Numerical solution of integral equations, describing mass spectrum of vector mesons
Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.
1988-01-01
The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data
Moiseiwitsch, B L
2005-01-01
Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco
Using fundamental equations to describe basic phenomena
Jakobsen, Arne; Rasmussen, Bjarne D.
1999-01-01
When the fundamental thermodynamic balance equations (mass, energy, and momentum) are used to describe the processes in a simple refrigeration system, then one finds that the resulting equation system will have a degree of freedom equal to one. Further investigations reveal that it is the equatio...
Brizzi, R.; Fabre de la Ripelle, M.; Lassaut, M.
1999-01-01
The binding energies and root mean square radii obtained from the Integro-Differential Equation Approach (IDEA) and from the Weight Function Approximation (WFA) of the IDEA for an even number of bosons and for 12 C, 16 O and 40 Ca are compared to those recently obtained by the Variational Monte Carlo, Fermi Hypernetted Chain and Coupled Cluster expansion method with model potentials. The IDEA provides numbers very similar to those obtained by other methods although it takes only two-body correlations into account. The analytical expression of the wave function for the WFA is given for bosons in ground state when the interaction pair is outside the potential range. Due to its simple structure, the equations of the IDEA can easily be extended to realistic interaction for nuclei like it has already been done for the tri-nucleon and the 4 He. (authors)
Handbook of integral equations
Polyanin, Andrei D
2008-01-01
This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.
Wang, Pan; Tian, Bo; Jiang, Yan; Wang, Yu-Feng
2013-01-01
For describing the dynamics of alpha helical proteins with internal molecular excitations, nonlinear couplings between lattice vibrations and molecular excitations, and spin excitations in one-dimensional isotropic biquadratic Heisenberg ferromagnetic spin with the octupole–dipole interactions, we consider an inhomogeneous generalized fourth-order nonlinear Schrödinger equation. Based on the Ablowitz–Kaup–Newell–Segur system, infinitely many conservation laws for the equation are derived. Through the auxiliary function, bilinear forms and N-soliton solutions for the equation are obtained. Interactions of solitons are discussed by means of the asymptotic analysis. Effects of linear inhomogeneity on the interactions of solitons are also investigated graphically and analytically. Since the inhomogeneous coefficient of the equation h=α x+β, the soliton takes on the parabolic profile during the evolution. Soliton velocity is related to the parameter α, distance scale coefficient and biquadratic exchange coefficient, but has no relation with the parameter β. Soliton amplitude and width are only related to α. Soliton position is related to β
Geophysical interpretation using integral equations
Eskola, L
1992-01-01
Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu med to have a back...
Integration of Chandrasekhar's integral equation
Tanaka, Tasuku
2003-01-01
We solve Chandrasekhar's integration equation for radiative transfer in the plane-parallel atmosphere by iterative integration. The primary thrust in radiative transfer has been to solve the forward problem, i.e., to evaluate the radiance, given the optical thickness and the scattering phase function. In the area of satellite remote sensing, our problem is the inverse problem: to retrieve the surface reflectance and the optical thickness of the atmosphere from the radiance measured by satellites. In order to retrieve the optical thickness and the surface reflectance from the radiance at the top-of-the atmosphere (TOA), we should express the radiance at TOA 'explicitly' in the optical thickness and the surface reflectance. Chandrasekhar formalized radiative transfer in the plane-parallel atmosphere in a simultaneous integral equation, and he obtained the second approximation. Since then no higher approximation has been reported. In this paper, we obtain the third approximation of the scattering function. We integrate functions derived from the second approximation in the integral interval from 1 to ∞ of the inverse of the cos of zenith angles. We can obtain the indefinite integral rather easily in the form of a series expansion. However, the integrals at the upper limit, ∞, are not yet known to us. We can assess the converged values of those series expansions at ∞ through calculus. For integration, we choose coupling pairs to avoid unnecessary terms in the outcome of integral and discover that the simultaneous integral equation can be deduced to the mere integral equation. Through algebraic calculation, we obtain the third approximation as a polynomial of the third degree in the atmospheric optical thickness
Integration rules for scattering equations
Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.
2015-01-01
As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.
Study of nonlinear waves described by the cubic Schroedinger equation
Walstead, A.E.
1980-01-01
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables
Study of nonlinear waves described by the cubic Schroedinger equation
Walstead, A.E.
1980-03-12
The cubic Schroedinger equation (CSE) is ubiquitous as a model equation for the long-time evolution of finite-amplitude near-monochromatic dispersive waves. It incorporates the effects of the radiation field pressure on the constitutive properties of the supporting medium in a self-consistent manner. The properties of the uniformly transiating periodic wave solutions of the one-dimensional CSE are studied here. These (so-called cnoidal) waves are characterized by the values of four parameters. Whitham's averaged variational principle is used to derive a system of quasilinear evolution equations (the modulational equations) for the values of these parameters when they are slowly varying in space and time. Explicit expressions for the characteristic velocities of the modulational equations are obtained for the full set of cnoidal waves. Riemann invariants are obtained for several limits for the stable case, and growth rates are obtained for several limits, including the solitary wave chain, for the unstable case. The results for several nontrivial limiting cases agree with those obtained by independent methods by others. The dynamics of the CSE generalized to two spatial dimensions are studied for the unstable case. A large class of similarity solutions with cylindrical symmetry are obtained systematically using infinitesimal transformation group techniques. The methods are adapted to obtain the symmetries of the action functional of the CSE and to deduce nine integral invariants. A numerical study of the self-similar solutions reveals that they are modulationally unstable and that singularities dominate the dynamics of the CSE in two dimensions. The CSE is derived using perturbation theory for a specific problem in plasma physics: the evolution of the envelope of a near-monochromatic electromagnetic wave in a cold magnetized plasma. 13 figures, 2 tables.
Multidimensional singular integrals and integral equations
Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S
1965-01-01
Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals
New constitutive equations to describe infinitesimal elastic-plastic deformations
Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.
1983-01-01
A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)
Li Pengfei; Hu Gang; Chen Runsheng
2008-01-01
Gene transcriptional regulation (TR) processes are often described by coupled nonlinear ordinary differential equations (ODEs). When the dimension of TR circuits is high (e.g. n ≥ 3) the motions of the corresponding ODEs may, very probably, show self-sustained oscillations and chaos. On the other hand, chaoticity may be harmful for the normal biological functions of TR processes. In this letter we numerically study the dynamics of 3-gene TR ODEs in great detail, and investigate many 4-, 5-, and 10-gene TR systems by randomly choosing figures and parameters in the conventionally accepted ranges. And we find that oscillations are very seldom and no chaotic motion is observed, even if the dimension of systems is sufficiently high (n ≥ 3). It is argued that the observation of nonchaoticity of these ODEs agrees with normal functions of actual TR processes
On integrability of the Killing equation
Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori
2018-04-01
Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.
Integral equations and their applications
Rahman, M
2007-01-01
For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...
Completely integrable operator evolutionary equations
Chudnovsky, D.V.
1979-01-01
The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)
Numerical treatment of linearized equations describing inhomogeneous collisionless plasmas
Lewis, H.R.
1979-01-01
The equations governing the small-signal response of spatially inhomogeneous collisionless plasmas have practical significance in physics, for example in controlled thermonuclear fusion research. Although the solutions are very complicated and the equations are different to solve numerically, effective methods for them are being developed which are applicable when the equilibrium involves only one nonignorable coordinate. The general theoretical framework probably will provide a basis for progress when there are two or three nonignorable coordinates
Asymmetric systems described by a pair of local covariant wave equations
Mallik, S [Bern Univ. (Switzerland). Inst. fuer Theoretische Physik
1979-07-16
A class of asymmetric solutions of the integrability conditions for systems obeying the Leutwyler-Stern pair of covariant wave equations is obtained. The class of unequal-mass systems described by these solutions does not embed the particle-antiparticle system behaving as a relativistic harmonic oscillator.
Integral equation methods for electromagnetics
Volakis, John
2012-01-01
This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo
Integral equation for Coulomb problem
Sasakawa, T.
1986-01-01
For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems
Feynman integrals and difference equations
Moch, S.; Schneider, C.
2007-09-01
We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)
Feynman integrals and difference equations
Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation
2007-09-15
We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)
Adaptive integral equation methods in transport theory
Kelley, C.T.
1992-01-01
In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented
Kepner, Gordon R
2010-04-13
The numerous natural phenomena that exhibit saturation behavior, e.g., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches. For the general saturation curve, described in terms of its independent (x) and dependent (y) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study. The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical
An integral equation arising in two group neutron transport theory
Cassell, J S; Williams, M M R
2003-01-01
An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically
Solutions to the equations describing materials with competing quadratic and cubic nonlinearities
Li-Na, Zhao; Ji, Lin; Zi-Shuang, Tong
2009-01-01
The Lie group theoretical method is used to study the equations describing materials with competing quadratic and cubic nonlinearities. The equations share some of the nice properties of soliton equations. From the elliptic functions expansion method, we obtain large families of analytical solutions, in special cases, we have the periodic, kink and solitary solutions of the equations. Furthermore, we investigate the stability of these solutions under the perturbation of amplitude noises by numerical simulation
Cosmological model with viscosity media (dark fluid) described by an effective equation of state
Ren Jie; Meng Xinhe
2006-01-01
A generally parameterized equation of state (EOS) is investigated in the cosmological evolution with bulk viscosity media modelled as dark fluid, which can be regarded as a unification of dark energy and dark matter. Compared with the case of the perfect fluid, this EOS has possessed four additional parameters, which can be interpreted as the case of the non-perfect fluid with time-dependent viscosity or the model with variable cosmological constant. From this general EOS, a completely integrable dynamical equation to the scale factor is obtained with its solution explicitly given out. (i) In this parameterized model of cosmology, for a special choice of the parameters we can explain the late-time accelerating expansion universe in a new view. The early inflation, the median (relatively late time) deceleration, and the recently cosmic acceleration may be unified in a single equation. (ii) A generalized relation of the Hubble parameter scaling with the redshift is obtained for some cosmology interests. (iii) By using the SNe Ia data to fit the effective viscosity model we show that the case of matter described by p=0 plus with effective viscosity contributions can fit the observational gold data in an acceptable level
Stochastic integration and differential equations
Protter, Philip E
2003-01-01
It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...
Linear integral equations and soliton systems
Quispel, G.R.W.
1983-01-01
A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)
Completely integrable operator evolution equations. II
Chudnovsky, D.V.
1979-01-01
The author continues the investigation of operator classical completely integrable systems. The main attention is devoted to the stationary operator non-linear Schroedinger equation. It is shown that this equation can be used for separation of variables for a large class of completely integrable equations. (Auth.)
Transformation properties of the integrable evolution equations
Konopelchenko, B.G.
1981-01-01
Group-theoretical properties of partial differential equations integrable by the inverse scattering transform method are discussed. It is shown that nonlinear transformations typical to integrable equations (symmetry groups, Baecklund-transformations) and these equations themselves are contained in a certain universal nonlinear transformation group. (orig.)
Single particle dynamics of many-body systems described by Vlasov-Fokker-Planck equations
Frank, T.D.
2003-01-01
Using Langevin equations we describe the random walk of single particles that belong to particle systems satisfying Vlasov-Fokker-Planck equations. In doing so, we show that Haissinski distributions of bunched particles in electron storage rings can be derived from a particle dynamics model
Shore, B.W.; Sacks, R.; Karr, T.
1987-01-01
This memo discusses the equations of motion used to describe multilevel molecular excitation induced by Raman transitions. These equations are based upon the time-dependent Schroedinger equation expressed in a basis of molecular energy states. A partition of these states is made into two sets, those that are far from resonance (and hence unpopulated) and those that are close to resonance, either by one-photon transition or two-photon (Raman) processes. By adiabatic elimination an effective Schroedinger equation is obtained for the resonance states alone. The effective Hamiltonian is expressible in terms of a polarizibility operator
An integral transform of the Salpeter equation
Krolikowski, W.
1980-03-01
We find a new form of relativistic wave equation for two spin-1/2 particles, which arises by an integral transformation (in the position space) of the wave function in the Salpeter equation. The non-locality involved in this transformation is extended practically over the Compton wavelength of the lighter of two particles. In the case of equal masses the new equation assumes the form of the Breit equation with an effective integral interaction. In the one-body limit it reduces to the Dirac equation also with an effective integral interaction. (author)
Integral equations with contrasting kernels
Theodore Burton
2008-01-01
Full Text Available In this paper we study integral equations of the form $x(t=a(t-\\int^t_0 C(t,sx(sds$ with sharply contrasting kernels typified by $C^*(t,s=\\ln (e+(t-s$ and $D^*(t,s=[1+(t-s]^{-1}$. The kernel assigns a weight to $x(s$ and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for $a\\in L^2[0,\\infty$, then solutions are largely indistinguishable regardless of which kernel is used. This is a surprise and it leads us to study the essential differences. In fact, those differences become large as the magnitude of $a(t$ increases. The form of the kernel alone projects necessary conditions concerning the magnitude of $a(t$ which could result in bounded solutions. Thus, the next project is to determine how close we can come to proving that the necessary conditions are also sufficient. The third project is to show that solutions will be bounded for given conditions on $C$ regardless of whether $a$ is chosen large or small; this is important in real-world problems since we would like to have $a(t$ as the sum of a bounded, but badly behaved function, and a large well behaved function.
Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.
2017-10-01
This article proposes the generalized model of Van der Pol — Duffing equation for describing the relaxation oscillations in local brain hemodynamics. This equation connects the velocity and pressure of blood flow in cerebral vessels. The equation is individual for each patient, since the coefficients are unique. Each set of coefficients is built based on clinical data obtained during neurosurgical operation in Siberian Federal Biomedical Research Center named after Academician E. N. Meshalkin. The equation has solutions of different structure defined by the coefficients and right side. We investigate the equations for different patients considering peculiarities of their vessel systems. The properties of approximate analytical solutions are studied. Amplitude-frequency and phase-frequency characteristics are built for the small-dimensional solution approximations.
Integrable discretizations of the short pulse equation
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.
Baecklund transformations for integrable lattice equations
Atkinson, James
2008-01-01
We give new Baecklund transformations (BTs) for some known integrable (in the sense of being multidimensionally consistent) quadrilateral lattice equations. As opposed to the natural auto-BT inherent in every such equation, these BTs are of two other kinds. Specifically, it is found that some equations admit additional auto-BTs (with Baecklund parameter), whilst some pairs of apparently distinct equations admit a BT which connects them
ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY
Enrique Gonzalo Reyes Garcia
2004-01-01
ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...
Asymptotic integration of differential and difference equations
Bodine, Sigrun
2015-01-01
This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...
Integrable boundary conditions and modified Lax equations
Avan, Jean; Doikou, Anastasia
2008-01-01
We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix
A simple equation for describing the temperature dependent growth of free-floating macrophytes
Heide, van Tj.; Roijackers, R.M.M.; Nes, van E.H.; Peeters, E.T.H.M.
2006-01-01
Temperature is one of the most important factors determining growth rates of free-floating macrophytes in the field. To analyse and predict temperature dependent growth rates of these pleustophytes, modelling may play an important role. Several equations have been published for describing
Feynman path integral related to stochastic schroedinger equation
Belavkin, V.P.; Smolyanov, O.G.
1998-01-01
The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru
Savovic, S.; Djordjevich, A.; Ristic, G.
2012-01-01
A theoretical evaluation of the properties and processes affecting the radon transport from subsurface soil into buildings is presented in this work. The solution of the relevant transport equation is obtained using the explicit finite difference method (EFDM). Results are compared with analytical steady-state solution reported in the literature. Good agreement is found. It is shown that EFDM is effective and accurate for solving the equation that describes radon diffusion, advection and decay during its transport from subsurface to buildings, which is especially important when arbitrary initial and boundary conditions are required. (authors)
Guidi, Leonardo F.; Marchetti, D.H.U.
2003-01-01
We establish a comparison between Rakib-Sivashinsky and Michelson-Sivashinsky quasilinear parabolic differential equations governing the weak thermal limit of flame front propagating in channels. For the former equation, we give a complete description of all steady solutions and present their local and global stability analysis. For the latter, bi-coalescent and interpolating unstable steady solutions are introduced and shown to be more numerous than the previous known coalescent solutions. These facts are argued to be responsible for the disagreement between the observed dynamics in numerical experiments and the exact (linear) stability analysis and give ingredients to construct quasi-stable solutions describing parabolic steadily propagating flame with centered tip
Constitutive equations for describing high-temperature inelastic behavior of structural alloys
Robinson, D.N.; Pugh, C.E.; Corum, J.M.
1976-01-01
This paper addresses constitutive equations for the description of inelastic behavior of LMFBR structural alloys at elevated temperatures. Both elastic-plastic (time-independent) and creep (time-dependent) deformations are considered for types 304 and 316 stainless steel and 2 1 / 4 Cr--1 Mo steel. The constitutive equations identified for interim use in design analyses are described along with the assumptions and data on which they are based. Areas where improvements are needed are identified, and some alternate theories that are being pursued are outlined
Five Levels of Curriculum Integration Defined, Refined, and Described.
Schumacher, Donna H.
1995-01-01
Provides a description of five levels of curriculum integration at the middle level, specifically: departmentalization, reinforcement, complementary or shared units, webbed, and integrated themes. Discusses curriculum integration in relation to preservice and inservice programs, common planning time, team composition, time issues, and…
Counting master integrals. Integration by parts vs. functional equations
Kniehl, Bernd A.; Tarasov, Oleg V.
2016-01-01
We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.
Scattering integral equations and four nucleon problem
Narodetskii, I.M.
1980-01-01
Existing results from the application of integral equation technique to the four-nucleon bound states and scattering are reviewed. The first numerical calculations of the four-body integral equations have been done ten years ago. Yet, it is still widely believed that these equations are too complicated to solve numerically. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. The presentation is based on the quasiparticle approach. This permits a simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt method of the Fredholm integral equation theory. The first part of this review contains a detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the kernel of the four-body equations. The second part contains the discussion of the four-body quasiparticle equations and of the resed forullts obtain bound states and scattering
Coupling Integrable Couplings of an Equation Hierarchy
Wang Hui; Xia Tie-Cheng
2013-01-01
Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)
Till, Bernie C; Driessen, Peter F
2014-01-01
Starting from first principles, we derive the telegraph equation to describe the propagation of sound waves in rigid tubes by using a simple approach that yields a lossy transmission line model with frequency-independent parameters. The approach is novel in the sense that it has not been found in the literature or textbooks. To derive the lossy acoustic telegraph equation from the lossless wave equation, we need only to relax the assumption that the dynamical variables are constant over the entire cross-sectional area of the tube. In this paper, we do this by introducing a relatively narrow boundary layer at the wall of the tube, over which the dynamical variables decrease linearly from the constant value to zero. This allows us to make very simple corrections to the lossless case, and to express them in terms of two parameters, namely the viscous diffusion time constant and the thermal diffusion time constant. The coefficients of the resulting telegraph equation are frequency-independent. A comparison with the telegraph equation for the electrical transmission line establishes precise relationships between the electrical circuit elements and the physical properties of the fluid. These relationships are thus proven a posteriori rather than asserted a priori. In this way, we arrive at an instructive and useful derivation of the acoustic telegraph equation, which takes viscous damping and thermal dissipation into account, and is accessible to students at the undergraduate level. This derivation does not resort to the combined heavy machinery of fluid dynamics and thermodynamics, does not assume that the waveforms are sinusoidal, and does not assume any particular cross-sectional shape of the tube. Surprisingly, we have been unable to find a comparable treatment in the standard introductory physics and acoustics texts, or in the literature. (paper)
Walcott, Sam
2014-10-01
Molecular motors, by turning chemical energy into mechanical work, are responsible for active cellular processes. Often groups of these motors work together to perform their biological role. Motors in an ensemble are coupled and exhibit complex emergent behavior. Although large motor ensembles can be modeled with partial differential equations (PDEs) by assuming that molecules function independently of their neighbors, this assumption is violated when motors are coupled locally. It is therefore unclear how to describe the ensemble behavior of the locally coupled motors responsible for biological processes such as calcium-dependent skeletal muscle activation. Here we develop a theory to describe locally coupled motor ensembles and apply the theory to skeletal muscle activation. The central idea is that a muscle filament can be divided into two phases: an active and an inactive phase. Dynamic changes in the relative size of these phases are described by a set of linear ordinary differential equations (ODEs). As the dynamics of the active phase are described by PDEs, muscle activation is governed by a set of coupled ODEs and PDEs, building on previous PDE models. With comparison to Monte Carlo simulations, we demonstrate that the theory captures the behavior of locally coupled ensembles. The theory also plausibly describes and predicts muscle experiments from molecular to whole muscle scales, suggesting that a micro- to macroscale muscle model is within reach.
Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel
2009-11-01
The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first
Integrable peakon equations with cubic nonlinearity
Hone, Andrew N W; Wang, J P
2008-01-01
We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)
On a Volterra Stieltjes integral equation
P. T. Vaz
1990-01-01
Full Text Available The paper deals with a study of linear Volterra integral equations involving Lebesgue-Stieltjes integrals in two independent variables. The authors prove an existence theorem using the Banach fixed-point principle. An explicit example is also considered.
Xiang-Guo, Meng; Ji-Suo, Wang; Hong-Yi, Fan; Cheng-Wei, Xia
2016-04-01
We solve the fermionic master equation for a thermal bath to obtain its explicit Kraus operator solutions via the fermionic state approach. The normalization condition of the Kraus operators is proved. The matrix representation for these solutions is obtained, which is incongruous with the result in the book completed by Nielsen and Chuang [Quantum Computation and Quantum Information, Cambridge University Press, 2000]. As especial cases, we also present the Kraus operator solutions to master equations for describing the amplitude-decay model and the diffusion process at finite temperature. Project supported by the National Natural Science Foundation of China (Grant No. 11347026), the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2013AM012 and ZR2012AM004), and the Research Fund for the Doctoral Program and Scientific Research Project of Liaocheng University, Shandong Province, China.
