WorldWideScience

Sample records for integral field spectrograph

  1. The Oxford SWIFT integral field spectrograph

    Science.gov (United States)

    Thatte, Niranjan; Tecza, Matthias; Clarke, Fraser; Goodsall, Timothy; Lynn, James; Freeman, David; Davies, Roger L.

    2006-06-01

    We present the design of the Oxford SWIFT integral field spectrograph, a dedicated I and z band instrument (0.65μm micron - 1.0μm micron at R~4000), designed to be used in conjunction with the Palomar laser guide star adaptive optics system (PALAO, and its planned upgrade PALM-3000). It builds on two recent developments (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence at wavelengths less than or equal to 1μm micron, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths (close to the silicon band edge). Combining these with a state-of-the-art integral field unit design using an all-glass image slicer, SWIFT's design provides very high throughput and low scattered light. SWIFT simultaneously provides spectra of ~4000 spatial elements, arranged in a rectangular field-of-view of 44 × 89 pixels. It has three on-the-fly selectable pixel scales of 0.24", 0.16" and 0.08'. First light is expected in spring 2008.

  2. An integral field spectrograph utilizing mirrorlet arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-09-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 mÅ) across a 15 Å spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  3. An Integral Field Spectrograph Utilizing Mirrorlet Arrays

    Science.gov (United States)

    Chamberlin, Phillip C.; Gong, Qian

    2016-01-01

    An integral field spectrograph (IFS) has been developed that utilizes a new and novel optical design to observe two spatial dimensions simultaneously with one spectral dimension. This design employs an optical 2-D array of reflecting and focusing mirrorlets. This mirrorlet array is placed at the imaging plane of the front-end telescope to generate a 2-D array of tiny spots replacing what would be the slit in a traditional slit spectrometer design. After the mirrorlet in the optical path, a grating on a concave mirror surface will image the spot array and provide high-resolution spectrum for each spatial element at the same time; therefore, the IFS simultaneously obtains the 3-D data cube of two spatial and one spectral dimensions. The new mirrorlet technology is currently in-house and undergoing laboratory testing at NASA Goddard Space Flight Center. Section 1 describes traditional classes of instruments that are used in Heliophysics missions and a quick introduction to the new IFS design. Section 2 discusses the details of the most generic mirrorlet IFS, while section 3 presents test results of a lab-based instrument. An example application to a Heliophysics mission to study solar eruptive events in extreme ultraviolet wavelengths is presented in section 4 that has high spatial resolution (0.5 arc sec pixels) in the two spatial dimensions and high spectral resolution (66 m) across a 15 spectral window. Section 4 also concludes with some other optical variations that could be employed on the more basic IFS for further capabilities of this type of instrument.

  4. LRS2: A New Integral Field Spectrograph for the HET

    Science.gov (United States)

    Tuttle, Sarah E.; Hill, Gary J.; Chonis, Taylor S.; Tonnesen, Stephanie

    2016-01-01

    Here we present LRS2 (Low Resolution Spectrograph) and highlight early science opportunities with the newly upgraded Hobby Eberly telescope (HET). LRS2 is a four-channel optical wavelength (370nm - 1micron) spectrograph based on two VIRUS unit spectrographs. This fiber-fed integral field spectrograph covers a 12" x 6" field of view, switched between the two units (one blue, and one red) at R~2000. We highlight design elements, including the fundamental modification to grisms (from VPH gratings in VIRUS) to access the higher resolution. We discuss early science opportunities, including investigating nearby "blue-bulge" spiral galaxies and their anomalous star formation distribution.

  5. Calibrating the SNfactory Integral Field Spectrograph (SNIFS) with SCALA

    Science.gov (United States)

    Küsters, Daniel; Lombardo, Simona; Kowalski, Marek; Aldering, Greg; Nordin, Jakob; Rigault, Mickael

    2016-08-01

    The SNIFS CALibration Apparatus (SCALA), a device to calibrate the Supernova Integral Field Spectrograph on the University Hawaii 2.2m telescope, was developed and installed in Spring 2014. SCALA produces an artificial planet with a diameter of 1° and a constant surface brightness. The wavelength of the beam can be tuned between 3200 Å and 10000 Å and has a bandwidth of 35 Å. The amount of light injected into the telescope is monitored with NIST calibrated photodiodes. SCALA was upgraded in 2015 with a mask installed at the entrance pupil of the UH88 telescope, ensuring that the illumination of the telescope by stars is similar to that of SCALA. With this setup, a first calibration run was performed in conjunction with the spectrophotometric observations of standard stars. We present first estimates for the expected systematic uncertainties of the in-situ calibration and discuss the results of tests that examine the influence of stray light produced in the optics.

  6. SCALA: In situ calibration for integral field spectrographs

    Science.gov (United States)

    Lombardo, S.; Küsters, D.; Kowalski, M.; Aldering, G.; Antilogus, P.; Bailey, S.; Baltay, C.; Barbary, K.; Baugh, D.; Bongard, S.; Boone, K.; Buton, C.; Chen, J.; Chotard, N.; Copin, Y.; Dixon, S.; Fagrelius, P.; Feindt, U.; Fouchez, D.; Gangler, E.; Hayden, B.; Hillebrandt, W.; Hoffmann, A.; Kim, A. G.; Leget, P.-F.; McKay, L.; Nordin, J.; Pain, R.; Pécontal, E.; Pereira, R.; Perlmutter, S.; Rabinowitz, D.; Reif, K.; Rigault, M.; Rubin, D.; Runge, K.; Saunders, C.; Smadja, G.; Suzuki, N.; Taubenberger, S.; Tao, C.; Thomas, R. C.; Nearby Supernova Factory

    2017-11-01

    Aims: The scientific yield of current and future optical surveys is increasingly limited by systematic uncertainties in the flux calibration. This is the case for type Ia supernova (SN Ia) cosmology programs, where an improved calibration directly translates into improved cosmological constraints. Current methodology rests on models of stars. Here we aim to obtain flux calibration that is traceable to state-of-the-art detector-based calibration. Methods: We present the SNIFS Calibration Apparatus (SCALA), a color (relative) flux calibration system developed for the SuperNova integral field spectrograph (SNIFS), operating at the University of Hawaii 2.2 m (UH 88) telescope. Results: By comparing the color trend of the illumination generated by SCALA during two commissioning runs, and to previous laboratory measurements, we show that we can determine the light emitted by SCALA with a long-term repeatability better than 1%. We describe the calibration procedure necessary to control for system aging. We present measurements of the SNIFS throughput as estimated by SCALA observations. Conclusions: The SCALA calibration unit is now fully deployed at the UH 88 telescope, and with it color-calibration between 4000 Å and 9000 Å is stable at the percent level over a one-year baseline.

  7. Study of an integral field spectrograph for the SNAP satellite. Prototype, simulation and performances

    International Nuclear Information System (INIS)

    Aumeunier, Marie-Helene

    2007-01-01

    The SNAP (Supernovae/Acceleration Probe) project plans to measure very precisely the cosmological parameters and to determine the nature of dark energy by observations of type Ia supernovae and weak lensing. The SNAP instrument consists in a 2-meter telescope with a one square-degree imager and a spectrograph in the visible and infrared range. A dedicated optimized integral field spectrograph based on an imager slicer technology has been developed. To test and validate the performances, two approaches have been developed: a complete simulation of the complete instrument at the pixel level and the manufacturing and test of a spectrograph prototype operating at room temperature and in cryogenic environment. In this thesis we will test the optical and functional performances of the SNAP spectrograph: especially diffraction losses, stray-light and spectro-photometric calibration. We present an original approach for the spectro-photometric calibration adapted for the slicer and the optical performances resulting from the first measurement campaign in the visible range. (author) [fr

  8. Using an integral-field unit spectrograph to study radical species in cometary coma

    Science.gov (United States)

    Lewis, Benjamin; Pierce, Donna M.; Vaughan, Charles M.; Cochran, Anita

    2015-01-01

    We have observed several comets using an integral-field unit spectrograph (the George and Cynthia Mitchell Spectrograph) on the 2.7m Harlan J. Smith telescope at McDonald Observatory. Full-coma spectroscopic images were obtained for various radical species (C2, C3, CN, NH2). Various coma enhancements were used to identify and characterize coma morphological features. The azimuthal average profiles and the Haser model were used to determine production rates and possible parent molecules. Here, we present the work completed to date, and we compare our results to other comet taxonomic surveys. This work was funded by the National Science Foundation Graduate K-12 (GK-12) STEM Fellows program (Award No. DGE-0947419), NASA's Planetary Atmospheres program (Award No. NNX14AH18G), and the Fund for Astrophysical Research, Inc.

  9. Development of micro-mirror slicer integral field unit for space-borne solar spectrographs

    Science.gov (United States)

    Suematsu, Yoshinori; Saito, Kosuke; Koyama, Masatsugu; Enokida, Yukiya; Okura, Yukinobu; Nakayasu, Tomoyasu; Sukegawa, Takashi

    2017-12-01

    We present an innovative optical design for image slicer integral field unit (IFU) and a manufacturing method that overcomes optical limitations of metallic mirrors. Our IFU consists of a micro-mirror slicer of 45 arrayed, highly narrow, flat metallic mirrors and a pseudo-pupil-mirror array of off-axis conic aspheres forming three pseudo slits of re-arranged slicer images. A prototype IFU demonstrates that the final optical quality is sufficiently high for a visible light spectrograph. Each slicer micro-mirror is 1.58 mm long and 30 μm wide with surface roughness ≤1 nm rms, and edge sharpness ≤ 0.1 μm, etc. This IFU is small size and can be implemented in a multi-slit spectrograph without any moving mechanism and fore optics, in which one slit is real and the others are pseudo slits from the IFU. The IFU mirrors were deposited by a space-qualified, protected silver coating for high reflectivity in visible and near IR wavelength regions. These properties are well suitable for space-borne spectrograph such as the future Japanese solar space mission SOLAR-C. We present the optical design, performance of prototype IFU, and space qualification tests of the silver coating.

  10. The Goddard Integral Field Spectrograph at Apache Point Observatory: Current Status and Progress Towards Photon Counting

    Science.gov (United States)

    McElwain, Michael W.; Grady, Carol A.; Bally, John; Brinkmann, Jonathan V.; Bubeck, James; Gong, Qian; Hilton, George M.; Ketzeback, William F.; Lindler, Don; Llop Sayson, Jorge; Malatesta, Michael A.; Norton, Timothy; Rauscher, Bernard J.; Rothe, Johannes; Straka, Lorrie; Wilkins, Ashlee N.; Wisniewski, John P.; Woodgate, Bruce E.; York, Donald G.

    2015-01-01

    We present the current status and progress towards photon counting with the Goddard Integral Field Spectrograph (GIFS), a new instrument at the Apache Point Observatory's ARC 3.5m telescope. GIFS is a visible light imager and integral field spectrograph operating from 400-1000 nm over a 2.8' x 2.8' and 14' x 14' field of view, respectively. As an IFS, GIFS obtains over 1000 spectra simultaneously and its data reduction pipeline reconstructs them into an image cube that has 32 x 32 spatial elements and more than 200 spectral channels. The IFS mode can be applied to a wide variety of science programs including exoplanet transit spectroscopy, protostellar jets, the galactic interstellar medium probed by background quasars, Lyman-alpha emission line objects, and spectral imaging of galactic winds. An electron-multiplying CCD (EMCCD) detector enables photon counting in the high spectral resolution mode to be demonstrated at the ARC 3.5m in early 2015. The EMCCD work builds upon successful operational and characterization tests that have been conducted in the IFS laboratory at NASA Goddard. GIFS sets out to demonstrate an IFS photon-counting capability on-sky in preparation for future exoplanet direct imaging missions such as the AFTA-Coronagraph, Exo-C, and ATLAST mission concepts. This work is supported by the NASA APRA program under RTOP 10-APRA10-0103.

  11. Laboratory Testing and Performance Verification of the CHARIS Integral Field Spectrograph

    Science.gov (United States)

    Groff, Tyler D.; Chilcote, Jeffrey; Kasdin, N. Jeremy; Galvin, Michael; Loomis, Craig; Carr, Michael A.; Brandt, Timothy; Knapp, Gillian; Limbach, Mary Anne; Guyon, Olivier; hide

    2016-01-01

    The Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) is an integral field spectrograph (IFS) that has been built for the Subaru telescope. CHARIS has two imaging modes; the high-resolution mode is R82, R69, and R82 in J, H, and K bands respectively while the low-resolution discovery mode uses a second low-resolution prism with R19 spanning 1.15-2.37 microns (J+H+K bands). The discovery mode is meant to augment the low inner working angle of the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) adaptive optics system, which feeds CHARIS a coronagraphic image. The goal is to detect and characterize brown dwarfs and hot Jovian planets down to contrasts five orders of magnitude dimmer than their parent star at an inner working angle as low as 80 milliarcseconds. CHARIS constrains spectral crosstalk through several key aspects of the optical design. Additionally, the repeatability of alignment of certain optical components is critical to the calibrations required for the data pipeline. Specifically the relative alignment of the lens let array, prism, and detector must be highly stable and repeatable between imaging modes. We report on the measured repeatability and stability of these mechanisms, measurements of spectral crosstalk in the instrument, and the propagation of these errors through the data pipeline. Another key design feature of CHARIS is the prism, which pairs Barium Fluoride with Ohara L-BBH2 high index glass. The dispersion of the prism is significantly more uniform than other glass choices, and the CHARIS prisms represent the first NIR astronomical instrument that uses L-BBH2as the high index material. This material choice was key to the utility of the discovery mode, so significant efforts were put into cryogenic characterization of the material. The final performance of the prism assemblies in their operating environment is described in detail. The spectrograph is going through final alignment, cryogenic cycling, and is being

  12. A flux calibration device for the SuperNova Integral Field Spectrograph (SNIFS)

    Science.gov (United States)

    Lombardo, Simona; Aldering, Greg; Hoffmann, Akos; Kowalski, Marek; Kuesters, Daniel; Reif, Klaus; Rigault, Michael

    2014-07-01

    Observational cosmology employing optical surveys often require precise flux calibration. In this context we present SNIFS Calibration Apparatus (SCALA), a flux calibration system developed for the SuperNova Integral Field Spectrograph (SNIFS), operating at the University of Hawaii 2.2 m telescope. SCALA consists of a hexagonal array of 18 small parabolic mirrors distributed over the face of, and feeding parallel light to, the telescope entrance pupil. The mirrors are illuminated by integrating spheres and a wavelength-tunable (from UV to IR) light source, generating light beams with opening angles of 1°. These nearly parallel beams are flat and flux-calibrated at a subpercent level, enabling us to calibrate our "telescope + SNIFS system" at the required precision.

  13. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  14. SpecOp: Optimal Extraction Software for Integral Field Unit Spectrographs

    Science.gov (United States)

    McCarron, Adam; Ciardullo, Robin; Eracleous, Michael

    2018-01-01

    The Hobby-Eberly Telescope’s new low resolution integral field spectrographs, LRS2-B and LRS2-R, each cover a 12”x6” area on the sky with 280 fibers and generate spectra with resolutions between R=1100 and R=1900. To extract 1-D spectra from the instrument’s 3D data cubes, a program is needed that is flexible enough to work for a wide variety of targets, including continuum point sources, emission line sources, and compact sources embedded in complex backgrounds. We therefore introduce SpecOp, a user-friendly python program for optimally extracting spectra from integral-field unit spectrographs. As input, SpecOp takes a sky-subtracted data cube consisting of images at each wavelength increment set by the instrument’s spectral resolution, and an error file for each count measurement. All of these files are generated by the current LRS2 reduction pipeline. The program then collapses the cube in the image plane using the optimal extraction algorithm detailed by Keith Horne (1986). The various user-selected options include the fraction of the total signal enclosed in a contour-defined region, the wavelength range to analyze, and the precision of the spatial profile calculation. SpecOp can output the weighted counts and errors at each wavelength in various table formats using python’s astropy package. We outline the algorithm used for extraction and explain how the software can be used to easily obtain high-quality 1-D spectra. We demonstrate the utility of the program by applying it to spectra of a variety of quasars and AGNs. In some of these targets, we extract the spectrum of a nuclear point source that is superposed on a spatially extended galaxy.

  15. The Keck Cosmic Web Imager (KCWI): A Powerful New Integral Field Spectrograph for the Keck Observatory

    Science.gov (United States)

    Morrissey, Patrick; KCWI Team

    2013-01-01

    The Keck Cosmic Web Imager (KCWI) is a new facility instrument being developed for the W. M. Keck Observatory and funded for construction by the Telescope System Instrumentation Program (TSIP) of the National Science Foundation (NSF). KCWI is a bench-mounted spectrograph for the Keck II right Nasmyth focal station, providing integral field spectroscopy over a seeing-limited field up to 20"x33" in extent. Selectable Volume Phase Holographic (VPH) gratings provide high efficiency and spectral resolution in the range of 1000 to 20000. The dual-beam design of KCWI passed a Preliminary Design Review in summer 2011. The detailed design of the KCWI blue channel (350 to 700 nm) is now nearly complete, with the red channel (530 to 1050 nm) planned for a phased implementation contingent upon additional funding. KCWI builds on the experience of the Caltech team in implementing the Cosmic Web Imager (CWI), in operation since 2009 at Palomar Observatory. KCWI adds considerable flexibility to the CWI design, and will take full advantage of the excellent seeing and dark sky above Mauna Kea with a selectable nod-and-shuffle observing mode. The KCWI team is lead by Caltech (project management, design and implementation) in partnership with the University of California at Santa Cruz (camera optical and mechanical design) and the W. M. Keck Observatory (program oversight and observatory interfaces).

  16. GMTIFS: the adaptive optics beam steering mirror for the GMT integral-field spectrograph

    Science.gov (United States)

    Davies, J.; Bloxham, G.; Boz, R.; Bundy, D.; Espeland, B.; Fordham, B.; Hart, J.; Herrald, N.; Nielsen, J.; Sharp, R.; Vaccarella, A.; Vest, C.; Young, P. J.

    2016-07-01

    To achieve the high adaptive optics sky coverage necessary to allow the GMT Integral-Field Spectrograph (GMTIFS) to access key scientific targets, the on-instrument adaptive-optics wavefront-sensing (OIWFS) system must patrol the full 180 arcsecond diameter guide field passed to the instrument. The OIWFS uses a diffraction limited guide star as the fundamental pointing reference for the instrument. During an observation the offset between the science target and the guide star will change due to sources such as flexure, differential refraction and non-sidereal tracking rates. GMTIFS uses a beam steering mirror to set the initial offset between science target and guide star and also to correct for changes in offset. In order to reduce image motion from beam steering errors to those comparable to the AO system in the most stringent case, the beam steering mirror is set a requirement of less than 1 milliarcsecond RMS. This corresponds to a dynamic range for both actuators and sensors of better than 1/180,000. The GMTIFS beam steering mirror uses piezo-walk actuators and a combination of eddy current sensors and interferometric sensors to achieve this dynamic range and control. While the sensors are rated for cryogenic operation, the actuators are not. We report on the results of prototype testing of single actuators, with the sensors, on the bench and in a cryogenic environment. Specific failures of the system are explained and suspected reasons for them. A modified test jig is used to investigate the option of heating the actuator and we report the improved results. In addition to individual component testing, we built and tested a complete beam steering mirror assembly. Testing was conducted with a point source microscope, however controlling environmental conditions to less than 1 micron was challenging. The assembly testing investigated acquisition accuracy and if there was any un-sensed hysteresis in the system. Finally we present the revised beam steering mirror

  17. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    OpenAIRE

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-01-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for ver...

  18. 15x optical zoom and extreme optical image stabilisation: diffraction limited integral field spectroscopy with the Oxford SWIFT spectrograph

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard

    2012-09-01

    When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.

  19. Spectro-photometric calibration of the SuperNova Integral Field Spectrograph in the Nearby Supernova Factory collaboration framework

    International Nuclear Information System (INIS)

    Buton, Clement

    2009-01-01

    Ten years ago, type Ia supernovae used as distances indicators led to the discovery of the accelerating expansion of the universe. Today, a second generation of surveys has significantly increased the high-redshift type Ia supernovae sample. The low-redshift sample was however still limiting the cosmological analysis using SNe. In this framework, the Nearby Supernova Factory has followed 200 nearby type Ia supernovae using the dedicated Supernovae Integral Field Spectrograph with spectro-photometric capacities. My PhD thesis has been carried out at the Institut de Physique Nucleaire de Lyon and at the Lawrence Berkeley National Laboratory in the framework of the international cosmological project SNfactory. In order to reach the design spectrophotometric accuracy, attention has been focused on several key aspects of the calibration procedure, including: determination of a dedicated point spread function for 3D point source extraction, estimating the nightly photometric quality, derivation of the nightly sky extinction over the extended optical domain, its modeling in terms of physical components and its variability within a given night. A full multi-standards calibration pipeline has been implemented using approximately 4000 observations of spectrophotometric standard stars taken throughout the night over nearly 500 individual nights. Preliminary scientific results of the whole SNfactory collaboration will be presented at the end of this thesis. (author)

  20. Data reduction pipeline for the CHARIS integral-field spectrograph I: detector readout calibration and data cube extraction

    Science.gov (United States)

    Brandt, Timothy D.; Rizzo, Maxime; Groff, Tyler; Chilcote, Jeffrey; Greco, Johnny P.; Kasdin, N. Jeremy; Limbach, Mary Anne; Galvin, Michael; Loomis, Craig; Knapp, Gillian; McElwain, Michael W.; Jovanovic, Nemanja; Currie, Thayne; Mede, Kyle; Tamura, Motohide; Takato, Naruhisa; Hayashi, Masahiko

    2017-10-01

    We present the data reduction pipeline for CHARIS, a high-contrast integral-field spectrograph for the Subaru Telescope. The pipeline constructs a ramp from the raw reads using the measured nonlinear pixel response and reconstructs the data cube using one of three extraction algorithms: aperture photometry, optimal extraction, or χ2 fitting. We measure and apply both a detector flatfield and a lenslet flatfield and reconstruct the wavelength- and position-dependent lenslet point-spread function (PSF) from images taken with a tunable laser. We use these measured PSFs to implement a χ2-based extraction of the data cube, with typical residuals of ˜5% due to imperfect models of the undersampled lenslet PSFs. The full two-dimensional residual of the χ2 extraction allows us to model and remove correlated read noise, dramatically improving CHARIS's performance. The χ2 extraction produces a data cube that has been deconvolved with the line-spread function and never performs any interpolations of either the data or the individual lenslet spectra. The extracted data cube also includes uncertainties for each spatial and spectral measurement. CHARIS's software is parallelized, written in Python and Cython, and freely available on github with a separate documentation page. Astrometric and spectrophotometric calibrations of the data cubes and PSF subtraction will be treated in a forthcoming paper.

  1. The Development of Replicated Optical Integral Field Spectrographs and their Application to the Study of Lyman-alpha Emission at Moderate Redshifts

    Science.gov (United States)

    Chonis, Taylor Steven

    In the upcoming era of extremely large ground-based astronomical telescopes, the design of wide-field spectroscopic survey instrumentation has become increasingly complex due to the linear growth of instrument pupil size with telescope diameter for a constant spectral resolving power. The upcoming Visible Integral field Replicable Unit Spectrograph (VIRUS), a baseline array of 150 copies of a simple integral field spectrograph that will be fed by 3:36 x 104 optical fibers on the upgraded Hobby-Eberly Telescope (HET) at McDonald Observatory, represents one of the first uses of large-scale replication to break the relationship between instrument pupil size and telescope diameter. By dividing the telescope's field of view between a large number of smaller and more manageable instruments, the total information grasp of a traditional monolithic survey spectrograph can be achieved at a fraction of the cost and engineering complexity. To highlight the power of this method, VIRUS will execute the HET Dark Energy Experiment (HETDEX) and survey & 420 degrees2 of sky to an emission line flux limit of ˜ 10-17 erg s-1 cm -2 to detect ˜ 106 Lyman-alpha emitting galaxies (LAEs) as probes of large-scale structure at redshifts of 1:9 production of the suite of volume phase holographic (VPH) diffraction gratings for VIRUS is presented, which highlights the challenge and success associated with producing of a very large number of highly customized optical elements whose performance is crucial to meeting the efficiency requirements of the spectrograph system. To accommodate VIRUS, the HET is undergoing a substantial wide-field upgrade to increase its field of view to 22' in diameter. The previous HET facility Low Resolution Spectrograph (LRS), which was directly fed by the telescope's previous spherical aberration corrector, must be removed from the prime focus instrument package as a result of the telescope upgrades and instead be fiber-coupled to the telescope focal plane. For a

  2. Field Raman Spectrograph for Environmental Analysis

    International Nuclear Information System (INIS)

    Sylvia, J.M.; Haas, J.W.; Spencer, K.M.; Carrabba, M.M.; Rauh, R.D.; Forney, R.W.; Johnston, T.M.

    1998-01-01

    The widespread contamination found across the US Department of Energy (DOE) complex has received considerable attention from the government and public alike. A massive site characterization and cleanup effort has been underway for several years and is expected to continue for several decades more. The scope of the cleanup effort ranges from soil excavation and treatment to complete dismantling and decontamination of whole buildings. To its credit, DOE has supported research and development of new technologies to speed up and reduce the cost of this effort. One area in particular has been the development of portable instrumentation that can be used to perform analytical measurements in the field. This approach provides timely data to decision makers and eliminates the expense, delays, and uncertainties of sample preservation, transport, storage, and laboratory analysis. In this program, we have developed and demonstrated in the field a transportable, high performance Raman spectrograph that can be used to detect and identify contaminants in a variety of scenarios. With no moving parts, the spectrograph is rugged and can perform many Raman measurements in situ with flexible fiber optic sampling probes. The instrument operates under computer control and a software package has been developed to collect and process spectral data. A collection of Raman spectra for 200 contaminants of DOE importance has been compiled in a searchable format to assist in the identification of unknown contaminants in the field

  3. Field Raman spectrograph for environmental analysis

    International Nuclear Information System (INIS)

    Haas, J.W. III; Forney, R.W.; Carrabba, M.M.; Rauh, R.D.

    1995-01-01

    The enormous cost for chemical analysis at DOE facilities predicates that cost-saving measures be implemented. Many approaches, ranging from increasing laboratory sample throughput by reducing preparation time to the development of field instrumentation, are being explored to meet this need. Because of the presence of radioactive materials at many DOE sites, there is also a need for methods that are safer for site personnel and analysts. This project entails the development of a compact Raman spectrograph for field screening and monitoring of a wide variety of wastes, pollutants, and corrosion products in storage tanks, soils, and ground and surface waters. Analytical advantages of the Raman technique include its ability to produce a unique, spectral fingerprint for each contaminant and its ability to analyze both solids and liquids directly, without the need for isolation or cleanup

  4. APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Crepp, Justin R.; Hinkley, Sasha; Hillenbrand, Lynne; Dekany, Richard; Bouchez, Antonin; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C.; Shao, Mike; Burruss, Rick; Brenner, Douglas; Oppenheimer, Ben R.; Zimmerman, Neil; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    High-contrast imaging instruments are now being equipped with integral field spectrographs (IFSs) to facilitate the detection and characterization of faint substellar companions. Algorithms currently envisioned to handle IFS data, such as the Locally Optimized Combination of Images (LOCI) algorithm, rely on aggressive point-spread function (PSF) subtraction, which is ideal for initially identifying companions but results in significantly biased photometry and spectroscopy owing to unwanted mixing with residual starlight. This spectrophotometric issue is further complicated by the fact that algorithmic color response is a function of the companion's spectrum, making it difficult to calibrate the effects of the reduction without using iterations involving a series of injected synthetic companions. In this paper, we introduce a new PSF calibration method, which we call 'damped LOCI', that seeks to alleviate these concerns. By modifying the cost function that determines the weighting coefficients used to construct PSF reference images, and also forcing those coefficients to be positive, it is possible to extract companion spectra with a precision that is set by calibration of the instrument response and transmission of the atmosphere, and not by post-processing. We demonstrate the utility of this approach using on-sky data obtained with the Project 1640 IFS at Palomar. Damped LOCI does not require any iterations on the underlying spectral type of the companion, nor does it rely on priors involving the chromatic and statistical properties of speckles. It is a general technique that can readily be applied to other current and planned instruments that employ IFSs.

  5. Linking the X3D Pathway to Integral Field Spectrographs: YSNR 1E 0102.2-7219 in the SMC as a Case Study

    Science.gov (United States)

    Vogt, Frédéric P. A.; Seitenzahl, Ivo R.; Dopita, Michael A.; Ruiter, Ashley J.

    2017-05-01

    The concept of the x3d pathway was introduced by Vogt et al. as a new approach to sharing and publishing three-dimensional structures interactively in online scientific journals. The core characteristics of the x3d pathway are that: (1) it does not rely on specific software, but rather a file format (x3d), (2) it can be implemented using fully open-source tools, and (3) article readers can access the interactive models using most main stream web browsers without the need for any additional plugins. In this article, we further demonstrate the potential of the x3d pathway to visualize data sets from optical integral field spectrographs. We use recent observations of the oxygen-rich young supernova remnant 1E 0102.2-7219 in the Small Magellanic Cloud to implement additional x3dom tools & techniques and expand the range of interactions that can be offered to article readers. In particular, we present a set of javascript functions allowing the creation and interactive handling of clip planes, effectively allowing users to take measurements of distances and angles directly from the interactive model itself.

  6. A soft X-Ray flat field grating spectrograph and its experimental applications

    International Nuclear Information System (INIS)

    Ni Yuanlong; Mao Chusheng

    2001-01-01

    The principle, structure, and application results of a flat field grating spectrograph for X-ray laser research is presented. There are two kinds of the spectrograph. One uses a varied space grating with nominal line spacing 1200 l/mm, the spectral detection range is 5 - 50 nm, and another uses a 2400 l/mm varied line space grating, detection range is 1 - 10 nm. The experimental results of the former is introduced only. Both experimental results of this instrument using the soft X-ray film and a streak camera as the detecting elements are given. The spectral resolutions are 0.01 nm and 0.05 nm, respectively. The temporal resolution is 30 ps. Finally, the stigmatic structure of the spectrograph is introduced, which uses cylindrical mirror and spherical mirror as a focusing system. The magnification is 5, spatial resolution is 25 μm. The experimental results are given as well

  7. Spectrographic analysis

    International Nuclear Information System (INIS)

    Quinn, C.A.

    1983-01-01

    The article deals with spectrographic analysis and the analytical methods based on it. The theory of spectrographic analysis is discussed as well as the layout of a spectrometer system. The infrared absorption spectrum of a compound is probably its most unique property. The absorption of infrared radiation depends on increasing the energy of vibration and rotation associated with a covalent bond. The infrared region is intrinsically low in energy thus the design of infrared spectrometers is always directed toward maximising energy throughput. The article also considers atomic absorption - flame atomizers, non-flame atomizers and the source of radiation. Under the section an emission spectroscopy non-electrical energy sources, electrical energy sources and electrical flames are discussed. Digital computers form a part of the development on spectrographic instrumentation

  8. CALIFA, the Calar alto legacy integral field area survey

    DEFF Research Database (Denmark)

    Husemann, B.; Jahnke, K.; Sánchez, S. F.

    2013-01-01

    We present the first public data release (DR1) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. It consists of science-grade optical datacubes for the first 100 of eventually 600 nearby (0.005 < z < 0.03) galaxies, obtained with the integral-field spectrograph PMAS/PPak mounted on th...... the available interfaces and tools that allow easy access to this first publicCALIFA data at http://califa.caha.es/DR1....

  9. MUSE integral-field spectroscopy towards the Frontier Fields cluster Abell S1063 I. Data products and redshift identifications

    NARCIS (Netherlands)

    Karman, W.; Caputi, K. I.; Grillo, C.; Balestra, I.; Rosati, P.; Vanzella, E.; Coe, D.; Christensen, L.; Koekemoer, A. M.; Kruehler, T.; Lombardi, M.; Mercurio, A.; Nonino, M.; van der Wel, A.

    We present the first observations of the Frontier Fields cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer ( MUSE) integral field spectrograph. Because of the relatively large field of view ( 1 arcmin(2)), MUSE is ideal to simultaneously target multiple galaxies

  10. Design drivers for a wide-field multi-object spectrograph for the William Herschel Telescope

    NARCIS (Netherlands)

    Balcells, Marc; Benn, Chris R.; Carter, David; Dalton, Gavin B.; Trager, Scott C.; Feltzing, Sofia; Verheijen, M.A.W.; Jarvis, Matt; Percival, Will; Abrams, Don C.; Agocs, Tibor; Brown, Anthony G. A.; Cano, Diego; Evans, Chris; Helmi, Amina; Lewis, Ian J.; McLure, Ross; Peletier, Reynier F.; Pérez-Fournon, Ismael; Sharples, Ray M.; Tosh, Ian A. J.; Trujillo, Ignacio; Walton, Nic; Westhall, Kyle B.

    Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a

  11. The Mitchell Spectrograph: Studying Nearby Galaxies with the VIRUS Prototype

    Directory of Open Access Journals (Sweden)

    Guillermo A. Blanc

    2013-01-01

    Full Text Available The Mitchell Spectrograph (a.k.a. VIRUS-P on the 2.7 m Harlan J. Smith telescope at McDonald Observatory is currently the largest field of view (FOV integral field unit (IFU spectrograph in the world (1.7′×1.7′. It was designed as a prototype for the highly replicable VIRUS spectrograph which consists of a mosaic of IFUs spread over a 16′ diameter FOV feeding 150 spectrographs similar to the Mitchell. VIRUS will be deployed on the 9.2 meter Hobby-Eberly Telescope (HET and will be used to conduct the HET Dark Energy Experiment (HETDEX. Since seeing first light in 2007 the Mitchell Spectrograph has been widely used, among other things, to study nearby galaxies in the local universe where their internal structure and the spatial distribution of different physical parameters can be studied in great detail. These observations have provided important insight into many aspects of the physics behind the formation and evolution of galaxies and have boosted the scientific impact of the 2.7 meter telescope enormously. Here I review the contributions of the Mitchell Spectrograph to the study of nearby galaxies, from the investigation the spatial distribution of dark matter and the properties of supermassive black holes, to the studies of the process of star formation and the chemical composition of stars and gas in the ISM, which provide important information regarding the formation and evolution of these systems. I highlight the fact that wide field integral field spectrographs on small and medium size telescopes can be powerful cost effective tools to study the astrophysics of galaxies. Finally I briefly discuss the potential of HETDEX for conducting studies on nearby galaxies. The survey parameters make it complimentary and competitive to ongoing and future surveys like SAMI and MANGA.

  12. PMAS: The Potsdam Multi-Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak

    NARCIS (Netherlands)

    Kelz, Andreas; Verheijen, Marc A. W.; Roth, Martin M.; Bauer, Svend M.; Becker, Thomas; Paschke, Jens; Popow, Emil; Sánchez, Sebastian F.; Laux, Uwe

    2006-01-01

    PPak is a new fiber-based integral field unit (IFU) developed at the Astrophysical Institute of Potsdam and implemented as a module into the existing Potsdam Multi-Aperture Spectrophotometer (PMAS) spectrograph. The purpose of PPak is to provide an extended field of view with a large

  13. BIGRE: A LOW CROSS-TALK INTEGRAL FIELD UNIT TAILORED FOR EXTRASOLAR PLANETS IMAGING SPECTROSCOPY

    International Nuclear Information System (INIS)

    Antichi, Jacopo; Mouillet, David; Puget, Pascal; Beuzit, Jean-Luc; Dohlen, Kjetil; Gratton, Raffaele G.; Mesa, Dino; Claudi, Riccardo U.; Giro, Enrico; Boccaletti, Anthony

    2009-01-01

    Integral field spectroscopy represents a powerful technique for the detection and characterization of extrasolar planets through high-contrast imaging since it allows us to obtain simultaneously a large number of monochromatic images. These can be used to calibrate and then to reduce the impact of speckles, once their chromatic dependence is taken into account. The main concern in designing integral field spectrographs for high-contrast imaging is the impact of the diffraction effects and the noncommon path aberrations together with an efficient use of the detector pixels. We focus our attention on integral field spectrographs based on lenslet arrays, discussing the main features of these designs: the conditions of appropriate spatial and spectral sampling of the resulting spectrograph's slit functions and their related cross-talk terms when the system works at the diffraction limit. We present a new scheme for the integral field unit based on a dual-lenslet device (BIGRE), that solves some of the problems related to the classical Traitement Integral des Galaxies par l'Etude de leurs Rays (TIGER) design when used for such applications. We show that BIGRE provides much lower cross-talk signals than TIGER, allowing a more efficient use of the detector pixels and a considerable saving of the overall cost of a lenslet-based integral field spectrograph.

  14. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  15. Princeton Cyclotron QDDD spectrograph system

    International Nuclear Information System (INIS)

    Kouzes, R.T.

    1985-01-01

    A review of experiments involving the Princeton Quadrupole-Dipole-Dipole- Dipole (QDDD) spectrograph is given. The QDDD is a high resolution, large solid angle device which is combined with the azymuthally varying field (AVF) cyclotron. Some reactions involving 3 He beams are discussed

  16. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  17. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    OpenAIRE

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-01-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235";, 0.16", and 0.08" per spaxel. It employs two 250μ...

  18. MUSE integral-field spectroscopy towards the Frontier Fields Cluster Abell S1063

    DEFF Research Database (Denmark)

    Karman, W.; Caputi, K. I.; Grillo, C.

    2015-01-01

    We present the first observations of the Frontier Fields Cluster Abell S1063 taken with the newly commissioned Multi Unit Spectroscopic Explorer (MUSE) integral field spectrograph. Because of the relatively large field of view (1 arcmin^2), MUSE is ideal to simultaneously target multiple galaxies...... the cluster, we find 17 galaxies at higher redshift, including three previously unknown Lyman-alpha emitters at z>3, and five multiply-lensed galaxies. We report the detection of a new z=4.113 multiply lensed galaxy, with images that are consistent with lensing model predictions derived for the Frontier...... of scientific topics that can be addressed with a single MUSE pointing. We conclude that MUSE is a very efficient instrument to observe galaxy clusters, enabling their mass modelling, and to perform a blind search for high-redshift galaxies....

  19. The deterministic optical alignment of the HERMES spectrograph

    Science.gov (United States)

    Gers, Luke; Staszak, Nicholas

    2014-07-01

    The High Efficiency and Resolution Multi Element Spectrograph (HERMES) is a four channel, VPH-grating spectrograph fed by two 400 fiber slit assemblies whose construction and commissioning has now been completed at the Anglo Australian Telescope (AAT). The size, weight, complexity, and scheduling constraints of the system necessitated that a fully integrated, deterministic, opto-mechanical alignment system be designed into the spectrograph before it was manufactured. This paper presents the principles about which the system was assembled and aligned, including the equipment and the metrology methods employed to complete the spectrograph integration.

  20. Integrated solution for field operations

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, Renaud; Dionis, Francois [EDF, Chatou (France)

    2014-08-15

    This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted.

  1. Integrated solution for field operations

    International Nuclear Information System (INIS)

    Aubin, Renaud; Dionis, Francois

    2014-01-01

    This document presents our approach to design and to implement mobile applications for field operations. Internal on-field studies yield to the fact that the value added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted

  2. Integrated solution for field operations

    International Nuclear Information System (INIS)

    Aubin, Renaud; Dionis, Francois

    2014-01-01

    This paper presents the authors' approach to design and to implement mobile applications for field operations. Internal on-field studies can yield the fact that the value-added by mobile solutions is correlated with the easiness of their integration with each other and with the underlying information systems. Moreover, the fast-growing mobile market brings new concepts to the mass and industrial applications design can benefit from these. As a consequence, a simple components-based approach has been applied to design and develop mobile applications for field operations and on-site experiments of the resulting applications have been conducted. (author)

  3. SparsePak: A Formatted Fiber Field Unit for the WIYN Telescope Bench Spectrograph. I. Design, Construction, and Calibration

    NARCIS (Netherlands)

    Bershady, Matthew A.; Andersen, David R.; Harker, Justin; Ramsey, Larry W.; Verheijen, Marc A. W.

    2004-01-01

    We describe the design and construction of a formatted fiber field unit, SparsePak, and characterize its optical and astrometric performance. This array is optimized for spectroscopy of low surface brightness extended sources in the visible and near-infrared. SparsePak contains 82, 4.7" fibers

  4. An integral-field spectroscopic strong lens survey

    International Nuclear Information System (INIS)

    Bolton, Adam S; Burles, Scott

    2007-01-01

    We present the observational results of a survey for strong gravitational lens systems consisting of extended emission-line galaxies lensed by intervening early-type galaxies, conducted using integral field units (IFUs) of the Magellan IMACS and Gemini GMOS-N spectrographs. These data are highly valuable for corroborating the lensing interpretation of Hubble Space Telescope imaging data. We show that in many cases, ground-based IFU spectroscopy is in fact competitive with space-based imaging for the measurement of the mass model parameters of the lensing galaxy. We demonstrate a novel technique of three-dimensional gravitational lens modeling for a single lens system with a resolved lensed rotation curve. We also describe the details of our custom IFU data analysis software, which performs optimal multi-fiber extraction, relative and absolute wavelength calibration to a few hundredths of a pixel RMS and nearly Poisson-limited sky subtraction

  5. Improved Emission Spectrographic Facility

    International Nuclear Information System (INIS)

    Goergen, C.R.; Lethco, A.J.; Hosken, G.B.; Geckeler, D.R.

    1980-10-01

    The Savannah River Plant's original Emission Spectrographic Laboratory for radioactive samples had been in operation for 25 years. Due to the deteriorated condition and the fire hazard posed by the wooden glove box trains, a project to update the facility was funded. The new laboratory improved efficiency of operation and incorporated numerous safety and contamination control features

  6. Jacobi fields of completely integrable Hamiltonian systems

    International Nuclear Information System (INIS)

    Giachetta, G.; Mangiarotti, L.; Sardanashvily, G.

    2003-01-01

    We show that Jacobi fields of a completely integrable Hamiltonian system of m degrees of freedom make up an extended completely integrable system of 2m degrees of freedom, where m additional first integrals characterize a relative motion

  7. Opto-mechanical design of an image slicer for the GRIS spectrograph at GREGOR

    Science.gov (United States)

    Vega Reyes, N.; Esteves, M. A.; Sánchez-Capuchino, J.; Salaun, Y.; López, R. L.; Gracia, F.; Estrada Herrera, P.; Grivel, C.; Vaz Cedillo, J. J.; Collados, M.

    2016-07-01

    An image slicer has been proposed for the Integral Field Spectrograph [1] of the 4-m European Solar Telescope (EST) [2] The image slicer for EST is called MuSICa (Multi-Slit Image slicer based on collimator-Camera) [3] and it is a telecentric system with diffraction limited optical quality offering the possibility to obtain high resolution Integral Field Solar Spectroscopy or Spectro-polarimetry by coupling a polarimeter after the generated slit (or slits). Considering the technical complexity of the proposed Integral Field Unit (IFU), a prototype has been designed for the GRIS spectrograph at GREGOR telescope at Teide Observatory (Tenerife), composed by the optical elements of the image slicer itself, a scanning system (to cover a larger field of view with sequential adjacent measurements) and an appropriate re-imaging system. All these subsystems are placed in a bench, specially designed to facilitate their alignment, integration and verification, and their easy installation in front of the spectrograph. This communication describes the opto-mechanical solution adopted to upgrade GRIS while ensuring repeatability between the observational modes, IFU and long-slit. Results from several tests which have been performed to validate the opto-mechanical prototypes are also presented.

  8. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  9. Using commercial amateur astronomical spectrographs

    CERN Document Server

    Hopkins, Jeffrey L

    2014-01-01

    Amateur astronomers interested in learning more about astronomical spectroscopy now have the guide they need. It provides detailed information about how to get started inexpensively with low-resolution spectroscopy, and then how to move on to more advanced  high-resolution spectroscopy. Uniquely, the instructions concentrate very much on the practical aspects of using commercially-available spectroscopes, rather than simply explaining how spectroscopes work. The book includes a clear explanation of the laboratory theory behind astronomical spectrographs, and goes on to extensively cover the practical application of astronomical spectroscopy in detail. Four popular and reasonably-priced commercially available diffraction grating spectrographs are used as examples. The first is a low-resolution transmission diffraction grating, the Star Analyser spectrograph. The second is an inexpensive fiber optic coupled bench spectrograph that can be used to learn more about spectroscopy. The third is a newcomer, the ALPY ...

  10. Spatial distribution of dust in galaxies from the Integral field unit data

    Science.gov (United States)

    Zafar, Tayyaba; Sophie Dubber, Andrew Hopkins

    2018-01-01

    An important characteristic of the dust is it can be used as a tracer of stars (and gas) and tell us about the composition of galaxies. Sub-mm and infrared studies can accurately determine the total dust mass and its spatial distribution in massive, bright galaxies. However, faint and distant galaxies are hampered by resolution to dust spatial dust distribution. In the era of integral-field spectrographs (IFS), Balmer decrement is a useful quantity to infer the spatial extent of the dust in distant and low-mass galaxies. We conducted a study to estimate the spatial distribution of dust using the Sydney-Australian Astronomical Observatory (AAO) Multi-object Integral field spectrograph (SAMI) galaxies. Our methodology is unique to exploit the potential of IFS and using the spatial and spectral information together to study dust in galaxies of various morphological types. The spatial extent and content of dust are compared with the star-formation rate, reddening, and inclination of galaxies. We find a right correlation of dust spatial extent with the star-formation rate. The results also indicate a decrease in dust extent radius from Late Spirals to Early Spirals.

  11. Exact optics - III. Schwarzschild's spectrograph camera revised

    Science.gov (United States)

    Willstrop, R. V.

    2004-03-01

    Karl Schwarzschild identified a system of two mirrors, each defined by conic sections, free of third-order spherical aberration, coma and astigmatism, and with a flat focal surface. He considered it impractical, because the field was too restricted. This system was rediscovered as a quadratic approximation to one of Lynden-Bell's `exact optics' designs which have wider fields. Thus the `exact optics' version has a moderate but useful field, with excellent definition, suitable for a spectrograph camera. The mirrors are strongly aspheric in both the Schwarzschild design and the exact optics version.

  12. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  13. Global integrability of cosmological scalar fields

    Science.gov (United States)

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  14. Global integrability of cosmological scalar fields

    International Nuclear Information System (INIS)

    Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek

    2008-01-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain

  15. Second generation spectrograph for the Hubble Space Telescope

    Science.gov (United States)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  16. Mass production of volume phase holographic gratings for the VIRUS spectrograph array

    Science.gov (United States)

    Chonis, Taylor S.; Frantz, Amy; Hill, Gary J.; Clemens, J. Christopher; Lee, Hanshin; Tuttle, Sarah E.; Adams, Joshua J.; Marshall, J. L.; DePoy, D. L.; Prochaska, Travis

    2014-07-01

    The Visible Integral-field Replicable Unit Spectrograph (VIRUS) is a baseline array of 150 copies of a simple, fiber-fed integral field spectrograph that will be deployed on the Hobby-Eberly Telescope (HET). VIRUS is the first optical astronomical instrument to be replicated on an industrial scale, and represents a relatively inexpensive solution for carrying out large-area spectroscopic surveys, such as the HET Dark Energy Experiment (HETDEX). Each spectrograph contains a volume phase holographic (VPH) grating with a 138 mm diameter clear aperture as its dispersing element. The instrument utilizes the grating in first-order for 350 VPH gratings has been mass produced for VIRUS. Here, we present the design of the VIRUS VPH gratings and a discussion of their mass production. We additionally present the design and functionality of a custom apparatus that has been used to rapidly test the first-order diffraction efficiency of the gratings for various discrete wavelengths within the VIRUS spectral range. This device has been used to perform both in-situ tests to monitor the effects of adjustments to the production prescription as well as to carry out the final acceptance tests of the gratings' diffraction efficiency. Finally, we present the as-built performance results for the entire suite of VPH gratings.

  17. Optical design of a versatile FIRST high-resolution near-IR spectrograph

    Science.gov (United States)

    Zhao, Bo; Ge, Jian

    2012-09-01

    We report the update optical design of a versatile FIRST high resolution near IR spectrograph, which is called Florida IR Silicon immersion grating spectromeTer (FIRST). This spectrograph uses cross-dispersed echelle design with white pupils and also takes advantage of the image slicing to increase the spectra resolution, while maintaining the instrument throughput. It is an extremely high dispersion R1.4 (blazed angle of 54.74°) silicon immersion grating with a 49 mm diameter pupil is used as the main disperser at 1.4μm -1.8μm to produce R=72,000 while an R4 echelle with the same pupil diameter produces R=60,000 at 0.8μm -1.35μm. Two cryogenic Volume Phase Holographic (VPH) gratings are used as cross-dispersers to allow simultaneous wavelength coverage of 0.8μm -1.8μm. The butterfly mirrors and dichroic beamsplitters make a compact folding system to record these two wavelength bands with a 2kx2k H2RG array in a single exposure. By inserting a mirror before the grating disperser (the SIG and the echelle), this spectrograph becomes a very efficient integral field 3-D imaging spectrograph with R=2,000-4,000 at 0.8μm-1.8μm by coupling a 10x10 telescope fiber bundle with the spectrograph. Details about the optical design and performance are reported.

  18. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  19. Design of integral magnetic field sensor

    International Nuclear Information System (INIS)

    Ma Liang; Cheng Yinhui; Wu Wei; Li Baozhong; Zhou Hui; Li Jinxi; Zhu Meng

    2010-01-01

    Magnetic field is one of the important physical parameters in the measuring process of pulsed EMP. We researched on anti-interference and high-sensitivity measurement technique of magnetic field in this report. Semi rigid cables were to bent into ringed antenna so that the antenna was shielded from electric-field interference and had little inductance; In order to have high sensitivity, operational transconductance amplifier was used to produce an active integrator; We designed an optical-electronic transferring module to upgrade anti-interference capability of the magnetic-field measurement system. A measurement system of magnetic field was accomplished. The measurement system was composed of antenna, integrator, and optical-electric transferring module and so on. We calibrated the measurement system in coaxial TEM cell. It indicates that, the measurement system's respondence of rise time is up to 2.5 ns, and output width at 90%-maximum of the pulse is wider than 200 ns. (authors)

  20. Spectrographic analysis of plutonium (1960)

    International Nuclear Information System (INIS)

    Artaud, J.; Chaput, M.; Robichet, J.

    1960-01-01

    Various possibilities for the spectrographic determination of impurities in plutonium are considered. The application of the 'copper spark' method, of sparking on graphite and of fractional distillation in the arc are described and discussed in some detail (apparatus, accessories, results obtained). (author) [fr

  1. Development of compact integral field unit for spaceborne solar spectro-polarimeter

    Science.gov (United States)

    Suematsu, Y.; Koyama, M.; Sukegawa, T.; Enokida, Y.; Saito, K.; Okura, Y.; Nakayasu, T.; Ozaki, S.; Tsuneta, S.

