have long been utilized in the field of microfluidics but the integration of alternative functional elements within multilayered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimized on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650°C) and quartz/fused silica bonding (1050°C) processes, this method maintains the integrity and functionality of the membrane (Tg 150°C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 h, indicating sufficient bond strength for long-term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  16. Ceramic membranes with mixed conductivity and their application

    International Nuclear Information System (INIS)

    Kozhevnikov, V L; Leonidov, I A; Patrakeev, M V

    2013-01-01

    Data on the catalytic reactors with ceramic membranes possessing mixed oxygen ion and electronic conductivity that make it possible to integrate the processes of oxygen separation and oxidation are analyzed and generalized. The development of this approach is of interest for the design of energy efficient and environmentally friendly processes for processing natural gas and other raw materials. The general issues concerning the primary processing of light alkanes in reactors with oxygen separating membranes are expounded and general demands to the membrane materials are discussed. Particular attention is paid to the process of oxidative conversion of methane to synthesis gas. The bibliography includes 110 references

  17. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  18. Steric exclusion and protein conformation determine the localization of plasma membrane transporters.

    Science.gov (United States)

    Bianchi, Frans; Syga, Łukasz; Moiset, Gemma; Spakman, Dian; Schavemaker, Paul E; Punter, Christiaan M; Seinen, Anne-Bart; van Oijen, Antoine M; Robinson, Andrew; Poolman, Bert

    2018-02-05

    The plasma membrane (PM) of Saccharomyces cerevisiae contains membrane compartments, MCC/eisosomes and MCPs, named after the protein residents Can1 and Pma1, respectively. Using high-resolution fluorescence microscopy techniques we show that Can1 and the homologous transporter Lyp1 are able to diffuse into the MCC/eisosomes, where a limited number of proteins are conditionally trapped at the (outer) edge of the compartment. Upon addition of substrate, the immobilized proteins diffuse away from the MCC/eisosomes, presumably after taking a different conformation in the substrate-bound state. Our data indicate that the mobile fraction of all integral plasma membrane proteins tested shows extremely slow Brownian diffusion through most of the PM. We also show that proteins with large cytoplasmic domains, such as Pma1 and synthetic chimera of Can1 and Lyp1, are excluded from the MCC/eisosomes. We hypothesize that the distinct localization patterns found for these integral membrane proteins in S. cerevisiae arises from a combination of slow lateral diffusion, steric exclusion, and conditional trapping in membrane compartments.

  19. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen.

    Science.gov (United States)

    Oliveira, Rosane; de Morais, Zenaide Maria; Gonçales, Amane Paldes; Romero, Eliete Caló; Vasconcellos, Silvio Arruda; Nascimento, Ana L T O

    2011-01-01

    Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30) and LIC12238. We have employed Escherichia coli BL21 (SI) strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG)-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D), 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively). In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa). Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D) of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.

  20. Characterization of novel OmpA-like protein of Leptospira interrogans that binds extracellular matrix molecules and plasminogen.

    Directory of Open Access Journals (Sweden)

    Rosane Oliveira

    Full Text Available Leptospira interrogans is the etiological agent of leptospirosis, a zoonotic disease of human and veterinary concern. The identification of novel proteins that mediate host-pathogen interactions is important for understanding the bacterial pathogenesis as well as to identify protective antigens that would help fight the disease. We describe in this work the cloning, expression, purification and characterization of three predicted leptospiral membrane proteins, LIC10258, LIC12880 (Lp30 and LIC12238. We have employed Escherichia coli BL21 (SI strain as a host expression system. Recently, we have identified LIC12238 as a plasminogen (PLG-binding receptor. We show now that Lp30 and rLIC10258 are also PLG-receptors of Leptospira, both exhibiting dose-dependent and saturating binding (K(D, 68.8±25.2 nM and 167.39±60.1 nM, for rLIC10258 and rLIC12880, respectively. In addition, LIC10258, which is a novel OmpA-like protein, binds laminin and plasma fibronectin ECM molecules and hence, it was named Lsa66 (Leptospiral surface adhesin of 66 kDa. Binding of Lsa66 to ECM components was determined to be specific, dose-dependent and saturable, with a K(D of 55.4±15.9 nM to laminin and of 290.8±11.8 nM to plasma fibronectin. Binding of the recombinant proteins to PLG or ECM components was assessed by using antibodies against each of the recombinant proteins obtained in mice and confirmed by monoclonal anti-polyhistidine antibodies. Lsa66 caused partial inhibition on leptospiral adherence to immobilized ECM and PLG. Moreover, this adhesin and rLIC12238 are recognized by antibodies in serum samples of confirmed leptospirosis cases. Thus, Lsa66 is a novel OmpA-like protein with dual activity that may promote the attachment of Leptospira to host tissues and may contribute to the leptospiral invasion. To our knowledge, this is the first leptospiral protein with ECM and PLG binding properties reported to date.