WorldWideScience

Sample records for integral electromagnetic spectrum

  1. Electromagnetic field enhancement and spectrum shaping through plasmonically integrated optical vortices.

    Science.gov (United States)

    Ahn, Wonmi; Boriskina, Svetlana V; Hong, Yan; Reinhard, Björn M

    2012-01-11

    We introduce a new design approach for surface-enhanced Raman spectroscopy (SERS) substrates that is based on molding the optical powerflow through a sequence of coupled nanoscale optical vortices "pinned" to rationally designed plasmonic nanostructures, referred to as Vortex Nanogear Transmissions (VNTs). We fabricated VNTs composed of Au nanodiscs by electron beam lithography on quartz substrates and characterized their near- and far-field responses through combination of computational electromagnetism, and elastic and inelastic scattering spectroscopy. Pronounced dips in the far-field scattering spectra of VNTs provide experimental evidence for an efficient light trapping and circulation within the nanostructures. Furthermore, we demonstrate that VNT integration into periodic arrays of Au nanoparticles facilitates the generation of high E-field enhancements in the VNTs at multiple defined wavelengths. We show that spectrum shaping in nested VNT structures is achieved through an electromagnetic feed-mechanism driven by the coherent multiple scattering in the plasmonic arrays and that this process can be rationally controlled by tuning the array period. The ability to generate high E-field enhancements at predefined locations and frequencies makes nested VNTs interesting substrates for challenging SERS applications. © 2011 American Chemical Society

  2. Electromagnetic spectrum management system

    Science.gov (United States)

    Seastrand, Douglas R.

    2017-01-31

    A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.

  3. Electromagnetic spectrum management system

    Energy Technology Data Exchange (ETDEWEB)

    Seastrand, Douglas R.

    2017-10-17

    A system for transmitting a wireless countermeasure signal to disrupt third party communications is disclosed that include an antenna configured to receive wireless signals and transmit wireless counter measure signals such that the wireless countermeasure signals are responsive to the received wireless signals. A receiver processes the received wireless signals to create processed received signal data while a spectrum control module subtracts known source signal data from the processed received signal data to generate unknown source signal data. The unknown source signal data is based on unknown wireless signals, such as enemy signals. A transmitter is configured to process the unknown source signal data to create countermeasure signals and transmit a wireless countermeasure signal over the first antenna or a second antenna to thereby interfere with the unknown wireless signals.

  4. Joint Electromagnetic Spectrum Management Operations

    Science.gov (United States)

    2012-03-20

    promulgate command-specific policy and guidance for EMS use, the joint restricted frequency list (JRFL) process, the joint communications–electronics...joint communications–electronics operating instructions (JCEOI) and joint restricted frequency list (JRFL). Examples of FM include providing the...joint restricted frequency list Figure III-4. Joint Frequency Management Office Spectrum Management Process Chapter III III-10 JP 6-01 assignments

  5. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  6. Was The Electromagnetic Spectrum A Blackbody Spectrum In The Early Universe?

    OpenAIRE

    Opher, Merav; Opher, Reuven

    1997-01-01

    It is assumed, in general, that the electromagnetic spectrum in the Primordial Universe was a blackbody spectrum in vacuum. We derive the electromagnetic spectrum, based on the Fluctuation-Dissipation Theorem that describes the electromagnetic fluctuations in a plasma. Our description includes thermal and collisional effects in a plasma. The electromagnetic spectrum obtained differs from the blackbody spectrum in vacuum at low frequencies. In particular, concentrating on the primordial nucleo...

  7. Was The Electromagnetic Spectrum A Blackbody Spectrum In The Early Universe?

    International Nuclear Information System (INIS)

    Opher, M.; Opher, R.

    1997-01-01

    It is generally assumed that the electromagnetic spectrum in the primordial universe was a blackbody spectrum in vacuum. We derive the electromagnetic spectrum based on the fluctuation-dissipation theorem that describes the electromagnetic fluctuations in a plasma. Our description includes thermal and collisional effects in a plasma. The electromagnetic spectrum obtained differs from a blackbody spectrum in vacuum at low frequencies. In particular, concentrating on the primordial nucleosynthesis era, it has more energy than the blackbody spectrum for frequencies less than 3ω pe to 6ω pe , where ω pe is the electron plasma frequency. copyright 1997 The American Physical Society

  8. Harvesting the electromagnetic spectrum: from communications to renewables

    OpenAIRE

    Gremont, Boris

    2011-01-01

    The talk will give a unified perspective on one of the most precious commodities underpinning the globalised world: the electromagnetic spectrum. In particular, we will describe how electromagnetic waves have been used over the years to create the global village and the modern world as we know it. How waves can be used to help fight global warming will be discussed along with how waves and remote sensing help in saving lives. Finally, how can the electromagnetic spectrum be used to create the...

  9. Width of electromagnetic wave instability spectrum in tungsten plate

    International Nuclear Information System (INIS)

    Rinkevich, A.B.

    1995-01-01

    Based on the study of high-frequency signal modulation and spectrum analysis of the envelope a measurement of spectrum width for electromagnetic wave instability was carried out under conditions of current pulse action on tungsten plate in magnetic field. The existence of amplitude-frequency wave modulation was revealed. The width of current disturbance spectrum in a specimen was evaluated. Current disturbances are shown to cause the instability of electromagnetic wave. 11 refs.; 6 figs

  10. Integral methods in low-frequency electromagnetics

    CERN Document Server

    Solin, Pavel; Karban, Pavel; Ulrych, Bohus

    2009-01-01

    A modern presentation of integral methods in low-frequency electromagnetics This book provides state-of-the-art knowledge on integral methods in low-frequency electromagnetics. Blending theory with numerous examples, it introduces key aspects of the integral methods used in engineering as a powerful alternative to PDE-based models. Readers will get complete coverage of: The electromagnetic field and its basic characteristics An overview of solution methods Solutions of electromagnetic fields by integral expressions Integral and integrodifferential methods

  11. What can we Learn from the Electromagnetic Spectrum?

    Indian Academy of Sciences (India)

    Electromagnetic radiation is all around us, and essential for the survival ... light that enters through the irises of our eyes, falls on our retina, interacts with ... tions of an electric charge produce an electromagnetic field that radiates ... induction of current in a coil. ... techniques showed that the violet end of visible spectrum oc-.

  12. The electromagnetic spectrum: current and future applications in oncology.

    Science.gov (United States)

    Allison, Ron R

    2013-05-01

    The electromagnetic spectrum is composed of waves of various energies that interact with matter. When focused upon and directed at tumors, these energy sources can be employed as a means of lesion ablation. While the use of x-rays is widely known in this regard, a growing body of evidence shows that other members of this family can also achieve oncologic success. This article will review therapeutic application of the electromagnetic spectrum in current interventions and potential future applications.

  13. Integrated Circuit Electromagnetic Immunity Handbook

    Science.gov (United States)

    Sketoe, J. G.

    2000-08-01

    This handbook presents the results of the Boeing Company effort for NASA under contract NAS8-98217. Immunity level data for certain integrated circuit parts are discussed herein, along with analytical techniques for applying the data to electronics systems. This handbook is built heavily on the one produced in the seventies by McDonnell Douglas Astronautics Company (MDAC, MDC Report E1929 of 1 August 1978, entitled Integrated Circuit Electromagnetic Susceptibility Handbook, known commonly as the ICES Handbook, which has served countless systems designers for over 20 years). Sections 2 and 3 supplement the device susceptibility data presented in section 4 by presenting information on related material required to use the IC susceptibility information. Section 2 concerns itself with electromagnetic susceptibility analysis and serves as a guide in using the information contained in the rest of the handbook. A suggested system hardening requirements is presented in this chapter. Section 3 briefly discusses coupling and shielding considerations. For conservatism and simplicity, a worst case approach is advocated to determine the maximum amount of RF power picked up from a given field. This handbook expands the scope of the immunity data in this Handbook is to of 10 MHz to 10 GHz. However, the analytical techniques provided are applicable to much higher frequencies as well. It is expected however, that the upper frequency limit of concern is near 10 GHz. This is due to two factors; the pickup of microwave energy on system cables and wiring falls off as the square of the wavelength, and component response falls off at a rapid rate due to the effects of parasitic shunt paths for the RF energy. It should be noted also that the pickup on wires and cables does not approach infinity as the frequency decreases (as would be expected by extrapolating the square law dependence of the high frequency roll-off to lower frequencies) but levels off due to mismatch effects.

  14. Electromagnetic Spectrum. 7th and 8th Grade Agriculture Science Curriculum. Teacher Materials.

    Science.gov (United States)

    Southern Illinois Univ., Carbondale. Dept. of Agricultural Education and Mechanization.

    This curriculum guide, the second in a set of six, contains teacher and student materials for a unit on the electromagnetic spectrum prepared as part of a seventh- and eighth-grade agricultural science curriculum that is integrated with science instruction. The guide contains the state goals and sample learning objectives for each goal for…

  15. Electromagnetic effects on the light hadron spectrum

    International Nuclear Information System (INIS)

    Basak, S; Bazavov, A; Bernard, C; Komijani, J; DeTar, C; Foley, J; Levkova, L; Li, R; Torok, A; Freeland, E; Gottlieb, Steven; Heller, U M; Laiho, J; Osborn, J; Sugar, R L; Toussaint, D; Van de Water, R S; Zhou, R

    2015-01-01

    For some time, the MILC Collaboration has been studying electromagnetic effects on light mesons. These calculations use fully dynamical QCD, but only quenched photons, which suffices to NLO in χPT. That is, the sea quarks are electrically neutral, while the valence quarks carry charge. For the photons we use the non-compact formalism. We have new results with lattice spacing as small as 0.045 fm and a large range of volumes. We consider how well chiral perturbation theory describes these results and the implications for light quark masses. (paper)

  16. Introduction to Eye-Opening Technology: The Electromagnetic Spectrum.

    Science.gov (United States)

    Smith, Denise; Eisenhamer, Bonnie; DeVore, Edna; Bianchi, Luciana

    2003-01-01

    Provides classroom activities centered around how the electromagnetic spectrum yields vital insights about the evolution of the universe. Activities targeted for grade levels 6-12 illustrate the importance of light and color in space exploration. Includes a poster. (Author/SOE)

  17. Spectrum of classes of point emitters of electromagnetic wave fields.

    Science.gov (United States)

    Castañeda, Román

    2016-09-01

    The spectrum of classes of point emitters has been introduced as a numerical tool suitable for the design, analysis, and synthesis of non-paraxial optical fields in arbitrary states of spatial coherence. In this paper, the polarization state of planar electromagnetic wave fields is included in the spectrum of classes, thus increasing its modeling capabilities. In this context, optical processing is realized as a filtering on the spectrum of classes of point emitters, performed by the complex degree of spatial coherence and the two-point correlation of polarization, which could be implemented dynamically by using programmable optical devices.

  18. Alien vision exploring the electromagnetic spectrum with imaging technology

    CERN Document Server

    Richards, Austin A

    2011-01-01

    Austin Richards takes readers on a visual tour of the electromagnetic spectrum beyond the range of human sight, using imaging technology as the means to ""see"" invisible light. Dozens of colorful images and clear, concise descriptions make this an intriguing, accessible technical book. Richards explains the light spectrum, including visible light, and describes the advanced imaging technologies that enable humans to synthesize our own version of ""alien"" vision at different wavelengths, with applications ranging from fire fighting and law enforcement to botany and medicine. The second editio

  19. Accurate Electromagnetic Modeling Methods for Integrated Circuits

    NARCIS (Netherlands)

    Sheng, Z.

    2010-01-01

    The present development of modern integrated circuits (IC’s) is characterized by a number of critical factors that make their design and verification considerably more difficult than before. This dissertation addresses the important questions of modeling all electromagnetic behavior of features on

  20. Signal integrity applied electromagnetics and professional practice

    CERN Document Server

    Russ, Samuel H

    2016-01-01

    This textbook teaches how to design working systems at very high frequencies. It is designed to introduce computer engineers to the design of extremely high speed digital systems. Combining an intuitive, physics-based approach to electromagnetics with a focus on solving realistic problems, the author presents concepts that are essential for computer and electrical engineers today. The book emphasizes an intuitive approach to electromagnetics, and then uses this foundation to show the reader how both physical phenomena can cause signals to propagate incorrectly; and how to solve commonly encountered issues. Emphasis is placed on real problems that the author has encountered in his professional career, integrating problem-solving strategies and real signal-integrity case studies throughout the presentation. Students are challenged to think about managing complex design projects and implementing successful engineering and manufacturing processes. Each chapter includes exercises to test concepts introduced.

  1. Imaging with electromagnetic spectrum applications in food and agriculture

    CERN Document Server

    Jayasuriya, Hemantha

    2014-01-01

    This book demonstrates how imaging techniques, applying different frequency bands from the electromagnetic spectrum, are used in scientific research. Illustrated with numerous examples this book is structured according to the different radiation bands: From Gamma-rays over UV and IR to radio frequencies. In order to ensure a clear understanding of the processing methodologies, the text is enriched with descriptions of how digital images are formed, acquired, processed and how to extract information from them. A special emphasis is given to the application of imaging techniques in food and agriculture research.

  2. The Electromagnetic Spectrum: Using Light and Color To Search for Astronomical Origins.

    Science.gov (United States)

    Smith, Denise; Eisenhamer, Bonnie; DeVore, Edna

    2003-01-01

    Discusses various ways to use the National Aeronautics and Space Administration's (NASA) Origin's Education Forum's Electromagnetic Spectrum poster to teach earth science concepts. Includes the poster. (SOE)

  3. Space telescopes capturing the rays of the electromagnetic spectrum

    CERN Document Server

    English, Neil

    2017-01-01

    Space telescopes are among humankind’s greatest scientific achievements of the last fifty years. This book describes the instruments themselves and what they were designed to discover about the Solar System and distant stars. Exactly how these telescopes were built and launched and the data they provided is explored. Only certain kinds of radiation can penetrate our planet's atmosphere, which limits what we can observe. But with space telescopes all this changed. We now have the means to "see" beyond Earth using ultraviolet, microwave, and infrared rays, X-rays and gamma rays. In this book we meet the pioneers and the telescopes that were built around their ideas. This book looks at space telescopes not simply chronologically but also in order of the electromagnetic spectrum, making it possible to understand better why they were made.

  4. Electromagnetic noise spectrum at John TS [transmission station

    International Nuclear Information System (INIS)

    Hatanaka, G.K.