    2017-11-01

    A 1.5-m class aperture Solar Ultra-violet Visible and IR telescope (SUVIT) and its instruments for the Japanese next space solar mission SOLAR-C [1] are under study to obtain critical physical parameters in the lower solar atmosphere. For the precise magnetic field measurements covering field-of-view of 3 arcmin x3 acmin, a full stokes polarimetry at three magnetic sensitive lines in wavelength range of 525 nm to 1083 nm with a four-slit spectrograph of two dinesional image scanning mechanism is proposed: one is a true slit and the other three are pseudo-slits from integral field unit (IFU). To suit this configuration, besides a fiber bundle IFU, a compact mirror slicer IFU is designed and being developed. Integral field spectroscopy (IFS), which is realized with IFU, is a two dimensional spectroscopy, providing spectra simultaneously for each spatial direction of an extended two-dimensional field. The scientific advantages of the IFS for studies of localized and transient solar surface phenomena are obvious. There are in general three methods [2][3] to realize the IFS depending on image slicing devices such as a micro-lenslet array, an optical fiber bundle and a narrow rectangular image slicer array. So far, there exist many applications of the IFS for ground-based astronomical observations [4]. Regarding solar instrumentations, the IFS of micro-lenslet array was done by Suematsu et al. [5], the IFS of densely packed rectangular fiber bundle with thin clads was realized [6] and being developed for 4-m aperture solar telescope DKIST by Lin [7] and being considered for space solar telescope SOLAR-C by Katsukawa et al. [8], and the IFS with mirror slicer array was presented by Ren et al. [9] and under study for up-coming large-aperture solar telescope in Europe by Calcines et al. [10] From the view point of a high efficiency spectroscopy, a wide wavelength coverage, a precision spectropolarimetry and space application, the image slicer consisting of all reflective

  2. Field theory a path integral approach

    CERN Document Server

    Das, Ashok

    2006-01-01

    This unique book describes quantum field theory completely within the context of path integrals. With its utility in a variety of fields in physics, the subject matter is primarily developed within the context of quantum mechanics before going into specialized areas.Adding new material keenly requested by readers, this second edition is an important expansion of the popular first edition. Two extra chapters cover path integral quantization of gauge theories and anomalies, and a new section extends the supersymmetry chapter, where singular potentials in supersymmetric systems are described.

  3. Integrated field modelling[Oil and gas fields

    Energy Technology Data Exchange (ETDEWEB)

    Nazarian, Bamshad

    2002-07-01

    This research project studies the feasibility of developing and applying an integrated field simulator to simulate the production performance of an entire oil or gas field. It integrates the performance of the reservoir, the wells, the chokes, the gathering system, the surface processing facilities and whenever applicable, gas and water injection systems. The approach adopted for developing the integrated simulator is to couple existing commercial reservoir and process simulators using available linking technologies. The simulators are dynamically linked and customised into a single hybrid application that benefits from the concept of open software architecture. The integrated field simulator is linked to an optimisation routine developed based on the genetic algorithm search strategies. This enables optimisation of the system at field level, from the reservoir to the process. Modelling the wells and the gathering network is achieved by customising the process simulator. This study demonstrated that the integrated simulation improves current capabilities to simulate the performance of the entire field and optimise its design. This is achieved by evaluating design options including spread and layout of the wells and gathering system, processing alternatives, reservoir development schemes and production strategies. Effectiveness of the integrated simulator is demonstrated and tested through several field-level case studies that discuss and investigate technical problems relevant to offshore field development. The case studies cover topics such as process optimisation, optimum tie-in of satellite wells into existing process facilities, optimal well location and field layout assessment of a high pressure high temperature deepwater oil field. Case study results confirm the viability of the total field simulator by demonstrating that the field performance simulation and optimal design were obtained in an automated process with treasonable computation time. No significant

  4. Integrating out the standard Higgs field in the path integral

    International Nuclear Information System (INIS)

    Dittmaier, S.

    1996-01-01

    We integrate out the Higgs boson in the electroweak standard model at one loop and construct a low-energy effective Lagrangian assuming that the Higgs mass is much larger than the gauge-boson masses. Instead of applying diagrammatical techniques, we integrate out the Higgs boson directly in the path integral, which turns out to be much simpler. By using the background-field method and the Stueckelberg formalism, we directly find a manifestly gauge-invariant result. The heavy-Higgs effects on fermionic couplings are derived, too. At one loop the log M H terms of the heavy-Higgs limit of the electroweak standard model coincide with the UV-divergent terms in the gauged non-linear σ-model, but vertex functions differ in addition by finite constant terms. Finally, the leading Higgs effects to some physical processes are calculated from the effective Lagrangian. (orig.)

  5. Path integral for multi-field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Jinn-Ouk [Asia Pacific Center for Theoretical Physics, Pohang 37673 (Korea, Republic of); Department of Physics, Postech, Pohang 37673 (Korea, Republic of); Seo, Min-Seok [Center for Theoretical Physics of the Universe, Institute for Basic Science, 34051 Daejeon (Korea, Republic of); Shiu, Gary [Department of Physics, University of Wisconsin-Madison, Madison, WI 53706 (United States); Department of Physics & Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay (Hong Kong)

    2016-07-20

    We develop the path integral formalism for studying cosmological perturbations in multi-field inflation, which is particularly well suited to study quantum theories with gauge symmetries such as diffeomorphism invariance. We formulate the gauge fixing conditions based on the Poisson brackets of the constraints, from which we derive two convenient gauges that are appropriate for multi-field inflation. We then adopt the in-in formalism to derive the most general expression for the power spectrum of the curvature perturbation including the corrections from the interactions of the curvature mode with other light degrees of freedom. We also discuss the contributions of the interactions to the bispectrum.

  6. Visual Sample Plan (VSP) - FIELDS Integration

    Energy Technology Data Exchange (ETDEWEB)

    Pulsipher, Brent A.; Wilson, John E.; Gilbert, Richard O.; Hassig, Nancy L.; Carlson, Deborah K.; Bing-Canar, John; Cooper, Brian; Roth, Chuck

    2003-04-19

    Two software packages, VSP 2.1 and FIELDS 3.5, are being used by environmental scientists to plan the number and type of samples required to meet project objectives, display those samples on maps, query a database of past sample results, produce spatial models of the data, and analyze the data in order to arrive at defensible decisions. VSP 2.0 is an interactive tool to calculate optimal sample size and optimal sample location based on user goals, risk tolerance, and variability in the environment and in lab methods. FIELDS 3.0 is a set of tools to explore the sample results in a variety of ways to make defensible decisions with quantified levels of risk and uncertainty. However, FIELDS 3.0 has a small sample design module. VSP 2.0, on the other hand, has over 20 sampling goals, allowing the user to input site-specific assumptions such as non-normality of sample results, separate variability between field and laboratory measurements, make two-sample comparisons, perform confidence interval estimation, use sequential search sampling methods, and much more. Over 1,000 copies of VSP are in use today. FIELDS is used in nine of the ten U.S. EPA regions, by state regulatory agencies, and most recently by several international countries. Both software packages have been peer-reviewed, enjoy broad usage, and have been accepted by regulatory agencies as well as site project managers as key tools to help collect data and make environmental cleanup decisions. Recently, the two software packages were integrated, allowing the user to take advantage of the many design options of VSP, and the analysis and modeling options of FIELDS. The transition between the two is simple for the user – VSP can be called from within FIELDS, automatically passing a map to VSP and automatically retrieving sample locations and design information when the user returns to FIELDS. This paper will describe the integration, give a demonstration of the integrated package, and give users download

  7. MEGARA: a new generation optical spectrograph for GTC

    Science.gov (United States)

    Gil de Paz, A.; Gallego, J.; Carrasco, E.; Iglesias-Páramo, J.; Cedazo, R.; Vílchez, J. M.; García-Vargas, M. L.; Arrillaga, X.; Carrera, M. A.; Castillo-Morales, A.; Castillo-Domínguez, E.; Eliche-Moral, M. C.; Ferrusca, D.; González-Guardia, E.; Lefort, B.; Maldonado, M.; Marino, R. A.; Martínez-Delgado, I.; Morales Durán, I.; Mujica, E.; Páez, G.; Pascual, S.; Pérez-Calpena, A.; Sánchez-Penim, A.; Sánchez-Blanco, E.; Tulloch, S.; Velázquez, M.; Zamorano, J.; Aguerri, A. L.; Barrado y Naváscues, D.; Bertone, E.; Cardiel, N.; Cava, A.; Cenarro, J.; Chávez, M.; García, M.; Guichard, J.; Gúzman, R.; Herrero, A.; Huélamo, N.; Hughes, D.; Jiménez-Vicente, J.; Kehrig, C.; Márquez, I.; Masegosa, J.; Mayya, Y. D.; Méndez-Abreu, J.; Mollá, M.; Muñoz-Tuñón, C.; Peimbert, M.; Pérez-González, P. G.; Pérez Montero, E.; Rodríguez, M.; Rodríguez-Espinosa, J. M.; Rodríguez-Merino, L.; Rosa-González, D.; Sánchez-Almeida, J.; Sánchez Contreras, C.; Sánchez-Blázquez, P.; Sánchez Moreno, F. M.; Sánchez, S. F.; Sarajedini, A.; Serena, F.; Silich, S.; Simón-Díaz, S.; Tenorio-Tagle, G.; Terlevich, E.; Terlevich, R.; Torres-Peimbert, S.; Trujillo, I.; Tsamis, Y.; Vega, O.; Villar, V.

    2014-07-01

    MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4m telescope in La Palma. MEGARA offers two IFU fiber bundles, one covering 12.5x11.3 arcsec2 with a spaxel size of 0.62 arcsec (Large Compact Bundle; LCB) and another one covering 8.5x6.7 arcsec2 with a spaxel size of 0.42 arcsec (Small Compact Bundle; SCB). The MEGARA MOS mode will allow observing up to 100 objects in a region of 3.5x3.5 arcmin2 around the two IFU bundles. Both the LCB IFU and MOS capabilities of MEGARA will provide intermediate-to-high spectral resolutions (RFWHM~6,000, 12,000 and 18,700, respectively for the low-, mid- and high-resolution Volume Phase Holographic gratings) in the range 3650-9700ÅÅ. These values become RFWHM~7,000, 13,500, and 21,500 when the SCB is used. A mechanism placed at the pseudo-slit position allows exchanging the three observing modes and also acts as focusing mechanism. The spectrograph is a collimator-camera system that has a total of 11 VPHs simultaneously available (out of the 18 VPHs designed and being built) that are placed in the pupil by means of a wheel and an insertion mechanism. The custom-made cryostat hosts an E2V231-84 4kx4k CCD. The UCM (Spain) leads the MEGARA Consortium that also includes INAOE (Mexico), IAA-CSIC (Spain), and UPM (Spain). MEGARA is being developed under a contract between GRANTECAN and UCM. The detailed design, construction and AIV phases are now funded and the instrument should be delivered to GTC before the end of 2016.

  8. Integrated management systems in the nuclear field

    International Nuclear Information System (INIS)

    Beckmerhagen, I.A.; Berg, H.P.; Karapetrovic, S.V.; Willborn, W.O.

    2005-01-01

    In the last years several internationally accepted standards such as the ISO 9000 and ISO 14000 series and other function-specific management systems standards have been developed. At the same time, it has become imperative for organisations to continuously improve their overall quality, environmental and safety performance. Therefore, the need to create integrated management systems is of growing importance to enable an easier handling of the different management systems. This paper has two main objectives. The first one is to address the key issues in the underlying theory of integrated management systems including benefits and limits, the second one is to illustrate the importance of an integrated (in particular safety) management system and the experience feedback providing examples from different areas and different organisations in the nuclear field. (orig.)

  9. MuSICa: the Multi-Slit Image Slicer for the est Spectrograph

    Science.gov (United States)

    Calcines, A.; López, R. L.; Collados, M.

    2013-09-01

    Integral field spectroscopy (IFS) is a technique that allows one to obtain the spectra of all the points of a bidimensional field of view simultaneously. It is being applied to the new generation of the largest night-time telescopes but it is also an innovative technique for solar physics. This paper presents the design of a new image slicer, MuSICa (Multi-Slit Image slicer based on collimator-Camera), for the integral field spectrograph of the 4-m aperture European Solar Telescope (EST). MuSICa is a multi-slit image slicer that decomposes an 80 arcsec2 field of view into slices of 50 μm and reorganizes it into eight slits of 0.05 arcsec width × 200 arcsec length. It is a telecentric system with an optical quality at diffraction limit compatible with the two modes of operation of the spectrograph: spectroscopic and spectro-polarimetric. This paper shows the requirements, technical characteristics and layout of MuSICa, as well as other studied design options.

  10. Microcanonical functional integral for the gravitational field

    International Nuclear Information System (INIS)

    Brown, J.D.; York, J.W. Jr.

    1993-01-01

    The gravitational field in a spatially finite region is described as a microcanonical system. The density of states ν is expressed formally as a functional integral over Lorentzian metrics and is a functional of the geometrical boundary data that are fixed in the corresponding action. These boundary data are the thermodynamical extensive variables, including the energy and angular momentum of the system. When the boundary data are chosen such that the system is described semiclassically by any real stationary axisymmetric black hole, then in this same approximation lnν is shown to equal 1/4 the area of the black-hole event horizon. The canonical and grand canonical partition functions are obtained by integral transforms of ν that lead to ''imaginary-time'' functional integrals. A general form of the first law of thermodynamics for stationary black holes is derived. For the simpler case of nonrelativistic mechanics, the density of states is expressed as a real-time functional integral and then used to deduce Feynman's imaginary-time functional integral for the canonical partition function

  11. Spectrographic analysis of stainless steels

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1984-01-01

    Two spectrogaphyic solution techniques, 'Porous Cup' and 'Vacuum Cup', were investigated in order to determine the minor constituents (Cr, Ni, Mo, Mn, Cu and V) of stainless steels. Iron and cobalt were experimented as internal standards. The precision varied from 4 to 11% for both spectrographic techniques, in which cobalt was used as international standard. Certified standards from National Bureau of Standards and Instituto de Pesquisas Tecnologicas were analysed to verify the accuracy of both techniques. The best accuracy was obtained with the Vacuum Cup techniques. (Author) [pt

  12. Integration of non-Gaussian fields

    DEFF Research Database (Denmark)

    Ditlevsen, Ove Dalager; Mohr, Gunnar; Hoffmeyer, Pernille

    1996-01-01

    The limitations of the validity of the central limit theorem argument as applied to definite integrals of non-Gaussian random fields are empirically explored by way of examples. The purpose is to investigate in specific cases whether the asymptotic convergence to the Gaussian distribution is fast....... and Randrup-Thomsen, S. Reliability of silo ring under lognormal stochastic pressure using stochastic interpolation. Proc. IUTAM Symp., Probabilistic Structural Mechanics: Advances in Structural Reliability Methods, San Antonio, TX, USA, June 1993 (eds.: P. D. Spanos & Y.-T. Wu) pp. 134-162. Springer, Berlin...

  13. Global integrability of field theories. Proceedings

    International Nuclear Information System (INIS)

    Calmet, J.; Seiler, W.M.; Tucker, R.W.

    2006-01-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  14. Global integrability of field theories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, J.; Seiler, W.M.; Tucker, R.W. (eds.)

    2006-07-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  15. Spectrographic analysis of waste waters

    International Nuclear Information System (INIS)

    Alvarez Alduan, F.; Capdevila, C.

    1979-01-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs

  16. Programmable wide field spectrograph for earth observation

    Science.gov (United States)

    Zamkotsian, Frédéric; Lanzoni, Patrick; Liotard, Arnaud; Viard, Thierry; Costes, Vincent; Hébert, Philippe-Jean

    2017-11-01

    In Earth Observation, Universe Observation and Planet Exploration, scientific return of the instruments must be optimized in future missions. Micro-Opto-Electro-Mechanical Systems (MOEMS) could be key components in future generation of space instruments. These devices are based on the mature micro-electronics technology and in addition to their compactness, scalability, and specific task customization, they could generate new functions not available with current technologies. French and European space agencies, the Centre National d'Etudes Spatiales (CNES) and the European Space Agency (ESA) have initiated several studies with LAM and TAS for listing the new functions associated with several types of MEMS, and developing new ideas of instruments.

  17. Field Raman spectrograph for environmental analysis

    International Nuclear Information System (INIS)

    Carrabba, M.M.

    1995-01-01

    The use of Raman Spectroscopy in the screening of soils, ground water, and surface waters for pollutants is described. A probe accessory for conducting surface enhanced Raman Spectroscopy is undergoing testing for dilute chlorinated solvents

  18. Integral Field Spectroscopy Surveys: Oxygen Abundance Gradients

    Science.gov (United States)

    Sánchez, S. F.; Sánchez-Menguiano, L.

    2017-07-01

    We present here the recent results on our understanding of oxygen abundance gradients derived using Integral Field Spectroscopic surveys. In particular we analyzed more than 2124 datacubes corresponding to individual objects observed by the CALIFA (˜ 734 objects) and the public data by MaNGA (˜ 1390 objects), deriving the oxygen abundance gradient for each galaxy. We confirm previous results that indicate that the shape of this gradient is very similar for all galaxies with masses above 109.5M⊙, presenting in average a very similar slope of ˜ -0.04 dex within 0.5-2.0 re, with a possible drop in the inner regions (r109.5M⊙) the gradient seems to be flatter than for more massive ones. All these results agree with an inside-out growth of massive galaxies and indicate that low mass ones may still be growing in an outside in phase.

  19. Nuclear Dynamics of a Nearby Seyfert with NIRSpec Integral Field Spectroscopy

    Science.gov (United States)

    Bentz, Misty; Batiste, M.; Onken, C.; Roberts, C.; Valluri, M.; Vasiliev, E.

    2017-11-01

    Integral field spectroscopy has become an invaluable tool for investigating the physical conditions and dynamics deep inside galaxy nuclei. The integral field spectrograph on JWST provides some crucial advantages over those on AO- assisted ground-based telescopes like Gemini and VLT. In particular, JWST will provide a stable and diffraction limited point spread function (PSF) with no seeing halo, and the background will be significantly reduced resulting in shorter exposure times to achieve a benchmark signal-to-noise ratio, even for late-type galaxies that have shallower central cusps and fainter central surface brightnesses, and for which the exposure times required from the ground may be prohibitive. We are particularly interested in comparing black hole masses derived from the modeling of nuclear stellar dynamics to masses derived from reverberation mapping in the same galaxies. With this Early Release Science proposal, we request a small investment of time to clearly demonstrate JWST's capabilities in spatial and spectral resolution relative to the stringent technical requirements for direct black hole mass measurements. The technically demanding nature of the requisite measurements will allow us to explore the limits of what is possible to achieve with the NIRSpec IFU, thus providing technical guidance for a wide range of studies that seek to probe the physics of black hole feeding and feedback and their links to galaxy and black hole co-evolution.

  20. Near InfraRed Imaging Spectrograph (NIRIS) for ground-based ...

    Indian Academy of Sciences (India)

    54

    NIRIS is a large field-of-view imaging spectrograph which is sensitive to fluctuation in ..... enhancement over low-latitudes has been shown to be developed as a ..... step forward towards passive remote sensing of the mesospheric dynamics.

  1. The Oxford SWIFT Spectrograph: first commissioning and on-sky results

    Science.gov (United States)

    Thatte, Niranjan; Tecza, Mathias; Clarke, Fraser; Goodsall, Timothy; Fogarty, Lisa; Houghton, Ryan; Salter, Graeme; Scott, Nicholas; Davies, Roger L.; Bouchez, Antonin; Dekany, Richard

    2010-07-01

    The Oxford SWIFT spectrograph, an I & z band (6500-10500 A) integral field spectrograph, is designed to operate as a facility instrument at the 200 inch Hale Telescope on Palomar Mountain, in conjunction with the Palomar laser guide star adaptive optics system PALAO (and its upgrade to PALM3000). SWIFT provides spectra at R(≡λ/▵λ)~4000 of a contiguous two-dimensional field, 44 x 89 spatial pixels (spaxels) in size, at spatial scales of 0.235", 0.16", and 0.08" per spaxel. It employs two 250μm thick, fully depleted, extremely red sensitive 4k X 2k CCD detector arrays (manufactured by LBNL) that provide excellent quantum efficiency out to 1000 nm. We describe the commissioning observations and present the measured values of a number of instrument parameters. We also present some first science results that give a taste of the range of science programs where SWIFT can have a substantial impact.

  2. Integrated Field Analyses of Thermal Springs

    Science.gov (United States)

    Shervais, K.; Young, B.; Ponce-Zepeda, M. M.; Rosove, S.

    2011-12-01

    A group of undergraduate researchers through the SURE internship offered by the Southern California Earthquake Center (SCEC) have examined thermal springs in southern Idaho, northern Utah as well as mud volcanoes in the Salton Sea, California. We used an integrated approach to estimate the setting and maximum temperature, including water chemistry, Ipad-based image and data-base management, microbiology, and gas analyses with a modified Giggenbach sampler.All springs were characterized using GISRoam (tmCogent3D). We are performing geothermometry calculations as well as comparisons with temperature gradient data on the results while also analyzing biological samples. Analyses include water temperature, pH, electrical conductivity, and TDS measured in the field. Each sample is sealed and chilled and delivered to a water lab within 12 hours.Temperatures are continuously monitored with the use of Solinst Levelogger Juniors. Through partnership with a local community college geology club, we receive results on a monthly basis and are able to process initial data earlier in order to evaluate data over a longer time span. The springs and mudpots contained microbial organisms which were analyzed using methods of single colony isolation, polymerase chain reaction, and DNA sequencing showing the impact of the organisms on the springs or vice versa. Soon we we will collect gas samples at sites that show signs of gas. This will be taken using a hybrid of the Giggenbach method and our own methods. Drawing gas samples has proven a challenge, however we devised a method to draw out gas samples utilizing the Giggenbach flask, transferring samples to glass blood sample tubes, replacing NaOH in the Giggenbach flask, and evacuating it in the field for multiple samples using a vacuum pump. We also use a floating platform devised to carry and lower a levelogger, to using an in-line fuel filter from a tractor in order to keep mud from contaminating the equipment.The use of raster

  3. Design and realization of the real-time spectrograph controller for LAMOST based on FPGA

    Science.gov (United States)

    Wang, Jianing; Wu, Liyan; Zeng, Yizhong; Dai, Songxin; Hu, Zhongwen; Zhu, Yongtian; Wang, Lei; Wu, Zhen; Chen, Yi

    2008-08-01

    A large Schmitt reflector telescope, Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST), is being built in China, which has effective aperture of 4 meters and can observe the spectra of as many as 4000 objects simultaneously. To fit such a large amount of observational objects, the dispersion part is composed of a set of 16 multipurpose fiber-fed double-beam Schmidt spectrographs, of which each has about ten of moveable components realtimely accommodated and manipulated by a controller. An industrial Ethernet network connects those 16 spectrograph controllers. The light from stars is fed to the entrance slits of the spectrographs with optical fibers. In this paper, we mainly introduce the design and realization of our real-time controller for the spectrograph, our design using the technique of System On Programmable Chip (SOPC) based on Field Programmable Gate Array (FPGA) and then realizing the control of the spectrographs through NIOSII Soft Core Embedded Processor. We seal the stepper motor controller as intellectual property (IP) cores and reuse it, greatly simplifying the design process and then shortening the development time. Under the embedded operating system μC/OS-II, a multi-tasks control program has been well written to realize the real-time control of the moveable parts of the spectrographs. At present, a number of such controllers have been applied in the spectrograph of LAMOST.

  4. NRES: The Network of Robotic Echelle Spectrographs

    Science.gov (United States)

    Siverd, Robert; Brown, Tim; Henderson, Todd; Hygelund, John; Barnes, Stuart; de Vera, Jon; Eastman, Jason; Kirby, Annie; Smith, Cary; Taylor, Brook; Tufts, Joseph; van Eyken, Julian

    2018-01-01

    Las Cumbres Observatory (LCO) is building the Network of Robotic Echelle Spectrographs (NRES), which will consist of four (up to six in the future) identical, optical (390 - 860 nm) high-precision spectrographs, each fiber-fed simultaneously by up to two 1-meter telescopes and a Thorium-Argon calibration source. We plan to install one at up to 6 observatory sites in the Northern and Southern hemispheres, creating a single, globally-distributed, autonomous spectrograph facility using up to ten 1-m telescopes. Simulations suggest we will achieve long-term radial velocity precision of 3 m/s in less than an hour for stars brighter than V = 11 or 12 once the system reaches full capability. Acting in concert, these four spectrographs will provide a new, unique facility for stellar characterization and precise radial velocities.Following a few months of on-sky evaluation at our BPL test facility, the first spectrograph unit was shipped to CTIO in late 2016 and installed in March 2017. After several more months of additional testing and commissioning, regular science operations began with this node in September 2017. The second NRES spectrograph was installed at McDonald Observatory in September 2017 and released to the network after its own brief commissioning period, extending spectroscopic capability to the Northern hemisphere. The third NRES spectrograph was installed at SAAO in November 2017 and released to our science community just before year's end. The fourth NRES unit shipped in October and is currently en route to Wise Observatory in Israel with an expected release to the science community in early 2018.We will briefly overview the LCO telescope network, the NRES spectrograph design, the advantages it provides, and development challenges we encountered along the way. We will further discuss real-world performance from our first three units, initial science results, and the ongoing software development effort needed to automate such a facility for a wide array of

  5. The topology of integrable systems with incomplete fields

    International Nuclear Information System (INIS)

    Aleshkin, K R

    2014-01-01

    Liouville's theorem holds for Hamiltonian systems with complete Hamiltonian fields which possess a complete involutive system of first integrals; such systems are called Liouville-integrable. In this paper integrable systems with incomplete Hamiltonian fields are investigated. It is shown that Liouville's theorem remains valid in the case of a single incomplete field, while if the number of incomplete fields is greater, a certain analogue of the theorem holds. An integrable system on the algebra sl(3) is taken as an example. Bibliography: 11 titles

  6. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  7. The infrared imaging spectrograph (IRIS) for TMT: latest science cases and simulations

    Science.gov (United States)

    Wright, Shelley A.; Walth, Gregory; Do, Tuan; Marshall, Daniel; Larkin, James E.; Moore, Anna M.; Adamkovics, Mate; Andersen, David; Armus, Lee; Barth, Aaron; Cote, Patrick; Cooke, Jeff; Chisholm, Eric M.; Davidge, Timothy; Dunn, Jennifer S.; Dumas, Christophe; Ellerbroek, Brent L.; Ghez, Andrea M.; Hao, Lei; Hayano, Yutaka; Liu, Michael; Lopez-Rodriguez, Enrique; Lu, Jessica R.; Mao, Shude; Marois, Christian; Pandey, Shashi B.; Phillips, Andrew C.; Schoeck, Matthias; Subramaniam, Annapurni; Subramanian, Smitha; Suzuki, Ryuji; Tan, Jonathan C.; Terai, Tsuyoshi; Treu, Tommaso; Simard, Luc; Weiss, Jason L.; Wincentsen, James; Wong, Michael; Zhang, Kai

    2016-07-01

    The Thirty Meter Telescope (TMT) first light instrument IRIS (Infrared Imaging Spectrograph) will complete its preliminary design phase in 2016. The IRIS instrument design includes a near-infrared (0.85 - 2.4 micron) integral field spectrograph (IFS) and imager that are able to conduct simultaneous diffraction-limited observations behind the advanced adaptive optics system NFIRAOS. The IRIS science cases have continued to be developed and new science studies have been investigated to aid in technical performance and design requirements. In this development phase, the IRIS science team has paid particular attention to the selection of filters, gratings, sensitivities of the entire system, and science cases that will benefit from the parallel mode of the IFS and imaging camera. We present new science cases for IRIS using the latest end-to-end data simulator on the following topics: Solar System bodies, the Galactic center, active galactic nuclei (AGN), and distant gravitationally-lensed galaxies. We then briefly discuss the necessity of an advanced data management system and data reduction pipeline.

  8. A Note on the First Integrals of Vector Fields with Integrating Factors and Normalizers

    Directory of Open Access Journals (Sweden)

    Jaume Llibre

    2012-06-01

    Full Text Available We prove a sufficient condition for the existence of explicit first integrals for vector fields which admit an integrating factor. This theorem recovers and extends previous results in the literature on the integrability of vector fields which are volume preserving and possess nontrivial normalizers. Our approach is geometric and coordinate-free and hence it works on any smooth orientable manifold.

  9. SPRAT: Spectrograph for the Rapid Acquisition of Transients

    Science.gov (United States)

    Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.; Mottram, Christopher J.; Smith, R. J.; Barnsley, R. M.; Bolton, B.

    2014-07-01

    We describe the development of a low cost, low resolution (R ~ 350), high throughput, long slit spectrograph covering visible (4000-8000) wavelengths. The spectrograph has been developed for fully robotic operation with the Liverpool Telescope (La Palma). The primary aim is to provide rapid spectral classification of faint (V ˜ 20) transient objects detected by projects such as Gaia, iPTF (intermediate Palomar Transient Factory), LOFAR, and a variety of high energy satellites. The design employs a volume phase holographic (VPH) transmission grating as the dispersive element combined with a prism pair (grism) in a linear optical path. One of two peak spectral sensitivities are selectable by rotating the grism. The VPH and prism combination and entrance slit are deployable, and when removed from the beam allow the collimator/camera pair to re-image the target field onto the detector. This mode of operation provides automatic acquisition of the target onto the slit prior to spectrographic observation through World Coordinate System fitting. The selection and characterisation of optical components to maximise photon throughput is described together with performance predictions.

  10. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric; Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Monnier, John D.; Crepp, Justin; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A V = 8-12, with an effective temperature of ∼4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  11. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Laurent [Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Monnier, John D. [Department of Astronomy, University of Michigan, 941 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1090 (United States); Crepp, Justin [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Parry, Ian [University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge, CB3, OHA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  12. Volume phase holographic gratings for the Subaru Prime Focus Spectrograph: performance measurements of the prototype grating set

    Science.gov (United States)

    Barkhouser, Robert H.; Arns, James; Gunn, James E.

    2014-08-01

    The Prime Focus Spectrograph (PFS) is a major instrument under development for the 8.2 m Subaru telescope on Mauna Kea. Four identical, fixed spectrograph modules are located in a room above one Nasmyth focus. A 55 m fiber optic cable feeds light into the spectrographs from a robotic fiber positioner mounted at the telescope prime focus, behind the wide field corrector developed for Hyper Suprime-Cam. The positioner contains 2400 fibers and covers a 1.3 degree hexagonal field of view. Each spectrograph module will be capable of simultaneously acquiring 600 spectra. The spectrograph optical design consists of a Schmidt collimator, two dichroic beamsplitters to separate the light into three channels, and for each channel a volume phase holographic (VPH) grating and a dual- corrector, modified Schmidt reimaging camera. This design provides a 275 mm collimated beam diameter, wide simultaneous wavelength coverage from 380 nm to 1.26 µm, and good imaging performance at the fast f/1.1 focal ratio required from the cameras to avoid oversampling the fibers. The three channels are designated as the blue, red, and near-infrared (NIR), and cover the bandpasses 380-650 nm (blue), 630-970 nm (red), and 0.94-1.26 µm (NIR). A mosaic of two Hamamatsu 2k×4k, 15 µm pixel CCDs records the spectra in the blue and red channels, while the NIR channel employs a 4k×4k, substrate-removed HAWAII-4RG array from Teledyne, with 15 µm pixels and a 1.7 µm wavelength cutoff. VPH gratings have become the dispersing element of choice for moderate-resolution astronomical spectro- graphs due their potential for very high diffraction efficiency, low scattered light, and the more compact instru- ment designs offered by transmissive dispersers. High quality VPH gratings are now routinely being produced in the sizes required for instruments on large telescopes. These factors made VPH gratings an obvious choice for PFS. In order to reduce risk to the project, as well as fully exploit the performance

  13. Curved VPH gratings for novel spectrographs

    Science.gov (United States)

    Clemens, J. Christopher; O'Donoghue, Darragh; Dunlap, Bart H.

    2014-07-01

    The introduction of volume phase holographic (VPH) gratings into astronomy over a decade ago opened new possibilities for instrument designers. In this paper we describe an extension of VPH grating technology that will have applications in astronomy and beyond: curved VPH gratings. These devices can disperse light while simultaneously correcting aberrations. We have designed and manufactured two different kinds of convex VPH grating prototypes for use in off-axis reflecting spectrographs. One type functions in transmission and the other in reflection, enabling Offnerstyle spectrographs with the high-efficiency and low-cost advantages of VPH gratings. We will discuss the design process and the tools required for modelling these gratings along with the recording layout and process steps required to fabricate them. We will present performance data for the first convex VPH grating produced for an astronomical spectrograph.

  14. Variational method for integrating radial gradient field

    Science.gov (United States)

    Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo

    2014-12-01

    We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.

  15. Architectures for Green-Field Supply Chain Integration: Supply Chain Integration Design

    OpenAIRE

    Radanliev, Petar

    2015-01-01

    This paper applied case study research to design architectures for green-field supply chain integration. The integration design is based on a case study of a supply chain integration of 5 companies, operating in different, but supply chain complimenting industry sectors. The case study research is applied to design and validate the architectures in a real world scenario. The supply\\ud chain integration architectures enable the conversion of individual into integrated strategies. The architect...

  16. Sky Subtraction with Fiber-Fed Spectrograph

    Science.gov (United States)

    Rodrigues, Myriam

    2017-09-01

    "Historically, fiber-fed spectrographs had been deemed inadequate for the observation of faint targets, mainly because of the difficulty to achieve high accuracy on the sky subtraction. The impossibility to sample the sky in the immediate vicinity of the target in fiber instruments has led to a commonly held view that a multi-object fibre spectrograph cannot achieve an accurate sky subtraction under 1% contrary to their slit counterpart. The next generation of multi-objects spectrograph at the VLT (MOONS) and the planed MOS for the E-ELT (MOSAIC) are fiber-fed instruments, and are aimed to observed targets fainter than the sky continuum level. In this talk, I will present the state-of-art on sky subtraction strategies and data reduction algorithm specifically developed for fiber-fed spectrographs. I will also present the main results of an observational campaign to better characterise the sky spatial and temporal variations ( in particular the continuum and faint sky lines)."

  17. Tomographic extreme-ultraviolet spectrographs: TESS.

    Science.gov (United States)

    Cotton, D M; Stephan, A; Cook, T; Vickers, J; Taylor, V; Chakrabarti, S

    2000-08-01

    We describe the system of Tomographic Extreme Ultraviolet (EUV) SpectrographS (TESS) that are the primary instruments for the Tomographic Experiment using Radiative Recombinative Ionospheric EUV and Radio Sources (TERRIERS) satellite. The spectrographs were designed to make high-sensitivity {80 counts/s)/Rayleigh [one Rayleigh is equivalent to 10(6) photons/(4pi str cm(2)s)}, line-of-sight measurements of the oi 135.6- and 91.1-nm emissions suitable for tomographic inversion. The system consists of five spectrographs, four identical nightglow instruments (for redundancy and added sensitivity), and one instrument with a smaller aperture to reduce sensitivity and increase spectral resolution for daytime operation. Each instrument has a bandpass of 80-140 nm with approximately 2- and 1-nm resolution for the night and day instruments, respectively. They utilize microchannel-plate-based two-dimensional imaging detectors with wedge-and-strip anode readouts. The instruments were designed, fabricated, and calibrated at Boston University, and the TERRIERS satellite was launched on 18 May 1999 from Vandenberg Air Force Base, California.

  18. Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits

    Science.gov (United States)

    2017-03-01

    Despite all actions and concerns, this problem continues to escalate due to offshore fabrication of the integrated circuits ICs [1]. In order to...diagnosis and fault isolation in ICs, as well as the characterization of the functionality of ICs including malicious circuitry. Integrated circuits ...Innovative Magnetic-Field Array Probe for TRUST Integrated Circuits   contains the RF-switch matrix and broad-band (BB) low noise amplifiers (LNAs

  19. Integration of the MUSE Software Pipeline into the Astro-WISE System

    NARCIS (Netherlands)

    Pizagno, J.; Streicher, O.; Vriend, W.-J.; Ballester, P.; Egret, D.; Lorente, N.P.F.

    We discuss the current state of integrating the Mutli Unit Spectroscopic Explorer (hereafter: MUSE) software pipeline (Weilbacher et al. 2006) into the Astro-WISE system (Valentijn et al. 2007a; Vriend et al. 2012). MUSE is a future integral-field spectrograph for the VLT, consisting of 24 Integral

  20. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  1. Computation of Surface Integrals of Curl Vector Fields

    Science.gov (United States)

    Hu, Chenglie

    2007-01-01

    This article presents a way of computing a surface integral when the vector field of the integrand is a curl field. Presented in some advanced calculus textbooks such as [1], the technique, as the author experienced, is simple and applicable. The computation is based on Stokes' theorem in 3-space calculus, and thus provides not only a means to…

  2. Conformal field theories, Coulomb gas picture and integrable models

    International Nuclear Information System (INIS)

    Zuber, J.B.

    1988-01-01

    The aim of the study is to present the links between some results of conformal field theory, the conventional Coulomb gas picture in statistical mechanics and the approach of integrable models. It is shown that families of conformal theories, related by the coset construction to the SU(2) Kac-Moody algebra, may be regarded as obtained from some free field, and modified by the coupling of its winding numbers to floating charges. This representation reflects the procedure of restriction of the corresponding integrable lattice models. The work may be generalized to models based on the coset construction with higher rank algebras. The corresponding integrable models are identified. In the conformal field description, generalized parafermions appear, and are coupled to free fields living on a higher-dimensional torus. The analysis is not as exhaustive as in the SU(2) case: all the various restrictions have not been identified, nor the modular invariants completely classified

  3. The Use of Color Sensors for Spectrographic Calibration

    Science.gov (United States)

    Thomas, Neil B.

    2018-04-01

    The wavelength calibration of spectrographs is an essential but challenging task in many disciplines. Calibration is traditionally accomplished by imaging the spectrum of a light source containing features that are known to appear at certain wavelengths and mapping them to their location on the sensor. This is typically required in conjunction with each scientific observation to account for mechanical and optical variations of the instrument over time, which may span years for certain projects. The method presented here investigates the usage of color itself instead of spectral features to calibrate a spectrograph. The primary advantage of such a calibration is that any broad-spectrum light source such as the sky or an incandescent bulb is suitable. This method allows for calibration using the full optical pathway of the instrument instead of incorporating separate calibration equipment that may introduce errors. This paper focuses on the potential for color calibration in the field of radial velocity astronomy, in which instruments must be finely calibrated for long periods of time to detect tiny Doppler wavelength shifts. This method is not restricted to radial velocity, however, and may find application in any field requiring calibrated spectrometers such as sea water analysis, cellular biology, chemistry, atmospheric studies, and so on. This paper demonstrates that color sensors have the potential to provide calibration with greatly reduced complexity.

  4. General method of quantitative spectrographic analysis

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1966-01-01

    A spectrographic method was developed to determine 23 elements in a wide range of concentrations; the method can be applied to metallic or refractory samples. Previous melting with lithium tetraborate and germanium oxide is done in order to avoid the influence of matrix composition and crystalline structure. Germanium oxide is also employed as internal standard. The resulting beads ar mixed with graphite powder (1:1) and excited in a 10 amperes direct current arc. (Author) 12 refs

  5. Magnetic spectrograph with a semicircular focusing for studies on the energy distribution of a high-current relativistic electron beam

    International Nuclear Information System (INIS)

    Gosteva, T.S.; Zablotskaya, G.R.; Ivanov, B.A.; Kolyubakin, S.A.; Chernobrovin, V.I.

    1975-01-01

    Specific features of a magnetic spectrograph with a semicircular focusing are described; the spectrograph has been designed to study, using the REP-5 pulsed accelerator, the energy spectra of electrons with a current of 50 kA, pulse duration of 20 ns in the energy range 0.2 to 3 MeV. The beam has been transported in a drift chamber where the air pressure varies from 10 -3 to 40 torr. The chamber is 50 cm long and 12 cm in diameter. The spectrograph vacuum chamber is made in the form of a plane rectangular box with a degassing fitting. The uniform magnetic field in the spectrograph gap is provided with permanent magnets (ferrite-barium plates). The collimator and the chamber walls on which the magnets are located, are made of low-carbon electrotechnical steel. The diameters of the collimator entrance and exit windows are 2 and 0.2 mm, respectively. To screen the photofilm in the spectrograph chamber from x-radiation, there are three disks on the spectrograph flange on the part of the drift chamber, they are made of lead, steel, and aluminium. The steel disk, besides, screens the space in front of the collimator entrance window from the scattered magnetic field. During the experiments the pressure in the spectrograph chamber has varied from 7x10 -3 to 10 -1 torr. Electrons are registered using the RT-1 and RT-5 x-ray films 1x18 cm in size. The spectrograph described makes it possible to have well-resolved electron spectrum during a pulse. The electron spectra obtained by means of the spectrograph at a pressure of 4.10 -1 torr in the drift chamber and a charge voltage of 3.2 MV in the line, are shown [ru

  6. Calculation Of Multicenter Electric Field Integrals Over Slater Type Orbitals

    International Nuclear Information System (INIS)

    Zaim, N.

    2010-01-01

    Using the properties of complete orthonormal sets of Ψ α -exponential type orbitals (α1,0,-1,-2, ...) and the relations for overlap integrals, the calculations for the multicenter electric field integrals of Slater type orbitals are performed. The results of computer calculations are presented. The convergence of the series is tested by calculating concrete cases for the arbitrary values of quantum numbers, orbital parameters and internuclear distances.

  7. Integral parameters of crystal field for RE spectra

    International Nuclear Information System (INIS)

    Kustov, E.F.; Maketov, T.K.; Prgevudsky, A.K.; Steczko, G.

    1980-01-01

    The integral parameters of the crystal field are introduced for the interpretation of the spectra of RE ions in various crystals. The main formula of the method, the expression of the parameters for various states of Ce, Pr, Nd, Eu, Tb, Er, Tu, and Yb are determined. Integral parameters of A 2 , A 4 , A 6 and parameter of the spin-orbit interaction xi are calculated for 40 laser crystals with Nd, Er. An interpretation of the symmetry of the Eu 3+ centres of the NaBaZn silicate glass is given using integral parameters A 2 , A 4 . (author)

  8. Invariant hyperplanes and Darboux integrability of polynomial vector fields

    International Nuclear Information System (INIS)

    Zhang Xiang

    2002-01-01

    This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties

  9. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST-AFTA

    Science.gov (United States)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST-AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory (JPL) and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) configurations. We discuss why the lenslet array based IFS was selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to reduce the diffraction from the edge of the lenslets. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  10. Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) for WFIRST/AFTA

    Science.gov (United States)

    Gong, Qian; Mcelwain, Michael; Greeley, Bradford; Grammer, Bryan; Marx, Catherine; Memarsadeghi, Nargess; Stapelfeldt, Karl; Hilton, George; Sayson, Jorge Llop; Perrin, Marshall; hide

    2015-01-01

    Prototype Imaging Spectrograph for Coronagraphic Exoplanet Studies (PISCES) is a lenslet array based integral field spectrometer (IFS) designed for high contrast imaging of extrasolar planets. PISCES will be used to advance the technology readiness of the high contrast IFS baselined on the Wide-Field InfraRed Survey Telescope/Astrophysics Focused Telescope Assets (WFIRST/AFTA) coronagraph instrument. PISCES will be integrated into the high contrast imaging testbed (HCIT) at the Jet Propulsion Laboratory and will work with both the Hybrid Lyot Coronagraph (HLC) and the Shaped Pupil Coronagraph (SPC) cofigurations. We discuss why the lenslet array based IFS is selected for PISCES. We present the PISCES optical design, including the similarities and differences of lenslet based IFSs to normal spectrometers, the trade-off between a refractive design and reflective design, as well as the specific function of our pinhole mask on the back surface of the lenslet array to further suppress star light introduced speckles. The optical analysis, alignment plan, and mechanical design of the instrument will be discussed.

  11. MSE spectrograph optical design: a novel pupil slicing technique

    Science.gov (United States)

    Spanò, P.

    2014-07-01

    The Maunakea Spectroscopic Explorer shall be mainly devoted to perform deep, wide-field, spectroscopic surveys at spectral resolutions from ~2000 to ~20000, at visible and near-infrared wavelengths. Simultaneous spectral coverage at low resolution is required, while at high resolution only selected windows can be covered. Moreover, very high multiplexing (3200 objects) must be obtained at low resolution. At higher resolutions a decreased number of objects (~800) can be observed. To meet such high demanding requirements, a fiber-fed multi-object spectrograph concept has been designed by pupil-slicing the collimated beam, followed by multiple dispersive and camera optics. Different resolution modes are obtained by introducing anamorphic lenslets in front of the fiber arrays. The spectrograph is able to switch between three resolution modes (2000, 6500, 20000) by removing the anamorphic lenses and exchanging gratings. Camera lenses are fixed in place to increase stability. To enhance throughput, VPH first-order gratings has been preferred over echelle gratings. Moreover, throughput is kept high over all wavelength ranges by splitting light into more arms by dichroic beamsplitters and optimizing efficiency for each channel by proper selection of glass materials, coatings, and grating parameters.

  12. Quantitative imaging through a spectrograph : 2. stoichiometry mapping by Raman scattering

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, ter J.J.

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669–5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  13. Quantitative imaging through a spectrograph. 2. Stoichiometry mapping by Raman scattering.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter

    2004-01-01

    The Bayesian deconvolution algorithm described in a preceding paper [Appl. Opt. 43, 5669-5681 (2004)] is applied to measurement of the two-dimensional stoichiometry field in a combustible methane-air mixture by Raman imaging through a spectrograph. Stoichiometry (fuel equivalence ratio) is derived

  14. CALIFA, the Calar Alto Legacy Integral Field Area survey. IV. Third public data release

    Science.gov (United States)

    Sánchez, S. F.; García-Benito, R.; Zibetti, S.; Walcher, C. J.; Husemann, B.; Mendoza, M. A.; Galbany, L.; Falcón-Barroso, J.; Mast, D.; Aceituno, J.; Aguerri, J. A. L.; Alves, J.; Amorim, A. L.; Ascasibar, Y.; Barrado-Navascues, D.; Barrera-Ballesteros, J.; Bekeraitè, S.; Bland-Hawthorn, J.; Cano Díaz, M.; Cid Fernandes, R.; Cavichia, O.; Cortijo, C.; Dannerbauer, H.; Demleitner, M.; Díaz, A.; Dettmar, R. J.; de Lorenzo-Cáceres, A.; del Olmo, A.; Galazzi, A.; García-Lorenzo, B.; Gil de Paz, A.; González Delgado, R.; Holmes, L.; Iglésias-Páramo, J.; Kehrig, C.; Kelz, A.; Kennicutt, R. C.; Kleemann, B.; Lacerda, E. A. D.; López Fernández, R.; López Sánchez, A. R.; Lyubenova, M.; Marino, R.; Márquez, I.; Mendez-Abreu, J.; Mollá, M.; Monreal-Ibero, A.; Ortega Minakata, R.; Torres-Papaqui, J. P.; Pérez, E.; Rosales-Ortega, F. F.; Roth, M. M.; Sánchez-Blázquez, P.; Schilling, U.; Spekkens, K.; Vale Asari, N.; van den Bosch, R. C. E.; van de Ven, G.; Vilchez, J. M.; Wild, V.; Wisotzki, L.; Yıldırım, A.; Ziegler, B.

    2016-10-01

    This paper describes the third public data release (DR3) of the Calar Alto Legacy Integral Field Area (CALIFA) survey. Science-grade quality data for 667 galaxies are made public, including the 200 galaxies of the second public data release (DR2). Data were obtained with the integral-field spectrograph PMAS/PPak mounted on the 3.5 m telescope at the Calar Alto Observatory. Three different spectral setups are available: I) a low-resolution V500 setup covering the wavelength range 3745-7500 Å (4240-7140 Å unvignetted) with a spectral resolution of 6.0 Å (FWHM) for 646 galaxies, II) a medium-resolution V1200 setup covering the wavelength range 3650-4840 Å (3650-4620 Å unvignetted) with a spectral resolution of 2.3 Å (FWHM) for 484 galaxies, and III) the combination of the cubes from both setups (called COMBO) with a spectral resolution of 6.0 Å and a wavelength range between 3700-7500 Å (3700-7140 Å unvignetted) for 446 galaxies. The Main Sample, selected and observed according to the CALIFA survey strategy covers a redshift range between 0.005 and 0.03, spans the color-magnitude diagram and probes a wide range of stellar masses, ionization conditions, and morphological types. The Extension Sample covers several types of galaxies that are rare in the overall galaxy population and are therefore not numerous or absent in the CALIFA Main Sample. All the cubes in the data release were processed using the latest pipeline, which includes improved versions of the calibration frames and an even further improved image reconstruction quality. In total, the third data release contains 1576 datacubes, including ~1.5 million independent spectra. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA) at Calar Alto, operated jointly by the Max-Planck-Institut für Astronomie (MPIA) and the Instituto de Astrofísica de Andalucía (CSIC).The spectra are available at http://califa.caha.es/DR3

  15. The quantum double in integrable quantum field theory

    International Nuclear Information System (INIS)

    Bernard, D.; LeClair, A.

    1993-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)

  16. Evaluation Of Farmer Field School On Integrated Pest | Rustum ...

    African Journals Online (AJOL)

    This research is aimed to explore the quality of the program implementation of the Integrated Pest Management Field Farmer School (IPMFFS) (in Indonesian ... quantity (3) participate agricultural extension, (4) remedial practice, (5) insight development, (6) motivation establishment, (7) the readiness of the participants, ...

  17. Effect of integrated pest management farmer field school (IPMFFS ...

    African Journals Online (AJOL)

    This research aimed to explore the effect of the Integrated Pest Management Farmer Field School (IPMFFS), on farmer knowledge, farmer group's ability, process of adoption and diffusion of IPM in Jember district. The population of the research was 556 farmer groups consisting of 22.240 farmers engaged in the IPMFFS in ...

  18. Classically integrable boundary conditions for affine Toda field theories

    International Nuclear Information System (INIS)

    Bowcock, P.; Corrigan, E.; Dorey, P.E.; Rietdijk, R.H.

    1995-01-01

    Boundary conditions compatible with classical integrability are studied both directly, using an approach based on the explicit construction of conserved quantities, and indirectly by first developing a generalisation of the Lax pair idea. The latter approach is closer to the spirit of earlier work by Sklyanin and yields a complete set of conjectures for permissible boundary conditions for any affine Toda field theory. (orig.)

  19. Integrating nature, culture, and society: the concept of landscape field

    Czech Academy of Sciences Publication Activity Database

    Lapka, Miloslav; Cudlínová, Eva; Rikoon, S.; Maxa, Josef

    2001-01-01

    Roč. 20, č. 1 (2001), s. 125-138 ISSN 1335-342X Institutional research plan: CEZ:AV0Z6087904 Keywords : landscape field * nature culture integration Subject RIV: EH - Ecology, Behaviour Impact factor: 0.192, year: 2001

  20. Visualizing Vector Fields Using Line Integral Convolution and Dye Advection

    Science.gov (United States)

    Shen, Han-Wei; Johnson, Christopher R.; Ma, Kwan-Liu

    1996-01-01

    We present local and global techniques to visualize three-dimensional vector field data. Using the Line Integral Convolution (LIC) method to image the global vector field, our new algorithm allows the user to introduce colored 'dye' into the vector field to highlight local flow features. A fast algorithm is proposed that quickly recomputes the dyed LIC images. In addition, we introduce volume rendering methods that can map the LIC texture on any contour surface and/or translucent region defined by additional scalar quantities, and can follow the advection of colored dye throughout the volume.