Solomon, W K; Jindal, V K
2017-06-01
The application of Peleg's equation to characterize creep behavior of potatoes during storage was investigated. Potatoes were stored at 25, 15, 5C, and variable (fluctuating) temperature for 16 or 26 weeks. The Peleg equation adequately described the creep response of potatoes during storage at all storage conditions (R 2 = .97to .99). Peleg constant k 1 exhibited a significant (p creep responses during storage or processing will be potentially helpful to better understand the phenomenon. The model parameters from such model could be used to relate rheological properties of raw and cooked potatoes. Moreover, the model parameters could be used to establish relationship between instrumental and sensory attributes which will help in the prediction of sensory attributes from instrumental data. © 2016 Wiley Periodicals, Inc.
Picard-Fuchs equations of dimensionally regulated Feynman integrals
Zayadeh, Raphael
2013-12-15
This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is
Picard-Fuchs equations of dimensionally regulated Feynman integrals
Zayadeh, Raphael
2013-12-01
This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is the two
Second-order differential-delay equation to describe a hybrid bistable device
Vallee, R.; Dubois, P.; Cote, M.; Delisle, C.
1987-08-01
The problem of a dynamical system with delayed feedback, a hybrid bistable device, characterized by n response times and described by an nth-order differential-delay equation (DDE) is discussed. Starting from a linear-stability analysis of the DDE, the effects of the second-order differential terms on the position of the first bifurcation and on the frequency of the resulting self-oscillation are shown. The effects of the third-order differential terms on the first bifurcation are also considered. Experimental results are shown to support the linear analysis.
Rebelo, Raphaël; Winternitz, Pavel
2017-01-01
This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers...
Inequalities for differential and integral equations
Ames, William F
1997-01-01
Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course.Key Features* Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations* Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books* Provides a valuable reference to engineers and graduate students
The scentscape: An integrative framework describing scents in servicescapes
Girard, Marc; Girard, Anna; Suppin, Anna-Caroline; Bartsch, Silke
2016-01-01
The systematic use of ambient scents is a trend in service companies that is accompanied by increasing research attention. However, we lack a theoretical framework that ad-dresses ambient scents' specific role in physical surroundings of services. Thus, this article develops the 'scentscape', a model that describes the process of olfactory stimulation and its impacts on customers and employees in service environments. The paper extends Bitner's servicescape model (1992) and combines it with G...
Differential equations and integrable models: the SU(3) case
Dorey, Patrick; Tateo, Roberto
2000-01-01
We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz
Algorithms For Integrating Nonlinear Differential Equations
Freed, A. D.; Walker, K. P.
1994-01-01
Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.
Abel integral equations analysis and applications
Gorenflo, Rudolf
1991-01-01
In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equatio...
Integral equation hierarchy for continuum percolation
Given, J.A.
1988-01-01
In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed
PREFACE: Symmetries and Integrability of Difference Equations
Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane
2007-10-01
The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of
Symbolic-Numeric Integration of the Dynamical Cosserat Equations
Lyakhov, Dmitry A.
2017-08-29
We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.
Symbolic-Numeric Integration of the Dynamical Cosserat Equations
Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.
2017-01-01
We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.
Complete integrability of the difference evolution equations
Gerdjikov, V.S.; Ivanov, M.I.; Kulish, P.P.
1980-01-01
The class of exactly solvable nonlinear difference evolution equations (DEE) related to the discrete analog of the one-dimensional Dirac problem L is studied. For this starting from L we construct a special linear non-local operator Λ and obtain the expansions of w and σ 3 deltaw over its eigenfunctions, w being the potential in L. This allows us to obtain compact expressions for the integrals of motion and to prove that these DEE are completely integrable Hamiltonian systems. Moreover, it is shown that there exists a hierarchy of Hamiltonian structures, generated by Λ, and the action-angle variables are explicity calculated. As particular cases the difference analog of the non-linear Schroedinger equation and the modified Korteweg-de-Vries equation are considered. The quantization of these Hamiltonian system through the use of the quantum inverse scattering method is briefly discussed [ru
Polynomial solutions of nonlinear integral equations
Dominici, Diego
2009-01-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials
Polynomial solutions of nonlinear integral equations
Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu
2009-05-22
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
Unconditionally stable integration of Maxwell's equations
Verwer, J.G.; Bochev, Mikhail A.
Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference
Unconditionally stable integration of Maxwell's equations
J.G. Verwer (Jan); M.A. Botchev
2008-01-01
htmlabstractNumerical integration of Maxwell''s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction
Unconditionally stable integration of Maxwell's equations
J.G. Verwer (Jan); M.A. Botchev
2009-01-01
textabstractNumerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit –
Coarse-grained forms for equations describing the microscopic motion of particles in a fluid.
Das, Shankar P; Yoshimori, Akira
2013-10-01
Exact equations of motion for the microscopically defined collective density ρ(x,t) and the momentum density ĝ(x,t) of a fluid have been obtained in the past starting from the corresponding Langevin equations representing the dynamics of the fluid particles. In the present work we average these exact equations of microscopic dynamics over the local equilibrium distribution to obtain stochastic partial differential equations for the coarse-grained densities with smooth spatial and temporal dependence. In particular, we consider Dean's exact balance equation for the microscopic density of a system of interacting Brownian particles to obtain the basic equation of the dynamic density functional theory with noise. Our analysis demonstrates that on thermal averaging the dependence of the exact equations on the bare interaction potential is converted to dependence on the corresponding thermodynamic direct correlation functions in the coarse-grained equations.
On realization of nonlinear systems described by higher-order differential equations
van der Schaft, Arjan
1987-01-01
We consider systems of smooth nonlinear differential and algebraic equations in which some of the variables are distinguished as “external variables.” The realization problem is to replace the higher-order implicit differential equations by first-order explicit differential equations and the
Lectures on differential equations for Feynman integrals
Henn, Johannes M
2015-01-01
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)
Paolucci, S.
1982-12-01
An approximation leading to anelastic equations capable of describing thermal convection in a compressible fluid is given. These equations are more general than the Oberbeck-Boussinesq equations and different than the standard anelastic equations in that they can be used for the computation of convection in a fluid with large density gradients present. We show that the equations do not contain acoustic waves, while at the same time they can still describe the propagation of internal waves. Throughout we show that the filtering of acoustic waves, within the limits of the approximation, does not appreciably alter the description of the physics.
Equation of motion method to describe quasiparticle structures in transitional and deformed nuclei
Doenau, F.
1985-01-01
The development of the experimental techniques will supply one with more and more complete level schemes and transition matrix elements. This is a great challenge for the theorists to put the right questions and to work out the models accordingly. In this respect the method of equation of motion (EQM) seems to be a sulitable approach the inherent possibilities of which are yet not fully explored. The EQM is sketched for the case of one-quasiparticle (1qp) excitation in odd-mass nuclei. The coupling of a particle to the quasrupole and pair field is treated using the IBA for the collective degrees of freedom. Physical implications are shortly discussed. The selfconsistent aspects of the theory are considered. A perturbational treatment is proposed to construct the physical subspace that is necessary to perform selfconsistent calculations of the collective core energies. The EQM is formulated for the two-quasiparticle (2qp) excitations in transitional nuclei inclusive the coupling to the collective excitations (0 qp space). EQM can be widely applied to describe the complicated interplay between collective degrees of freedom and quasiparticle configurations are concluded
Nonlinear integral equations for the sausage model
Ahn, Changrim; Balog, Janos; Ravanini, Francesco
2017-08-01
The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.
Darboux invariants of integrable equations with variable spectral parameters
Shin, H J
2008-01-01
The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach
Equations describing contamination of run of mine coal with dirt in the Upper Silesian Coalfield
Winiewski, J J
1977-12-01
Statistical analysis proved that contamination with dirt of run of mine coal from seams in the series 200 to 600 of the Upper Silesian Coalfield depends on the average ash content of a given raw coal. A regression equation is deduced for coarse and fine sizes of each coal. These equations can be used to predict the degree of contamination of run of mine coal to an accuracy sufficient for coal preparation purposes.
Non self-similar collapses described by the non-linear Schroedinger equation
Berge, L.; Pesme, D.
1992-01-01
We develop a rapid method in order to find the contraction rates of the radially symmetric collapsing solutions of the nonlinear Schroedinger equation defined for space dimensions exceeding a threshold value. We explicitly determine the asymptotic behaviour of these latter solutions by solving the non stationary linear problem relative to the nonlinear Schroedinger equation. We show that the self-similar states associated with the collapsing solutions are characterized by a spatial extent which is bounded from the top by a cut-off radius
Bounded solutions for fuzzy differential and integral equations
Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es
2006-03-01
We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.
Variational Integrals of a Class of Nonhomogeneous -Harmonic Equations
Guanfeng Li
2014-01-01
Full Text Available We introduce a class of variational integrals whose Euler equations are nonhomogeneous -harmonic equations. We investigate the relationship between the minimization problem and the Euler equation and give a simple proof of the existence of some nonhomogeneous -harmonic equations by applying direct methods of the calculus of variations. Besides, we establish some interesting results on variational integrals.
Recovering an obstacle using integral equations
Rundell, William
2009-05-01
We consider the inverse problem of recovering the shape, location and surface properties of an object where the surrounding medium is both conductive and homogeneous and we measure Cauchy data on an accessible part of the exterior boundary. It is assumed that the physical situation is modelled by harmonic functions and the boundary condition on the obstacle is one of Dirichlet type. The purpose of this paper is to answer some of the questions raised in a recent paper that introduced a nonlinear integral equation approach for the solution of this type of problem.
Frank, T D
2005-01-01
Stationary distributions of processes are derived that involve a time delay and are defined by a linear stochastic neutral delay differential equation. The distributions are Gaussian distributions. The variances of the Gaussian distributions are either monotonically increasing or decreasing functions of the time delays. The variances become infinite when fixed points of corresponding deterministic processes become unstable. (letter to the editor)
Integral propagator solvers for Vlasov-Fokker-Planck equations
Donoso, J M; Rio, E del
2007-01-01
We briefly discuss the use of short-time integral propagators on solving the so-called Vlasov-Fokker-Planck equation for the dynamics of a distribution function. For this equation, the diffusion tensor is singular and the usual Gaussian representation of the short-time propagator is no longer valid. However, we prove that the path-integral approach on solving the equation is, in fact, reliable by means of our generalized propagator, which is obtained through the construction of an auxiliary solvable Fokker-Planck equation. The new representation of the grid-free advancing scheme describes the inherent cross- and self-diffusion processes, in both velocity and configuration spaces, in a natural manner, although these processes are not explicitly depicted in the differential equation. We also show that some splitting methods, as well as some finite-difference schemes, could fail in describing the aforementioned diffusion processes, governed in the whole phase space only by the velocity diffusion tensor. The short-time transition probability offers a stable and robust numerical algorithm that preserves the distribution positiveness and its norm, ensuring the smoothness of the evolving solution at any time step. (fast track communication)
Integral Equation Methods for Electromagnetic and Elastic Waves
Chew, Weng; Hu, Bin
2008-01-01
Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq
Master equations and the theory of stochastic path integrals
Weber, Markus F.; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from
Master equations and the theory of stochastic path integrals.
Weber, Markus F; Frey, Erwin
2017-04-01
This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon
The integral equation method applied to eddy currents
Biddlecombe, C.S.; Collie, C.J.; Simkin, J.; Trowbridge, C.W.
1976-04-01
An algorithm for the numerical solution of eddy current problems is described, based on the direct solution of the integral equation for the potentials. In this method only the conducting and iron regions need to be divided into elements, and there are no boundary conditions. Results from two computer programs using this method for iron free problems for various two-dimensional geometries are presented and compared with analytic solutions. (author)
Deterministic methods to solve the integral transport equation in neutronic
Warin, X.
1993-11-01
We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs
Jansohn, W.
1997-10-01
This report deals with the formulation and numerical integration of constitutive models in the framework of finite deformation thermomechanics. Based on the concept of dual variables, plasticity and viscoplasticity models exhibiting nonlinear kinematic hardening as well as nonlinear isotropic hardening rules are presented. Care is taken that the evolution equations governing the hardening response fulfill the intrinsic dissipation inequality in every admissible process. In view of the development of an efficient numerical integration procedure, simplified versions of these constitutive models are supposed. In these versions, the thermoelastic strains are assumed to be small and a simplified kinematic hardening rule is considered. Additionally, in view of an implementation into the ABAQUS finite element code, the elasticity law is approximated by a hypoelasticity law. For the simplified onstitutive models, an implicit time-integration algorithm is developed. First, in order to obtain a numerical objective integration scheme, use is made of the HUGHES-WINGET-Algorithm. In the resulting system of ordinary differential equations, it can be distinguished between three differential operators representing different physical effects. The structure of this system of differential equations allows to apply an operator split scheme, which leads to an efficient integration scheme for the constitutive equations. By linearizing the integration algorithm the consistent tangent modulus is derived. In this way, the quadratic convergence of Newton's method used to solve the basic finite element equations (i.e. the finite element discretization of the governing thermomechanical field equations) is preserved. The resulting integration scheme is implemented as a user subroutine UMAT in ABAQUS. The properties of the applied algorithm are first examined by test calculations on a single element under tension-compression-loading. For demonstrating the capabilities of the constitutive theory
Integral equation methods for vesicle electrohydrodynamics in three dimensions
Veerapaneni, Shravan
2016-12-01
In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.
Functional analysis in the study of differential and integral equations
Sell, G.R.
1976-01-01
This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)
Queiros-Conde, D.; Foucher, F.; Mounaïm-Rousselle, C.; Kassem, H.; Feidt, M.
2008-12-01
Multi-scale features of turbulent flames near a wall display two kinds of scale-dependent fractal features. In scale-space, an unique fractal dimension cannot be defined and the fractal dimension of the front is scale-dependent. Moreover, when the front approaches the wall, this dependency changes: fractal dimension also depends on the wall-distance. Our aim here is to propose a general geometrical framework that provides the possibility to integrate these two cases, in order to describe the multi-scale structure of turbulent flames interacting with a wall. Based on the scale-entropy quantity, which is simply linked to the roughness of the front, we thus introduce a general scale-entropy diffusion equation. We define the notion of “scale-evolutivity” which characterises the deviation of a multi-scale system from the pure fractal behaviour. The specific case of a constant “scale-evolutivity” over the scale-range is studied. In this case, called “parabolic scaling”, the fractal dimension is a linear function of the logarithm of scale. The case of a constant scale-evolutivity in the wall-distance space implies that the fractal dimension depends linearly on the logarithm of the wall-distance. We then verified experimentally, that parabolic scaling represents a good approximation of the real multi-scale features of turbulent flames near a wall.
Integral equations with difference kernels on finite intervals
Sakhnovich, Lev A
2015-01-01
This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...
Numerov iteration method for second order integral-differential equation
Zeng Fanan; Zhang Jiaju; Zhao Xuan
1987-01-01
In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics
Integrable coupling system of fractional soliton equation hierarchy
Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-10-05
In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.
Partially integrable nonlinear equations with one higher symmetry
Mikhailov, A V; Novikov, V S; Wang, J P
2005-01-01
In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)
Some New Integrable Equations from the Self-Dual Yang-Mills Equations
Ivanova, T.A.; Popov, A.D.
1994-01-01
Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs
Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)
2013-09-02
We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.
Favrie, N.; Gavrilyuk, S.
2017-07-01
A new numerical method for solving the Serre-Green-Naghdi (SGN) equations describing dispersive waves on shallow water is proposed. From the mathematical point of view, the SGN equations are the Euler-Lagrange equations for a ‘master’ lagrangian submitted to a differential constraint which is the mass conservation law. One major numerical challenge in solving the SGN equations is the resolution of an elliptic problem at each time instant. This is the most time-consuming part of the numerical method. The idea is to replace the ‘master’ lagrangian by a one-parameter family of ‘augmented’ lagrangians, depending on a greater number of variables, for which the corresponding Euler-Lagrange equations are hyperbolic. In such an approach, the ‘master’ lagrangian is recovered by the augmented lagrangian in some limit (for example, when the corresponding parameter is large). The choice of such a family of augmented lagrangians is proposed and discussed. The corresponding hyperbolic system is numerically solved by a Godunov type method. Numerical solutions are compared with exact solutions to the SGN equations. It appears that the computational time in solving the hyperbolic system is much lower than in the case where the elliptic operator is inverted. The new method is applied, in particular, to the study of ‘Favre waves’ representing non-stationary undular bores produced after reflection of the fluid flow with a free surface at an immobile wall.
Partial differential equations of mathematical physics and integral equations
Guenther, Ronald B
1996-01-01
This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t
Integral equations for four identical particles in angular momentum representation
Kharchenko, V.F.; Shadchin, S.A.
1975-01-01
In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations
On discrete 2D integrable equations of higher order
Adler, V E; Postnikov, V V
2014-01-01
We study two-dimensional discrete integrable equations of order 1 with respect to one independent variable and m with respect to another one. A generalization of the multidimensional consistency property is proposed for this type of equations. The examples are related to the Bäcklund–Darboux transformations for the lattice equations of Bogoyavlensky type. (paper)
Energy preserving integration of bi-Hamiltonian partial differential equations
Karasozen, B.; Simsek, G.
2013-01-01
The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the
Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS
West, G.
1982-01-01
An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de
An integrated approach to determine phenomenological equations in metallic systems
Ghamarian, Iman
It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.
Fuchs indices and the first integrals of nonlinear differential equations
Kudryashov, Nikolai A.
2005-01-01
New method of finding the first integrals of nonlinear differential equations in polynomial form is presented. Basic idea of our approach is to use the scaling of solution of nonlinear differential equation and to find the dimensions of arbitrary constants in the Laurent expansion of the general solution. These dimensions allows us to obtain the scalings of members for the first integrals of nonlinear differential equations. Taking the polynomials with unknown coefficients into account we present the algorithm of finding the first integrals of nonlinear differential equations in the polynomial form. Our method is applied to look for the first integrals of eight nonlinear ordinary differential equations of the fourth order. The general solution of one of the fourth order ordinary differential equations is given
Application of wavelets to singular integral scattering equations
Kessler, B.M.; Payne, G.L.; Polyzou, W.N.
2004-01-01
The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems
Quadratic algebras in the noncommutative integration method of wave equation
Varaksin, O.L.
1995-01-01
The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras
On monotonic solutions of an integral equation of Abel type
Darwish, Mohamed Abdalla
2007-08-01
We present an existence theorem of monotonic solutions for a quadratic integral equation of Abel type in C[0, 1]. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fi xed point theorem due to Darbo are the main tools in carrying out our proof. (author)
A hierarchy of Liouville integrable discrete Hamiltonian equations
Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn
2008-05-12
Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.
Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.
Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan
2017-04-07
In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.
Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)
2016-12-15
Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.
Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients
Novák, Pavel; Šprlák, Michal
2018-03-01
The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.
Crossover integral equation theory for the liquid structure study
Lai, S.K.; Chen, H.C.
1994-08-01
The main purpose of this work is to report on a calculation that describes the role of the long-range bridge function [H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982)] as applied to the study of structure of simple liquid metals. It was found here that this bridge function accounts pretty well for the major part of long-range interactions but is physically inadequate for describing the short-range part of liquid structure. To improve on the theory we have drawn attention to the crossover integral equation method which, in essence, amounts to adding to the above bridge function a short-range correction of bridge diagrams. The suggested crossover procedure has been tested for the case of liquid metal Cs. Remarkably good agreement with experiment was obtained confirming our conjecture that the crossover integral equation approach as stressed in this work is potentially an appropriate theory for an accurate study of liquid structure possibly for the supercooled liquid regime. (author). 21 refs, 3 figs
Integrable discretization s of derivative nonlinear Schroedinger equations
Tsuchida, Takayuki
2002-01-01
We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)
Numerical integration of asymptotic solutions of ordinary differential equations
Thurston, Gaylen A.
1989-01-01
Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.
Analytic solution of integral equations for molecular fluids
Cummings, P.T.
1984-01-01
We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)
On a new series of integrable nonlinear evolution equations
Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.
1980-10-01
Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)
Irreducibility and co-primeness as an integrability criterion for discrete equations
Kanki, Masataka; Mada, Jun; Mase, Takafumi; Tokihiro, Tetsuji
2014-01-01
We study the Laurent property, the irreducibility and co-primeness of discrete integrable and non-integrable equations. First we study a discrete integrable equation related to the Somos-4 sequence, and also a non-integrable equation as a comparison. We prove that the conditions of irreducibility and co-primeness hold only in the integrable case. Next, we generalize our previous results on the singularities of the discrete Korteweg–de Vries (dKdV) equation. In our previous paper (Kanki et al 2014 J. Phys. A: Math. Theor. 47 065201) we described the singularity confinement test (one of the integrability criteria) using the Laurent property, and the irreducibility, and co-primeness of the terms in the bilinear dKdV equation, in which we only considered simplified boundary conditions. This restriction was needed to obtain simple (monomial) relations between the bilinear form and the nonlinear form of the dKdV equation. In this paper, we prove the co-primeness of the terms in the nonlinear dKdV equation for general initial conditions and boundary conditions, by using the localization of Laurent rings and the interchange of the axes. We assert that co-primeness of the terms can be used as a new integrability criterion, which is a mathematical re-interpretation of the confinement of singularities in the case of discrete equations. (paper)
Angilella, G.G.N.; Pucci, R.; March, N.H.
2004-01-01
We give here the derivation of a Gross-Pitaevskii-type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91, 030401 (2003)]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided
The Integral Equation Method and the Neumann Problem for the Poisson Equation on NTA Domains
Medková, Dagmar
2009-01-01
Roč. 63, č. 21 (2009), s. 227-247 ISSN 0378-620X Institutional research plan: CEZ:AV0Z10190503 Keywords : Poisson equation * Neumann problem * integral equation method Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2009
Tisdell, C. C.