    1992-01-01

    Canadian National (CN) is proposing the development of a commercial office tower on a site directly south of John Transmission Station (TS). CN is concerned about the potential effects of fields originating from John TS and other nearby sources on the operation of sensitive equipment and occupants of the building. Potential equipment and tenants might include data processing equipment and television and radio broadcasting companies. A study was conducted to characterize the severity of the electromagnetic environment at the site in order to address these concerns. Measurements of the electromagnetic spectrum from 100 kHz to 300 MHz were performed from a mobile test facility that features a 5 kW diesel generator and an extendible antenna mast. Peak measurements were made using a selectable measurement time of 0.05 s. It was found that the highest noise levels result from micro-gap discharges under dry weather conditions. The micro-gap discharges are characteristic of defect noise sources associated with substation hardware. At 0.5 MHz the noise levels are typical of median noise levels expected for the International Radio Consultive Committee (CCIR) defined business environment. At 74 MHz the noise levels are more severe than the expected levels for this type of environment. However, levels more representative of the business environment will be achieved by eliminating the micro-gap noise sources attributed to John TS. 6 refs., 11 figs., 2 tabs

  5. The energy spectrum of electromagnetic normal modes in dissipative media: modes between two metal half spaces

    International Nuclear Information System (INIS)

    Sernelius, Bo E

    2008-01-01

    The energy spectrum of electromagnetic normal modes plays a central role in the theory of the van der Waals and Casimir interaction. Here we study the modes in connection with the van der Waals interaction between two metal half spaces. Neglecting dissipation leads to distinct normal modes with real-valued frequencies. Including dissipation seems to have the effect that these distinct modes move away from the real axis into the complex frequency plane. The summation of the zero-point energies of these modes render a complex-valued result. Using the contour integration, resulting from the use of the generalized argument principle, gives a real-valued and different result. We resolve this contradiction and show that the spectrum of true normal modes forms a continuum with real frequencies

  6. Nanogels as imaging agents for modalities spanning the electromagnetic spectrum.

    Science.gov (United States)

    Chan, Minnie; Almutairi, Adah

    2016-01-21

    In the past few decades, advances in imaging equipment and protocols have expanded the role of imaging in in vivo diagnosis and disease management, especially in cancer. Traditional imaging agents have rapid clearance and low specificity for disease detection. To improve accuracy in disease identification, localization and assessment, novel nanomaterials are frequently explored as imaging agents to achieve high detection specificity and sensitivity. A promising material for this purpose are hydrogel nanoparticles, whose high hydrophilicity, biocompatibility, and tunable size in the nanometer range make them ideal for imaging. These nanogels (10 to 200 nm) can circumvent uptake by the reticuloendothelial system, allowing longer circulation times than small molecules. In addition, their size/surface properties can be further tailored to optimize their pharmacokinetics for imaging of a particular disease. Herein, we provide a comprehensive review of nanogels as imaging agents in various modalities with sources of signal spanning the electromagnetic spectrum, including MRI, NIR, UV-vis, and PET. Many materials and formulation methods will be reviewed to highlight the versatility of nanogels as imaging agents.

  7. An approach to electromagnetic spectrum evaluation and control for situational awareness

    CSIR Research Space (South Africa)

    Olivier, K

    2012-10-01

    Full Text Available In this presentation the author provides insight on the role of modern electronic warfare technology for the purposes of electromagnetic spectrum evaluation and control, which plays a crucial role in situational awareness required for peacekeeping...

  8. Understanding the Planck blackbody spectrum and Landau diamagnetism within classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Electromagnetism is a relativistic theory, and one must exercise care in coupling this theory with nonrelativistic classical mechanics and with nonrelativistic classical statistical mechanics. Indeed historically, both the blackbody radiation spectrum and diamagnetism within classical theory have been misunderstood because of two crucial failures: (1) the neglect of classical electromagnetic zero-point radiation, and (2) the use of erroneous combinations of nonrelativistic mechanics with relativistic electrodynamics. Here we review the treatment of classical blackbody radiation, and show that the presence of Lorentz-invariant classical electromagnetic zero-point radiation can explain both the Planck blackbody spectrum and Landau diamagnetism at thermal equilibrium within classical electromagnetic theory. The analysis requires that relativistic electromagnetism is joined appropriately with simple nonrelativistic mechanical systems which can be regarded as the zero-velocity limits of relativistic systems, and that nonrelativistic classical statistical mechanics is applied only in the low-frequency limit when zero-point energy makes no contribution. (paper)

  9. Contribution of back-scattered electromagnetic rays to the Moessbauer conversion electron spectrum

    International Nuclear Information System (INIS)

    Ruskov, T.; Ruskov, R.; Paneva, D.; Lefterov, D.

    1999-01-01

    The contribution of back-scattered electromagnetic rays in a 57 Fe conversion electron Moessbauer spectrum is considered using proportional counter as a detector. A simplified method for measuring this contribution is described. The experimental results show that this contribution strongly depends on the construction of the counter and the selected fraction in the pulse-height spectrum

  10. Integration of basic electromagnetism and engineering technology

    DEFF Research Database (Denmark)

    Bentz, Sigurd

    1995-01-01

    The theory of electromagnetism is taught as a part of most contemporary electrical engineering curricula. Usually a basic course is intended to cover all the fundamental electromagnetic theory which is needed in later engineering courses. However it is often found that students fail to understand...... theoretical course contents have been reduced to a core of fundamental principles. These are combined with the study of magnetic properties of materials closely related to manufacturer's data sheets. To enhance the understanding of these fundamentals, practical topics from engineering technology are included...... and their application in technology students get a more comprehensive understanding of electromagnetism, and they are able to apply the physical principles to problems they encounter later in their careers...

  11. Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1977-09-01

    The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed

  12. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers.

    Science.gov (United States)

    Barellini, A; Bogi, L; Licitra, G; Silvi, A M; Zari, A

    2009-12-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar.

  13. Integral Equation Methods for Electromagnetic and Elastic Waves

    CERN Document Server

    Chew, Weng; Hu, Bin

    2008-01-01

    Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq

  14. Concerning the electromagnetic radiation spectrum of a hot plasma with Langmuir turbulence in a magnetic field

    International Nuclear Information System (INIS)

    Tirsky, V.V.; Ledenev, V.G.; Tomozov, V.M.

    2001-01-01

    We consider the process of generation of electromagnetic waves as a consequence of the merging of two Langmuir plasmons. The case of a hot plasma in a magnetic field is investigated. It is shown that under such conditions the frequency of Langmuir plasmons can vary over the range from 0.8 to 1.1 of the Langmuir frequency of electrons. The spectrum and polarization of electromagnetic radiation are analyzed. It is shown that allowance for the thermal motion of plasma particles under the conditions involved permits electromagnetic waves in the range from 1.6 to 2.2 of the Langmuir frequency of electrons to be generated. The degree of circular polarization of the radiation can reach 50% even in the case of an isotropic spectrum of Langmuir turbulence. (orig.)

  15. INTEGRAL results on the electromagnetic counterparts of gravitational waves

    DEFF Research Database (Denmark)

    Mereghetti, S.; Savchenko, V.; Ferrigno, C.

    2018-01-01

    Thanks to its high orbit and a set of complementary detectors providing continuous coverage of the whole sky, the INTEGRAL satellite has unique capabilities for the identification and study of the electromagnetic radiation associated to gravitational waves signals and, more generally, for multi...

  16. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  17. Spread Spectrum Receiver Electromagnetic Interference (EMI) Test Guide

    Science.gov (United States)

    Wheeler, M. L.

    1998-01-01

    The objective of this test guide is to document appropriate unit level test methods and techniques for the performance of EMI testing of Direct Sequence (DS) spread spectrum receivers. Consideration of EMI test methods tailored for spread spectrum receivers utilizing frequency spreading, techniques other than direct sequence (such as frequency hopping, frequency chirping, and various hybrid methods) is beyond the scope of this test guide development program and is not addressed as part of this document EMI test requirements for NASA programs are primarily developed based on the requirements contained in MIL-STD-46 1 D (or earlier revisions of MIL-STD-46 1). The corresponding test method guidelines for the MIL-STD-461 D tests are provided in MIL-STD-462D. These test methods are well documented with the exception of the receiver antenna port susceptibility tests (intermodulation, cross modulation, and rejection of undesired signals) which must be tailored to the specific type of receiver that is being tested. Thus, test methods addressed in this guide consist only of antenna port tests designed to evaluate receiver susceptibility characteristics. MIL-STD-462D should be referred for guidance pertaining to test methods for EMI tests other than the antenna port tests. The scope of this test guide includes: (1) a discussion of generic DS receiver performance characteristics; (2) a summary of S-band TDRSS receiver operation; (3) a discussion of DS receiver EMI susceptibility mechanisms and characteristics; (4) a summary of military standard test guidelines; (5) recommended test approach and methods; and (6) general conclusions and recommendations for future studies in the area of spread spectrum receiver testing.

  18. Condition for invariant spectrum of an electromagnetic wave scattered from an anisotropic random media.

    Science.gov (United States)

    Li, Jia; Wu, Pinghui; Chang, Liping

    2015-08-24

    Within the accuracy of the first-order Born approximation, sufficient conditions are derived for the invariance of spectrum of an electromagnetic wave, which is generated by the scattering of an electromagnetic plane wave from an anisotropic random media. We show that the following restrictions on properties of incident fields and the anisotropic media must be simultaneously satisfied: 1) the elements of the dielectric susceptibility matrix of the media must obey the scaling law; 2) the spectral components of the incident field are proportional to each other; 3) the second moments of the elements of the dielectric susceptibility matrix of the media are inversely proportional to the frequency.

  19. Amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor

    International Nuclear Information System (INIS)

    Nerkararyan, Kh.V.

    1989-01-01

    The problem of amplification of electromagnetic radiation in the exciton region of the spectrum of a semiconductor was first discussed by Haken. The possibility of amplification of an electromagnetic wave under conditions of Bose condensation of biexcitons was considered in Ref. 2. However, the difficulties encountered in the creation of a Bose condensed state of biexcitons complicate greatly the performance of an experiment of this kind. The authors shall show that amplification is possible also in a gaseous mixture of excitons and biexcitons which is in thermal equilibrium and can be described by the Maxwellian distribution function of the velocities

  20. Spectrum of harmonic emission by inhomogeneous plasma in intense electromagnetic wave

    International Nuclear Information System (INIS)

    Kovalev, V.F.; Pustovalov, V.V.

    1989-01-01

    The spectrum and angular distribution of the harmonics of arbitrary index emitted by a cold, inhomogeneous electron plasma subjected to a p-polarized electromagnetic wave have been studied analytically. The results are shown in graphical form. The intensity of the wave was varied over a wide range. At energy flux densities of the electromagnetic wave at which the inverse effect of the higher harmonics on the lower harmonics becomes appreciable, it becomes possible to observe a decay of the absolute value of the complex amplitude of a harmonic with increasing harmonic index in vacuum which is substantially slower than that predicted by the theory for a weak nonlinearity

  1. Measurement of electromagnetic fields generated by air traffic control radar systems with spectrum analysers

    International Nuclear Information System (INIS)

    Barellini, A.; Bogi, L.; Licitra, G.; Silvi, A. M.; Zari, A.

    2009-01-01

    Air traffic control (ATC) primary radars are 'classical' radars that use echoes of radiofrequency (RF) pulses from aircraft to determine their position. High-power RF pulses radiated from radar antennas may produce high electromagnetic field levels in the surrounding area. Measurement of electromagnetic fields produced by RF-pulsed radar by means of a swept-tuned spectrum analyser are investigated here. Measurements have been carried out both in the laboratory and in situ on signals generated by an ATC primary radar. (authors)

  2. Transition from thermal to turbulent equilibrium with a resulting electromagnetic spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ziebell, L. F., E-mail: luiz.ziebell@ufrgs.br [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Yoon, P. H. [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Gaelzer, R. [Instituto de Física, UFRGS, Porto Alegre, RS (Brazil); Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil); Pavan, J. [Instituto de Física e Matemática, UFPel, Pelotas, RS (Brazil)

    2014-01-15

    A recent paper [Ziebell et al., Phys. Plasmas 21, 010701 (2014)] discusses a new type of radiation emission process for plasmas in a state of quasi-equilibrium between the particles and enhanced Langmuir turbulence. Such a system may be an example of the so-called “turbulent quasi-equilibrium.” In the present paper, it is shown on the basis of electromagnetic weak turbulence theory that an initial thermal equilibrium state (i.e., only electrostatic fluctuations and Maxwellian particle distributions) transitions toward the turbulent quasi-equilibrium state with enhanced electromagnetic radiation spectrum, thus demonstrating that the turbulent quasi-equilibrium discussed in the above paper correctly describes the weakly turbulent plasma dynamically interacting with electromagnetic fluctuations, while maintaining a dynamical steady-state in the average sense.

  3. Experimental and theoretical analysis of the spectrum of transient electromagnetic field created by linac electron beam

    International Nuclear Information System (INIS)

    Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki

    1994-01-01

    Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)

  4. Spectrum of an electromagnetic light wave on scattering from an anisotropic semisoft boundary medium.

    Science.gov (United States)

    Wang, Tao; Jiang, Zhenfei; Ji, Xiaoling; Zhao, Daomu

    2016-04-01

    Spectral shifts and spectral switches of a polychromatic electromagnetic light wave on scattering from an anisotropic semisoft boundary medium are discussed. It is shown that both the property of the incident field and the character of the scattering medium play roles in the change of the spectrum of the far-zone scattered field. It is also shown that the distribution of the far-zone scattered spectrum, including the magnitude of the spectral shift and the direction at which the spectral switch occurs, is rotationally nonsymmetric.

  5. On the continuous spectrum electromagnetic radiation in electron-fullerene collision

    International Nuclear Information System (INIS)

    Amusia, M.Y.

    1995-01-01

    It is demonstrated that the electromagnetic radiation spectrum in electron-fullerene collisions is dominated by a huge maximum of multielectron nature, similar to that already predicted and observed in photoabsorption. Due to coherence, the intensity of this radiation is much stronger than the sum of the intensities of isolated atoms. Experimental detection of such radiation would be of great importance for understanding the mechanism of its formation and for investigating fullerene structures. A paper describing these results was published

  6. Information and image integration: project spectrum

    Science.gov (United States)

    Blaine, G. James; Jost, R. Gilbert; Martin, Lori; Weiss, David A.; Lehmann, Ron; Fritz, Kevin

    1998-07-01

    The BJC Health System (BJC) and the Washington University School of Medicine (WUSM) formed a technology alliance with industry collaborators to develop and implement an integrated, advanced clinical information system. The industry collaborators include IBM, Kodak, SBC and Motorola. The activity, called Project Spectrum, provides an integrated clinical repository for the multiple hospital facilities of the BJC. The BJC System consists of 12 acute care hospitals serving over one million patients in Missouri and Illinois. An interface engine manages transactions from each of the hospital information systems, lab systems and radiology information systems. Data is normalized to provide a consistent view for the primary care physician. Access to the clinical repository is supported by web-based server/browser technology which delivers patient data to the physician's desktop. An HL7 based messaging system coordinates the acquisition and management of radiological image data and sends image keys to the clinical data repository. Access to the clinical chart browser currently provides radiology reports, laboratory data, vital signs and transcribed medical reports. A chart metaphor provides tabs for the selection of the clinical record for review. Activation of the radiology tab facilitates a standardized view of radiology reports and provides an icon used to initiate retrieval of available radiology images. The selection of the image icon spawns an image browser plug-in and utilizes the image key from the clinical repository to access the image server for the requested image data. The Spectrum system is collecting clinical data from five hospital systems and imaging data from two hospitals. Domain specific radiology imaging systems support the acquisition and primary interpretation of radiology exams. The spectrum clinical workstations are deployed to over 200 sites utilizing local area networks and ISDN connectivity.

  7. Experimental evaluation of structural integrity of scram release electromagnet

    International Nuclear Information System (INIS)

    Patri, Sudheer; Ruhela, S.P.; Punniyamoorthy, R.; Vijayashree, R.; Chandramouli, S.; Kumar, P. Madan; Rajendraprasad, R.; Rao, P. Vijayamohana; Narmadha, S.; Sreedhar, B.K.; Rajan, K.K.