  1. Non-integrable quantum field theories as perturbations of certain integrable models

    International Nuclear Information System (INIS)

    Delfino, G.; Simonetti, P.

    1996-03-01

    We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab

  2. Gravitational field strength and generalized Komar-integral

    International Nuclear Information System (INIS)

    Simon, W.

    1984-01-01

    We define a 'gravitational field strength' in theories of the Einstein-Cartan type admitting a Killing-vector. This field strength is a second rank, antisymmetric, divergence-free tensor, whose ('Komar-') integral over a closed 2-surface gives a physically meaningful quantity. We find conditions on the Lagrange-density of the theory which ensure the existence of such a tensor, and show that they are satisfied for N = 2-supergravity and for a special case of the bosonic sector of N = 4-supergravity. We discuss a possible application of the generalized Komar-integral in the theory of stationary black holes. We also consider the Kaluza-Klein-approach to the 'field-strength-problem', which turns out to be particularly rewarding in the application to black holes. (Author)

  3. Spectrographic analysis of uranium-molybdenum alloys

    International Nuclear Information System (INIS)

    Roca, M.

    1967-01-01

    A spectrographic method of analysis has been developed for uranium-molybdenum alloys containing up to 10 % Mo. The carrier distillation technique, with gallium oxide and graphite as carriers, is used for the semiquantitative determination of Al, Cr, Fe, Ni and Si, involving the conversion of the samples into oxides. As a consequence of the study of the influence of the molybdenum on the line intensities, it is useful to prepare only one set of standards with 0,6 % MoO 3 . Total burning excitation is used for calcium, employing two sets of standards with 0,6 and 7.5 MoO 3 . (Author) 5 refs

  4. The integrable structure of nonrational conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-02-15

    Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)

  5. New twistorial integral formulas for massless free fields of arbitrary spin

    International Nuclear Information System (INIS)

    Cardoso, J.G.

    1991-01-01

    A manifestly scaling-invariant version of the Kirchoff-D'Adhemar-Penrose field integrals is presented. The invariant integral expressions for the spinning massless free fields are directly transcribed into the framework of twistor theory. It is then shown that the resulting twistorial field integrals can be thought of as being equivalent to the universal Penrose contour integral formulas for these fields

  6. A new device for production measurements of field integral and field direction of SC dipole magnets

    International Nuclear Information System (INIS)

    Preissner, H.; Bouchard, R.; Luethke, P.; Makulski, A.; Meinke, R.; Nesteruk, K.

    1990-01-01

    The performance of all superconducting magnets for HERA is tested in the DESY magnet test facility and their magnetic field is measured. For dipole magnets the magnitude and the direction of the field is measured point by point along the axis with a mole-type probe which is transported through the beam pipe. The positioning of the probe is done via a toothed belt with an accuracy of 1 mm. The probe houses two Hall probes perpendicular to each other, a gravitational tilt sensor and an NMR probe. The field in the plateau is measured by NMR, the fringe field is measured by the Hall probes and the field direction relative to gravity is obtained from the ratio of the two Hall voltages and the tilt sensor. The field integral is determined with an accuracy of 10 -4 and the average field direction is measured with an accuracy of 0.2 mrad. 4 refs., 4 figs

  7. Micro photometer's automation for quantitative spectrograph analysis

    International Nuclear Information System (INIS)

    Gutierrez E, C.Y.A.

    1996-01-01

    A Microphotometer is used to increase the sharpness of dark spectral lines. Analyzing these lines one sample content and its concentration could be determined and the analysis is known as Quantitative Spectrographic Analysis. The Quantitative Spectrographic Analysis is carried out in 3 steps, as follows. 1. Emulsion calibration. This consists of gauging a photographic emulsion, to determine the intensity variations in terms of the incident radiation. For the procedure of emulsion calibration an adjustment with square minimum to the data obtained is applied to obtain a graph. It is possible to determine the density of dark spectral line against the incident light intensity shown by the microphotometer. 2. Working curves. The values of known concentration of an element against incident light intensity are plotted. Since the sample contains several elements, it is necessary to find a work curve for each one of them. 3. Analytical results. The calibration curve and working curves are compared and the concentration of the studied element is determined. The automatic data acquisition, calculation and obtaining of resulting, is done by means of a computer (PC) and a computer program. The conditioning signal circuits have the function of delivering TTL levels (Transistor Transistor Logic) to make the communication between the microphotometer and the computer possible. Data calculation is done using a computer programm

  8. Parallel heat transport in integrable and chaotic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Castillo-Negrete, D. del; Chacon, L. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-8071 (United States)

    2012-05-15

    The study of transport in magnetized plasmas is a problem of fundamental interest in controlled fusion, space plasmas, and astrophysics research. Three issues make this problem particularly challenging: (i) The extreme anisotropy between the parallel (i.e., along the magnetic field), {chi}{sub ||} , and the perpendicular, {chi}{sub Up-Tack }, conductivities ({chi}{sub ||} /{chi}{sub Up-Tack} may exceed 10{sup 10} in fusion plasmas); (ii) Nonlocal parallel transport in the limit of small collisionality; and (iii) Magnetic field lines chaos which in general complicates (and may preclude) the construction of magnetic field line coordinates. Motivated by these issues, we present a Lagrangian Green's function method to solve the local and non-local parallel transport equation applicable to integrable and chaotic magnetic fields in arbitrary geometry. The method avoids by construction the numerical pollution issues of grid-based algorithms. The potential of the approach is demonstrated with nontrivial applications to integrable (magnetic island), weakly chaotic (Devil's staircase), and fully chaotic magnetic field configurations. For the latter, numerical solutions of the parallel heat transport equation show that the effective radial transport, with local and non-local parallel closures, is non-diffusive, thus casting doubts on the applicability of quasilinear diffusion descriptions. General conditions for the existence of non-diffusive, multivalued flux-gradient relations in the temperature evolution are derived.

  9. Status and Performance Updates for the Cosmic Origins Spectrograph

    Science.gov (United States)

    Snyder, Elaine M.; De Rosa, Gisella; Fischer, William J.; Fix, Mees; Fox, Andrew; Indriolo, Nick; James, Bethan; Oliveira, Cristina M.; Penton, Steven V.; Plesha, Rachel; Rafelski, Marc; Roman-Duval, Julia; Sahnow, David J.; Sankrit, Ravi; Taylor, Joanna M.; White, James

    2018-01-01

    The Hubble Space Telescope's Cosmic Origins Spectrograph (COS) moved the spectra on the FUV detector from Lifetime Position 3 (LP3) to a new pristine location, LP4, in October 2017. The spectra were shifted in the cross-dispersion direction by -2.5" (roughly -31 pixels) from LP3, or -5" (roughly -62 pixels) from the original LP1. This move mitigates the adverse effects of gain sag on the spectral quality and accuracy of COS FUV observations. Here, we present updates regarding the calibration of FUV data at LP4, including the flat fields, flux calibrations, and spectral resolution. We also present updates on the time-dependent sensitivities and dark rates of both the NUV and FUV detectors.

  10. The hippocampus facilitates integration within a symbolic field.

    Science.gov (United States)

    Cornelius, John Thor

    2017-10-01

    This paper attempts to elaborate a fundamental brain mechanism involved in the creation and maintenance of symbolic fields of thought. It will integrate theories of psychic spaces as explored by Donald Winnicott and Wilfred Bion with the neuroscientific examinations of those with bilateral hippocampal injury to show how evidence from both disciplines sheds important light on this aspect of mind. Possibly originating as a way of maintaining an oriented, first person psychic map, this capacity allows individuals a dynamic narrative access to a realm of layered elements and their connections. If the proposed hypothesis is correct, the hippocampus facilitates the integration of this symbolic field of mind, where narrative forms of thinking, creativity, memory, and dreaming are intertwined. Without the hippocampus, there is an inability to engage many typical forms of thought itself. Also, noting the ways these individuals are not impaired supports theories about other faculties of mind, providing insight into their possible roles within human thought. The evidence of different systems working in conjunction with the symbolic field provides tantalizing clues about these fundamental mechanisms of brain and mind that are normally seamlessly integrated, and hints at future areas of clinical and laboratory research, both within neuroscience and psychoanalysis. © 2017 The Authors. The International Journal of Psychoanalysis published by John Wiley & Sons Ltd on behalf of Institute of Psychoanalysis.

  11. THE MEASUREMENT, TREATMENT, AND IMPACT OF SPECTRAL COVARIANCE AND BAYESIAN PRIORS IN INTEGRAL -FIELD SPECTROSCOPY OF EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Greco, Johnny P. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ (United States); Brandt, Timothy D. [Institute for Advanced Study, Princeton, NJ (United States)

    2016-12-20

    The recovery of an exoplanet’s atmospheric parameters from its spectrum requires accurate knowledge of the spectral errors and covariances. Unfortunately, the complex image processing used in high-contrast integral-field spectrograph (IFS) observations generally produces spectral covariances that are poorly understood and often ignored. In this work, we show how to measure the spectral errors and covariances and include them self-consistently in parameter retrievals. By combining model exoplanet spectra with a realistic noise model generated from the Gemini Planet Imager (GPI) early science data, we show that ignoring spectral covariance in high-contrast IFS data can both bias inferred parameters and lead to unreliable confidence regions on those parameters. This problem is made worse by the common practice of scaling the χ {sup 2} per degree of freedom to unity; the input parameters then fall outside the 95% confidence regions in as many as ∼80% of noise realizations. The biases we observe can approach the typical levels of precision achieved in high-contrast spectroscopy. Accounting for realistic priors in fully Bayesian retrievals can also have a significant impact on the inferred parameters. Plausible priors on effective temperature and surface gravity can vary by an order of magnitude across the confidence regions appropriate for objects with weak age constraints; priors for objects with good age constraints are dominated by modeling uncertainties. Our methods are directly applicable to existing high-contrast IFSs including GPI and SPHERE, as well as upcoming instruments like CHARIS and, ultimately, WFIRST-AFTA.

  12. High Resolution Integral Field Spectroscopy of Europa's Sodium Clouds: Evidence for a Component with Origins in Iogenic Plasma.

    Science.gov (United States)

    Schmidt, C.; Johnson, R. E.; Mendillo, M.; Baumgardner, J. L.; Moore, L.; O'Donoghue, J.; Leblanc, F.

    2015-12-01

    With the object of constraining Iogenic contributions and identifying drivers for variability, we report new observations of neutral sodium in Europa's exosphere. An R~20000 integral field spectrograph at McDonald Observatory is used to generate Doppler maps of sodium cloud structures with a resolution of 2.8 km/s/pixel. In the five nights of observations since 2011, measurements on UT 6.15-6.31 May 2015 uniquely feature fast (10s of km/s) neutral sodium clouds extending nearly 100 Europa radii, more distant than in any previous findings. During these measurements, the satellite geometry was favorable for the transfer of Na from Io to Europa, located at 1:55 to 4:00 and 3:38 to 4:39 Jovian local time, respectively. Eastward emission (away from Jupiter) extends 10-20 Europa radii retaining the moon's rest velocity, while westward emission blue-shifts with distance, and a broad range of velocities are measured, reaching at least 70 km/s at 80 Europa radii. These cloud features are distinct from Io's "banana" and "stream" features, the distant Jupiter-orbiting nebula, and from terrestrial OH and Na contaminant emissions. Io's production was quiescent during this observation, following an extremely active phase in February 2015. These results are consistent with previous findings that Europa's Na exosphere has peak emission between midnight and dawn Jovian local time and support the idea that sodium escape from Io can significantly enhance the emission intensity measured at Europa.

  13. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  14. Neural Circuit to Integrate Opposing Motions in the Visual Field.

    Science.gov (United States)

    Mauss, Alex S; Pankova, Katarina; Arenz, Alexander; Nern, Aljoscha; Rubin, Gerald M; Borst, Alexander

    2015-07-16

    When navigating in their environment, animals use visual motion cues as feedback signals that are elicited by their own motion. Such signals are provided by wide-field neurons sampling motion directions at multiple image points as the animal maneuvers. Each one of these neurons responds selectively to a specific optic flow-field representing the spatial distribution of motion vectors on the retina. Here, we describe the discovery of a group of local, inhibitory interneurons in the fruit fly Drosophila key for filtering these cues. Using anatomy, molecular characterization, activity manipulation, and physiological recordings, we demonstrate that these interneurons convey direction-selective inhibition to wide-field neurons with opposite preferred direction and provide evidence for how their connectivity enables the computation required for integrating opposing motions. Our results indicate that, rather than sharpening directional selectivity per se, these circuit elements reduce noise by eliminating non-specific responses to complex visual information. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  16. Spectrographic determination of chlorine and fluorine

    International Nuclear Information System (INIS)

    Contamin, G.

    1965-04-01

    Experimental conditions have been investigated in order to obtain the highest sensitivity in spectrographic determination of chlorine and fluorine using the Fassel method of excitation in an inert atmosphere. The influence of the nature of the atmosphere, of the discharge conditions and of the matrix material has been investigated. The following results have been established: 1. chlorine determination is definitely possible: a working curve has been drawn between 10 μg and 100 μg, the detection limit being around 5 μg; 2. fluorine determination is not satisfactory: the detection limit is still of the order of 80 μg. The best operating conditions have been defined for both elements. (author) [fr

  17. Spectrographic determination of impurities in magnesium metal

    International Nuclear Information System (INIS)

    Capdevila, C.; Diaz-Guerra, J. P.

    1979-01-01

    The spectrographic determination of trace quantities of Al, B, Cd, Co, Cr, Cu, Fe, Li, Hn, Mo, Ni and Si in magnesium metal is described. Samples are dissolved with HNO 3 and calcinate into MgO. In order to avoid losses of boron NH 4 OH is added to the nitric solution. Except for aluminium and chromium the analysis is performed through the use of the carrier distillation technique. These two impurities are determined by burning to completion the MgO. Among the compounds studied as carriers (AgCl, AgF, CsCl, CuF 2 , KCl and SrF 2 ) AgCl allows, In general, the best volatilization efficiency. Lithium determination is achieved by using KC1 or CsCl. Detection limits, on the basis of MgO, are in the range 0,1 to 30 ppm, depending on the element. (Author) 8 refs

  18. Quantitative spectrographic analysis of impurities in antimonium

    International Nuclear Information System (INIS)

    Brito, J. de; Gomes, R.P.

    1978-01-01

    An emission spectrographic method is describe for the determination of Ag, Al, As, Be, Bi, Cd, Cr, Cu, Ga, Ni, Pb, Sn, Si, and Zn in high purity antimony metal. The metal sample ia dissolved in nitric acid(1:1) and converted tp oxide by calcination at 900 0 C for one hour. The oxide so obtained is mixed with graphite, which is used as a spectroscopic buffer, and excited by a direct current arc. Many parameters are studied optimum conditions are selected for the determination of the impurities mentioned. The spectrum is photographed in the second order of a 15.000 lines per inch grating and the most sensitive lines for the elements are selected. The impurities are determined in the concentration range of 1 - 0,01% with a precision of approximately 10% [pt

  19. Spectrographic determination of impurities in beryllium oxide

    International Nuclear Information System (INIS)

    Paula Reino, L.C. de; Lordello, A.R.; Pereira, A.S.A.

    1986-03-01

    A method for the spectrographic determination of Al, B, Cd, Co, Cu, Cr, Fe, Mg, NaNi, Si and Zn in nuclear grade beryllium oxide has been developed. The determination of Co, Al, Na and Zn is besed upon a carrier distillation technique. Better results were obtained with 2% Ga 2 O 3 as carrier in beryllium oxide. For the elements B, Cd, Cu, Fe, Cr, Mg, Ni and Si the sample is loaded in a Scribner-Mullin shallow cup electrode, covered with graphite powder and excited in DC arc. The relative standard deviation values for different elements are in the range of 10 to 20%. The method fulfills requirements of precision and sensitivity for specification analysis of nuclear grade beryllium oxide.(Author) [pt

  20. Integral Field Spectroscopy of Balmer-dominated Shocks in the Magellanic Cloud Supernova Remnant N103B

    Energy Technology Data Exchange (ETDEWEB)

    Ghavamian, Parviz [Department of Physics, Astronomy and Geosciences, Towson University, Towson, MD 21252 (United States); Seitenzahl, Ivo R.; Dopita, M. A. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Vogt, Frédéric P. A. [European Southern Observatory, Av. Alonso de Córdova 3107, 763 0355 Vitacura, Santiago (Chile); Terry, Jason P. [Department of Physics and Astronomy, University of Georgia (United States); Williams, Brian J. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Winkler, P. Frank, E-mail: pghavamian@towson.edu [Department of Physics, Middlebury College, Middlebury, VT 05753 (United States)

    2017-10-01

    We present results of integral field spectroscopy of Balmer-dominated shocks in the LMC supernova remnant (SNR) N103B, carried out using the Wide Field Integral Spectrograph (WiFeS ) on the 2.3 m telescope at the Siding Spring Observatory in Australia. Existing X-ray studies of N103B have indicated an SN Ia origin. Radiative shock emission from clumpy material surrounding the SNR may result from interaction of the forward shock with relic stellar wind material, possibly implicating a thermonuclear explosion in a single-degenerate binary system. The recently discovered Balmer-dominated shocks mark the impact of the forward shock with low density, partially neutral CSM gas, and form a partial shell encircling clumps of material exhibiting radiative shocks. The WiFeS spectra of N103B reveal broad H α emission having a width as high as 2350 km s{sup −1} along the northern rim, and both H α and H β broad profiles having widths around 1300 km s{sup −1} along the southern rim. Fits to the H α line profiles indicate that in addition to the usual broad and narrow emission components, a third component of intermediate width exists in these Balmer-dominated shocks, ranging from around 125 km s{sup −1} up to 225 km s{sup −1} in width. This is consistent with predictions of recent Balmer-dominated shock models, which predict that an intermediate-width component will be generated in a fast neutral precursor. We derive a Sedov age of approximately 685 ± 20 years for N103B from the Balmer-dominated spectra, consistent with the young age of 380–860 years estimated from light echo studies.

  1. Fiber Scrambling for High Precision Spectrographs

    Science.gov (United States)

    Kaplan, Zachary; Spronck, J. F. P.; Fischer, D.

    2011-05-01

    The detection of Earth-like exoplanets with the radial velocity method requires extreme Doppler precision and long-term stability in order to measure tiny reflex velocities in the host star. Recent planet searches have led to the detection of so called "super-Earths” (up to a few Earth masses) that induce radial velocity changes of about 1 m/s. However, the detection of true Earth analogs requires a precision of 10 cm/s. One of the largest factors limiting Doppler precision is variation in the Point Spread Function (PSF) from observation to observation due to changes in the illumination of the slit and spectrograph optics. Thus, this stability has become a focus of current instrumentation work. Fiber optics have been used since the 1980's to couple telescopes to high-precision spectrographs, initially for simpler mechanical design and control. However, fiber optics are also naturally efficient scramblers. Scrambling refers to a fiber's ability to produce an output beam independent of input. Our research is focused on characterizing the scrambling properties of several types of fibers, including circular, square and octagonal fibers. By measuring the intensity distribution after the fiber as a function of input beam position, we can simulate guiding errors that occur at an observatory. Through this, we can determine which fibers produce the most uniform outputs for the severest guiding errors, improving the PSF and allowing sub-m/s precision. However, extensive testing of fibers of supposedly identical core diameter, length and shape from the same manufacturer has revealed the "personality” of individual fibers. Personality describes differing intensity patterns for supposedly duplicate fibers illuminated identically. Here, we present our results on scrambling characterization as a function of fiber type, while studying individual fiber personality.

  2. Spectrographic analysis of thorium and its compounds

    International Nuclear Information System (INIS)

    Grampurohit, S.V.; Saksena, M.D.; Kaimal, V.N.P.; Kapoor, S.K.; Murty, P.S.

    1980-01-01

    A spectrographic method, which employs the principle of carrier-distillation technique, is described for the analysis of high purity thoria. Two carriers, AgCl and NaF were used in determining 27 trace elements in ThO 2 . The elements were divided into three groups, A, B and C. In group A, 15 elements, viz. Al, B, Be, Cd, Co, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Sb, Si and Sn were included since it was possible to choose sensitive lines of these elements in one spectral region, 220 - 285 nm. Group B covered 8 elements, viz. Ag, Bi, Ca, Ga, Mo, Ti, V and Zn, which could be determined in the spectral region 290 - 352.5 nm. Group C consisted 4 elements, viz. Ba, K, Li and Na which could be determined in the spectral region 440 - 820 nm. 5% AgCl was used as the carrier for the determination of groups A and C elements and 4% NaF was used as the carrier for the estimation of group B elements. One hundred milligrammes of the sample (in the form of ThO 2 ) containing the carrier were taken in a carrier-distillation electrode and excited in a d.c. arc (10 amps for groups A and C; 15 amps for group B). The spectra of sample and synthetic standards were photographed on Hilger's large quartz, JACO 3.4 m Ebert plane grating and Higler's large glass spectrographs respectively for determining group A, B and C elements. The detection limit obtained for B and Cd was 0.1 ppm. Thorium metal and thorium nitrate samples were converted to ThO 2 prior to analysis. (auth.)

  3. First light results from the Hermes spectrograph at the AAT

    NARCIS (Netherlands)

    Sheinis, A.; Barden, S.; Birchall, M.; Carollo, D.; Bland-Hawthorn, J.; Brzeski, J.; Case, S.; Cannon, R.; Churilov, V.; Couch, W.; Dean, R.; De Silva, G.; D'Orazi, V.; Farrell, T.; Fiegert, K.; Freeman, K.; Frost, G.; Gers, L.; Goodwin, M.; Gray, D.; Heald, R.; Heijmans, J.A.C.; Jones, D.; Keller, S.; Klauser, U.; Kondrat, Y.; Lawrence, J.; Lee, S.; Mali, S.; Martell, S.; Mathews, D.; Mayfield, D.; Miziarski, S.; Muller, R.; Pai, N.; Patterson, R.; Penny, E.; Orr, D.; Shortridge, K.; Simpson, J.; Smedley, S.; Smith, G.; Stafford, D.; Staszak, N.; Vuong, M.; Waller, L.; Wylie de Boer, E.; Xavier, P.; Zheng, J.; Zhelem, R.; Zucker, D.

    2014-01-01

    The High Efficiency and Resolution Multi Element Spectrograph, HERMES is an facility-class optical spectrograph for the AAT. It is designed primarily for Galactic Archeology [21], the first major attempt to create a detailed understanding of galaxy formation and evolution by studying the history of

  4. Quantitative imaging through a spectrograph. 1. Principles and theory.

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Mooij, J.M.; Maassen, J.D.M.

    2004-01-01

    Laser-based optical diagnostics, such as planar laser-induced fluorescence and, especially, Raman imaging, often require selective spectral filtering. We advocate the use of an imaging spectrograph with a broad entrance slit as a spectral filter for two-dimensional imaging. A spectrograph in this

  5. BOOK REVIEW: Path Integrals in Field Theory: An Introduction

    Science.gov (United States)

    Ryder, Lewis

    2004-06-01

    In the 1960s Feynman was known to particle physicists as one of the people who solved the major problems of quantum electrodynamics, his contribution famously introducing what are now called Feynman diagrams. To other physicists he gained a reputation as the author of the Feynman Lectures on Physics; in addition some people were aware of his work on the path integral formulation of quantum theory, and a very few knew about his work on gravitation and Yang--Mills theories, which made use of path integral methods. Forty years later the scene is rather different. Many of the problems of high energy physics are solved; and the standard model incorporates Feynman's path integral method as a way of proving the renormalisability of the gauge (Yang--Mills) theories involved. Gravitation is proving a much harder nut to crack, but here also questions of renormalisability are couched in path-integral language. What is more, theoretical studies of condensed matter physics now also appeal to this technique for quantisation, so the path integral method is becoming part of the standard apparatus of theoretical physics. Chapters on it appear in a number of recent books, and a few books have appeared devoted to this topic alone; the book under review is a very recent one. Path integral techniques have the advantage of enormous conceptual appeal and the great disadvantage of mathematical complexity, this being partly the result of messy integrals but more fundamentally due to the notions of functional differentiation and integration which are involved in the method. All in all this subject is not such an easy ride. Mosel's book, described as an introduction, is aimed at graduate students and research workers in particle physics. It assumes a background knowledge of quantum mechanics, both non-relativistic and relativistic. After three chapters on the path integral formulation of non-relativistic quantum mechanics there are eight chapters on scalar and spinor field theory, followed

  6. The foundational origin of integrability in quantum field theory

    International Nuclear Information System (INIS)

    Schroer, Bert; FU-Berlin

    2012-02-01

    There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized

  7. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Directory of Open Access Journals (Sweden)

    D.X. Horváth

    2016-01-01

    Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  8. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)

    2016-01-15

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  9. Magnetic spectrograph for the Holifield heavy ion research facility

    International Nuclear Information System (INIS)

    Ford, J.L.C. Jr.; Enge, H.A.; Erskine, J.R.; Hendrie, D.L.; LeVine, M.J.

    1977-01-01

    The need for a new generation magnetic spectrograph for the Holifield Heavy Ion Research Facility is discussed. The advantages of a magnetic spectrograph for heavy ion research are discussed, as well as some of the types of experiments for which such an instrument is suited. The limitations which the quality of the incident beam, target and spectrograph itself impose on high resolution heavy ion measurements are discussed. Desired features of an ideal new spectrograph are: (1) intrinsic resolving power E/ΔE greater than or equal to 3000; (2) maximum solid angle greater than or equal to 20 msr; (3) dispersion approx. 4-8m; (4) maximum energy interval approx. 30%; and (5) mass-energy product greater than or equal to 200. Various existing and proposed spectrographs are compared with the specifications for a new heavy ion magnet design

  10. Integration of biomolecular logic gates with field-effect transducers

    Energy Technology Data Exchange (ETDEWEB)

    Poghossian, A., E-mail: a.poghossian@fz-juelich.de [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Malzahn, K. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Abouzar, M.H. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany); Mehndiratta, P. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Katz, E. [Department of Chemistry and Biomolecular Science, NanoBio Laboratory (NABLAB), Clarkson University, Potsdam, NY 13699-5810 (United States); Schoening, M.J. [Institute of Nano- and Biotechnologies, Aachen University of Applied Sciences, Campus Juelich, Heinrich-Mussmann-Str. 1, D-52428 Juelich (Germany); Institute of Bio- and Nanosystems, Research Centre Juelich GmbH, D-52425 Juelich (Germany)

    2011-11-01

    Highlights: > Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. > The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. > Logic gates were activated by different combinations of chemical inputs (analytes). > The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO{sub 2}-Ta{sub 2}O{sub 5} structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta{sub 2}O{sub 5}) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  11. Integration of biomolecular logic gates with field-effect transducers

    International Nuclear Information System (INIS)

    Poghossian, A.; Malzahn, K.; Abouzar, M.H.; Mehndiratta, P.; Katz, E.; Schoening, M.J.

    2011-01-01

    Highlights: → Enzyme-based AND/OR logic gates are integrated with a capacitive field-effect sensor. → The AND/OR logic gates compose of multi-enzyme system immobilised on sensor surface. → Logic gates were activated by different combinations of chemical inputs (analytes). → The logic output (pH change) produced by the enzymes was read out by the sensor. - Abstract: The integration of biomolecular logic gates with field-effect devices - the basic element of conventional electronic logic gates and computing - is one of the most attractive and promising approaches for the transformation of biomolecular logic principles into macroscopically useable electrical output signals. In this work, capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensors based on a p-Si-SiO 2 -Ta 2 O 5 structure modified with a multi-enzyme membrane have been used for electronic transduction of biochemical signals processed by enzyme-based OR and AND logic gates. The realised OR logic gate composes of two enzymes (glucose oxidase and esterase) and was activated by ethyl butyrate or/and glucose. The AND logic gate composes of three enzymes (invertase, mutarotase and glucose oxidase) and was activated by two chemical input signals: sucrose and dissolved oxygen. The developed integrated enzyme logic gates produce local pH changes at the EIS sensor surface as a result of biochemical reactions activated by different combinations of chemical input signals, while the pH value of the bulk solution remains unchanged. The pH-induced charge changes at the gate-insulator (Ta 2 O 5 ) surface of the EIS transducer result in an electronic signal corresponding to the logic output produced by the immobilised enzymes. The logic output signals have been read out by means of a constant-capacitance method.

  12. Path integral for Dirac particle in plane wave field

    International Nuclear Information System (INIS)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  13. Path integral for Dirac particle in plane wave field

    Energy Technology Data Exchange (ETDEWEB)

    Zeggari, S.; Boudjedaa, T.; Chetouani, L. [Mentouri Univ., Constantine (Algeria). Dept. of Physique

    2001-10-01

    The problem of a relativistic spinning particle in interaction with an electromagnetic plane wave field is treated via path integrals. The dynamics of the spin of the particle is described using the supersymmetric action proposed by Fradkin and Gitman. The problem has been solved by using two identities, one bosonic and the other fermionic, which are related directly to the classical equations of motion. The exact expression of the relative Green's function is given and the result agrees with those of the literature. Further, the suitably normalized wave functions are also extracted. (orig.)

  14. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  15. The reduced basis method for the electric field integral equation

    International Nuclear Information System (INIS)

    Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.

    2011-01-01

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

  16. Social Integration as Professional Field: Psychotherapy in Sweden

    Directory of Open Access Journals (Sweden)

    Eva Johnsson

    2013-12-01

    Full Text Available The present article describes and analyses the emergence and development of a professional field called social integration. Ideas, theories, and occupational practices forming this field are explored, particularly those related to the development of a new discipline, that of psychotherapy. The development of three occupations (psychiatry, psychology and social work and their professionalisation is described through their qualitative and quantitative take‑offs in particular historical periods. Three periods are identified: formation, 1850-1920, when psychiatry was defined as a medical sub-discipline; consolidation, 1920-1945, with the institutionalisation of psychiatric care, and with psychoanalysis and mental hygiene as qualitatively new cognitive bases for practitioners; and professionalisation, 1945-1980, with the deinstitutionalisation of psychiatric care and the professionalisation of psychologists and social workers. New ideas on subjectivity and individualism, new welfare state institutions, as well as collaborative professionalism all favoured the creation of psychotherapy as professional knowledge, and a possible new profession of psychotherapists.

  17. Virtual Reality System with Integrated Sound Field Simulation and Reproduction

    Directory of Open Access Journals (Sweden)

    Ingo Assenmacher

    2007-01-01

    Full Text Available A real-time audio rendering system is introduced which combines a full room-specific simulation, dynamic crosstalk cancellation, and multitrack binaural synthesis for virtual acoustical imaging. The system is applicable for any room shape (normal, long, flat, coupled, independent of the a priori assumption of a diffuse sound field. This provides the possibility of simulating indoor or outdoor spatially distributed, freely movable sources and a moving listener in virtual environments. In addition to that, near-to-head sources can be simulated by using measured near-field HRTFs. The reproduction component consists of a headphone-free reproduction by dynamic crosstalk cancellation. The focus of the project is mainly on the integration and interaction of all involved subsystems. It is demonstrated that the system is capable of real-time room simulation and reproduction and, thus, can be used as a reliable platform for further research on VR applications.

  18. Conformal fields. From Riemann surfaces to integrable hierarchies

    International Nuclear Information System (INIS)

    Semikhatov, A.M.

    1991-01-01

    I discuss the idea of translating ingredients of conformal field theory into the language of hierarchies of integrable differential equations. Primary conformal fields are mapped into (differential or matrix) operators living on the phase space of the hierarchy, whereas operator insertions of, e.g., a current or the energy-momentum tensor, become certain vector fields on the phase space and thus acquire a meaning independent of a given Riemann surface. A number of similarities are observed between the structures arising on the hierarchy and those of the theory on the world-sheet. In particular, there is an analogue of the operator product algebra with the Cauchy kernel replaced by its 'off-shell' hierarchy version. Also, hierarchy analogues of certain operator insertions admit two (equivalent, but distinct) forms, resembling the 'bosonized' and 'fermionized' versions respectively. As an application, I obtain a useful reformulation of the Virasoro constraints of the type that arise in matrix models, as a system of equations on dressing (or Lax) operators (rather than correlation functions, i.e., residues or traces). This also suggests an interpretation in terms of a 2D topological field theory, which might be extended to a correspondence between Virasoro-constrained hierarchies and topological theories. (orig.)

  19. Expectation values of local fields for a two-parameter family of integrable models and related perturbed conformal field theories

    International Nuclear Information System (INIS)

    Baseilhac, P.; Fateev, V.A.

    1998-01-01

    We calculate the vacuum expectation values of local fields for the two-parameter family of integrable field theories introduced and studied by Fateev (1996). Using this result we propose an explicit expression for the vacuum expectation values of local operators in parafermionic sine-Gordon models and in integrable perturbed SU(2) coset conformal field theories. (orig.)

  20. E parallel B energy-mass spectrograph for measurement of ions and neutral atoms

    International Nuclear Information System (INIS)

    Funsten, H.O.; McComas, D.J.; Scime, E.E.

    1997-01-01

    Real-time measurement of plasma composition and energy is an important diagnostic in fusion experiments. The Thomson parabola spectrograph described here utilizes an electric field parallel to a magnetic field (E parallel B) and a two-dimensional imaging detector to uniquely identify the energy-per-charge and mass-per-charge distributions of plasma ions. An ultrathin foil can be inserted in front of the E parallel B filter to convert neutral atoms to ions, which are subsequently analyzed using the E parallel B filter. Since helium exiting an ultrathin foil does not form a negative ion and hydrogen isotopes do, this spectrograph allows unique identification of tritium ions and neutrals even in the presence of a large background of 3 He. copyright 1997 American Institute of Physics

  1. Asymptotic series and functional integrals in quantum field theory

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1979-01-01

    Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)

  2. A quantum group structure in integrable conformal field theories

    International Nuclear Information System (INIS)

    Smit, D.J.

    1990-01-01

    We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)

  3. Integrated approach to gas accumulation identification in Field M

    International Nuclear Information System (INIS)

    Malyshevskaya, K; Rukavishnikov, V; Belozerov, B; Podnebesnikh, A

    2015-01-01

    The given paper describes how the integration of different methods, such as core data, well logs, production logging, seismic data and well test analysis, was used to solve the problem of determining gas accumulation boundaries in sediment complex PK1-3 of Field M. This paper is devoted to the block with wells 2, 36, 49, 85, 127, 148 of the field, since it is characterized by high uncertainty, sc. recently drilled wells 1V, 2V and 120 have produced oil, although according to the present-day geological concept they were considered to be gas saturated in the intervals investigated with production logging. Besides, well 127 that was presumably oil saturated has produced gas. By accounting mismatching production data and the geological concept, the authors have supposed that PK1-3 gas accumulation is characterized by a more complex structure than it was supposed by the predecessors and it is represented by reservoir compartmentalization and high heterogeneity. Therefore, the main goal of the work was to revise the distribution of gas saturated reservoir within the PK1-3 sediment complex. To achieve this goal, the authors have set the following tasks: to revise the geological correlation and gas oil contact; to carry out fault interpretation by means of seismic and well test data; to determine areal facies distribution on the basis of integrated core, perform a log motifs and seismic facies analysis. Thus, the estimation of the gas saturated reservoir portion was implemented in two stages: defining the boundary of gas accumulation in depth on the basis of well logs, production data and fault interpretation; reservoir distribution determination on the basis of the seismic facies analysis within the derived gas accumulation boundary

  4. Unifying the field: developing an integrative paradigm for behavior therapy.

    Science.gov (United States)

    Eifert, G H; Forsyth, J P; Schauss, S L

    1993-06-01

    The limitations of early conditioning models and treatments have led many behavior therapists to abandon conditioning principles and replace them with loosely defined cognitive theories and treatments. Systematic theory extensions to human behavior, using new concepts and processes derived from and built upon the basic principles, could have prevented the divisive debates over whether psychological dysfunctions are the results of conditioning or cognition and whether they should be treated with conditioning or cognitive techniques. Behavior therapy could also benefit from recent advances in experimental cognitive psychology that provide objective behavioral methods of studying dysfunctional processes. We suggest a unifying paradigm for explaining abnormal behavior that links and integrates different fields of study and processes that are frequently believed to be incompatible or antithetical such as biological vulnerability variables, learned behavioral repertoires, and that also links historical and current antecedents of the problem. An integrative paradigmatic behavioral approach may serve a unifying function in behavior therapy (a) by promoting an understanding of the dysfunctional processes involved in different disorders and (b) by helping clinicians conduct functional analyses that lead to theory-based, individualized, and effective treatments.

  5. The Integral Field View of the Orion Nebula

    Directory of Open Access Journals (Sweden)

    Adal Mesa-Delgado

    2014-01-01

    Full Text Available This paper reviews the major advances achieved in the Orion Nebula through the use of integral field spectroscopy (IFS. Since the early work of Vasconcelos and collaborators in 2005, this technique has facilitated the investigation of global properties of the nebula and its morphology, providing new clues to better constrain its 3D structure. IFS has led to the discovery of shock-heated zones at the leading working surfaces of prominent Herbig-Haro objects as well as the first attempt to determine the chemical composition of Orion protoplanetary disks, also known as proplyds. The analysis of these morphologies using IFS has given us new insights into the abundance discrepancy problem, a long-standing and unresolved issue that casts doubt on the reliability of current methods used for the determination of metallicities in the universe from the analysis of H II regions. Results imply that high-density clumps and high-velocity flows may play an active role in the production of such discrepancies. Future investigations based on the large-scale IFS mosaic of Orion will be very valuable for exploring how the integrated effect of small-scale structures may have impact at larger scales in the framework of star-forming regions.

  6. Vacuum Predisperser For A Large Plane-Grating Spectrograph

    Science.gov (United States)

    Engleman, R.; Palmer, B. A.; Steinhaus, D. W.

    1980-11-01

    A plane grating predisperser has been constructed which acts as an "order-sorter" for a large plane-grating spectrograph. This combination can photograph relatively wide regions of spectra in a single exposure with no loss of resolution.

  7. The Athena X-ray Integral Field Unit

    Science.gov (United States)

    Barret, D.

    2017-10-01

    The Athena X-ray Integral Field Unit (X-IFU) is a high-resolution X-ray spectrometer, providing 2.5 eV spectral resolution, over a 5' (equivalent diameter) field of view, and count rate capabilities up to 1 Crab in the 0.2-12 keV range. Approaching the end of its feasibility study (scheduled around the end of 2017), I will briefly recall the scientific objectives of Athena driving the X-IFU specifications and will describe its current baseline configuration and the expected performances. I will outline the on-going technology developments that will enable the X-IFU. The X-IFU will be developed by an international consortium led by France (IRAP/CNES), the Netherlands (SRON), Italy (IAPS), with ESA member state contributions from Belgium, Finland, Germany, Poland, Spain and Switzerland, and international partner contributions from Japan and the United States. This talk is given on behalf of the X-IFU Consortium.

  8. 300 Area Integrated Field-Scale Subsurface Research Challenge (IFRC) Field Site Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Freshley, Mark D.

    2008-12-31

    Pacific Northwest National Laboratory (PNNL) has established the 300 Area Integrated Field-Scale Subsurface Research Challenge (300 Area IFRC) on the Hanford Site in southeastern Washington State for the U.S. Department of Energy’s (DOE) Office of Biological and Environmental Research (BER) within the Office of Science. The project is funded by the Environmental Remediation Sciences Division (ERSD). The purpose of the project is to conduct research at the 300 IFRC to investigate multi-scale mass transfer processes associated with a subsurface uranium plume impacting both the vadose zone and groundwater. The management approach for the 300 Area IFRC requires that a Field Site Management Plan be developed. This is an update of the plan to reflect the installation of the well network and other changes.

  9. Science case and requirements for the MOSAIC concept for a multi-object spectrograph for the European extremely large telescope

    International Nuclear Information System (INIS)

    Evans, C.J.; Puech, M.; Bonifacio, P.; Hammer, F.; Jagourel, P.; Caffau, E.; Disseau, K.; Flores, H.; Huertas-Company, M.; Mei, S.; Aussel, H.

    2014-01-01

    Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (=40 arcmin 2 ) patrol field of the E-ELT. The first mode ('high multiplex') requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of ≥100 objects simultaneously. The second ('high definition'), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of ≥10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the top level requirements from each case and introduce the next steps in the design process. (authors)

  10. Properties of the HII Regions Derived Using Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Sebastian F. Sánchez

    2013-01-01

    Full Text Available Here we review some of our more recent results on the observed properties of HII regions using Integral Field Spectroscopy. In particular, we illustrate the use of this technique to study in detail the ionization conditions across the nebulae for galactic HII regions (focused on the Orion Nebula and the statistical study of large samples of extragalactic HII regions. We review the reported new scaling relation between the local mass density and the oxygen abundance across the disk galaxies and the recently discovered universal gradient for oxygen abundances. We update our previous results the lack of a dependence of the Mass-Metallicity relation with the starformation rate, including new unpublished data. Finally we discuss on the relation between the ionization conditions in the nebulae and the underlying stellar population. All together our results indicate that disk galaxies present a chemical enrichment dominated by an inside-out growth scenario, with a less evident effect of radial migrations and/or outflows.

  11. First observations from a CCD all-sky spectrograph at Barentsburg (Spitsbergen

    Directory of Open Access Journals (Sweden)

    S. A. Chernouss

    2008-05-01

    Full Text Available A digital CCD all-sky spectrograph was made by the Polar Geophysical Institute (PGI to support IPY activity in auroral research. The device was tested at the Barentsburg observatory of PGI during the winter season of 2005–2006. The spectrograph is based on a cooled CCD and a transmission grating. The main features of this spectrograph are: a wide field of view (~180°, a wide spectral range (380–740 nm, a spectral resolution of 0.6 nm, a background level of about 100 R at 1-min exposure time. Several thousand spectra of nightglow and aurora were recorded during the observation season. It was possible to register both the strong auroral emissions, as well as weak ones. Spectra of aurora, including nitrogen and oxygen molecular and atomic emissions, as well as OH emissions of the nightglow are shown. A comparison has been conducted of auroral spectra obtained by the film all-sky spectral camera C-180-S at Spitsbergen during IGY, with spectra obtained at Barentsburg during the last winter season. The relationship between the red (630.0 nm and green (557.7 nm auroral emissions shows that the green emission is dominant near the minimum of the solar cycle activity (2005–2006. The opposite situation is observed during 1958–1959, with a maximum solar cycle activity.

  12. MENTORING IN THE FIELDS OF PHYSIOTHERAPY AND INTEGRATED CARE

    Directory of Open Access Journals (Sweden)

    Gergana Nenova

    2018-03-01

    Full Text Available creativecommons Index Copernicus Value: 2016 -90,65 SJIF (Scientific Journal Impact Factor: 2017 - 7,61 Global Impact Factor: 2015 - 0,787 JIFACTOR: 2015 - 0,5 back to 2018Jan-Mar;24(1 Journal of IMAB - Annual Proceeding (Scientific Papers Publisher: Peytchinski Publishing ISSN: 1312-773X (Online Issue: 2018, vol. 24, issue1 Subject Area: Medicine - DOI: 10.5272/jimab.2018241.1923 Published online: 07 March 2018 Original article J of IMAB. 2018 Jan-Mar;24(1:1923-1927 MENTORING IN THE FIELDS OF PHYSIOTHERAPY AND INTEGRATED CARE Gergana Nenova1ORCID logo Corresponding Autoremail, Paraskeva Mancheva1ORCID logo, Todorka Kostadinova2, Kalin Mihov3ORCID logo, Svetoslav Dobrilov3ORCID logo, 1 Training and research sector of Rehabilitation, Medical College - Varna, Medical University of Varna, Bulgaria. 2 Department of Health Economics and Management, Faculty of Public Health, Medical University of Varna, Bulgaria. 3 Department of Orthopedics and Traumatology, Medical University of Varna, Bulgaria. ABSTRACT: A survey on the opinion of students studying Rehabilitation as a major subject on the role of their mentors and their qualities in the "Student Practice project.” The aim of the study is to investigate the point of view of the students, involved in the "Student Practice" project, about the role and the qualities that mentors and academic coaches (physiotherapists should possess in order to be created a selection criteria. Subject of the survey are 14 students studying at the Medical College of MU-Varna which study "Rehabilitation". These students participated in the "Students practice" project for the period November 2016 - March 2017. A feedback was sought from them through a questionnaire method with an exclusively prepared for the survey questionnaire. The results of the feedback from trainees showed their increased confidence in dealing with patients and their better integration within the work team. The knowledge and skills acquired by

  13. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    International Nuclear Information System (INIS)

    Onken, Christopher A.; Ferrarese, Laura; Valluri, Monica; Brown, Jonathan S.; McGregor, Peter J.; Peterson, Bradley M.; Pogge, Richard W.; Bentz, Misty C.; Vestergaard, Marianne; Storchi-Bergmann, Thaisa; Riffel, Rogemar A.

    2014-01-01

    We present a revised measurement of the mass of the central black hole (M BH ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ 2 is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M BH ∼ 3.76 ± 1.15 × 10 7 M ☉ (1σ error) and Y H ∼ 0.34 ± 0.03 M ☉ /L ☉ (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57 −0.37 +0.45 ×10 7 M ⊙ ) and gas kinematics (3.0 −2.2 +0.75 ×10 7 M ⊙ ; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y H = 0.4 ± 0.2 M ☉ /L ☉ . The NIFS kinematics give a central bulge velocity dispersion σ c = 116 ± 3 km s –1 , bringing this object slightly closer to the M BH -σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  14. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2014-08-10

    We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ∼ 3.76 ± 1.15 × 10{sup 7} M{sub ☉} (1σ error) and Y{sub H} ∼ 0.34 ± 0.03 M{sub ☉}/L{sub ☉} (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub −0.37}{sup +0.45}×10{sup 7} M{sub ⊙}) and gas kinematics (3.0{sub −2.2}{sup +0.75}×10{sup 7} M{sub ⊙}; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ☉}/L{sub ☉}. The NIFS kinematics give a central bulge velocity dispersion σ{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  15. On integrability conditions of the equations of nonsymmetrical chiral field on SO(4)

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.

    1990-01-01

    Possibility of integrating the equations of nonsymmetrical chiral field on SO(4) by means of the inverse scattering method is investigated. Maximal number of the motion integrals is found for the corresponding system of ordinary differential equations

  16. Calculations of transient fields in the Felix experiments at Argonne using null field integrated techniques

    International Nuclear Information System (INIS)

    Han, H.C.; Davey, K.R.; Turner, L.

    1985-08-01

    The transient eddy current problem is characteristically computationally intensive. The motivation for this research was to realize an efficient, accurate, solution technique involving small matrices via an eigenvalue approach. Such a technique is indeed realized and tested using the null field integral technique. Using smart (i.e., efficient, global) basis functions to represent unknowns in terms of a minimum number of unknowns, homogeneous eigenvectors and eigenvalues are first determined. The general excitatory response is then represented in terms of these eigenvalues/eigenvectors. Excellent results are obtained for the Argonne Felix cylinder experiments using a 4 x 4 matrix. Extension to the 3-D problem (short cylinder) is set up in terms of an 8 x 8 matrix

  17. Autonomous Preference-Aware Information Services Integration for High Response in Integrated Faded Information Field Systems

    Science.gov (United States)

    Lu, Xiaodong; Mori, Kinji

    The market and users' requirements have been rapidly changing and diversified. Under these heterogeneous and dynamic situations, not only the system structure itself, but also the accessible information services would be changed constantly. To cope with the continuously changing conditions of service provision and utilization, Faded Information Field (FIF) has been proposed, which is a agent-based distributed information service system architecture. In the case of a mono-service request, the system is designed to improve users' access time and preserve load balancing through the information structure. However, with interdependent requests of multi-service increasing, adaptability and timeliness have to be assured by the system. In this paper, the relationship that exists among the correlated services and the users' preferences for separate and integrated services is clarified. Based on these factors, the autonomous preference-aware information services integration technology to provide one-stop service for users multi-service requests is proposed. As compared to the conventional system, we show that proposed technology is able to reduce the total access time.

  18. Spectrographic Determination of Trace Constituents in Rare Earths

    International Nuclear Information System (INIS)

    Capdevila, C.; Alvarez, F.

    1962-01-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs

  19. Using a new, free spectrograph program to critically investigate acoustics

    Science.gov (United States)

    Ball, Edward; Ruiz, Michael J.

    2016-11-01

    We have developed an online spectrograph program with a bank of over 30 audio clips to visualise a variety of sounds. Our audio library includes everyday sounds such as speech, singing, musical instruments, birds, a baby, cat, dog, sirens, a jet, thunder, and screaming. We provide a link to a video of the sound sources superimposed with their respective spectrograms in real time. Readers can use our spectrograph program to view our library, open their own desktop audio files, and use the program in real time with a computer microphone.

  20. Lead shielded cells for the spectrographic analysis of radioisotope solutions

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Cruz, F. de la

    1967-01-01

    Two lead shielded cells for the spectrochemical analysis of radioisotope samples are described. One of them is devoted to the evaporation of samples before excitation and the other one contains a suitable spectrographic excitation stand for the copper spark technique. A special device makes it possible the easy displacement of the excitation cell on wheels and rails for its accurate and reproducible position as well as its replacement by a glove box for plutonium analysis. In order to guarantee safety the room in which the spectrograph and the source are set up in separated from the active laboratory by a wall with a suitable window. (Author) 1 refs

  1. PEPSI, the High-Resolution Optical-IR Spectrograph for the LBT

    Science.gov (United States)

    Andersen, Michael; Strassmeier, Klaus; Hoffman, Axel; Woche, Manfred; Spano, Paolo

    PEPSI is a high resolution fibre feed optical-IR polarimetric echelle spectrograph for the Large Binocular Telescope (LBT). PEPSI utilizes the two 8.4m LBT apertures to simultaneously record four polarization states at a resolution of 120.000. The extension of the coverage towards the IR is mainly motivated by the larger Zeeman splitting of IR lines, which would allow to study weaker/fainter magnetic structures on stars. The two optical arms, which also have an integral light mode with R up to 300.000, are under construction, while the IR arm is being designed.