2017-01-01
Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…
Transmission problem for the Laplace equation and the integral equation method
Medková, Dagmar
2012-01-01
Roč. 387, č. 2 (2012), s. 837-843 ISSN 0022-247X Institutional research plan: CEZ:AV0Z10190503 Keywords : transmission problem * Laplace equation * boundary integral equation Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11008985
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS
Vorona Yu.V.
2015-12-01
Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.
A New Algorithm for System of Integral Equations
Abdujabar Rasulov
2014-01-01
Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.
Multi-component bi-Hamiltonian Dirac integrable equations
Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu
2009-01-15
A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.
Differential equations for loop integrals in Baikov representation
Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang
2018-05-01
We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.
Monograph - The Numerical Integration of Ordinary Differential Equations.
Hull, T. E.
The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…
Distribution theory for Schrödinger’s integral equation
Lange, R.J.
2015-01-01
Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger's equation. This paper, in contrast, investigates the integral form of Schrödinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for
Integrability of a system of two nonlinear Schroedinger equations
Zhukhunashvili, V.Z.
1989-01-01
In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants
On the integrability of the generalized Fisher-type nonlinear diffusion equations
Wang Dengshan; Zhang Zhifei
2009-01-01
In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2
Methodological Bases for Describing Risks of the Enterprise Business Model in Integrated Reporting
Nesterenko Oksana O.
2017-12-01
Full Text Available The aim of the article is to substantiate the methodological bases for describing the business and accounting risks of an enterprise business model in integrated reporting for their timely detection and assessment, and develop methods for their leveling or minimizing and possible prevention. It is proposed to consider risks in the process of forming integrated reporting from two sides: first, risks that arise in the business model of an organization and should be disclosed in its integrated report; second, accounting risks of integrated reporting, which should be taken into account by members of the cross-sectoral working group and management personnel in the process of forming and promulgating integrated reporting. To develop an adequate accounting and analytical tool for disclosure of information about the risks of the business model and integrated reporting, their leveling or minimization, in the article a terminological analysis of the essence of entrepreneurial and accounting risks is carried out. The entrepreneurial risk is defined as an objective-subjective economic category that characterizes the probability of negative or positive consequences of economic-social-ecological activity within the framework of the business model of an enterprise under uncertainty. The accounting risk is suggested to be understood as the probability of unfavorable consequences as a result of organizational, methodological errors in the integrated accounting system, which present threat to the quality, accuracy and reliability of the reporting information on economic, social and environmental activities in integrated reporting as well as threat of inappropriate decision-making by stakeholders based on the integrated report. For the timely identification of business risks and maximum leveling of the influence of accounting risks on the process of formation and publication of integrated reporting, in the study the place of entrepreneurial and accounting risks in
On the complete integrability of the discrete Nahm equations
Murray, M.K.
2000-01-01
The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic line-bundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the line-bundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. (orig.)
Integrable semi-discretizations of the reduced Ostrovsky equation
Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro
2015-01-01
Based on our previous work on the reduced Ostrovsky equation (J. Phys. A: Math. Theor. 45 355203), we construct its integrable semi-discretizations. Since the reduced Ostrovsky equation admits two alternative representations, one being its original form, the other the differentiated form (the short wave limit of the Degasperis–Procesi equation) two semi-discrete analogues of the reduced Ostrovsky equation are constructed possessing the same N-loop soliton solution. The relationship between these two versions of semi-discretizations is also clarified. (paper)
First integrals of the axisymmetric shape equation of lipid membranes
Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun
2018-03-01
The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).
Periodic solutions of Volterra integral equations
M. N. Islam
1988-01-01
Full Text Available Consider the system of equationsx(t=f(t+∫−∞tk(t,sx(sds, (1andx(t=f(t+∫−∞tk(t,sg(s,x(sds. (2Existence of continuous periodic solutions of (1 is shown using the resolvent function of the kernel k. Some important properties of the resolvent function including its uniqueness are obtained in the process. In obtaining periodic solutions of (1 it is necessary that the resolvent of k is integrable in some sense. For a scalar convolution kernel k some explicit conditions are derived to determine whether or not the resolvent of k is integrable. Finally, the existence and uniqueness of continuous periodic solutions of (1 and (2 are btained using the contraction mapping principle as the basic tool.
DeAngelis, D.L.; Yeh, G.T.; Huff, D.D.
1984-10-01
This report documents a model, FRACPORT, that simulates the transport of a solute through a fractured porous matrix. The model should be useful in analyzing the possible transport of radionuclides from shallow-land burial sites in humid environments. The use of the model is restricted to transport through saturated zones. The report first discusses the general modeling approach used, which is based on the Integrated Compartmental Method. The basic equations of solute transport are then presented. The model, which assumes a known water velocity field, solves these equations on two different time scales; one related to rapid transport of solute along fractures and the other related to slower transport through the porous matrix. FRACPORT is validated by application to a simple example of fractured porous medium transport that has previously been analyzed by other methods. Then its utility is demonstrated in analyzing more complex cases of pulses of solute into a fractured matrix. The report serves as a user's guide to FRACPORT. A detailed description of data input, along with a listing of input for a sample problem, is provided. 16 references, 18 figures, 3 tables.
An algorithm of computing inhomogeneous differential equations for definite integrals
Nakayama, Hiromasa; Nishiyama, Kenta
2010-01-01
We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for $D$-modules by Oaku. Main tool in the algorithm is the Gr\\"obner basis method in the ring of differential operators.
A new integral method for solving the point reactor neutron kinetics equations
Li Haofeng; Chen Wenzhen; Luo Lei; Zhu Qian
2009-01-01
A numerical integral method that efficiently provides the solution of the point kinetics equations by using the better basis function (BBF) for the approximation of the neutron density in one time step integrations is described and investigated. The approach is based on an exact analytic integration of the neutron density equation, where the stiffness of the equations is overcome by the fully implicit formulation. The procedure is tested by using a variety of reactivity functions, including step reactivity insertion, ramp input and oscillatory reactivity changes. The solution of the better basis function method is compared to other analytical and numerical solutions of the point reactor kinetics equations. The results show that selecting a better basis function can improve the efficiency and accuracy of this integral method. The better basis function method can be used in real time forecasting for power reactors in order to prevent reactivity accidents.
Canonical algorithms for numerical integration of charged particle motion equations
Efimov, I. N.; Morozov, E. A.; Morozova, A. R.
2017-02-01
A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.
Numerical solution of boundary-integral equations for molecular electrostatics.
Bardhan, Jaydeep P
2009-03-07
Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.
The Landau-Lifshitz equation describes the Ising spin correlation function in the free-fermion model
Rutkevich, S B
1998-01-01
We consider time and space dependence of the Ising spin correlation function in a continuous one-dimensional free-fermion model. By the Ising spin we imply the 'sign' variable, which takes alternating +-1 values in adjacent domains bounded by domain walls (fermionic world paths). The two-point correlation function is expressed in terms of the solution of the Cauchy problem for a nonlinear partial differential equation, which is proved to be equivalent to the exactly solvable Landau-Lifshitz equation. A new zero-curvature representation for this equation is presented. In turn, the initial condition for the Cauchy problem is given by the solution of a nonlinear ordinary differential equation, which has also been derived. In the Ising limit the above-mentioned partial and ordinary differential equations reduce to the sine-Gordon and Painleve III equations, respectively. (author)
Lax Pairs for Discrete Integrable Equations via Darboux Transformations
Cao Ce-Wen; Zhang Guang-Yao
2012-01-01
A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)
Maryam Ghahremani Germi
2015-06-01
Full Text Available Empowerment is still on the agenda as a management concept and has become a widely used management term in the last decade or so. The purpose of this research was describing model of empowering managers by applying structural equation modeling (SEM at Ardabil universities. Two hundred and twenty managers of Ardabil universities including chancellors, managers, and vice presidents of education, research, and studies participated in this study. Clear and challenging goals, evaluation of function, access to resources, and rewarding were investigated. The results indicated that the designed SEM for empowering managers at university reflects a good fitness level. As it stands out, the conceptual model in the society under investigation was used appropriately. Among variables, access to resources with 88 per cent of load factor was known as the affective variable. Evaluation of function containing 51 per cent of load factor was recognized to have less effect. Results of average rating show that evaluation of function and access to resources with 2.62 coefficients stand at first level. Due to this, they had great impact on managers' empowerment. The results of the analysis provided compelling evidence that model of empowering managers was desirable at Ardabil universities.
Mangaud, E.; Puthumpally-Joseph, R.; Sugny, D.; Meier, C.; Atabek, O.; Desouter-Lecomte, M.
2018-04-01
Optimal control theory is implemented with fully converged hierarchical equations of motion (HEOM) describing the time evolution of an open system density matrix strongly coupled to the bath in a spin-boson model. The populations of the two-level sub-system are taken as control objectives; namely, their revivals or exchange when switching off the field. We, in parallel, analyze how the optimal electric field consequently modifies the information back flow from the environment through different non-Markovian witnesses. Although the control field has a dipole interaction with the central sub-system only, its indirect influence on the bath collective mode dynamics is probed through HEOM auxiliary matrices, revealing a strong correlation between control and dissipation during a non-Markovian process. A heterojunction is taken as an illustrative example for modeling in a realistic way the two-level sub-system parameters and its spectral density function leading to a non-perturbative strong coupling regime with the bath. Although, due to strong system-bath couplings, control performances remain rather modest, the most important result is a noticeable increase of the non-Markovian bath response induced by the optimally driven processes.
Discrete Painlevé equations: an integrability paradigm
Grammaticos, B; Ramani, A
2014-01-01
In this paper we present a review of results on discrete Painlevé equations. We begin with an introduction which serves as a refresher on the continuous Painlevé equations. Next, in the first, main part of the paper, we introduce the discrete Painlevé equations, the various methods for their derivation, and their properties as well as their classification scheme. Along the way we present a brief summary of the two major discrete integrability detectors and of Quispel–Roberts–Thompson mapping, which plays a primordial role in the derivation of discrete Painlevé equations. The second part of the paper is more technical and focuses on the presentation of new results on what are called asymmetric discrete Painlevé equations. (comment)
Field Method for Integrating the First Order Differential Equation
JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu
2007-01-01
An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.
Babenko’s Approach to Abel’s Integral Equations
Chenkuan Li
2018-03-01
Full Text Available The goal of this paper is to investigate the following Abel’s integral equation of the second kind: y ( t + λ Γ ( α ∫ 0 t ( t − τ α − 1 y ( τ d τ = f ( t , ( t > 0 and its variants by fractional calculus. Applying Babenko’s approach and fractional integrals, we provide a general method for solving Abel’s integral equation and others with a demonstration of different types of examples by showing convergence of series. In particular, we extend this equation to a distributional space for any arbitrary α ∈ R by fractional operations of generalized functions for the first time and obtain several new and interesting results that cannot be realized in the classical sense or by the Laplace transform.
Recursive integral equations with positive kernel for lattice calculations
Illuminati, F.; Isopi, M.
1990-11-01
A Kirkwood-Salzburg integral equation, with positive defined kernel, for the states of lattice models of statistical mechanics and quantum field theory is derived. The equation is defined in the thermodynamic limit, and its iterative solution is convergent. Moreover, positivity leads to an exact a priori bound on the iteration. The equation's relevance as a reliable algorithm for lattice calculations is therefore suggested, and it is illustrated with a simple application. It should provide a viable alternative to Monte Carlo methods for models of statistical mechanics and lattice gauge theories. 10 refs
Imanidis, Georgios; Luetolf, Peter
2006-07-01
An extended model for iontophoretic enhancement of transdermal drug permeation under constant voltage is described based on the previously modified Nernst-Planck equation, which included the effect of convective solvent flow. This model resulted in an analytical expression for the enhancement factor as a function of applied voltage, convective flow velocity due to electroosmosis, ratio of lipid to aqueous pathway passive permeability, and weighted average net ionic valence of the permeant in the aqueous epidermis domain. The shift of pH in the epidermis compared to bulk caused by the electrical double layer at the lipid-aqueous domain interface was evaluated using the Poisson-Boltzmann equation. This was solved numerically for representative surface charge densities and yielded pH differences between bulk and epidermal aqueous domain between 0.05 and 0.4 pH units. The developed model was used to analyze the experimental enhancement of an amphoteric weak electrolyte measured in vitro using human cadaver epidermis and a voltage of 250 mV at different pH values. Parameter values characterizing the involved factors were determined that yielded the experimental enhancement factors and passive permeability coefficients at all pH values. The model provided a very good agreement between experimental and calculated enhancement and passive permeability. The deduced parameters showed (i) that the pH shift in the aqueous permeation pathway had a notable effect on the ionic valence and the partitioning of the drug in this domain for a high surface charge density and depending on the pK(a) and pI of the drug in relation to the bulk pH; (ii) the magnitude and the direction of convective transport due to electroosmosis typically reflected the density and sign, respectively, of surface charge of the tissue and its effect on enhancement was substantial for bulk pH values differing from the pI of epidermal tissue; (iii) the aqueous pathway predominantly determined passive
A review of some basic aspects related to integration of airplane’s equations of motion
Dan TURCANU
2017-09-01
Full Text Available Numerical integration of the airplane’s equations of motion has long been considered among the most fundamental calculations in airplane’s analysis. Numerical algorithms have been implemented and experimentally validated. However, the need for superior speed and accuracy is still very topical, as, nowadays, various optimization algorithms rely heavily on data generated from the integration of the equations of motion and having access to larger amounts of data can increase the quality of the optimization. Now, for a number of decades, engineers have relied heavily on commercial codes based on automatically selected integration steps. However, optimally chosen constant integration steps can save time and allows for larger numbers of integrations to be performed. Yet, the basic papers that presented the fundamentals of numerical integration, as applied to airplane’s equations of motion are nowadays not easy to locate. Consequently, this paper presents a review of basic aspects related to the integration of airplane’s equation of motion. The discussion covers fundamentals of longitudinal and lateral-directional motion as well as the implementation of some numerical integration methods. The relation between numerical integration steps, accuracy, computational resource usage, numerical stability and their relation with the parameters describing the dynamic response of the airplane is considered and suggestions are presented for a faster yet accurate numerical integration.
Dhage Iteration Method for Generalized Quadratic Functional Integral Equations
Bapurao C. Dhage
2015-01-01
Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.
Integrability of the one dimensional Schrödinger equation
Combot, Thierry
2018-02-01
We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.
Numerical treatments for solving nonlinear mixed integral equation
M.A. Abdou
2016-12-01
Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.
Magnetostatic fields computed using an integral equation derived from Green's theorems
Simkin, J.; Trowbridge, C.W.
1976-04-01
A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)
Numerical Integration of the Transport Equation For Infinite Homogeneous Media
Haakansson, Rune
1962-01-15
The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.
An integrable semi-discretization of the Boussinesq equation
Zhang, Yingnan; Tian, Lixin
2016-01-01
Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.
Minimally coupled N-particle scattering integral equations
Kowalski, K.L.
1977-01-01
A concise formalism is developed which permits the efficient representation and generalization of several known techniques for deriving connected-kernel N-particle scattering integral equations. The methods of Kouri, Levin, and Tobocman and Bencze and Redish which lead to minimally coupled integral equations are of special interest. The introduction of channel coupling arrays is characterized in a general manner and the common base of this technique and that of the so-called channel coupling scheme is clarified. It is found that in the Bencze-Redish formalism a particular coupling array has a crucial function but one different from that of the arrays employed by Kouri, Levin, and Tobocman. The apparent dependence of the proof of the minimality of the Bencze-Redish integral equations upon the form of the inhomogeneous term in these equations is eliminated. This is achieved by an investigation of the full (nonminimal) Bencze-Redish kernel. It is shown that the second power of this operator is connected, a result which is needed for the full applicability of the Bencze-Redish formalism. This is used to establish the relationship between the existence of solutions to the homogeneous form of the minimal equations and eigenvalues of the full Bencze-Redish kernel
An integrable semi-discretization of the Boussinesq equation
Zhang, Yingnan, E-mail: ynzhang@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Tian, Lixin, E-mail: tianlixin@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu (China)
2016-10-23
Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.
Wehner, M.F.
1983-01-01
A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs
Numerical Simulation of Antennas with Improved Integral Equation Method
Ma Ji; Fang Guang-You; Lu Wei
2015-01-01
Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)
Integrated vehicle dynamics control using State Dependent Riccati Equations
Bonsen, B.; Mansvelders, R.; Vermeer, E.
2010-01-01
In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this
An approximation method for nonlinear integral equations of Hammerstein type
Chidume, C.E.; Moore, C.
1989-05-01
The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs
Higher-Order Integral Equation Methods in Computational Electromagnetics
Jørgensen, Erik; Meincke, Peter
Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...
On Fredholm-Stieltjes quadratic integral equation with supremum
Darwish, M.A.
2007-08-01
We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)
Unconditionally stable integration of Maxwell’s equations
Verwer, J.G.; Botchev, M.A.
2009-01-01
Numerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit - finite
Fringe integral equation method for a truncated grounded dielectric slab
Jørgensen, Erik; Maci, S.; Toccafondi, A.
2001-01-01
The problem of scattering by a semi-infinite grounded dielectric slab illuminated by an arbitrary incident TMz polarized electric field is studied by solving a new set of “fringe” integral equations (F-IEs), whose functional unknowns are physically associated to the wave diffraction processes...
Local first integrals for systems of differential equations
Zhang Xiang
2003-01-01
The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)
Cut cancellation in the planar integral equation for the Reggeon
Bishari, M.; Veneziano, G.
1975-01-01
Planar unitarity for the Reggeon, analyticity and the multi-Regge assumption with cluster production lead to integral equations of the Chew-Goldberger-Low type with separable self-consistent kernel. Contrary to common prejudice, the authors show the existence of solutions exhibiting moving poles and exact, non-perturbative cancellation of the cut. Previously studied consistency conditions are rederived. (Auth.)
Burde, G.I.
2002-01-01
A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given
Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.
Gamsjäger, Ernst; Wiessner, Manfred
2018-01-01
Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.
Poisson's theorem and integrals of KdV equation
Tasso, H.
1978-01-01
Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)
Titman, Andrew C; Lancaster, Gillian A; Colver, Allan F
2016-10-01
Both item response theory and structural equation models are useful in the analysis of ordered categorical responses from health assessment questionnaires. We highlight the advantages and disadvantages of the item response theory and structural equation modelling approaches to modelling ordinal data, from within a community health setting. Using data from the SPARCLE project focussing on children with cerebral palsy, this paper investigates the relationship between two ordinal rating scales, the KIDSCREEN, which measures quality-of-life, and Life-H, which measures participation. Practical issues relating to fitting models, such as non-positive definite observed or fitted correlation matrices, and approaches to assessing model fit are discussed. item response theory models allow properties such as the conditional independence of particular domains of a measurement instrument to be assessed. When, as with the SPARCLE data, the latent traits are multidimensional, structural equation models generally provide a much more convenient modelling framework. © The Author(s) 2013.
Md. Nur Alam
2017-11-01
Full Text Available In this article, a variety of solitary wave solutions are observed for microtubules (MTs. We approach the problem by treating the solutions as nonlinear RLC transmission lines and then find exact solutions of Nonlinear Evolution Equations (NLEEs involving parameters of special interest in nanobiosciences and biophysics. We determine hyperbolic, trigonometric, rational and exponential function solutions and obtain soliton-like pulse solutions for these equations. A comparative study against other methods demonstrates the validity of the technique that we developed and demonstrates that our method provides additional solutions. Finally, using suitable parameter values, we plot 2D and 3D graphics of the exact solutions that we observed using our method. Keywords: Analytical method, Exact solutions, Nonlinear evolution equations (NLEEs of microtubules, Nonlinear RLC transmission lines
Kwong-Wong-type integral equation on time scales
Baoguo Jia
2011-09-01
Full Text Available Consider the second-order nonlinear dynamic equation $$ [r(tx^Delta(ho(t]^Delta+p(tf(x(t=0, $$ where $p(t$ is the backward jump operator. We obtain a Kwong-Wong-type integral equation, that is: If $x(t$ is a nonoscillatory solution of the above equation on $[T_0,infty$, then the integral equation $$ frac{r^sigma(tx^Delta(t}{f(x^sigma(t} =P^sigma(t+int^infty_{sigma(t}frac{r^sigma(s [int^1_0f'(x_h(sdh][x^Delta(s]^2}{f(x(s f(x^sigma(s}Delta s $$ is satisfied for $tgeq T_0$, where $P^sigma(t=int^infty_{sigma(t}p(sDelta s$, and $x_h(s=x(s+hmu(sx^Delta(s$. As an application, we show that the superlinear dynamic equation $$ [r(tx^{Delta}(ho(t]^Delta+p(tf(x(t=0, $$ is oscillatory, under certain conditions.
New multidimensional partially integrable generalization of S-integrable N-wave equation
Zenchuk, A. I.
2007-01-01
This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. The method allows one to construct the systems of multidimensional partial differential equations having differential polynomial structure in any dimension n. The associated solution space is not full, although it is parametrized by certain number of arbitrary functions of (n-1) variables. We consider four-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example
Rational first integrals of geodesic equations and generalised hidden symmetries
Aoki, Arata; Houri, Tsuyoshi; Tomoda, Kentaro
2016-01-01
We discuss novel generalisations of Killing tensors, which are introduced by considering rational first integrals of geodesic equations. We introduce the notion of inconstructible generalised Killing tensors, which cannot be constructed from ordinary Killing tensors. Moreover, we introduce inconstructible rational first integrals, which are constructed from inconstructible generalised Killing tensors, and provide a method for checking the inconstructibility of a rational first integral. Using the method, we show that the rational first integral of the Collinson–O’Donnell solution is not inconstructible. We also provide several examples of metrics admitting an inconstructible rational first integral in two and four-dimensions, by using the Maciejewski–Przybylska system. Furthermore, we attempt to generalise other hidden symmetries such as Killing–Yano tensors. (paper)
On Models with Uncountable Set of Spin Values on a Cayley Tree: Integral Equations
Rozikov, Utkir A.; Eshkobilov, Yusup Kh.