    2014-01-01

    Highlights: • The structural integrity of scram release electromagnet is evaluated against thermal shocks. • A simple test facility, employed for simulating the thermal shocks in a typical FBR, is presented. • The cold shock experienced by electromagnet during scram is simulated. • The testing qualified electromagnet for 11.6 yr of reactor operation. - Abstract: Prototype fast breeder reactor (PFBR), under construction at Kalpakkam, India, plays an important role in the commercialisation of fast breeder reactors (FBR) in India. It consists of two independent, fast acting and diverse shutdown systems. An electromagnet (EM) immersed in sodium acts as scram release device for the second shutdown system of prototype fast breeder reactor. The inside of EM is sealed from the sodium to achieve the required response time and to prevent the exposure of EM coil to sodium. As the EM response time is an important parameter for reactor safety, the integrity of EM is to be maintained under all anticipated loadings. The EM experiences thermal shocks and thermal stresses during reactor transients such as scram. The dissimilar weld joint present in EM is more susceptible to fatigue failure due to these thermal stresses. Failure of weld joint results in the entry of sodium into the EM, increasing its response time with associated safety implications. In this connection, the structural integrity of EM against thermal shocks was experimentally evaluated in Thermal Shock Test Facility. The EM was subjected to 1000 cycles of thermal shocks, which constitutes 29% of total number of shocks required to qualify the EM for 40 years of reactor operation, thus qualifying it for 11.6 yr of reactor operation. The testing has enhanced the confidence level for safe and reliable operation of EM of DSRDM in PFBR. The testing not only qualified the EM for use in reactor but also provided input for licensing the erection of DSRDM on reactor pile. Moreover, it provided a direction for

  8. The Spectrum of Electromagnetic Scatter from an Ensemble of Bodies with Angular Periodicity, as a Model for Jet Engine Modulation

    National Research Council Canada - National Science Library

    Cashman, John

    2001-01-01

    A rotating ensemble of bodies of arbitrary shape with angular periodicity scatters an electromagnetic wave to produce a spectrum of frequency components characteristic of the structure and its rotation...

  9. Path integral approach to electron scattering in classical electromagnetic potential

    International Nuclear Information System (INIS)

    Xu Chuang; Feng Feng; Li Ying-Jun

    2016-01-01

    As is known to all, the electron scattering in classical electromagnetic potential is one of the most widespread applications of quantum theory. Nevertheless, many discussions about electron scattering are based upon single-particle Schrodinger equation or Dirac equation in quantum mechanics rather than the method of quantum field theory. In this paper, by using the path integral approach of quantum field theory, we perturbatively evaluate the scattering amplitude up to the second order for the electron scattering by the classical electromagnetic potential. The results we derive are convenient to apply to all sorts of potential forms. Furthermore, by means of the obtained results, we give explicit calculations for the one-dimensional electric potential. (paper)

  10. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    International Nuclear Information System (INIS)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-01-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  11. Electromagnetic spectrum survey of the environment in a locality in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Abood, Wafa Ali; Din, Norashidah Md; Ismail, Aiman; Mohamad, Hafizal

    2013-06-01

    The electromagnetic spectrum in the environment is becoming a scarce resource with the emergence of a high number of wireless communications services Cognitive radio (CR) is viewed as a possible solution to the spectrum bottleneck which work in a premise that at an any given time and spatial region there are frequency bands that has no signal occupancy. The CR technique utilizes a temporarily unoccupied licensed band by allowing secondary users to exploit opportunistically the underutilized spectrum licensed to primary users without any harmful interference. Before investigating the technical and political implications of CR, it is necessary to know to what extent the licensed bands are temporally unoccupied. In this paper a spectrum occupancy measurements is conducted to study the utilization of RF spectrum in an environment. The measurements are performed on UHF TV, GSM900 and GSM1800 frequency bands in an urban area in Kuala Lumpur, Malaysia. The evaluation made is based on the power detection principle. From the measurements, the spectrum holes are identified. The obtained results show that the spectral usage is 7.37% for UHF TV band, 12.8% for GSM900 and 5.3% for GSM1800 band leading to the conclusion that a significant amount of spectrum is available for deployment of cognitive radio.

  12. Loophole to the universal photon spectrum in electromagnetic cascades and application to the cosmological lithium problem.

    Science.gov (United States)

    Poulin, Vivian; Serpico, Pasquale Dario

    2015-03-06

    The standard theory of electromagnetic cascades onto a photon background predicts a quasiuniversal shape for the resulting nonthermal photon spectrum. This has been applied to very disparate fields, including nonthermal big bang nucleosynthesis (BBN). However, once the energy of the injected photons falls below the pair-production threshold the spectral shape is much harder, a fact that has been overlooked in past literature. This loophole may have important phenomenological consequences, since it generically alters the BBN bounds on nonthermal relics; for instance, it allows us to reopen the possibility of purely electromagnetic solutions to the so-called "cosmological lithium problem," which were thought to be excluded by other cosmological constraints. We show this with a proof-of-principle example and a simple particle physics model, compared with previous literature.

  13. Spectrum of the seismic-electromagnetic and acoustic waves caused by seismic and volcano activity

    Directory of Open Access Journals (Sweden)

    S. Koshevaya

    2005-01-01

    Full Text Available Modeling of the spectrum of the seismo-electromagnetic and acoustic waves, caused by seismic and volcanic activity, has been done. This spectrum includes the Electromagnetic Emission (EME, due to fracturing piezoelectrics in rocks and the Acoustic Emission (AE, caused by the excitation and the nonlinear passage of acoustic waves through the Earth's crust, the atmosphere, and the ionosphere. The investigated mechanism of the EME uses the model of fracturing and the crack motion. For its analysis, we consider a piezoelectric crystal under mechanical stresses, which cause the uniform crack motion, and, consequently, in the vicinity of the moving crack also cause non-stationary polarization currents. A possible spectrum of EME has been estimated. The underground fractures produce Very Low (VLF and Extremely Low Frequency (ELF acoustic waves, while the acoustic waves at higher frequencies present high losses and, on the Earth's surface, they are quite small and are not registered. The VLF acoustic wave is subject to nonlinearity under passage through the lithosphere that leads to the generation of higher harmonics and also frequency down-conversion, namely, increasing the ELF acoustic component on the Earth's surface. In turn, a nonlinear propagation of ELF acoustic wave in the atmosphere and the ionosphere leads to emerging the ultra low frequency (ULF acousto-gravity waves in the ionosphere and possible local excitation of plasma waves.

  14. The effect of electromagnetic interactions on the proton spectrum in free neutron β-decay

    International Nuclear Information System (INIS)

    Bunatyan, G.G.

    2000-01-01

    In the β decay of an unpolarized free neutron, the effect of electromagnetic interactions on the proton recoil spectrum is studied in the light of the experiments which are carried out and planned for now. The corrections to the energy distribution of protons prove to amount to the value of a few per cent. Nowadays, this is substantial for obtaining with a high accuracy, of ∼ 1% or better, the characteristics of weak interactions by processing the data of the experiments on the proton distribution in the free neutron β-decay

  15. Double atom ionization by multicharged ions and strong electromagnetic field: correlation effects in a continuous spectrum

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1997-01-01

    The nonstationary theory of double ionization of two-electron atoms in collisions with multicharged ions or under the impact of intensive electromagnetic field is developed. The approach, making it possible to study both problems by uniform method, is formulated. The two-electron wave function of continuous spectrum, accounting for interaction of electrons with atomic nucleus, external ionizer and between themselves is obtained. The calculation results on the helium atoms double ionization by multicharged ions is a good quantitative agreement with available experimental data

  16. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

    Directory of Open Access Journals (Sweden)

    Han Guo

    2012-01-01

    Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

  17. FR4-Based Electromagnetic Scanning Micromirror Integrated with Angle Sensor

    Directory of Open Access Journals (Sweden)

    Hongjie Lei

    2018-05-01

    Full Text Available This paper presents a flame retardant 4 (FR4-based electromagnetic scanning micromirror, which aims to overcome the limitations of conventional microelectromechanical systems (MEMS micromirrors for the large-aperture and low-frequency scanning applications. This micromirror is fabricated through a commercial printed circuit board (PCB technology at a low cost and with a short process cycle, before an aluminum-coated silicon mirror plate with a large aperture is bonded on the FR4 platform to provide a high surface quality. In particular, an electromagnetic angle sensor is integrated to monitor the motion of the micromirror in real time. A prototype has been assembled and tested. The results show that the micromirror can reach the optical scan angle of 11.2 ∘ with a low driving voltage of only 425 mV at resonance (361.8 Hz. At the same time, the signal of the integrated angle sensor also shows good signal-to-noise ratio, linearity and sensitivity. Finally, the reliability of the FR4 based micro-mirror has been tested. The prototype successfully passes both shock and vibration tests. Furthermore, the results of the long-term mechanical cycling test (50 million cycles suggest that the maximum variations of resonant frequency and scan angle are less than 0.3% and 6%, respectively. Therefore, this simple and robust micromirror has great potential in being useful in a number of optical microsystems, especially when large-aperture or low-frequency is required.

  18. The electromagnetic integrated demonstration at the Idaho National Engineering Laboratory cold test pit

    International Nuclear Information System (INIS)

    Pellerin, L.; Alumbaugh, D.L.; Pfeifer, M.C.

    1997-01-01

    The electromagnetic integrated demonstration (EMID) is a baseline study in electromagnetic (EM) exploration of the shallow subsurface (< 10 m). Eleven distinct EM systems, covering the geophysical spectrum, acquired data on a grid over the Idaho National Engineering Laboratory (INEL) Cold Test Pit (CTP). The systems are investigated and evaluated for the purpose of identifying and reviewing existing geophysical characterization instrumentation (commercial and experimental), integrating those technologies with multi-dimensional interpretational algorithms, and identifying gaps in shallow subsurface EM imaging technology. The EMID data, are valuable for testing and evaluating new interpretational software, and developing techniques for integrating multiple datasets. The experimental field techniques shows how the acquisition of data in a variety of array configurations can considerably enhance interpretation. All data are available on the world wide web. Educators and students are encouraged to use the data for both classroom and graduate studies. The purpose of this paper is to explain why, where, how and what kind of data were collected. It is left to the reader to assess the value of a given system for their particular application. Information about the EMID is organized into two general categories: survey description and system evaluation

  19. Localized electromagnetic modes and transmission spectrum of one-dimensional photon crystal with lattice defects

    CERN Document Server

    Vetrov, S Y

    2001-01-01

    The properties of the localized electromagnetic modes in the one-dimensional photon crystal with a structural defective layer are studied. The anisotropic layer of the nematic liquid layer is considered as the defect. It is shown that the frequency and coefficient of the defective modes attenuation essentially depend on the defective layer thickness and nematic optical axis orientation. The spectrum of the photon crystal transmittance with one or two defects in the lattice is studied. The possibility of controlling the the photon crystal transmittance spectrum on the count of changing the orientation of the nematic optical axis, for example, through the external electric field is shown with an account of strong anisotropy of the dielectric permittivity

  20. Electromagnetic Spectrum Analysis and Its Influence on the Photoelectric Conversion Efficiency of Solar Cells.

    Science.gov (United States)

    Hu, Kexiang; Ding, Enjie; Wangyang, Peihua; Wang, Qingkang

    2016-06-01

    The electromagnetic spectrum and the photoelectric conversion efficiency of the silicon hexagonal nanoconical hole (SiHNH) arrays based solar cells is systematically analyzed according to Rigorous Coupled Wave Analysis (RCWA) and Modal Transmission Line (MTL) theory. An ultimate efficiency of the optimized SiHNH arrays based solar cell is up to 31.92% in consideration of the absorption spectrum, 4.52% higher than that of silicon hexagonal nanoconical frustum (SiHNF) arrays. The absorption enhancement of the SiHNH arrays is due to its lower reflectance and more supported guided-mode resonances, and the enhanced ultimate efficiency is insensitive to bottom diameter (D(bot)) of nanoconical hole and the incident angle. The result provides an additional guideline for the nanostructure surface texturing fabrication design for photovoltaic applications.

  1. [Detection of endotoxins of Gram-negative bacteria on the basis of electromagnetic radiation frequency spectrum].

    Science.gov (United States)

    Likhoded, V G; Kuleshova, N V; Sergieva, N V; Konev, Iu V; Trubnikova, I A; Sudzhian, E V

    2007-01-01

    Method of Gram-negative bacteria endotoxins detection on the basis of their own spectrum of electromagnetic radiation frequency was developed. Frequency spectrum typical for chemotype Re glycolipid, which is a part of lypopolysaccharides in the majority of Gram-negative bacteria, was used. Two devices--"Mini- Expert-DT" (manufactured by IMEDIS, Moscow) and "Bicom" (manufactured by Regumed, Germany)--were used as generators of electromagnetic radiation. Detection of endotoxin using these devices was performed by electropuncture vegetative resonance test. Immunoenzyme reaction with antibodies to chemotype Re glycolipid was used during analysis of preparations for assessment of resonance-frequency method specificity. The study showed that resonance-frequency method can detect lypopolysaccharides of different enterobacteria in quantities up to 0.1 pg as well as bacteria which contain lypopolysaccharides. At the same time, this method does not detect such bacteria as Staphylococcus aureus, Bifidobacterium spp., Lactobacillus spp., and Candida albicans. The method does not require preliminary processing of blood samples and can be used for diagnostics of endotoxinemia, and detection of endotoxins in blood samples or injection solutions.

  2. Electromagnetic Scattering from Rough Sea Surface with PM Spectrum Covered by an Organic Film

    International Nuclear Information System (INIS)

    Wang Rui; Guo Li-Xin; Wang An-Qi; Wu Zhen-Sen

    2011-01-01

    The rough sea surface covered by an organic film will cause attenuation of capillarity waves, which implies that the organic films play an important role in rough sea surface processes. We focus on a one-dimensional (1D) rough sea surface with the Pierson—Moskowitz (PM) spectrum distributed to the homogeneous insoluble organic slicks. First, the impact of the organic film on the PM surface spectrum is presented, as well as that of the correlation length, the rms height and slope of the rough sea surface. The damping effect of the organic film changes the physical parameters of the rough sea surface. For example, the organic film will reduce the rms height and slopee of the rough sea surface, which results in the attenuation of the high-frequency components of the PM spectrum leading to modification of the surface PM spectrum. Then, the influence of the organic film on the electromagnetic (EM) scattering coefficients from PM rough sea surface covered by the organic film is investigated and discussed in detail, compared with the clean PM rough sea surface through the method of moments. (fundamental areas of phenomenology(including applications))

  3. Analgesic effect of the electromagnetic resonant frequencies derived from the NMR spectrum of morphine.

    Science.gov (United States)

    Verginadis, Ioannis I; Simos, Yannis V; Velalopoulou, Anastasia P; Vadalouca, Athina N; Kalfakakou, Vicky P; Karkabounas, Spyridon Ch; Evangelou, Angelos M

    2012-12-01

    Exposure to various types of electromagnetic fields (EMFs) affects pain specificity (nociception) and pain inhibition (analgesia). Previous study of ours has shown that exposure to the resonant spectra derived from biologically active substances' NMR may induce to live targets the same effects as the substances themselves. The purpose of this study is to investigate the potential analgesic effect of the resonant EMFs derived from the NMR spectrum of morphine. Twenty five Wistar rats were divided into five groups: control group; intraperitoneal administration of morphine 10 mg/kg body wt; exposure of rats to resonant EMFs of morphine; exposure of rats to randomly selected non resonant EMFs; and intraperitoneal administration of naloxone and simultaneous exposure of rats to the resonant EMFs of morphine. Tail Flick and Hot Plate tests were performed for estimation of the latency time. Results showed that rats exposed to NMR spectrum of morphine induced a significant increase in latency time at time points (p spectrum of morphine. Our results indicate that exposure of rats to the resonant EMFs derived from the NMR spectrum of morphine may exert on animals similar analgesic effects to morphine itself.