  2. Auditory-visual integration in fields of the auditory cortex.

    Science.gov (United States)

    Kubota, Michinori; Sugimoto, Shunji; Hosokawa, Yutaka; Ojima, Hisayuki; Horikawa, Junsei

    2017-03-01

    While multimodal interactions have been known to exist in the early sensory cortices, the response properties and spatiotemporal organization of these interactions are poorly understood. To elucidate the characteristics of multimodal sensory interactions in the cerebral cortex, neuronal responses to visual stimuli with or without auditory stimuli were investigated in core and belt fields of guinea pig auditory cortex using real-time optical imaging with a voltage-sensitive dye. On average, visual responses consisted of short excitation followed by long inhibition. Although visual responses were observed in core and belt fields, there were regional and temporal differences in responses. The most salient visual responses were observed in the caudal belt fields, especially posterior (P) and dorsocaudal belt (DCB) fields. Visual responses emerged first in fields P and DCB and then spread rostroventrally to core and ventrocaudal belt (VCB) fields. Absolute values of positive and negative peak amplitudes of visual responses were both larger in fields P and DCB than in core and VCB fields. When combined visual and auditory stimuli were applied, fields P and DCB were more inhibited than core and VCB fields beginning approximately 110 ms after stimuli. Correspondingly, differences between responses to auditory stimuli alone and combined audiovisual stimuli became larger in fields P and DCB than in core and VCB fields after approximately 110 ms after stimuli. These data indicate that visual influences are most salient in fields P and DCB, which manifest mainly as inhibition, and that they enhance differences in auditory responses among fields. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Integral abutment bridges under thermal loading : field monitoring and analysis.

    Science.gov (United States)

    2017-08-01

    Integral abutment bridges (IABs) have gained popularity throughout the United States due to their low construction and maintenance costs. Previous research on IABs has been heavily focused on substructure performance, leaving a need for better unders...

  4. Particles versus fields in PT-symmetrically deformed integrable ...

    Indian Academy of Sciences (India)

    reversal and parity transformation, can be used to construct new integrable models. Some complex valued multi-particle systems, such as deformations of the Calogero–Moser– Sutherland models, are shown to arise naturally from real valued ...

  5. Integrated modelling of near field and engineered barrier system processes

    International Nuclear Information System (INIS)

    Lamont, A.; Gansemer, J.

    1994-01-01

    The Yucca Mountain Integrating Model (YMIM) is an integrated model of the Engineered barrier System has been developed to assist project managers at LLNL in identifying areas where research emphasis should be placed. The model was designed to be highly modular so that a model of an individual process could be easily modified or replaced without interfering with the models of other processes. The modules modelling container failure and the dissolution of nuclides include particularly detailed, temperature dependent models of their corresponding processes

  6. CARMENES-NIR channel spectrograph cooling system AIV: thermo-mechanical performance of the instrument

    Science.gov (United States)

    Becerril, S.; Mirabet, E.; Lizon, J. L.; Abril, M.; Cárdenas, C.; Ferro, I.; Morales, R.; Pérez, D.; Ramón, A.; Sánchez-Carrasco, M. A.; Quirrenbach, A.; Amado, P.; Ribas, I.; Reiners, A.; Caballero, J. A.; Seifert, W.; Herranz, J.

    2016-07-01

    CARMENES is the new high-resolution high-stability spectrograph built for the 3.5m telescope at the Calar Alto Observatory (CAHA, Almería, Spain) by a consortium formed by German and Spanish institutions. This instrument is composed by two separated spectrographs: VIS channel (550-1050 nm) and NIR channel (950- 1700 nm). The NIR-channel spectrograph's responsible is the Instituto de Astrofísica de Andalucía (IAACSIC). It has been manufactured, assembled, integrated and verified in the last two years, delivered in fall 2015 and commissioned in December 2015. One of the most challenging systems in this cryogenic channel involves the Cooling System. Due to the highly demanding requirements applicable in terms of stability, this system arises as one of the core systems to provide outstanding stability to the channel. Really at the edge of the state-of-the-art, the Cooling System is able to provide to the cold mass ( 1 Ton) better thermal stability than few hundredths of degree within 24 hours (goal: 0.01K/day). The present paper describes the Assembly, Integration and Verification phase (AIV) of the CARMENES-NIR channel Cooling System implemented at IAA-CSIC and later installation at CAHA 3.5m Telescope, thus the most relevant highlights being shown in terms of thermal performance. The CARMENES NIR-channel Cooling System has been implemented by the IAA-CSIC through very fruitful collaboration and involvement of the ESO (European Southern Observatory) cryo-vacuum department with Jean-Louis Lizon as its head and main collaborator. The present work sets an important trend in terms of cryogenic systems for future E-ELT (European Extremely Large Telescope) large-dimensioned instrumentation in astrophysics.

  7. WAS: the data archive for the WEAVE spectrograph

    NARCIS (Netherlands)

    Guerra, Jose; Molinari, Emilio; Lodi, Marcello; Martin, Adrian; Dalton, Gavin B.; Trager, Scott C.; Jin, Shoko; Abrams, Don Carlos; Bonifacio, Piercarlo; López Aguerri, Jose Alfonso; Vallenari, Antonella; Carrasco Licea, Esperanza E.; Middleton, Kevin F.

    2016-01-01

    The WAS1(WEAVE Archive System) is a software architecture for archiving and delivering the data releases for the WEAVE7 instrument at WHT (William Herschel Telescope). The WEAVE spectrograph will be mounted at the 4.2-m WHT telescope and will provide millions of spectra in a 5-year program, starting

  8. Spectrographic determination of impurities in copper and copper oxide

    International Nuclear Information System (INIS)

    Sabato, S.F.; Lordello, A.R.

    1990-11-01

    An emission spectrographic method for the determination of Al, Bi, Ca, Cd, Cr, Fe, Ge, Mg, Mn, Mo, Ni, Pb, Sb, Si, Sn and Zn in copper and copper oxide is described. Two mixtures (Graphite and ZnO: graphite and GeO sub(2)) were used as buffers. The standard deviation lies around 10%. (author)

  9. The spectrographic orbit of the eclipsing binary HH Carinae

    International Nuclear Information System (INIS)

    Mandrini, C.H.; Mendez, R.H.; Niemela, V.S.; Ferrer, O.E.

    1985-01-01

    We present a radial velocity study of the eclipsing binary system HH Carinae, and determine for the first time its spectrographic orbital elements. Using the results of a previous photometric study by Soderhjelm, we also determine the values of the masses and dimensions of the binary components. (author)

  10. Spectrographical method for determining temperature variations of cosmic rays

    International Nuclear Information System (INIS)

    Dorman, L.I.; Krest'yannikov, Yu.Ya.; AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    1977-01-01

    A spectrographic method for determining [sigmaJsup(μ)/Jsup(μ)]sub(T) temperature variations in cosmic rays is proposed. The value of (sigmaJsup(μ)/Jsup(μ)]sub(T) is determined from three equations for neutron supermonitors and the equation for the muon component of cosmic rays. It is assumed that all the observation data include corrections for the barometric effect. No temperature effect is observed in the neutron component. To improve the reliability and accuracy of the results obtained the surface area of the existing devices and the number of spectrographic equations should be increased as compared with that of the unknown values. The value of [sigmaJsup(μ)/Jsup(μ)]sub(T) for time instants when the aerological probing was carried out, was determined from the data of observations of cosmic rays with the aid of a spectrographic complex of devices of Sib IZMIR. The r.m.s. dispersion of the difference is about 0.2%, which agrees with the expected dispersion. The agreement obtained can be regarded as an independent proof of the correctness of the theory of meteorological effects of cosmic rays. With the existing detection accuracy the spectrographic method can be used for determining the hourly values of temperature corrections for the muon component

  11. Detection Of Alterations In Audio Files Using Spectrograph Analysis

    Directory of Open Access Journals (Sweden)

    Anandha Krishnan G

    2015-08-01

    Full Text Available The corresponding study was carried out to detect changes in audio file using spectrograph. An audio file format is a file format for storing digital audio data on a computer system. A sound spectrograph is a laboratory instrument that displays a graphical representation of the strengths of the various component frequencies of a sound as time passes. The objectives of the study were to find the changes in spectrograph of audio after altering them to compare altering changes with spectrograph of original files and to check for similarity and difference in mp3 and wav. Five different alterations were carried out on each audio file to analyze the differences between the original and the altered file. For altering the audio file MP3 or WAV by cutcopy the file was opened in Audacity. A different audio was then pasted to the audio file. This new file was analyzed to view the differences. By adjusting the necessary parameters the noise was reduced. The differences between the new file and the original file were analyzed. By adjusting the parameters from the dialog box the necessary changes were made. The edited audio file was opened in the software named spek where after analyzing a graph is obtained of that particular file which is saved for further analysis. The original audio graph received was combined with the edited audio file graph to see the alterations.

  12. Spectrographic determination of lithium in nuclear grade calcium

    International Nuclear Information System (INIS)

    Artaud, J.; Cittanova, J.

    1957-01-01

    A method is described for the spectrographic determination of lithium in calcium. The samples are converted directly to CaCO 3 . A method of fractional distillation in the arc, using KCl as carrier, makes it possible to detect and measure the Li content to 0,1 ppm. (author) [fr

  13. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  14. THE CIRCUMNUCLEAR STAR FORMATION ENVIRONMENT OF NGC 6946: Br γ AND H{sub 2} RESULTS FROM KECK INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Chao-Wei [Infrared Processing and Analysis Center, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Jean L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Beck, Sara C. [Department of Physics and Astronomy, Tel Aviv University, Ramat Aviv (Israel); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Wright, Shelley A., E-mail: Chao-Wei.Tsai@jpl.nasa.gov [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, Ontario (Canada)

    2013-10-20

    We present a three-dimensional data cube of the K-band continuum and the Br γ, H{sub 2} S(0), and S(1) lines within the central 18.''5 × 13.''8 (520 pc × 390 pc) region of NGC 6946. Data were obtained using OSIRIS, a near-infrared Integral Field Spectrograph at Keck Observatory, with Laser Guide Star Adaptive Optics. The 0.''3 resolution allows us to investigate the stellar bulge and the forming star clusters in the nuclear region on 10 pc scales. We detect giant H II regions associated with massive young star clusters in the nuclear spiral/ring (R ∼ 30 pc) and in the principal shocks along the nuclear bar. Comparisons of the Br γ fluxes with Pa α line emission and radio continuum indicate A{sub K} ∼ 3, A{sub V} ∼ 25 for the nuclear star-forming regions. The most luminous H II regions are restricted to within 70 pc of the center, despite the presence of high gas columns at larger radii (R ∼ 200 pc). H{sub 2} emission is restricted to clouds within R ∼ 60 pc of the center, resembling the distribution of HCN line emission. We propose that gas-assisted migration of the young star clusters is contributing to the buildup of the nuclear bar and nuclear star cluster (R < 30 pc) in this galaxy.

  15. Integrability and the conformal field theory of the Higgs branch

    International Nuclear Information System (INIS)

    Sax, Olof Ohlsson; Sfondrini, Alessandro; Bogdan, Stefański Jr.

    2015-01-01

    In the context of the AdS 3 /CFT 2 correspondence, we investigate the Higgs branch CFT 2 . Witten showed that states localised near the small instanton singularity can be described in terms of vector multiplet variables. This theory has a planar, weak-coupling limit, in which anomalous dimensions of single-trace composite operators can be calculated. At one loop, the calculation reduces to finding the spectrum of a spin-chain with nearest-neighbour interactions. This CFT 2 spin-chain matches precisely the one that was previously found as the weak-coupling limit of the integrable system describing the AdS 3 side of the duality. We compute the one-loop dilatation operator in a non-trivial compact subsector and show that it corresponds to an integrable spin-chain Hamiltonian. This provides the first direct evidence of integrability on the CFT 2 side of the correspondence.

  16. Complexity of Configurators Relative to Integrations and Field of Application

    DEFF Research Database (Denmark)

    Kristjansdottir, Katrin; Shafiee, Sara; Battistello, Loris

    . Moreover, configurators are commonly integrated to various IT systems within companies. The complexity of configurators is an important factor when it comes to performance, development and maintenance of the systems. A direct comparison of the complexity based on the different application...... integrations to other IT systems. The research method adopted in the paper is based on a survey followed with interviews where the unit of analysis is based on operating configurators within a company.......Configurators are applied widely to automate the specification processes at companies. The literature describes the industrial application of configurators supporting both sales and engineering processes, where configurators supporting the engineering processes are described more challenging...

  17. Seismically integrated geologic modelling: Guntong Field, Malay Basin

    Energy Technology Data Exchange (ETDEWEB)

    Calvert, Craig S.; Bhuyan, K.; Sterling, J. Helwick; Hill, Rob E.; Hubbard, R. Scott; Khare, Vijay; Wahrmund, Leslie A.; Wang, Gann-Shyong

    1998-12-31

    This presentation relates to a research project on offshore seismically reservoir modelling. The goal of the project was to develop and test a process for interpreting reservoir properties from 3-D seismic data and for integrating these data into the building of 3-D geologic models that would be suitable for use in flow simulation studies. The project produced a 3-D geologic model for three reservoir intervals and three predominantly non-reservoir intervals. Each reservoir interval was subdivided into faces that were determined by integrating core, well log, and seismic interpretations. predictions of porosity and lithology used in building the geologic model were made using seismic attributes calculated from acoustic impedance data. 8 figs.

  18. Subject-field components as integrated parts of LSP dictionaries

    DEFF Research Database (Denmark)

    Bergenholtz, Henning; Nielsen, Sandro

    2006-01-01

    The dividing line between specialised lexicography and terminography is non-existent. The focus of preparing dictionaries for a particular subject-field should be the needs of its user group in specific situations. This is catered for by the modern theory of dictionary functions and includes...... the introduction of subject-field components in dictionaries. Dictionary functions are communication-orientated or cognition-orientated, and the lexicographers must identify the relevant functions and select and present the data so that the dictionary satisfies the needs of the users. The optimal dictionary...

  19. Exact results for integrable asymptotically-free field theories

    CERN Document Server

    Evans, J M; Evans, Jonathan M; Hollowood, Timothy J

    1995-01-01

    An account is given of a technique for testing the equivalence between an exact factorizable S-matrix and an asymptotically-free Lagrangian field theory in two space-time dimensions. The method provides a way of resolving CDD ambiguities in the S-matrix and it also allows for an exact determination of the physical mass in terms of the Lambda parameter of perturbation theory. The results for various specific examples are summarized. (To appear in the Proceedings of the Conference on Recent Developments in Quantum Field Theory and Statistical Mechanics, ICTP, Trieste, Easter 1995).

  20. Dirac particle in a constant magnetic field: path integral treatment

    Energy Technology Data Exchange (ETDEWEB)

    Merdaci, A.; Boudiaf, N.; Chetouani, L. [Univ. Mentouri, Constantine (Algeria). Dept. de Physique

    2008-05-15

    The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)

  1. Dirac particle in a constant magnetic field: path integral treatment

    International Nuclear Information System (INIS)

    Merdaci, A.; Boudiaf, N.; Chetouani, L.

    2008-01-01

    The Green functions related to a Dirac particle in a constant magnetic field are calculated via two methods, global and local, by using the supersymmetric formalism of Fradkin and Gitman. The energy spectrum as well as the corresponding wave functions are extracted following these two approaches. (orig.)

  2. A differential algebraic integration algorithm for symplectic mappings in systems with three-dimensional magnetic field

    International Nuclear Information System (INIS)

    Chang, P.; Lee, S.Y.; Yan, Y.T.

    2006-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  3. A Differential Algebraic Integration Algorithm for Symplectic Mappings in Systems with Three-Dimensional Magnetic Field

    International Nuclear Information System (INIS)

    Chang, P

    2004-01-01

    A differential algebraic integration algorithm is developed for symplectic mapping through a three-dimensional (3-D) magnetic field. The self-consistent reference orbit in phase space is obtained by making a canonical transformation to eliminate the linear part of the Hamiltonian. Transfer maps from the entrance to the exit of any 3-D magnetic field are then obtained through slice-by-slice symplectic integration. The particle phase-space coordinates are advanced by using the integrable polynomial procedure. This algorithm is a powerful tool to attain nonlinear maps for insertion devices in synchrotron light source or complicated magnetic field in the interaction region in high energy colliders

  4. Multiplexing 32,000 spectra onto 8 detectors: the HARMONI field splitting, image slicing, and wavelength selecting optics

    Science.gov (United States)

    Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Freeman, David; Kosmalski, Johan

    2012-09-01

    HARMONI, the High Angular Resolution Monolithic Optical & Near-infrared Integral field spectrograph is one of two first-light instruments for the European Extremely Large Telescope. Over a 256x128 pixel field-of-view HARMONI will simultaneously measure approximately 32,000 spectra. Each spectrum is about 4000 spectral pixels long, and covers a selectable part of the 0.47-2.45 μm wavelength range at resolving powers of either R≍4000, 10000, or 20000. All 32,000 spectra are imaged onto eight HAWAII4RG detectors using a multiplexing scheme that divides the input field into four sub-fields, each imaged onto one image slicer that in turn re-arranges a single sub-field into two long exit slits feeding one spectrograph each. In total we require eight spectrographs, each with one HAWAII4RG detector. A system of articulated and exchangeable fold-mirrors and VPH gratings allows one to select different spectral resolving powers and wavelength ranges of interest while keeping a fixed geometry between the spectrograph collimator and camera avoiding the need for an articulated grating and camera. In this paper we describe both the field splitting and image slicing optics as well as the optics that will be used to select both spectral resolving power and wavelength range.

  5. Zooming into local active galactic nuclei: the power of combining SDSS-IV MaNGA with higher resolution integral field unit observations

    Science.gov (United States)

    Wylezalek, Dominika; Schnorr Müller, Allan; Zakamska, Nadia L.; Storchi-Bergmann, Thaisa; Greene, Jenny E.; Müller-Sánchez, Francisco; Kelly, Michael; Liu, Guilin; Law, David R.; Barrera-Ballesteros, Jorge K.; Riffel, Rogemar A.; Thomas, Daniel

    2017-05-01

    Ionized gas outflows driven by active galactic nuclei (AGN) are ubiquitous in high-luminosity AGN with outflow speeds apparently correlated with the total bolometric luminosity of the AGN. This empirical relation and theoretical work suggest that in the range Lbol ˜ 1043-45 erg s-1 there must exist a threshold luminosity above which the AGN becomes powerful enough to launch winds that will be able to escape the galaxy potential. In this paper, we present pilot observations of two AGN in this transitional range that were taken with the Gemini North Multi-Object Spectrograph integral field unit (IFU). Both sources have also previously been observed within the Sloan Digital Sky Survey-IV (SDSS) Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey. While the MaNGA IFU maps probe the gas fields on galaxy-wide scales and show that some regions are dominated by AGN ionization, the new Gemini IFU data zoom into the centre with four times better spatial resolution. In the object with the lower Lbol we find evidence of a young or stalled biconical AGN-driven outflow where none was obvious at the MaNGA resolution. In the object with the higher Lbol we trace the large-scale biconical outflow into the nuclear region and connect the outflow from small to large scales. These observations suggest that AGN luminosity and galaxy potential are crucial in shaping wind launching and propagation in low-luminosity AGN. The transition from small and young outflows to galaxy-wide feedback can only be understood by combining large-scale IFU data that trace the galaxy velocity field with higher resolution, small-scale IFU maps.

  6. Cluster of Sound Speed Fields by an Integral Measure

    Science.gov (United States)

    2010-06-01

    the same cost in time. The increasing the number of sensor depths does not cause execution time to increase. And finally assume that the time required...to be P = Z − ∫ 0 b ∂C(ρ, θ, λ) ∂ρ ∂C(ρ, θ, λ) ∂ρ dρ (2) where (ρ,θ,λ) are the usual geocentric spherical coordinates, and the limits of integration...but using spherical coordinates requires that the horizontal (θ , λ) terms be normalized by the radius. In the case of geocentric coordinates this

  7. Integrable models in 1+1 dimensional quantum field theory

    International Nuclear Information System (INIS)

    Faddeev, Ludvig.

    1982-09-01

    The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR

  8. On integration over Fermi fields in chiral and supersymmetric theories

    International Nuclear Information System (INIS)

    Vainshtein, A.I.; Zakharov, V.I.

    1982-01-01

    Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way [ru

  9. Integrated Community Based Coastal Management: Lesson From The Field

    Science.gov (United States)

    Hadi, Sudharto P.

    2018-02-01

    Coastal abrasion has been occurred throughout coastline of Java reaching 745 km at length, account for 44% of total Java’s coastline. This phenomena is caused by reclamation, cutting of mangrove, land-use change and other human activities specifically at coastal area. Coastal abrasion stimulates flood or tidal flood, when sea level rise, the sea water flows to the land undated fish pond, settlement and other infrastructures standing at coastal area. Tidal flood destroys settlement lead to significant decrease of property value: land and house. Coastal abrasion caused lose people’s job and income. One measure taken by local community is mangrove cultivation intended to prevent sea level rise flowing to the inland. However many efforts taken by community frequently fail because of un-integrated approach. This paper reviews a mangrove plantations in Mangunharjo, district of Tugu, Semarang, Central Java by utilizing an innovative approach integrating environmental, economic and social aspect. These mangrove cultivations environmentally useful to prevent coastal abrasion, economically creating income for local people and socially supported by local community. These three approaches ensure sustainability of mangrove’s culture.

  10. An echelle spectrograph for middle ultraviolet solar spectroscopy from rockets.

    Science.gov (United States)

    Tousey, R; Purcell, J D; Garrett, D L

    1967-03-01

    An echelle grating spectrograph is ideal for use in a rocket when high resolution is required becaus itoccupies a minimum of space. The instrument described covers the range 4000-2000 A with a resolution of 0.03 A. It was designed to fit into the solar biaxial pointing-control section of an Aerobee-150 rocket. The characteristics of the spectrograph are illustrated with laboratory spectra of iron and carbon are sources and with solar spectra obtained during rocket flights in 1961 and 1964. Problems encountered in analyzing the spectra are discussed. The most difficult design problem was the elimination of stray light when used with the sun. Of the several methods investigated, the most effective was a predispersing system in the form of a zero-dispersion double monochromator. This was made compact by folding the beam four times.

  11. Spectrographic determination of impurities in uranium tetrafluoride matrices

    International Nuclear Information System (INIS)

    Reino, Luiz Carlos de Paula

    1980-01-01

    A direct spectrographic method for the determination of UF 4 impurities was developed. Investigations using spectrochemical carriers were carried out so to avoid uranium distillation, which as fluoride is much more volatile than the U 3 O 8 refractory matrix. The best results were obtained by using a mixture of MgO and NaCl carriers in the proportion of 20% and 10%, respectively, with respect to UF 4 matrix. An original spectrographic technique was introduced aiming to avoid the projection of sample particles outside the electrode during excitation. This new technique is based on the addition of a small quantity of a 0.5% gelatinous solution on the UF 4 tablet. The precision of the method was studied for each element analysed. The variation coefficients are within the range of 10 of 20%

  12. Ultraviolet spectrographs for thermospheric and ionospheric remote sensing

    International Nuclear Information System (INIS)

    Dymond, K.F.; McCoy, R.P.

    1993-01-01

    The Naval Research Laboratory (NRL) has been developing far- and extreme-ultraviolet spectrographs for remote sensing the Earth's upper atmosphere and ionosphere. The first of these sensors, called the Special Sensor Ultraviolet Limb Imager (SSULI), will be flying on the Air Force's Defense Meteorological Satellite Program (DMSP) block 5D3 satellites as an operational sensor in the 1997-2010 time frame. A second sensor, called the High-resolution ionospheric and Thermospheric Spectrograph (HITS), will fly in late 1995 on the Air Force Space Test Program's Advanced Research and Global Observation Satellite (ARGOS, also known as P91-1) as part of NRL's High Resolution Airglow and Auroral Spectroscopy (HIRAAS) experiment. Both of these instruments are compact and do not draw much power and would be good candidates for small satellite applications. The instruments and their capabilities are discussed. Possible uses of these instruments in small satellite applications are also presented

  13. Spectrographic determination of trace impurities in reactor grade aluminium

    International Nuclear Information System (INIS)

    Chandola, L.C.; Machado, I.J.

    1975-01-01

    A spectrographic method enabling the determination of 21 trace impurities in aluminium oxide is described. The technique involves mixing the sample with graphite buffer in the ratio 1:1, loading it in a graphite electrode and arcing it for 30 sec. in a dc arc to 10 A current against a pointed graphite cathode. The spectra are photographed on Ilford N.30 emulsion employing a large quartz spectrograph. The aluminium line at 2669.2 A 0 serves as the internal standard. The impurities determined are Ag, B, Bi, Cd, Co, Cr, Cu, Fe, Ga, In, Mg, Mo, Ni, Pb, Sb, Si, Sn, Ti, V and Zn. The sensitivity varies from 5 to 100 ppm and the precision from +- 5 to +- 22% for different elements. A method for converting aluminium metal to aluminium oxide is described. It is found that boron is not lost during this conversion. (author)

  14. Spectrographic determination of impurities in uranium tetrafluoride matrices

    International Nuclear Information System (INIS)

    Reino, L.C.P.; Lordello, A.R.

    1980-01-01

    A direct spectrographic method for the determination of UF 4 impurities was developed. Investigations using spectrochemical carriers were carried out so to avoid uranium distillation, which as fluoride is much more volatile than the U 3 O 8 refractory matrix. The best results were obtained by using a mixture of MgO and NaCl carriers in the proportion of 20 and 10%, respectively, with respect to UF 4 matrix. An original spectrographic technique was introduced aiming to avoid the projection of sample particles outside the electrode during excitation. This new technique is based on the addition of a small quantity of a 0.5% gellatinous solution on the UF 4 tablet. The precision of the method was studied for each element analysed. The variation coefficients are within the range of 10 of 20%. (C.L.B.) [pt

  15. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    Science.gov (United States)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions

  16. Proton polarimetry using an Enge split-pole spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Moss, J M; Brown, D R; Cornelius, W D [Texas Agricultural and Mechanical Univ., College Station (USA). Cyclotron Inst.

    1976-05-15

    A high-efficiency (4 x 10/sup -5/ at A=0.4) high resolution (150 keV) polarimeter used in conjunction with an Enge split-pole spectrograph is described. This device permits for the first time polarization transfer studies in elastic scattering. Spectra are shown for /sup 11/B(p(pol),p(pol)')/sup 11/B (2.14 MeV)at Esub(p)=31 MeV.

  17. A CCD fitted to the UV Prime spectrograph: Performance

    International Nuclear Information System (INIS)

    Boulade, O.

    1986-10-01

    A CCD camera was fitted to the 3.6 m French-Canadian telescope in Hawai. Performance of the system and observations of elliptic galaxies (stellar content and galactic evolution in a cluster) and quasars (absorption lines in spectra) are reported. In spite of its resolution being only average, the extremely rapid optics of the UV spectrograph gives good signal to noise ratios enabling redshifts and velocity scatter to be calculated with an accuracy better than 30 km/sec [fr

  18. Integrated Stewardship of NASA Satellite and Field Campaign Data

    Science.gov (United States)

    Hausman, J.; Tsontos, V. M.; Hardman, S. H.

    2016-02-01

    The Physical Oceanography Distributed Active Archive Center (PO.DAAC) is NASA's archive, steward and distributor for physical oceanographic satellite data. Those data are typically organized along the lines of single parameters, such as Sea Surface Temperature, Ocean Winds, Salinity, etc. However there is a need supplement satellite data with in situ and various other remote sensing data to provide higher spatial and temporal sampling and information on physical processes that the satellites are not capable of measuring. This presentation will discuss how PO.DAAC is creating a stewardship and distribution plan that will accommodate satellite, in situ and other remote sensing data that can be used to solve a more integrated approach to data access and utilization along thematic lines in support of science and applications, specifically those posed by Salinity Processes in the Upper Ocean Regional Study (SPURS) and Oceans Melting Greenland (OMG) projects. SPURS used shipboard data, moorings and in situ instruments to investigate changes in salinity and how that information can be used in explaining the water cycle. OMG is studying ice melt in Greenland and how it contributes to changes in sea level through shipboard measurements, airborne and a variety of in situ instruments. PO.DAAC plans on adapting to stewarding and distributing these varieties of data through applications of file format and metadata standards (so data are discoverable and interoperable), extend the internal data system (to allow for better archiving, collection generation and querying of in situ and airborne data) and integration into tools (visualization and data access). We are also working on Virtual Collections with ESDWG, which could provide access to relevant data across DAACs/Agencies along thematic lines. These improvements will improve long-term data management and make it easier for users of various background, regardless if remote sensing or in situ, to discover and use the data.

  19. Solar glint suppression in compact planetary ultraviolet spectrographs

    Science.gov (United States)

    Davis, Michael W.; Cook, Jason C.; Grava, Cesare; Greathouse, Thomas K.; Gladstone, G. Randall; Retherford, Kurt D.

    2015-08-01

    Solar glint suppression is an important consideration in the design of compact photon-counting ultraviolet spectrographs. Southwest Research Institute developed the Lyman Alpha Mapping Project for the Lunar Reconnaissance Orbiter (launch in 2009), and the Ultraviolet Spectrograph on Juno (Juno-UVS, launch in 2011). Both of these compact spectrographs revealed minor solar glints in flight that did not appear in pre-launch analyses. These glints only appeared when their respective spacecraft were operating outside primary science mission parameters. Post-facto scattered light analysis verifies the geometries at which these glints occurred and why they were not caught during ground testing or nominal mission operations. The limitations of standard baffle design at near-grazing angles are discussed, as well as the importance of including surface scatter properties in standard stray light analyses when determining solar keep-out efficiency. In particular, the scattered light analysis of these two instruments shows that standard "one bounce" assumptions in baffle design are not always enough to prevent scattered sunlight from reaching the instrument focal plane. Future builds, such as JUICE-UVS, will implement improved scattered and stray light modeling early in the design phase to enhance capabilities in extended mission science phases, as well as optimize solar keep out volume.

  20. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2012-01-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed

  1. Integrated vehicle-based safety systems light-vehicle field operational test key findings report.

    Science.gov (United States)

    2011-01-01

    "This document presents key findings from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michigan Transportat...

  2. Integrated vehicle-based safety systems light-vehicle field operational test, methodology and results report.

    Science.gov (United States)

    2010-12-01

    "This document presents the methodology and results from the light-vehicle field operational test conducted as part of the Integrated Vehicle-Based Safety Systems program. These findings are the result of analyses performed by the University of Michi...

  3. Integrated vehicle-based safety systems (IVBSS) : light vehicle platform field operational test data analysis plan.

    Science.gov (United States)

    2009-12-22

    This document presents the University of Michigan Transportation Research Institutes plan to : perform analysis of data collected from the light vehicle platform field operational test of the : Integrated Vehicle-Based Safety Systems (IVBSS) progr...

  4. Integrated vehicle-based safety systems (IVBSS) : heavy truck platform field operational test data analysis plan.

    Science.gov (United States)

    2009-11-23

    This document presents the University of Michigan Transportation Research Institutes plan to perform : analysis of data collected from the heavy truck platform field operational test of the Integrated Vehicle- : Based Safety Systems (IVBSS) progra...

  5. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2009-01-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation

  6. Introduction to functional and path integral methods in quantum field theory

    International Nuclear Information System (INIS)

    Strathdee, J.

    1991-11-01

    The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs

  7. 1. Introduction. 2. Laboratory experiments. 3. Field experiments. 4. Integrated field-laboratory experiments. 5. Panel recommendations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented

  8. Integration of field data into operational snowmelt-runoff models

    International Nuclear Information System (INIS)

    Brandt, M.; Bergström, S.

    1994-01-01

    Conceptual runoff models have become standard tools for operational hydrological forecasting in Scandinavia. These models are normally based on observations from the national climatological networks, but in mountainous areas the stations are few and sometimes not representative. Due to the great economic importance of good hydrological forecasts for the hydro-power industry attempts have been made to improve the model simulations by support from field observations of the snowpack. The snowpack has been mapped by several methods; airborne gamma-spectrometry, airborne georadars, satellites and by conventional snow courses. The studies cover more than ten years of work in Sweden. The conclusion is that field observations of the snow cover have a potential for improvement of the forecasts of inflow to the reservoirs in the mountainous part of the country, where the climatological data coverages is poor. This is pronounced during years with unusual snow distribution. The potential for model improvement is smaller in the climatologically more homogeneous forested lowlands, where the climatological network is denser. The costs of introduction of airborne observations into the modelling procedure are high and can only be justified in areas of great hydropower potential. (author)

  9. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Science.gov (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  10. Investigation of acoustic field near to elastic thin plate using integral method

    Directory of Open Access Journals (Sweden)

    В.І. Токарев

    2004-01-01

    Full Text Available  Investigation of acoustic field near to elastic thin plate using  integral method The influence of boundary conditions on sound wave propagation, radiation and transmission through thin elastic plate is investigated. Necessary for that numerical model was found using the Helmholtz equation and equation of oscilated plate by means of integral formulation of the solution for acoustic fields near to elastic thin plate and for bending waves of small amplitudes.

  11. Simulation of sensory integration dysfunction in autism with dynamic neural fields model

    NARCIS (Netherlands)

    Chonnaparamutt, W.; Barakova, E.I.; Rutkowski, L.; Taseusiewicz, R.

    2008-01-01

    This paper applies dynamic neural fields model [1,23,7] to multimodal interaction of sensory cues obtained from a mobile robot, and shows the impact of different temporal aspects of the integration to the precision of movements. We speculate that temporally uncoordinated sensory integration might be

  12. Integrals of random fields treated by the model correction factor method

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  13. Model correction factor method for reliability problems involving integrals of non-Gaussian random fields

    DEFF Research Database (Denmark)

    Franchin, P.; Ditlevsen, Ove Dalager; Kiureghian, Armen Der

    2002-01-01

    The model correction factor method (MCFM) is used in conjunction with the first-order reliability method (FORM) to solve structural reliability problems involving integrals of non-Gaussian random fields. The approach replaces the limit-state function with an idealized one, in which the integrals ...

  14. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  15. Functionalization and microfluidic integration of silicon nanowire biologically gated field effect transistors

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Svendsen, Winnie Edith; Dimaki, Maria

    2016-01-01

    This thesis deals with the development of a novel biosensor for the detection of biomolecules based on a silicon nanowire biologically gated field-effect transistor and its integration into a point-of-care device. The sensor and electrical on-chip integration was developed in a different project...

  16. The Magnetic Physical Optics Scattered Field in Terms of a Line Integral

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2000-01-01

    An exact line integral representation Is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by a magnetic Hertzian dipole. A numerical example is presented to illustrate the exactness of the line integral representation...

  17. An Exact Line Integral Representation of the Magnetic Physical Optics Scattered Field

    DEFF Research Database (Denmark)

    Meincke, Peter; Breinbjerg, Olav; Jørgensen, Erik

    2003-01-01

    An exact line integral representation is derived for the magnetic physical optics field scattered by a perfectly electrically conducting planar plate illuminated by electric or magnetic Hertzian dipoles. The positions of source and observation points can be almost arbitrary. Numerical examples...... are presented to illustrate the exactness of the line integral representation....

  18. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan

    2015-01-01

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep

  19. Integral of notion for a quantum Sutherland-Calogero system in the external field

    International Nuclear Information System (INIS)

    Meshcheryakov, D.V.; Tverskoj, V.B.

    2000-01-01

    The Sutherland-Calogero three-particle system in the external field is considered. The formula for ordering non-commutating variables in the motion integrals is proposed. The motion integrals are obtained in an obvious form. The problem on analytical evidence of the system complete integration by arbitrary N remains open. The formula, proposed in this paper for ordering non-commutating variables in the I n , may be applied by conducting the total evidence [ru

  20. Imaging FTS: A Different Approach to Integral Field Spectroscopy

    Directory of Open Access Journals (Sweden)

    Laurent Drissen

    2014-01-01

    Full Text Available Imaging Fourier transform spectroscopy (iFTS is a promising, although technically very challenging, option for wide-field hyperspectral imagery. We present in this paper an introduction to the iFTS concept and its advantages and drawbacks, as well as examples of data obtained with a prototype iFTS, SpIOMM, attached to the 1.6 m telescope of the Observatoire du Mont-Mégantic: emission line ratios in the spiral galaxy NGC 628 and absorption line indices in the giant elliptical M87. We conclude by introducing SpIOMM's successor, SITELLE, which will be installed at the Canada-France-Hawaii Telescope in 2014.

  1. Interaction with a field: a simple integrable model with backreaction

    Science.gov (United States)

    Mouchet, Amaury

    2008-09-01

    The classical model of an oscillator linearly coupled to a string captures, for a low price in technique, many general features of more realistic models for describing a particle interacting with a field or an atom in an electromagnetic cavity. The scattering matrix and the asymptotic in and out-waves on the string can be computed exactly and the phenomenon of resonant scattering can be introduced in the simplest way. The dissipation induced by the coupling of the oscillator to the string can be studied completely. In the case of a d'Alembert string, the backreaction leads to an Abraham-Lorentz-Dirac-like equation. In the case of a Klein-Gordon string, one can see explicitly how radiation governs the (meta)stability of the (quasi)bounded mode.

  2. Integrating Decentralized Indoor Evacuation with Information Depositories in the Field

    Directory of Open Access Journals (Sweden)

    Haifeng Zhao

    2017-07-01

    Full Text Available The lonelier evacuees find themselves, the riskier become their wayfinding decisions. This research supports single evacuees in a dynamically changing environment with risk-aware guidance. It deploys the concept of decentralized evacuation, where evacuees are guided by smartphones acquiring environmental knowledge and risk information via exploration and knowledge sharing by peer-to-peer communication. Peer-to-peer communication, however, relies on the chance that people come into communication range with each other. This chance can be low. To bridge between people being not at the same time at the same places, this paper suggests information depositories at strategic locations to improve information sharing. Information depositories collect the knowledge acquired by the smartphones of evacuees passing by, maintain this information, and convey it to other passing-by evacuees. Multi-agent simulation implementing these depositories in an indoor environment shows that integrating depositories improves evacuation performance: It enhances the risk awareness and consequently increases the chance that people survive and reduces their evacuation time. For evacuating dynamic events, deploying depositories at staircases has been shown more effective than deploying them in corridors.

  3. The Athena X-ray Integral Field Unit (X-IFU)

    NARCIS (Netherlands)

    Barret, Didier; Lam Trong, Thien; den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miguel; Mitsuda, Kazuhisa; Paltani, Stéphane; Rauw, Gregor; RoŻanska, Agata; Wilms, Joern; Barbera, Marco; Bozzo, Enrico; Ceballos, Maria Teresa; Charles, Ivan; Decourchelle, Anne; den Hartog, Roland; Duval, Jean-Marc; Fiore, Fabrizio; Gatti, Flavio; Goldwurm, Andrea; Jackson, Brian; Jonker, Peter; Kilbourne, Caroline; Macculi, Claudio; Mendez, Mariano; Molendi, Silvano; Orleanski, Piotr; Pajot, François; Pointecouteau, Etienne; Porter, Frederick; Pratt, Gabriel W.; Prêle, Damien; Ravera, Laurent; Renotte, Etienne; Schaye, Joop; Shinozaki, Keisuke; Valenziano, Luca; Vink, Jacco; Webb, Natalie; Yamasaki, Noriko; Delcelier-Douchin, Françoise; Le Du, Michel; Mesnager, Jean-Michel; Pradines, Alice; Branduardi-Raymont, Graziella; Dadina, Mauro; Finoguenov, Alexis; Fukazawa, Yasushi; Janiuk, Agnieszka; Miller, Jon; Nazé, Yaël; Nicastro, Fabrizio; Sciortino, Salvatore; Torrejon, Jose Miguel; Geoffray, Hervé; Hernandez, Isabelle; Luno, Laure; Peille, Philippe; André, Jérôme; Daniel, Christophe; Etcheverry, Christophe; Gloaguen, Emilie; Hassin, Jérémie; Hervet, Gilles; Maussang, Irwin; Moueza, Jérôme; Paillet, Alexis; Vella, Bruno; Campos Garrido, Gonzalo; Damery, Jean-Charles; Panem, Chantal; Panh, Johan; Bandler, Simon; Biffi, Jean-Marc; Boyce, Kevin; Clénet, Antoine; DiPirro, Michael; Jamotton, Pierre; Lotti, Simone; Schwander, Denis; Smith, Stephen; van Leeuwen, Bert-Joost; van Weers, Henk; Brand, Thorsten; Cobo, Beatriz; Dauser, Thomas; de Plaa, Jelle; Cucchetti, Edoardo

    2016-01-01

    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5" pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5

  4. Multi-fields' coordination information integrated platform for nuclear power plant operation preparation

    International Nuclear Information System (INIS)

    Yuan Chang; Li Yong; Ye Zhiqiang

    2011-01-01

    To realize the coordination in multi-fields' work and information sharing, by applying the method of Enterprise Architecture (EA), the business architecture, functional flow and application architecture of Nuclear Power Plant's operation preparation information integrated platform are designed, which can realize the information sharing and coordination of multi fields. (authors)

  5. Conditional-sampling spectrograph detection system for fluorescence measurements of individual airborne biological particles

    Science.gov (United States)

    Nachman, Paul; Pinnick, R. G.; Hill, Steven C.; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1996-03-01

    We report the design and operation of a prototype conditional-sampling spectrograph detection system that can record the fluorescence spectra of individual, micrometer-sized aerosols as they traverse an intense 488-nm intracavity laser beam. The instrument's image-intensified CCD detector is gated by elastic scattering or by undispersed fluorescence from particles that enter the spectrograph's field of view. It records spectra only from particles with preselected scattering-fluorescence levels (a fiber-optic-photomultiplier subsystem provides the gating signal). This conditional-sampling procedure reduces data-handling rates and increases the signal-to-noise ratio by restricting the system's exposures to brief periods when aerosols traverse the beam. We demonstrate these advantages by reliably capturing spectra from individual fluorescent microspheres dispersed in an airstream. The conditional-sampling procedure also permits some discrimination among different types of particles, so that spectra may be recorded from the few interesting particles present in a cloud of background aerosol. We demonstrate such discrimination by measuring spectra from selected fluorescent microspheres in a mixture of two types of microspheres, and from bacterial spores in a mixture of spores and nonfluorescent kaolin particles.

  6. Near Field Communication-based telemonitoring with integrated ECG recordings.

    Science.gov (United States)

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  7. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  8. On the integrability of Friedmann-Robertson-Walker models with conformally coupled massive scalar fields

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, L A A [Programa de Pos-Graduacao em Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Skea, J E F [Departamento de Fisica Teorica, Instituto de Fisica, Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier 524, Maracana, Rio de Janeiro, RJ, 20550-900 (Brazil); Stuchi, T J [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Ilha do Fundao, Caixa Postal 68528, Rio de Janeiro, RJ, 21945-970 (Brazil)], E-mail: luis@dft.if.uerj.br, E-mail: jimsk@dft.if.uerj.br, E-mail: tstuchi@if.ufrj.br

    2008-02-22

    In this paper, we use a nonintegrability theorem by Morales and Ramis to analyse the integrability of Friedmann-Robertson-Walker cosmological models with a conformally coupled massive scalar field. We answer the long-standing question of whether these models with a vanishing cosmological constant and non-self-interacting scalar field are integrable: by applying Kovacic's algorithm to the normal variational equations, we prove analytically and rigorously that these equations and, consequently, the Hamiltonians are nonintegrable. We then address the models with a self-interacting massive scalar field and cosmological constant and show that, with the exception of a set of measure zero, the models are nonintegrable. For the spatially curved cases, we prove that there are no additional integrable cases other than those identified in the previous work based on the non-rigorous Painleve analysis. In our study of the spatially flat model, we explicitly obtain a new possibly integrable case.

  9. Study of the magnetic spectrograph BIG KARL on image errors and their causes

    International Nuclear Information System (INIS)

    Paul, D.

    1987-12-01

    The ionoptical aberrations of the QQDDQ spectrograph BIG KARL are measured and analyzed in order to improve resolution and transmission at large acceptance. The entrance phasespace is scanned in a cartesian grid by means of a narrow collimated beam of scattered deuterons. The distortions due to the nonlinear transformation by the system are measured in the detector plane. A model is developed which describes the measured distortions. The model allows to locate nonlinearities in the system responsible for the observed distortions. It gives a good understanding of geometrical nonlinearities up to the fifth order and chromatical nonlinearities up to the third order. To confirm the model, the magnetic field in the quadrupoles is measured including the fringe field region. Furthermore, nonlinearities appearing in ideal magnets are discussed and compared to experimental data. (orig.) [de

  10. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  11. Computer algebra in quantum field theory integration, summation and special functions

    CERN Document Server

    Schneider, Carsten

    2013-01-01

    The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including

  12. Constant external fields in gauge theory and the spin 0, 1/2, 1 path integrals

    International Nuclear Information System (INIS)

    Reuter, M.; Schmidt, M.G.

    1996-10-01

    We investigate the usefulness of the ''string-inspired technique'' for gauge theory calculations in a constant external field background. Our approach is based on Strassler's worldline path integral approach to the Bern-Kosower formalism, and on the construction of worldline (super-) Green's functions incorporating external fields as well as internal propagators. The worldline path integral representation of the gluon loop is reexamined in detail. We calculate the two-loop effective actions induced for a constant external field by a scalar and spinor loop, and the corresponding one-loop effective action in the gluon loop case. (orig.)

  13. Approximate Integrals of rf-driven Particle Motion in Magnetic Field

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2004-01-01

    For a particle moving in nonuniform magnetic field under the action of an rf wave, ponderomotive effects result from rf-driven oscillations nonlinearly coupled with Larmor rotation. Using Lagrangian and Hamiltonian formalism, we show how, despite this coupling, two independent integrals of the particle motion are approximately conserved. Those are the magnetic moment of free Larmor rotation and the quasi-energy of the guiding center motion parallel to the magnetic field. Under the assumption of non-resonant interaction of the particle with the rf field, these integrals represent adiabatic invariants of the particle motion

  14. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    OpenAIRE

    Nurindah Nurindah; Dwi Adi Sunarto

    2014-01-01

    Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula) and cotton bollworm (Helicoverpa armigera). The study aimed to evaluate four packages of integrated pest management (IPM) techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012...

  15. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    International Nuclear Information System (INIS)

    Contreras-Astorga, A.; Negro, J.; Tristao, S.

    2016-01-01

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  16. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2016-01-08

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  17. Unified analytical treatment of multicentre electron attraction, electric field and electric field gradient integrals over Slater orbitals

    International Nuclear Information System (INIS)

    Guseinov, I I

    2004-01-01

    The new central and noncentral potential functions (CPFs and NCPFs) of a molecule depending on the coordinates of the nuclei are introduced. Using complete orthonormal sets of Ψ α -exponential-type orbitals (Ψ α -ETOs) introduced by the author, the series expansion formulae for the multicentre electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals over Slater-type orbitals (STOs) in terms of CPFs and NCPFs are derived. The relationships obtained are valid for the arbitrary location, quantum numbers and screening constants of STOs

  18. Phono-spectrographic analysis of heart murmur in children

    Directory of Open Access Journals (Sweden)

    Angerla Anna

    2007-06-01

    Full Text Available Abstract Background More than 90% of heart murmurs in children are innocent. Frequently the skills of the first examiner are not adequate to differentiate between innocent and pathological murmurs. Our goal was to evaluate the value of a simple and low-cost phonocardiographic recording and analysis system in determining the characteristic features of heart murmurs in children and in distinguishing innocent systolic murmurs from pathological. Methods The system consisting of an electronic stethoscope and a multimedia laptop computer was used for the recording, monitoring and analysis of auscultation findings. The recorded sounds were examined graphically and numerically using combined phono-spectrograms. The data consisted of heart sound recordings from 807 pediatric patients, including 88 normal cases without any murmur, 447 innocent murmurs and 272 pathological murmurs. The phono-spectrographic features of heart murmurs were examined visually and numerically. From this database, 50 innocent vibratory murmurs, 25 innocent ejection murmurs and 50 easily confusable, mildly pathological systolic murmurs were selected to test whether quantitative phono-spectrographic analysis could be used as an accurate screening tool for systolic heart murmurs in children. Results The phono-spectrograms of the most common innocent and pathological murmurs were presented as examples of the whole data set. Typically, innocent murmurs had lower frequencies (below 200 Hz and a frequency spectrum with a more harmonic structure than pathological cases. Quantitative analysis revealed no significant differences in the duration of S1 and S2 or loudness of systolic murmurs between the pathological and physiological systolic murmurs. However, the pathological murmurs included both lower and higher frequencies than the physiological ones (p Conclusion Phono-spectrographic analysis improves the accuracy of primary heart murmur evaluation and educates inexperienced listener

  19. Sensitivity Calibration of Far-Ultraviolet Imaging Spectrograph

    Directory of Open Access Journals (Sweden)

    I. -J. Kim

    2004-12-01

    Full Text Available We describe the in-flight sensitivity calibration of the Far ultraviolet Imaging Spectrograph (FIMS, also known as SPEAR onboard the first Korean science satellite, STSAT-1, which was launched in September 2003. The sensitivity calibration is based on a comparison of the FIMS observations of the hot white dwarf G191B2B, and two O-type stars Alpha-Cam, HD93521 with the HUT (Hopkins Ultraviolet Telescope observations. The FIMS observations for the calibration targets have been conducted from November 2003 through May 2004. The effective areas calculated from the targets are compared with each other.

  20. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1984-01-01

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 800 0 C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author) [pt

  1. Quantitative spectrographic determination of traces of manganese in ferric oxide

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1968-01-01

    In order to enhance the sensitivity, different electrode types and sweeping substances have been studied. Graphite anodes, with 5 x 2,5, 4 x 4,5, 4 x 8 and 7 x 10 mm crater, as well as CuF 2 , AgCl, ZnO and graphite powder as sweeping materials, have been tested. A JACO-Ebert grating spectrograph and 10 amp. d.c. arc have been employed, choosing the proper exposure times from moving-plate studies. Using 4 x 4,5 mm electrodes and 75% AgCl a detection limit of 0,2 ppm is attainable. (Author) 7 refs

  2. Spectrographic determination of impurities in ammonium hydrogen fluoride samples

    International Nuclear Information System (INIS)

    Roca, M.; Capdevila, C.; Alduan, F.A.

    1976-01-01

    The quantitative spectrographic trace determination of Al, B, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Si in ammonium hydrogen fluoride samples is considered. 10 A dc arc excitation and graphite electrodes with crate either 4.5 mm or 8 mm deep are employed. A comparison of various matrices such as graphite, gallium oxide, germanium oxide, magnesium oxide and zinc oxide, in the ratios 1:1 and 1:3, as well as a mixture 50% graphite - 50% zinc oxide in the ratio 1:1 is included. Zinc oxide in the ratio 1:1 and 4x8 mm craters show the best over-all results. (author)

  3. Study of airborne particles by emission spectrographic method

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C N; Lee, S L; Tsai, H T; Wu, S C

    1975-03-01

    A rapid spectrographic method was developed to analyze cadmium, lead, nickel, zinc, tin, titanium, and vanadium collected in glass fiber air filters. A direct excitation method is used for volatile elements, while graphite powder is added for determining involatile elements, such as Ti and V in a dc arc source. Limits of detection for analyzed elements are between 0.01-0.1 micrograms. This simple and sensitive method was used to analyze samples from 15 air sampling stations in different areas of Taiwan.

  4. Spectrographic determination of impurities in enriched uranium solutions

    International Nuclear Information System (INIS)

    Capdevila, C.; Roca, M.