2010-01-01
We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order k ≥ 1. We reduce the problem of describing the 'splitting Gibbs measures' of the model to the description of the solutions of some nonlinear integral equation. For k = 1 we show that the integral equation has a unique solution. In case k ≥ 2 some models (with the set [0, 1] of spin values) which have a unique splitting Gibbs measure are constructed. Also for the Potts model with uncountable set of spin values it is proven that there is unique splitting Gibbs measure.
Sayed, Sadeed Bin
2016-11-02
An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2016-01-01
An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.
Lagrangian structures, integrability and chaos for 3D dynamical equations
Bustamante, Miguel D; Hojman, Sergio A
2003-01-01
In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion
Method of mechanical quadratures for solving singular integral equations of various types
Sahakyan, A. V.; Amirjanyan, H. A.
2018-04-01
The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.
Solving differential equations for Feynman integrals by expansions near singular points
Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.
2018-03-01
We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.
High-precision numerical integration of equations in dynamics
Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.
2018-05-01
An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.
Integrable equation of state for noisy cosmic string
Carter, B.
1990-01-01
It is argued that, independently of the detailed (thermal or more general) noise spectrum of the microscopic extrinsic excitations that can be expected on an ordinary cosmic string, their effect can be taken into account at a macroscopic level by replacing the standard isotropic Goto-Nambu-type string model by the nondegenerate string model characterized by an equation of state of the nondispersive ''fixed determinant'' type, with the effective surface stress-energy tensor satisfying (T ν ν ) 2 -T μ ν T ν μ =2T 0 2 , where T 0 is a constant representing the null-state limit of the string tension T, whose product with the energy density U of the string is thereby held fixed: TU=T 0 2 . It is shown that this equation of state has the special property of giving rise (in a flat background) to explicitly integrable dynamical equations
Integral equations of hadronic correlation functions a functional- bootstrap approach
Manesis, E K
1974-01-01
A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).
TBA-like integral equations from quantized mirror curves
Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)
2016-03-15
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
TBA-like integral equations from quantized mirror curves
Okuyama, Kazumi; Zakany, Szabolcs
2016-03-01
Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.
Optimum biasing of integral equations in Monte Carlo calculations
Hoogenboom, J.E.
1979-01-01
In solving integral equations and estimating average values with the Monte Carlo method, biasing functions may be used to reduce the variancee of the estimates. A simple derivation was used to prove the existence of a zero-variance collision estimator if a specific biasing function and survival probability are applied. This optimum biasing function is the same as that used for the well known zero-variance last-event estimator
Introduction to stochastic analysis integrals and differential equations
Mackevicius, Vigirdas
2013-01-01
This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion pro
A New time Integration Scheme for Cahn-hilliard Equations
Schaefer, R.
2015-06-01
In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.
A New time Integration Scheme for Cahn-hilliard Equations
Schaefer, R.; Smol-ka, M.; Dalcin, L; Paszyn'ski, M.
2015-01-01
In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.
Komathiraj, K.; Sharma, Ranjan
2018-05-01
In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.
A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation
Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.
2003-01-01
We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results
On solvability of some quadratic functional-integral equation in Banach algebra
Darwish, M.A.
2007-08-01
Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)
Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.
2018-05-01
The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.
Field, J. H.
2011-01-01
It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…
Brunskog, Jonas; Richard, Antoine Philippe André
2016-01-01
Problems such as sound insulation and absorption of plane structures in laboratory conditions can theoretically be described as an integral or integral-differential equation. This equation contains the Green’s function integrated over the surface, which describes the radiation from the surface....... A variational technique, well described by Morse and Ingard, has successfully been used for both absorption and sound insulation for a plane incident wave. The resulting formulas are surprisingly simple, accurate and robust. Moreover, they capture the physics of sound radiation of a finite surface well. However...
One-way spatial integration of hyperbolic equations
Towne, Aaron; Colonius, Tim
2015-11-01
In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.
On the Volterra integral equation relating creep and relaxation
Anderssen, R S; De Hoog, F R; Davies, A R
2008-01-01
The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation
Integrability of N=3 super Yang-Mills equations
Devchand, C.; Ogievetsky, V.
1993-10-01
We describe the harmonic superspace formulation of the Witten-Manin supertwistor correspondence for N=3 extended super Yang-Mills theories. The essence in that on being sufficiently supersymmetrised (up to the N=3 extension), the Yang-Mills equations of motion can be recast in the form of Cauchy-Riemann-like holomorphicity conditions for a pair of prepotentials in the appropriate harmonic superspace. This formulation makes the explicit construction of solutions a rather more tractable proposition than previous attempts. (orig.)
Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Chaudhuri, Rajat K.; Chattopadhyay, Sudip
2018-04-01
The equation of motion coupled cluster methodology within relativistic framework has been applied to analyze the electron correlation effects on the low lying dipole allowed excited states of Ne and Al3+ under classical and quantum plasma environments. The effect of confinement due to classical plasma has been incorporated through screened Coulomb potential, while that of quantum plasma has been treated by exponential cosine screened Coulomb potential. The confined structural properties investigated are the depression of ionization potential, low lying excitation energies (dipole allowed), oscillator strengths, transition probabilities, and frequency dependent polarizabilities under systematic variation of the plasma-atom coupling strength determined through the screening parameter. Specific atomic systems are chosen for their astrophysical importance and availability of experimental data related to laboratory plasma with special reference to Al3+ ion. Here, we consider 1 s22 s22 p6(1S0)→1 s22 s22 p5 n s /n d (1P1) (n =3 ,4 ) dipole allowed transitions of Ne and Al3+. Results for the free (isolated) atomic systems agree well with those available in the literature. Spectroscopic properties under confinement show systematic and interesting pattern with respect to plasma screening parameter.
Ye, Weiming; Li, Pengfei; Huang, Xuhui; Xia, Qinzhi; Mi, Yuanyuan; Chen, Runsheng; Hu, Gang
2010-10-01
Exploring the principle and relationship of gene transcriptional regulations (TR) has been becoming a generally researched issue. So far, two major mathematical methods, ordinary differential equation (ODE) method and Boolean map (BM) method have been widely used for these purposes. It is commonly believed that simplified BMs are reasonable approximations of more realistic ODEs, and both methods may reveal qualitatively the same essential features though the dynamical details of both systems may show some differences. In this Letter we exhaustively enumerated all the 3-gene networks and many autonomous randomly constructed TR networks with more genes by using both the ODE and BM methods. In comparison we found that both methods provide practically identical results in most of cases of steady solutions. However, to our great surprise, most of network structures showing periodic cycles with the BM method possess only stationary states in ODE descriptions. These observations strongly suggest that many periodic oscillations and other complicated oscillatory states revealed by the BM rule may be related to the computational errors of variable and time discretizations and rarely have correspondence in realistic biology transcriptional regulatory circuits.
Is Yang-Mills equation a totally integrable system. Lecture III
Chau Wang, L.L.
1981-01-01
Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
D.X. Horváth
2016-01-01
Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
Initial states in integrable quantum field theory quenches from an integral equation hierarchy
Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)
2016-01-15
We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.
Uchiyama, Yusuke, E-mail: r1230160@risk.tsukuba.ac.jp; Konno, Hidetoshi
2014-04-01
Defect turbulence described by the one-dimensional complex Ginzburg–Landau equation is investigated and analyzed via a birth–death process of the local structures composed of defects, holes, and modulated amplitude waves (MAWs). All the number statistics of each local structure, in its stationary state, are subjected to Poisson statistics. In addition, the probability density functions of interarrival times of defects, lifetimes of holes, and MAWs show the existence of long-memory and some characteristic time scales caused by zigzag motions of oscillating traveling holes. The corresponding stochastic process for these observations is fully described by a non-Markovian master equation.
Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2
Velarde, G.
1976-01-01
Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)
On integrability conditions of the equations of nonsymmetrical chiral field on SO(4)
Tskhakaya, D.D.
1990-01-01
Possibility of integrating the equations of nonsymmetrical chiral field on SO(4) by means of the inverse scattering method is investigated. Maximal number of the motion integrals is found for the corresponding system of ordinary differential equations
Numerical solution of the potential problem by integral equations without Green's functions
De Mey, G.
1977-01-01
An integral equation technique will be presented to solve Laplace's equation in a two-dimensional area S. The Green's function has been replaced by a particular solution of Laplace equation in order to establish the integral equation. It is shown that accurate results can be obtained provided the pivotal elimination method is used to solve the linear algebraic set
Liu Chunliang; Xie Xi; Chen Yinbao
1991-01-01
The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation
Marques, W. Jr.
2008-01-01
We analyse the problem concerning the propagation of sound waves in gases by using the modified hydrodynamic theory proposed recently by Brenner for single-component fluids. The modifications introduced by Brenner are based on his proposal that the translational momentum in fluid motion is not given by the mass flux. Comparison of the sound propagation results derived from Brenner's theory with available experimental data for monatomic gases shows that this modified continuum theory is unable to describe the acoustic measurements not even in the low-frequency limit, a result that from our point of view makes Brenner's proposal questionable
Tokamak plasma shape identification based on the boundary integral equations
Kurihara, Kenichi; Kimura, Toyoaki
1992-05-01
A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)
Integral solution for the spherically symmetric Fokker-Planck equation
Donoso, J.M.; Soler, M.
1993-01-01
We propose an integral method to deal with the spherically symmetric non-linear Fokker-Planck equation appearing in plasma physics. A probability transition expression is obtained, which takes into account the proper domain for the radial velocity component. The analytical and computational results are new, and the time evolution is completely satisfactory. The main achievement of the method is conservation of both the initial norm and energy for unlimited times, which has not been attained in the differential approach to the problem. (orig.)
Belov, V.E.; Rodygin, L.V.; Fil'chenko, S.E.; Yunakovskii, A.D.
1988-01-01
A method is described for calculating the electrodynamic characteristics of periodically corrugated waveguide systems. This method is based on representing the field as the solution of the Helmholtz vector equation in the form of a simple layer potential, transformed with the use of the Floquet conditions. Systems of compound integral equations based on a weighted vector function of the simple layer potential are derived for waveguides with azimuthally symmetric and helical corrugations. A numerical realization of the Fourier method is cited for seeking the dispersion relation of azimuthally symmetric waves of a circular corrugated waveguide
Hemmerling, R.; Evers, J.B.; Smolenova, K.; Buck-Sorlin, G.H.; Kurth, W.
2013-01-01
In simulation models of plant development, physiological processes taking place in plants are typically described in terms of ODEs (Ordinary Differential Equations). On the one hand, those processes drive the development of the plant structure and on the other hand, the developed structure again
Explicit solution of Calderon preconditioned time domain integral equations
Ulku, Huseyin Arda
2013-07-01
An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.
Geometrical-integrability constraints and equations of motion in four plus extended super spaces
Chau, L.L.
1987-01-01
It is pointed out that many equations of motion in physics, including gravitational and Yang-Mills equations, have a common origin: i.e. they are the results of certain geometrical integrability conditions. These integrability conditions lead to linear systems and conservation laws that are important in integrating these equations of motion
Trowbridge, C.W.
1976-06-01
Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c) which both lead to a more economic use of the computer than (a) some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation. (author)
Trowbridge, C W
1976-06-01
Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential, and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c), which both lead to a more economical use of the computer than (a), some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation.
Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations
Han Guo
2012-01-01
Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.
Discretization of the induced-charge boundary integral equation.
Bardhan, Jaydeep P; Eisenberg, Robert S; Gillespie, Dirk
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
Discretization of the induced-charge boundary integral equation.
Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D.; Rush Univ. Medical Center
2009-07-01
Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.
Wetzel, Keith; McLean, S. V.
1997-01-01
Describes collaboration of two teacher educators, one in early childhood language arts and one in computers in education. Discusses advantages and disadvantages and extensions of this model, including how a college-wide survey revealed that students in teamed courses are better prepared to teach and learn with technology. (DR)
Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations
Xu Xixiang
2012-01-01
A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectic map and a completely integrable finite-dimensional Hamiltonian system. (general)
Set-Valued Stochastic Equation with Set-Valued Square Integrable Martingale
Li Jun-Gang
2017-01-01
Full Text Available In this paper, we shall introduce the stochastic integral of a stochastic process with respect to set-valued square integrable martingale. Then we shall give the Aumann integral measurable theorem, and give the set-valued stochastic Lebesgue integral and set-valued square integrable martingale integral equation. The existence and uniqueness of solution to set-valued stochastic integral equation are proved. The discussion will be useful in optimal control and mathematical finance in psychological factors.
Erlandsen, Mogens; Martinussen, Christoffer; Gravholt, Claus Højbjerg
2018-01-01
AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter-individual varia......AbstractBackground and objectives Modeling of glucose kinetics has to a large extent been based on models with plasma insulin as a known forcing function. Furthermore, population-based statistical methods for parameter estimation in these models have mainly addressed random inter......-individual variations and not intra-individual variations in the parameters. Here we present an integrated whole-body model of glucose and insulin kinetics which extends the well-known two-compartment glucose minimal model. The population-based estimation technique allow for quantification of both random inter......- and intra-individual variation in selected parameters using simultaneous data series on glucose and insulin. Methods We extend the two-compartment glucose model into a whole-body model for both glucose and insulin using a simple model for the pancreas compartment which includes feedback of glucose on both...
A self-describing file protocol for simulation integration and shared postprocessors
Borland, M.
1995-01-01
A typical accelerator physics code uses a combination of text output, unformatted output, and special-purpose graphics to present results to the user. Most users must learn multiple graphics and postprocessing systems; many resort to manual extraction of data from text output, creation of customized postprocessing programs, and even modification of the simulation code. This situation slows research, results in duplication of effort, hampers unforeseen use of simulation output, and makes program upgrades potentially traumatic. This paper discusses the design and use of a self-describing file protocol that addresses these problems. An extensive toolkit of generic post-processing programs, including sophisticated graphics, is available. This system has been used for most of the data collection for Advanced Photon Source (APS) commissioning , and is incorporated into a number of simulation codes
Zhang Yufeng; Fan Engui; Zhang Yongqing
2006-01-01
With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations
Kleinert, H.; Zatloukal, V.
2013-11-01
The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.
The reduced basis method for the electric field integral equation
Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.
2011-01-01
We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.
Numerical method for solving integral equations of neutron transport. II
Loyalka, S.K.; Tsai, R.W.
1975-01-01
In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)
Integrable equations, addition theorems, and the Riemann-Schottky problem
Buchstaber, Viktor M; Krichever, I M
2006-01-01
The classical Weierstrass theorem claims that, among the analytic functions, the only functions admitting an algebraic addition theorem are the elliptic functions and their degenerations. This survey is devoted to far-reaching generalizations of this result that are motivated by the theory of integrable systems. The authors discovered a strong form of the addition theorem for theta functions of Jacobian varieties, and this form led to new approaches to known problems in the geometry of Abelian varieties. It is shown that strong forms of addition theorems arise naturally in the theory of the so-called trilinear functional equations. Diverse aspects of the approaches suggested here are discussed, and some important open problems are formulated.
Acoustic 3D modeling by the method of integral equations
Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.
2018-02-01
This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.
Rojo-Gimeno, Cristina; Dewulf, Jeroen; Maes, Dominiek; Wauters, Erwin
2018-06-01
A well-functioning swine health system is crucial to ensure a sustainable pig production. Yet, little attention has been paid to understand it. The objective of this study was to unravel the complexity of a swine health system by using a systems-thinking approach for the case of Flanders (Northern part of Belgium). To that end, qualitative interviews were held with 33 relevant stakeholders. A hybrid thematic analysis was conducted which consisted of two phases. First, an inductive thematic analysis was conducted and second, the resulting themes were classified into the building blocks of a systemic framework. This framework combined a structural and a functional analysis that allowed to identify the key actors and their functions. Additionally, a transformational analysis was performed to evaluate how structures and the entire swine health system enable or disable functions. Findings revealed that the Flemish swine health system presents several merits such as the synchronization of policies and sector's agreements to reduce the antimicrobial use in the pig sector and the presence of a rich network of universities and research institutes that contribute to the education of health professionals. Nevertheless, several systemic failures were observed at different levels such as the lack of a good professional body representing the swine veterinarians, the tradition that veterinary advice is provided for 'free' by feed mill companies, and the shortage of reliable farm productivity data. Both latter failures may hinder swine practitioners to provide integrative advice. While few veterinarians are remunerated per hour or per visit by farmers, the most common business model used by veterinarians is largely based on the sale of medicines. Thus, veterinarians encounter often a conflict of interest when advising on preventive vaccinations and, in turn, farmers distrust their advice. On a positive note, alternatives to the traditional business model were suggested by both
Assessment of available integration algorithms for initial value ordinary differential equations
Carver, M.B.; Stewart, D.G.
1979-11-01
There exists an extremely large number of algorithms designed for the ordinary differential equation initial value problem. The integration is normally done by a finite sum at time intervals which are chosen dynamically to satisfy an imposed error tolerance. This report describes the basic logistics of the integration process, identifies common areas of difficulty, and establishes a comprehensive test profile for integration algorithms. A number of algorithms are described, and selected published subroutines are evaluated using the test profile. It concludes that an effective library for general use need have only two such routines. The two selected are versions of the well-known Gear and Runge-Kutta-Fehlberg algorithms. Full documentation and listings are included. (auth)
The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations
Chen Jinbing; Qiao Zhijun
2011-01-01
A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.
On the structure of the commutative Z2 graded algebra valued integrable equations
Konopelchenko, B.G.
1980-01-01
Partial differential equations integrable by the linear matrix spectral problem of arbitrary order are considered for the case that the 'potentials' take their values in the commutative infinte-dimensional Z 2 graded algebra (superalgebra). The general form of the integrable equations and their Baecklund transformations are found. The infinite sets of the integrals of the motion are constructed. The hamiltonian character of the integrable equations is proved. (orig.)
Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods
M. Jafari Emamzadeh
2010-06-01
Full Text Available In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation more accurately. Several examples are given at the end of this paper
Reformulation of nonlinear integral magnetostatic equations for rapid iterative convergence
Bloomberg, D.S.; Castelli, V.
1985-01-01
The integral equations of magnetostatics, conventionally given in terms of the field variables M and H, are reformulated with M and B. Stability criteria and convergence rates of the eigenvectors of the linear iteration matrices are evaluated. The relaxation factor β in the MH approach varies inversely with permeability μ, and nonlinear problems with high permeability converge slowly. In contrast, MB iteration is stable for β 3 , the number of iterations is reduced by two orders of magnitude over the conventional method, and at higher permeabilities the reduction is proportionally greater. The dependence of MB convergence rate on β, degree of saturation, element aspect ratio, and problem size is found numerically. An analytical result for the MB convergence rate for small nonlinear problems is found to be accurate for βless than or equal to1.2. The results are generally valid for two- and three-dimensional integral methods and are independent of the particular discretization procedures used to compute the field matrix
Modern integral equation techniques for quantum reactive scattering theory
Auerbach, S.M.
1993-11-01
Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence
Nikolaevskij, E.S.; Shchur, L.N.
1983-01-01
A perticular case of the Yang-Mills (YM) equations has been studied. For this system a transversal intersection of separatrices of unstable periodical trajectories is discovered, hence, it follows that there are no first real-analytical integrals of motion additional to the Hamiltonian. As a result, a complete set of integrals does not exist for the system describing the classical YM fields. Numerical methods of constructing separatrices, double-asymptotical solutions and of determining the angles between separatrices have been described
A calderón multiplicative preconditioner for the combined field integral equation
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2009-01-01
A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation
Bakholdin, Igor
2018-02-01
Various models of a tube with elastic walls are investigated: with controlled pressure, filled with incompressible fluid, filled with compressible gas. The non-linear theory of hyperelasticity is applied. The walls of a tube are described with complete membrane model. It is proposed to use linear model of plate in order to take the bending resistance of walls into account. The walls of the tube were treated previously as inviscid and incompressible. Compressibility of material of walls and viscosity of material, either gas or liquid are considered. Equations are solved numerically. Three-layer time and space centered reversible numerical scheme and similar two-layer space reversible numerical scheme with approximation of time derivatives by Runge-Kutta method are used. A method of correction of numerical schemes by inclusion of terms with highorder derivatives is developed. Simplified hyperbolic equations are derived.
Integrable systems of partial differential equations determined by structure equations and Lax pair
Bracken, Paul
2010-01-01
It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.
Edgar, S.B.
1990-01-01
The structures of the N.P. and G.H.P formalisms are reviewed in order to understand and demonstrate the important role played by the commutator equations in the associated integration procedures. Particular attention is focused on how the commutator equations are to be satisfied, or checked for consistency. It is shown that Held's integration method will only guarantee genuine solutions of Einstein's equations when all the commutator equations are correctly and completely satisfied. (authors)
Solution of a modified Lame equation with an integral term
Hagelstein, P.L.
1978-01-01
We consider an equation which occurs in the stability analysis of a passively modelocked laser system in which the pulses overlap. The equation is related to a Lame equation and can be written su(x) =]d 2 /dx 2 -[(2-m)-6dn 2 (x,m)
Integrable discretizations of the (2+1)-dimensional sinh-Gordon equation
Hu, Xing-Biao; Yu, Guo-Fu
2007-01-01
In this paper, we propose two semi-discrete equations and one fully discrete equation and study them by Hirota's bilinear method. These equations have continuum limits into a system which admits the (2+1)-dimensional generalization of the sinh-Gordon equation. As a result, two integrable semi-discrete versions and one fully discrete version for the sinh-Gordon equation are found. Baecklund transformations, nonlinear superposition formulae, determinant solution and Lax pairs for these discrete versions are presented
Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions
Zakieh Avazzadeh
2014-01-01
Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.