  4. The Use and Management of the Electromagnetic Spectrum, Part I. President's Task Force on Communications Policy. Staff Paper Seven, Part I.

    Science.gov (United States)

    Rostow, Eugene V.

    A staff paper to the President's Task Force on Communications Policy analyses the use of the electromagnetic spectrum for communications and suggests improvements. The evolution of spectrum use and its present federal management are described together with the problem of achieving efficient use in the areas of electromagnetic congestion. Criticism…

  5. Simulation methods of nuclear electromagnetic pulse effects in integrated circuits

    International Nuclear Information System (INIS)

    Cheng Jili; Liu Yuan; En Yunfei; Fang Wenxiao; Wei Aixiang; Yang Yuanzhen

    2013-01-01

    In the paper the ways to compute the response of transmission line (TL) illuminated by electromagnetic pulse (EMP) were introduced firstly, which include finite-difference time-domain (FDTD) and trans-mission line matrix (TLM); then the feasibility of electromagnetic topology (EMT) in ICs nuclear electromagnetic pulse (NEMP) effect simulation was discussed; in the end, combined with the methods computing the response of TL, a new method of simulate the transmission line in IC illuminated by NEMP was put forward. (authors)

  6. Voxel inversion of airborne electromagnetic data for improved model integration

    Science.gov (United States)

    Fiandaca, Gianluca; Auken, Esben; Kirkegaard, Casper; Vest Christiansen, Anders

    2014-05-01

    Inversion of electromagnetic data has migrated from single site interpretations to inversions including entire surveys using spatial constraints to obtain geologically reasonable results. Though, the model space is usually linked to the actual observation points. For airborne electromagnetic (AEM) surveys the spatial discretization of the model space reflects the flight lines. On the contrary, geological and groundwater models most often refer to a regular voxel grid, not correlated to the geophysical model space, and the geophysical information has to be relocated for integration in (hydro)geological models. We have developed a new geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which then allows for informing directly geological/hydrogeological models. The new voxel model space defines the soil properties (like resistivity) on a set of nodes, and the distribution of the soil properties is computed everywhere by means of an interpolation function (e.g. inverse distance or kriging). Given this definition of the voxel model space, the 1D forward responses of the AEM data are computed as follows: 1) a 1D model subdivision, in terms of model thicknesses, is defined for each 1D data set, creating "virtual" layers. 2) the "virtual" 1D models at the sounding positions are finalized by interpolating the soil properties (the resistivity) in the center of the "virtual" layers. 3) the forward response is computed in 1D for each "virtual" model. We tested the new inversion scheme on an AEM survey carried out with the SkyTEM system close to Odder, in Denmark. The survey comprises 106054 dual mode AEM soundings, and covers an area of approximately 13 km X 16 km. The voxel inversion was carried out on a structured grid of 260 X 325 X 29 xyz nodes (50 m xy spacing), for a total of 2450500 inversion parameters. A classical spatially constrained inversion (SCI) was carried out on the same data set, using 106054

  7. An Electromagnetic Spectrum for Millennial Students: Teaching Light, Color, Energy, and Frequency Using the Electronic Devices of Our Time

    Science.gov (United States)

    Murphy, Maureen Kendrick

    2010-01-01

    In this article, a comparison of student learning outcomes is made in sophomore-level physical science classes using a "traditional" pedagogical approach versus a "modern" approach. Specifically, when students were taught the electromagnetic spectrum using diagrams and examples that incorporate technological advances and electronic devices of our…

  8. Landau Quasi-energy Spectrum Destruction for an Electron in Both a Static Magnetic Field and a Resonant Electromagnetic Wave

    International Nuclear Information System (INIS)

    Skoblin, A.A.

    1994-01-01

    Free nonrelativistic electrons in both a static magnetic field and an electromagnetic wave are considered. A plane-polarized wave propagates along a magnetic field, its frequency is close to the electron rotation frequency in a magnetic field. Electron spin is taken into account. An electron quasi energy spectrum and steady states (quasi energy states) are constructed. 6 refs

  9. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  10. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1984-01-01

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation

  11. Electromagnetism

    CERN Document Server

    Grant, Ian S

    1990-01-01

    The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw the Physics of Stars Second Edition A. C. Phillips Computing for Scient

  12. Beetle Exoskeleton May Facilitate Body Heat Acting Differentially across the Electromagnetic Spectrum.

    Science.gov (United States)

    Carrascal, Luis M; Ruiz, Yolanda Jiménez; Lobo, Jorge M

    Exoskeletons of beetles and their associated morphological characteristics can serve many different functions, including thermoregulation. We study the thermal role of the exoskeleton in 13 Geotrupidae dung beetle species using heating experiments under controlled conditions. The main purpose was to measure the influence of heating sources (solar radiance vs. infrared), animal position (dorsal exposure vs. ventral exposure), species identity, and phylogenetic relationships on internal asymptotic temperatures and heating rates. The thermal response was significantly influenced by phylogenetic relatedness, although it was not affected by the apterous condition. The asymptotic internal temperature of specimens was not affected by the thoracic volume but was significantly higher under simulated sunlight conditions than under infrared radiation and when exposed dorsally as opposed to ventrally. There was thus a significant interaction between heating source and body position. Heating rate was negatively and significantly influenced by thoracic volume, and, although insignificantly slower under simulated sunlight, it was significantly affected by body position, being faster under dorsal exposure. The results constitute the first evidence supporting the hypothesis that the beetle exoskeleton acts differentially across the electromagnetic spectrum determining internal body temperatures. This interesting finding suggests the existence of a kind of passive physiology imposed by the exoskeleton and body size, where interspecific relationships play a minor role.

  13. Signal discrimination of ULF electromagnetic data with using singular spectrum analysis – an attempt to detect train noise

    Directory of Open Access Journals (Sweden)

    S. Saito

    2011-07-01

    Full Text Available Electromagnetic phenomena associated with crustal activities have been reported in a wide frequency range (DC-HF. In particular, ULF electromagnetic phenomena are the most promising among them because of the deeper skin depth. However, ULF geoelctromagnetic data are a superposition of signals of different origins. They originated from interactions between the geomagnetic field and the solar wind, leak current by a DC-driven train (train noise, precipitation, and so on. In general, the intensity of electromagnetic signals associated with crustal activity is smaller than the above variations. Therefore, in order to detect a smaller signal, signal discrimination such as noise reduction or identification of noises is very important. In this paper, the singular spectrum analysis (SSA has been performed to detect the DC-driven train noise in geoelectric potential difference data. The aim of this paper is to develop an effective algorithm for the DC-driven train noise detection.

  14. Wavelet-like bases for thin-wire integral equations in electromagnetics

    Science.gov (United States)

    Francomano, E.; Tortorici, A.; Toscano, E.; Ala, G.; Viola, F.

    2005-03-01

    In this paper, wavelets are used in solving, by the method of moments, a modified version of the thin-wire electric field integral equation, in frequency domain. The time domain electromagnetic quantities, are obtained by using the inverse discrete fast Fourier transform. The retarded scalar electric and vector magnetic potentials are employed in order to obtain the integral formulation. The discretized model generated by applying the direct method of moments via point-matching procedure, results in a linear system with a dense matrix which have to be solved for each frequency of the Fourier spectrum of the time domain impressed source. Therefore, orthogonal wavelet-like basis transform is used to sparsify the moment matrix. In particular, dyadic and M-band wavelet transforms have been adopted, so generating different sparse matrix structures. This leads to an efficient solution in solving the resulting sparse matrix equation. Moreover, a wavelet preconditioner is used to accelerate the convergence rate of the iterative solver employed. These numerical features are used in analyzing the transient behavior of a lightning protection system. In particular, the transient performance of the earth termination system of a lightning protection system or of the earth electrode of an electric power substation, during its operation is focused. The numerical results, obtained by running a complex structure, are discussed and the features of the used method are underlined.

  15. TESTING THE NO-HAIR THEOREM WITH OBSERVATIONS IN THE ELECTROMAGNETIC SPECTRUM. II. BLACK HOLE IMAGES

    International Nuclear Information System (INIS)

    Johannsen, Tim; Psaltis, Dimitrios

    2010-01-01

    According to the no-hair theorem, all astrophysical black holes are fully described by their masses and spins. This theorem can be tested observationally by measuring (at least) three different multipole moments of the spacetimes of black holes. In this paper, we analyze images of black holes within a framework that allows us to calculate observables in the electromagnetic spectrum as a function of the mass, spin, and, independently, the quadrupole moment of a black hole. We show that a deviation of the quadrupole moment from the expected Kerr value leads to images of black holes that are either prolate or oblate depending on the sign and magnitude of the deviation. In addition, there is a ring-like structure around the black hole shadow with a diameter of ∼10 black hole masses that is substantially brighter than the image of the underlying accretion flow and that is independent of the astrophysical details of accretion flow models. We show that the shape of this ring depends directly on the mass, spin, and quadrupole moment of the black hole and can be used for an independent measurement of all three parameters. In particular, we demonstrate that this ring is highly circular for a Kerr black hole with a spin a ∼< 0.9 M, independent of the observer's inclination, but becomes elliptical and asymmetric if the no-hair theorem is violated. Near-future very long baseline interferometric observations of Sgr A* will image this ring and may allow for an observational test of the no-hair theorem.

  16. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    Adler, A.; Fuchs, B.; Thielheim, K.O.

    1977-01-01

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)

  17. Nonlinear Coupling Characteristics Analysis of Integrated System of Electromagnetic Brake and Frictional Brake of Car

    Directory of Open Access Journals (Sweden)

    Ren He

    2015-01-01

    Full Text Available Since theoretical guidance is lacking in the design and control of the integrated system of electromagnetic brake and frictional brake, this paper aims to solve this problem and explores the nonlinear coupling characteristics and dynamic characteristics of the integrated system of electromagnetic brake and frictional brake. This paper uses the power bond graph method to establish nonlinear coupling mathematical model of the integrated system of electromagnetic brake and frictional brake and conducts the contrastive analysis on the dynamic characteristics based on this mathematical model. Meanwhile, the accuracy of the nonlinear coupling mathematical model proposed above is verified on the hardware in the loop simulation platform, and nonlinear coupling characteristics of the integrated system are also analyzed through experiments.

  18. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  19. Plane-wave spectrum approach for the calculation of electromagnetic absorption under near-field exposure conditions

    International Nuclear Information System (INIS)

    Chatterjee, I.; Gandhi, O.P.; Hagmann, M.J.; Riazi, A.

    1980-01-01

    The exposure of humans to electromagnetic near fields has not been sufficiently emphasized by researcher. We have used the plane-wave-spectrum approach to evaluate the electromagnetic field and determine the energy deposited in a lossy, homogeneous, semi-infinite slab placed in the near field of a source leaking radiation. Values of the fields and absorbed energy in the target are obtained by vector summation of the contributions of all the plane waves into which the prescribed field is decomposed. Use of a fast Fourier transform algorithm contributes to the high efficiency of the computations. The numerical results show that, for field distributions that are nearly constant over a physical extent of at least a free-space wavelength, the energy coupled into the target is approximately equal to the resulting from plane-wave exposed

  20. Integrating sensing across a broader spectrum to support homeland security

    Science.gov (United States)

    O'Brien, Thomas W.; Finkelstein, Marc

    2003-08-01

    All objects and activities give off energy in some part of the spectrum, may leave tell-tail signs from their previous activities (e.g., earth scaring or vapor trails), or leave information about relationships that they may have with other entities and activities (e.g., networks). Many of these phenomenologies are either not picked up by current stovepiped sensors, or the data supplied by those sensors are not fully exploited to properly observe them. In either case, new sensor data as well as the better exploitation of existing data could be used to provide, or at least cross cue or correlate with other sensor data to detect, identify, geolocate or track different kind of problems. Current sensors are often designed for specific purposes and are capable of sensing only limited parts of the spectrum. Significantly broadening the sensing spectrum will be an essential element of solving the emerging class of new "hard problems". There are many other observables available that could be exploited to assist in that process. Thus one could broaden the sensing to observe those phenomenologies associated with combustion effluents; thermal radiation; magnetic anomalies; seismic movement; acoustics; unintended electromagnetic emissions, changing weather conditions, logistics support indicators, debris trails; impressed observables (such as tagging); and others. What's needed is a disciplined, analytical process that can map observables to sensors, and ultimately to mission utility. The process, described in this SPIE presentation will address a specific example on the flow from the establishment of requirements to prosecutable observables, to objectives, to identification of sensors and assets, to the allocation of sensors and assets to observables, all based on optimizing mission utility.

  1. Deficit in visual temporal integration in autism spectrum disorders.

    Science.gov (United States)

    Nakano, Tamami; Ota, Haruhisa; Kato, Nobumasa; Kitazawa, Shigeru

    2010-04-07

    Individuals with autism spectrum disorders (ASD) are superior in processing local features. Frith and Happe conceptualize this cognitive bias as 'weak central coherence', implying that a local enhancement derives from a weakness in integrating local elements into a coherent whole. The suggested deficit has been challenged, however, because individuals with ASD were not found to be inferior to normal controls in holistic perception. In these opposing studies, however, subjects were encouraged to ignore local features and attend to the whole. Therefore, no one has directly tested whether individuals with ASD are able to integrate local elements over time into a whole image. Here, we report a weakness of individuals with ASD in naming familiar objects moved behind a narrow slit, which was worsened by the absence of local salient features. The results indicate that individuals with ASD have a clear deficit in integrating local visual information over time into a global whole, providing direct evidence for the weak central coherence hypothesis.

  2. Rock Burst Monitoring by Integrated Microseismic and Electromagnetic Radiation Methods

    Science.gov (United States)

    Li, Xuelong; Wang, Enyuan; Li, Zhonghui; Liu, Zhentang; Song, Dazhao; Qiu, Liming

    2016-11-01

    For this study, microseismic (MS) and electromagnetic radiation (EMR) monitoring systems were installed in a coal mine to monitor rock bursts. The MS system monitors coal or rock mass ruptures in the whole mine, whereas the EMR equipment monitors the coal or rock stress in a small area. By analysing the MS energy, number of MS events, and EMR intensity with respect to rock bursts, it has been shown that the energy and number of MS events present a "quiet period" 1-3 days before the rock burst. The data also show that the EMR intensity reaches a peak before the rock burst and this EMR intensity peak generally corresponds to the MS "quiet period". There is a positive correlation between stress and EMR intensity. Buckling failure of coal or rock depends on the rheological properties and occurs after the peak stress in the high-stress concentration areas in deep mines. The MS "quiet period" before the rock burst is caused by the heterogeneity of the coal and rock structures, the transfer of high stress into internal areas, locked patches, and self-organized criticality near the stress peak. This study increases our understanding of coal and rock instability in deep mines. Combining MS and EMR to monitor rock burst could improve prediction accuracy.