    1980-01-01

    A spectrographic procedure for the determination of trace amounts of Al, B, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, L i , Hg, Mn, Mo, Na, Nb, Ni, P, Pb, Ru, Sb, Sn, Sr, Ti, V, Zn, and Zr in enriched uranyl nitrate solutions from the reprocessing of spent nuclear fuels is described. After removal of uranium by either TBP or TNOA solvent extraction, the aqueous phase Is analysed by the graphite spark technique. TBP is adequate for all impurities, excepting boron and phosphorus; both of these elements can sat is factory be determined by using TNOA after the addition of mannitol to avoid boron losses. (Author) 4 refs

  5. Spectrographic study of neodymium complexing with ATP and ADP

    International Nuclear Information System (INIS)

    Svetlova, I.E.; Dobrynina, N.A.; Martynenko, L.N.

    1989-01-01

    By spectrographic method neodymium complexing with ATP and ADP in aqueous solutions at different pH values has been studied. The composition of the complexes was determined by the method of isomolar series. On the basis of analysis of absorption spectra it has been ascertained that at equimolar ratio of Nd 3+ and ATP absorption band of L278A corresponds to monocomplex, and the band of 4290 A - to biscomplex. For the complexes with ADP the absorption band of 4288 A is referred to bicomplexes. The character of ATP and ADP coordination by Nd 3+ ion is considered. Stability constants of the complexes are calculated

  6. A UV prime focus spectrograph for the CFHT

    International Nuclear Information System (INIS)

    Boulade, O.; Vigroux, L.

    1986-03-01

    The UV prime spectrograph at the Canada-France-Hawaii Telescope is the first instrument to be designed with an aspherized diffraction grating. This technique leads to all reflective Schmidt designs with a very small amount of optical surface on fast aperture ratio. A thin backside illuminated RCA CCD is now used as the detector. Since the detector is at the focus of an f/1 mounting, within the optical path, a minicryostat (5 cm x 5 cm x 3 cm) was designed to minimize the central obscuration. This paper describes this new instrument and its performances

  7. The spectrographic analysis of inorganic impurities in heavy water

    International Nuclear Information System (INIS)

    Artaud, J.; Normand, J.; Vie, R.

    1961-01-01

    Inorganic impurities in heavy water are determined by two spectrographic methods. First is described the copper-spark method which is sensitive and directly applicable, and is particular useful because of the absence of a support. Secondly the graphite impregnation method is given; this is used when the first method is not applicable (determination of copper) and for the alkali metals. For the usual elements, the sensitivity of the copper spark method is of the order of 0,1 μg/ml whereas for the graphite impregnation method the sensitivity is only 0,3 μg/ml. (author) [fr

  8. Exoplanets search and characterization with the SOPHIE spectrograph at OHP

    Directory of Open Access Journals (Sweden)

    Hébrard G.

    2011-02-01

    Full Text Available Several programs of exoplanets search and characterization have been started with SOPHIE at the 1.93-m telescope of Haute-Provence Observatory, France. SOPHIE is an environmentally stabilized echelle spectrograph dedicated to high-precision radial velocity measurements. The objectives of these programs include systematic searches for exoplanets around different types of stars, characterizations of planet-host stars, studies of transiting planets through RossiterMcLaughlin effect, follow-up observations of photometric surveys. The instrument SOPHIE and a review of its latest results are presented here.

  9. Spectrographic mask for digital registration of bright source spectra

    Directory of Open Access Journals (Sweden)

    Ademir Xavier

    2017-08-01

    Full Text Available In this work we present schematic diagrams for the construction of a spectrographic mask attachable to a camera objective in order to capture spectra using simple CD or DVD gratings. The mask is made of two parts: an adapter ring and elbow-shaped blockage for suitable registration of spectra in the lab and outdoors. By using a free software, we analyze and discuss the calibration of the wavelength scale of the solar spectrum, which allows us to identify many chemical elements in it. In the conclusion, we further discuss some interesting projects to be carried out by students using the idea.

  10. Rapid spectrographic method for determining microcomponents in solutions

    International Nuclear Information System (INIS)

    Karpenko, L.I.; Fadeeva, L.A.; Gordeeva, A.N.; Ermakova, N.V.

    1984-01-01

    Rapid spectrographic method foe determining microcomponents (Cd, V, Mo, Ni, rare earths and other elements) in industrial and natural solutions has been developed. The analyses were conducted in argon medium and in the air. Calibration charts for determining individual rare earths in solutions are presented. The accuracy of analysis (Sr) was detection limit was 10 -3 -10 -4 mg/ml, that for rare earths - 1.10 -2 mg/ml. The developed method enables to rapidly analyze solutions (sewages and industrialllwaters, wine products) for 20 elements including 6 rare earths, using strandard equipment

  11. Advanced field-solver techniques for RC extraction of integrated circuits

    CERN Document Server

    Yu, Wenjian

    2014-01-01

    Resistance and capacitance (RC) extraction is an essential step in modeling the interconnection wires and substrate coupling effect in nanometer-technology integrated circuits (IC). The field-solver techniques for RC extraction guarantee the accuracy of modeling, and are becoming increasingly important in meeting the demand for accurate modeling and simulation of VLSI designs. Advanced Field-Solver Techniques for RC Extraction of Integrated Circuits presents a systematic introduction to, and treatment of, the key field-solver methods for RC extraction of VLSI interconnects and substrate coupling in mixed-signal ICs. Various field-solver techniques are explained in detail, with real-world examples to illustrate the advantages and disadvantages of each algorithm. This book will benefit graduate students and researchers in the field of electrical and computer engineering, as well as engineers working in the IC design and design automation industries. Dr. Wenjian Yu is an Associate Professor at the Department of ...

  12. Field visit placements: An integrated and community approach to learning in children's nursing.

    LENUS (Irish Health Repository)

    Cummins, Ann

    2010-03-01

    This paper reports on the development of a new initiative, field visit placements towards and integrated and community approach to learning for nursing students. To date, limited literature exists on the potential of community field visits as meaningful learning opportunities for nursing students. Drawing on our experiences, the structure and processes involved in implementing field visits are described in this paper. Students evaluated the field visits positively indicating that they provided a wealth of learning opportunities that enhanced their knowledge and awareness of services available to children and their families in the community. The potential of field visits to promote an integrated and community approach to placements in children\\'s nursing is discussed.

  13. Integrating Field Buses at the Application Level C Interface and LabView Integration

    CERN Document Server

    Charrue, P

    1996-01-01

    The controls group of the SPS and LEP accelerators at CERN, Geneva, uses many different fieldbuses into the controls infrastucture, such as 1553, BITBUS, GPIB, RS232, JBUS, etc. A software package (SL-EQUIP) has been developped to give end users a standardized application program interface (API) to access any equipment connected to any fieldbus. This interface has now been integrated to LabView. We can offer a powerful graphical package, running on HP-UX workstations which treats data from heterogeneous equipment using the great flexibility of LabView. This paper will present SL-EQUIP and LabView, and will then describe some applications using these tools.

  14. Degenerate variational integrators for magnetic field line flow and guiding center trajectories

    Science.gov (United States)

    Ellison, C. L.; Finn, J. M.; Burby, J. W.; Kraus, M.; Qin, H.; Tang, W. M.

    2018-05-01

    Symplectic integrators offer many benefits for numerically approximating solutions to Hamiltonian differential equations, including bounded energy error and the preservation of invariant sets. Two important Hamiltonian systems encountered in plasma physics—the flow of magnetic field lines and the guiding center motion of magnetized charged particles—resist symplectic integration by conventional means because the dynamics are most naturally formulated in non-canonical coordinates. New algorithms were recently developed using the variational integration formalism; however, those integrators were found to admit parasitic mode instabilities due to their multistep character. This work eliminates the multistep character, and therefore the parasitic mode instabilities via an adaptation of the variational integration formalism that we deem "degenerate variational integration." Both the magnetic field line and guiding center Lagrangians are degenerate in the sense that the resultant Euler-Lagrange equations are systems of first-order ordinary differential equations. We show that retaining the same degree of degeneracy when constructing discrete Lagrangians yields one-step variational integrators preserving a non-canonical symplectic structure. Numerical examples demonstrate the benefits of the new algorithms, including superior stability relative to the existing variational integrators for these systems and superior qualitative behavior relative to non-conservative algorithms.

  15. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-01-01

    This paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: the spontaneous californium-252 fission neutron spectrum standard field; the thermal-neutron induced uranium-235 fission neutron spectrum standard field; the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN-ΣΣ facilities; the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility; the reference neutron field at the center of the 10% enriched uranium metal, cylindrical, fast critical; the (primary) Intermediate-Energy Standard Neutron Field

  16. Review of microscopic integral cross section data in fundamental reactor dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; McElroy, W.N.; Kellogg, L.S.; Lippincott, E.P.; Grundl, J.A.; Gilliam, D.M.; Hansen, G.E.

    1976-10-01

    The paper is intended to review and critically discuss microscopic integral cross section measurement and calculation data for fundamental reactor dosimetry benchmark neutron fields. Specifically the review covers the following fundamental benchmarks: (1) the spontaneous californium-252 fission neutron spectrum standard field; (2) the thermal-neutron induced uranium-235 fission neutron spectrum standard field; (3) the (secondary) intermediate-energy standard neutron field at the center of the Mol-ΣΣ, NISUS, and ITN--ΣΣ facilities; (4) the reference neutron field at the center of the Coupled Fast Reactor Measurement Facility (CFRMF); (5) the reference neutron field at the center of the 10 percent enriched uranium metal, cylindrical, fast critical; and (6) the (primary) Intermediate-Energy Standard Neutron Field

  17. The integration of open access journals in the scholarly communication system: Three science fields

    DEFF Research Database (Denmark)

    Faber Frandsen, Tove

    2009-01-01

    across disciplines. This study is an analysis of the citing behaviour in journals within three science fields: biology, mathematics, and pharmacy and pharmacology. It is a statistical analysis of OAJs as well as non-OAJs including both the citing and cited side of the journal to journal citations......The greatest number of open access journals (OAJs) is found in the sciences and their influence is growing. However, there are only a few studies on the acceptance and thereby integration of these OAJs in the scholarly communication system. Even fewer studies provide insight into the differences....... The multivariate linear regression reveals many similarities in citing behaviour across fields and media. But it also points to great differences in the integration of OAJs. The integration of OAJs in the scholarly communication system varies considerably across fields. The implications for bibliometric research...

  18. Design of a simple magnetic spectrograph for the Karlsruhe isochronous cyclotron

    International Nuclear Information System (INIS)

    Gils, H.J.

    1980-12-01

    The ion-optical design of a simple magnetic spectrograph for studies of nuclear reactions on the Karlsruhe cyclotron is described. The spectrograph allows to determine the nuclear charge, the mass number, the reaction angle and the impulse (energy) of charged particles, which are emitted from the target. The spectrographs possibilities cover an appropriate range of likely nuclear reactions which are induced by light and heavy particles up to mass number A=20 and energies of 26 MeV per nucleon [de

  19. Supply Chain Systems Architecture and Engineering Design: Green-field Supply Chain Integration

    OpenAIRE

    Radanliev, P

    2015-01-01

    This paper developed a new theory for supply chain architecture, and engineering design that enables integration of the business and supply chain strategies. The architecture starts with individual supply chain participants and derives insights into the complex and abstract concept of green-field integration design. The paper presented a conceptual system for depicting the interactions between business and supply chain strategy engineering. The system examines the decisions made when engineer...

  20. Alternative integral equations and perturbation expansions for self-coupled scalar fields

    International Nuclear Information System (INIS)

    Ford, L.H.

    1985-01-01

    It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)

  1. Situational Awareness Applied to Geology Field Mapping using Integration of Semantic Data and Visualization Techniques

    Science.gov (United States)

    Houser, P. I. Q.

    2017-12-01

    21st century earth science is data-intensive, characterized by heterogeneous, sometimes voluminous collections representing phenomena at different scales collected for different purposes and managed in disparate ways. However, much of the earth's surface still requires boots-on-the-ground, in-person fieldwork in order to detect the subtle variations from which humans can infer complex structures and patterns. Nevertheless, field experiences can and should be enabled and enhanced by a variety of emerging technologies. The goal of the proposed research project is to pilot test emerging data integration, semantic and visualization technologies for evaluation of their potential usefulness in the field sciences, particularly in the context of field geology. The proposed project will investigate new techniques for data management and integration enabled by semantic web technologies, along with new techniques for augmented reality that can operate on such integrated data to enable in situ visualization in the field. The research objectives include: Develop new technical infrastructure that applies target technologies to field geology; Test, evaluate, and assess the technical infrastructure in a pilot field site; Evaluate the capabilities of the systems for supporting and augmenting field science; and Assess the generality of the system for implementation in new and different types of field sites. Our hypothesis is that these technologies will enable what we call "field science situational awareness" - a cognitive state formerly attained only through long experience in the field - that is highly desirable but difficult to achieve in time- and resource-limited settings. Expected outcomes include elucidation of how, and in what ways, these technologies are beneficial in the field; enumeration of the steps and requirements to implement these systems; and cost/benefit analyses that evaluate under what conditions the investments of time and resources are advisable to construct

  2. Initial results from the fast imaging solar spectrograph (FISS)

    CERN Document Server

    2015-01-01

    This collection of papers describes the instrument and initial results obtained from the Fast Imaging Solar Spectrograph (FISS),  one of the post-focus instruments of the 1.6 meter New Solar Telescope at the Big Bear Solar Observatory. The FISS primarily aims at investigating structures and dynamics of  chromospheric features. This instrument is a dual-band Echelle spectrograph optimized for the simultaneous recording of the H I 656.3 nm band and the Ca II 854.2 nm band. The imaging is done with the fast raster scan realized by the linear motion of a two-mirror scanner, and its quality is determined by the performance of the adaptive optics of the telescope.    These papers illustrate the capability of the early FISS observations in the study of chromospheric features. Since the imaging quality has been improved a lot with the advance of the adaptive optics, one can obtain much better data with the current FISS observations.        This volume is aimed at graduate students and researchers working in...

  3. Enchanced total dose damage in junction field effect transistors and related linear integrated circuits

    International Nuclear Information System (INIS)

    Flament, O.; Autran, J.L.; Roche, P.; Leray, J.L.; Musseau, O.

    1996-01-01

    Enhanced total dose damage of Junction Field-effect Transistors (JFETs) due to low dose rate and/or elevated temperature has been investigated for elementary p-channel structures fabricated on bulk and SOI substrates as well as for related linear integrated circuits. All these devices were fabricated with conventional junction isolation (field oxide). Large increases in damage have been revealed by performing high temperature and/or low dose rate irradiations. These results are consistent with previous studies concerning bipolar field oxides under low-field conditions. They suggest that the transport of radiation-induced holes through the oxide is the underlying mechanism. Such an enhanced degradation must be taken into account for low dose rate effects on linear integrated circuits

  4. Calculation of an axisymmetric current coil field with the bounding contour integration method

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, Alexander P.; Klevets, Nickolay I. E-mail: pmsolution@mail.ru

    2004-06-01

    Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded.

  5. Calculation of an axisymmetric current coil field with the bounding contour integration method

    International Nuclear Information System (INIS)

    Telegin, Alexander P.; Klevets, Nickolay I.

    2004-01-01

    Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded

  6. Application of integrated petroleum reservoir study for intervention and field development program in western onshore field, India

    Directory of Open Access Journals (Sweden)

    Vijai Kumar Baskaran

    2017-12-01

    Full Text Available In this research, an integrated reservoir study is performed in the J#Field (J-Oil Field of western onshore, India to evaluate its additional reserves expectations and implement field developments plan using waterflood pilot program. The target strata includes two formations of Paleogene, which is about 3600 ft, namely G#Fm (G-Formation of the Eocene and T#Fm (T-Formation of Oligocene, subdivided into 11 zones. Based on these results, an attempt was made to construct of an optimization plan to exploit it, taking into account that the field is producing since 1947, with a cumulative production of 183.5 MMbbl and an overall recovery factor of 28% until January 2016. On the basis of the potential evaluation and geological modeling, blocks J48 and J45 were simulated, and the remaining oil distribution characteristics in two blocks were studied after history match. The work includes the stratigraphic studies, seismic study, logging interpretation, sedimentary facies modeling, three dimensional geological modeling, simulations for waterflooding, and future field development plans.

  7. Integrable systems and quantum field theory. Works in progress Nr 75

    International Nuclear Information System (INIS)

    Baird, Paul; Helein, Frederic; Kouneiher, Joseph; Roubtsov, Volodya; Antunes, Paulo; Banos, Bertrand; Barbachoux, Cecile; Desideri, Laura; Kahouadji, Nabil; Gerding, Aaron; Heller, Sebastian; Schmitt, Nicholas; Harrivel, Dikanaina; Hoevenaars, Luuk K.; Iftime, Mihaela; Levy, Thierry; Lisovyy, Oleg; Masson, Thierry; Skrypnyk, Taras; Pedit, Franz; Egeileh, Michel

    2009-01-01

    The contributions of this collective book address the quantum field theory (integrable systems and quantum field theory, introduction to supermanifolds and supersymmetry, beyond geometric quantification, Gaussian measurements and Fock spaces), differential geometry and physics (gravitation and geometry, physical events and the superspace about the hole argument, the Cartan-Kaehler theory and applications to local isometric and conformal embedding, calibrations, Cabal-Yau structures and Monge-Ampere structures, Hamiltonian multi-symplectic formalism and Monge-Ampere equations, big bracket, derivations and derivative multi-brackets), integrable system, geometry and physics (finite-volume correlation functions of monodromy fields on the lattice with the Toeplitz representation, Frobenius manifolds and algebraic integrability, an introduction to twistors, Hamiltonian systems on the 'coupled' curves, Nambu-Poisson mechanics and Fairlie-type integrable systems, minimal surfaces with polygonal boundary and Fuchsian equations, global aspects of integrable surface geometry), and non commutative geometry (an informal introduction to the ideas and concepts of non commutative geometry)

  8. Stability Analysis and Variational Integrator for Real-Time Formation Based on Potential Field

    Directory of Open Access Journals (Sweden)

    Shengqing Yang

    2014-01-01

    Full Text Available This paper investigates a framework of real-time formation of autonomous vehicles by using potential field and variational integrator. Real-time formation requires vehicles to have coordinated motion and efficient computation. Interactions described by potential field can meet the former requirement which results in a nonlinear system. Stability analysis of such nonlinear system is difficult. Our methodology of stability analysis is discussed in error dynamic system. Transformation of coordinates from inertial frame to body frame can help the stability analysis focus on the structure instead of particular coordinates. Then, the Jacobian of reduced system can be calculated. It can be proved that the formation is stable at the equilibrium point of error dynamic system with the effect of damping force. For consideration of calculation, variational integrator is introduced. It is equivalent to solving algebraic equations. Forced Euler-Lagrange equation in discrete expression is used to construct a forced variational integrator for vehicles in potential field and obstacle environment. By applying forced variational integrator on computation of vehicles' motion, real-time formation of vehicles in obstacle environment can be implemented. Algorithm based on forced variational integrator is designed for a leader-follower formation.

  9. Integrated Study of Lithofacies Identification—A Case Study in X Field, Sabah, Malaysia

    Directory of Open Access Journals (Sweden)

    Jia Qi Ngui

    2018-02-01

    Full Text Available Understanding subsurface geology is essential for oil and gas exploration. Seismic facies interpretation is very useful in investigating this concept. The interpretation of the depositional setting of the X Field is achieved by integrating the seismic facies characteristics on 3D seismic data and well log data. Both the seismic and well log data are widely used in hydrocarbon exploration to map the subsurface, as they complement each other. Well logs yield the vertical resolution of the subsurface geology at the drilled well, whereas seismic data reveal the lateral continuity. The objective of this paper is to demonstrate the integration of 3D seismic data and well log data for lithofacies identification. Interpretation and analysis of lithofacies is carried out through the integration of the characteristics of seismic reflections with well information (logs. Horizons are interpreted based on the variation in seismic reflections on the seismic section, which is caused by the change in geology within seismic sequences. Well logs give detailed information at the points where the wells were drilled. Interpolating between these points and extrapolating away from the points into undrilled areas can be helpful in providing a better geological knowledge of an area. The result of this integrated study depicts the lithofacies in the area. This integrated study will provide a better insight with higher degree of reliability to the facies distribution and depositional setting of the X Field. The geological and geophysical aspects of the field will be documented.

  10. A fast new cadioptric design for fiber-fed spectrographs

    Science.gov (United States)

    Saunders, Will

    2012-09-01

    The next generation of massively multiplexed multi-object spectrographs (DESpec, SUMIRE, BigBOSS, 4MOST, HECTOR) demand fast, efficient and affordable spectrographs, with higher resolutions (R = 3000-5000) than current designs. Beam-size is a (relatively) free parameter in the design, but the properties of VPH gratings are such that, for fixed resolution and wavelength coverage, the effect on beam-size on overall VPH efficiency is very small. For alltransmissive cameras, this suggests modest beam-sizes (say 80-150mm) to minimize costs; while for cadioptric (Schmidt-type) cameras, much larger beam-sizes (say 250mm+) are preferred to improve image quality and to minimize obstruction losses. Schmidt designs have benefits in terms of image quality, camera speed and scattered light performance, and recent advances such as MRF technology mean that the required aspherics are no longer a prohibitive cost or risk. The main objections to traditional Schmidt designs are the inaccessibility of the detector package, and the loss in throughput caused by it being in the beam. With expected count rates and current read-noise technology, the gain in camera speed allowed by Schmidt optics largely compensates for the additional obstruction losses. However, future advances in readout technology may erase most of this compensation. A new Schmidt/Maksutov-derived design is presented, which differs from previous designs in having the detector package outside the camera, and adjacent to the spectrograph pupil. The telescope pupil already contains a hole at its center, because of the obstruction from the telescope top-end. With a 250mm beam, it is possible to largely hide a 6cm × 6cm detector package and its dewar within this hole. This means that the design achieves a very high efficiency, competitive with transmissive designs. The optics are excellent, as least as good as classic Schmidt designs, allowing F/1.25 or even faster cameras. The principal hardware has been costed at $300K per

  11. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2010-01-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well

  12. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br

    2008-07-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  13. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R ∞ , we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  14. Integrating iPad Technology in Earth Science K-12 Outreach Courses: Field and Classroom Applications

    Science.gov (United States)

    Wallace, Davin J.; Witus, Alexandra E.

    2013-01-01

    Incorporating technology into courses is becoming a common practice in universities. However, in the geosciences, it is difficult to find technology that can easily be transferred between classroom- and field-based settings. The iPad is ideally suited to bridge this gap. Here, we fully integrate the iPad as an educational tool into two…

  15. On the classical origins of yangian symmetry in integrable field theory

    International Nuclear Information System (INIS)

    MacKay, N.J.

    1992-01-01

    We show that Drinfeld's yangian algebra, studied recently as the algebra of conserved charges in certain two-dimensional integrable quantum field theories, is also present in the classical theory as a Poisson-Hopf algebra, and exhibit explicitly the Serre relations, coproduct and antipode. (orig.)

  16. PPAK integral field spectroscopy survey of the Orion nebula. Data release

    NARCIS (Netherlands)

    Sánchez, S. F.; Cardiel, N.; Verheijen, M. A. W.; Martín-Gordón, D.; Vilchez, J. M.; Alves, J.

    2007-01-01

    Aims:We present a low-resolution spectroscopic survey of the Orion nebula. The data are released for public use. We show the possible applications of this dataset analyzing some of the main properties of the nebula. Methods: We perform an integral field spectroscopy mosaic of an area of ~5 arcmin× 6

  17. Entanglement entropy in integrable field theories with line defects II. Non-topological defect

    Science.gov (United States)

    Jiang, Yunfeng

    2017-08-01

    This is the second part of two papers where we study the effect of integrable line defects on bipartite entanglement entropy in integrable field theories. In this paper, we consider non-topological line defects in Ising field theory. We derive an infinite series expression for the entanglement entropy and show that both the UV and IR limits of the bulk entanglement entropy are modified by the line defect. In the UV limit, we give an infinite series expression for the coefficient in front of the logarithmic divergence and the exact defect g-function. By tuning the defect to be purely transmissive and reflective, we recover correctly the entanglement entropy of the bulk and with integrable boundary respectively.

  18. Unbounded representations of symmetry groups in gauge quantum field theory. II. Integration

    International Nuclear Information System (INIS)

    Voelkel, A.H.

    1986-01-01

    Within the gauge quantum field theory of the Wightman--Garding type, the integration of representations of Lie algebras is investigated. By means of the covariance condition (substitution rules) for the basic fields, it is shown that a form skew-symmetric representation of a Lie algebra can be integrated to a form isometric and in general unbounded representation of the universal covering group of a corresponding Lie group provided the conditions (Nelson, Sternheimer, etc.), which are well known for the case of Hilbert or Banach representations, hold. If a form isometric representation leaves the subspace from which the physical Hilbert space is obtained via factorization and completion invariant, then the same is proved to be true for its differential. Conversely, a necessary and sufficient condition is derived for the transmission of the invariance of this subspace under a form skew-symmetric representation of a Lie algebra to its integral

  19. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2014-01-01

    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers

  20. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  1. Integral equation and simulation studies of a planar nematogenic liquid in crossed external fields

    International Nuclear Information System (INIS)

    Lado, F; Lomba, E; MartIn, C; Almarza, N G

    2005-01-01

    We study a fluid of nematogenic molecules with centres of mass constrained to lie in a plane but with axes free to rotate in any direction. An external disorienting field perpendicular to the plane along with a second orienting field in the plane induce an in-plane order-disorder transition. We analyse the behaviour of this simple biaxial model using a well-established generalization of molecular integral equation methods built upon specially tailored basis functions that maintain orthogonality in the presence of anisotropy. Computer simulation and integral equation calculations predict an isotropic-nematic transition at low temperatures in zero field and an in-plane transition at somewhat higher temperatures in the presence of the disorienting field. The oriented states obtained in the presence of both fields can subsequently be used as input to uncover in detail first the transition in the absence of the in-plane orienting field and finally the spontaneous transition in the absence of any field. According to the simulation, the transition apparently belongs to the Berezinskii-Kosterlitz-Thouless defect-mediated type, whereas the theory reproduces a weak first-order transition

  2. Integrating Field Spectra and Worldview-2 Data for Grapevine Productivity in Different Irrigation Treatments

    Science.gov (United States)

    Maimaitiyiming, M.; Bozzolo, A.; Wulamu, A.; Wilkins, J. L.

    2015-12-01

    Precision farming requires high spectral, spatial and temporal resolution remote sensing data to detect plant physiological changes. The higher spatial resolution is particularly as important as the spectral resolution for crop monitoring. It is important to develop data integration techniques between field or airborne hyperspectral data with spaceborne broad band multispectral images for plant productivity monitoring. To investigate varying rootstock and irrigation interactions, different irrigation treatments are implemented in a vineyard experimental site either i) unirrigated ii) full replacement of evapotranspiration (ET) iii) irrigated at 50 % of the potential ET. In summer 2014, we collected leaf and canopy spectra of the vineyard using field spectroscopy along with other plant physiological and nutritional variables. In this contribution, we integrate the field spectra and the spectral wavelengths of WorldView-2 to develop a predictive model for plant productivity,i.e., fruit quality and yield. First, we upscale field and canopy spectra to WorldView-2 spectral bands using radiative transfer simulations (e.g., MODTRAN). Then we develop remote sensing techniques to quantify plant productivity in different scenarios water stress by identifying the most effective and sensitive wavelengths, and indices that are capable of early detection of plant health and estimation of crop nutrient status. Finally we present predictive models developed from partial least square regression (PLSR) for plant productivity using spectral wavelengths and indices derived from integrated field and satellite remote sensing data.

  3. A Bayesian reliability evaluation method with integrated accelerated degradation testing and field information

    International Nuclear Information System (INIS)

    Wang, Lizhi; Pan, Rong; Li, Xiaoyang; Jiang, Tongmin

    2013-01-01

    Accelerated degradation testing (ADT) is a common approach in reliability prediction, especially for products with high reliability. However, oftentimes the laboratory condition of ADT is different from the field condition; thus, to predict field failure, one need to calibrate the prediction made by using ADT data. In this paper a Bayesian evaluation method is proposed to integrate the ADT data from laboratory with the failure data from field. Calibration factors are introduced to calibrate the difference between the lab and the field conditions so as to predict a product's actual field reliability more accurately. The information fusion and statistical inference procedure are carried out through a Bayesian approach and Markov chain Monte Carlo methods. The proposed method is demonstrated by two examples and the sensitivity analysis to prior distribution assumption

  4. Path integral methods for primordial density perturbations - sampling of constrained Gaussian random fields

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1987-01-01

    Path integrals may be used to describe the statistical properties of a random field such as the primordial density perturbation field. In this framework the probability distribution is given for a Gaussian random field subjected to constraints such as the presence of a protovoid or supercluster at a specific location in the initial conditions. An algorithm has been constructed for generating samples of a constrained Gaussian random field on a lattice using Monte Carlo techniques. The method makes possible a systematic study of the density field around peaks or other constrained regions in the biased galaxy formation scenario, and it is effective for generating initial conditions for N-body simulations with rare objects in the computational volume. 21 references

  5. Spectrographic analysis of metallic silicium and natural quartz

    International Nuclear Information System (INIS)

    Grigoletto, T.; Lordello, A.R.

    1985-01-01

    A method has been developed for the spectrographic determination of B, Mg, Al, Ca, Ti, Mn, Fe, Ni, Cu and Ag in silicon metal and other for Al, Ca, Mg, Ti, Cr, Mn, and Fe in natural quartz. A mixture of the matrix with a proper buffer is excited directly in a dc-arc. High-current (25A) and argon atmosphere are used for both the methods. Silicon metal is blended with 8% NaF and after 1:1 (w/w) with graphite. For natural quartz 20% NaF and 30% graphite by weight is the buffer mixture employed. The lower values in the determinations varies from 0.5 to 40 μg/g and the precision of the analysis from 7% to 45%. (Author) [pt

  6. Spectrographic analysis of waste waters; Analisis espectrografico de aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Alduan, F; Capdevila, C

    1979-07-01

    The Influence of sodium and calcium, up to a maximum concentration of 1000 mg/1 Na and 300 mg/1 Ca, in the spectrographic determination of Cr, Cu, Fe,Mn and Pb in waste waters using graphite spark excitation has been studied. In order to eliminate this influence, each of the elements Ba, Cs, In, La, Li, Sr and Ti, as well as a mixture containing 5% Li-50% Ti, have been tested as spectrochemical buffers. This mixture allows to obtain an accuracy better than 25%. Sodium and calcium enhance the line intensities of impurities, when using graphite or gold electrodes, but they produce an opposite effect if copper or silver electrodes are used. (Author) 1 refs.

  7. Spectrographic determination of traces of boron in steels

    International Nuclear Information System (INIS)

    Alduan, F.A.; Roca, M.

    1976-01-01

    A spectrographic method has been developed to determine quantitatively boron in steels in the 0.5 to 250 ppm concentration range. The samples are dissolved in acids and transformed into oxides, avoiding boron losses by the addition of mannitol. For the fluoride evolution of boron in the dc arc the following compounds have been considered: CuF 2 , LiF, NaF, and SrF 2 . CuF 2 , at a concentration of 10%, provides the highest line-to-background intensity ratio. An arc current of 5 amperes eliminates the interference from iron spectrum on the most sensitive boron line - B 2497.7 A. Variations in chromium and nickel contents have no effect on the analytical results. (author)

  8. Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions

    Science.gov (United States)

    Penton, Steven V.

    2010-07-01

    COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).

  9. The vacuum system of the Karlsruhe magnetic spectrograph 'Little John'

    International Nuclear Information System (INIS)

    Buschmann, J.; Gils, H.J.; Jelitto, H.; Krisch, J.; Ludwig, G.; Manger, D.; Rebel, H.; Seith, W.; Zagromski, S.

    1985-02-01

    The vacuum equipment of the magnetic spectrograph Little John is described. The system is characterized by the following special features: The sliding exit flange of the target chamber can be moved to the desired angle of observation without affecting the high vacuum. The pressure maintained is less by a factor of ten than the pressure in the incoming beam tubing. The vacuum system is divided into several separate pumping sections. Ground loops are strictly avoided. All actual states of relevance are fed back to the control panels. The vacuum installation is protected by hardware interlocking systems as well as by a real time program written in FORTRAN in cooperation with CAMAC interfacing. (orig.) [de

  10. Determination of rare earth impurities in thorium by spectrographic methods

    Energy Technology Data Exchange (ETDEWEB)

    Wray, L W

    1957-08-15

    A method for determining rare earth impurities in thorium in the fractional ppm range is described. Before spectrographic examination is possible, the impurities must be freed from the thorium matrix. This is accomplished by removing the bulk of the thorium by extraction with TBP-CCl{sub 4} and the remainder by extraction with TTA-C{sub 6}H{sub 6}. This results in a consistent recovery of rare earths of about 85% with an average sensitivity of 0.2 ppm. The experimental error is within 10%. Details of the procedure are given together with working curves for the major neutron absorbing rare earths; i.e. dysprosium, europium, gadolinium and samarium. (author)

  11. Optical Design of the far Ultraviolet Imaging Spectrograph

    Directory of Open Access Journals (Sweden)

    K. S. Ryu

    1998-12-01

    Full Text Available We present the design specifications and the performance estimation of the FUVS (Far Ultraviolet Spectrograph proposed for the observations of aurora, day/night airglow and astronomical objects on small satelltes in the spectral range of . The design of FUVS is carried out with the full consideration of optical characteristics of the grating and the aspheric substrate. Two independent methods, ray-tracing and the wave front aberration theory, are employed to estimate the performance of the optical design and it is verified that both procedures yield the resolution of in the entire spectral range. MDF (Minimum Detectable Flux is also estimated using the known characteristics of the reflecting material and MCP, to study the feasibility of detection for faint emission lines from the hot interstellar plasmas. The results give that the observations from 1 day to 1 week, depending on the line intensity, can detect such faint emission lines from diffuse interstellar plasmas.

  12. Rehabilitation of Mature Gas Fields in Romania: Success Through Integration of Management Processes and New Technology

    Directory of Open Access Journals (Sweden)

    Louboutin Michel

    2004-09-01

    Full Text Available Nature oil and gas fields are difficult to rehabilitate effectively because of the economics of declining production. Many fields are abandoned prematurely when their life could be prolonged significantly through application of new technology. Romgaz (a national exploration and production company and Schlumberger (an integrated oilfield services company developed a new business model to overcome these obstacles. The key to success of this model, which is being applied to gas fields in the Transylvanian basin of Romania, is the shared risk and shared reward for the two companies. Integrated management processes addressing the complete system from reservoir to wellbore to surface/transmission facilities and application of new technology (logging, perforation, etc. have resulted in multifold increases in production.

  13. Non-Gaussian path integration in self-interacting scalar field theories

    International Nuclear Information System (INIS)

    Kaya, Ali

    2004-01-01

    In self-interacting scalar field theories kinetic expansion is an alternative way of calculating the generating functional for Green's functions where the zeroth order non-Gaussian path integral becomes diagonal in x-space and reduces to the product of an ordinary integral at each point which can be evaluated exactly. We discuss how to deal with such functional integrals and propose a new perturbative expansion scheme which combines the elements of the kinetic expansion with the usual perturbation theory techniques. It is then shown that, when the cutoff dependences of the bare parameters in the potential are chosen to have a well defined non-Gaussian path integral without the kinetic term, the theory becomes trivial in the continuum limit

  14. Use of an ultra-high resolution magnetic spectrograph for materials research

    NARCIS (Netherlands)

    Boerma, DO; Arnoldbik, WM; Wolfswinkel, W; Balogh, AG; Walter, G

    1997-01-01

    A brief description is given of a magnetic spectrograph for RBS and ERD analysis with MeV beams, delivered by a Tandem accelerator. With a number of examples of thin layer analysis it is shown that the spectrograph is uniquely suited for the measurement of concentration depth profiles up to a depth

  15. Self-field calculation of CICC with fast direct Biot–Savart integration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Li, Yingxu [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou, Youhe [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2014-04-15

    Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N{sup 2}) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable.

  16. Self-field calculation of CICC with fast direct Biot–Savart integration

    International Nuclear Information System (INIS)

    Wang, Xu; Li, Yingxu; Gao, Yuanwen; Zhou, Youhe

    2014-01-01

    Highlights: • An algorithm of fast direct Biot–Savart integration (FDBS) is proposed. • FDBS calculates the self-field of ITER cable-in-conduit conductor (CICC). • FDBS is more effective and easier to implement. • This new method will benefit future magnet design. - Abstract: ITER magnetic device (Tokamak) requires a strong magnetic field produced by charged cable conductors and external sources to arrive at stable and reliable magnetic confinement performance. Before manufacturing and assembling conductors, preliminary analysis of self-field induction is helpful for reducing the cost of varying-parameter experiments. Spatial helix shape of numerous strand elements and multi-level twist of the finalized cable, known as CICC type, make it unpractical to direct use finite-element methods and other numerical procedures for self-field calculation. An algorithm FDBS (fast direct Biot–Savart integration) is proposed to surmount this difficulty, which improves the traditional method (DBS, direct implementing Biot–Savart law for all strand sources) in terms of computational effort. As such the complexity reduces to O(N) from the original O(N 2 ) and speed enhancement is achieved in the parallel computation environment. FDBS calculates out a detailed self-field profile for the uncompressed ITER TF conductors carrying uniform current at each cabling level; the layered self-field distribution becomes more indistinct for higher level subcable

  17. Optical design and performance of a dual-grating, direct-reading spectrograph for spectrochemical analyses

    International Nuclear Information System (INIS)

    Steinhaus, D.W.; Kline, J.V.; Bieniewski, T.M.; Dow, G.S.; Apel, C.T.

    1979-01-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph

  18. Optical Design And Performance Of A Dual-Grating, Direct-Reading Spectrograph For Spectrochemical Analyses

    Science.gov (United States)

    Steinhaus, David W.; Kline, John V.; Bieniewski, Thomas M.; Dow, Grove S.; Apel, Charles T.

    1980-11-01

    An all-mirror optical system is used to direct the light from a variety of spectroscopic sources to two 2-m spectrographs that are placed on either side of a sturdy vertical mounting plate. The gratings were chosen so that the first spectrograph covers the ultraviolet spectral region, and the second spectrograph covers the ultraviolet, visible, and near-infrared regions. With the over 2.5 m of focal curves, each ultraviolet line is available at more than one place. Thus, problems with close lines can be overcome. The signals from a possible maximum of 256 photoelectric detectors go to a small computer for reading and calculation of the element abundances. To our knowledge, no other direct-reading spectrograph has more than about 100 fixed detectors. With an inductively-coupled-plasma source, our calibration curves, and detection limits, are similar to those of other workers using a direct-reading spectrograph.

  19. Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities.

    Science.gov (United States)

    Chremmos, Ioannis

    2010-01-01

    The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.

  20. Field configurations for small deviations of the integral filling factors in IQHE

    International Nuclear Information System (INIS)

    Cabo, A.; Castineiras, J.; Gonzalez, R.; Penaranda, S.

    1990-07-01

    A numerical solution of the effective Maxwell equations of the IQHE is presented. It corresponds to inhomogeneous electromagnetic field distributions appearing after a small constant magnetic field is added to a 2D-electron gas sheet when the density exactly fills an integral number of Landau levels. It follows that the Chern-Simons terms of the Maxwell equation transform the applied magnetic field into an equivalent homogeneous charge density. The numerical value of this density is exactly the one which is needed to furnish complete filling at the new value of the total magnetic field. The system then reacts tending to screen the effective charge density by removing charge from the sample edges. It is interesting that for the selected parameter values here, reflecting the current experimental situations, the system response is able to approximately establish an integral filling factor in the central portion of the sheet. Then, at least a small plateau is predicted to occur in pure samples at zero temperature. It also follows that the current distribution is unsymmetric under the inversion, as opposed to the configuration associated to a flow of a net Hall current at integral filling factors. (author). 8 refs, 4 figs

  1. Gas Distributions in Comet ISON’s Coma: Concurrent Integral-Field Spectroscopy and Narrow-band Imaging.

    Science.gov (United States)

    Schmidt, Carl; Johnson, Robert E.; Baumgardner, Jeffrey; Mendillo, Michael

    2014-11-01

    At a solar distance of 0.44 AU, Oort cloud comet C/2012 S1 (ISON) exhibited an outburst phase that was observed by small telescopes at the McDonald Observatory. In conjunction with narrow-band (14Å) imaging over a wide-field, an image-slicer spectrograph ( 20,000) simultaneously measured the spatial distribution of ISON’s coma over a 1.6 x 2.7 arcminute field made up of 246 individual spectra. More than fifty emission lines from C2, NH2, CO, H2O+ and Na were observed within a single Echelle order spanning 5868Å to 5930Å. Spatial reconstructions of these species reveal that ISON’s coma was quite elongated several thousand km along the axis perpendicular to its motion. The ion tail appeared distinctly broader than the neutral Na tail, providing strong evidence that Na in the coma did not originate by dissociative recombination of a sodium bearing molecular ion. Production rates increased from 1.6 ± 0.3 x 1023 to 5.8 ± 1 x 1023 Na atoms/s within 24 hours, outgassing much less than comparable comets relative to ISON’s water production. The anti-sunward Na tail was imaged >106 km from the nucleus. Its distribution indicates origins both near the nucleus and in the dust tail, with the ratio of these Na sources varying on hourly timescales due to outburst activity.

  2. Integrable model of Yang-Mills theory with scalar field and quasi-instantons

    International Nuclear Information System (INIS)

    Yatsun, V.A.

    1988-01-01

    In the framework of Euclidean conformally invariant Yang-Mills theory with a scalar field a study is made of a Hamiltonian system with two degrees of freedom that is integrable for a definite relationship between the coupling constants. A particular solution of the Hamilton-Jacobi equation leads to first-order equations that ensure a nonself-dual solution of instanton type of the considered model. As generalization of the first-order equations a quasiself-dual equation that can be integrated by means of the 't Hooft ansatz and leads to quasiself-dual instantons - quasi-instantons - is proposed

  3. Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields

    International Nuclear Information System (INIS)

    Yuan Lin; Zhou Ben-Hu; Zhao Yun-Hui; Xu Jun; Hai Wen-Hua

    2012-01-01

    A variational-integral perturbation method (VIPM) is established by combining the variational perturbation with the integral perturbation. The first-order corrected wave functions are constructed, and the second-order energy corrections for the ground state and several lower excited states are calculated by applying the VIPM to the hydrogen atom in a strong uniform magnetic field. Our calculations demonstrated that the energy calculated by the VIPM only shows a negative value, which indicates that the VIPM method is more accurate than the other methods. Our study indicated that the VIPM can not only increase the accuracy of the results but also keep the convergence of the wave functions

  4. Large-scale building integrated photovoltaics field trial. First technical report - installation phase

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report summarises the results of the first eighteen months of the Large-Scale Building Integrated Photovoltaic Field Trial focussing on technical aspects. The project aims included increasing awareness and application of the technology, raising the UK capabilities in application of the technology, and assessing the potential for building integrated photovoltaics (BIPV). Details are given of technology choices; project organisation, cost, and status; and the evaluation criteria. Installations of BIPV described include University buildings, commercial centres, and a sports stadium, wildlife park, church hall, and district council building. Lessons learnt are discussed, and a further report covering monitoring aspects is planned.

  5. Yet Another Lunar Surface Geologic Exploration Architecture Concept (What, Again?): A Senior Field Geologist's Integrated View

    Science.gov (United States)

    Eppler, D. B.

    2015-01-01

    Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.

  6. Dose calculations for irregular fields using three-dimensional first-scatter integration

    International Nuclear Information System (INIS)

    Boesecke, R.; Scharfenberg, H.; Schlegel, W.; Hartmann, G.H.

    1986-01-01

    This paper describes a method of dose calculations for irregular fields which requires only the mean energy of the incident photons, the geometrical properties of the irregular field and of the therapy unit, and the attenuation coefficient of tissue. The method goes back to an approach including spatial aspects of photon scattering for inhomogeneities for the calculation of dose reduction factors as proposed by Sontag and Cunningham (1978). It is based on the separation of dose into a primary component and a scattered component. The scattered component can generally be calculated for each field by integration over dose contributions from scattering in neighbouring volume elements. The quotient of this scattering contribution in the irregular field and the scattering contribution in the equivalent open field is then the correction factor for scattering in an irregular field. A correction factor for the primary component can be calculated if the attenuation of the photons in the shielding block is properly taken into account. The correction factor is simply given by the quotient of primary photons of the irregular field and the primary photons of the open field. (author)

  7. Determination of the bending field integral of the LEP spectrometer dipole

    International Nuclear Information System (INIS)

    Chritin, R.; Cornuet, D.; Dehning, B.; Hidalgo, A.; Hildreth, M.; Kalbreier, W.; Leclere, P.; Mugnai, G.; Palacios, J.; Roncarolo, F.; Torrence, E.; Wilkinson, G.

    2005-01-01

    The LEP spectrometer performed calibrations of the beam energy in the 2000 LEP run, in order to provide a kinematical constraint for the W boson mass measurement. The beam was deflected in the spectrometer by a steel core dipole, and the bending angle was measured by Beam-Position Monitors on either side of the magnet. The energy determination relies on measuring the change in bending angle when ramping the beam from a reference point at 50GeV to an energy within the LEP W physics regime, typically 93GeV. The ratio of integrated bending fields at these settings (approximately 1.18Tm/0.64Tm) must be known with a precision of a few 10 -5 . The paper reports on the field mapping measurements which were conducted to determine the bending integral under a range of excitation currents and coil temperatures. These were made in the laboratory before and after spectrometer operation, using a test-bench equipped with a moving arm, carrying an NMR probe and Hall probes, and in the LEP tunnel itself, with a mapping trolley inside the vacuum chamber. The mapping data are related to local readings supplied by fixed NMR probes in the dipole, and a predictive model developed which shows good consistency for all datasets within the estimated uncertainty, which is 14x10 -5 for the moving arm, and 3x10 -5 for the mapping trolley. Measurements are also presented of the field gradient inside the dipole, and of the environmental magnetic fields in the LEP tunnel. When applied to the spectrometer energy calibrations, the bending field model calculates the ratio of integrated fields with an estimated uncertainty of 1.5x10 -5

  8. The new integrated aeromagnetic map of the Phlegrean Fields volcano and surrounding areas

    Directory of Open Access Journals (Sweden)

    A. Rapolla

    2004-06-01

    Full Text Available In this paper we present and analyze the new detailed aeromagnetic data set resulting from a recent survey carried out in the Phlegrean Fields volcanic area. The survey was aimed at gaining new insight into the volcanological characteristics of the region north of Phlegrean Fields (Parete-Villa Literno area where remarkable thickness of volcanic/sub- volcanic rocks were found in wells. Measurement of total magnetic field was performed on two different flight levels, 70 m and 400 m above the ground surface, along flight lines spaced 400 m apart. Both aeromagnetic maps show the noisy effect of linear anomalies evidently due to the presence of railway lines. To filter out these local anomalies a method based on discrete wavelet transform was used, allowing an accurate local filtering and leaving the rest of the field practically unchanged. The filtered data set was integrated with the existing Agip aeromagnetic map of the Phlegrean Fields, leading to a new aeromagnetic map of the whole Phlegrean volcanic area. The compilation of the pole reduced map and of the maps of the Analytic Signal and of the Horizontal Derivative of the integrated data set represents a first step for the interpretation of the maps in terms of geological structures of the whole Phlegrean volcanic district.

  9. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong

    2013-11-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  10. Integrated passive and wireless sensor for magnetic fields, temperature and humidity

    KAUST Repository

    Li, Bodong; Yassine, Omar; Kosel, Jü rgen

    2013-01-01

    This paper presents a surface acoustic wave-based passive and wireless sensor that can measure magnetic field, temperature and humidity. A thin film giant magnetoimpedance sensor, a thermally sensitive LiNbO3 substrate and a humidity sensitive hydrogel are integrated together with a surface acoustic wave transducer to realize the multifunctional sensor. The device is characterized using a network analyzer under sequentially changing humidity, temperature and magnetic field conditions. The first hand results show the sensor response to all three sensing parameters with small temperature interference on the magnetic signals. © 2013 IEEE.

  11. An innovative large scale integration of silicon nanowire-based field effect transistors

    Science.gov (United States)

    Legallais, M.; Nguyen, T. T. T.; Mouis, M.; Salem, B.; Robin, E.; Chenevier, P.; Ternon, C.

    2018-05-01

    Since the early 2000s, silicon nanowire field effect transistors are emerging as ultrasensitive biosensors while offering label-free, portable and rapid detection. Nevertheless, their large scale production remains an ongoing challenge due to time consuming, complex and costly technology. In order to bypass these issues, we report here on the first integration of silicon nanowire networks, called nanonet, into long channel field effect transistors using standard microelectronic process. A special attention is paid to the silicidation of the contacts which involved a large number of SiNWs. The electrical characteristics of these FETs constituted by randomly oriented silicon nanowires are also studied. Compatible integration on the back-end of CMOS readout and promising electrical performances open new opportunities for sensing applications.

  12. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2015-07-25

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.

  13. On the algebra of deformed differential operators, and induced integrable Toda field theory

    International Nuclear Information System (INIS)

    Hssaini, M.; Kessabi, M.; Maroufi, B.; Sedra, M.B.

    2000-07-01

    We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u n , n ≥ 2 and discuss the primary condition of the fields w n , n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)

  14. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan

    2009-10-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.

  15. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2012-01-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  16. Zakharov-Shabat-Mikhailov scheme of construction of two-dimensional completely integrable field theories

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.; Columbia Univ., New York; Chudnovsky, G.V.; Columbia Univ., New York

    1980-01-01

    General algebraic and analytic formalism for derivation and solution of general two dimensional field theory equations of Zakharov-Shabat-Mikhailov type is presented. The examples presented show that this class of equations covers most of the known two-dimensional completely integrable equations. Possible generalizations for four dimensional systems require detailed analysis of Baecklund transformation of these equations. Baecklund transformation is presented in the form of Riemann problem and one special case of dual symmetry is worked out. (orig.)

  17. Magnetostatic fields computed using an integral equation derived from Green's theorems

    International Nuclear Information System (INIS)

    Simkin, J.; Trowbridge, C.W.

    1976-04-01

    A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)

  18. Characterisation of large catastrophic landslides using an integrated field, remote sensing and numerical modelling approach

    OpenAIRE

    Wolter, Andrea Elaine

    2014-01-01

    I apply a forensic, multidisciplinary approach that integrates engineering geology field investigations, engineering geomorphology mapping, long-range terrestrial photogrammetry, and a numerical modelling toolbox to two large rock slope failures to study their causes, initiation, kinematics, and dynamics. I demonstrate the significance of endogenic and exogenic processes, both separately and in concert, in contributing to landscape evolution and conditioning slopes for failure, and use geomor...

  19. Contour integral representations for the characters of rational conformal field theories

    International Nuclear Information System (INIS)

    Mukhi, S.; Panda, S.; Sen, A.