On integration of the first order differential equations in a finite terms
Malykh, M D
2017-01-01
There are several approaches to the description of the concept called briefly as integration of the first order differential equations in a finite terms or symbolical integration. In the report three of them are considered: 1.) finding of a rational integral (Beaune or Poincaré problem), 2.) integration by quadratures and 3.) integration when the general solution of given differential equation is an algebraical function of a constant (Painlevé problem). Their realizations in Sage are presented. (paper)
Michael, Manesh; Willington, Neethu T.; Jayakumar, Neethu; Sebastian, Sijo; Sreekala, G.; Venugopal, Chandu
2016-12-01
We investigate the existence of ion-acoustic shock waves in a five component cometary plasma consisting of positively and negatively charged oxygen ions, kappa described hydrogen ions, hot solar electrons, and slightly colder cometary electrons. The KdVB equation has been derived for the system, and its solution plotted for different kappa values, oxygen ion densities, as well as the temperature ratios for the ions. It is found that the amplitude of the shock wave decreases with increasing kappa values. The strength of the shock profile decreases with increasing temperatures of the positively charged oxygen ions and densities of negatively charged oxygen ions.
Kasperek, Regina
2011-01-01
The release of diclofenac sodium and papaverine hydrochloride from tablets and pellets using the flow-through cell apparatus was studied. The influence of excipients and of a size of the solid dosage forms on the amount of the released substances at the intervals of time using the different rates of flow of the dissolution medium was investigated. Physical parameters corresponding to the dissolution process as the mass transfer coefficient, the thickness of the boundary diffusion layer and the concentration of the saturated solution at this layer were calculated. The results of release were described by dimensionless equations.
Numerical method for solving linear Fredholm fuzzy integral equations of the second kind
Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)
2007-01-15
In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.
Geometry, heat equation and path integrals on the Poincare upper half-plane
Kubo, Reijiro.
1987-08-01
Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation δf/δt = Δ H f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's proof that Feynman's path integral satisfies the Schroedinger equation is also valid for our case. (author)
Geometry, Heat Equation and Path Integrals on the Poincare Upper Half-Plane
Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University
1988-01-01
Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation ∂f/∂t=Δ_Hf is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrodinger equation is also valid for our case.
Integrator Performance Analysis In Solving Stiff Differential Equation System
B, Alhadi; Basaruddin, T.
2001-01-01
In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used
Transition flow ion transport via integral Boltzmann equation
Darcie, T.E.
1983-10-01
A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions
Accurate and efficient quadrature for volterra integral equations
Knirk, D.L.
1976-01-01
Four quadrature schemes were tested and compared in considerable detail to determine their usefulness in the noniterative integral equation method for single-channel quantum-mechanical calculations. They are two forms of linear approximation (trapezoidal rule) and two forms of quadratic approximation (Simpson's rule). Their implementation in this method is shown, a formal discussion of error propagation is given, and tests are performed to determine actual operating characteristics on various bound and scattering problems in different potentials. The quadratic schemes are generally superior to the linear ones in terms of accuracy and efficiency. The previous implementation of Simpson's rule is shown to possess an inherent instability which requires testing on each problem for which it is used to assure its reliability. The alternative quadratic approximation does not suffer this deficiency, but still enjoys the advantages of higher order. In addition, the new scheme obeys very well an h 4 Richardson extrapolation, whereas the old one does so rather poorly. 6 figures, 11 tables
Cherevko, A. A.; Bord, E. E.; Khe, A. K.; Panarin, V. A.; Orlov, K. J.; Chupakhin, A. P.
2016-06-01
This article considers method of describing the behaviour of hemodynamic parameters near vascular pathologies. We study the influence of arterial aneurysms and arteriovenous malformations on the vascular system. The proposed method involves using generalized model of Van der Pol-Duffing to find out the characteristic behaviour of blood flow parameters. These parameters are blood velocity and pressure in the vessel. The velocity and pressure are obtained during the neurosurgery measurements. It is noted that substituting velocity on the right side of the equation gives good pressure approximation. Thus, the model reproduces clinical data well enough. In regard to the right side of the equation, it means external impact on the system. The harmonic functions with various frequencies and amplitudes are substituted on the right side of the equation to investigate its properties. Besides, variation of the right side parameters provides additional information about pressure. Non-linear analogue of Nyquist diagrams is used to find out how the properties of solution depend on the parameter values. We have analysed 60 cases with aneurysms and 14 cases with arteriovenous malformations. It is shown that the diagrams are divided into classes. Also, the classes are replaced by another one in the definite order with increasing of the right side amplitude.
Mesgarani, H; Parmour, P; Aghazadeh, N
2010-01-01
In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.
ON ASYMTOTIC APPROXIMATIONS OF FIRST INTEGRALS FOR DIFFERENTIAL AND DIFFERENCE EQUATIONS
W.T. van Horssen
2007-04-01
Full Text Available In this paper the concept of integrating factors for differential equations and the concept of invariance factors for difference equations to obtain first integrals or invariants will be presented. It will be shown that all integrating factors have to satisfya system of partial differential equations, and that all invariance factors have to satisfy a functional equation. In the period 1997-2001 a perturbation method based on integrating vectors was developed to approximate first integrals for systems of ordinary differential equations. This perturbation method will be reviewed shortly. Also in the paper the first results in the development of a perturbation method for difference equations based on invariance factors will be presented.
Results of numerically solving an integral equation for a two-fermion system
Skachkov, N.B.; Solov'eva, T.M.
2003-01-01
A two-particle system is described by integral equations whose kernels are dependent on the total energy of the system. Such equations can be reduced to an eigenvalue problem featuring an eigenvalue-dependent operator. This nonlinear eigenvalue problem is solved by means of an iterative procedure developed by the present authors. The energy spectra of a two-fermion system formed by particles of identical masses are obtained for two cases, that where the total spin of the system is equal to zero and that where the total spin of the system is equal to unity. The splitting of the ground-state levels of positronium and dimuonium, the frequency of the transition from the ground state of orthopositronium to its first excited state, and the probabilities of parapositronium and paradimuonium decays are computed. The results obtained in this way are found to be in good agreement with experimental data
Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.
1995-01-01
The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented
Efficiently and easily integrating differential equations with JiTCODE, JiTCDDE, and JiTCSDE
Ansmann, Gerrit
2018-04-01
We present a family of Python modules for the numerical integration of ordinary, delay, or stochastic differential equations. The key features are that the user enters the derivative symbolically and it is just-in-time-compiled, allowing the user to efficiently integrate differential equations from a higher-level interpreted language. The presented modules are particularly suited for large systems of differential equations such as those used to describe dynamics on complex networks. Through the selected method of input, the presented modules also allow almost complete automatization of the process of estimating regular as well as transversal Lyapunov exponents for ordinary and delay differential equations. We conceptually discuss the modules' design, analyze their performance, and demonstrate their capabilities by application to timely problems.
Integration of equations of parabolic type by the method of nets
Saul'Yev, V K; Stark, M; Ulam, S
1964-01-01
International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff
Dissolution process analysis using model-free Noyes-Whitney integral equation.
Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto
2013-02-01
Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.
Sanchez, Richard.
1980-11-01
This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr
Stability of negative solitary waves for an integrable modified Camassa-Holm equation
Yin Jiuli; Tian Lixin; Fan Xinghua
2010-01-01
In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.
Ozgener, B.
1998-01-01
A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation
Analysis and regularization of the thin-wire integral equation with reduced kernel
Beurden, van M.C.; Tijhuis, A.G.
2007-01-01
For the straight wire, modeled as a hollow tube, we establish a conditional equivalence relation between the integral equations with exact and reduced kernel. This relation allows us to examine the existence and uniqueness conditions for the integral equation with reduced kernel, based on a local
An efficient explicit marching on in time solver for magnetic field volume integral equation
Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan
2015-01-01
An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep
Alternative integral equations and perturbation expansions for self-coupled scalar fields
Ford, L.H.
1985-01-01
It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)
Integration of differential equations by the pseudo-linear (PL) approximation
Bonalumi, Riccardo A.
1998-01-01
A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method
Grundland, A. M.; Lalague, L.
1996-04-01
This paper presents a new method of constructing, certain classes of solutions of a system of partial differential equations (PDEs) describing the non-stationary and isentropic flow for an ideal compressible fluid. A generalization of the symmetry reduction method to the case of partially-invariant solutions (PISs) has been formulated. We present a new algorithm for constructing PISs and discuss in detail the necessary conditions for the existence of non-reducible PISs. All these solutions have the defect structure 0305-4470/29/8/019/img1 and are computed from four-dimensional symmetric subalgebras. These theoretical considerations are illustrated by several examples. Finally, some new classes of invariant solutions obtained by the symmetry reduction method are included. These solutions represent central, conical, rational, spherical, cylindrical and non-scattering double waves.
Block-pulse functions approach to numerical solution of Abel’s integral equation
Monireh Nosrati Sahlan
2015-12-01
Full Text Available This study aims to present a computational method for solving Abel’s integral equation of the second kind. The introduced method is based on the use of Block-pulse functions (BPFs via collocation method. Abel’s integral equations as singular Volterra integral equations are hard and heavy in computation, but because of the properties of BPFs, as is reported in examples, this method is more efficient and more accurate than some other methods for solving this class of integral equations. On the other hand, the benefit of this method is low cost of computing operations. The applied method transforms the singular integral equation into triangular linear algebraic system that can be solved easily. An error analysis is worked out and applications are demonstrated through illustrative examples.
Phase integral approximation for coupled ordinary differential equations of the Schroedinger type
Skorupski, Andrzej A.
2008-01-01
Four generalizations of the phase integral approximation (PIA) to sets of ordinary differential equations of Schroedinger type [u j '' (x)+Σ k=1 N R jk (x)u k (x)=0, j=1,2,...,N] are described. The recurrence relations for higher order corrections are given in a form valid to arbitrary order and for the matrix R(x)[≡(R jk (x))] either Hermitian or non-Hermitian. For Hermitian and negative definite R(x) matrices, a Wronskian conserving PIA theory is formulated, which generalizes Fulling's current conserving theory pertinent to positive definite R(x) matrices. The idea of a modification of the PIA, which is well known for one equation [u '' (x)+R(x)u(x)=0], is generalized to sets. A simplification of Wronskian or current conserving theories is proposed which in each order eliminates one integration from the formulas for higher order corrections. If the PIA is generated by a nondegenerate eigenvalue of the R(x) matrix, the eliminated integration is the only one present. In that case, the simplified theory becomes fully algorithmic and is generalized to non-Hermitian R(x) matrices. The general theory is illustrated by a few examples automatically generated by using the author's program in MATHEMATICA published in e-print arXiv:0710.5406 [math-ph
Liao Cui-Cui; Cui Jin-Chao; Liang Jiu-Zhen; Ding Xiao-Hua
2016-01-01
In this paper, we propose a variational integrator for nonlinear Schrödinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrödinger equations with variable coefficients, cubic nonlinear Schrödinger equations and Gross–Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space. (paper)
Numerical integration of the Teukolsky equation in the time domain
Pazos-Avalos, Enrique; Lousto, Carlos O.
2005-01-01
We present a fourth-order convergent (2+1)-dimensional, numerical formalism to solve the Teukolsky equation in the time domain. Our approach is first to rewrite the Teukolsky equation as a system of first-order differential equations. In this way we get a system that has the form of an advection equation. This is then used in combination with a series expansion of the solution in powers of time. To obtain a fourth-order scheme we kept terms up to fourth derivative in time and use the advectionlike system of differential equations to substitute the temporal derivatives by spatial derivatives. This scheme is applied to evolve gravitational perturbations in the Schwarzschild and Kerr backgrounds. Our numerical method proved to be stable and fourth-order convergent in r* and θ directions. The correct power-law tail, ∼1/t 2l+3 , for general initial data, and ∼1/t 2l+4 , for time-symmetric data, was found in our runs. We noted that it is crucial to resolve accurately the angular dependence of the mode at late times in order to obtain these values of the exponents in the power-law decay. In other cases, when the decay was too fast and round-off error was reached before a tail was developed, then the quasinormal modes frequencies provided a test to determine the validity of our code
Integrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation
Feng, Bao-Feng; Chen, Junchao; Chen, Yong; Maruno, Ken-ichi; Ohta, Yasuhiro
2015-01-01
In the present paper, integrable semi-discrete and fully discrete analogues of a coupled short pulse (CSP) equation are constructed. The key to the construction are the bilinear forms and determinant structure of the solutions of the CSP equation. We also construct N-soliton solutions for the semi-discrete and fully discrete analogues of the CSP equations in the form of Casorati determinants. In the continuous limit, we show that the fully discrete CSP equation converges to the semi-discrete CSP equation, then further to the continuous CSP equation. Moreover, the integrable semi-discretization of the CSP equation is used as a self-adaptive moving mesh method for numerical simulations. The numerical results agree with the analytical results very well. (paper)
Integration Processes of Delay Differential Equation Based on Modified Laguerre Functions
Yeguo Sun
2012-01-01
Full Text Available We propose long-time convergent numerical integration processes for delay differential equations. We first construct an integration process based on modified Laguerre functions. Then we establish its global convergence in certain weighted Sobolev space. The proposed numerical integration processes can also be used for systems of delay differential equations. We also developed a technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed method and coincide well with analysis.
Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product
Yu Fajun; Zhang Hongqing
2008-01-01
It is shown that the Kronecker product can be applied to constructing new discrete integrable coupling system of soliton equation hierarchy in this paper. A direct application to the fractional cubic Volterra lattice spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is also indicated that the study of discrete integrable couplings by using the Kronecker product is an efficient and straightforward method. This method can be used generally
Integral equations for free-molecule ow in MEMS: recent advancements
Fedeli Patrick
2017-03-01
Full Text Available We address a Boundary Integral Equation (BIE approach for the analysis of gas dissipation in near-vacuum for Micro Electro Mechanical Systems (MEMS. Inspired by an analogy with the radiosity equation in computer graphics, we discuss an efficient way to compute the visible domain of integration. Moreover, we tackle the issue of near singular integrals by developing a set of analytical formulas for planar polyhedral domains. Finally a validation with experimental results taken from the literature is presented.
Bifurcations of traveling wave solutions for an integrable equation
Li Jibin; Qiao Zhijun
2010-01-01
This paper deals with the following equation m t =(1/2)(1/m k ) xxx -(1/2)(1/m k ) x , which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.
Numerical integration of the Langevin equation: Monte Carlo simulation
Ermak, D.L.; Buckholz, H.
1980-01-01
Monte Carlo simulation techniques are derived for solving the ordinary Langevin equation of motion for a Brownian particle in the presence of an external force. These methods allow considerable freedom in selecting the size of the time step, which is restricted only by the rate of change in the external force. This approach is extended to the generalized Langevin equation which uses a memory function in the friction force term. General simulation techniques are derived which are independent of the form of the memory function. A special method requiring less storage space is presented for the case of the exponential memory function
Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type
Abebe R. Tufa
2015-11-01
Full Text Available Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings with Lipschtiz constants L1and L2, respectively. Suppose that the Hammerstein type equation u + KFu = 0 has a solution in H. It is our purpose in this paper to construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein type equation. The results obtained in this paper improve and extend known results in the literature.
Integrability and structural stability of solutions to the Ginzburg-Landau equation
Keefe, Laurence R.
1986-01-01
The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).
Integral equations of the first kind, inverse problems and regularization: a crash course
Groetsch, C W
2007-01-01
This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided
Park, K. C.; Belvin, W. Keith
1990-01-01
A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.
Integrable hydrodynamics of Calogero-Sutherland model: bidirectional Benjamin-Ono equation
Abanov, Alexander G; Bettelheim, Eldad; Wiegmann, Paul
2009-01-01
We develop a hydrodynamic description of the classical Calogero-Sutherland liquid: a Calogero-Sutherland model with an infinite number of particles and a non-vanishing density of particles. The hydrodynamic equations, being written for the density and velocity fields of the liquid, are shown to be a bidirectional analog of the Benjamin-Ono equation. The latter is known to describe internal waves of deep stratified fluids. We show that the bidirectional Benjamin-Ono equation appears as a real reduction of the modified KP hierarchy. We derive the chiral nonlinear equation which appears as a chiral reduction of the bidirectional equation. The conventional Benjamin-Ono equation is a degeneration of the chiral nonlinear equation at large density. We construct multi-phase solutions of the bidirectional Benjamin-Ono equations and of the chiral nonlinear equations
An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions
Li Hong-Min; Li Yu-Qi; Chen Yong
2014-01-01
An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)
Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields
Albeverio, S.; Brzezniak, Z.
1994-01-01
We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)
Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition
Malinowski Marek T.
2015-01-01
Full Text Available We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors. The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.
Lakshmi Narayan Mishra
2016-04-01
Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.
LaChapelle, J.
2004-01-01
A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette
Solving Abel’s Type Integral Equation with Mikusinski’s Operator of Fractional Order
Ming Li
2013-01-01
Full Text Available This paper gives a novel explanation of the integral equation of Abel’s type from the point of view of Mikusinski’s operational calculus. The concept of the inverse of Mikusinski’s operator of fractional order is introduced for constructing a representation of the solution to the integral equation of Abel’s type. The proof of the existence of the inverse of the fractional Mikusinski operator is presented, providing an alternative method of treating the integral equation of Abel’s type.
Integration of the three-dimensional Vlasov equation for a magnetized plasma
Cheng, C.Z.
1976-04-01
A second order splitting scheme is developed to integrate the three dimensional Vlasov equation for a plasma in a magnetic field. The integration of the Vlasov equation is divided into a series of intermediate steps and Fourier interpolation and the ASD method with a third order Taylor expansion are used to integrate the fractional equations. Numerical experiments related to cyclotron waves in 2 and 2 1 / 2 D are demonstrated with high accuracy and efficiency. The computer storage requirements are modest; for example, a typical 2D nonlinear electron plasma simulation requires only 4000 ''particles.''
Fibonacci-regularization method for solving Cauchy integral equations of the first kind
Mohammad Ali Fariborzi Araghi
2017-09-01
Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2011-01-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a
Pando L, C.L.; Doedel, E.J.
2006-08-01
We investigate the nonlinear dynamics in a trimer, described by the one-dimensional discrete nonlinear Schrodinger equation (DNLSE), with periodic boundary conditions in the presence of a single on-site defect. We make use of numerical continuation to study different families of stationary and periodic solutions, which allows us to consider suitable perturbations. Taking into account a Poincare section, we are able to study the dynamics in both a thin stochastic layer solution and a global stochasticity solution. We find that the time series of the transit times, the time intervals to traverse some suitable sets in phase space, generate 1/f noise for both stochastic solutions. In the case of the thin stochastic layer solution, we find that transport between two almost invariant sets along with intermittency in small and large time scales are relevant features of the dynamics. These results are reflected in the behaviour of the standard map with suitable parameters. In both chaotic solutions, the distribution of transit times has a maximum and a tail with exponential decay in spite of the presence of long-range correlations in the time series. We motivate our study by considering a ring of weakly-coupled Bose-Einstein condensates (BEC) with attractive interactions, where inversion of populations between two spatially symmetric sites and phase locking take place in both chaotic solutions. (author)
Werby, M.F.; Broadhead, M.K.; Strayer, M.R.; Bottcher, C.
1992-01-01
The Helmholtz-Poincarf Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWECs. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can be obtained in matrix form by expanding all relevant terms in partial wave expansions, including a bi-orthogonal expansion of the Green's function. However some freedom in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways so long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermitian operator. The methodology will be explained in detail and examples will be presented
On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection
Rogers, C.; Huang, Yehui
2012-01-01
The integrable affinsphären equation originally arose in a geometric context but has an interesting gasdynamic connection. Here, an integrable deformed version of the affinsphären equation is derived in a novel manner via the action of reciprocal transformations on a related anisentropic gasdynamics system. A linear representation for the deformed affinsphären equation is constructed by means of the reciprocal transformations. The latter are then employed to derive a class of exact solutions in parametric form. -- Highlights: ► A deformed affinsphären equation is derived via a reciprocal transformation. ► A linear representation for the deformed affinsphären equation is constructed. ► A class of exact solutions of the deformed affinsphären equation is presented.
Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations
Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2014-01-01
The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers
A calderón multiplicative preconditioner for the combined field integral equation
Bagci, Hakan
2009-10-01
A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.
Integrable discretizations for the short-wave model of the Camassa-Holm equation
Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro
2010-01-01
The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.
Integral transform method for solving time fractional systems and fractional heat equation
Arman Aghili
2014-01-01
Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Eden, Burkhard [Institut für Mathematik und Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, 12489 Berlin (Germany); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University,119992 Moscow (Russian Federation)
2016-10-21
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations
Eden, Burkhard; Smirnov, Vladimir A.
2016-10-01
We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations
Alzahrani, Hasnaa H.
2016-01-01
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge
A predictor-corrector scheme for solving the Volterra integral equation
Al Jarro, Ahmed; Bagci, Hakan
2011-01-01
The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been
On the mixed discretization of the time domain magnetic field integral equation
Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan
2012-01-01
Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed
Vujačić, Ivan; Dattner, Itai
In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.
Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric
2013-01-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis
Numerical Study of Two-Dimensional Volterra Integral Equations by RDTM and Comparison with DTM
Reza Abazari
2013-01-01
Full Text Available The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential transform method (the so-called RDTM, and compared with the differential transform method (DTM. The concepts of DTM and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results obtained by DTM and RDTM together are compared with exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by DTM applied to the same Volterra integral equations. The numerical results reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations. It is predicted that the RDTM can be found widely applicable in engineering sciences.
Williams, M.M.R.
2005-01-01
The integral equation derived by Nieuwenhuizen and Luck for transmission of radiation through an optically thick diffusive medium is reconsidered in the light of radiative transfer theory and extended to slabs of arbitrary thickness. (author)
Fedotov, I
2006-07-01
Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...
Killingbeck, J.
1979-01-01
By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)
Stability and square integrability of solutions of nonlinear fourth order differential equations
Moussadek Remili
2016-05-01
Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda
2017-01-01
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced
The Volterra's integral equation theory for accelerator single-freedom nonlinear components
Wang Sheng; Xie Xi
1996-01-01
The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed
RBSDE's with jumps and the related obstacle problems for integral-partial differential equations
FAN; Yulian
2006-01-01
The author proves, when the noise is driven by a Brownian motion and an independent Poisson random measure, the one-dimensional reflected backward stochastic differential equation with a stopping time terminal has a unique solution. And in a Markovian framework, the solution can provide a probabilistic interpretation for the obstacle problem for the integral-partial differential equation.
Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)
2014-06-13
Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.
Integrable Hierarchy of the Quantum Benjamin-Ono Equation
Maxim Nazarov
2013-12-01
Full Text Available A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x_1,x_2,…. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions p_n=x^n_1+x^n_2+⋯ and is based on our recent results from [Comm. Math. Phys. 324 (2013, 831-849].
Mohammad Almousa
2013-01-01
Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.
The ATOMFT integrator - Using Taylor series to solve ordinary differential equations
Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.
1988-01-01
This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.
The multidensity integral equation approach in the theory of complex liquids
Holovko, M.F.
2001-01-01
Recent development of the multi-density integral equation approach and its application to the statistical mechanical modelling of a different type of association and clusterization in liquids and solutions are reviewed. The effects of dimerization, polymerization and network formation are discussed. The numerical and analytical solutions of the integral equations in the multi-density formalism for pair correlation functions are used for the description of structural and thermodynamical properties of ionic solutions, polymers and network forming fluids
de Jong, G.
1975-01-01
With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation
Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations
Alzahrani, Hasnaa H.
2016-07-26
A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.
Integral geometry and inverse problems for hyperbolic equations
Romanov, V G
1974-01-01
There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...
Numerical Integration of the Vlasov Equation of Two Colliding Beams
Zorzano-Mier, M P
2000-01-01
In a circular collider the motion of particles of one beam is strongly perturbed at the interaction points by the electro-magnetic field associated with the counter-rotating beam. For any two arbitrary initial particle distributions the time evolution of the two beams can be known by solving the coupled system of two Vlasov equations. This collective description is mandatory when the two beams have similar strengths, as in the case of LEP or LHC. The coherent modes excited by this beam-beam interaction can be a strong limitation for the operation of LHC. In this work, the coupled Vlasov equations of two colliding flat beams are solved numerically using a finite difference scheme. The results suggest that, for the collision of beams with equal tunes, the tune shift between the $\\sigma$- and $\\pi$- coherent dipole mode depends on the unperturbed tune $q$ because of the deformation that the so-called dynamic beta effect induces on the beam distribution. Only when the unperturbed tune $q\\rightarrow 0.25$ this tun...
Continuous limits for an integrable coupling system of Toda equation hierarchy
Li Li; Yu Fajun
2009-01-01
In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.
The ε-form of the differential equations for Feynman integrals in the elliptic case
Adams, Luise; Weinzierl, Stefan
2018-06-01
Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.
Continuous limits for an integrable coupling system of Toda equation hierarchy
Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)
2009-09-21
In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation
Ceriotti, Michele; Manolopoulos, David E.; Parrinello, Michele
2011-02-01
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Accelerating the convergence of path integral dynamics with a generalized Langevin equation.
Ceriotti, Michele; Manolopoulos, David E; Parrinello, Michele
2011-02-28
The quantum nature of nuclei plays an important role in the accurate modelling of light atoms such as hydrogen, but it is often neglected in simulations due to the high computational overhead involved. It has recently been shown that zero-point energy effects can be included comparatively cheaply in simulations of harmonic and quasiharmonic systems by augmenting classical molecular dynamics with a generalized Langevin equation (GLE). Here we describe how a similar approach can be used to accelerate the convergence of path integral (PI) molecular dynamics to the exact quantum mechanical result in more strongly anharmonic systems exhibiting both zero point energy and tunnelling effects. The resulting PI-GLE method is illustrated with applications to a double-well tunnelling problem and to liquid water.
Basilevsky, M V
2002-01-01
We develop an approach for derivation of quantum-classical relaxation equations for a two-channel problem. The treatment is based on the adiabatic channel wavefunctions and the system-bath coupling is modelled as a bilinear interaction in momentum representation. In the quantum-classical limit we obtain Liouville equations with the relaxation operator containing diffusion terms diagonal in Liouvillian space and the off-diagonal part which is responsible for thermal interlevel transitions. The high-frequency interlevel quantum beats are fully taken into account in this relaxation term. In the framework of the present formulation and as a consequence of the momentum-dependent interaction the Smoluchovsky diffusion limit can be reached without invoking Fokker-Planck equations as an intermediate step. The inherent property of equations so obtained is that the partial rates of interlevel transitions obey the principle of detailed balance. This result could not be gained in earlier treatments of the two-level diffu...
Scattering integral equations and four nucleon problem. Four nucleon bound states and scattering
Narodetskij, I.M.
1981-01-01
Existing results from the application of integral equation technique four-nucleon bound states and scattering are reviewed. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. Developments in the actual numerical solutions of Faddeev-Yakubovsky type equations are such that a detailed comparison can be made with experiment. Bound state calculations indicate that a nonrelativistic description with pairwise nuclear forces does not suffice and additional degrees of freedom are noted [ru
A computational method for direct integration of motion equations of structural systems
Brusa, L.; Ciacci, R.; Creco, A.; Rossi, F.
1975-01-01
The dynamic analysis of structural systems requires the solution of the matrix equations: Md 2 delta/dt(t) + Cddelta/dt(t) + Kdelta(t) = F(t). Many numerical methods are available for direct integration of this equation and their efficiency is due to the fulfillment of the following requirements: A reasonable order of accuracy must be obtained for the approximation of the response relevant to the first modes: the model contributions relevant to the eigenvalues with large real part must be essentially neglected. This paper presents a step-by-step numerical scheme for the integration of this equation which satisfies the requirements previously mentioned. (Auth.)
Cash, J.R.; Raptis, A.D.; Simos, T.E.
1990-01-01
An efficient algorithm is described for the accurate numerical integration of the one-dimensional Schroedinger equation. This algorithm uses a high-order, variable step Runge-Kutta like method in the region where the potential term dominates, and an exponential or Bessel fitted method in the asymptotic region. This approach can be used to compute scattering phase shifts in an efficient and reliable manner. A Fortran program which implements this algorithm is provided and some test results are given. (orig.)
Iterative solution for nonlinear integral equations of Hammerstein type
Chidume, C.E.; Osilike, M.O.
1990-12-01
Let E be a real Banach space with a uniformly convex dual, E*. Suppose N is a nonlinear set-valued accretive map of E into itself with open domain D; K is a linear single-valued accretive map with domain D(K) in E such that Im(N) is contained in D(K); K -1 exists and satisfies -1 x-K -1 y,j(x-y)>≥β||x-y|| 2 for each x, y is an element of Im(K) and some constant β > 0, where j denotes the single-valued normalized duality map on E. Suppose also that for each h is an element Im(K) the equation h is an element x+KNx has a solution x* in D. An iteration method is constructed which converges strongly to x*. Explicit error estimates are also computed. (author). 25 refs
Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions
Maccari, A.
1997-01-01
Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics
On the maximal cut of Feynman integrals and the solution of their differential equations
Amedeo Primo
2017-03-01
Full Text Available The standard procedure for computing scalar multi-loop Feynman integrals consists in reducing them to a basis of so-called master integrals, derive differential equations in the external invariants satisfied by the latter and, finally, try to solve them as a Laurent series in ϵ=(4−d/2, where d are the space–time dimensions. The differential equations are, in general, coupled and can be solved using Euler's variation of constants, provided that a set of homogeneous solutions is known. Given an arbitrary differential equation of order higher than one, there exists no general method for finding its homogeneous solutions. In this paper we show that the maximal cut of the integrals under consideration provides one set of homogeneous solutions, simplifying substantially the solution of the differential equations.
Coffey, M.W.
1996-01-01
Due to their short coherence lengths and relatively large energy gaps, the high-transition temperature superconductors are very likely candidates as ultraclean materials at low temperature. This class of materials features significantly modified vortex dynamics, with very little dissipation at low temperature. The motion is then dominated by wave propagation, being in general nonlinear. Here two-dimensional vortex motion is investigated in the ultraclean regime for a superconductor described in cylindrical geometry. The small-amplitude limit is assumed, and the focus is on the long-wavelength limit. Results for both zero and nonzero Hall force are presented, with the effects of nonlocal vortex interaction and vortex inertia being included within London theory. Linear and nonlinear problems are studied, with a predisposition toward the more analytically tractable situations. For a nonlinear problem in 2+1 dimensions, the cylindrical Kadomtsev-Petviashvili equation is derived. Hall angle measurements on high-T c superconductors indicate the need to investigate the properties of such a completely integrable wave equation. copyright 1996 The American Physical Society
Non-integrability of time-dependent spherically symmetric Yang-Mills equations
Matinyan, S.G.; Prokhorenko, E.V.; Savvidy, G.K.
1986-01-01
The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. The phase space of this system is shown to have no quasi-periodic motion specific for integrable systems. In particular, the well-known Wu-Yang static solution is unstable, so its vicinity in phase is the stochasticity region
Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation
Berenguer MI
2009-01-01
Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .
Non-integrability of time-dependent spherically symmetric Yang-Mills equations
Matinyan, S G; Prokhorenko, E B; Savvidy, G K
1988-03-07
The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. It is shown that the motion of this system is ergodic, while the system itself is non-integrable, i.e. manifests dynamical chaos.
Rezende, J.
1983-01-01
We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)
Soliton surfaces associated with generalized symmetries of integrable equations
Grundland, A M; Post, S
2011-01-01
In this paper, based on the Fokas et al approach (Fokas and Gel'fand 1996 Commun. Math. Phys. 177 203-20; Fokas et al 2000 Sel. Math. 6 347-75), we provide a symmetry characterization of continuous deformations of soliton surfaces immersed in a Lie algebra using the formalism of generalized vector fields, their prolongation structure and links with the Frechet derivatives. We express the necessary and sufficient condition for the existence of such surfaces in terms of the invariance criterion for generalized symmetries and identify additional sufficient conditions which admit an explicit integration of the immersion functions of 2D surfaces in Lie algebras. We discuss in detail the su(N)-valued immersion functions generated by conformal symmetries of the CP N-1 sigma model defined on either the Minkowski or Euclidean space. We further show that the sufficient conditions for explicit integration of such immersion functions impose additional restrictions on the admissible conformal symmetries of the model defined on Minkowski space. On the other hand, the sufficient conditions are identically satisfied for arbitrary conformal symmetries of finite action solutions of the CP N-1 sigma model defined on Euclidean space.
Voytishek, Anton V.; Shipilov, Nikolay M.
2017-11-01
In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.
Jimenez, J.C.
2009-06-01
Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)
Simulating propagation of coherent light in random media using the Fredholm type integral equation
Kraszewski, Maciej; Pluciński, Jerzy
2017-06-01
Studying propagation of light in random scattering materials is important for both basic and applied research. Such studies often require usage of numerical method for simulating behavior of light beams in random media. However, if such simulations require consideration of coherence properties of light, they may become a complex numerical problems. There are well established methods for simulating multiple scattering of light (e.g. Radiative Transfer Theory and Monte Carlo methods) but they do not treat coherence properties of light directly. Some variations of these methods allows to predict behavior of coherent light but only for an averaged realization of the scattering medium. This limits their application in studying many physical phenomena connected to a specific distribution of scattering particles (e.g. laser speckle). In general, numerical simulation of coherent light propagation in a specific realization of random medium is a time- and memory-consuming problem. The goal of the presented research was to develop new efficient method for solving this problem. The method, presented in our earlier works, is based on solving the Fredholm type integral equation, which describes multiple light scattering process. This equation can be discretized and solved numerically using various algorithms e.g. by direct solving the corresponding linear equations system, as well as by using iterative or Monte Carlo solvers. Here we present recent development of this method including its comparison with well-known analytical results and a finite-difference type simulations. We also present extension of the method for problems of multiple scattering of a polarized light on large spherical particles that joins presented mathematical formalism with Mie theory.
Integrability of the Gross-Pitaevskii equation with Feshbach resonance management
Zhao Dun; Luo Honggang; Chai Huayue
2008-01-01
In this Letter we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is completely integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 98 (2007) 074102]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schroedinger equation. By this transformation, each exact solution of the standard nonlinear Schroedinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitons and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique
Gumral, Hasan
Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.
Retarded potentials and time domain boundary integral equations a road map
Sayas, Francisco-Javier
2016-01-01
This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...
Splines and their reciprocal-bases in volume-integral equations
Sabbagh, H.A.
1993-01-01
The authors briefly outline the use of higher-order splines and their reciprocal-bases in discretizing the volume-integral equations of electromagnetics. The discretization is carried out by means of the method of moments, in which the expansion functions are the higher-order splines, and the testing functions are the corresponding reciprocal-basis functions. These functions satisfy an orthogonality condition with respect to the spline expansion functions. Thus, the method is not Galerkin, but the structure of the resulting equations is quite regular, nevertheless. The theory is applied to the volume-integral equations for the unknown current density, or unknown electric field, within a scattering body, and to the equations for eddy-current nondestructive evaluation. Numerical techniques for computing the matrix elements are also given
Yurii M. Streliaiev
2016-06-01
Full Text Available Three-dimensional quasistatic contact problem of two linearly elastic bodies' interaction with Coulomb friction taken into account is considered. The boundary conditions of the problem have been simplified by the modification of the Coulomb's law of friction. This modification is based on the introducing of a delay in normal contact tractions that bound tangent contact tractions in the Coulomb's law of friction expressions. At this statement the problem is reduced to a sequence of similar systems of nonlinear integral equations describing bodies' interaction at each step of loading. A method for an approximate solution of the integral equations system corresponded to each step of loading is applied. This method consists of system regularization, discretization of regularized system and iterative process application for solving the discretized system. A numerical solution of a contact problem of an elastic sphere with an elastic half-space interaction under increasing and subsequently decreasing normal compressive force has been obtained.
Zhukov, V.P.; Bulgakova, Nadezhda M.; Fedoruk, M.P.
2017-01-01
Roč. 84, č. 7 (2017), s. 439-446 ISSN 1070-9762 R&D Projects: GA MŠk LO1602; GA ČR GA16-12960S Institutional support: RVO:68378271 Keywords : glass * femtosecond laser pulses * Maxwell's and Schrdinger equations Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 0.299, year: 2016
Modelling of fluid flow in fractured porous media by the singular integral equations method
Vu, M.N.
2012-01-01
This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self
On a numereeical method for solving the Faddv integral equation without deformation of contour
Belyaev, V.O.; Moller, K.
1976-01-01
A numerical method is proposed for solving the Faddeev equation for separable potentials at positive total energy. The method is based on the fact that after applying a simple interpolation procedure the logarithmic singularities in the kernel of the integral equation can be extracted in the same way as usually the pole singularity is extracted. The method has been applied to calculate the eigenvalues of the Faddeev kernel
A novel hierarchy of differential—integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun; Geng Xian-Guo; He Guo-Liang
2014-01-01
With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 × 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy
Exact Mathisson-Papapetrou equations in the Schwarzschild metric with integrals of motion
Plyatsko, R.M.; Stefanishin, O.B.
2011-01-01
A new representation for exact Mathisson-Papapetrou equations under the Mathisson-Pirani condition in the Schwarzschild gravitational field, which does not contain third-order derivatives with respect to spinning particle coordinates, has been obtained. For this purpose, the integrals of energy and angular momentum of a spinning particle, as well as a differential relation following from the Mathisson-Papapetrou equations for an arbitrary metric, are used.
Banyukevich, A.; Ziolkovski, K.
1975-01-01
A number of hybrid methods for solving Cauchy problems are described on the basis of an evaluation of advantages of single and multiple-point numerical integration methods. The selection criterion is the principle of minimizing computer time. The methods discussed include the Nordsieck method, the Bulirsch-Stoer extrapolation method, and the method of recursive Taylor-Steffensen power series.
ICM: an Integrated Compartment Method for numerically solving partial differential equations
Yeh, G.T.
1981-05-01
An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.
On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations
Zhang Yu-Feng; Tam, Honwah
2016-01-01
In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)
Integral equation approach to time-dependent kinematic dynamos in finite domains
Xu Mingtian; Stefani, Frank; Gerbeth, Gunter
2004-01-01
The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains
The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.
Gomez, Luis J; Yucel, Abdulkadir C; Michielssen, Eric
2018-03-01
An internally combined volume surface integral equation (ICVSIE) for analyzing electromagnetic (EM) interactions with biological tissue and wide ranging diagnostic, therapeutic, and research applications, is proposed. The ICVSIE is a system of integral equations in terms of volume and surface equivalent currents in biological tissue subject to fields produced by externally or internally positioned devices. The system is created by using equivalence principles and solved numerically; the resulting current values are used to evaluate scattered and total electric fields, specific absorption rates, and related quantities. The validity, applicability, and efficiency of the ICVSIE are demonstrated by EM analysis of transcranial magnetic stimulation, magnetic resonance imaging, and neuromuscular electrical stimulation. Unlike previous integral equations, the ICVSIE is stable regardless of the electric permittivities of the tissue or frequency of operation, providing an application-agnostic computational framework for EM-biomedical analysis. Use of the general purpose and robust ICVSIE permits streamlining the development, deployment, and safety analysis of EM-biomedical technologies.
An integral equation-based numerical solver for Taylor states in toroidal geometries
O'Neil, Michael; Cerfon, Antoine J.
2018-04-01
We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.
Integral equation models for image restoration: high accuracy methods and fast algorithms
Lu, Yao; Shen, Lixin; Xu, Yuesheng
2010-01-01
Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images
Thermodynamically self-consistent integral equations and the structure of liquid metals
Pastore, G.; Kahl, G.
1987-01-01
We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)
Nonperturbative time-convolutionless quantum master equation from the path integral approach
Nan Guangjun; Shi Qiang; Shuai Zhigang
2009-01-01
The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.
On a Painleve test for the complete integrability of Bogomolny's monopole equation
Roy Chowdhury, A.; Chanda, P.K.
1984-09-01
We have made an analysis of the monopole equation of Bogomolny from the stand point of Painleve test. The idea that any non-linear partial differential equation admitting a Lax representation should conform to the criterion of the Painleve analysis seems to hold well in case of Bogomolny equation. We have determined the position for resonances and have proved that at each of these the coefficients in the Forbenius type expansion of the gauge potentials do become arbitrary signalling the complete integrability of the system. (author)
Gemechis File
2012-01-01
Full Text Available We have presented a numerical integration method to solve a class of singularly perturbed delay differential equations with small shift. First, we have replaced the second-order singularly perturbed delay differential equation by an asymptotically equivalent first-order delay differential equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method is demonstrated by implementing it on several linear and nonlinear model examples by taking various values for the delay parameter and the perturbation parameter .
Comments on the integrability of the loop-space chiral equations
Gu, C.; Wang, L.L.C.
1980-01-01
A demonstration is given how the ordinary space chiral equations provide the existence conditions for the infinite number of conserved currents and how these currents are related to the so-called inverse-scattering equations, whose integrability is provided by the original chiral equations. Loop-space chiral equations are introduced. The integrability conditions of the non-local currents in two possible different situations are discussed. In the first case, the generating functions are functionals of the loop alone. The integrability conditions are not satisfied and higher order conserved non-local currents do not exist. In the second case, the generating functions are functionals of the loop as well as a parameter the integrability conditions at a restricted point of the parameter are satisfied, however there is an infinite fold of arbitrariness. It indicates that additional guiding principles are needed in addition to the original loop-space chiral equation in order to uniquely determine the infinite conserved non-local currents as functionals of the loop and the parameter
A predictor-corrector scheme for solving the Volterra integral equation
Al Jarro, Ahmed
2011-08-01
The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been developed for removing low and high frequency instabilities. On the other hand, literature on stabilizing explicit schemes, which might be considered more efficient since they do not require a matrix inversion at each time step, is practically non-existent. In this work, a stable but still explicit predictor-corrector scheme is proposed for solving the Volterra integral equation and its efficacy is verified numerically. © 2011 IEEE.
Pujols, Agnes
1991-01-01
We prove that the scattering operator for the wave equation in the exterior of an non-homogeneous obstacle exists. Its distribution kernel is represented by a time-dependent boundary integral equation. A space-time integral variational formulation is developed for determining the current induced by the scattering of an electromagnetic wave by an homogeneous object. The discrete approximation of the variational problem using a finite element method in both space and time leads to stable convergent schemes, giving a numerical code for perfectly conducting cylinders. (author) [fr
On the asymptotic solution to a class of linear integral equations
Gautesen, A.K.
1988-01-01
The authors consider Fredholm integral equations of the first kind whose kernels are a function of the difference between two points times a large parameter. Conditions on the kernel are stated in terms of a function corresponding to a Wiener-Hopf factorization of the Fourier transform of the kernel. They give the complete asymptotic expansions of the solution to the integral equations. As applications of the author's results, the author considers the steady-state, acoustical scattering of a plane wave by both a hard strip and a soft strip. The author's results are uniform with respect to the direction of incidence
Muskhelishvili, N I
2011-01-01
Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem
Mohamed Abdalla Darwish
2014-01-01
Full Text Available We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+. We show that this equation has at least one asymptotically stable solution.
Utama, Briandhika; Purqon, Acep
2016-01-01
Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods. (paper)
Valdés, Felipe
2011-06-01
A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.
On the initial condition problem of the time domain PMCHWT surface integral equation
Uysal, Ismail Enes
2017-05-13
Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.
A generalized Clebsch transformation leading to a first integral of Navier–Stokes equations
Scholle, M., E-mail: markus.scholle@hs-heilbronn.de; Marner, F., E-mail: florian.marner@hs-heilbronn.de
2016-09-23
In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented. - Highlights: • A generalized Clebsch transformation is established applying to viscous flow. • The resulting 5 equations are a first integral of Navier–Stokes-equations. • An axisymmetric stagnation flow against a solid wall is considered as flow example. • Perspectives of the method for other problems, e.g. in solid mechanics are discussed.
A generalized Clebsch transformation leading to a first integral of Navier–Stokes equations
Scholle, M.; Marner, F.