  3. Electromagnetic wave propagation over an inhomogeneous flat earth (two-dimensional integral equation formulation)

    International Nuclear Information System (INIS)

    de Jong, G.

    1975-01-01

    With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation

  4. Integrated approach to yoga therapy and autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Shantha Radhakrishna

    2010-01-01

    Full Text Available A specially designed Integrated Approach to Yoga Therapy module was applied to Autism Spectrum Disorders over a period of two academic years. Despite low numbers (six in each arm, consistency and magnitude of effects make the findings significant. Parental participation, allowing firm guidance to be given to each child, resulted in significant improvements in imitation and other skills, and in behavior at home and family relationships. We hypothesize that guided imitation of therapist body positions stimulated mirror neuron activation, resulting in improved sense of self.

  5. analysis of large electromagnetic pulse simulators using the electric field integral equation method in time domain

    International Nuclear Information System (INIS)

    Jamali, J.; Aghajafari, R.; Moini, R.; Sadeghi, H.

    2002-01-01

    A time-domain approach is presented to calculate electromagnetic fields inside a large Electromagnetic Pulse (EMP) simulator. This type of EMP simulator is used for studying the effect of electromagnetic pulses on electrical apparatus in various structures such as vehicles, a reoplanes, etc. The simulator consists of three planar transmission lines. To solve the problem, we first model the metallic structure of the simulator as a grid of conducting wires. The numerical solution of the governing electric field integral equation is then obtained using the method of moments in time domain. To demonstrate the accuracy of the model, we consider a typical EMP simulator. The comparison of our results with those obtained experimentally in the literature validates the model introduced in this paper

  6. Redatuming controlled-source electromagnetic data using Stratton–Chu type integral transformations

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu

    2016-01-01

    We present a new method of analyzing controlled-source electromagnetic (CSEM) data based on redatuming of the observed data from the actual receivers into the virtual receivers. We use the Stratton–Chu type integral transform to calculate the EM field in the virtual receivers. The virtual receivers...... can be placed at any desirable position, including close to the target, which increases the sensitivity of the EM data to the target. The developed method provides an effective model-based interpolation/extrapolation tool for electromagnetic field data. This paper demonstrates that redatuming can...... be used for designing the optimized CSEM survey configuration. The numerical examples, for the Kevin Dome Electromagnetic Project Site, illustrate the practical effectiveness of the developed method....

  7. Integrable parameter regimes and stationary states of nonlinearly coupled electromagnetic and ion-acoustic waves

    International Nuclear Information System (INIS)

    Rao, N.N.

    1998-01-01

    A systematic analysis of the stationary propagation of nonlinearly coupled electromagnetic and ion-acoustic waves in an unmagnetized plasma via the ponderomotive force is carried out. For small but finite amplitudes, the governing equations have a Hamiltonian structure, but with a kinetic energy term that is not positive definite. The Hamiltonian is similar to the well-known Hacute enon endash Heiles Hamiltonian of nonlinear dynamics, and is completely integrable in three regimes of the allowed parameter space. The corresponding second invariants of motion are also explicitly obtained. The integrable parameter regimes correspond to supersonic values of the Mach number, which characterizes the propagation speed of the coupled waves. On the other hand, in the sub- as well as near-sonic regimes, the coupled mode equations admit different types of exact analytical solutions, which represent nonlinear localized eigenstates of the electromagnetic field trapped in the density cavity due to the ponderomotive potential. While the density cavity has always a single-dip structure, for larger amplitudes it can support higher-order modes having a larger number of nodes in the electromagnetic field. In particular, we show the existence of a new type of localized electromagnetic wave whose field intensity has a triple-hump structure. For typical parameter values, the triple-hump solitons propagate with larger Mach numbers that are closer to the sonic limit than the single- as well as the double-hump solitons, but carry a lesser amount of the electromagnetic field energy. A comparison between the different types of solutions is carried out. The possibility of the existence of trapped electromagnetic modes having a larger number of humps is also discussed. copyright 1998 American Institute of Physics

  8. Changing of Bacteria Catalase Activity Under the Influence of Electro-Magnetic Radiation on a Frequency of Nitric Oxide Absorption and Radiation Molecular Spectrum

    Directory of Open Access Journals (Sweden)

    G.M. Shub

    2009-09-01

    Full Text Available The dynamics of catalase activity degree changing in Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa is described under the influence of electro-magnetic radiation on a frequency of nitric oxide absorption and radiation molecular spectrum. The panoramic spectrometric measuring complex, developed in Central Scientific Research Institute of measuring equipment Public corporation, Saratov, was used while carrying out the research. Electromagnetic vibrations of extremely high frequencies were stimulated in this complex imitating the structure of nitric oxide absorption and radiation molecular spectrum. The growth of activity of the mentioned enzyme of the strains under research was detected. The most significant changes were observed under 60-minutes exposure.

  9. Developing Pre-Service Teachers' Subject Matter Knowledge of Electromagnetism by Integrating Concept Maps and Collaborative Learning

    Science.gov (United States)

    Govender, Nadaraj

    2015-01-01

    This case study explored the development of two pre-service teachers' subject matter knowledge (SMK) of electromagnetism while integrating the use of concept maps (CM) and collaborative learning (CL) strategies. The study aimed at capturing how these pre-service teachers' SMK in electromagnetism was enhanced after having been taught SMK in a…

  10. Electromagnetic resonance modes on a two-dimensional tandem grating and its application for broadband absorption in the visible spectrum.

    Science.gov (United States)

    Han, Sunwoo; Lee, Bong Jae

    2016-01-25

    In this work, we numerically investigate the electromagnetic resonances on two-dimensional tandem grating structures. The base of a tandem grating consists of an opaque Au substrate, a SiO(2) spacer, and a Au grating (concave type); that is, a well-known fishnet structure forming Au/SiO(2)/Au stack. A convex-type Au grating (i.e., topmost grating) is then attached on top of the base fishnet structure with or without additional SiO(2) spacer, resulting in two types of tandem grating structures. In order to calculate the spectral reflectance and local magnetic field distribution, the finite-difference time-domain method is employed. When the topmost Au grating is directly added onto the base fishnet structure, the surface plasmon and magnetic polariton in the base structure are branched out due to the geometric asymmetry with respect to the SiO(2) spacer. If additional SiO(2) spacer is added between the topmost Au grating and the base fishnet structure, new magnetic resonance modes appear due to coupling between two vertically aligned Au/SiO(2)/Au stacks. With the understanding of multiple electromagnetic resonance modes on the proposed tandem grating structures, we successfully design a broadband absorber made of Au and SiO(2) in the visible spectrum.

  11. Custom integrated front-end circuit for the CMS electromagnetic calorimeter

    CERN Document Server

    Walder, J P; Denes, P; Mathez, H; Pangaud, P

    2001-01-01

    A wide dynamic range multi-gain transimpedance amplifier custom integrated circuit has been developed for the readout of avalanche photodiode and vacuum photodiode in the CMS electromagnetic calorimeter for LHC experiment. The 92 db input dynamic range is divided into four ranges of 12 bits each in order to provide 40 MHz analog sampled data to a 12 bits ADC. This concept, which has been integrated in rad-hard full complementary bipolar technology, will be described. Experimental results obtained in lab and under irradiation will be presented along with test strategy being used for mass production. 6 Refs.

  12. Spectrum Management and Electromagnetic Compatibility Issues in the Department of Defense

    Science.gov (United States)

    1991-01-01

    Interference JEWC Joint Electronic Warfare Center JRFL Joint Restricted Frequency List JSMS Joint Spectrum Management System JT&E Joint Test and Evaluation JTAC...Joint Restricted Frequency List (JRFL) is essentially a list of frequencies prohibited from use by ECM units. Creation and maintenance of the JRFL to...sponsored by CECOM, developed a prototype that primarily acted as an analysis of the restricted frequency list as a predecessor to DECON. Presently the Army

  13. Electromagnetic analysis, structural integrity and progress on mechanical design of the ITER ferromagnetic insert

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, M. [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-chome, Hyogo-ku, Kobe 652-8585 (Japan)], E-mail: masaaki_morimoto@maia.eonet.ne.jp; Ioki, K.; Terasawa, A.; Utin, Yu.; Barabash, V.; Gribov, Y. [ITER Organization, 13108 St. Paul lez Durance (France)

    2009-12-15

    Ferromagnetic material is used to reduce the toroidal field ripple in JFT-2M and JT-60U . In ITER, since the ferromagnetic material is inserted in the space between the double walls of ITER Vacuum Vessel (VV), it is called 'ferromagnetic inserts'. Suitable material is selected to satisfy the design requirements of ITER. The proper location and amount of the ferromagnetic inserts are optimized with the goal of reduction of the toroidal field ripple. The ferromagnetic inserts are designed to minimize electromagnetic forces acting on them. The electromagnetic forces have been calculated with the latest disruption scenarios. Magnetization forces due to magnetic fields have also been calculated. Structural integrity has been validated by a structural analysis.

  14. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    Science.gov (United States)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  15. Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.

    Science.gov (United States)

    Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D

    2018-01-01

    In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.

  16. [A magnetic therapy apparatus with an adaptable electromagnetic spectrum for the treatment of prostatitis and gynecopathies].

    Science.gov (United States)

    Kuz'min, A A; Meshkovskiĭ, D V; Filist, S A

    2008-01-01

    Problems of engineering and algorithm development of magnetic therapy apparatuses with pseudo-random radiation spectrum within the audio range for treatment of prostatitis and gynecopathies are considered. A typical design based on a PIC 16F microcontroller is suggested. It includes a keyboard, LCD indicator, audio amplifier, inducer, and software units. The problem of pseudo-random signal generation within the audio range is considered. A series of rectangular pulses is generated on a random-length interval on the basis of a three-component random vector. This series provides the required spectral characteristics of the therapeutic magnetic field and their adaptation to the therapeutic conditions and individual features of the patient.

  17. Simplified expressions of the T-matrix integrals for electromagnetic scattering.

    Science.gov (United States)

    Somerville, Walter R C; Auguié, Baptiste; Le Ru, Eric C

    2011-09-01

    The extended boundary condition method, also called the null-field method, provides a semianalytic solution to the problem of electromagnetic scattering by a particle by constructing a transition matrix (T-matrix) that links the scattered field to the incident field. This approach requires the computation of specific integrals over the particle surface, which are typically evaluated numerically. We introduce here a new set of simplified expressions for these integrals in the commonly studied case of axisymmetric particles. Simplifications are obtained using the differentiation properties of the radial functions (spherical Bessel) and angular functions (associated Legendre functions) and integrations by parts. The resulting simplified expressions not only lead to faster computations, but also reduce the risks of loss of precision and provide a simpler framework for further analytical work.

  18. The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.

    Science.gov (United States)

    Gomez, Luis J; Yucel, Abdulkadir C; Michielssen, Eric

    2018-03-01

    An internally combined volume surface integral equation (ICVSIE) for analyzing electromagnetic (EM) interactions with biological tissue and wide ranging diagnostic, therapeutic, and research applications, is proposed. The ICVSIE is a system of integral equations in terms of volume and surface equivalent currents in biological tissue subject to fields produced by externally or internally positioned devices. The system is created by using equivalence principles and solved numerically; the resulting current values are used to evaluate scattered and total electric fields, specific absorption rates, and related quantities. The validity, applicability, and efficiency of the ICVSIE are demonstrated by EM analysis of transcranial magnetic stimulation, magnetic resonance imaging, and neuromuscular electrical stimulation. Unlike previous integral equations, the ICVSIE is stable regardless of the electric permittivities of the tissue or frequency of operation, providing an application-agnostic computational framework for EM-biomedical analysis. Use of the general purpose and robust ICVSIE permits streamlining the development, deployment, and safety analysis of EM-biomedical technologies.

  19. Power spectrum analysis for defect screening in integrated circuit devices

    Science.gov (United States)

    Tangyunyong, Paiboon; Cole Jr., Edward I.; Stein, David J.

    2011-12-01

    A device sample is screened for defects using its power spectrum in response to a dynamic stimulus. The device sample receives a time-varying electrical signal. The power spectrum of the device sample is measured at one of the pins of the device sample. A defect in the device sample can be identified based on results of comparing the power spectrum with one or more power spectra of the device that have a known defect status.

  20. Redatuming borehole-to-surface electromagnetic data using Stratton-Chu integral transforms

    DEFF Research Database (Denmark)

    Zhdanov, Michael; Cai, Hongzhu

    2012-01-01

    We present a new method of analyzing borehole-to-surface electromagnetic (BSEM) survey data based on redatuming of the observed data from receivers distributed over the surface of the earth onto virtual receivers located within the subsurface. The virtual receivers can be placed close to the target...... of interest, such as just above a hydrocarbon reservoir, which increases the sensitivity of the EM data to the target. The method is based on the principles of downward analytical continuation of EM fields. We use Stratton-Chu type integral transforms to calculate the EM fields at the virtual receivers. Model...

  1. Electromagnetic reactions of few-body systems with the Lorentz integral transform method

    International Nuclear Information System (INIS)

    Leidemann, W.

    2007-01-01

    Various electromagnetic few-body break-up reactions into the many-body continuum are calculated microscopically with the Lorentz integral transform (LIT) method. For three- and four-body nuclei the nuclear Hamiltonian includes two- and three-nucleon forces, while semirealistic interactions are used in case of six- and seven-body systems. Comparisons with experimental data are discussed. In addition various interesting aspects of the 4 He photodisintegration are studied: investigation of a tetrahedrical symmetry of 4 He and a test of non-local nuclear force models via the induced two-body currents

  2. Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach

    Directory of Open Access Journals (Sweden)

    M. Stumpf

    2017-04-01

    Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.

  3. FLARING BEHAVIOR OF THE QUASAR 3C 454.3 ACROSS THE ELECTROMAGNETIC SPECTRUM

    International Nuclear Information System (INIS)

    Jorstad, Svetlana G.; Marscher, Alan P.; Chatterjee, Ritaban; D'Arcangelo, Francesca D.; Larionov, Valeri M.; Blinov, Dmitry A.; Hagen-Thorn, Vladimir A.; Konstantinova, Tatiana S.; Kopatskaya, Evgenia N.; Agudo, Ivan; Gomez, Jose L.; Smith, Paul S.; Gurwell, Mark; Laehteenmaeki, Anne; Tornikoski, Merja; Markowitz, Alex; Arkharov, Arkadi A.; Falcone, Abe D.; Jordan, Brendan; Kimeridze, Givi N.

    2010-01-01

    We analyze the behavior of the parsec-scale jet of the quasar 3C 454.3 during pronounced flaring in 2005-2008. Three major disturbances propagated down the jet along different trajectories with Lorentz factors Γ > 10. The disturbances show a clear connection with millimeter-wave outbursts, in 2005 May/June, 2007 July, and 2007 December. High-amplitude optical events in the R-band light curve precede peaks of the millimeter-wave outbursts by 15-50 days. Each optical outburst is accompanied by an increase in X-ray activity. We associate the optical outbursts with propagation of the superluminal knots and derive the location of sites of energy dissipation in the form of radiation. The most prominent and long lasting of these, in 2005 May, occurred closer to the black hole, while the outbursts with a shorter duration in 2005 autumn and in 2007 might be connected with the passage of a disturbance through the millimeter-wave core of the jet. The optical outbursts, which coincide with the passage of superluminal radio knots through the core, are accompanied by systematic rotation of the position angle of optical linear polarization. Such rotation appears to be a common feature during the early stages of flares in blazars. We find correlations between optical variations and those at X-ray and γ-ray energies. We conclude that the emergence of a superluminal knot from the core yields a series of optical and high-energy outbursts, and that the millimeter-wave core lies at the end of the jet's acceleration and collimation zone. We infer that the X-ray emission is produced via inverse Compton scattering by relativistic electrons of photons both from within the jet (synchrotron self-Compton) and external to the jet (external Compton, or EC); which one dominates depends on the physical parameters of the jet. A broken power-law model of the γ-ray spectrum reflects a steepening of the synchrotron emission spectrum from near-IR to soft UV wavelengths. We propose that the

  4. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  5. ParaExp Using Leapfrog as Integrator for High-Frequency Electromagnetic Simulations

    Science.gov (United States)

    Merkel, M.; Niyonzima, I.; Schöps, S.