    1989-01-01

    We propose simple Feigin-Fuchs contour integral representations for the characters of a large class of rational conformal field theories. These include the A, D and E series SU(2) WZW theories, the A and D series c<1 minimal theories, and the k=1 SU(N) WZW theories. All these theories are characterized by the absence of the zeroes in the wronskian determinant of the characters in the interior of moduli space. This proposal is verified by several calculations. (orig.)

  20. Study of the conformal symmetry breaking in field theories in gravitational background using path integrals

    International Nuclear Information System (INIS)

    Souza Alves, Marcelo de.

    1990-03-01

    Some general aspects on field theories in curved space-time and a introduction to conformal symmetry are presented.The behavior of the physical systems under Weyl transformations is discussed. The quantization of such systems are performed through the functional integration method. The regularization in curved space-time is also discussed. An application of this analysis in String theories is made. 42 refs

  1. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  2. Differential Galois theory and non-integrability of planar polynomial vector fields

    Science.gov (United States)

    Acosta-Humánez, Primitivo B.; Lázaro, J. Tomás; Morales-Ruiz, Juan J.; Pantazi, Chara

    2018-06-01

    We study a necessary condition for the integrability of the polynomials vector fields in the plane by means of the differential Galois Theory. More concretely, by means of the variational equations around a particular solution it is obtained a necessary condition for the existence of a rational first integral. The method is systematic starting with the first order variational equation. We illustrate this result with several families of examples. A key point is to check whether a suitable primitive is elementary or not. Using a theorem by Liouville, the problem is equivalent to the existence of a rational solution of a certain first order linear equation, the Risch equation. This is a classical problem studied by Risch in 1969, and the solution is given by the "Risch algorithm". In this way we point out the connection of the non integrability with some higher transcendent functions, like the error function.

  3. The ICE spectrograph for PEPSI at the LBT: preliminary optical design

    Science.gov (United States)

    Pallavicini, Roberto; Zerbi, Filippo M.; Spano, Paolo; Conconi, Paolo; Mazzoleni, Ruben; Molinari, Emilio; Strassmeier, Klaus G.

    2003-03-01

    We present a preliminary design study for a high-resolution echelle spectrograph (ICE) to be used with the spectropolarimeter PEPSI under development at the LBT. In order to meet the scientific requirements and take full advantage of the peculiarities of the LBT (i.e. the binocular nature and the adaptive optics capabilities), we have designed a fiber-fed bench mounted instrument for both high resolution (R ≍ 100,000; non-AO polarimetric and integral light modes) and ultra-high resolution (R ≍ 300,000; AO integral light mode). In both cases, 4 spectra per order (two for each primary mirror) shall be accomodated in a 2-dimensional cross dispersed echelle format. In order to obtain a resolution-slit product of ≍ 100,000 as required by the science case, we have considered two alternative designs, one with two R4 echelles in series and the other with a sigle R4 echelle and fiber slicing. A white-pupil design, VPH cross-dispersers and two cameras of different focal length for the AO and non-AO modes are adopted in both cases. It is concluded that the single-echelle fiber-slicer solution has to be preferred in terms of performances, complexity and cost. It can be implemented at the LBT in two phases, with the long-camera AO mode added in a second phase depending on the availability of funds and the time-scale for implementation of the AO system.

  4. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki

    2013-07-01

    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  5. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  6. Integrated fiber optic sensors for hot spot detection and temperature field reconstruction in satellites

    International Nuclear Information System (INIS)

    Rapp, S; Baier, H

    2010-01-01

    Large satellites are often equipped with more than 1000 temperature sensors during the test campaign. Hundreds of them are still used for monitoring during launch and operation in space. This means an additional mass and especially high effort in assembly, integration and verification on a system level. So the use of fiber Bragg grating temperature sensors is investigated as they offer several advantages. They are lightweight, small in size and electromagnetically immune, which fits well in space applications. Their multiplexing capability offers the possibility to build extensive sensor networks including dozens of sensors of different types, such as strain sensors, accelerometers and temperature sensors. The latter allow the detection of hot spots and the reconstruction of temperature fields via proper algorithms, which is shown in this paper. A temperature sensor transducer was developed, which can be integrated into satellite sandwich panels with negligible mechanical influence. Mechanical and thermal vacuum tests were performed to verify the space compatibility of the developed sensor system. Proper reconstruction algorithms were developed to estimate the temperature field and detect thermal hot spots on the panel surface. A representative hardware demonstrator has been built and tested, which shows the capability of using an integrated fiber Bragg grating temperature sensor network for temperature field reconstruction and hot spot detection in satellite structures

  7. Integrating Field-Centered, Project Based Activities with Academic Year Coursework: A Curriculum Wide Approach

    Science.gov (United States)

    Kelso, P. R.; Brown, L. M.

    2015-12-01

    Based upon constructivist principles and the recognition that many students are motivated by hands-on activities and field experiences, we designed a new undergraduate curriculum at Lake Superior State University. One of our major goals was to develop stand-alone field projects in most of the academic year courses. Examples of courses impacted include structural geology, geophysics, and geotectonics, Students learn geophysical concepts in the context of near surface field-based geophysical studies while students in structural geology learn about structural processes through outcrop study of fractures, folds and faults. In geotectonics students learn about collisional and rifting processes through on-site field studies of specific geologic provinces. Another goal was to integrate data and samples collected by students in our sophomore level introductory field course along with stand-alone field projects in our clastic systems and sequence stratigraphy courses. Our emphasis on active learning helps students develop a meaningful geoscience knowledge base and complex reasoning skills in authentic contexts. We simulate the activities of practicing geoscientists by engaging students in all aspects of a project, for example: field-oriented project planning and design; acquiring, analyzing, and interpreting data; incorporating supplemental material and background data; and preparing oral and written project reports. We find through anecdotal evidence including student comments and personal observation that the projects stimulate interest, provide motivation for learning new concepts, integrate skill and concept acquisition vertically through the curriculum, apply concepts from multiple geoscience subdisiplines, and develop soft skills such as team work, problem solving, critical thinking and communication skills. Through this projected-centered Lake Superior State University geology curriculum students practice our motto of "learn geology by doing geology."

  8. Multi-Disciplinary Research Experiences Integrated with Industry –Field Experiences

    Directory of Open Access Journals (Sweden)

    Suzanne Lunsford

    2015-10-01

    Full Text Available The purpose of this environmentally inquiry-based lab was to allow the students to engage into real-world concepts that integrate industry setting (Ohio Aggregate Industrial Mineral Association with the academia setting. Our students are engaged into a field trip where mining occurs to start the problem based learning of how the heavy metals leak in the mining process. These heavy metals such as lead and indium in the groundwater are a serious concern for the environment (Environmental Protection Agency from the mining process. The field experiences at the mining process assist in building our students interest in developing sensors to detect heavy metals of concern such as lead and indium simultaneously by a unique electrochemistry technique called Square Wave Anodic Stripping Voltammetry (SWASV. The field experience assists building the students interest in real –world application and what qualities do they want the electrochemical sensor to possess to be successful for real world usage. During the field trip the students are engaged into learning novel instrumentation such as an SEM (Scanning Electron Microscope to study the working electrode sensor developed to understand the sensor surface morphology properties better as well. The integration of industry setting with academia has been a positive experience for our students that has allowed their understanding of real-world science research needs to succeed in an industrial setting of research.

  9. Path integral approach for electron transport in disturbed magnetic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Ryutaro; Nakajima, Noriyoshi; Takamaru, Hisanori

    2002-05-01

    A path integral method is developed to investigate statistical property of an electron transport described as a Langevin equation in a statically disturbed magnetic field line structure; especially a transition probability of electrons strongly tied to field lines is considered. The path integral method has advantages that 1) it does not include intrinsically a growing numerical error of an orbit, which is caused by evolution of the Langevin equation under a finite calculation accuracy in a chaotic field line structure, and 2) it gives a method of understanding the qualitative content of the Langevin equation and assists to expect statistical property of the transport. Monte Carlo calculations of the electron distributions under both effects of chaotic field lines and collisions are demonstrated to comprehend above advantages through some examples. The mathematical techniques are useful to study statistical properties of various phenomena described as Langevin equations in general. By using parallel generators of random numbers, the Monte Carlo scheme to calculate a transition probability can be suitable for a parallel computation. (author)

  10. Integral transport theory for charged particles in electric and magnetic fields

    International Nuclear Information System (INIS)

    Boffi, V.C.; Molinari, V.G.

    1979-01-01

    An integral transport theory for charged particles which, in the presence of electric and magnetic fields, diffuse by collisions against the atoms (or molecules) of a host medium is proposed. The combined effects of both the external fields and the mechanisms of scattering, removal and creation in building up the distribution function of the charged particles considered are investigated. The eigenvalue problem associated with the sourceless case of the given physical situation is also commented. Applications of the theory to a purely velocity-dependent problem and to a space-dependent problem, respectively, are illustrated for the case of a separable isotropic scattering kernel of synthetic type. Calculations of the distribution function, of the total current density and of relevant electrical conductivity are then carried out for different specializations of the external fields. (author)

  11. The derivation of vector magnetic fields from Stokes profiles - Integral versus least squares fitting techniques

    Science.gov (United States)

    Ronan, R. S.; Mickey, D. L.; Orrall, F. Q.

    1987-01-01

    The results of two methods for deriving photospheric vector magnetic fields from the Zeeman effect, as observed in the Fe I line at 6302.5 A at high spectral resolution (45 mA), are compared. The first method does not take magnetooptical effects into account, but determines the vector magnetic field from the integral properties of the Stokes profiles. The second method is an iterative least-squares fitting technique which fits the observed Stokes profiles to the profiles predicted by the Unno-Rachkovsky solution to the radiative transfer equation. For sunspot fields above about 1500 gauss, the two methods are found to agree in derived azimuthal and inclination angles to within about + or - 20 deg.

  12. Explicit higher order symplectic integrator for s-dependent magnetic field

    International Nuclear Information System (INIS)

    Wu, Y.; Forest, E.; Robin, D.S.

    2001-01-01

    We derive second and higher order explicit symplectic integrators for the charged particle motion in an s-dependent magnetic field with the paraxial approximation. The Hamiltonian of such a system takes the form of H (summation) k (p k - a k (rvec q), s) 2 + V((rvec q), s). This work solves a long-standing problem for modeling s-dependent magnetic elements. Important applications of this work include the studies of the charged particle dynamics in a storage ring with strong field wigglers, arbitrarily polarized insertion devices,and super-conducting magnets with strong fringe fields. Consequently, this work will have a significant impact on the optimal use of the above magnetic devices in the light source rings as well as in next generation linear collider damping rings

  13. Two Solar Tornadoes Observed with the Interface Region Imaging Spectrograph

    Science.gov (United States)

    Yang, Zihao; Tian, Hui; Peter, Hardi; Su, Yang; Samanta, Tanmoy; Zhang, Jingwen; Chen, Yajie

    2018-01-01

    The barbs or legs of some prominences show an apparent motion of rotation, which are often termed solar tornadoes. It is under debate whether the apparent motion is a real rotating motion, or caused by oscillations or counter-streaming flows. We present analysis results from spectroscopic observations of two tornadoes by the Interface Region Imaging Spectrograph. Each tornado was observed for more than 2.5 hr. Doppler velocities are derived through a single Gaussian fit to the Mg II k 2796 Å and Si IV 1393 Å line profiles. We find coherent and stable redshifts and blueshifts adjacent to each other across the tornado axes, which appears to favor the interpretation of these tornadoes as rotating cool plasmas with temperatures of 104 K–105 K. This interpretation is further supported by simultaneous observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, which reveal periodic motions of dark structures in the tornadoes. Our results demonstrate that spectroscopic observations can provide key information to disentangle different physical processes in solar prominences.

  14. Spectrographic study of λ 4200 silicon particular stars

    International Nuclear Information System (INIS)

    Didelon, Pierre

    1983-01-01

    This research thesis reports a spectrographic study of sample of particular stars belonging to the Si(II) λ 4200 subgroup which builds up the hot end of conventional 'Ap,Bp' stars. Twenty snapshots taken at the Haute-Provence observatory have been studied and compared with the observation of 17 standard stars. All these snapshots have been digitalised and processed. This allowed the identification of lines which indicated the presence of gallium and the absence of manganese which contradicts the close correlation between these elements that was generally admitted. An inexplicable and until now non observed duplication of Si(II) lines has also been observed. The problem of spectral classification of these stars has been studied. In order to study the concerned stars without calculation of atmospheric models, a comparative method between group stars and reference stars has been used. Results are discussed and seem to indicate an erratic and non-correlated behaviour of light elements (C, Mg, Ca, Si), and a presence of heavier elements (Ga, Sr) and rare earths (Eu, Gd) only when elements of the iron peak are stronger [fr

  15. Spectrographic determination of some rare earths in thorium compounds

    International Nuclear Information System (INIS)

    Brito, J. de.

    1977-01-01

    A method for spectrographic determination of Gd, Sm, Dy, Eu, Y, Yb, Tm and Lu in thorium compounds has been developed. Sensibilities of 0.01 μg rare earths/g Th02 were achieved. The rare earth elements were chromatographycally separated in a nitric acid-ether-cellulose system. The solvent mixture was prepared by dissolving 11% of concentrated nitric acid in ether. The method is based upon the sorption of the rare earths on activated cellulose, the elements being eluted together with 0.01 M HNO 3 . The retention of the 152 , 154 Eu used as tracer was 99,4%. The other elements showed recoveries varying from 95 to 99%. A direct carrier destillation procedure for the spectrochemical determination of the mentioned elements was used. Several concentrations of silver chloride were used to study the volatility behavior of the rare earths. 2%AgCl was added to the matrix as definite carrier, being lantanum selected as internal standard. The average coefficient of variation for this method was +- -+ 7%. The method has been appleid to the analysis of rare earths in thorium coumpounds prepared by Thorium Purification Pilot Plant at Atomic Energy Institute, Sao Paulo [pt

  16. Auroral spectrograph data annals of the international geophysical year, v.25

    CERN Document Server

    Carrigan, Anne; Norman, S J

    1964-01-01

    Annals of the International Geophysical Year, Volume 25: Auroral Spectrograph Data is a five-chapter text that contains tabulations of auroral spectrograph data. The patrol spectrograph built by the Perkin-Elmer Corporation for the Aurora and Airglow Program of the IGY is a high-speed, low-dispersion, automatic instrument designed to photograph spectra of aurora occurring along a given magnetic meridian of the sky. Data from each spectral frame were recorded on an IBM punched card. The data recorded on the cards are printed onto the tabulations in this volume. These tabulations are available

  17. An Exact Line Integral Representation of the Physical Optics Far Field from Plane PEC Scatterers Illuminnated by Hertzian Dipoles

    DEFF Research Database (Denmark)

    Arslanagic, Samel; Meincke, Peter; Jørgensen, Erik

    2003-01-01

    We derive a line integral representation of the physical optics scattered far field that yields the exact same result as the conventional surface radiation integral. This representation applies to a perfectly electrically conducting plane scatterer illuminated by electric or magnetic Hertzian...... dipoles. The source and observation points can take on almost arbitrary positions. To illustrate the exactness and efficiency of the new line integral, numerical comparisons with the conventional surface radiation integral are carried out....

  18. The LUVOIR Ultraviolet Multi-Object Spectrograph (LUMOS): instrument definition and design

    Science.gov (United States)

    France, Kevin; Fleming, Brian; West, Garrett; McCandliss, Stephan R.; Bolcar, Matthew R.; Harris, Walter; Moustakas, Leonidas; O'Meara, John M.; Pascucci, Ilaria; Rigby, Jane; Schiminovich, David; Tumlinson, Jason

    2017-08-01

    The Large Ultraviolet/Optical/Infrared Surveyor (LUVOIR) is one of four large mission concepts currently undergoing community study for consideration by the 2020 Astronomy and Astrophysics Decadal Survey. LUVOIR is being designed to pursue an ambitious program of exoplanetary discovery and characterization, cosmic origins astrophysics, and planetary science. The LUVOIR study team is investigating two large telescope apertures (9- and 15-meter primary mirror diameters) and a host of science instruments to carry out the primary mission goals. Many of the exoplanet, cosmic origins, and planetary science goals of LUVOIR require high-throughput, imaging spectroscopy at ultraviolet (100 - 400 nm) wavelengths. The LUVOIR Ultraviolet Multi-Object Spectrograph, LUMOS, is being designed to support all of the UV science requirements of LUVOIR, from exoplanet host star characterization to tomography of circumgalactic halos to water plumes on outer solar system satellites. LUMOS offers point source and multi-object spectroscopy across the UV bandpass, with multiple resolution modes to support different science goals. The instrument will provide low (R = 8,000 - 18,000) and medium (R = 30,000 - 65,000) resolution modes across the far-ultraviolet (FUV: 100 - 200 nm) and nearultraviolet (NUV: 200 - 400 nm) windows, and a very low resolution mode (R = 500) for spectroscopic investigations of extremely faint objects in the FUV. Imaging spectroscopy will be accomplished over a 3 × 1.6 arcminute field-of-view by employing holographically-ruled diffraction gratings to control optical aberrations, microshutter arrays (MSA) built on the heritage of the Near Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope (JWST), advanced optical coatings for high-throughput in the FUV, and next generation large-format photon-counting detectors. The spectroscopic capabilities of LUMOS are augmented by an FUV imaging channel (100 - 200nm, 13 milliarcsecond angular resolution, 2 × 2

  19. Extended depth of field integral imaging using multi-focus fusion

    Science.gov (United States)

    Piao, Yongri; Zhang, Miao; Wang, Xiaohui; Li, Peihua

    2018-03-01

    In this paper, we propose a new method for depth of field extension in integral imaging by realizing the image fusion method on the multi-focus elemental images. In the proposed method, a camera is translated on a 2D grid to take multi-focus elemental images by sweeping the focus plane across the scene. Simply applying an image fusion method on the elemental images holding rich parallax information does not work effectively because registration accuracy of images is the prerequisite for image fusion. To solve this problem an elemental image generalization method is proposed. The aim of this generalization process is to geometrically align the objects in all elemental images so that the correct regions of multi-focus elemental images can be exacted. The all-in focus elemental images are then generated by fusing the generalized elemental images using the block based fusion method. The experimental results demonstrate that the depth of field of synthetic aperture integral imaging system has been extended by realizing the generation method combined with the image fusion on multi-focus elemental images in synthetic aperture integral imaging system.

  20. Integration of real-time 3D capture, reconstruction, and light-field display

    Science.gov (United States)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Pei, Renjing; Liu, Yongchun; Zhang, Xiao

    2015-03-01

    Effective integration of 3D acquisition, reconstruction (modeling) and display technologies into a seamless systems provides augmented experience of visualizing and analyzing real objects and scenes with realistic 3D sensation. Applications can be found in medical imaging, gaming, virtual or augmented reality and hybrid simulations. Although 3D acquisition, reconstruction, and display technologies have gained significant momentum in recent years, there seems a lack of attention on synergistically combining these components into a "end-to-end" 3D visualization system. We designed, built and tested an integrated 3D visualization system that is able to capture in real-time 3D light-field images, perform 3D reconstruction to build 3D model of the objects, and display the 3D model on a large autostereoscopic screen. In this article, we will present our system architecture and component designs, hardware/software implementations, and experimental results. We will elaborate on our recent progress on sparse camera array light-field 3D acquisition, real-time dense 3D reconstruction, and autostereoscopic multi-view 3D display. A prototype is finally presented with test results to illustrate the effectiveness of our proposed integrated 3D visualization system.

  1. The science case of the PEPSI high-resolution echelle spectrograph and polarimeter for the LBT

    Science.gov (United States)

    Strassmeier, K. G.; Pallavicini, R.; Rice, J. B.; Andersen, M. I.

    2004-05-01

    We lay out the scientific rationale for and present the instrumental requirements of a high-resolution adaptive-optics Echelle spectrograph with two full-Stokes polarimeters for the Large Binocular Telescope (LBT) in Arizona. Magnetic processes just like those seen on the Sun and in the space environment of the Earth are now well recognized in many astrophysical areas. The application to other stars opened up a new field of research that became widely known as the solar-stellar connection. Late-type stars with convective envelopes are all affected by magnetic processes which give rise to a rich variety of phenomena on their surface and are largely responsible for the heating of their outer atmospheres. Magnetic fields are likely to play a crucial role in the accretion process of T-Tauri stars as well as in the acceleration and collimation of jet-like flows in young stellar objects (YSOs). Another area is the physics of active galactic nucleii (AGNs) , where the magnetic activity of the accreting black hole is now believed to be responsible for most of the behavior of these objects, including their X-ray spectrum, their notoriously dramatic variability, and the powerful relativistic jets they produce. Another is the physics of the central engines of cosmic gamma-ray bursts, the most powerful explosions in the universe, for which the extreme apparent energy release are explained through the collimation of the released energy by magnetic fields. Virtually all the physics of magnetic fields exploited in astrophysics is somehow linked to our understanding of the Sun's and the star's magnetic fields.

  2. Integrated Design of Superconducting Magnets with the CERN Field Computation Program ROXIE

    CERN Document Server

    Russenschuck, Stephan; Bazan, M; Lucas, J; Ramberger, S; Völlinger, Christine

    2000-01-01

    The program package ROXIE has been developed at CERN for the field computation of superconducting accelerator magnets and is used as an approach towards the integrated design of such magnets. It is also an example of fruitful international collaborations in software development.The integrated design of magnets includes feature based geometry generation, conceptual design using genetic optimization algorithms, optimization of the iron yoke (both in 2d and 3d) using deterministic methods, end-spacer design and inverse field calculation.The paper describes the version 8.0 of ROXIE which comprises an automatic mesh generator, an hysteresis model for the magnetization in superconducting filaments, the BEM-FEM coupling method for the 3d field calculation, a routine for the calculation of the peak temperature during a quench and neural network approximations of the objective function for the speed-up of optimization algorithms, amongst others.New results of the magnet design work for the LHC are given as examples.

  3. Multiscale N=2 SUSY field theories, integrable systems and their stringy/brane origin

    International Nuclear Information System (INIS)

    Gorsky, A.; Gukov, S.; Mironov, A.

    1998-01-01

    We discuss supersymmetric Yang-Mills theories with multiple scales in the brane language. The issue concerns N=2 SUSY gauge theories with massive fundamental matter including the UV finite case of n f =2n c , theories involving products of SU(n) gauge groups with bifundamental matter, and systems with several parameters similar to Λ QCD . We argue that the proper integrable systems are, accordingly, twisted XXX SL(2) spin chain, SL(p) magnets and degenerations of the spin Calogero system. The issue of symmetries underlying integrable systems is addressed. Relations with the monopole systems are specially discussed. Brane pictures behind all these integrable structures in the IIB and M-theory are suggested. We argue that degrees of freedom in integrable systems are related to KK excitations in M-theory or D-particles in the IIA string theory, which substitute the infinite number of instantons in the field theory. This implies the presence of more BPS states in the low-energy sector. (orig.)

  4. Field-Programmable Gate Array-based fluxgate magnetometer with digital integration

    Science.gov (United States)

    Butta, Mattia; Janosek, Michal; Ripka, Pavel

    2010-05-01

    In this paper, a digital magnetometer based on printed circuit board fluxgate is presented. The fluxgate is pulse excited and the signal is extracted by gate integration. We investigate the possibility to perform integration on very narrow gates (typically 500 ns) by using digital techniques. The magnetometer is based on field-programmable gate array (FPGA) card: we will show all the advantages and disadvantages, given by digitalization of fluxgate output voltage by means of analog-to-digital converter on FPGA card, as well as digitalization performed by external digitizer. Due to very narrow gate, it is shown that a magnetometer entirely based on a FPGA card is preferable, because it avoids noise due to trigger instability. Both open loop and feedback operative mode are described and achieved results are presented.

  5. Full control of far-field radiation via photonic integrated circuits decorated with plasmonic nanoantennas.

    Science.gov (United States)

    Sun, Yi-Zhi; Feng, Li-Shuang; Bachelot, Renaud; Blaize, Sylvain; Ding, Wei

    2017-07-24

    We theoretically develop a hybrid architecture consisting of photonic integrated circuit and plasmonic nanoantennas to fully control optical far-field radiation with unprecedented flexibility. By exploiting asymmetric and lateral excitation from silicon waveguides, single gold nanorod and cascaded nanorod pair can function as component radiation pixels, featured by full 2π phase coverage and nanoscale footprint. These radiation pixels allow us to design scalable on-chip devices in a wavefront engineering fashion. We numerically demonstrate beam collimation with 30° out of the incident plane and nearly diffraction limited divergence angle. We also present high-numerical-aperture (NA) beam focusing with NA ≈0.65 and vector beam generation (the radially-polarized mode) with the mode similarity greater than 44%. This concept and approach constitutes a designable optical platform, which might be a future bridge between integrated photonics and metasurface functionalities.

  6. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    Energy Technology Data Exchange (ETDEWEB)

    Arefin, Md Shamsul, E-mail: md.arefin@monash.edu; Redoute, Jean-Michel; Rasit Yuce, Mehmet [Electrical and Computer Systems Engineering, Monash University, Melbourne (Australia); Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian [Mechanical and Aerospace Engineering, Monash University, Melbourne (Australia)

    2014-06-02

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  7. A microfabricated fringing field capacitive pH sensor with an integrated readout circuit

    International Nuclear Information System (INIS)

    Arefin, Md Shamsul; Redoute, Jean-Michel; Rasit Yuce, Mehmet; Bulut Coskun, M.; Alan, Tuncay; Neild, Adrian

    2014-01-01

    This work presents a microfabricated fringe-field capacitive pH sensor using interdigitated electrodes and an integrated modulation-based readout circuit. The changes in capacitance of the sensor result from the permittivity changes due to pH variations and are converted to frequency shifts using a crossed-coupled voltage controlled oscillator readout circuit. The shift in resonant frequency of the readout circuit is 30.96 MHz for a change in pH of 1.0–5.0. The sensor can be used for the measurement of low pH levels, such as gastric acid, and can be integrated with electronic pills. The measurement results show high repeatability, low noise, and a stable output.

  8. MODEL OF INTEGRATED VALUE OF PROJECTS IN THE FIELD OF ALTERNATIVE ENERGY

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна БОРИСОВА

    2015-05-01

    Full Text Available Development of alternative energy sources requires the implementation of complex problems, the solution of which is necessary to apply the project approach. The uniqueness of alternative energy projects (AEP necessitates individual approach to evaluating the effectiveness of each. The paper contains the results of the project management features's analysis in the field of alternative energy, determining the values and developing of the value management integrated conceptual model of AEP. In assessing the effectiveness of AEP considered the socio-economic and commercial aspects. Value management integrated conceptual model of AEP was obtained by combining the classical model of the project management goals with the project values model "Five "E" and two "A". The classical model of the project management goals have been complemented with risk parameters.

  9. Successful "First Light" for VLT High-Resolution Spectrograph

    Science.gov (United States)

    1999-10-01

    Great Research Prospects with UVES at KUEYEN A major new astronomical instrument for the ESO Very Large Telescope at Paranal (Chile), the UVES high-resolution spectrograph, has just made its first observations of astronomical objects. The astronomers are delighted with the quality of the spectra obtained at this moment of "First Light". Although much fine-tuning still has to be done, this early success promises well for new and exciting science projects with this large European research facility. Astronomical instruments at VLT KUEYEN The second VLT 8.2-m Unit Telescope, KUEYEN ("The Moon" in the Mapuche language), is in the process of being tuned to perfection before it will be "handed" over to the astronomers on April 1, 2000. The testing of the new giant telescope has been successfully completed. The latest pointing tests were very positive and, from real performance measurements covering the entire operating range of the telescope, the overall accuracy on the sky was found to be 0.85 arcsec (the RMS-value). This is an excellent result for any telescope and implies that KUEYEN (as is already the case for ANTU) will be able to acquire its future target objects securely and efficiently, thus saving precious observing time. This work has paved the way for the installation of large astronomical instruments at its three focal positions, all prototype facilities that are capable of catching the light from even very faint and distant celestial objects. The three instruments at KUEYEN are referred to by their acronyms UVES , FORS2 and FLAMES. They are all dedicated to the investigation of the spectroscopic properties of faint stars and galaxies in the Universe. The UVES instrument The first to be installed is the Ultraviolet Visual Echelle Spectrograph (UVES) that was built by ESO, with the collaboration of the Trieste Observatory (Italy) for the control software. Complete tests of its optical and mechanical components, as well as of its CCD detectors and of the complex

  10. AN INTERFACE REGION IMAGING SPECTROGRAPH FIRST VIEW ON SOLAR SPICULES

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, T. M. D.; De Pontieu, B.; Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Tarbell, T. D.; Lemen, J.; Title, A.; Boerner, P.; Hurlburt, N.; Wülser, J. P.; Martínez-Sykora, J.; Kleint, L. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover Street, Org. A021S, Bldg. 252, Palo Alto, CA 94304 (United States); Golub, L.; McKillop, S.; Reeves, K. K.; Saar, S.; Testa, P.; Tian, H. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Jaeggli, S.; Kankelborg, C., E-mail: tiago.pereira@astro.uio.no [Department of Physics, Montana State University, P.O. Box 173840, Bozeman, MT 59717 (United States)

    2014-09-01

    Solar spicules have eluded modelers and observers for decades. Since the discovery of the more energetic type II, spicules have become a heated topic but their contribution to the energy balance of the low solar atmosphere remains unknown. Here we give a first glimpse of what quiet-Sun spicules look like when observed with NASA's recently launched Interface Region Imaging Spectrograph (IRIS). Using IRIS spectra and filtergrams that sample the chromosphere and transition region, we compare the properties and evolution of spicules as observed in a coordinated campaign with Hinode and the Atmospheric Imaging Assembly. Our IRIS observations allow us to follow the thermal evolution of type II spicules and finally confirm that the fading of Ca II H spicules appears to be caused by rapid heating to higher temperatures. The IRIS spicules do not fade but continue evolving, reaching higher and falling back down after 500-800 s. Ca II H type II spicules are thus the initial stages of violent and hotter events that mostly remain invisible in Ca II H filtergrams. These events have very different properties from type I spicules, which show lower velocities and no fading from chromospheric passbands. The IRIS spectra of spicules show the same signature as their proposed disk counterparts, reinforcing earlier work. Spectroheliograms from spectral rasters also confirm that quiet-Sun spicules originate in bushes from the magnetic network. Our results suggest that type II spicules are indeed the site of vigorous heating (to at least transition region temperatures) along extensive parts of the upward moving spicular plasma.

  11. Spectroscopic Characterization of GEO Satellites with Gunma LOW Resolution Spectrograph

    Science.gov (United States)

    Endo, T.; Ono, H.; Hosokawa, M.; Ando, T.; Takanezawa, T.; Hashimoto, O.

    The spectroscopic observation is potentially a powerful tool for understanding the Geostationary Earth Orbit (GEO) objects. We present here the results of an investigation of energy spectra of GEO satellites obtained from a groundbased optical telescope. The spectroscopic observations were made from April to June 2016 with the Gunma LOW resolution Spectrograph and imager (GLOWS) at the Gunma Astronomical Observatory (GAO) in JAPAN. The observation targets consist of eleven different satellites: two weather satellites, four communications satellites, and five broadcasting satellites. All the spectra of those GEO satellites are inferred to be solar-like. A number of well-known absorption features such as H-alpha, H-beta, Na-D,water vapor and oxygen molecules are clearly seen in thewavelength range of 4,000 - 8,000 Å. For comparison, we calculated the intensity ratio of the spectra of GEO satellites to that of the Moon which is the natural satellite of the earth. As a result, the following characteristics were obtained. 1) Some variations are seen in the strength of absorption features of water vapor and oxygen originated by the telluric atmosphere, but any other characteristic absorption features were not found. 2) For all observed satellites, the intensity ratio of the spectrum of GEO satellites decrease as a function of wavelength or to be flat. It means that the spectral reflectance of satellite materials is bluer than that of the Moon. 3) A characteristic dip at around 4,800 Å is found in all observed spectra of a weather satellite. Based on these observations, it is indicated that the characteristics of the spectrum are mainly derived from the solar panels because the apparent area of the solar cell is probably larger than that of the satellite body.

  12. Optical design of the PEPSI high-resolution spectrograph at LBT

    Science.gov (United States)

    Andersen, Michael I.; Spano, Paolo; Woche, Manfred; Strassmeier, Klaus G.; Beckert, Erik

    2004-09-01

    PEPSI is a high-resolution, fiber fed echelle spectrograph with polarimetric capabilities for the LBT. In order to reach a maximum resolution R=120.000 in polarimetric mode and 300.000 in integral light mode with high efficiency in the spectral range 390-1050~nm, we designed a white-pupil configuration with Maksutov collimators. Light is dispersed by an R4 31.6 lines/mm monolithic echelle grating mosaic and split into two arms through dichroics. The two arms, optimized for the spectral range 390-550~nm and 550-1050~nm, respectively, consist of Maksutov transfer collimators, VPH-grism cross dispersers, optimized dioptric cameras and 7.5K x 7.5K 8~μ CCDs. Fibers of different core sizes coupled to different image-slicers allow a high throughput, comparable to that of direct feed instruments. The optical configuration with only spherical and cylindrical surfaces, except for one aspherical surface in each camera, reduces costs and guarantees high optical quality. PEPSI is under construction at AIP with first light expected in 2006.

  13. Integrating field sampling, geostatistics and remote sensing to map wetland vegetation in the Pantanal, Brazil

    Directory of Open Access Journals (Sweden)

    J. Arieira

    2011-03-01

    Full Text Available Development of efficient methodologies for mapping wetland vegetation is of key importance to wetland conservation. Here we propose the integration of a number of statistical techniques, in particular cluster analysis, universal kriging and error propagation modelling, to integrate observations from remote sensing and field sampling for mapping vegetation communities and estimating uncertainty. The approach results in seven vegetation communities with a known floral composition that can be mapped over large areas using remotely sensed data. The relationship between remotely sensed data and vegetation patterns, captured in four factorial axes, were described using multiple linear regression models. There were then used in a universal kriging procedure to reduce the mapping uncertainty. Cross-validation procedures and Monte Carlo simulations were used to quantify the uncertainty in the resulting map. Cross-validation showed that accuracy in classification varies according with the community type, as a result of sampling density and configuration. A map of uncertainty derived from Monte Carlo simulations revealed significant spatial variation in classification, but this had little impact on the proportion and arrangement of the communities observed. These results suggested that mapping improvement could be achieved by increasing the number of field observations of those communities with a scattered and small patch size distribution; or by including a larger number of digital images as explanatory variables in the model. Comparison of the resulting plant community map with a flood duration map, revealed that flooding duration is an important driver of vegetation zonation. This mapping approach is able to integrate field point data and high-resolution remote-sensing images, providing a new basis to map wetland vegetation and allow its future application in habitat management, conservation assessment and long-term ecological monitoring in wetland

  14. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda

    2012-09-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed discretization scheme, unlike the classical scheme which uses RWG functions as both basis and testing functions, is proper: Testing functions belong to dual space of the basis functions. Numerical results demonstrate that the marching on-in-time (MOT) solution of the mixed discretized MFIE yields more accurate results than that of classically discretized MFIE. © 2012 IEEE.

  15. Operational integrity using field buses; Integridade operacional utilizando barramentos de campo

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, Carlos Henrique [Coester Automacao S.A., Sao Leopoldo, RS (Brazil)

    2004-07-01

    The device information is collected using standardized Filed Buses with high data transmission capacity, which allows the analysis of his operational status in real time. The quantity of information generated by the devices for the maintenance area is increasing and this data quantity transferred through the field bus should not interfere in the network performance to the point of degrade his control function. In this way, is presented a technique that can be used in different protocols, which allow sending of maintenance data using a small band of the communication channel. Operational integrity can be achieved using predictive maintenance techniques based on the collected data. (author)

  16. Integrated Materials Design of Organic Semiconductors for Field-Effect Transistors

    KAUST Repository

    Mei, Jianguo

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm2/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications. © 2013 American Chemical Society.

  17. Integrated materials design of organic semiconductors for field-effect transistors.

    Science.gov (United States)

    Mei, Jianguo; Diao, Ying; Appleton, Anthony L; Fang, Lei; Bao, Zhenan

    2013-05-08

    The past couple of years have witnessed a remarkable burst in the development of organic field-effect transistors (OFETs), with a number of organic semiconductors surpassing the benchmark mobility of 10 cm(2)/(V s). In this perspective, we highlight some of the major milestones along the way to provide a historical view of OFET development, introduce the integrated molecular design concepts and process engineering approaches that lead to the current success, and identify the challenges ahead to make OFETs applicable in real applications.

  18. Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach

    Directory of Open Access Journals (Sweden)

    M. Stumpf

    2017-04-01

    Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.

  19. Workshop for cascade project, physics using large acceptance spectrograph and its technical considerations

    International Nuclear Information System (INIS)

    1989-03-01

    The Workshop for Cascade, subtitled 'Physics Using Large Acceptance Spectrograph and Its Technical Considerations', was held on July 13, 1988 by the Nuclear Physics Research Center, Osaka University. The present proceedings carry a total of 18 reports, which are entitled 'RCNP Large Acceptance Spectrograph (plan)', 'Correlation Experiments with a System Consisting of a Small Number of Nucleons', 'Measurement of (d,d) and (d, 2 He) Reactions with Large Solid Angle Spectrograph', 'The (p,2p) and (p,pn) Reactions', 'Correlation Experiments with Large Acceptance Spectrograph', 'Efforts at Determination of Various Correlations in Alpha Particles', 'Two-Nucleon Correlation in Nucleus', 'A Study on Particle Migration Reaction with Broad-Band Spectrograph', 'Measurement of Response in Highly Excited State during Nucleon Migration Reaction', 'A Study on Δ-Excitation within Nucleus', 'A Few Problems Related with Response in Highly Excited State', 'Spin-Isospin Modes in Continuum', '(p,π) and (p,xπ) Reactions', 'Formation of π - in (p,2p) Reaction', 'Formation of π-Mesonic Atom with Consistent Momentum', 'Measurement of Excitation Functions by Means of 'Inconsistent' Dispersion in Magnetic Spectrograph', 'Deeply Bound π - States by 'π - Transfer' (n,p) Reactions', and 'On High Resolution (n,p) Facilities'. (N.K.)

  20. Semiclassical quantization of integrable systems of few interacting anyons in a strong magnetic field

    International Nuclear Information System (INIS)

    Sivan, N.; Levit, S.

    1992-01-01

    We present a semiclassical theory of charged interacting anyons in a strong magnetic field. We derive the appropriate generalization of the WKB quantization conditions and determine the corresponding wave functions for non separable integrable anyonic systems. This theory is applies to a system of two interacting anyons, two interacting anyons in the presence of an impurity and three interacting anyons. We calculate the dependence of the semiclassical energy levels on the statistical parameter and find regions in which dependence follows very different patterns. The semiclassical treatment allows to find the correlation between these patterns and the change in the character of the classical motion of the system. We also test the accuracy of the mean field approximation for low and high energy states of the three anyons. (author)

  1. The two-wave X-ray field calculated by means of integral-equation methods

    International Nuclear Information System (INIS)

    Bremer, J.

    1984-01-01

    The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)

  2. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  3. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal dission neutron spectrum and in the MOLΣΣ Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  4. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    International Nuclear Information System (INIS)

    Fabry, A.; Czock, K.H.

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the 103 Rh(n,n') 103m Rh and 58 Ni(n,p) 58 Co integral cross sections have been accurately measured relatively to the 115 In(n,n') 115m In cross section in the 235 U thermal fission neutron spectrum and in the MOL-ΣΣ intermediate-energy standard neutron field. In this last neutron field, the data are related also to the 235 U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific 103 Rh(n,n') 103m Rh differential-energy cross section among the existing, conflicting data. (author)

  5. Charge Yield at Low Electric Fields: Considerations for Bipolar Integrated Circuits

    Science.gov (United States)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2013-01-01

    A significant reduction in total dose damage is observed when bipolar integrated circuits are irradiated at low temperature. This can be partially explained by the Onsager theory of recombination, which predicts a strong temperature dependence for charge yield under low-field conditions. Reduced damage occurs for biased as well as unbiased devices because the weak fringing field in thick bipolar oxides only affects charge yield near the Si/SiO2 interface, a relatively small fraction of the total oxide thickness. Lowering the temperature of bipolar ICs - either continuously, or for time periods when they are exposed to high radiation levels - provides an additional degree of freedom to improve total dose performance of bipolar circuits, particularly in space applications.

  6. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Eun Chan [Korea Maintance Co., Ltd., Seoul (Korea, Republic of)

    2014-02-15

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  7. Measurements of integral cross section ratios in two dosimetry benchmark neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A [CEN-SCK, Mol (Belgium); Czock, K H [International Atomic Energy Agency, Laboratory Seibersdorf, Vienna (Austria)

    1974-12-01

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m} In cross section in the {sup 235}U thermal fission neutron spectrum and in the MOL-{sigma}{sigma} intermediate-energy standard neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  8. Measurements of Integral Cross Section Ratios in Two Dosimetry Benchmark Neutron Fields

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A. [CEN-SCK, Mol (Belgium); Czock, K. H. [International Atomic Energy Agency, Vienna (Austria)

    1974-12-15

    In the frame of a current interlaboratory effort devoted to the standardization of fuels and materials neutron dosimetry, the {sup 103}Rh(n,n'){sup 103m}Rh and {sup 58}Ni(n,p){sup 58}Co integral cross sections have been accurately measured relatively to the {sup 115}In(n,n'){sup 115m}In cross section in the {sup 235}U thermal dission neutron spectrum and in the MOL{Sigma}{Sigma} Intermediate-Energy Standard Neutron field. In this last neutron field, the data are related also to the {sup 235}U(n,f) cross section. The measurements are extensively documented and the results briefly compared to literature. Most noticeably, decisive support is provided for the selection of a specific {sup 103}Rh(n,n'){sup 103m}Rh differential-energy cross section among the existing, conflicting data. (author)

  9. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    International Nuclear Information System (INIS)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee; Lee, Eun Chan

    2014-01-01

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  10. The field-testing of a novel integrated mapping protocol for neglected tropical diseases.

    Directory of Open Access Journals (Sweden)

    Sonia Pelletreau

    2011-11-01

    Full Text Available BACKGROUND: Vertical control and elimination programs focused on specific neglected tropical diseases (NTDs can achieve notable success by reducing the prevalence and intensity of infection. However, many NTD-endemic countries have not been able to launch or scale-up programs because they lack the necessary baseline data for planning and advocacy. Each NTD program has its own mapping guidelines to collect missing data. Where geographic overlap among NTDs exists, an integrated mapping approach could result in significant resource savings. We developed and field-tested an innovative integrated NTD mapping protocol (Integrated Threshold Mapping (ITM Methodology for lymphatic filariasis (LF, trachoma, schistosomiasis and soil-transmitted helminths (STH. METHODOLOGY/PRINCIPAL FINDINGS: The protocol is designed to be resource-efficient, and its specific purpose is to determine whether a threshold to trigger public health interventions in an implementation unit has been attained. The protocol relies on World Health Organization (WHO recommended indicators in the disease-specific age groups. For each disease, the sampling frame was the district, but for schistosomiasis, the sub-district rather than the ecological zone was used. We tested the protocol by comparing it to current WHO mapping methodologies for each of the targeted diseases in one district each in Mali and Senegal. Results were compared in terms of public health intervention, and feasibility, including cost. In this study, the ITM methodology reached the same conclusions as the WHO methodologies regarding the initiation of public health interventions for trachoma, LF and STH, but resulted in more targeted intervention recommendations for schistosomiasis. ITM was practical, feasible and demonstrated an overall cost saving compared with the standard, non-integrated, WHO methodologies. CONCLUSIONS/SIGNIFICANCE: This integrated mapping tool could facilitate the implementation of much

  11. Self-Guided Field Explorations: Integrating Earth Science into Students' Lives

    Science.gov (United States)

    Kirkby, K. C.; Kirkby, S.

    2013-12-01

    Self-guided field explorations are a simple way to transform an earth science class into a more pedagogically effective experience. Previous experience demonstrated that self-guided student explorations of museum and aquarium exhibits were both extremely popular and remarkably effective. That success led our program to test an expansion of the concept to include self-guided student explorations in outdoor field settings. Preliminary assessment indicates these self-guided field explorations are nearly as popular with students as the museum and aquarium explorations and are as pedagogically effective. Student gains on post-instruction assessment match or exceed those seen in instructor-assisted, hands-on, small group laboratory activities and completely eclipse gains achieved by traditional lecture instruction. As importantly, self-guided field explorations provide a way to integrate field experiences into large enrollment courses where the sheer scale of class trips makes them logistically impossible. This expands course breadth, integrating new topics that could not be as effectively covered by the original class structure. Our introductory program assessed two models of self-guided field explorations. A walking/cycling exploration of the Saint Anthony Falls area, a mile from campus, focuses on the intersections of geological processes with human history. Students explore the geology behind the waterfalls' evolution as well as its subsequent social and economic impacts on human history. A second exploration focuses on the campus area geology, including its building stones as well as its landscape evolution. In both explorations, the goal was to integrate geology with the students' broader understanding of the world they live in. Although the explorations' creation requires a significant commitment, once developed, self-guided explorations are surprisingly low maintenance. These explorations provide a model of a simple, highly effective pedagogical tool that is

  12. SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) on the South African Astronomical Observatory's 74-inch telescope

    Science.gov (United States)

    Crause, Lisa A.; Carter, Dave; Daniels, Alroy; Evans, Geoff; Fourie, Piet; Gilbank, David; Hendricks, Malcolm; Koorts, Willie; Lategan, Deon; Loubser, Egan; Mouries, Sharon; O'Connor, James E.; O'Donoghue, Darragh E.; Potter, Stephen; Sass, Craig; Sickafoose, Amanda A.; Stoffels, John; Swanevelder, Pieter; Titus, Keegan; van Gend, Carel; Visser, Martin; Worters, Hannah L.

    2016-08-01

    SpUpNIC (Spectrograph Upgrade: Newly Improved Cassegrain) is the extensively upgraded Cassegrain Spectrograph on the South African Astronomical Observatory's 74-inch (1.9-m) telescope. The inverse-Cassegrain collimator mirrors and woefully inefficient Maksutov-Cassegrain camera optics have been replaced, along with the CCD and SDSU controller. All moving mechanisms are now governed by a programmable logic controller, allowing remote configuration of the instrument via an intuitive new graphical user interface. The new collimator produces a larger beam to match the optically faster Folded-Schmidt camera design and nine surface-relief diffraction gratings offer various wavelength ranges and resolutions across the optical domain. The new camera optics (a fused silica Schmidt plate, a slotted fold flat and a spherically figured primary mirror, both Zerodur, and a fused silica field-flattener lens forming the cryostat window) reduce the camera's central obscuration to increase the instrument throughput. The physically larger and more sensitive CCD extends the available wavelength range; weak arc lines are now detectable down to 325 nm and the red end extends beyond one micron. A rear-of-slit viewing camera has streamlined the observing process by enabling accurate target placement on the slit and facilitating telescope focus optimisation. An interactive quick-look data reduction tool further enhances the user-friendliness of SpUpNI

  13. Deployment of the Hobby-Eberly Telescope wide-field upgrade

    Science.gov (United States)

    Hill, Gary J.; Drory, Niv; Good, John M.; Lee, Hanshin; Vattiat, Brian L.; Kriel, Herman; Ramsey, Jason; Bryant, Randy; Elliot, Linda; Fowler, Jim; Häuser, Marco; Landiau, Martin; Leck, Ron; Odewahn, Stephen; Perry, Dave; Savage, Richard; Schroeder Mrozinski, Emily; Shetrone, Matthew; DePoy, D. L.; Prochaska, Travis; Marshall, J. L.; Damm, George; Gebhardt, Karl; MacQueen, Phillip J.; Martin, Jerry; Armandroff, Taft; Ramsey, Lawrence W.

    2016-07-01

    The Hobby-Eberly Telescope (HET) is an innovative large telescope, located in West Texas at the McDonald Observatory. The HET operates with a fixed segmented primary and has a tracker, which moves the four-mirror corrector and prime focus instrument package to track the sidereal and non-sidereal motions of objects. We have completed a major multi-year upgrade of the HET that has substantially increased the pupil size to 10 meters and the field of view to 22 arcminutes by replacing the corrector, tracker, and prime focus instrument package. The new wide field HET will feed the revolutionary integral field spectrograph called VIRUS, in support of the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX§), a new low resolution spectrograph (LRS2), an upgraded high resolution spectrograph (HRS2), and later the Habitable Zone Planet Finder (HPF). The upgrade is being commissioned and this paper discusses the completion of the installation, the commissioning process and the performance of the new HET.

  14. Electrolocation-based underwater obstacle avoidance using wide-field integration methods

    International Nuclear Information System (INIS)

    Dimble, Kedar D; Faddy, James M; Humbert, J Sean

    2014-01-01

    Weakly electric fish are capable of efficiently performing obstacle avoidance in dark and navigationally challenging aquatic environments using electrosensory information. This sensory modality enables extraction of relevant proximity information about surrounding obstacles by interpretation of perturbations induced to the fish’s self-generated electric field. In this paper, reflexive obstacle avoidance is demonstrated by extracting relative proximity information using spatial decompositions of the perturbation signal, also called an electric image. Electrostatics equations were formulated for mathematically expressing electric images due to a straight tunnel to the electric field generated with a planar electro-sensor model. These equations were further used to design a wide-field integration based static output feedback controller. The controller was implemented in quasi-static simulations for environments with complicated geometries modelled using finite element methods to demonstrate sense and avoid behaviours. The simulation results were confirmed by performing experiments using a computer operated gantry system in environments lined with either conductive or non-conductive objects acting as global stimuli to the field of the electro-sensor. The proposed approach is computationally inexpensive and readily implementable, making underwater autonomous navigation in real-time feasible. (paper)

  15. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  16. Flare Ribbons Approach Observed by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ting; Zhang, Jun; Hou, Yijun, E-mail: liting@nao.cas.cn [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2017-10-10

    We report flare ribbons approach (FRA) during a multiple-ribbon M-class flare on 2015 November 4 in NOAA AR 12443, obtained by the Interface Region Imaging Spectrograph and the Solar Dynamics Observatory. The flare consisted of a pair of main ribbons and two pairs of secondary ribbons. The two pairs of secondary ribbons were formed later than the appearance of the main ribbons, with respective time delays of 15 and 19 minutes. The negative-polarity main ribbon spread outward faster than the first secondary ribbon with the same polarity in front of it, and thus the FRA was generated. Just before their encounter, the main ribbon was darkening drastically and its intensity decreased by about 70% in 2 minutes, implying the suppression of main-phase reconnection that produced two main ribbons. The FRA caused the deflection of the main ribbon to the direction of secondary ribbon with a deflection angle of about 60°. A post-approach arcade was formed about 2 minutes later and the downflows were detected along the new arcade with velocities of 35–40 km s{sup −1}, indicative of the magnetic restructuring during the process of FRA. We suggest that there are three topological domains with footpoints outlined by the three pairs of ribbons. Close proximity of these domains leads to deflection of the ribbons, which is in agreement with the magnetic field topology.