2016-01-01
In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented. - Highlights: • A generalized Clebsch transformation is established applying to viscous flow. • The resulting 5 equations are a first integral of Navier–Stokes-equations. • An axisymmetric stagnation flow against a solid wall is considered as flow example. • Perspectives of the method for other problems, e.g. in solid mechanics are discussed.
Fujii, Akira; Kluemper, Andreas
1999-01-01
We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation
Guo Rui; Tian Bo; Lue Xing; Zhang Haiqiang; Xu Tao
2010-01-01
For the propagation of the ultrashort pulses in an inhomogeneous multi-component nonlinear medium, a system of coupled equations is analytically studied in this paper. Painleve analysis shows that this system admits the Painleve property under some constraints. By means of the Ablowitz-Kaup-Newell-Segur procedure, the Lax pair of this system is derived, and the Darboux transformation (DT) is constructed with the help of the obtained Lax pair. With symbolic computation, the soliton solutions are obtained by virtue of the DT algorithm. Figures are plotted to illustrate the dynamical features of the soliton solutions. Characteristics of the solitons propagating in an inhomogeneous multi-component nonlinear medium are discussed: (i) Propagation of one soliton and two-peak soliton; (ii) Elastic interactions of the parabolic two solitons; (iii) Overlap phenomenon between two solitons; (iv) Collision of two head-on solitons and two head-on two-peak solitons; (v) Two different types of interactions of the three solitons; (vi) Decomposition phenomenon of one soliton into two solitons. The results might be useful in the study on the ultrashort-pulse propagation in the inhomogeneous multi-component nonlinear media. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Transforming differential equations of multi-loop Feynman integrals into canonical form
Meyer, Christoph [Institut für Physik, Humboldt-Universität zu Berlin,12489 Berlin (Germany)
2017-04-03
The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
Introduction to quantum mechanics Schrödinger equation and path integral
Müller-Kirsten, H J W
2012-01-01
This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrodinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions. In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introdu...
A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equations
Zhang Yufeng; Xu Xixiang
2004-01-01
A subalgebra of loop algebra A-bar 2 is first constructed, which has its own special feature. It follows that a new Liouville integrable hierarchy of evolution equations is obtained, possessing a tri-Hamiltonian structure, which is proved by us in this paper. Especially, three symplectic operators are constructed directly from recurrence relations. The conjugate operator of a recurrence operator is a hereditary symmetry. As reduction cases of the hierarchy presented in this paper, the celebrated MKdV equation and heat-conduction equation are engendered, respectively. Therefore, we call the hierarchy a generalized MKdV-H system. At last, a high-dimension loop algebra G-bar is constructed by making use of a proper scalar transformation. As a result, a type expanding integrable model of the MKdV-H system is given
The First-Integral Method and Abundant Explicit Exact Solutions to the Zakharov Equations
Yadong Shang
2012-01-01
Full Text Available This paper is concerned with the system of Zakharov equations which involves the interactions between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of the system of Zakharov equations are derived uniformly by using the first integral method. These exact solutions are include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the singular traveling wave solutions, periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions, and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.
Danwanichakul, Panu; Glandt, Eduardo D
2004-11-15
We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.
Transforming differential equations of multi-loop Feynman integrals into canonical form
Meyer, Christoph
2017-04-01
The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
Transforming differential equations of multi-loop Feynman integrals into canonical form
Meyer, Christoph
2017-01-01
The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.
Elliptic Euler–Poisson–Darboux equation, critical points and integrable systems
Konopelchenko, B G; Ortenzi, G
2013-01-01
The structure and properties of families of critical points for classes of functions W(z, z-bar ) obeying the elliptic Euler–Poisson–Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(β, β-bar ;1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed. (paper)
Solution of four-nucleon integral equations using the effective UPA
Perne, R.; Sandhas, W.
1978-01-01
In the three-body case it is standard to either solve the (two-dimensional) Faddeev equations directly, or to reduce them first to one-dimensional equations by means of separable approximation (expansion) of the underlying two-body interactions. The basic four-body operator identities are reduced by the latter treatment to effective three-body equations only. These may be handled like their genuine three-body analoga, i.e., by directly solving them, or by expanding the effective interactions ocurring into separable terms. Such a procedure provides us in a second step with one-dimensional integral equations for the four-body problem, too. (orig./WL) [de
Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin-Sutherland model
Tsuboi, Zengo
2003-01-01
We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For r=1, this subset of NLIEs reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy
Stochastic integration of the Bethe-Salpeter equation for two bound fermions
Salomon, M.
1988-09-01
A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)
Al Jarro, Ahmed
2011-09-01
A new predictor-corrector scheme for solving the Volterra integral equation to analyze transient electromagnetic wave interactions with arbitrarily shaped inhomogeneous dielectric bodies is considered. Numerical results demonstrating stability and accuracy of the proposed method are presented. © 2011 IEEE.
A surface-integral-equation approach to the propagation of waves in EBG-based devices
Lancellotti, V.; Tijhuis, A.G.
2012-01-01
We combine surface integral equations with domain decomposition to formulate and (numerically) solve the problem of electromagnetic (EM) wave propagation inside finite-sized structures. The approach is of interest for (but not limited to) the analysis of devices based on the phenomenon of
Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings
Zhu Fubo; Ji Jie; Zhang Jianbin
2008-01-01
Two hierarchies of multi-component Kaup-Newell equations are derived from an arbitrary order matrix spectral problem, including positive non-isospectral Kaup-Newell hierarchy and negative non-isospectral Kaup-Newell hierarchy. Moreover, new integrable couplings of the resulting Kaup-Newell soliton hierarchies are constructed by enlarging the associated matrix spectral problem
A. Anguraj
2014-02-01
Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.
Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations
Bahman Ghazanfari
2013-08-01
Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.
Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric
2010-01-01
A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well
Biazar, J.; Eslami, M.; Aminikhah, H.
2009-01-01
In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.
Biazar, J.; Ghazvini, H.
2009-01-01
In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.
Korkmaz, Erdal
2017-01-01
In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. The results obtained essentially improve, include and complement the results in the literature.
A purely Lagrangian method for the numerical integration of Fokker-Planck equations
Combis, P.; Fronteau, J.
1986-01-01
A new numerical approach to Fokker-Planck equations is presented, in which the integration grid moves according to the solution of a differential system. The method is purely Lagrangian, the mean effect of the diffusion being inserted into the differential system itself
To the complete integrability of long-wave short-wave interaction equations
Roy Chowdhury, A.; Chanda, P.K.
1984-10-01
We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)
Spatial symmetry, local integrability and tetrahedron equations in the Baxter-Bazhanov model
Kashaev, R.M.; Mangazeev, V.V.; Stroganov, Yu.G.
1992-01-01
It is shown that the Baxter-Bazhanov model is invariant under the action of the cube symmetry group. The three-dimensional star-star relations, proposed by Baxter and Bazhanov as local integrability conditions, correspond to a particular transformation from this group. Invariant Boltzmann weights, parameterized in terms of the Zamolodchikov's angle variables, apparently satisfy the tetrahedron equations. 12 refs
WKB: an interactive code for solving differential equations using phase integral methods
White, R.B.
1978-01-01
A small code for the analysis of ordinary differential equations interactively through the use of Phase Integral Methods (WKB) has been written for use on the DEC 10. This note is a descriptive manual for those interested in using the code
Erdal Korkmaz
2017-06-01
Full Text Available Abstract In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov’s second method. The results obtained essentially improve, include and complement the results in the literature.
Two-dimensional nonlinear string-type equations and their exact integration
Leznov, A.N.; Saveliev, M.V.
1982-01-01
On the base of group-theoretical formulation for exactly integrable two-dimensional non-linear dynamical systems associated with a local part of an arbitrary graded Lie algebra we study a string-type subclass of the equations. Explicit expressions have been obtained for their general solutions
On the integration of equations of motion for particle-in-cell codes
Fuchs, Vladimír; Gunn, J. P.
2006-01-01
Roč. 214, - (2006), s. 299-315 ISSN 0021-9991 R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : Equations of motion * 2nd order integration methods * nonlinear oscillations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.328, year: 2006
M. Denche; A. L. Marhoune
2003-01-01
In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.
Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2004-01-01
A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...
Time-integration methods for finite element discretisations of the second-order Maxwell equation
Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.
This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic
An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry
Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.
2005-12-01
We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs.
Chen, Ke [Univ. of Liverpool (United Kingdom)
1996-12-31
We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.
Liu, Yang
2016-03-25
A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.
Liu, Yang; Al-Jarro, Ahmed; Bagci, Hakan; Michielssen, Eric
2016-01-01
A parallel plane-wave time-domain (PWTD)-accelerated explicit marching-on-in-time (MOT) scheme for solving the time domain electric field volume integral equation (TD-EFVIE) is presented. The proposed scheme leverages pulse functions and Lagrange polynomials to spatially and temporally discretize the electric flux density induced throughout the scatterers, and a finite difference scheme to compute the electric fields from the Hertz electric vector potentials radiated by the flux density. The flux density is explicitly updated during time marching by a predictor-corrector (PC) scheme and the vector potentials are efficiently computed by a scalar PWTD scheme. The memory requirement and computational complexity of the resulting explicit PWTD-PC-EFVIE solver scale as ( log ) s s O N N and ( ) s t O N N , respectively. Here, s N is the number of spatial basis functions and t N is the number of time steps. A scalable parallelization of the proposed MOT scheme on distributed- memory CPU clusters is described. The efficiency, accuracy, and applicability of the resulting (parallelized) PWTD-PC-EFVIE solver are demonstrated via its application to the analysis of transient electromagnetic wave interactions on canonical and real-life scatterers represented with up to 25 million spatial discretization elements.
Li Xinyue; Zhao Qiulan
2009-01-01
Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.
Edelman, Mark
2015-07-01
In this paper, we consider a simple general form of a deterministic system with power-law memory whose state can be described by one variable and evolution by a generating function. A new value of the system's variable is a total (a convolution) of the generating functions of all previous values of the variable with weights, which are powers of the time passed. In discrete cases, these systems can be described by difference equations in which a fractional difference on the left hand side is equal to a total (also a convolution) of the generating functions of all previous values of the system's variable with the fractional Eulerian number weights on the right hand side. In the continuous limit, the considered systems can be described by the Grünvald-Letnikov fractional differential equations, which are equivalent to the Volterra integral equations of the second kind. New properties of the fractional Eulerian numbers and possible applications of the results are discussed.
Solution of the Stokes system by boundary integral equations and fixed point iterative schemes
Chidume, C.E.; Lubuma, M.S.
1990-01-01
The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs
Xiong, Z.; Tripp, A.C.
1994-01-01
This paper presents an integral equation algorithm for 3D EM modeling at high frequencies for applications in engineering an environmental studies. The integral equation method remains the same for low and high frequencies, but the dominant roles of the displacements currents complicate both numerical treatments and interpretations. With singularity extraction technique they successively extended the application of the Hankel filtering technique to the computation of Hankel integrals occurring in high frequency EM modeling. Time domain results are calculated from frequency domain results via Fourier transforms. While frequency domain data are not obvious for interpretations, time domain data show wave-like pictures that resemble seismograms. Both 1D and 3D numerical results show clearly the layer interfaces
A higher order space-time Galerkin scheme for time domain integral equations
Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam
2014-01-01
Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.
Dubrovsky, V.G.; Formusatik, I.B.
2003-01-01
The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular
Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral
Hose, R D
2006-01-01
Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...
P. C. M. Vinhal, Andre; Yan, Wei; Kontogeorgis, Georgios M.
2018-01-01
and the asymptotic one near the critical point. Although several crossover EOSs have been developed in the last decades their use in modeling industrial processes is rather limited. In this work, we use the crossover Soave–Redlich–Kwong (CSRK) to describe phase equilibrium and critical properties of pure n......-alkanes and methane/n-alkane binary mixtures and compare the results to two other modeling approaches of the SRK EOS. In the case of the pure fluids, CSRK gives an accurate overall description of the phase equilibrium and critical properties; nevertheless, a minor increase in the deviation of the saturation pressure...
Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado
1997-10-01
The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.
Some thoughts on the pressure integration requirements of the Navier–Stokes equations
Saad, Tony; Majdalani, Joseph
2012-01-01
The Navier–Stokes formulation represents a uniquely challenging system of partial differential equations that continues to influence modern applied science and engineering. In its simplest form, the system can be used to prescribe the motion of a viscous incompressible fluid with constant properties. It consists of four equations in three-dimensional space that account for both the kinematic and dynamic conditions that a fluid element senses. In this work, we investigate the pressure integration rules and restrictions that affect the resolution of the scalar pressure field. We begin our analysis by exploring the integration properties of Euler's equations in two dimensions while making use of Clairaut's theorem on the commutativity of mixed partial derivatives. We then extend our findings to three-dimensional space. This process gives rise to a theorem and four corollaries that help to clarify the conditions needed to obtain exact or asymptotic solutions for the pressure distribution. Consequently, we identify the fundamental conditions under which the Navier–Stokes equations can be properly integrated to arrive at an analytic expression for the pressure field, namely, one that is continuous and twice differentiable. In closing, several configurations are used to test the theorem and showcase its connection with the pressure formulation. These include potential flows for which the pressure can be obtained unconditionally, and inviscid rotational motions of the Taylor–Culick type with and without headwall injection. (paper)
CALL FOR PAPERS: Special issue on Symmetries and Integrability of Difference Equations
Doliwa, Adam; Korhonen, Risto; Lafortune, Stephane
2006-10-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Special issue on Symmetries and Integrability of Difference Equations' as featured at the SIDE VII meeting held during July 2006 in Melbourne (http://web.maths.unsw.edu.au/%7Eschief/side/side.html). Participants at that meeting, as well as other researchers working in the field of difference equations and discrete systems, are invited to submit a research paper to this issue. This meeting was the seventh of a series of biennial meetings devoted to the study of integrable difference equations and related topics. The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations, just as differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as: mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, quantum field theory, etc. It is thus crucial to develop tools to study and solve difference equations. While the theory of symmetry and integrability for differential equations is now well-established, this is not yet the case for discrete equations. The situation has undergone impressive development in recent years and has affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular
Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation
Salomon, M.
1992-07-01
We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs
High-Order Calderón Preconditioned Time Domain Integral Equation Solvers
Valdes, Felipe
2013-05-01
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.
The Abel symposium 2008 on differential equations: geometry, symmetries and integrability
Lychagin, Valentin; Straume, Eldar; Abel symposium 2008; Differential equations; Geometry, symmetries and integrability
2008-01-01
The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.
Rosenbaum, J. S.
1976-01-01
If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.
High-Order Calderón Preconditioned Time Domain Integral Equation Solvers
Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,
2013-01-01
Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.
Hamiltonian structures and integrability for a discrete coupled KdV-type equation hierarchy
Zhao Haiqiong; Zhu Zuonong; Zhang Jingli
2011-01-01
Coupled Korteweg-de Vries (KdV) systems have many important physical applications. By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy. Our hierarchy includes the coupled Volterra system proposed by Lou et al. (e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation. We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. (authors)
Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds
Friedrich, Thomas; Ivanov, Stefan
2001-12-01
We compute the scalar curvature of 7-dimensional G 2 -manifolds admitting a connection with totally skew-symmetric torsion. We prove the formula for the general solution of the Killing spinor equation and express the Riemannian scalar curvature of the solution in terms of the dilation function and the NS 3-form field. In dimension n=7 the dilation function involved in the second fermionic string equation has an interpretation as a conformal change of the underlying integrable G 2 -structure into a cocalibrated one of pure type W 3 . (author)
Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines
M. A. Banaja
2015-01-01
Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.
On a method for constructing the Lax pairs for nonlinear integrable equations
Habibullin, I T; Poptsova, M N; Khakimova, A R
2016-01-01
We suggest a direct algorithm for searching the Lax pairs for nonlinear integrable equations. It is effective for both continuous and discrete models. The first operator of the Lax pair corresponding to a given nonlinear equation is found immediately, coinciding with the linearization of the considered nonlinear equation. The second one is obtained as an invariant manifold to the linearized equation. A surprisingly simple relation between the second operator of the Lax pair and the recursion operator is discussed: the recursion operator can immediately be found from the Lax pair. Examples considered in the article are convincing evidence that the found Lax pairs differ from the classical ones. The examples also show that the suggested objects are true Lax pairs which allow the construction of infinite series of conservation laws and hierarchies of higher symmetries. In the case of the hyperbolic type partial differential equation our algorithm is slightly modified; in order to construct the Lax pairs from the invariant manifolds we use the cutting off conditions for the corresponding infinite Laplace sequence. The efficiency of the method is illustrated by application to some equations given in the Svinolupov–Sokolov classification list for which the Lax pairs and the recursion operators have not been found earlier. (paper)
Asymptotic integration of a linear fourth order differential equation of Poincaré type
Anibal Coronel
2015-11-01
Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.
A Special Variant of the Moment Method for Fredholm Integral Equations of the Second Kind
S. A. Solov’eva
2015-01-01
Full Text Available We consider the linear Fredholm integral equation of the second kind, where the kernel and the free term are smooth functions. We find the unknown function in this class as well.Exact and approximate methods for the solution of linear Fredholm integral equations of the second kind are well developed. However, classical methods do not take into account the structural properties of the kernel and the free term of equation.In this paper we develop and justify a special variant of the moment method to solve this equation, which takes into account the differential properties of initial data. The proposed paper furthers studies of N.S Gabbasov, I.P. Kasakina, and S.A Solov’eva. We use approximation theory, version of the general theory of approximate methods of analysis that Gabdulkhayev B.G suggested, and methods of functional analysis to prove theorems. In addition, we use N.S. Gabbasov’s ideas and methods in papers that are devoted to the Fredholm equations of the first kind, as well as N.S. Gabbasov and S.A Solov’eva’s investigations on the Fredholm equations of the third kind in the space of distributions.The first part of the paper provides a description of the basic function space and elements of the theory of approximation in it.In the second part we propose and theoretically justify a generalized moment method. We have demonstrated that the improvement of differential properties of the initial data improves the approximation accuracy. Since, in practice, the approximate equations are solved, as a rule, only approximately, we prove the stability and causality of the proposed method. The resulting estimate of the paper is in good agreement with the estimate for the ordinary moment method for equations of the second kind in the space of continuous functions.In the final section we have shown that a developed method is optimal in order of accuracy among all polynomial projection methods to solve Fredholm integral equations of the second
Davis, M.; Peebles, P.J.E.
1977-01-01
The evolution of density correlations in an expanding universe can be described by the BBGKY equations. This approach has been the subject of several previous studies, but always under the assumption of small-amplitude fluctuations, where the hierarchy of equations has a natural truncation. Reslts of these studies cannot be compared to the present universe because the galaxy two-point correlation function xi (r) is much greater than unity at r9 or approx. =1h -1 Mpc, and the three-point function zeta is on the order of xi (r) 2 . In this strongly nonlinear situation the hierarchy is dominated by terms ignored in the linear analysis. Our method of truncating the hierarchy is based on the empirical result that zeta can be represented to good accuracy as a simple function of xi. We solve the equations via the velocity-moment method, and we truncate the resulting velocity-moment hierarchy for the two-point function by assuming that the distribution in the relative velocity of particle pairs has zero skewness about the mean. The second equation in this velocity-moment hierarchy is our main equation for xi. It involves the three-point spatial correlation function zeta, which we write as a function of xi following the empirical result. The third equation involves the first velocity moment of the three-point position and velocity correlation function. We model this term in a way consistent with our model for zeta and with a constraint equation that expresses conservation of triplets.The equations admit a similarity transformation if (1) the effects of the discreteness of particles can be ignored, (2) the initial spectrum of density perturbations assumes a power law shape, and (3) the universe is described by an Einstein-de Sitter model (Ωapprox. =1). The numerical results presented here are based on this similarity solution
Camacho, A. I.
2013-12-01
Full Text Available A new species of Bathynellidae Grobben, 1905 is described from Spain. Vejdovskybathy-nella vasconica sp. nov. displays an exclusive feature within the genus: eightsegmented antenna. Besides, the new species has a unique combination of morphological characters, including medial seta on exopod of antenna, antennule length similar to antenna, three-segmented mandibular palp without sexual dimorphism, four segments on endopod of thoracopod I to VII, three spines on the sympod of uropod, two claws on the endopod of uropod, first spine longer than the rest on the furcal rami, exopod smaller than endopod on female thoracopod VIII, a long frontal projection and medium size outer protuberance on penial region of male thoracopod VIII, and a medium size frontal crest with a small “spur” on basipod of male thoracopod VIII. Partial sequences from mitochondrial gene cytochrome oxidase I (COI and 18S ribosomal RNA (rRNA gene have been obtained from specimens of the type locality of the new species. The analyses of molecular data demonstrate the presence of two highly divergent genetic units within the Bathynellidae, corresponding to two morphologically well differenciated genera.Se describe una nueva especie de la familia Bathynellidae Grobben, 1905 de España. Vejdovskybathynella vasconica sp. nov. presenta un carácter único dentro del género, tener la antena de 8 segmentos. Además la nueva especie exhibe una única combinación de caracteres morfológicos que incluye: seda mediana presente en el exopodio de la antena, anténula y antena de igual longitud, palpo mandibular de tres segmentos y sin dimorfismo sexual, cuatro segmentos en el endopodio de todas las patas, tres espinas en el simpodio del urópodo, dos uñas en el endopodio del urópodo, la primera espina de la furca más larga que las demás, toracópodo VIII hembra con exopodio más pequeño que el endopodio, toracópodo VIII macho con una larga prolongación frontal y una protuberancia
Vargas, L.
1988-01-01
The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval
Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica
1978-08-21
The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.
Fu, Wei; Nijhoff, Frank W
2017-07-01
A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.
Direct Yaw Control of Vehicle using State Dependent Riccati Equation with Integral Terms
SANDHU, F.