    2017-12-01

    Recently, ParaExp was proposed for the time integration of linear hyperbolic problems. It splits the time interval of interest into subintervals and computes the solution on each subinterval in parallel. The overall solution is decomposed into a particular solution defined on each subinterval with zero initial conditions and a homogeneous solution propagated by the matrix exponential applied to the initial conditions. The efficiency of the method depends on fast approximations of this matrix exponential based on recent results from numerical linear algebra. This paper deals with the application of ParaExp in combination with Leapfrog to electromagnetic wave problems in time domain. Numerical tests are carried out for a simple toy problem and a realistic spiral inductor model discretized by the Finite Integration Technique.

  6. The TIGRESS Integrated Plunger ancillary systems for electromagnetic transition rate studies at TRIUMF

    International Nuclear Information System (INIS)

    Voss, P.; Henderson, R.; Andreoiu, C.; Ashley, R.; Austin, R.A.E.; Ball, G.C.; Bender, P.C.; Bey, A.; Cheeseman, A.; Chester, A.; Cross, D.S.; Drake, T.E.; Garnsworthy, A.B.; Hackman, G.; Holland, R.; Ketelhut, S.; Kowalski, P.; Krücken, R.; Laffoley, A.T.; Leach, K.G.

    2014-01-01

    The TIGRESS Integrated Plunger device is a new experimental tool for nuclear structure investigations via gamma-ray spectroscopy with post-accelerated beams from the ISAC-II facility at TRIUMF. Several ancillary detection systems integral to the device's capabilities for charged-particle tagging and light-ion identification following a variety of nuclear reaction mechanisms have been constructed and characterized. In particular, a silicon PIN diode wall, an annular silicon segmented detector, and a CsI(Tl) scintillator wall have together enabled particle-gamma correlations for reaction channel selectivity and precision kinematic reconstruction in recent measurements. We highlight the construction, characteristics, and implementation of the device's ancillary detectors as they enable a rich set of electromagnetic transition rate measurements via Doppler-shift lifetime techniques and low-energy Coulomb excitation

  7. An Omni-Directional Wall-Climbing Microrobot with Magnetic Wheels Directly Integrated with Electromagnetic Micromotors

    Directory of Open Access Journals (Sweden)

    Xiaoning Tang

    2012-04-01

    Full Text Available This paper presents an omni-directional wall-climbing microrobot with magnetic wheels. The integral design with an actuator and adhesive is realized by integrating stators and rotors of an MEMS-based electromagnetic micromotor with a magnetic wheel. The omni-directional wall-climbing mechanism is designed by a set of steering gears and three standard magnetic wheels. The required torque and magnetic force for microrobot movement are derived by its static analysis. The size of the magnetic wheel is optimized, with consideration of its own design constraints, by ANSOFT and Pro/Engineer simulation so as to reduce unnecessary torque consumption under the same designed load. Related experiments demonstrate that the microrobot (diameter: 26mm; height: 16.4; mass: 7.2g; load capacity: 3g we have developed has a good wall-climbing ability and flexible mobility, and it can perform visual detection in a ferromagnetic environment.

  8. Vibration control of a cable-stayed bridge using electromagnetic induction based sensor integrated MR dampers

    International Nuclear Information System (INIS)

    Cho, Sang Won; Koo, Jeong Hoi; Jo, Ji Seong

    2007-01-01

    This paper presents a novel electromagnetic induction (EMI) system integrated in magneto rheological (MR) dampers: The added EMI system converts reciprocal motions of MR damper into electiral energy (electromotive force or emf) according to the Faraday's law of electromagnetic induction. Maximum energy dissipation algorithm (MEDA) is employed to regulate the MR dampers because it strives to simplify a complex design process by employing the Lyapunov's direct approach. The emf signal, produced from the EMI, provides the necessary measurement information (i.e., realtive velocity across the damper) for the MEDA controller. Thus, the EMI acts as a sensor in the proposed MR-EMI system. In order to evaluate the performance and robustness of the MR-EMI sensor system with the MEDA control, this study performed an extensive simulation study using the first generation benchmark cable-stayed bridge. Moreover, it compared the performance and the robustness of proposed system with those of Clipped-Optimal Control (COC) and Sliding Mode Control (SMC), which were previously studied for the benchmark cable-stayed bridge. The results show that the MR-EMI system reduced the vibrations of the bridge structure more than those of COC and SMC and show more robust performance than that of SMC. These results suggest that EMIs can be used cost-effective sensing devices for MR damper control systems without compromising the performance of them

  9. Using crosscorrelation to mitigate analog/RF impairments for integrated spectrum analyzers

    NARCIS (Netherlands)

    Oude Alink, M.S.; Klumperink, Eric A.M.; Kokkeler, Andre B.J.; Ru, Z.; Cheng, W.; Nauta, Bram

    2013-01-01

    An integrated spectrum analyzer is useful for built-in self-test purposes, software-defined radios, or dynamic spectrum access in cognitive radio. The analog/RF performance is impaired by a number of factors, including thermal noise, phase noise, and nonlinearity. In this paper, we present an

  10. An integrated model for interaction of electromagnetic fields with biological systems

    International Nuclear Information System (INIS)

    Apollonio, F.; Liberti, M.; Cavagnaro, M.; D'Inzeo, G.; Tarricone, L.

    1999-01-01

    In this work is described a methodology for evaluation of interaction of high frequency electromagnetic field. Biological systems via connection of many macroscopic models. In particular the analysis of neuronal membrane exposed to electromagnetic fields [it

  11. Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach

    KAUST Repository

    Uysal, Ismail Enes; Ulku, Huseyin Arda; Bagci, Hakan

    2015-01-01

    Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device

  12. Numerical solution of integral equations, describing mass spectrum of vector mesons

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.

    1988-01-01

    The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data

  13. A discontinuous galerkin time domain-boundary integral method for analyzing transient electromagnetic scattering

    KAUST Repository

    Li, Ping

    2014-07-01

    This paper presents an algorithm hybridizing discontinuous Galerkin time domain (DGTD) method and time domain boundary integral (BI) algorithm for 3-D open region electromagnetic scattering analysis. The computational domain of DGTD is rigorously truncated by analytically evaluating the incoming numerical flux from the outside of the truncation boundary through BI method based on the Huygens\\' principle. The advantages of the proposed method are that it allows the truncation boundary to be conformal to arbitrary (convex/ concave) scattering objects, well-separated scatters can be truncated by their local meshes without losing the physics (such as coupling/multiple scattering) of the problem, thus reducing the total mesh elements. Furthermore, low frequency waves can be efficiently absorbed, and the field outside the truncation domain can be conveniently calculated using the same BI formulation. Numerical examples are benchmarked to demonstrate the accuracy and versatility of the proposed method.

  14. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping; Shi, Yifei; Jiang, Lijun; Bagci, Hakan

    2014-01-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer's shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  15. A hybrid time-domain discontinuous galerkin-boundary integral method for electromagnetic scattering analysis

    KAUST Repository

    Li, Ping

    2014-05-01

    A scheme hybridizing discontinuous Galerkin time-domain (DGTD) and time-domain boundary integral (TDBI) methods for accurately analyzing transient electromagnetic scattering is proposed. Radiation condition is enforced using the numerical flux on the truncation boundary. The fields required by the flux are computed using the TDBI from equivalent currents introduced on a Huygens\\' surface enclosing the scatterer. The hybrid DGTDBI ensures that the radiation condition is mathematically exact and the resulting computation domain is as small as possible since the truncation boundary conforms to scatterer\\'s shape and is located very close to its surface. Locally truncated domains can also be defined around each disconnected scatterer additionally reducing the size of the overall computation domain. Numerical examples demonstrating the accuracy and versatility of the proposed method are presented. © 2014 IEEE.

  16. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    Science.gov (United States)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of

  17. A finite integration method for conformal, structured-grid, electromagnetic simulation

    International Nuclear Information System (INIS)

    Cooke, S.J.; Shtokhamer, R.; Mondelli, A.A.; Levush, B.

    2006-01-01

    We describe a numerical scheme for solving Maxwell's equations in the frequency domain on a conformal, structured, non-orthogonal, multi-block mesh. By considering Maxwell's equations in a volume parameterized by dimensionless curvilinear coordinates, we obtain a set of tensor equations that are a continuum analogue of common circuit equations, and that separate the metrical and metric-free parts of Maxwell's equations and the material constitutive relations. We discretize these equations using a new formulation that treats the electric field and magnetic induction using simple basis-function representations to obtain a discrete form of Faraday's law of induction, but that uses finite integral representations for the displacement current and magnetic field to obtain a discrete form of Ampere's law, as in the finite integration technique [T. Weiland, A discretization method for the solution of Maxwell's equations for six-component fields, Electron. Commun. (AE U) 31 (1977) 116; T. Weiland, Time domain electromagnetic field computation with finite difference methods, Int. J. Numer. Model: Electron. Netw. Dev. Field 9 (1996) 295-319]. We thereby derive new projection operators for the discrete tensor material equations and obtain a compact numerical scheme for the discrete differential operators. This scheme is shown to exhibit significantly reduced numerical dispersion when compared to the standard linear finite element method. We take advantage of the mesh structure on a block-by-block basis to implement these numerical operators efficiently, and achieve computational speed with modest memory requirements when compared to explicit sparse matrix storage. Using the Jacobi-Davidson [G.L.G. Sleijpen, H.A. van der Vorst, A Jacobi-Davidson iteration method for linear eigenvalue problems, SIAM J. Matrix Anal. Appl. 17 (2) (1996) 401-425; S.J. Cooke, B. Levush, Eigenmode solution of 2-D and 3-D electromagnetic cavities containing absorbing materials using the Jacobi

  18. Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    International Nuclear Information System (INIS)

    Contopanagos, Harry

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 μm. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance. (invited paper)

  19. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Sang Won [Hanyang University, Seoul (Korea, Republic of)

    2017-05-15

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  20. Numerical study and design optimization of electromagnetic energy harvesters integrated with flexible magnetic materials

    International Nuclear Information System (INIS)

    Yoon, Sang Won

    2017-01-01

    This study presents a new design of an electromagnetic energy harvester integrated with a soft magnetic material. The harvester design optimizes the magnetic material characteristics and the size of a rectangular permanent magnet. The design employs a complete magnetic circuit made of (1) a thin-film soft magnetic material that facilitates a flexible but highly (magnetically) permeable beam and (2) an optimally-sized magnet that maximizes the harvester performance. The design is demonstrated to reduce magnetic flux leakage, and thus considerably enhances both magnetic flux density (B) and its change by time (dB/dt), which both influence harvester performance. The improvement in harvester performances strongly depends on critical design parameters, especially, the magnet size and characteristics of magnetic materials, including permeability, stiffness, and thickness. The analyses conclude that recently-introduced nanomaterials (having ultrahigh magnetic permeability) can potentially innovate harvester performances. However, the performance may be degraded without design optimization. Once optimized, the integrated nanomaterials facilitate a significant improvement compared with a conventional design without integrated magnetic materials.

  1. Electromagnetic design methods in systems-on-chip: integrated filters for wireless CMOS RFICs

    Energy Technology Data Exchange (ETDEWEB)

    Contopanagos, Harry [Institute for Microelectronics, NCSR ' Demokritos' , PO Box 60228, GR-153 10 Aghia Paraskevi, Athens (Greece)

    2005-01-01

    We present general methods for designing on-chip CMOS passives and utilizing these integrated elements to design on-chip CMOS filters for wireless communications. These methods rely on full-wave electromagnetic numerical calculations that capture all the physics of the underlying foundry technologies. This is especially crucial for deep sub-micron CMOS technologies as it is important to capture the physical effects of finite (and mediocre) Q-factors limited by material losses and constraints on expensive die area, low self-resonance frequencies and dual parasitics that are particularly prevalent in deep sub-micron CMOS processes (65 nm-0.18 {mu}m. We use these integrated elements in an ideal synthesis of a Bluetooth/WLAN pass-band filter in single-ended or differential architectures, and show the significant deviations of the on-chip filter response from the ideal one. We identify which elements in the filter circuit need to maximize their Q-factors and which Q-factors do not affect the filter performance. This saves die area, and predicts the FET parameters (especially transconductances) and negative-resistance FET topologies that have to be integrated in the filter to restore its performance. (invited paper)

  2. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2014-01-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using

  3. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  4. 20070607 NATO Advanced Study Institute on the Electromagnetic Spectrum of Neutron Stars Marmaris, Turkey 07 - 18 Jun 2004 2004 marmaris20040607 TR 20040618

    CERN Document Server

    Baykal, Altan; Inam, Sitki C; Grebenev, Sergei

    2005-01-01

    Neutron stars hold a central place in astrophysics, not only because they are made up of the most extreme states of the condensed matter, but also because they are, along with white dwarfs and black holes, one of the stable configurations that stars reach at the end of stellar evolution. Neutron stars posses the highest rotation rates and strongest magnetic fields among all stars. They radiate prolifically, in high energy electromagnetic radiation and in the radio band. This book is devoted to the selected lectures presented in the 6th NATO-ASI series entitled "The Electromagnetic Spectrum of Neutron Stars" in Marmaris, Turkey, on 7-18 June 2004. This ASI is devoted to the spectral properties of neutron stars. Spectral observations of neutron stars help us to understand the magnetospheric emission processes of isolated radio pulsars and the emission processes of accreting neutron stars. This volume includes spectral information from the neutron stars in broadest sense, namely neutrino and gravitational radiat...

  5. Signal discrimination of ULF electromagnetic data with using singular spectrum analysis – an attempt to detect train noise

    OpenAIRE

    Saito, S.; Kaida, D.; Hattori, K.; Febriani, F.; Yoshino, C.

    2011-01-01

    Electromagnetic phenomena associated with crustal activities have been reported in a wide frequency range (DC-HF). In particular, ULF electromagnetic phenomena are the most promising among them because of the deeper skin depth. However, ULF geoelctromagnetic data are a superposition of signals of different origins. They originated from interactions between the geomagnetic field and the solar wind, leak current by a DC-driven train (train noise), precipitation, and so on. In general, the inten...