  17. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    Science.gov (United States)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  18. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  19. [Clinical evaluation of female pelvic tumors : Application fields of integrated PET/MRI].

    Science.gov (United States)

    Grueneisen, J; Umutlu, L

    2016-07-01

    Integrated positron emission tomography (PET) and magnetic resonance imaging (MRI) scanning has recently become established in clinical imaging. Various studies have demonstrated the great potential of this new hybrid imaging procedure for applications in the field of oncology and the diagnostics of inflammatory processes. With initial studies demonstrating the feasibility and high diagnostic potential of PET/MRI comparable to PET-computed tomography (CT), the focus of future studies should be on the identification of application fields with a potential diagnostic benefit of PET/MRI over other established diagnostic tools. Both MRI and PET/CT are widely used in the diagnostic algorithms for malignancies of the female pelvis. A simultaneous acquisition of PET and MRI data within a single examination provides complementary information which can be used for a more comprehensive evaluation of the primary tumor as well as for whole body staging. Therefore, the aim of this article is to outline potential clinical applications of integrated PET/MRI for the diagnostic work-up of primary or recurrent gynecological neoplasms of the female pelvis.

  20. Cyp26 Enzymes Facilitate Second Heart Field Progenitor Addition and Maintenance of Ventricular Integrity.

    Directory of Open Access Journals (Sweden)

    Ariel B Rydeen

    2016-11-01

    Full Text Available Although retinoic acid (RA teratogenicity has been investigated for decades, the mechanisms underlying RA-induced outflow tract (OFT malformations are not understood. Here, we show zebrafish embryos deficient for Cyp26a1 and Cyp26c1 enzymes, which promote RA degradation, have OFT defects resulting from two mechanisms: first, a failure of second heart field (SHF progenitors to join the OFT, instead contributing to the pharyngeal arch arteries (PAAs, and second, a loss of first heart field (FHF ventricular cardiomyocytes due to disrupted cell polarity and extrusion from the heart tube. Molecularly, excess RA signaling negatively regulates fibroblast growth factor 8a (fgf8a expression and positively regulates matrix metalloproteinase 9 (mmp9 expression. Although restoring Fibroblast growth factor (FGF signaling can partially rescue SHF addition in Cyp26 deficient embryos, attenuating matrix metalloproteinase (MMP function can rescue both ventricular SHF addition and FHF integrity. These novel findings indicate a primary effect of RA-induced OFT defects is disruption of the extracellular environment, which compromises both SHF recruitment and FHF ventricular integrity.

  1. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty

    International Nuclear Information System (INIS)

    Burnett, Jonathan L.; Miley, Harry S.; Milbrath, Brian D.

    2016-01-01

    In 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5–2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research paper evaluates two of the OSI techniques used during the IFE14, laboratory-based gamma-spectrometry of soil samples and in-situ gamma-spectrometry, both of which were implemented to search for 17 OSI relevant particulate radionuclides indicative of nuclear explosions. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and within the Treaty/Protocol-specified OSI timeframes. - Highlights: • The 2014 Integrated Field Exercise occurred in Jordan. • The detection sensitivity for two On-site Inspection techniques was evaluated. • The techniques search for 17 particulate radionuclides indicative of nuclear explosions. • Laboratory-based gamma-spectrometry of soil samples was the optimum technique.

  2. An(1) affine Toda field theories with integrable boundary conditions revisited

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2008-01-01

    Generic classically integrable boundary conditions for the A n (1) affine Toda field theories (ATFT) are investigated. The present analysis rests primarily on the underlying algebra, defined by the classical version of the reflection equation. We use as a prototype example the first non-trivial model of the hierarchy i.e. the A 2 (1) ATFT, however our results may be generalized for any A n (1) (n > 1). We assume here two distinct types of boundary conditions called some times soliton preserving (SP), and soliton non-preserving (SNP) associated to two distinct algebras, i.e. the reflection algebra and the (q) twisted Yangian respectively. The boundary local integrals of motion are then systematically extracted from the asymptotic expansion of the associated transfer matrix. In the case of SNP boundary conditions we recover previously known results. The other type of boundary conditions (SP), associated to the reflection algebra, are novel in this context and lead to a different set of conserved quantities that depend on free boundary parameters. It also turns out that the number of local integrals of motion for SP boundary conditions is 'double' compared to those of the SNP case.

  3. Localization and diagonalization. A review of functional integral techniques for low-dimensional gauge theories and topological field theories

    International Nuclear Information System (INIS)

    Blau, M.; Thompson, G.

    1995-01-01

    We review localization techniques for functional integrals which have recently been used to perform calculations in and gain insight into the structure of certain topological field theories and low-dimensional gauge theories. These are the functional integral counterparts of the Mathai-Quillen formalism, the Duistermaat-Heckman theorem, and the Weyl integral formula respectively. In each case, we first introduce the necessary mathematical background (Euler classes of vector bundles, equivariant cohomology, topology of Lie groups), and describe the finite dimensional integration formulae. We then discuss some applications to path integrals and give an overview of the relevant literature. The applications we deal with include supersymmetric quantum mechanics, cohomological field theories, phase space path integrals, and two-dimensional Yang-Mills theory. (author). 83 refs

  4. Integration of Active and Passive Safety Technologies--A Method to Study and Estimate Field Capability.

    Science.gov (United States)

    Hu, Jingwen; Flannagan, Carol A; Bao, Shan; McCoy, Robert W; Siasoco, Kevin M; Barbat, Saeed

    2015-11-01

    The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers' head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset. Parametric studies with a total of 4800 MADYMO simulations showed that both delta-V and occupant pre-crash posture had pronounced effects on occupant injury risks and on the optimal restraint designs. By combining the results for the delta-V and head position distribution changes, a weighted average of injury risk reduction of 17% and 48% was predicted by the 50th percentile Anthropomorphic Test Device (ATD) model and human body model, respectively, with the assumption that the restraint system can adapt to the specific delta-V and pre-crash posture. This study demonstrated the potential for further reducing occupant injury risk in frontal crashes by the integration of a passive safety system with a DA feature. Future analyses considering more vehicle models, various crash conditions, and variations of occupant characteristics, such as age, gender, weight, and height, are necessary to further investigate the potential capability of integrating passive and DA or active safety systems.

  5. Serendipitous discovery of a strong-lensed galaxy in integral field spectroscopy from MUSE

    Science.gov (United States)

    Galbany, Lluís; Collett, Thomas E.; Méndez-Abreu, Jairo; Sánchez, Sebastián F.; Anderson, Joseph P.; Kuncarayakti, Hanindyo

    2018-06-01

    2MASX J04035024-0239275 is a bright red elliptical galaxy at redshift 0.0661 that presents two extended sources at 2″ to the north-east and 1″ to the south-west. The sizes and surface brightnesses of the two blue sources are consistent with a gravitationally-lensed background galaxy. In this paper we present MUSE observations of this galaxy from the All-weather MUse Supernova Integral-field Nearby Galaxies (AMUSING) survey, and report the discovery of a background lensed galaxy at redshift 0.1915, together with other 15 background galaxies at redshifts ranging from 0.09 to 0.9, that are not multiply imaged. We have extracted aperture spectra of the lens and all the sources and fit the stellar continuum with STARLIGHT to estimate their stellar and emission line properties. A trace of past merger and active nucleus activity is found in the lensing galaxy, while the background lensed galaxy is found to be star-forming. Modeling the lensing potential with a singular isothermal ellipsoid, we find an Einstein radius of 1."45±0."04, which corresponds to 1.9 kpc at the redshift of the lens and it is much smaller than its effective radius (reff ˜ 9″"). Comparing the Einstein mass and the STARLIGHT stellar mass within the same aperture yields a dark matter fraction of 18% ± 8 % within the Einstein radius. The advent of large surveys such as the Large Synoptic Survey Telescope (LSST) will discover a number of strong-lensed systems, and here we demonstrate how wide-field integral field spectroscopy offers an excellent approach to study them and to precisely model lensing effects.

  6. PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation

    Science.gov (United States)

    Galbany, L.; Anderson, J. P.; Sánchez, S. F.; Kuncarayakti, H.; Pedraz, S.; González-Gaitán, S.; Stanishev, V.; Domínguez, I.; Moreno-Raya, M. E.; Wood-Vasey, W. M.; Mourão, A. M.; Ponder, K. A.; Badenes, C.; Mollá, M.; López-Sánchez, A. R.; Rosales-Ortega, F. F.; Vílchez, J. M.; García-Benito, R.; Marino, R. A.

    2018-03-01

    We present the PMAS/PPak Integral-field Supernova hosts COmpilation (PISCO), which comprises integral field spectroscopy (IFS) of 232 supernova (SN) host galaxies that hosted 272 SNe, observed over several semesters with the 3.5 m telescope at the Calar Alto Observatory (CAHA). PISCO is the largest collection of SN host galaxies observed with wide-field IFS, totaling 466,347 individual spectra covering a typical spatial resolution of ∼380 pc. Focused studies regarding specific SN Ia-related topics will be published elsewhere; this paper aims to present the properties of the SN environments, using stellar population (SP) synthesis, and the gas-phase interstellar medium, providing additional results separating stripped-envelope SNe into their subtypes. With 11,270 H II regions detected in all galaxies, we present for the first time a statistical analysis of H II regions, which puts H II regions that have hosted SNe in context with all other star-forming clumps within their galaxies. SNe Ic are associated with environments that are more metal-rich and have higher EW(Hα) and higher star formation rate within their host galaxies than the mean of all H II regions detected within each host. This in contrast to SNe IIb, which occur in environments that are very different compared to other core-collapse SNe types. We find two clear components of young and old SPs at SNe IIn locations. We find that SNe II fast decliners tend to explode at locations where the ΣSFR is more intense. Finally, we outline how a future dedicated IFS survey of galaxies in parallel to an untargeted SN search would overcome the biases in current environmental studies.

  7. The Focal Plane Assembly for the Athena X-Ray Integral Field Unit Instrument

    Science.gov (United States)

    Jackson, B. D.; Van Weers, H.; van der Kuur, J.; den Hartog, R.; Akamatsu, H.; Argan, A.; Bandler, S. R.; Barbera, M.; Barret, D.; Bruijn, M. P.; hide

    2016-01-01

    This paper summarizes a preliminary design concept for the focal plane assembly of the X-ray Integral Field Unit on the Athena spacecraft, an imaging microcalorimeter that will enable high spectral resolution imaging and point-source spectroscopy. The instrument's sensor array will be a 3840-pixel transition edge sensor (TES) microcalorimeter array, with a frequency domain multiplexed SQUID readout system allowing this large-format sensor array to be operated within the thermal constraints of the instrument's cryogenic system. A second TES detector will be operated in close proximity to the sensor array to detect cosmic rays and secondary particles passing through the sensor array for off-line coincidence detection to identify and reject events caused by the in-orbit high-energy particle background. The detectors, operating at 55 mK, or less, will be thermally isolated from the instrument cryostat's 2 K stage, while shielding and filtering within the FPA will allow the instrument's sensitive sensor array to be operated in the expected environment during both on-ground testing and in-flight operation, including stray light from the cryostat environment, low-energy photons entering through the X-ray aperture, low-frequency magnetic fields, and high-frequency electric fields.

  8. The Athena X-ray Integral Field Unit (X-IFU)

    Science.gov (United States)

    Barret, Didier; Trong, Thein Lam; Den Herder, Jan-Willem; Piro, Luigi; Barcons, Xavier; Huovelin, Juhani; Kelley, Richard; Mas-Hesse, J. Miquel; Mitsuda, Kazuhisa; Paltani, Stephane; hide

    2016-01-01

    The X-ray Integral Field Unit (X-IFU) on board the Advanced Telescope for High-ENergy Astrophysics (Athena) will provide spatially resolved high-resolution X-ray spectroscopy from 0.2 to 12 keV, with 5 pixels over a field of view of 5 arc minute equivalent diameter and a spectral resolution of 2.5 eV up to 7 keV. In this paper, we first review the core scientific objectives of Athena, driving the main performance parameters of the X-IFU, namely the spectral resolution, the field of view, the effective area, the count rate capabilities, the instrumental background. We also illustrate the breakthrough potential of the X-IFU for some observatory science goals. Then we brie y describe the X-IFU design as defined at the time of the mission consolidation review concluded in May 2016, and report on its predicted performance. Finally, we discuss some options to improve the instrument performance while not increasing its complexity and resource demands (e.g. count rate capability, spectral resolution). (2016) .

  9. The X-ray Integral Field Unit (X-IFU) for Athena

    Science.gov (United States)

    Ravera, Laurent; Barret, Didier; Willem den Herder, Jan; Piro, Luigi; Cledassou, Rodolphe; Pointecouteau, Etienne; Peille, Philippe; Pajot, Francois; Arnaud, Monique; Pigot, Claude; hide

    2014-01-01

    Athena is designed to implement the Hot and Energetic Universe science theme selected by the European Space Agency for the second large mission of its Cosmic Vision program. The Athena science payload consists of a large aperture high angular resolution X-ray optics (2 m2 at 1 keV) and twelve meters away, two interchangeable focal plane instruments: the X-ray Integral Field Unit (X-IFU) and the Wide Field Imager. The X-IFU is a cryogenic X-ray spectrometer, based on a large array of Transition Edge Sensors (TES), oering 2.5 eV spectral resolution, with approximately 5" pixels, over a field of view of 5' in diameter. In this paper, we present the X-IFU detector and readout electronics principles, some elements of the current design for the focal plane assembly and the cooling chain. We describe the current performance estimates, in terms of spectral resolution, effective area, particle background rejection and count rate capability. Finally, we emphasize on the technology developments necessary to meet the demanding requirements of the X-IFU, both for the sensor, readout electronics and cooling chain.

  10. Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2

    International Nuclear Information System (INIS)

    Cairo, Laurent; Llibre, Jaume

    2007-01-01

    We classify all the global phase portraits of the cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2. For such vector fields there are exactly 28 different global phase portraits in the Poincare disc up to a reversal of sense of all orbits

  11. A path-integral approach for bosonic effective theories for Fermion fields in four and three dimensions

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    1998-02-01

    We study four dimensional Effective Bosonic Field Theories for massive fermion field in the infrared region and massive fermion in ultraviolet region by using an appropriate Fermion Path Integral Chiral variable change and the Polyakov's Fermi-Bose transmutation in the 3D-Abelian Thrirring model. (author)

  12. The Contribution of Mixed Methods Research to the Field of Childhood Trauma: A Narrative Review Focused on Data Integration

    Science.gov (United States)

    Boeije, Hennie; Slagt, Meike; van Wesel, Floryt

    2013-01-01

    In mixed methods research (MMR), integrating the quantitative and the qualitative components of a study is assumed to result in additional knowledge (or "yield"). This narrative review examines the extent to which MMR is used in the field of childhood trauma and provides directions for improving mixed methods studies in this field. A…

  13. Spatial distribution of soil moisture in precision farming using integrated soil scanning and field telemetry data

    Science.gov (United States)

    Kalopesas, Charalampos; Galanis, George; Kalopesa, Eleni; Katsogiannos, Fotis; Kalafatis, Panagiotis; Bilas, George; Patakas, Aggelos; Zalidis, George

    2015-04-01

    Mapping the spatial variation of soil moisture content is a vital parameter for precision agriculture techniques. The aim of this study was to examine the correlation of soil moisture and conductivity (EC) data obtained through scanning techniques with field telemetry data and to spatially separate the field into discrete irrigation management zones. Using the Veris MSP3 model, geo-referenced data for electrical conductivity and organic matter preliminary maps were produced in a pilot kiwifruit field in Chrysoupoli, Kavala. Data from 15 stratified sampling points was used in order to produce the corresponding soil maps. Fusion of the Veris produced maps (OM, pH, ECa) resulted on the delineation of the field into three zones of specific management interest. An appropriate pedotransfer function was used in order to estimate a capacity soil indicator, the saturated volumetric water content (θs) for each zone, while the relationship between ECs and ECa was established for each zone. Validation of the uniformity of the three management zones was achieved by measuring specific electrical conductivity (ECs) along a transect in each zone and corresponding semivariograms for ECs within each zone. Near real-time data produced by a telemetric network consisting of soil moisture and electrical conductivity sensors, were used in order to integrate the temporal component of the specific management zones, enabling the calculation of time specific volumetric water contents on a 10 minute interval, an intensity soil indicator necessary to be incorporated to differentiate spatially the irrigation strategies for each zone. This study emphasizes the benefits yielded by fusing near real time telemetric data with soil scanning data and spatial interpolation techniques, enhancing the precision and validity of the desired results. Furthermore the use of telemetric data in combination with modern database management and geospatial software leads to timely produced operational results

  14. Development of infrared Echelle spectrograph and mid-infrared heterodyne spectrometer on a small telescope at Haleakala, Hawaii for planetary observation

    Science.gov (United States)

    Sakanoi, Takeshi; Kasaba, Yasumasa; Kagitani, Masato; Nakagawa, Hiromu; Kuhn, Jeff; Okano, Shoichi

    2014-08-01

    We report the development of infrared Echelle spectrograph covering 1 - 4 micron and mid-infrared heterodyne spectrometer around 10 micron installed on the 60-cm telescope at the summit of Haleakala, Hawaii (alt.=3000m). It is essential to carry out continuous measurement of planetary atmosphere, such as the Jovian infrared aurora and the volcanoes on Jovian satellite Io, to understand its time and spatial variations. A compact and easy-to-use high resolution infrared spectrometer provide the good opportunity to investigate these objects continuously. We are developing an Echelle spectrograph called ESPRIT: Echelle Spectrograph for Planetary Research In Tohoku university. The main target of ESPRIT is to measure the Jovian H3+ fundamental line at 3.9 micron, and H2 nu=1 at 2.1 micron. The 256x256 pixel CRC463 InSb array is used. An appropriate Echelle grating is selected to optimize at 3.9 micron and 2.1 micron for the Jovian infrared auroral observations. The pixel scale corresponds to the atmospheric seeing (0.3 arcsec/pixel). This spectrograph is characterized by a long slit field-of-view of ~ 50 arcsec with a spectral resolution is over 20,000. In addition, we recently developed a heterodyne spectrometer called MILAHI on the 60 cm telescope. MILAHI is characterized by super high-resolving power (more than 1,500,000) covering from 7 - 13 microns. Its sensitivity is 2400 K at 9.6 micron with a MCT photo diode detector of which bandwidth of 3000 MHz. ESPRIT and MILAHI is planned to be installed on 60 cm telescope is planned in 2014.

  15. Top down viewing of the inductively coupled plasma using a dual grating, direct reading spectrograph and an all mirror optical system

    International Nuclear Information System (INIS)

    Apel, C.T.; Duchane, D.V.; Palmer, B.A.

    1980-01-01

    Using an all-mirror optical system, an inductively coupled plasma is viewed top down and the light is directed to a dual grating, direct reading spectrograph. Top down viewing of the plasma, with masking of the image of the argon plasma torus at the spectrograph entrance slit, significantly reduces background signal from the source and permits the use of the depth of field of the optical system to achieve compromise conditions for viewing the plasma. Light from the plasma source is introduced to the optical system by means of a mirror situated directly over the plasma. The system is exhausted in such a way that cool air flowing past the mirror forms a thermal barrier between the mirror and the plasma. Elements such as copper and lead have atomic and ionic lines which tend to exhibit self absorption when viewed top down through the cooler ground state atoms in the plume of the plasma. One of the approaches to this problem is to shear off the plume of the plasma with a jet of air directed across the tip of the plasma. A second approach is to make use of the dual grating, direct reading spectrograph and real-time computer system which easily permits the setting of alternate lines for each element so that self absorption and matrix effects are minimized. The design of the dual-grating, direct-reading spectrograph allows for the mounting of more than 200 13-mm-dia photomultiplier tubes along the focal curves. In an effort to demonstrate the use of fiber optics as a viable technique for the closer placement of exit slits, a red sensitive photomultiplier tube was coupled with a 30-cm fiber-optic ribbon to detect light from the Li 670.784 nm line on the focal curve. It was successful and had the added advantages of absorbing second-order ultraviolet light

  16. Full-Scale Field Test of a Blade-Integrated Dual-Telescope Wind Lidar

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Sjöholm, Mikael; Angelou, Nikolas

    . Simultaneously, data regarding wind speed, rotational speed, and pitch angle recorded by the turbine was logged as well as data from a nearby met mast. The encouraging results of this first campaign include wind speed measurements at 20 Hz data rate along the rotor plane, acquired during the co...... in the top and bottom of the rotor plane. Conclusion We present here what we believe is the first successful wind speed measurements from a dual-telescope lidar installed on the blade of an operating wind turbine. The full-scale field test performed in the summer of 2012 has clearly demonstrated...... the possibility of integrating lidar telescopes into turbine blades as well as the capability of the lidar to measure the required wind speeds and to operate in the challenging environment of a rotating spinner and vibrating blade. The use of two separate telescopes allows a direct measurement of the blade’s AOA...

  17. Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

    International Nuclear Information System (INIS)

    Trueba, J L; Arrayas, M

    2009-01-01

    We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)

  18. Vorticity field, helicity integral and persistence of entanglement in reaction-diffusion systems

    Energy Technology Data Exchange (ETDEWEB)

    Trueba, J L; Arrayas, M [Area de Electromagnetismo, Universidad Rey Juan Carlos, Camino del Molino s/n, 28943 Fuenlabrada, Madrid (Spain)

    2009-07-17

    We show that a global description of the stability of entangled structures in reaction-diffusion systems can be made by means of a helicity integral. A vorticity vector field is defined for these systems, as in electromagnetism or fluid dynamics. We have found under which conditions the helicity is conserved or lost through the boundaries of the medium, so the entanglement of structures observed is preserved or disappears during time evolution. We illustrate the theory with an example of knotted entanglement in a FitzHugh-Nagumo model. For this model, we introduce new non-trivial initial conditions using the Hopf fibration and follow the time evolution of the entanglement. (fast track communication)

  19. Hess Tower field study: sonic measurements at a former building-integrated wind farm site

    Science.gov (United States)

    Araya, Daniel

    2017-11-01

    Built in 2010, Hess Tower is a 29-story office building located in the heart of downtown Houston, TX. Unique to the building is a roof structure that was specifically engineered to house ten vertical-axis wind turbines (VAWTs) to partially offset the energy demands of the building. Despite extensive atmospheric boundary layer (ABL) wind tunnel tests to predict the flow conditions on the roof before the building was constructed, the Hess VAWTs were eventually removed after allegedly one of the turbines failed and fell to the ground. This talk presents in-situ sonic anemometry measurements taken on the roof of Hess Tower at the former turbine locations. We compare this wind field characterization to the ABL wind tunnel data to draw conclusions about building-integrated wind farm performance and prediction capability.

  20. Integrating carbon nanotubes into silicon by means of vertical carbon nanotube field-effect transistors

    KAUST Repository

    Li, Jingqi; Wang, Qingxiao; Yue, Weisheng; Guo, Zaibing; LI, LIANG; Zhao, Chao; Wang, Xianbin; Abutaha, Anas I.; Alshareef, Husam N.; Zhang, Yafei; Zhang, Xixiang

    2014-01-01

    Single-walled carbon nanotubes have been integrated into silicon for use in vertical carbon nanotube field-effect transistors (CNTFETs). A unique feature of these devices is that a silicon substrate and a metal contact are used as the source and drain for the vertical transistors, respectively. These CNTFETs show very different characteristics from those fabricated with two metal contacts. Surprisingly, the transfer characteristics of the vertical CNTFETs can be either ambipolar or unipolar (p-type or n-type) depending on the sign of the drain voltage. Furthermore, the p-type/n-type character of the devices is defined by the doping type of the silicon substrate used in the fabrication process. A semiclassical model is used to simulate the performance of these CNTFETs by taking the conductance change of the Si contact under the gate voltage into consideration. The calculation results are consistent with the experimental observations. This journal is © the Partner Organisations 2014.

  1. Yang-Baxter algebras of monodromy matrices in integrable quantum field theories

    International Nuclear Information System (INIS)

    Vega, H.J. de; Maillet, J.M.; Eichenherr, H.

    1984-01-01

    We consider a large class of two-dimensional integrable quantum field theories with nonabelian internal symmetry and classical scale invariance. We present a general procedure to determine explicitly the conserved quantum monodromy operator generating infinitely many non-local charges. The main features of our methods are a factorization principle and the use of P, T, and internal symmetries. The monodromy operator is shown to satisfy a Yang-Baxter algebra, the structure constants (i.e. the quantum R-matrix) of which are determined by the two-particle S-matrix of the theory. We apply the method to the chiral SU(N) and the O(2N) Gross-Neveu models. (orig.)

  2. Shape from specular reflection in calibrated environments and the integration of spatial normal fields

    KAUST Repository

    Balzer, Jonathan

    2011-09-01

    Reflections of a scene in a mirror surface contain information on its shape. This information is accessible by measurement through an optical metrology technique called deflectometry. The result is a field of normal vectors to the unknown surface having the remarkable property that it equally changes in all spatial directions, unlike normal maps occurring, e.g., in Shape from Shading. Its integration into a zero-order reconstruction of the surface thus deserves special attention. We develop a novel algorithm for this purpose which is relatively straightforward to implement yet outperforms existing ones in terms of efficiency and robustness. Experimental results on synthetic and real data complement the theoretical discussion. © 2011 IEEE.

  3. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan

    2010-08-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well-posed even when applied to densely discretized volumes, a classically formulated S-EFIE operator is ill-posed when applied to densely discretized surfaces. This renders the discretized coupled S-EFIE and V-EFIE system ill-conditioned, and its iterative solution inefficient or even impossible. The proposed scheme regularizes the coupled set of S-EFIE and V-EFIE using a Calderón multiplicative preconditioner (CMP)-based technique. The resulting scheme enables the efficient analysis of electromagnetic interactions with composite structures containing fine/subwavelength geometric features. Numerical examples demonstrate the efficiency of the proposed scheme. © 2006 IEEE.

  4. Field Assessment and Specification Review for Roller-Integrated Compaction Monitoring Technologies

    Directory of Open Access Journals (Sweden)

    David J. White

    2011-01-01

    Full Text Available Roller-integrated compaction monitoring (RICM technologies provide virtually 100-percent coverage of compacted areas with real-time display of the compaction measurement values. Although a few countries have developed quality control (QC and quality assurance (QA specifications, broader implementation of these technologies into earthwork construction operations still requires a thorough understanding of relationships between RICM values and traditional in situ point test measurements. The purpose of this paper is to provide: (a an overview of two technologies, namely, compaction meter value (CMV and machine drive power (MDP; (b a comprehensive review of field assessment studies, (c an overview of factors influencing statistical correlations, (d modeling for visualization and characterization of spatial nonuniformity; and (e a brief review of the current specifications.

  5. Radionuclide observables during the Integrated Field Exercise of the Comprehensive Nuclear-Test-Ban Treaty.

    Science.gov (United States)

    Burnett, Jonathan L; Miley, Harry S; Milbrath, Brian D

    2016-03-01

    In 2014 the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) undertook an Integrated Field Exercise (IFE14) in Jordan. The exercise consisted of a simulated 0.5-2 kT underground nuclear explosion triggering an On-site Inspection (OSI) to search for evidence of a Treaty violation. This research paper evaluates two of the OSI techniques used during the IFE14, laboratory-based gamma-spectrometry of soil samples and in-situ gamma-spectrometry, both of which were implemented to search for 17 OSI relevant particulate radionuclides indicative of nuclear explosions. The detection sensitivity is evaluated using real IFE and model data. It indicates that higher sensitivity laboratory measurements are the optimum technique during the IFE and within the Treaty/Protocol-specified OSI timeframes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. New integrable model of quantum field theory in the state space with indefinite metric

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The system of coupled nonlinear Schroedinger eqs. (NLS) with noncompact internal symmetry group U(p, q) is considered. It describes in quasiclassical limit the system of two ''coloured'' Bose-gases with point-like interaction. The structure of tran-sition matrix is studied via the spectral transform (ST) (in-verse method). The Poisson brackets of the elements of this matrix and integrals of motion it generates are found. The theory under consideration may be put in the corresponding quantum field theory in the state vector space with indefinite metric. The so-called R matrix (Faddeev) and commutation relations for the transition matrix elements are also obtained, which implies the model to be investigated with the help of the quantum version of ST

  7. A Study of E+A Galaxies Through SDSS-MaNGA Integral Field Spectroscopy

    Science.gov (United States)

    Wally, Muhammad; Weaver, Olivia A.; Anderson, Miguel Ricardo; Liu, Allen; Falcone, Julia; Wallack, Nicole Lisa; James, Olivia; Liu, Charles

    2017-01-01

    We outline the selection process and analysis of sixteen E+A galaxies observed by the Mapping Nearby Galaxies at the Apache Point Observatory (MaNGA) survey as a part of the fourth generation of the Sloan Digital Sky Survey (SDSS-IV). We present their Integral field spectroscopy and analyze their spatial distribution of stellar ages, metallicities and other stellar population properties. We can potentially study the variation in these properties as a function of redshift. This work was supported by the Alfred P. Sloan Foundation via the SDSS-IV Faculty and Student Team (FAST) initiative, ARC Agreement #SSP483 to the CUNY College of Staten Island. This work was also supported by grants to The American Museum of Natural History, and the CUNY College of Staten Island through The National Science Foundation.

  8. Quantum-corrected plasmonic field analysis using a time domain PMCHWT integral equation

    KAUST Repository

    Uysal, Ismail E.

    2016-03-13

    When two structures are within sub-nanometer distance of each other, quantum tunneling, i.e., electrons "jumping" from one structure to another, becomes relevant. Classical electromagnetic solvers do not directly account for this additional path of current. In this work, an auxiliary tunnel made of Drude material is used to "connect" the structures as a support for this current path (R. Esteban et al., Nat. Commun., 2012). The plasmonic fields on the resulting connected structure are analyzed using a time domain surface integral equation solver. Time domain samples of the dispersive medium Green function and the dielectric permittivities are computed from the analytical inverse Fourier transform applied to the rational function representation of their frequency domain samples.

  9. Integral Field Spectroscopy of the Extended Emission-Line Region of 4C 37.43

    Science.gov (United States)

    Fu, Hai; Stockton, Alan

    2007-09-01

    We present Gemini integral field spectroscopy and Keck II long-slit spectroscopy of the extended emission-line region (EELR) around the quasar 4C 37.43. The velocity structure of the ionized gas is complex and cannot be explained globally by a simple dynamical model. The spectra from the clouds are inconsistent with shock or ``shock + precursor'' ionization models, but they are consistent with photoionization by the quasar nucleus. The best-fit photoionization model requires a low-metallicity [12+log(O/H)Canada), CONICYT (Chile), the Australian Research Council (Australia), CNPq (Brazil), and CONICET (Argentina). Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the financial support of the W. M. Keck Foundation.

  10. Integral anomalous effect of an oil and gas deposit in a seismic wave field

    Energy Technology Data Exchange (ETDEWEB)

    Korostyshevskiy, M.B.; Nabokov, G.N.

    1981-01-01

    The basic precepts of an elaborated version of a procedure for forecasting (direct exploration) of oil and gas deposits according to seismic prospecting data MOV are examined. This procedure was previously called the procedure of analysis of the integral affect of an oil and gas deposit in a seismic wave field (MIIEZ-VP). The procedure is implemented in the form of an automated system ASOM-VP for the BESM-4 computer in a standard configuration equipped with standard input-output devices for seismic information (''Potok'', MVU, ''Atlas''). The entire procedure of processing from input of data into the computer to output of resulting maps and graphs on graph plotter ''Atlas'' is automated. Results of testing of procedure MIIEZ-VP and system ASOM-VP on drilled areas of Kazakhstan, Azerbaydzhan and Uzbekistan are cited.

  11. The Infrared Imaging Spectrograph (IRIS) for TMT: multi-tiered wavefront measurements and novel mechanical design

    Science.gov (United States)

    Dunn, Jennifer; Andersen, David; Chapin, Edward; Reshetov, Vlad; Wierzbicki, Ramunas; Herriot, Glen; Chalmer, Dean; Isbrucker, Victor; Larkin, James E.; Moore, Anna M.; Suzuki, Ryuji

    2016-08-01

    The InfraRed Imaging Spectrograph (IRIS) will be the first light adaptive optics instrument on the Thirty Meter Telescope (TMT). IRIS is being built by a collaboration between Caltech, the University of California, NAOJ and NRC Herzberg. In this paper we present novel aspects of the Support Structure, Rotator and On-Instrument Wavefront Sensor systems being developed at NRC Herzberg. IRIS is suspended from the bottom port of the Narrow Field Infrared Adaptive Optics System (NFIRAOS), and provides its own image de-rotation to compensate for sidereal rotation of the focal plane. This arrangement is a challenge because NFIRAOS is designed to host two other science instruments, which imposes strict mass requirements on IRIS. As the mechanical design of all elements has progressed, we have been tasked with keeping the instrument mass under seven tonnes. This requirement has resulted in a mass reduction of 30 percent for the support structure and rotator compared to the most recent IRIS designs. To accomplish this goal, while still being able to withstand earthquakes, we developed a new design with composite materials. As IRIS is a client instrument of NFIRAOS, it benefits from NFIRAOS's superior AO correction. IRIS plays an important role in providing this correction by sensing low-order aberrations with three On-Instrument Wavefront Sensors (OIWFS). The OIWFS consists of three independently positioned natural guide star wavefront sensor probe arms that patrol a 2-arcminute field of view. We expect tip-tilt measurements from faint stars within the IRIS imager focal plane will further stabilize the delivered image quality. We describe how the use of On-Detector Guide Windows (ODGWs) in the IRIS imaging detector can be incorporated into the AO correction. In this paper, we present our strategies for acquiring and tracking sources with this complex AO system, and for mitigating and measuring the various potential sources of image blur and misalignment due to properties of

  12. The problem of scattering in fibre-fed VPH spectrographs and possible solutions

    Science.gov (United States)

    Ellis, S. C.; Saunders, Will; Betters, Chris; Croom, Scott

    2014-07-01

    All spectrographs unavoidably scatter light. Scattering in the spectral direction is problematic for sky subtraction, since atmospheric spectral lines are blurred. Scattering in the spatial direction is problematic for fibre fed spectrographs, since it limits how closely fibres can be packed together. We investigate the nature of this scattering and show that the scattering wings have both a Lorentzian component, and a shallower (1/r) component. We investigate the causes of this from a theoretical perspective, and argue that for the spectral PSF the Lorentzian wings are in part due to the profile of the illumination of the pupil of the spectrograph onto the diffraction grating, whereas the shallower component is from bulk scattering. We then investigate ways to mitigate the diffractive scattering by apodising the pupil. In the ideal case of a Gaussian apodised pupil, the scattering can be significantly improved. Finally we look at realistic models of the spectrograph pupils of fibre fed spectrographs with a centrally obstructed telescope, and show that it is possible to apodise the pupil through non-telecentric injection into the fibre.

  13. Self-consistent Bulge/Disk/Halo Galaxy Dynamical Modeling Using Integral Field Kinematics

    Science.gov (United States)

    Taranu, D. S.; Obreschkow, D.; Dubinski, J. J.; Fogarty, L. M. R.; van de Sande, J.; Catinella, B.; Cortese, L.; Moffett, A.; Robotham, A. S. G.; Allen, J. T.; Bland-Hawthorn, J.; Bryant, J. J.; Colless, M.; Croom, S. M.; D'Eugenio, F.; Davies, R. L.; Drinkwater, M. J.; Driver, S. P.; Goodwin, M.; Konstantopoulos, I. S.; Lawrence, J. S.; López-Sánchez, Á. R.; Lorente, N. P. F.; Medling, A. M.; Mould, J. R.; Owers, M. S.; Power, C.; Richards, S. N.; Tonini, C.

    2017-11-01

    We introduce a method for modeling disk galaxies designed to take full advantage of data from integral field spectroscopy (IFS). The method fits equilibrium models to simultaneously reproduce the surface brightness, rotation, and velocity dispersion profiles of a galaxy. The models are fully self-consistent 6D distribution functions for a galaxy with a Sérsic profile stellar bulge, exponential disk, and parametric dark-matter halo, generated by an updated version of GalactICS. By creating realistic flux-weighted maps of the kinematic moments (flux, mean velocity, and dispersion), we simultaneously fit photometric and spectroscopic data using both maximum-likelihood and Bayesian (MCMC) techniques. We apply the method to a GAMA spiral galaxy (G79635) with kinematics from the SAMI Galaxy Survey and deep g- and r-band photometry from the VST-KiDS survey, comparing parameter constraints with those from traditional 2D bulge-disk decomposition. Our method returns broadly consistent results for shared parameters while constraining the mass-to-light ratios of stellar components and reproducing the H I-inferred circular velocity well beyond the limits of the SAMI data. Although the method is tailored for fitting integral field kinematic data, it can use other dynamical constraints like central fiber dispersions and H I circular velocities, and is well-suited for modeling galaxies with a combination of deep imaging and H I and/or optical spectra (resolved or otherwise). Our implementation (MagRite) is computationally efficient and can generate well-resolved models and kinematic maps in under a minute on modern processors.

  14. A structural equation model to integrate changes in functional strategies during old-field succession.

    Science.gov (United States)

    Vile, Denis; Shipley, Bill; Garnier, Eric

    2006-02-01

    From a functional perspective, changes in abundance, and ultimately species replacement, during succession are a consequence of integrated suites of traits conferring different relative ecological advantages as the environment changes over time. Here we use structural equations to model the interspecific relationships between these integrated functional traits using 34 herbaceous species from a Mediterranean old-field succession and thus quantify the notion of a plant strategy. We measured plant traits related to plant vegetative and reproductive size, leaf functioning, reproductive phenology, seed mass, and production on 15 individuals per species monitored during one growing season. The resulting structural equation model successfully accounts for the pattern of trait covariation during the first 45 years post-abandonment using just two forcing variables: time since site abandonment and seed mass; no association between time since field abandonment and seed mass was observed over these herbaceous stages of secondary succession. All other predicted traits values are determined by these two variables and the cause-effect linkage between them. Adding pre-reproductive vegetative mass as a third forcing variable noticeably increased the predictive power of the model. Increasing the time after abandonment favors species with increasing life span and pre-reproductive biomass and decreasing specific leaf area. Allometric coefficients relating vegetative and reproductive components of plant size were in accordance with allometry theory. The model confirmed the trade-off between seed mass and seed number. Maximum plant height and seed mass were major determinants of reproductive phenology. Our results show that beyond verbal conceptualization, plant ecological strategies can be quantified and modeled.

  15. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe

    2016-12-27

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  16. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.

    Science.gov (United States)

    Chen, Bingyan; Zhang, Panpan; Ding, Li; Han, Jie; Qiu, Song; Li, Qingwen; Zhang, Zhiyong; Peng, Lian-Mao

    2016-08-10

    Top-gated p-type field-effect transistors (FETs) have been fabricated in batch based on carbon nanotube (CNT) network thin films prepared from CNT solution and present high yield and highly uniform performance with small threshold voltage distribution with standard deviation of 34 mV. According to the property of FETs, various logical and arithmetical gates, shifters, and d-latch circuits were designed and demonstrated with rail-to-rail output. In particular, a 4-bit adder consisting of 140 p-type CNT FETs was demonstrated with higher packing density and lower supply voltage than other published integrated circuits based on CNT films, which indicates that CNT based integrated circuits can reach to medium scale. In addition, a 2-bit multiplier has been realized for the first time. Benefitted from the high uniformity and suitable threshold voltage of CNT FETs, all of the fabricated circuits based on CNT FETs can be driven by a single voltage as small as 2 V.

  17. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  18. An energy-stable time-integrator for phase-field models

    KAUST Repository

    Vignal, Philippe; Collier, N.; Dalcin, Lisandro; Brown, D.L.; Calo, V.M.

    2016-01-01

    We introduce a provably energy-stable time-integration method for general classes of phase-field models with polynomial potentials. We demonstrate how Taylor series expansions of the nonlinear terms present in the partial differential equations of these models can lead to expressions that guarantee energy-stability implicitly, which are second-order accurate in time. The spatial discretization relies on a mixed finite element formulation and isogeometric analysis. We also propose an adaptive time-stepping discretization that relies on a first-order backward approximation to give an error-estimator. This error estimator is accurate, robust, and does not require the computation of extra solutions to estimate the error. This methodology can be applied to any second-order accurate time-integration scheme. We present numerical examples in two and three spatial dimensions, which confirm the stability and robustness of the method. The implementation of the numerical schemes is done in PetIGA, a high-performance isogeometric analysis framework.

  19. Integrable and nonintegrable non-KAM Hamiltonians and magnetic field topology

    International Nuclear Information System (INIS)

    Salat, A.

    1986-01-01

    The integrability of Hamiltonians H(P 1 , P 2 , Q 1 , Q 2 )=P 1 G 1 (Q 1 ,Q 2 )+P 2 G 2 (Q 1 ,Q 2 ), with arbitrary analytic G 1 and G 2 , 2π-periodic in Q 1 and Q 2 , is analytically investigated. Such H cannot be separated into two parts, H=H 0 +H 21 , such that the KAM theorem would apply for vertical strokeH 1 vertical stroke 0 vertical stroke. For G 2 =const such Hamiltonians correspond to toroidal magnetic fields with constant rotational transform. Integrability is then equivalent to the existence of closed magnetic surfaces. The winding number w of the Q 1 , Q 2 flow (i.e. the rotational transform) is rational in 'tongue'-like domains in (ω 2 /ω 1 ,A) diagrams. Here ω i = i > is the average over both Q 1 and Q 2 , G i =ω i +F i , i=1, 2, and A is an amplitude parameter of F i (F i =0 for A=0). Integrability is proved almost everywhere in the complementary domains, namely where w is sufficiently irrational. In the generic case ('conditional') nonintegrability is proved for the class dG 1 /dQ 1 +dG 2 /dQ 2 =0 in the tongues, which in this case shrink to lines with w=ω 1 /ω 2 . It is shown that if the number of dimensions in the Hamiltonian were larger than two, qualitatively different results would be expected. (orig.)

  20. Field installation versus local integration of photovoltaic systems and their effect on energy evaluation metrics

    International Nuclear Information System (INIS)

    Halasah, Suleiman A.; Pearlmutter, David; Feuermann, Daniel

    2013-01-01

    In this study we employ Life-Cycle Assessment to evaluate the energy-related impacts of photovoltaic systems at different scales of integration, in an arid region with especially high solar irradiation. Based on the electrical output and embodied energy of a selection of fixed and tracking systems and including concentrator photovoltaic (CPV) and varying cell technology, we calculate a number of energy evaluation metrics, including the energy payback time (EPBT), energy return factor (ERF), and life-cycle CO 2 emissions offset per unit aperture and land area. Studying these metrics in the context of a regionally limited setting, it was found that utilizing existing infrastructure such as existing building roofs and shade structures does significantly reduce the embodied energy requirements (by 20–40%) and in turn the EPBT of flat-plate PV systems due to the avoidance of energy-intensive balance of systems (BOS) components like foundations. Still, high-efficiency CPV field installations were found to yield the shortest EPBT, the highest ERF and the largest life-cycle CO 2 offsets—under the condition that land availability is not a limitation. A greater life-cycle energy return and carbon offset per unit land area is yielded by locally-integrated non-concentrating systems, despite their lower efficiency per unit module area. - Highlights: ► We evaluate life-cycle energy impacts of PV systems at different scales. ► We calculate the energy payback time, return factor and CO 2 emissions offset. ► Utilizing existing structures significantly improves metrics of flat-plate PV. ► High-efficiency CPV installations yield best return and offset per aperture area. ► Locally-integrated flat-plate systems yield best return and offset per land area.

  1. The Performance and Scientific Rationale for an Infrared Imaging Fourier Transform Spectrograph on a Large Space Telescope

    National Research Council Canada - National Science Library

    Graham, James R; Abrams, Mark; Bennett, C; Carr, J; Cook, K; Dey, A; Najita, J; Wishnow, E

    1998-01-01

    .... We consider the relationship between pixel size, spectral resolution, and diameter of the beam splitter for imaging and nonimaging Fourier transform spectrographs and give the condition required...

  2. Real Time Integration of Field Data Into a GIS Platform for the Management of Hydrological Emergencies

    Science.gov (United States)

    Mangiameli, M.; Mussumeci, G.

    2013-01-01

    A wide series of events requires immediate availability of information and field data to be provided to decision-makers. An example is the necessity of quickly transferring the information acquired from monitoring and alerting sensors or the data of the reconnaissance of damage after a disastrous event to an Emergency Operations Center. To this purpose, we developed an integrated GIS and WebGIS system to dynamically create and populate via Web a database with spatial features. In particular, this work concerns the gathering and transmission of spatial data and related information to the desktop GIS so that they can be displayed and analyzed in real time to characterize the operational scenario and to decide the rescue interventions. As basic software, we used only free and open source: QuantumGIS and Grass as Desktop GIS, Map Server with PMapper application for the Web-Gis functionality and PostGreSQL/PostGIS as Data Base Management System (DBMS). The approach has been designed, developed and successfully tested in the management of GIS-based navigation of an autonomous robot, both to map its trajectories and to assign optimal paths. This paper presents the application of our system to a simulated hydrological event that could interest the province of Catania, in Sicily. In particular, assuming that more teams draw up an inventory of the damage, we highlight the benefits of real-time transmission of the information collected from the field to headquarters.

  3. REAL TIME INTEGRATION OF FIELD DATA INTO A GIS PLATFORM FOR THE MANAGEMENT OF HYDROLOGICAL EMERGENCIES

    Directory of Open Access Journals (Sweden)

    M. Mangiameli

    2014-01-01

    Full Text Available A wide series of events requires immediate availability of information and field data to be provided to decision-makers. An example is the necessity of quickly transferring the information acquired from monitoring and alerting sensors or the data of the reconnaissance of damage after a disastrous event to an Emergency Operations Center. To this purpose, we developed an integrated GIS and WebGIS system to dynamically create and populate via Web a database with spatial features. In particular, this work concerns the gathering and transmission of spatial data and related information to the desktop GIS so that they can be displayed and analyzed in real time to characterize the operational scenario and to decide the rescue interventions. As basic software, we used only free and open source: QuantumGIS and Grass as Desktop GIS, Map Server with PMapper application for the Web-Gis functionality and PostGreSQL/PostGIS as Data Base Management System (DBMS. The approach has been designed, developed and successfully tested in the management of GIS-based navigation of an autonomous robot, both to map its trajectories and to assign optimal paths. This paper presents the application of our system to a simulated hydrological event that could interest the province of Catania, in Sicily. In particular, assuming that more teams draw up an inventory of the damage, we highlight the benefits of real-time transmission of the information collected from the field to headquarters.

  4. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang

    2016-03-25

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  5. Integration of Research for an Exhaust Thermoelectric Generator and the Outer Flow Field of a Car

    Science.gov (United States)

    Jiang, T.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.

    2017-05-01

    The exhaust thermoelectric generator (TEG) can generate electric power from a car engine's waste heat. It is important to maintain a sufficient temperature difference across the thermoelectric modules. The radiator is connected to the cooling units of the thermoelectric modules and used to take away the heat from the TEG system. This paper focuses on the research for the integration of a TEG radiator and the flow field of the car chassis, aiming to cool the radiator by the high speed flow around the chassis. What is more, the TEG radiator is designed as a spoiler to optimize the flow field around the car chassis and even reduce the aerodynamic drag. Concentrating on the flow pressure of the radiator and the aerodynamic drag force, a sedan model with eight different schemes of radiator configurations are studied by computational fluid dynamics simulation. Finally, the simulation results indicate that a reasonable radiator configuration can not only generate high flow pressure to improve the cooling performance, which provides a better support for the TEG system, but also acts as a spoiler to reduce the aerodynamic drag force.

  6. Integrating remote sensing techniques at Cuprite, Nevada: AVIRIS, Thematic Mapper, and field spectroscopy

    Science.gov (United States)

    Hill, Bradley; Nash, Greg; Ridd, Merrill; Hauff, Phoebe L.; Ebel, Phil

    1992-01-01

    The Cuprite mining district in southwestern Nevada has become a test site for remote sensing studies with numerous airborne scanners and ground sensor data sets collected over the past fifteen years. Structurally, the Cuprite region can be divided into two areas with slightly different alteration and mineralogy. These zones lie on either side of a postulated low-angle structural discontinuity that strikes nearly parallel to US Route 95. Hydrothermal alternation at Cuprite was classified into three major zones: silicified, opalized, and argillized. These alteration types form a bulls-eye pattern east of the highway and are more linear on the west side of the highway making a striking contrast from the air and the imagery. Cuprite is therefore an ideal location for remote sensing research as it exhibits easily identified hydrothermal zoning, is relatively devoid of vegetation, and contains a distinctive spectrally diagnostic mineral suite including the ammonium feldspar buddingtonite, several types of alunite, different jarosites, illite, kaolinite, smectite, dickite, and opal. This present study brings a new dimension to these previous remote sensing and ground data sets compiled for Cuprite. The development of a higher resolution field spectrometer now provides the capability to combine extensive in-situ mineralogical data with a new geologic field survey and detailed Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) images. The various data collection methods and the refinement of the integrated techniques are discussed.

  7. Parallel PWTD-Accelerated Explicit Solution of the Time Domain Electric Field Volume Integral Equation

    KAUST Repository

    Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric

    2016-01-01

    A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.

  8. Standard model effective field theory: Integrating out neutralinos and charginos in the MSSM

    Science.gov (United States)

    Han, Huayong; Huo, Ran; Jiang, Minyuan; Shu, Jing

    2018-05-01

    We apply the covariant derivative expansion method to integrate out the neutralinos and charginos in the minimal supersymmetric Standard Model. The results are presented as set of pure bosonic dimension-six operators in the Standard Model effective field theory. Nontrivial chirality dependence in fermionic covariant derivative expansion is discussed carefully. The results are checked by computing the h γ γ effective coupling and the electroweak oblique parameters using the Standard Model effective field theory with our effective operators and direct loop calculation. In global fitting, the proposed lepton collider constraint projections, special phenomenological emphasis is paid to the gaugino mass unification scenario (M2≃2 M1) and anomaly mediation scenario (M1≃3.3 M2). These results show that the precision measurement experiments in future lepton colliders will provide a very useful complementary job in probing the electroweakino sector, in particular, filling the gap of the soft lepton plus the missing ET channel search left by the traditional collider, where the neutralino as the lightest supersymmetric particle is very degenerated with the next-to-lightest chargino/neutralino.

  9. Compact Reversed-Field Pinch Reactors (CRFPR): fusion-power-core integration study

    International Nuclear Information System (INIS)

    Copenhaver, C.; Krakowski, R.A.; Schnurr, N.M.