2016-05-01
Full Text Available Direct yaw control of four-wheel vehicles using optimal controllers such as the linear quadratic regulator (LQR and the sliding mode controller (SMC either considers only certain parameters constant in the nonlinear equations of vehicle model or totally neglect their effects to obtain simplified models, resulting in loss of states for the system. In this paper, a modified state-dependent Ricatti equation method obtained by the simplification of the vehicle model is proposed. This method overcomes the problem of the lost states by including state integrals. The results of the proposed system are compared with the sliding mode slip controller and state-dependent Ricatti equation method using high fidelity vehicle model in the vehicle simulation software package, Carsim. Results show 38% reduction in the lateral velocity, 34% reduction in roll and 16% reduction in excessive yaw by only increasing the fuel consumption by 6.07%.
Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.
Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N
2014-09-01
We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.
A parallel algorithm for solving the integral form of the discrete ordinates equations
Zerr, R. J.; Azmy, Y. Y.
2009-01-01
The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)
Farshid Mirzaee
2014-06-01
Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.
Integral-equation formulation for drift eigenmodes in cylindrically symmetric systems
Linsker, R.
1980-12-01
A method for solving the integral eigenmode equation for drift waves in cylindrical (or slab) geometry is presented. A leading-order kinematic effect that has been noted in the past, but incorrectly ignored in recent integral-equation calculations, is incorporated. The present method also allows electrons to be treated with a physical mass ratio (unlike earlier work that is restricted to artificially small m/sub i//m/sub e/ owing to resolution limitations). Results for the universal mode and for the ion-temperature-gradient driven mode are presented. The kinematic effect qualitatively changes the spectrum of the ion mode, and a new second region of instability for k/sub perpendicular to/rho/sub i/greater than or equal to 1 is found
REFLECT: a program to integrate the wave equation through a plane stratified plasma
Greene, J.W.
1975-01-01
A program was developed to integrate the wave equation through a plane stratified plasma with a general density distribution. The reflection and transmission of a plane wave are computed as a function of the angle of incidence. The polarization of the electric vector is assumed to be perpendicular to the plane of incidence. The model for absorption by classical inverse bremsstrahlung avoids the improper extrapolation of underdense formulae that are singular at the plasma critical surface. Surprisingly good agreement with the geometric-optics analysis of a linear layer was found. The system of ordinary differential equations is integrated by the variable-step, variable-order Adams method in the Lawrence Livermore Laboratory Gear package. Parametric studies of the absorption are summarized, and some possibilities for further development of the code are discussed. (auth)
Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form
Gituliar, Oleksandr; Magerya, Vitaly
2017-01-01
We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂ x f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂ x g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.
Approximations to the Probability of Failure in Random Vibration by Integral Equation Methods
Nielsen, Søren R.K.; Sørensen, John Dalsgaard
Close approximations to the first passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first passage probability density function and the distribution function for the time interval spent below a barrier before...... passage probability density. The results of the theory agree well with simulation results for narrow banded processes dominated by a single frequency, as well as for bimodal processes with 2 dominating frequencies in the structural response....... outcrossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval, and hence for the first...
An efficient explicit marching on in time solver for magnetic field volume integral equation
Sayed, Sadeed Bin
2015-07-25
An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.
Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule
Adem Kılıçman
2012-01-01
Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.
Acidity in DMSO from the embedded cluster integral equation quantum solvation model.
Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M
2014-04-01
The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.
Properties of linear integral equations related to the six-vertex model with disorder parameter II
Boos, Hermann; Göhmann, Frank
2012-01-01
We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)
Nodal integral method for the neutron diffusion equation in cylindrical geometry
Azmy, Y.Y.
1987-01-01
The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes
Kim, Oleksiy S.
2016-01-01
A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....
Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric
2012-01-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Hierarchies of multi-component mKP equations and theirs integrable couplings
Ji Jie; Yao Yuqin; Zhu Fubo; Chen Dengyuan
2008-01-01
First, a new multi-component modified Kadomtsev-Petviashvill (mKP) spectral problem is constructed by k-constraint imposed on a general pseudo-differential operator. Then, two hierarchies of multi-component mKP equations are derived, including positive non-isospectral mKP hierarchy and negative non-isospectral mKP hierarchy. Moreover, new integrable couplings of the resulting mKP soliton hierarchies are constructed by enlarging the associated matrix spectral problem
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2007-01-01
The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....
Symmetries, integrals, and three-dimensional reductions of Plebanski's second heavenly equation
Neyzi, F.; Sheftel, M. B.; Yazici, D.
2007-01-01
We study symmetries and conservation laws for Plebanski's second heavenly equation written as a first-order nonlinear evolutionary system which admits a multi-Hamiltonian structure. We construct an optimal system of one-dimensional subalgebras and all inequivalent three-dimensional symmetry reductions of the original four-dimensional system. We consider these two-component evolutionary systems in three dimensions as natural candidates for integrable systems
Fiala, Zdeněk
2015-01-01
Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1
Modeling of Graphene Planar Grating in the THz Range by the Method of Singular Integral Equations
Kaliberda, Mstislav E.; Lytvynenko, Leonid M.; Pogarsky, Sergey A.
2018-04-01
Diffraction of the H-polarized electromagnetic wave by the planar graphene grating in the THz range is considered. The scattering and absorption characteristics are studied. The scattered field is represented in the spectral domain via unknown spectral function. The mathematical model is based on the graphene surface impedance and the method of singular integral equations. The numerical solution is obtained by the Nystrom-type method of discrete singularities.
Adler, A.; Fuchs, B.; Thielheim, K.O.
1977-01-01
The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)
Ulku, Huseyin Arda
2012-09-01
An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.
Fast Near-Field Calculation for Volume Integral Equations for Layered Media
Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav
2005-01-01
. Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...
An integrable (2+1)-dimensional Toda equation with two discrete variables
Cao Cewen; Cao Jianli
2007-01-01
An integrable (2+1)-dimensional Toda equation with two discrete variables is presented from the compatible condition of a Lax triad composed of the ZS-AKNS (Zakharov, Shabat; Ablowitz, Kaup, Newell, Segur) eigenvalue problem and two discrete spectral problems. Through the nonlinearization technique, the Lax triad is transformed into a Hamiltonian system and two symplectic maps, respectively, which are integrable in the Liouville sense, sharing the same set of integrals, functionally independent and involutive with each other. In the Jacobi variety of the associated algebraic curve, both the continuous and the discrete flows are straightened out by the Abel-Jacobi coordinates, and are integrated by quadratures. An explicit algebraic-geometric solution in the original variable is obtained by the Riemann-Jacobi inversion
A wavelet-based PWTD algorithm-accelerated time domain surface integral equation solver
Liu, Yang
2015-10-26
© 2015 IEEE. The multilevel plane-wave time-domain (PWTD) algorithm allows for fast and accurate analysis of transient scattering from, and radiation by, electrically large and complex structures. When used in tandem with marching-on-in-time (MOT)-based surface integral equation (SIE) solvers, it reduces the computational and memory costs of transient analysis from equation and equation to equation and equation, respectively, where Nt and Ns denote the number of temporal and spatial unknowns (Ergin et al., IEEE Trans. Antennas Mag., 41, 39-52, 1999). In the past, PWTD-accelerated MOT-SIE solvers have been applied to transient problems involving half million spatial unknowns (Shanker et al., IEEE Trans. Antennas Propag., 51, 628-641, 2003). Recently, a scalable parallel PWTD-accelerated MOT-SIE solver that leverages a hiearchical parallelization strategy has been developed and successfully applied to the transient problems involving ten million spatial unknowns (Liu et. al., in URSI Digest, 2013). We further enhanced the capabilities of this solver by implementing a compression scheme based on local cosine wavelet bases (LCBs) that exploits the sparsity in the temporal dimension (Liu et. al., in URSI Digest, 2014). Specifically, the LCB compression scheme was used to reduce the memory requirement of the PWTD ray data and computational cost of operations in the PWTD translation stage.
On an integrable discretization of the modified Korteweg-de Vries equation
Suris, Yuri B.
1997-02-01
We find time discretizations for the two “second flows” of the Ablowitz-Ladik hierachy. These discretizations are described by local equations of motion, as opposed to the previously known ones, due to Taha and Ablowitz. Certain superpositions of our maps allow a one-field reduction and serve therefore as valid space-time discretizations of the modified Korteweg-de Vries equation. We expect the performance of these discretizations to be much better then that of the Taha-Ablowitz scheme. The way of finding interpolating Hamiltonians for our maps is also indicated, as well as the solution of an initial value problem in terms of matrix factorizations.
Integral equation models for the inverse problem of biological ion channel distributions
French, D A; Groetsch, C W
2007-01-01
Olfactory cilia are thin hair-like filaments that extend from olfactory receptor neurons into the nasal mucus. Transduction of an odor into an electrical signal is accomplished by a depolarizing influx of ions through cyclic-nucleotide-gated channels in the membrane that forms the lateral surface of the cilium. In an experimental procedure developed by S. Kleene, a cilium is detached at its base and drawn into a recording pipette. The cilium base is then immersed in a bath of a channel activating agent (cAMP) which is allowed to diffuse into the cilium interior, opening channels as it goes and initiating a transmembrane current. The total current is recorded as a function of time and serves as data for a nonlinear integral equation of the first kind modeling the spatial distribution of ion channels along the length of the cilium. We discuss some linear Fredholm integral equations that result from simplifications of this model. A numerical procedure is proposed for a class of integral equations suggested by this simplified model and numerical results using simulated and laboratory data are presented
Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations
Anco, Stephen C
2006-01-01
Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from group-invariant flows of non-stretching curves in constant-curvature manifolds and Lie-group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming from a covariantly constant frame, and higher order counterparts generated by an underlying vector mKdV recursion operator. In the Lie-group case, the hierarchy comprises a group-invariant analogue of the vector NLS equation coming from a left-invariant frame, along with higher order counterparts generated by a recursion operator that is like a square root of the mKdV one. The corresponding respective curve flows are found to be given by geometric nonlinear PDEs, specifically mKdV and group-invariant analogues of Schroedinger maps. In all cases the hierarchies also contain variants of vector sine-Gordon equations arising from the kernel of the respective recursion operators. The geometric PDEs that describe the corresponding curve flows are shown to be wave maps
Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations
Anco, Stephen C [Department of Mathematics, Brock University, St Catharines, ON (Canada)
2006-03-03
Moving frames of various kinds are used to derive bi-Hamiltonian operators and associated hierarchies of multi-component soliton equations from group-invariant flows of non-stretching curves in constant-curvature manifolds and Lie-group manifolds. The hierarchy in the constant-curvature case consists of a vector mKdV equation coming from a parallel frame, a vector potential mKdV equation coming from a covariantly constant frame, and higher order counterparts generated by an underlying vector mKdV recursion operator. In the Lie-group case, the hierarchy comprises a group-invariant analogue of the vector NLS equation coming from a left-invariant frame, along with higher order counterparts generated by a recursion operator that is like a square root of the mKdV one. The corresponding respective curve flows are found to be given by geometric nonlinear PDEs, specifically mKdV and group-invariant analogues of Schroedinger maps. In all cases the hierarchies also contain variants of vector sine-Gordon equations arising from the kernel of the respective recursion operators. The geometric PDEs that describe the corresponding curve flows are shown to be wave maps.
Chremmos, Ioannis
2010-01-01
The scattering of a surface plasmon polariton (SPP) by a rectangular dielectric channel discontinuity is analyzed through a rigorous magnetic field integral equation method. The scattering phenomenon is formulated by means of the magnetic-type scalar integral equation, which is subsequently treated through an entire-domain Galerkin method of moments (MoM), based on a Fourier-series plane wave expansion of the magnetic field inside the discontinuity. The use of Green's function Fourier transform allows all integrations over the area and along the boundary of the discontinuity to be performed analytically, resulting in a MoM matrix with entries that are expressed as spectral integrals of closed-form expressions. Complex analysis techniques, such as Cauchy's residue theorem and the saddle-point method, are applied to obtain the amplitudes of the transmitted and reflected SPP modes and the radiated field pattern. Through numerical results, we examine the wavelength selectivity of transmission and reflection against the channel dimensions as well as the sensitivity to changes in the refractive index of the discontinuity, which is useful for sensing applications.
Ulku, Huseyin Arda
2014-07-06
Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half
Time-Dependent Heat Conduction Problems Solved by an Integral-Equation Approach
Oberaigner, E.R.; Leindl, M.; Antretter, T.
2010-01-01
Full text: A classical task of mathematical physics is the formulation and solution of a time dependent thermoelastic problem. In this work we develop an algorithm for solving the time-dependent heat conduction equation c p ρ∂ t T-kT, ii =0 in an analytical, exact fashion for a two-component domain. By the Green's function approach the formal solution of the problem is obtained. As an intermediate result an integral-equation for the temperature history at the domain interface is formulated which can be solved analytically. This method is applied to a classical engineering problem, i.e. to a special case of a Stefan-Problem. The Green's function approach in conjunction with the integral-equation method is very useful in cases were strong discontinuities or jumps occur. The initial conditions and the system parameters of the investigated problem give rise to two jumps in the temperature field. Purely numerical solutions are obtained by using the FEM (finite element method) and the FDM (finite difference method) and compared with the analytical approach. At the domain boundary the analytical solution and the FEM-solution are in good agreement, but the FDM results show a signicant smearing effect. (author)
Valdés, Felipe
2013-03-01
Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis functions and a collocation testing procedure, thus allowing for a marching-on-in-time (MOT) solution scheme. Unlike dual-source formulations, single-source equations involve space-time domain operator products, for which spatial discretization techniques developed for standalone operators do not apply. Here, the spatial discretization of the single-source time-domain integral equations is achieved by using the high-order divergence-conforming basis functions developed by Graglia alongside the high-order divergence-and quasi curl-conforming (DQCC) basis functions of Valdés The combination of these two sets allows for a well-conditioned mapping from div-to curl-conforming function spaces that fully respects the space-mapping properties of the space-time operators involved. Numerical results corroborate the fact that the proposed procedure guarantees accuracy and stability of the MOT scheme. © 2012 IEEE.
Comment on the consistency of truncated nonlinear integral equation based theories of freezing
Cerjan, C.; Bagchi, B.; Rice, S.A.
1985-01-01
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim--Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions
Solution of fractional kinetic equation by a class of integral transform of pathway type
Kumar, Dilip
2013-04-01
Solutions of fractional kinetic equations are obtained through an integral transform named Pα-transform introduced in this paper. The Pα-transform is a binomial type transform containing many class of transforms including the well known Laplace transform. The paper is motivated by the idea of pathway model introduced by Mathai [Linear Algebra Appl. 396, 317-328 (2005), 10.1016/j.laa.2004.09.022]. The composition of the transform with differential and integral operators are proved along with convolution theorem. As an illustration of applications to the general theory of differential equations, a simple differential equation is solved by the new transform. Being a new transform, the Pα-transform of some elementary functions as well as some generalized special functions such as H-function, G-function, Wright generalized hypergeometric function, generalized hypergeometric function, and Mittag-Leffler function are also obtained. The results for the classical Laplace transform is retrieved by letting α → 1.
Recent advances in marching-on-in-time schemes for solving time domain volume integral equations
Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan
2015-01-01
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.
Clarke, R.; Lintereur, L.; Bahm, C.
2016-01-01
A desire for more complete documentation of the National Aeronautics and Space Administration (NASA) Armstrong Flight Research Center (AFRC), Edwards, California legacy code used in the core simulation has led to this e ort to fully document the oblate Earth six-degree-of-freedom equations of motion and integration algorithm. The authors of this report have taken much of the earlier work of the simulation engineering group and used it as a jumping-o point for this report. The largest addition this report makes is that each element of the equations of motion is traced back to first principles and at no point is the reader forced to take an equation on faith alone. There are no discoveries of previously unknown principles contained in this report; this report is a collection and presentation of textbook principles. The value of this report is that those textbook principles are herein documented in standard nomenclature that matches the form of the computer code DERIVC. Previous handwritten notes are much of the backbone of this work, however, in almost every area, derivations are explicitly shown to assure the reader that the equations which make up the oblate Earth version of the computer routine, DERIVC, are correct.
Recent advances in marching-on-in-time schemes for solving time domain volume integral equations
Sayed, Sadeed Bin
2015-05-16
Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.
Direct integration of the inverse Radon equation for X-ray computed tomography.
Libin, E E; Chakhlov, S V; Trinca, D
2016-11-22
A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.
How Mathematics Describes Life
Teklu, Abraham
2017-01-01
The circle of life is something we have all heard of from somewhere, but we don't usually try to calculate it. For some time we have been working on analyzing a predator-prey model to better understand how mathematics can describe life, in particular the interaction between two different species. The model we are analyzing is called the Holling-Tanner model, and it cannot be solved analytically. The Holling-Tanner model is a very common model in population dynamics because it is a simple descriptor of how predators and prey interact. The model is a system of two differential equations. The model is not specific to any particular set of species and so it can describe predator-prey species ranging from lions and zebras to white blood cells and infections. One thing all these systems have in common are critical points. A critical point is a value for both populations that keeps both populations constant. It is important because at this point the differential equations are equal to zero. For this model there are two critical points, a predator free critical point and a coexistence critical point. Most of the analysis we did is on the coexistence critical point because the predator free critical point is always unstable and frankly less interesting than the coexistence critical point. What we did is consider two regimes for the differential equations, large B and small B. B, A, and C are parameters in the differential equations that control the system where B measures how responsive the predators are to change in the population, A represents predation of the prey, and C represents the satiation point of the prey population. For the large B case we were able to approximate the system of differential equations by a single scalar equation. For the small B case we were able to predict the limit cycle. The limit cycle is a process of the predator and prey populations growing and shrinking periodically. This model has a limit cycle in the regime of small B, that we solved for
Gainetdinova, A A; Gazizov, R K
2017-01-01
We suggest an algorithm for integrating systems of two second-order ordinary differential equations with four symmetries. In particular, if the admitted transformation group has two second-order differential invariants, the corresponding system can be integrated by quadratures using invariant representation and the operator of invariant differentiation. Otherwise, the systems reduce to partially uncoupled forms and can also be integrated by quadratures.
Parallel, explicit, and PWTD-enhanced time domain volume integral equation solver
Liu, Yang
2013-07-01
Time domain volume integral equations (TDVIEs) are useful for analyzing transient scattering from inhomogeneous dielectric objects in applications as varied as photonics, optoelectronics, and bioelectromagnetics. TDVIEs typically are solved by implicit marching-on-in-time (MOT) schemes [N. T. Gres et al., Radio Sci., 36, 379-386, 2001], requiring the solution of a system of equations at each and every time step. To reduce the computational cost associated with such schemes, [A. Al-Jarro et al., IEEE Trans. Antennas Propagat., 60, 5203-5215, 2012] introduced an explicit MOT-TDVIE method that uses a predictor-corrector technique to stably update field values throughout the scatterer. By leveraging memory-efficient nodal spatial discretization and scalable parallelization schemes [A. Al-Jarro et al., in 28th Int. Rev. Progress Appl. Computat. Electromagn., 2012], this solver has been successfully applied to the analysis of scattering phenomena involving 0.5 million spatial unknowns. © 2013 IEEE.
The two-wave X-ray field calculated by means of integral-equation methods
Bremer, J.
1984-01-01
The problem of calculating the two-wave X-ray field on the basis of the Takagi-Taupin equations is discussed for the general case of curved lattice planes. A two-dimensional integral equation which incorporates the nature of the incoming radiation, the form of the crystal/vacuum boundary, and the curvature of the structure, is deduced. Analytical solutions for the symmetrical Laue case with incoming plane waves are obtained directly for perfect crystals by means of iteration. The same method permits a simple derivation of the narrow-wave Laue and Bragg cases. Modulated wave fronts are discussed, and it is shown that a cut-off in the width of an incoming plane wave leads to lateral oscillations which are superimposed on the Pendelloesung fringes. Bragg and Laue shadow fields are obtained. The influence of a non-zero kernel is discussed and a numerical procedure for calculating wave amplitudes in curved crystals is presented. (Auth.)
Parareal algorithms with local time-integrators for time fractional differential equations
Wu, Shu-Lin; Zhou, Tao
2018-04-01
It is challenge work to design parareal algorithms for time-fractional differential equations due to the historical effect of the fractional operator. A direct extension of the classical parareal method to such equations will lead to unbalance computational time in each process. In this work, we present an efficient parareal iteration scheme to overcome this issue, by adopting two recently developed local time-integrators for time fractional operators. In both approaches, one introduces auxiliary variables to localized the fractional operator. To this end, we propose a new strategy to perform the coarse grid correction so that the auxiliary variables and the solution variable are corrected separately in a mixed pattern. It is shown that the proposed parareal algorithm admits robust rate of convergence. Numerical examples are presented to support our conclusions.
On the numerical evaluation of algebro-geometric solutions to integrable equations
Kalla, C; Klein, C
2012-01-01
Physically meaningful periodic solutions to certain integrable partial differential equations are given in terms of multi-dimensional theta functions associated with real Riemann surfaces. Typical analytical problems in the numerical evaluation of these solutions are studied. In the case of hyperelliptic surfaces efficient algorithms exist even for almost degenerate surfaces. This allows the numerical study of solitonic limits. For general real Riemann surfaces, the choice of a homology basis adapted to the anti-holomorphic involution is important for a convenient formulation of the solutions and smoothness conditions. Since existing algorithms for algebraic curves produce a homology basis not related to automorphisms of the curve, we study symplectic transformations to an adapted basis and give explicit formulae for M-curves. As examples we discuss solutions of the Davey–Stewartson and the multi-component nonlinear Schrödinger equations
Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.
1992-01-01
The scheme for unified description of integrable relativistic massive systems provides an inverse scattering formalism that covers universally all (1+1)- dimensional systems of this kind. In this work we construct the N-soliton solution (over an arbitrary background) for some generic system which is associated with the sl(2,C) case of the scheme and whose reductions include the complex sine-Gordon equation, the massive Thirring model and other equations, both in the Euclidean and Minkowski spaces. Thus the N-soliton solutions for all these systems emerge in a unified form differing only in the type of constraints imposed on their parameters. In an earlier paper the case of the zero background was considered while here we concentrate on the case of the non-vanishing constant background i.e., on the N-kink solutions. (author). 18 refs