  6. A monitor for the laboratory evaluation of control integrity in digital control systems operating in harsh electromagnetic environments

    Science.gov (United States)

    Belcastro, Celeste M.; Fischl, Robert; Kam, Moshe

    1992-01-01

    This paper presents a strategy for dynamically monitoring digital controllers in the laboratory for susceptibility to electromagnetic disturbances that compromise control integrity. The integrity of digital control systems operating in harsh electromagnetic environments can be compromised by upsets caused by induced transient electrical signals. Digital system upset is a functional error mode that involves no component damage, can occur simultaneously in all channels of a redundant control computer, and is software dependent. The motivation for this work is the need to develop tools and techniques that can be used in the laboratory to validate and/or certify critical aircraft controllers operating in electromagnetically adverse environments that result from lightning, high-intensity radiated fields (HIRF), and nuclear electromagnetic pulses (NEMP). The detection strategy presented in this paper provides dynamic monitoring of a given control computer for degraded functional integrity resulting from redundancy management errors, control calculation errors, and control correctness/effectiveness errors. In particular, this paper discusses the use of Kalman filtering, data fusion, and statistical decision theory in monitoring a given digital controller for control calculation errors.

  7. Causal electromagnetic interaction equations

    International Nuclear Information System (INIS)

    Zinoviev, Yury M.

    2011-01-01

    For the electromagnetic interaction of two particles the relativistic causal quantum mechanics equations are proposed. These equations are solved for the case when the second particle moves freely. The initial wave functions are supposed to be smooth and rapidly decreasing at the infinity. This condition is important for the convergence of the integrals similar to the integrals of quantum electrodynamics. We also consider the singular initial wave functions in the particular case when the second particle mass is equal to zero. The discrete energy spectrum of the first particle wave function is defined by the initial wave function of the free-moving second particle. Choosing the initial wave functions of the free-moving second particle it is possible to obtain a practically arbitrary discrete energy spectrum.

  8. Combined Arms in the Electro-Magnetic Spectrum: Integrating Non-kinetic Operations

    Science.gov (United States)

    2013-05-23

    Greene , Robert. The 33 Strategies of War. New York: Penguin, 2007. Halpern, Jason. IP Telephony Security in Depth. Cisco Systems, 2003...Theory of John Boyd. New York, NY: Routledge, 2007. Paiget, J., & Inhelder, B. Memory and Intelligence. London: Routledge and Kegan Paul, 1973. Qiao

  9. Electromagnetic scattering of large structures in layered earths using integral equations

    Science.gov (United States)

    Xiong, Zonghou; Tripp, Alan C.

    1995-07-01

    An electromagnetic scattering algorithm for large conductivity structures in stratified media has been developed and is based on the method of system iteration and spatial symmetry reduction using volume electric integral equations. The method of system iteration divides a structure into many substructures and solves the resulting matrix equation using a block iterative method. The block submatrices usually need to be stored on disk in order to save computer core memory. However, this requires a large disk for large structures. If the body is discretized into equal-size cells it is possible to use the spatial symmetry relations of the Green's functions to regenerate the scattering impedance matrix in each iteration, thus avoiding expensive disk storage. Numerical tests show that the system iteration converges much faster than the conventional point-wise Gauss-Seidel iterative method. The numbers of cells do not significantly affect the rate of convergency. Thus the algorithm effectively reduces the solution of the scattering problem to an order of O(N2), instead of O(N3) as with direct solvers.

  10. Transient analysis of electromagnetic wave interactions on plasmonic nanostructures using a surface integral equation solver

    KAUST Repository

    Uysal, Ismail Enes

    2016-08-09

    Transient electromagnetic interactions on plasmonic nanostructures are analyzed by solving the Poggio-Miller-Chan-Harrington-Wu-Tsai (PMCHWT) surface integral equation (SIE). Equivalent (unknown) electric and magnetic current densities, which are introduced on the surfaces of the nanostructures, are expanded using Rao-Wilton-Glisson and polynomial basis functions in space and time, respectively. Inserting this expansion into the PMCHWT-SIE and Galerkin testing the resulting equation at discrete times yield a system of equations that is solved for the current expansion coefficients by a marching on-in-time (MOT) scheme. The resulting MOT-PMCHWT-SIE solver calls for computation of additional convolutions between the temporal basis function and the plasmonic medium\\'s permittivity and Green function. This computation is carried out with almost no additional cost and without changing the computational complexity of the solver. Time-domain samples of the permittivity and the Green function required by these convolutions are obtained from their frequency-domain samples using a fast relaxed vector fitting algorithm. Numerical results demonstrate the accuracy and applicability of the proposed MOT-PMCHWT solver. © 2016 Optical Society of America.

  11. An electro-magnetic micromachined actuator monolithically integrated with a vertical shutter for variable optical attenuation

    International Nuclear Information System (INIS)

    Hung, Shao Hsuan; Hsieh, Hsin-Ta; John Su, Guo-Dung

    2008-01-01

    The design, fabrication and test results of an electromagnetic-actuated micromachined variable optical attenuator (VOA) are reported in this paper. Optical attenuation is achieved by moving a shutter into the light path between a pair of single mode fiber collimators. The shutter, consisting of a 500 µm × 1200 µm vertical micromirror, is monolithically integrated with an actuation flap. The micromirror was made by tetra-methyl ammonium hydroxide (TMAH) anisotropic wet etching with a sharp edge and a smooth reflecting surface. By arranging fiber collimators in different configurations, the reported VOA can be used as either normally-on or normally-off modes due to its relatively large shutter surface. The insertion loss of the VOA is 0.2 dB and 0.4 dB for normally-on and normally-off modes, respectively. Both optical and mechanical simulation models of the device were discussed, and the theoretical calculations based on these models offered an efficient way to predict the performance of the shutter-type VOA. The controllable attenuation range is approximately 40 dB with a driving voltage less than 0.5 V, and the driving power is less than 2 mW. A response time of 5 ms is achieved by applying proper driving waveform

  12. Electromagnetic Field Analysis of an Electric Dipole Antenna Based on a Surface Integral Equation in Multilayered Dissipative Media

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2017-07-01

    Full Text Available In this paper, a novel method based on the Poggio–Miller–Chang-Harrington–Wu–Tsai (PMCHWT integral equation is presented to study the electromagnetic fields excited by vertical or horizontal electric dipoles in the presence of a layered region which consists of K-layered dissipative media and the air above. To transform the continuous integral equation into a block tridiagonal matrix with the feature of convenient solution, the Rao–Wilton–Glisson (RWG functions are introduced as expansion and testing functions. The electromagnetic fields excited by an electric dipole are calculated and compared with the available results, where the electric dipole antenna is buried in the non-planar air–sea–seabed, air–rock–earth–mine, and multilayered sphere structures. The analysis and computations demonstrate that the method exhibits high accuracy and solving performance in the near field propagation region.

  13. Electromagnetic modeling and characterization of an optically-controlled microwave phase shifterin GaAs integrated technology

    OpenAIRE

    Tripon-Canseliet, C.; Faci, S.; Deshours, F.; Algani, C.; Alquié, G.; Formont, S.; Chazelas, J.

    2005-01-01

    A state of the art of the modeling of microwave photoswitching devices is exposed. A new 3 D electromagnetic modeling allows the design of an optically-controlled microwave phase shifter microwave starting from the traditional circuit of a microwave photoswitch. Measurements of the parameters S of this optically-controlled microwave phase shifter attests the function of this circuit by optical way and highlights the interest of the integration of this new type of microwave phase shifters in ...

  14. Investigation of Near-Field Electromagnetic Source Imaging Using Inverse Green's Function Integrations

    National Research Council Canada - National Science Library

    Steenman, Daryl

    1999-01-01

    .... In the far-field of these tested objects, actual sources of high reflectivity or "Hot Spots" on the tested objects can be isolated to within only one half the wavelength of the electromagnetic wave used for testing...

  15. Optimization of Integrated Electro-Absorption Modulated Laser Structures for 100 Gbit/s Ethernet Using Electromagnetic Simulation

    DEFF Research Database (Denmark)

    Johansen, Tom Keinicke; Kazmierski, Christophe; Jany, Christophe

    2007-01-01

    In this paper three options for very-high bit rate integrated electro-absorption modulated laser (EML) structures are investigated using electromagnetic simulation. A physics based distributed equivalent circuit model taking the slowwave propagation characteristics of the modulation signal...... into account is proposed for the electro-absorption modulator (EAM)electrode arrangement. This model makes it possible to apply an EM/circuit co-simulation approach to estimate the electrical to optical transmission bandwidth for the integrated EML. It is shown that a transmission bandwidth of 70 GHz seems...

  16. Integrated Common Radio Resource Management with Spectrum Aggregation over Non-Contiguous Frequency Bands

    DEFF Research Database (Denmark)

    Cabral, Orlando; Meucci, Filippo; Mihovska, Albena D.

    2011-01-01

    This paper proposes an integrated Common Radio Resource Management (iCRRM). The iCRRM performs classic CRRM functionalities jointly with Spectrum Aggregation (SA), being able to switch users between non-contiguous frequency bands. The SA scheduling is obtained with an optimised General Multi...

  17. Advancing early detection of autism spectrum disorder by applying an integrated two-stage screening approach

    NARCIS (Netherlands)

    Oosterling, Iris J.; Wensing, Michel; Swinkels, Sophie H.; van der Gaag, Rutger Jan; Visser, Janne C.; Woudenberg, Tim; Minderaa, Ruud; Steenhuis, Mark-Peter; Buitelaar, Jan K.

    Background: Few field trials exist on the impact of implementing guidelines for the early detection of autism spectrum disorders (ASD). The aims of the present study were to develop and evaluate a clinically relevant integrated early detection programme based on the two-stage screening approach of

  18. Micro-patterning of resin-bonded NdFeB magnet for a fully integrated electromagnetic actuator

    Science.gov (United States)

    Tao, Kai; Wu, Jin; Kottapalli, Ajay Giri Prakash; Chen, Di; Yang, Zhuoqing; Ding, Guifu; Lye, Sun Woh; Miao, Jianmin

    2017-12-01

    This paper reports a fully-integrated, batch-fabricated electromagnetic actuator which features micro-patterned NdFeB magnets. The entire actuator is fabricated through MEMS-compatible laminated surface micromachining technology, eliminating the requirement for further component assembly processes. The fabrication strategy allowed the entire volume of the actuator to be reduced to a small size of 2.5 × 2.5 × 2 mm3, which is one of the smallest NdFeB-based electromagnetic actuators demonstrated to date. The magnetic properties of NdFeB thin films are further investigated and optimized using different types of lithographically-defined micromolds. By altering the direction of the input current, actuating displacements of approximately ±10 μm are achieved during both the attraction and the repulsion operations. This work demonstrates the viability and compatibility of using polymer-bonded magnets for magnetic MEMS applications.

  19. Battlefield Electromagnetic Environments Office (BEEO)

    Data.gov (United States)

    Federal Laboratory Consortium — The Battlefield Electromagnetic Environments Office (BEEO) develops, maintains, and operates the Army Materiel Command (AMC) databases for spectrum management, per...

  20. Differential and integral comparisons of three representations of the prompt neutron spectrum for the spontaneous fission of 252Cf

    International Nuclear Information System (INIS)

    Madland, D.G.; LaBauve, R.J.; Nix, J.R.

    1984-01-01

    Because of their importance as neutron standards, we present comparisons of measured and calculated prompt fission neutron spectra N(E) and average prompt neutron multiplicities anti nu/sub p/ for the spontaneous fission of 252 Cf. In particular, we test three representations of N(E) against recent experimental measurements of the differential spectrum and threshold integral cross sections. These representations are the Maxwellian spectrum, the NBS spectrum, and the Los Alamos spectrum of Madland and Nix. For the Maxwellian spectrum, we obtain the value of the Maxwellian temperature T/sub M/ by a least-squares adjustment to the experimental differential spectrum of Poenitz and Tamura. For the Los Alamos spectrum, a similar least-squares adjustment determines the nuclear level-density parameter a, which is the single unknown parameter that appears. The NBS spectrum has been previously constructed by adjustments to eight differential spectra measured during the period 1965 to 1974. Among these three representations, we find that the Los Alamos spectrum best reproduces both the differential and integral measurements, assuming ENDF/B-V cross sections in the calculation of the latter. Although the NBS spectrum reproduces the integral measurements fairly well, it fails to satisfactorily reproduce the new differential measurement, and the Maxwellian spectrum fails to satisfactorily reproduce the integral measurements. Additionally, we calculate a value of anti nu/sub p/ from the Los Alamos theory that is within approximately 1% of experiment. 25 references

  1. Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach

    KAUST Repository

    Uysal, Ismail Enes

    2015-10-26

    Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.

  2. Electromagnetic-Thermal Integrated Design Optimization for Hypersonic Vehicle Short-Time Duty PM Brushless DC Motor

    Directory of Open Access Journals (Sweden)

    Quanwu Li

    2016-01-01

    Full Text Available High reliability is required for the permanent magnet brushless DC motor (PM-BLDCM in an electrical pump of hypersonic vehicle. The PM-BLDCM is a short-time duty motor with high-power-density. Since thermal equilibrium is not reached for the PM-BLDCM, the temperature distribution is not uniform and there is a risk of local overheating. The winding is a main heat source and its insulation is thermally sensitive, so reducing the winding temperature rise is the key to the improvement of the reliability. In order to reduce the winding temperature rise, an electromagnetic-thermal integrated design optimization method is proposed. The method is based on electromagnetic analysis and thermal transient analysis. The requirements and constraints of electromagnetic and thermal design are considered in this method. The split ratio and the maximum flux density in stator lamination, which are highly relevant to the windings temperature rise, are optimized analytically. The analytical results are verified by finite element analysis (FEA and experiments. The maximum error between the analytical and the FEA results is 4%. The errors between the analytical and measured windings temperature rise are less than 8%. It can be proved that the method can obtain the optimal design accurately to reduce the winding temperature rise.

  3. Random polyfluorene co-polymers designed for a better optical absorption coverage of the visible region of the electromagnetic spectrum

    Directory of Open Access Journals (Sweden)

    D. A. Gedefaw

    2014-01-01

    Full Text Available Two alternating polyfluorenes (APFO15-F8BT and APFO3-F8BT with full absorption of the visible region of the electromagnetic radiation were designed and synthesized for bulk-heterojunction solar cell devices. The optical and electrochemical properties of the two polymers were studied. The two polymers exhibited strong absorption in the visible region with no significant valley over the visible region extending up to 650 nm. Deep HOMO and ideally situated LUMO energy levels were the characteristics of the two polymers as revealed from the square wave voltammogram study: desired properties for extracting high open circuit voltage and for a facile charge transfer to the acceptor component in devices to take place, respectively. Photovoltaic devices were fabricated by blending the two polymers with PCBM[70] and up to ~2% power conversion efficiency were obtained. DOI: http://dx.doi.org/10.4314/bcse.v28i1.14

  4. Planar Circularly Symmetric Electromagnetic Band-Gap Antennas for Low Cost High Performance Integrated Antennas

    NARCIS (Netherlands)

    Neto, A.; LLombart, N.; Gerini, G.; Maagt, P.J. de

    2009-01-01

    The use of Planar Circularly Symmetric (PCS) Electromagnetic Band-Gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  5. Planar circularly symmetric Electromagnetic Band-Gap antennas for low cost high performance integrated antennas

    NARCIS (Netherlands)

    Neto, A.; Llombart, N.; Gerini, G.; de Maagt, P.J.I.

    2009-01-01

    The use of planar circularly symmetric (PCS) electromagnetic band-gap (EBG) structures for optimizing the performances of single antenna elements and arrays is been discussed. The key advantage of using this sort of super structures is that they are planar and thus very cheap to manufacture with

  6. Direct-drive electromagnetic active suspension system with integrated eddy current damping for automotive applications

    NARCIS (Netherlands)

    Gysen, B.L.J.; Paulides, J.J.H.; Lomonova, E.