    1985-08-01

    Using detailed two-dimensional neutronics studies based on the results of a previous framework study (LA-10200-MS), the fusion-power-core (FPC) integration, maintenance, and radio-activity/afterheat control are examined for the Compact Reversed-Field Pinch Reactor (CRFPR). While maintaining as a base case the nominal 20-MW/m 2 neutron first-wall loading design, CRFPR(20), the cost and technology impact of lower-wall-loading designs are also examined. The additional detail developed as part of this follow-on study also allows the cost estimates to be refined. The cost impact of multiplexing lower-wall-loading FPCs into a approx. 1000-MWe(net) plant is also examined. The CRFPR(20) design remains based on a PbLi-cooled FPC with pressurized-water used as a coolant for first-wall, pumped-limiter, and structural-shield systems. Single-piece FPC maintenance of this steady-state power plant is envisaged and evaluated on the basis of a preliminary layout of the reactor building. This follow-on study also develops the groundwork for assessing the feasibility and impact of impurity/ash control by magnetic divertors as an alternative to previously considered pumped-limiter systems. Lastly, directions for future, more-detailed power-plant designs based on the Reversed-Field Pinch are suggested

  10. Effective field theory and integrability in two-dimensional Mott transition

    International Nuclear Information System (INIS)

    Bottesi, Federico L.; Zemba, Guillermo R.

    2011-01-01

    Highlights: → Mott transition in 2d lattice fermion model. → 3D integrability out of 2D. → Effective field theory for Mott transition in 2d. → Double Chern-Simons. → d-Density waves. - Abstract: We study the Mott transition in a two-dimensional lattice spinless fermion model with nearest neighbors density-density interactions. By means of a two-dimensional Jordan-Wigner transformation, the model is mapped onto the lattice XXZ spin model, which is shown to possess a quantum group symmetry as a consequence of a recently found solution of the Zamolodchikov tetrahedron equation. A projection (from three to two space-time dimensions) property of the solution is used to identify the symmetry of the model at the Mott critical point as U q (sl(2)-circumflex)xU q (sl(2)-circumflex), with deformation parameter q = -1. Based on this result, the low-energy effective field theory for the model is obtained and shown to be a lattice double Chern-Simons theory with coupling constant k = 1 (with the standard normalization). By further employing the effective filed theory methods, we show that the Mott transition that arises is of topological nature, with vortices in an antiferromagnetic array and matter currents characterized by a d-density wave order parameter. We also analyze the behavior of the system upon weak coupling, and conclude that it undergoes a quantum gas-liquid transition which belongs to the Ising universality class.

  11. Immersive Virtual Reality Field Trips in the Geosciences: Integrating Geodetic Data in Undergraduate Geoscience Courses

    Science.gov (United States)

    La Femina, P. C.; Klippel, A.; Zhao, J.; Walgruen, J. O.; Stubbs, C.; Jackson, K. L.; Wetzel, R.

    2017-12-01

    High-quality geodetic data and data products, including GPS-GNSS, InSAR, LiDAR, and Structure from Motion (SfM) are opening the doors to visualizing, quantifying, and modeling geologic, tectonic, geomorphic, and geodynamic processes. The integration of these data sets with other geophysical, geochemical and geologic data is providing opportunities for the development of immersive Virtual Reality (iVR) field trips in the geosciences. iVR fieldtrips increase accessibility in the geosciences, by providing experiences that allow for: 1) exploration of field locations that might not be tenable for introductory or majors courses; 2) accessibility to outcrops for students with physical disabilities; and 3) the development of online geosciences courses. We have developed a workflow for producing iVR fieldtrips and tools to make quantitative observations (e.g., distance, area, and volume) within the iVR environment. We use a combination of terrestrial LiDAR and SfM data, 360° photos and videos, and other geophysical, geochemical and geologic data to develop realistic experiences for students to be exposed to the geosciences from sedimentary geology to physical volcanology. We present two of our iVR field trips: 1) Inside the Volcano: Exploring monogenetic volcanism at Thrihnukagigar Iceland; and 2) Changes in Depositional Environment in a Sedimentary Sequence: The Reedsville and Bald Eagle Formations, Pennsylvania. The Thrihnukagigar experience provides the opportunity to investigate monogenetic volcanism through the exploration of the upper 125 m of a fissure-cinder cone eruptive system. Students start at the plate boundary scale, then zoom into a single volcano where they can view the 3D geometry from either terrestrial LiDAR or SfM point clouds, view geochemical data and petrologic thins sections of rock samples, and a presentation of data collection and analysis, results and interpretation. Our sedimentary geology experience is based on a field lab from our

  12. Seismic aftershock monitoring for on-site inspection purposes. Experience from Integrated Field Exercise 2008.

    Science.gov (United States)

    Labak, P.; Arndt, R.; Villagran, M.

    2009-04-01

    One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated

  13. A Three-Year Field Validation Study to Improve the Integrated Pest Management of Hot Pepper

    Directory of Open Access Journals (Sweden)

    Ji-Hoon Kim

    2013-09-01

    Full Text Available To improve the integrated pest management (IPM of hot pepper, field study was conducted in Hwasung from 2010 to 2012 and an IPM system was developed to help growers decide when to apply pesticides to control anthracnose, tobacco budworm, Phytophthora blight, bacterial wilt, and bacterial leaf spot. The three field treatments consisted of IPM sprays following the forecast model advisory, a periodic spray at 7-to-10-day intervals, and no spray (control. The number of annual pesticide applications for the IPM treatment ranged from six to eight, whereas the plots subjected to the periodic treatment received pesticide 11 or 12 times annually for three years. Compared to the former strategy, our improved IPM strategy features more intense pest management, with frequent spraying for anthracnose and mixed spraying for tobacco budworm or Phytophthora blight. The incidences for no pesticide control in 2010, 2011, and 2012 were 91, 97.6, and 41.4%, respectively. Conversely, the incidences for the IPM treatment for those years were 7.6, 62.6, and 2%, and the yields from IPM-treated plots were 48.6 kg, 12.1 kg, and 48.8 kg. The incidence and yield in the IPM-treated plots were almost the same as those of the periodic treatment except in 2011, in which no unnecessary sprays were given, meaning that the IPM control was quite successful. From reviewing eight years of field work, sophisticated forecasts that optimize pesticide spray timing reveal that reliance on pesticides can be reduced without compromising yield. Eco-friendly strategies can be implemented in the pest management of hot pepper.

  14. EVALUATION OF FOUR INTEGRATED PEST MANAGEMENT PACKAGES FOR CONTROLLING MAIN PESTS OF COTTON IN RAINFED FIELDS

    Directory of Open Access Journals (Sweden)

    Nurindah Nurindah

    2014-04-01

    Full Text Available Cotton production nationally is low due to various constraints, including pests. Two main pests commonly found in cotton plantation in rain fed fields are cotton leafhopper (Amrasca biguttula and cotton bollworm (Helicoverpa armigera. The study aimed to evaluate four packages of integrated pest management (IPM techniques to control cotton leafhopper and cotton bollworm in rain fed fields. The experiment was conducted in farmers’ fields at Asembagus, East Java, between January and July 2012. Four packages of IPM evaluated were cotton varieties, i.e. Kanesia 10 or Kanesia 13, and seed treatment with synthetic insecticide (imidacloprid before sowing or spraying molasses (10 ml L-1 water as food for natural enemies. The cotton plants were intercropped with groundnut and sprayed with neem seed extract (NSE at the action threshold level for pest control. These packages were compared among themselves and also with the methods usually used by farmers, i.e. planting cotton variety Kanesia 8 intercropped with groundnut and pest control using synthetic chemical insecticides. Twenty five plants were sampled randomly per plot and measured for their growth, leafhopper and  bollworm populations, as well as cotton seed yield per plot. Observations were made weekly, starting at 30 days after planting (DAP until 120 DAP. The results showed that the use of Kanesia 10 or Kanesia 13 intercropped with groundnut and spraying molasses to conserve natural enemies was the best  pest management practice and superior to farmers’ practices. Conserving natural enemies is not only profitable (saving production cost of IDR1,150,000 to IDR1,500,000 ha-1 season-1, but also safe for the environment (no need to spray chemical insecticides.

  15. Proposal for the ion optics and for the kinematical fitting at the magnetic spectrograph BIG KARL

    International Nuclear Information System (INIS)

    Hinterberger, F.

    1986-01-01

    For the magnetic spectrograph BIG KARL the installation of an additional quadrupole lens is purposed. From this the possibility of a telescopic ion optic results. For future experiments a standard focusing with a spatial dispersion of 6.6 m and vanishing angular dispersion is proposed. The D/M ratio (dispersion/magnification) extends to 14.0 m, the maximal spatial angle lies at 3 msr. The energy range extends at a focal plane length of 0.66 m to 20%. For the kinematical fitting of the spectrograph the focal plane is shifted. This shift can be simply and rapidly realized for different K values by means of a software correction, if generally two spatial spectra in the focal plane are taken up. By this additionally for each event the actual scattering angle can be determined with relatively good resolution. The dispersion fit is completely decoupled from the kinematical fitting of the magnetic spectrograph. (orig.) [de

  16. X-ray spectrometer spectrograph telescope system. [for solar corona study

    Science.gov (United States)

    Bruner, E. C., Jr.; Acton, L. W.; Brown, W. A.; Salat, S. W.; Franks, A.; Schmidtke, G.; Schweizer, W.; Speer, R. J.

    1979-01-01

    A new sounding rocket payload that has been developed for X-ray spectroscopic studies of the solar corona is described. The instrument incorporates a grazing incidence Rowland mounted grating spectrograph and an extreme off-axis paraboloic sector feed system to isolate regions of the sun of order 1 x 10 arc seconds in size. The focal surface of the spectrograph is shared by photographic and photoelectric detection systems, with the latter serving as a part of the rocket pointing system control loop. Fabrication and alignment of the optical system is based on high precision machining and mechanical metrology techniques. The spectrograph has a resolution of 16 milliangstroms and modifications planned for future flights will improve the resolution to 5 milliangstroms, permitting line widths to be measured.

  17. Application of charge coupled devices as spatially-resolved detectors for X-ray spectrograph

    Energy Technology Data Exchange (ETDEWEB)

    Attelan-Langlet, S; Etlicher, B [Ecole Polytechnique, Palaiseau (France); Mishenskij, V O; Papazyan, Yu V; Smirnov, V P; Volkov, G S; Zajtsev, V I [Inst. for Thermonuclear and Innovation Investigations, Troitsk (Russian Federation)

    1997-12-31

    An X-ray crystal spectrograph which contains a CCD linear array as the position-sensitive detector is described. Radiation detection is performed directly onto CCD. The spectrograph has a limit of sensitivity at about 2 J/(A.ster), spectral resolution about 1000 and dynamic range 100-120. The device operates on-line with IBM-PC based control system. Software provides all data acquisition and treatment. Output spectra are presented in absolute units. The device was used during composite Z-pinch experiments at pulse-power installations ``Angara-5-1`` (TRINITI, Troitsk, Russia) and ``GAEL`` (Ecole Polytechnique, Palaiseau, France). Currently the spectrograph is included in the set of diagnostics of the ``Angara-5-1`` facility. Some of the spectra obtained are presented and discussed. (author). 4 figs., 9 refs.

  18. Performance testing of an off-plane reflection grating and silicon pore optic spectrograph at PANTER

    Science.gov (United States)

    Marlowe, Hannah; McEntaffer, Randall L.; Allured, Ryan; DeRoo, Casey T.; Donovan, Benjamin D.; Miles, Drew M.; Tutt, James H.; Burwitz, Vadim; Menz, Benedikt; Hartner, Gisela D.; Smith, Randall K.; Cheimets, Peter; Hertz, Edward; Bookbinder, Jay A.; Günther, Ramses; Yanson, Alex; Vacanti, Giuseppe; Ackermann, Marcelo

    2015-10-01

    An x-ray spectrograph consisting of aligned, radially ruled off-plane reflection gratings and silicon pore optics (SPO) was tested at the Max Planck Institute for Extraterrestrial Physics PANTER x-ray test facility. SPO is a test module for the proposed Arcus mission, which will also feature aligned off-plane reflection gratings. This test is the first time two off-plane gratings were actively aligned to each other and with an SPO to produce an overlapped spectrum. We report the performance of the complete spectrograph utilizing the aligned gratings module and plans for future development.

  19. Spectra of Th/Ar and U/Ne hollow cathode lamps for spectrograph calibration

    Science.gov (United States)

    Nave, Gillian; Shlosberg, Ariel; Kerber, Florian; Den Hartog, Elizabeth; Neureiter, Bianca

    2018-01-01

    Low-current Th/Ar hollow cathode lamps have long been used for calibration of astronomical spectrographs on ground-based telescopes. Thorium is an attractive element for calibration as it has a single isotope, has narrow spectral lines, and has a dense spectrum covering the whole of the visible region. However, the high density of the spectrum that makes it attractive for calibrating high-resolution spectrographs is a detriment for lower resolution spectrographs and this is not obvious by examination of existing linelists. In addition, recent changes in regulations regarding the handling of thorium have led to a degradation in the quality of Th/Ar calibration lamps, with contamination by molecular ThO lines that are strong enough to obscure the calibration lines of interest.We are pursuing two approaches to these problems. First, we have expanded and improved the NIST Standard Reference Database 161, "Spectrum of Th-Ar Hollow Cathode Lamps" to cover the region 272 nm to 5500 nm. Spectra of hollow cathode lamps at up to 3 different currents can now be displayed simultaneously. Interactive zooming and the ability to convolve any of the spectra with a Gaussian or uploaded instrument profile enable the user to see immediately what the spectrum would look like at the particular resolution of their spectrograph. Second, we have measured the spectrum of a recent, contaminated Th/Ar hollow cathode lamp using a high-resolution Echelle spectrograph (Madison Wisconsin) at a resolving power (R~ 250,000). This significantly exceeds the resolving power of most astronomical spectrographs and resolves many of the molecular lines of ThO. With these spectra we are measuring and calibrating the positions of these molecular lines in order to make them suitable for spectrograph calibration.In the near infrared region, U/Ne hollow cathode lamps give a higher density of calibration lines than Th/Ar lamps and will be implemented on the upgraded CRIRES+ spectrograph on ESO’s Very Large

  20. Observations of the radial velocity of the Sun as measured with the novel SONG spectrograph

    DEFF Research Database (Denmark)

    Pallé, P. L.; Grundahl, F.; Hage, A. Triviño

    2013-01-01

    Deployment of the prototype node of the SONG project took place in April 2012 at Observatorio del Teide (Canary Islands). Its key instrument (echelle spectrograph) was installed and operational a few weeks later while its 1 m feeding telescope suffered a considerable delay to meet the required...... specifications. Using a fibre-feed, solar light could be fed to the spectrograph and we carried out a 1-week observing campaign in June 2012 to evaluate its performance for measuring precision radial velocities. In this work we present the first results of this campaign by comparing the sensitivity of the SONG...

  1. Spectrographic Determination of Trace Constituents in Rare Earths; Determinacion espectrografica de impurezas en tierras raras

    Energy Technology Data Exchange (ETDEWEB)

    Capdevila, C; Alvarez, F

    1962-07-01

    A spectrographic method was developed for the determination of 18 trace elements in lanthanum, cerium, praseodimium, neodimium and samarium compounds. The concentrations of the impurities cover the range of 0,5 to 500 ppm. Most of these impurities are determined by the carrier distillation method. Several more refractory elements have been determined by total burning of the sample with a direct current arc or by the conduction briquet excitation technique with a high voltage condensed spark. The work has been carried out with a Hilger Automatic Large Quartz Spectrograph. (Author) 5 refs.

  2. bHROS: A New High-Resolution Spectrograph Available on Gemini South

    Science.gov (United States)

    Margheim, S. J.; Gemini bHROS Team

    2005-12-01

    The Gemini bench-mounted High-Resolution Spectrograph (bHROS) is available for science programs beginning in 2006A. bHROS is the highest resolution (R=150,000) optical echelle spectrograph optimized for use on an 8-meter telescope. bHROS is fiber-fed via GMOS-S from the Gemini South focal plane and is available in both a dual-fiber Object/Sky mode and a single (larger) Object-only mode. Instrument characteristics and sample data taken during commissioning will be presented.

  3. DYNAMICS IN SUNSPOT UMBRA AS SEEN IN NEW SOLAR TELESCOPE AND INTERFACE REGION IMAGING SPECTROGRAPH DATA

    Energy Technology Data Exchange (ETDEWEB)

    Yurchyshyn, V.; Abramenko, V. [Big Bear Solar Observatory, New Jersey Institute of Technology, Big Bear City, CA 92314 (United States); Kilcik, A. [Department of Space Science and Technologies, Akdeniz University, 07058 Antalya (Turkey)

    2015-01-10

    We analyze sunspot oscillations using Interface Region Imaging Spectrograph (IRIS) slit-jaw and spectral data and narrow-band chromospheric images from the New Solar Telescope (NST) for the main sunspot in NOAA AR 11836. We report that the difference between the shock arrival times as measured by the Mg II k 2796.35 Å and Si IV 1393.76 Å line formation levels changes during the observed period, and peak-to-peak delays may range from 40 s to zero. The intensity of chromospheric shocks also displays long-term (about 20 min) variations. NST's high spatial resolution Hα data allowed us to conclude that, in this sunspot, umbral flashes (UFs) appeared in the form of narrow bright lanes stretched along the light bridges and around clusters of umbral bright points. The time series also suggested that UFs preferred to appear on the sunspot-center side of light bridges, which may indicate the existence of a compact sub-photospheric driver of sunspot oscillations. The sunspot's umbra as seen in the IRIS chromospheric and transition region data appears bright above the locations of light bridges and the areas where the dark umbra is dotted with clusters of umbral dots. Co-spatial and co-temporal data from the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory showed that the same locations were associated with bright footpoints of coronal loops suggesting that the light bridges may play an important role in heating the coronal sunspot loops. Finally, the power spectra analysis showed that the intensity of chromospheric and transition region oscillations significantly vary across the umbra and with height, suggesting that umbral non-uniformities and the structure of sunspot magnetic fields may play a role in wave propagation and heating of umbral loops.

  4. Integral test of JENDL dosimetry file using fast neutron field in the Experimental Fast Reactor JOYO

    International Nuclear Information System (INIS)

    Aoyama, Takafumi; Sekine, Takashi

    1999-09-01

    In order to evaluate the applicability of the JENDL dosimetry file, an integral test using a fast neutron spectrum field in the Experimental Fast Reactor JOYO Mark-II core was performed. The dosimeter set consisting of eight reactions of 46 Ti(n,p) 46 Sc, 54 Fe(n,p) 54 Mn, 58 Fe(n,γ) 59 Fe, 58 Ni(n,p) 58 Co, 59 Co(n,γ) 60 Co, 63 Cu(n,α) 60 Co, 238 U fission and 237 Np fission was irradiated for approximately 30 days near the core center of the JOYO Mk-II. Neutron flux at the dosimeter position was calculated using the two dimensional discrete ordinate transport code 'DORT'. The core configuration was modeled in XY geometry, and the 100 group cross section set of JSD-J2 / JFT-J2, which was processed from JENDL-2, was utilized. The absolute value of neutron flux was normalized so that the 235 U fission rate using the calculated neutron spectrum agreed with the measured reaction rate. The 103 group cross section data were processed by 'NJOY' code for nuclides to be used in the JOYO dosimetry. As the results of integral test for JENDL/D-99 (new file) and JENDL/D-91 (previous file), calculated values by JENDL/D-99 agreed well with the experimental values, and the C/E ratios ranged from 0.95 to 1.22. By comparing the results between JENDL/D-99 and JENDL/D-91, small differences exist, except for 58 Fe(n, γ) 59 Fe reaction, which was improved significantly in JENDL/D-99. (author)

  5. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    Science.gov (United States)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  6. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  7. The relationship between better-eye and integrated visual field mean deviation and visual disability.

    Science.gov (United States)

    Arora, Karun S; Boland, Michael V; Friedman, David S; Jefferys, Joan L; West, Sheila K; Ramulu, Pradeep Y

    2013-12-01

    To determine the extent of difference between better-eye visual field (VF) mean deviation (MD) and integrated VF (IVF) MD among Salisbury Eye Evaluation (SEE) subjects and a larger group of glaucoma clinic subjects and to assess how those measures relate to objective and subjective measures of ability/performance in SEE subjects. Retrospective analysis of population- and clinic-based samples of adults. A total of 490 SEE and 7053 glaucoma clinic subjects with VF loss (MD ≤-3 decibels [dB] in at least 1 eye). Visual field testing was performed in each eye, and IVF MD was calculated. Differences between better-eye and IVF MD were calculated for SEE and clinic-based subjects. In SEE subjects with VF loss, models were constructed to compare the relative impact of better-eye and IVF MD on driving habits, mobility, self-reported vision-related function, and reading speed. Difference between better-eye and IVF MD and relationship of better-eye and IVF MD with performance measures. The median difference between better-eye and IVF MD was 0.41 dB (interquartile range [IQR], -0.21 to 1.04 dB) and 0.72 dB (IQR, 0.04-1.45 dB) for SEE subjects and clinic-based patients with glaucoma, respectively, with differences of ≥ 2 dB between the 2 MDs observed in 9% and 18% of the groups, respectively. Among SEE subjects with VF loss, both MDs demonstrated similar associations with multiple ability and performance metrics as judged by the presence/absence of a statistically significant association between the MD and the metric, the magnitude of observed associations (odds ratios, rate ratios, or regression coefficients associated with 5-dB decrements in MD), and the extent of variability in the metric explained by the model (R(2)). Similar associations of similar magnitude also were noted for the subgroup of subjects with glaucoma and subjects in whom better-eye and IVF MD differed by ≥ 2 dB. The IVF MD rarely differs from better-eye MD, and similar associations between VF loss and

  8. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    Science.gov (United States)

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench

  9. Integration of ultra-high field MRI and histology for connectome based research of brain disorders

    Directory of Open Access Journals (Sweden)

    Shan eYang

    2013-09-01

    Full Text Available Ultra-high field magnetic resonance imaging (MRI became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods seem to be ideally merged at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time the feasibility and quality of ultra-high spatial resolution (150 µm isotopic imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information.

  10. Most Efficient Spectrograph to Shoot the Southern Skies

    Science.gov (United States)

    2009-05-01

    -shooter, for a total of 350 observing nights, making it the second most requested instrument at the Very Large Telescope in this period. More information ESO's Very Large Telescope (VLT) is the world's most advanced optical instrument. It is an ensemble of four 8.2-metre telescopes located at the Paranal Observatory on an isolated mountain peak in the Atacama Desert in North Chile. The four 8.2-metre telescopes have a total of 12 focal stations where different instruments for imaging and spectroscopic observations are installed and a special station where the light of the four telescopes is combined for interferometric observations. The first VLT instrument was installed in 1998 and has been followed by 12 more in the last 10 years, distributed at the different focal stations. X-shooter is the first of the second generation of VLT instruments and replaces the workhorse-instrument FORS1, which has been successfully used for more than ten years by hundreds of astronomers. X-shooter operates at the Cassegrain focus of the Kueyen telescope (UT2). In response to an ESO Call for Proposals for second generation VLT instrumentation, ESO received three proposals for an intermediate resolution, high efficiency spectrograph. These were eventually merged into a single proposal around the present concept of X-shooter, which was approved for construction in November 2003. The Final Design Review, at which the instrument design is finalised and declared ready for construction, took place in April 2006. The first observations with the instrument at the telescope in its full configuration were on 14 March 2009. X-shooter is a joint project by Denmark, France, Italy, the Netherlands and ESO. The collaborating institutes in Denmark are the Niels Bohr and the DARK Institutes of the University of Copenhagen and the National Space Institute (Technical University of Denmark); in France GEPI at the Observatoire de Paris and APC at the Université D. Diderot, with contributions from the CEA and the

  11. Energy models. Integrated heating and cooling in different sports fields and halls; Energiamalli. Urheilupaikkojen integroitu laemmitys ja jaeaehdytys (UPILAEJAE)

    Energy Technology Data Exchange (ETDEWEB)

    Aittomaeki, A.; Maekinen, A.

    2009-07-01

    The efficient use of energy is playing an increasing role in saving natural resources and in maintaining competitiveness. The system integration plays an essential role when efficiency is maximized. Expressed in thermodynamical terms the question is about minimizing the loss of energy. When planning the integration of heating and cooling the impacts of different coupling possibilities and measurements should be compared. In this report the modeling or simulation of energy balances studies in different systems is described. In the system integration of different sports buildings the modeling parts are the following: office space with heating systems, indoor ice-skating rink, skiing tunnel, indoor swimming pool, sports-field and sport center

  12. Isocentric integration of intensity-modulated radiotherapy with electron fields improves field junction dose uniformity in postmastectomy radiotherapy.

    Science.gov (United States)

    Wright, Pauliina; Suilamo, Sami; Lindholm, Paula; Kulmala, Jarmo

    2014-08-01

    In postmastectomy radiotherapy (PMRT), the dose coverage of the planning target volume (PTV) with additional margins, including the chest wall, supraclavicular, interpectoral, internal mammary and axillar level I-III lymph nodes, is often compromised. Electron fields may improve the medial dose coverage while maintaining organ at risk (OAR) doses at an acceptable level, but at the cost of hot and cold spots at the electron and photon field junction. To improve PMRT dose coverage and uniformity, an isocentric technique combining tangential intensity-modulated (IM)RT fields with one medial electron field was implemented. For 10 postmastectomy patients isocentric IMRT with electron plans were created and compared with a standard electron/photon mix and a standard tangent technique. PTV dose uniformity was evaluated based on the tolerance range (TR), i.e. the ratio of the standard deviation to the mean dose, a dice similarity coefficient (DSC) and the 90% isodose coverage and the hot spot volumes. OAR and contralateral breast doses were also recorded. IMRT with electrons significantly improved the PTV dose homogeneity and conformity based on the TR and DSC values when compared with the standard electron/photon and tangent technique (p < 0.02). The 90% isodose coverage improved to 86% compared with 82% and 80% for the standard techniques (p < 0.02). Compared with the standard electron/photon mix, IMRT smoothed the dose gradient in the electron and photon field junction and the volumes receiving a dose of 110% or more were reduced by a third. For all three strategies, the OAR and contralateral breast doses were within clinically tolerable limits. Based on these results two-field IMRT combined with an electron field is a suitable strategy for PMRT.

  13. Project overview of OPTIMOS-EVE: the fibre-fed multi-object spectrograph for the E-ELT

    NARCIS (Netherlands)

    Navarro, R.; Chemla, F.; Bonifacio, P.; Flores, H.; Guinouard, I.; Huet, J.-M.; Puech, M.; Royer, F.; Pragt, J.H.; Wulterkens, G.; Sawyer, E.C.; Caldwell, M.E.; Tosh, I.A.J.; Whalley, M.S.; Woodhouse, G.F.W.; Spanò, P.; Di Marcantonio, P.; Andersen, M.I.; Dalton, G.B.; Kaper, L.; Hammer, F.

    2010-01-01

    OPTIMOS-EVE (OPTical Infrared Multi Object Spectrograph - Extreme Visual Explorer) is the fibre fed multi object spectrograph proposed for the European Extremely Large Telescope (E-ELT), planned to be operational in 2018 at Cerro Armazones (Chile). It is designed to provide a spectral resolution of

  14. Effect of Acoustic Spectrographic Instruction on Production of English /i/ and /I/ by Spanish Pre-Service English Teachers

    Science.gov (United States)

    Quintana-Lara, Marcela

    2014-01-01

    This study investigates the effects of Acoustic Spectrographic Instruction on the production of the English phonological contrast /i/ and / I /. Acoustic Spectrographic Instruction is based on the assumption that physical representations of speech sounds and spectrography allow learners to objectively see and modify those non-accurate features in…

  15. The Coude spectrograph and echelle scanner of the 2.7 m telescope at McDonald observatory

    Science.gov (United States)

    Tull, R. G.

    1972-01-01

    The design of the Coude spectrograph of the 2.7 m McDonald telescope is discussed. A description is given of the Coude scanner which uses the spectrograph optics, the configuration of the large echelle and the computer scanner control and data systems.

  16. Development of JNC geological disposal technical information integration system for geological environment field

    International Nuclear Information System (INIS)

    Tsuchiya, Makoto; Ueta, Shinzo; Ohashi, Toyo

    2004-02-01

    Enormous data on geology, geological structure, hydrology, geochemistry and rock properties should be obtained by various investigation/study in the geological disposal study. Therefore, 'JNC Geological Disposal Technical Information Integration System for Geological Environment Field' was developed in order to manage these data systematically and to support/promote the use of these data for the investigators concerned. The system is equipped with data base to store the information of the works and the background information of the assumptions built up in the works on each stage of data flow ('instigative', → 'data sampling' → interpretation' → conceptualization/modeling/simulation' → 'output') in the geological disposal study. In this system the data flow is shown as 'plan' composed of task' and 'work' to be done in the geological disposal study. It is possible to input the data to the database and to refer data from the database by using GUI that shows the data flow as 'plan'. The system was installed to the server computer possessed by JNC and the system utilities were checked on both the server computer and client computer also possessed by JNC. (author)

  17. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, D.B.

    2007-02-15

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  18. Quantum field theory. From operators to path integrals. 2. rev. and enl. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Kerson

    2010-07-01

    A new, updated and enhanced edition of the classic work, which was welcomed for its general approach and self-sustaining organization of the chapters. Written by a highly respected textbook writer and researcher, this book has a more general scope and adopts a more practical approach than other books. It includes applications of condensed matter physics, first developing traditional concepts, including Feynman graphs, before moving on to such key topics as functional integrals, statistical mechanics and Wilson's renormalization group. The author takes care to explain the connection between the latter and conventional perturbative renormalization. Due to the rapid advance and increase in importance of low dimensional systems, this second edition fills a gap in the market with its added discussions of low dimensional systems, including one-dimensional conductors. All the chapters have been revised, while more clarifying explanations and problems have been added. A noteworthy new topic is Polchinski's renormalization equation, which is derived, and then solved to obtain the Halpern-Huang asymptotically free scalar field. The latter has found application in the dark-energy problem in cosmology. (orig.)

  19. Quantum field theory. From operators to path integrals. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Huang, Kerson

    2010-01-01

    A new, updated and enhanced edition of the classic work, which was welcomed for its general approach and self-sustaining organization of the chapters. Written by a highly respected textbook writer and researcher, this book has a more general scope and adopts a more practical approach than other books. It includes applications of condensed matter physics, first developing traditional concepts, including Feynman graphs, before moving on to such key topics as functional integrals, statistical mechanics and Wilson's renormalization group. The author takes care to explain the connection between the latter and conventional perturbative renormalization. Due to the rapid advance and increase in importance of low dimensional systems, this second edition fills a gap in the market with its added discussions of low dimensional systems, including one-dimensional conductors. All the chapters have been revised, while more clarifying explanations and problems have been added. A noteworthy new topic is Polchinski's renormalization equation, which is derived, and then solved to obtain the Halpern-Huang asymptotically free scalar field. The latter has found application in the dark-energy problem in cosmology. (orig.)

  20. Integral-spin fields on (3+2)-de Sitter space

    International Nuclear Information System (INIS)

    Gazeau, J.; Hans, M.

    1988-01-01

    Nowadays, (3+2)-de Sitter (or anti-de Sitter space) appears as a very attractive possibility at several levels of theoretical physics. The Wigner definition of an elementary system as associated to a unitary irreducible representation of the Poincare group may be extended to the de Sitter group SO(3,2) [or ∼(SO(3,2))] without great difficulty. The constant curvature, as small as it can be, is a natural candidate to play the role of a regularization parameter with respect to the flat-space limit. Massless particles in (3+2)-de Sitter theory are composite (singletons). On the other hand, supergravity theories necessitate a (large) constant curvature. The content of this paper is group theoretical. It attempts to continue the ''a la Wigner'' program for SO(3,2), already largely broached by Fronsdal. Three recurrence formulas are presented. They permit one to build up the carrier states for representations with arbitrary integral spin. Two of them are valid for the ''massive'' representations whereas the third one is applicable to the indecomposable massless representations. In addition, other presumably indecomposable, though nonphysical, representations are studied, in relation to the existence of ''generalized'' gauge fields and divergences. The recurrence formulas also allow one to build up the invariant two-point functions or homogeneous propagators

  1. Dynamical mean-field theory and path integral renormalisation group calculations of strongly correlated electronic states

    International Nuclear Information System (INIS)

    Heilmann, D.B.

    2007-02-01

    The two-plane HUBBARD model, which is a model for some electronic properties of undoped YBCO superconductors as well as displays a MOTT metal-to-insulator transition and a metal-to-band insulator transition, is studied within Dynamical Mean-Field Theory using HIRSCH-FYE Monte Carlo. In order to find the different transitions and distinguish the types of insulator, we calculate the single-particle spectral densities, the self-energies and the optical conductivities. We conclude that there is a continuous transition from MOTT to band insulator. In the second part, ground state properties of a diagonally disordered HUBBARD model is studied using a generalisation of Path Integral Renormalisation Group, a variational method which can also determine low-lying excitations. In particular, the distribution of antiferromagnetic properties is investigated. We conclude that antiferromagnetism breaks down in a percolation-type transition at a critical disorder, which is not changed appreciably by the inclusion of correlation effects, when compared to earlier studies. Electronic and excitation properties at the system sizes considered turn out to primarily depend on the geometry. (orig.)

  2. Development of high-performance printed organic field-effect transistors and integrated circuits.

    Science.gov (United States)

    Xu, Yong; Liu, Chuan; Khim, Dongyoon; Noh, Yong-Young

    2015-10-28

    Organic electronics is regarded as an important branch of future microelectronics especially suited for large-area, flexible, transparent, and green devices, with their low cost being a key benefit. Organic field-effect transistors (OFETs), the primary building blocks of numerous expected applications, have been intensively studied, and considerable progress has recently been made. However, there are still a number of challenges to the realization of high-performance OFETs and integrated circuits (ICs) using printing technologies. Therefore, in this perspective article, we investigate the main issues concerning developing high-performance printed OFETs and ICs and seek strategies for further improvement. Unlike many other studies in the literature that deal with organic semiconductors (OSCs), printing technology, and device physics, our study commences with a detailed examination of OFET performance parameters (e.g., carrier mobility, threshold voltage, and contact resistance) by which the related challenges and potential solutions to performance development are inspected. While keeping this complete understanding of device performance in mind, we check the printed OFETs' components one by one and explore the possibility of performance improvement regarding device physics, material engineering, processing procedure, and printing technology. Finally, we analyze the performance of various organic ICs and discuss ways to optimize OFET characteristics and thus develop high-performance printed ICs for broad practical applications.

  3. Integration of Seismic and Petrophysics to Characterize Reservoirs in “ALA” Oil Field, Niger Delta

    Directory of Open Access Journals (Sweden)

    P. A. Alao

    2013-01-01

    Full Text Available In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on “ALA” field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of −2,453 to −3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.

  4. Integration of seismic and petrophysics to characterize reservoirs in "ALA" oil field, Niger Delta.

    Science.gov (United States)

    Alao, P A; Olabode, S O; Opeloye, S A

    2013-01-01

    In the exploration and production business, by far the largest component of geophysical spending is driven by the need to characterize (potential) reservoirs. The simple reason is that better reservoir characterization means higher success rates and fewer wells for reservoir exploitation. In this research work, seismic and well log data were integrated in characterizing the reservoirs on "ALA" field in Niger Delta. Three-dimensional seismic data was used to identify the faults and map the horizons. Petrophysical parameters and time-depth structure maps were obtained. Seismic attributes was also employed in characterizing the reservoirs. Seven hydrocarbon-bearing reservoirs with thickness ranging from 9.9 to 71.6 m were delineated. Structural maps of horizons in six wells containing hydrocarbon-bearing zones with tops and bottoms at range of -2,453 to -3,950 m were generated; this portrayed the trapping mechanism to be mainly fault-assisted anticlinal closures. The identified prospective zones have good porosity, permeability, and hydrocarbon saturation. The environments of deposition were identified from log shapes which indicate a transitional-to-deltaic depositional environment. In this research work, new prospects have been recommended for drilling and further research work. Geochemical and biostratigraphic studies should be done to better characterize the reservoirs and reliably interpret the depositional environments.

  5. Carbon Stock in Integrated Field Laboratory Faculty of Agriculture University of Lampung

    Directory of Open Access Journals (Sweden)

    Irwan Sukri Banuwa

    2016-05-01

    Full Text Available This study aimed to determine the amount of carbon stock and CO2 plant uptake in the Integrated Field Laboratory (IFL Faculty of Agriculture University of Lampung. The research was conducted from April to November 2015. The study was arranged in a completely randomized block design (CRBD, consisting of five land units as treatment with four replications for each treatment. Biomass of woody plants was estimated using allometric equation, biomass of understorey plants was estimated using plant dry weight equation, and organic C content in plants and soils were analyzed using a Walkey and Black method. The results showed that land unit consisting of densely woody plants significantly affects total biomass of woody plants, organic C content in woody plants and total carbon content (above and below ground. The highest amount of woody plant biomass was observed in land unit 5, i.e. 1,196.88 Mg ha-1, and above ground total carbon was 437.19 Mg ha-1. IFL Faculty of Agriculture University of Lampung has a total carbon stock of 2,051.90 Mg and capacity to take up total CO2 of 6,656.88 Mg.

  6. High-performance integrated field-effect transistor-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Adzhri, R., E-mail: adzhri@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Md Arshad, M.K., E-mail: mohd.khairuddin@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Microelectronic Engineering (SoME), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Gopinath, Subash C.B., E-mail: subash@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); School of Bioprocess Engineering (SBE), Universiti Malaysia Perlis (UniMAP), Arau, Perlis (Malaysia); Ruslinda, A.R., E-mail: ruslinda@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Fathil, M.F.M., E-mail: faris.fathil@gmail.com [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Ayub, R.M., E-mail: ramzan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Nor, M. Nuzaihan Mohd, E-mail: m.nuzaihan@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia); Voon, C.H., E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis (Malaysia)

    2016-04-21

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  7. Integration of Modern Information Technologies in the Field of Financial Accounting

    Directory of Open Access Journals (Sweden)

    Adrian LUPASC

    2011-11-01

    Full Text Available Financial accounting activities are currently influenced as many other important areas that characterize and surrounds the activities within each economic entity, the avalanche of modern information technologies, which are able to improve specific business processes and to ensure future business success. Approach analysis of the impact of new technologies on this field should be so as a starting point to identify the opportunities and the benefits they would bring to specific activities. Information and communication technologies are in use both at the individual level and at the organizational level with the flexibility of the increasingly high, using a huge volume of information that financial accounting with direct impact on all human activities. Basically, it has already made the passage to a new stage:the global network society, whose main features are digitizing and interconnectivity. In this sense, this paper has as its main objective of examining the impact of modern information technologies may have on the financial accounting domain and the identification and submission directions for their integration within organizations.

  8. High-performance integrated field-effect transistor-based sensors

    International Nuclear Information System (INIS)

    Adzhri, R.; Md Arshad, M.K.; Gopinath, Subash C.B.; Ruslinda, A.R.; Fathil, M.F.M.; Ayub, R.M.; Nor, M. Nuzaihan Mohd; Voon, C.H.

    2016-01-01

    Field-effect transistors (FETs) have succeeded in modern electronics in an era of computers and hand-held applications. Currently, considerable attention has been paid to direct electrical measurements, which work by monitoring changes in intrinsic electrical properties. Further, FET-based sensing systems drastically reduce cost, are compatible with CMOS technology, and ease down-stream applications. Current technologies for sensing applications rely on time-consuming strategies and processes and can only be performed under recommended conditions. To overcome these obstacles, an overview is presented here in which we specifically focus on high-performance FET-based sensor integration with nano-sized materials, which requires understanding the interaction of surface materials with the surrounding environment. Therefore, we present strategies, material depositions, device structures and other characteristics involved in FET-based devices. Special attention was given to silicon and polyaniline nanowires and graphene, which have attracted much interest due to their remarkable properties in sensing applications. - Highlights: • Performance of FET-based biosensors for the detection of biomolecules is presented. • Silicon nanowire, polyaniline and graphene are the highlighted nanoscaled materials as sensing transducers. • The importance of surface material interaction with the surrounding environment is discussed. • Different device structure architectures for ease in fabrication and high sensitivity of sensing are presented.

  9. Practical Examples of an Integrated Field Study Program at Mt. Fuji: Geosciences and the Arts

    Science.gov (United States)

    Ito, T.; Kamikuri, S. I.; Otsuji, H.; Kataguchi, N.; Maruyama, H.; Hashiura, H.

    2017-12-01

    Mt. Fuji is a symbol of existence for the Japanese and it also has been a religiously revered subject. In addition, as represented by the ukiyo-e of Hokusai and Hiroshige, it is a subject of paintings, as well as of various types of literary expression such as waka, haiku and novels. Historically, there was a time when Mt. Fuji was used as a symbol of the integration of the country; and it has long reflected the culture, life and thoughts of the Japanese. On another level, from the Earth scientific point of view, Mt. Fuji is one of the most active volcanoes in Japan. Teacher training colleges in Japan have created educational programs for all subjects taught at school. However, as there is no effective linkage among these subjects, students may have different opinions on them according to their curriculum. In this study, we adopted a multifaceted learning approach toward that most symbolic icon of our country. In FY2014 and FY2016, a course created by the College of Education at Ibaraki University, called "Fieldwork on Geology," was conducted at and around Mt. Fuji. In addition to conducting fieldwork from the viewpoint of earth science, it also had abundant artistic content. Academics in the fields of earth science, art and pedagogy worked closely together from the planning stage and participated in a field study with 25 university students. Specifically, we focused on how the experience of sketching a landscape affects field observations by broadening the viewpoint and deepening the understanding of students. To ascertain the bidirectional educational effects between earth sciences and art, students were asked: 1) to express an image of Mt. Fuji, and 2) to appreciate paintings of Mt. Fuji and express the information they garnered from the paintings, before and after the fieldwork. These two exercises are considered as providing insights into how the students' understanding had changed. In addition, reports and impressions submitted by the students were used as

  10. Field Integration of Worldview-3 as new Frontier of Mineral Exploration for Tropical Zone

    Science.gov (United States)

    Mahanta, P.; Maiti, S.

    2017-12-01

    Worldview-3 (WV-3) is a newly launched satellite program (2014) with total of 8 VNIR bands and 8 SWIR bands covering all possible absorption features of alteration minerals. Therefore integration of WV-3 dataset with conventional geological studies can be new frontier for mineral exploration. In the present study, we successfully accomplished that by identifying alteration mineral assemblage, field investigation, XRD, XRF and microscopic study etc. The chosen study area SPSZ, 120km long and 4-5km width corridor of highly sheared and deformed rock masses is unexplored in comparison to adjacent Singhbhum Shear Zone (SSZ). It demarcates the boundary between Proterozoic Chottanagpur Granite Gneissic Complex (CGGC) in north and Paleo proterozoic North Singhbhum Mobile belt (NSMB) in south. Discrete local studies indicated the presence of U, REE, Clay, Fe & Mn along with some Au and other polymetallic deposits of low concentration. Earlier attempts of remote sensing studies were hindered due to coarse spatial resolution, similarity between spectra of vegetation and alteration group of minerals like clay and mica, and lack of ground truthing with field spectra and laboratory analysis. Here involving WV-3, we identified and mapped alteration minerals kaolinite, montmorillonite, pyrophyllite, white mica, sericite, goethite, lemonite, hematite and quartz with better resolution and accuracy (78%). Further, field spectra and XRD analyses supports these results and confirm the presence of alterations. XRF analysis identified the presence of Cu (0.06±0.03), Ti (1.7±1), and V (0.03±0.02) anomaly pointing towards possible mineralization. Occurrences of alteration as vertically dipping and alternating with iron (red and black) and mica rich (white and gray) zones in hills as well as microscopic evidences of chloritization and sericitization of feldspars were collectively pointing towards their hydrothermal origin. Finally, we conclude that WV-3 will add a new direction to

  11. DMD-based multi-object spectrograph on Galileo telescope

    Science.gov (United States)

    Zamkotsian, Frederic; Spano, Paolo; Lanzoni, Patrick; Bon, William; Riva, Marco; Nicastro, Luciano; Molinari, Emilio; Di Marcantonio, Paolo; Zerbi, Filippo; Valenziano, Luca

    2013-03-01

    Next-generation infrared astronomical instrumentation for ground-based and space telescopes could be based on MOEMS programmable slit masks for multi-object spectroscopy (MOS). This astronomical technique is used extensively to investigate the formation and evolution of galaxies. We propose to develop a 2048x1080 DMD-based MOS instrument to be mounted on the Galileo telescope and called BATMAN. A two-arm instrument has been designed for providing in parallel imaging and spectroscopic capabilities. The two arms with F/4 on the DMD are mounted on a common bench, and an upper bench supports the detectors thanks to two independent hexapods. Very good optical quality on the DMD and the detectors will be reached. ROBIN, a BATMAN demonstrator, has been designed, realized and integrated. It permits to determine the instrument integration procedure, including optics and mechanics integration, alignment procedure and optical quality. First images have been obtained and measured. A DMD pattern manager has been developed in order to generate any slit mask according to the list of objects to be observed; spectra have been generated and measured. Observation strategies will be studied and demonstrated for the scientific optimization strategy over the whole FOV. BATMAN on the sky is of prime importance for characterizing the actual performance of this new family of MOS instruments, as well as investigating the operational procedures on astronomical objects. This instrument will be placed on the Telescopio Nazionale Galileo at the beginning of next year, in 2014.

  12. Evaluation of spectrographic standards for the carrier-distillation analysis of PuO2

    International Nuclear Information System (INIS)

    Martell, C.J.; Myers, W.M.

    1976-05-01

    Three plutonium metals whose impurity contents have been accurately determined are used to evaluate spectrographic standards. Best results are obtained when (1) highly impure samples are diluted, (2) the internal standard, cobalt, is used, (3) a linear curve is fitted to the standard data that bracket the impurity concentration, and (4) plutonium standards containing 22 impurities are used

  13. Improvement of spectrographic analyses by the use of a mechanical packer in the arc distillation technique

    International Nuclear Information System (INIS)

    Buffereau, M.; Deniaud, S.; Pichotin, B.; Violet, R.

    1965-01-01

    One studies improvement of spectrographic analysis by the 'carrier distillation' method with the help of a mechanical device. Experiments and advantages of such an apparatus are given (precision and reproducibility improvement, operator factor suppression). A routine apparatus (French patent no 976.493) is described. (authors) [fr

  14. Performances of X-shooter, the new wide-band intermediate resolution spectrograph at the VLT

    NARCIS (Netherlands)

    Vernet, J.; Dekker, H.; D'Odorico, S.; Mason, E.; Di Marcantonio, P.; Downing, M.; Elswijk, E.; Finger, G.; Fischer, G.; Kerber, F.; Kern, L.; Lizon, J.-L.; Lucuix, C.; Mainieri, V.; Modigliani, A.; Patat, F.; Ramsay, S.; Santin, P.; Vidali, M.; Groot, P.; Guinouard, I.; Hammer, F.; Kaper, L.; Kjærgaard-Rasmussen, P.; Navarro, R.; Randich, S.; Zerbi, F.

    2010-01-01

    X-shooter is the first second-generation instrument newly commissioned a the VLT. It is a high efficiency single target intermediate resolution spectrograph covering the range 300 - 2500 nm in a single shot. We summarize the main characteristics of the instrument and present its performances as

  15. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    NARCIS (Netherlands)

    Vernet, J.; Dekker, H.; D'Odorico, S.; Kaper, L.; Kjaergaard, P.; Hammer, F.; Randich, S.; Zerbi, F.; Groot, P.J.; Hjorth, J.; Guinouard, I.; Navarro, R.; Adolfse, T.; Albers, P.W.; Amans, J.-P.; Andersen, J.J.; Andersen, M.I.; Binetruy, P.; Bristow, P.; Castillo, R.; Chemla, F.; Christensen, L.; Conconi, P.; Conzelmann, R.; Dam, J.; De Caprio, V.; de Ugarte Postigo, A.; Delabre, B.; Di Marcantonio, P.; Downing, M.; Elswijk, E.; Finger, G.; Fischer, G.; Flores, H.; François, P.; Goldoni, P.; Guglielmi, L.; Haigron, R.; Hanenburg, H.; Hendriks, I.; Horrobin, M.; Horville, D.; Jessen, N.C.; Kerber, F.; Kern, L.; Kiekebusch, M.; Kleszcz, P.; Klougart, J.; Kragt, J.; Larsen, H.H.; Lizon, J.-L.; Lucuix, C.; Mainieri, V.; Manuputy, R.; Martayan, C.; Mason, E.; Mazzoleni, R.; Michaelsen, N.; Modigliani, A.; Moehler, S.; Møller, P.; Norup Sørensen, A.; Nørregaard, P.; Péroux, C.; Patat, F.; Pena, E.; Pragt, J.; Reinero, C.; Rigal, F.; Riva, M.; Roelfsema, R.; Royer, F.; Sacco, G.; Santin, P.; Schoenmaker, T.; Spano, P.; Sweers, E.; ter Horst, R.; Tintori, M.; Tromp, N.; van Dael, P.; van Vliet, H.; Venema, L.; Vidali, M.; Vinther, J.; Vola, P.; Winters, R.; Wistisen, D.; Wulterkens, G.; Zacchei, A.

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 to

  16. X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope

    DEFF Research Database (Denmark)

    Vernet, J.; Dekker, H.; D'Odorico, S.

    2011-01-01

    X-shooter is the first 2nd generation instrument of the ESO Very Large Telescope (VLT). It is a very efficient, single-target, intermediate-resolution spectrograph that was installed at the Cassegrain focus of UT2 in 2009. The instrument covers, in a single exposure, the spectral range from 300 t...

  17. Technical aspects of the Space Telescope Imaging Spectrograph Repair (STIS-R)

    Science.gov (United States)

    Rinehart, S. A.; Domber, J.; Faulkner, T.; Gull, T.; Kimble, R.; Klappenberger, M.; Leckrone, D.; Niedner, M.; Proffitt, C.; Smith, H.; Woodgate, B.

    2008-07-01

    In August 2004, the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS) ceased operation due to a failure of the 5V mechanism power converter in the Side 2 Low Voltage Power Supply (LVPS2). The failure precluded movement of any STIS mechanism and, because of the earlier (2001) loss of the Side 1 electronics chain, left the instrument shuttered and in safe mode after 7.5 years of science operations. A team was assembled to analyze the fault and to determine if STIS repair (STIS-R) was feasible. The team conclusively pinpointed the Side 2 failure to the 5V mechanism converter, and began studying EVA techniques for opening STIS during Servicing Mission 4 (SM4) to replace the failed LVPS2 board. The restoration of STIS functionality via surgical repair by astronauts has by now reached a mature and final design state, and will, along with a similar repair procedure for the Advanced Camera for Surveys (ACS), represent a first for Hubble servicing. STIS-R will restore full scientific functionality of the spectrograph on Side 2, while Side 1 will remain inoperative. Because of the high degree of complementarity between STIS and the new Cosmic Origins Spectrograph (COS, to be installed during SM4)), successful repair of the older spectrograph is an important scientific objective. In this presentation, we focus on the technical aspects associated with STIS-R.

  18. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  19. Integrating watershed hydrology and economics to establish a local market for water quality improvement: A field experiment

    Science.gov (United States)

    Innovative market mechanisms are being increasingly recognized as effective decision-making institutions to incorporate the value of ecosystem services into the economy. We present a field experiment that integrates an economic auction and a biophysical water flux model to develo...

  20. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using