    2011-01-01

    A direct-drive electromagnetic active suspension system is considered which consists of a tubular permanent magnet actuator in parallel with a coil spring. This system has the ability of improving the ride comfort while maintaining optimum handling and stability. Since safety is of major concern,

  7. Integrating electromagnetic radiation hazard info the unique occupational risk assessment document

    International Nuclear Information System (INIS)

    Demaret, P.; Donati, P.

    2011-01-01

    The number of industrial applications involving electromagnetic waves has significantly increased in recent years. These applications are likely to expose operators to electromagnetic fields exceeding the limits laid down by European Parliament and Council Directive 2004/40/CE of 29 April 2004. A survey has identified the equipment emitting the most radiation and this has been classified into 8 families: resistance welding, magnetization, induction heating, magneto-scopy, dielectric loss welding, electrolysis, magnetic resonance imagery, microwaves. The equipment numbers per family was estimated by a market surveys, which specifically identified several tens of thousands of resistance welding- or magnetization-type machines. This survey enabled us to deduce that at least 100,000 operators in France would be at risk of exposure to electromagnetic fields. An assessment of exposure levels for operators at their workstations was undertaken for each equipment family. A group comprising specialists from INRS and the 9 CARSAT/CRAM Physical Measurement Centres measured electromagnetic fields at 635 workstations fitted with radiation emitting machinery. For each measurement, a severity index corresponding to the ratio of the measured value to the action-triggering value (ATV) recommended by European Parliament and Council Directive 2004/40/CE of 29 April 2004 was calculated. The results show that, for 7 equipment families out of the 8 retained, 25 - 50% of measurements gave electromagnetic field values exceeding the corresponding ATV. These results demonstrate the need for prevention means. In most cases, exposure reduction is achieved by moving the workstation away from the radiation source. Technical solutions do exist for certain equipments, such as shielding for microwave ovens and high-frequency presses, a grounding pad for tarpaulin welding, etc. (authors)

  8. Direct time integration of Maxwell's equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses

    Science.gov (United States)

    Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen

    1991-01-01

    The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.

  9. Dual-Source Swept-Source Optical Coherence Tomography Reconstructed on Integrated Spectrum

    Directory of Open Access Journals (Sweden)

    Shoude Chang

    2012-01-01

    Full Text Available Dual-source swept-source optical coherence tomography (DS-SSOCT has two individual sources with different central wavelengths, linewidth, and bandwidths. Because of the difference between the two sources, the individually reconstructed tomograms from each source have different aspect ratio, which makes the comparison and integration difficult. We report a method to merge two sets of DS-SSOCT raw data in a common spectrum, on which both data have the same spectrum density and a correct separation. The reconstructed tomographic image can seamlessly integrate the two bands of OCT data together. The final image has higher axial resolution and richer spectroscopic information than any of the individually reconstructed tomography image.

  10. Aluminum nitride integrated photonics platform for the ultraviolet to visible spectrum.

    Science.gov (United States)

    Lu, Tsung-Ju; Fanto, Michael; Choi, Hyeongrak; Thomas, Paul; Steidle, Jeffrey; Mouradian, Sara; Kong, Wei; Zhu, Di; Moon, Hyowon; Berggren, Karl; Kim, Jeehwan; Soltani, Mohammad; Preble, Stefan; Englund, Dirk

    2018-04-30

    We demonstrate a wide-bandgap semiconductor photonics platform based on nanocrystalline aluminum nitride (AlN) on sapphire. This photonics platform guides light at low loss from the ultraviolet (UV) to the visible spectrum. We measure ring resonators with intrinsic quality factor (Q) exceeding 170,000 at 638 nm and Q >20,000 down to 369.5 nm, which shows a promising path for low-loss integrated photonics in UV and visible spectrum. This platform opens up new possibilities in integrated quantum optics with trapped ions or atom-like color centers in solids, as well as classical applications including nonlinear optics and on-chip UV-spectroscopy.

  11. Laboratory and field response of the emerald ash borer (Coleoptera: Buprestidae), to selected regions of the electromagnetic spectrum.

    Science.gov (United States)

    Crook, Damon J; Francese, Joseph A; Zylstra, Kelley E; Fraser, Ivich; Sawyer, Alan J; Bartels, David W; Lance, David R; Mastro, Victor C

    2009-12-01

    Retinal sensitivity of Agrilus planipennis Fairmaire (Coleoptera: Buprestidae) was examined with an aim to improve trap efficacy for the beetle. Electroretinogram (ERG) recordings from dark-adapted compound eyes of male and female were measured at different wavelengths across the spectrum ranging from 300 to 700 nm. The spectral sensitivity curves revealed peaks in the UV (340 nm), the violet/purple (420-430 nm), blue (460 nm), and green (540-560 nm) regions of the spectrum. Females were sensitive to red regions of the spectrum (640-670 nm), whereas males were not. A spectrophotometer was used to measure the wavelength and reflectance for ash foliage, purple corrugated plastic traps, as well as the elytra and abdomen of adult A. planipennis. Traps were painted using colors based on ERG and spectrophotometer measurements and compared with purple corrugated plastic traps currently used by the USDA-APHIS-PPQ-EAB National Survey. In a field assay conducted along the edges of several A. planipennis-infested ash stands, there were no significant differences in trap catch among green, red, or purple treatments. Dark blue traps caught significantly fewer A. planipennis than red, light green, or dark purple traps. In a second assay where purple and green treatments were placed in the mid canopy of ash trees (approximately 13 m in height), trap catch was significantly higher on green treatments. We hypothesize that when placed in the mid-canopy, green traps constitute a foliage-type stimulus that elicits food-seeking and/or host seeking behavior by A. planipennis.

  12. Analysis of transient electromagnetic wave interactions on graphene-based devices using integral equations

    KAUST Repository

    Shi, Yifei

    2015-10-26

    Graphene is a monolayer of carbon atoms structured in the form of a honeycomb lattice. Recent experimental studies have revealed that it can support surface plasmons at Terahertz frequencies thanks to its dispersive conductivity. Additionally, characteristics of these plasmons can be dynamically adjusted via electrostatic gating of the graphene sheet (K. S. Novoselov, et al., Science, 306, 666–669, 2004). These properties suggest that graphene can be a building block for novel electromagnetic and photonic devices for applications in the fields of photovoltaics, bio-chemical sensing, all-optical computing, and flexible electronics. Simulation of electromagnetic interactions on graphene-based devices is not an easy task. The thickness of the graphene sheet is orders of magnitude smaller than any other geometrical dimension of the device. Consequently, discretization of such a device leads to significantly large number of unknowns and/or ill-conditioned matrix systems.

  13. Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan; Yan, Shuoqing; Liu, Weihu [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Feng, Zekun, E-mail: fengzekun@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2016-03-01

    The effect of ferrite particle size on the magnetic spectra (1 MHz to 1 GHz) of NiCuZn polycrystalline ferrites doped with Co{sub 2}O{sub 3} and Bi{sub 2}O{sub 3} were systematically investigated. The experiments indicate that the ferrite particle size tailored by grinding time and corresponding sintering temperatures is crucial to achieving high permeability, high Q-factor and low magnetic loss, at 13.56 MHz for electromagnetic shielding applications especially in the near field communication (NFC) field. It is evident that high-performance NiZnCu ferrite materials are strongly tailored by morphology and microstructure. It is conclusive that fine ferrite particles and relatively low sintering temperatures are favorable to lowering magnetic loss and enhancing permeability. This work has built a foundation for improvement of the ferrite slurry used for fabrication of large area tape-casting ferrite sheets. - Highlights: • Fine particles are favorable to lowering magnetic loss and enhancing permeability.

  14. Effects of four kinds of electromagnetic fields (EMF) with different frequency spectrum bands on ovariectomized osteoporosis in mice.

    Science.gov (United States)

    Lei, Tao; Li, Feijiang; Liang, Zhuowen; Tang, Chi; Xie, Kangning; Wang, Pan; Dong, Xu; Shan, Shuai; Liu, Juan; Xu, Qiaoling; Luo, Erping; Shen, Guanghao

    2017-04-03

    Electromagnetic fields (EMF) was considered as a non-invasive modality for treatment of osteoporosis while the effects were diverse with EMF parameters in time domain. In present study, we extended analysis of EMF characteristics from time domain to frequency domain, aiming to investigate effects of four kinds of EMF (LP (1-100 Hz), BP (100-3,000 Hz), HP (3,000-50,000 Hz) and AP (1-50,000 Hz)) on ovariectomized (OVX) osteoporosis (OP) in mice. Forty-eight 3-month-old female BALB/c mice were equally assigned to Sham, OVX, OVX + LP, OVX + BP, OVX + HP and OVX + AP groups (n = 8). After 8-week exposure (3 h/day), LP and BP significantly increased serum bone formation markers and osteogenesis-related gene expressions compared with OVX. Bedsides, LP and BP also slightly increased bone resorption activity compared with OVX, evidenced by increased RANKL/OPG ratio. HP sharply decreased serum bone formation and resporption markers and osteogenesis and osteoclastogenesis related gene expressions compared with OVX. AP had accumulative effects of LP, BP and HP, which significantly increased bone formation and decreased bone resporption activity compared with OVX. As a result, LP, BP and HP exposure did not later deterioration of bone mass, microarchitecture and mechanical strength in OVX mice with OP. However, AP stimulation attenuated OVX-induced bone loss.

  15. High-frequency acoustic spectrum analyzer based on polymer integrated optics

    Science.gov (United States)

    Yacoubian, Araz

    This dissertation presents an acoustic spectrum analyzer based on nonlinear polymer-integrated optics. The device is used in a scanning heterodyne geometry by zero biasing a Michelson interferometer. It is capable of detecting vibrations from DC to the GHz range. Initial low frequency experiments show that the device is an effective tool for analyzing an acoustic spectrum even in noisy environments. Three generations of integrated sensors are presented, starting with a very lossy (86 dB total insertion loss) initial device that detects vibrations as low as λ/10, and second and third generation improvements with a final device of 44 dB total insertion loss. The sensor was further tested for detecting a pulsed laser-excited vibration and resonances due to the structure of the sample. The data are compared to the acoustic spectrum measured using a low loss passive fiber interferometer detection scheme which utilizes a high speed detector. The peaks present in the passive detection scheme are clearly visible with our sensor data, which have a lower noise floor. Hybrid integration of GHz electronics is also investigated in this dissertation. A voltage controlled oscillator (VCO) is integrated on a polymer device using a new approach. The VCO is shown to operate as specified by the manufacturer, and the RF signal is efficiently launched onto the micro-strip line used for EO modulation. In the future this technology can be used in conjunction with the presented sensor to produce a fully integrated device containing high frequency drive electronics controlled by low DC voltage. Issues related to device fabrication, loss analysis, RF power delivery to drive circuitry, efficient poling of large area samples, and optimizing poling conditions are also discussed throughout the text.

  16. Integrating Electromagnetic Data with Other Geophysical Observations for Enhanced Imaging of the Earth: A Tutorial and Review

    Science.gov (United States)

    Moorkamp, Max

    2017-09-01

    In this review, I discuss the basic principles of joint inversion and constrained inversion approaches and show a few instructive examples of applications of these approaches in the literature. Starting with some basic definitions of the terms joint inversion and constrained inversion, I use a simple three-layered model as a tutorial example that demonstrates the general properties of joint inversion with different coupling methods. In particular, I investigate to which extent combining different geophysical methods can restrict the set of acceptable models and under which circumstances the results can be biased. Some ideas on how to identify such biased results and how negative results can be interpreted conclude the tutorial part. The case studies in the second part have been selected to highlight specific issues such as choosing an appropriate parameter relationship to couple seismic and electromagnetic data and demonstrate the most commonly used approaches, e.g., the cross-gradient constraint and direct parameter coupling. Throughout the discussion, I try to identify topics for future work. Overall, it appears that integrating electromagnetic data with other observations has reached a level of maturity and is starting to move away from fundamental proof-of-concept studies to answering questions about the structure of the subsurface. With a wide selection of coupling methods suited to different geological scenarios, integrated approaches can be applied on all scales and have the potential to deliver new answers to important geological questions.

  17. Integrated electromagnetic (EM) and Electrical Resistivity Tomography (ERT) geophysical studies of environmental impact of Awotan dumpsite in Ibadan, southwestern Nigeria

    Science.gov (United States)

    Osinowo, Olawale Olakunle; Falufosi, Michael Oluseyi; Omiyale, Eniola Oluwatosin

    2018-04-01

    This study attempts to establish the level of contamination caused by the decomposition of wastes by defining the lateral distribution and the vertical limit of leachate induced zone of anomalous conductivity distribution within the subsurface through the analyses of Electromagnetic (EM) and Electrical Resistivity Tomography (ERT) data, generated from the integrated geophysical survey over Awotan landfill dumpsite, in Ibadan, southwest Nigeria. Nine (9) EM and ERT profiles each were established within and around the Awotan landfill site. EM data were acquire at 5 m station interval using 10 m, 20 m and 40 m inter-coil spacings, while ERT stations were occupied at 2 m electrode spacing using dipole-dipole electrode configuration. The near perfect agreement between the two sets of data generated from the EM and ERT surveys over the Awotan landfill site as well as the subsurface imaging ability of these geophysical methods to delineate the region of elevated contamination presented in the form of anomalously high apparent ground conductivity and low subsurface resistivity distribution, suggest the importance of integrating electromagnetic and electrical resistivity investigation techniques for environmental studies and more importantly for selecting appropriate landfill dump site location such with ability to retain the generated contaminants and thus prevent environmental pollution.

  18. Classical electromagnetic radiation

    CERN Document Server

    Heald, Mark A

    2012-01-01

    Newly corrected, this highly acclaimed text is suitable for advanced physics courses. The author presents a very accessible macroscopic view of classical electromagnetics that emphasizes integrating electromagnetic theory with physical optics. The survey follows the historical development of physics, culminating in the use of four-vector relativity to fully integrate electricity with magnetism.

  19. Integration of Semiconducting Sulfides for Full-Spectrum Solar Energy Absorption and Efficient Charge Separation.

    Science.gov (United States)

    Zhuang, Tao-Tao; Liu, Yan; Li, Yi; Zhao, Yuan; Wu, Liang; Jiang, Jun; Yu, Shu-Hong

    2016-05-23

    The full harvest of solar energy by semiconductors requires a material that simultaneously absorbs across the whole solar spectrum and collects photogenerated electrons and holes separately. The stepwise integration of three semiconducting sulfides, namely ZnS, CdS, and Cu2-x S, into a single nanocrystal, led to a unique ternary multi-node sheath ZnS-CdS-Cu2-x S heteronanorod for full-spectrum solar energy absorption. Localized surface plasmon resonance (LSPR) in the nonstoichiometric copper sulfide nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunctions between Cu2-x S and CdS leads to staggered gaps, as confirmed by first-principles simulations. This band alignment causes effective electron-hole separation in the ternary system and hence enables efficient solar energy conversion. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Detection of hepatocarcinoma in rats by integration of the fluorescence spectrum: Experimental model

    Science.gov (United States)

    Marcassa, J. C.; Ferreira, J.; Zucoloto, S.; Castro E Silva, O., Jr.; Marcassa, L. G.; Bagnato, V. S.

    2006-05-01

    The incorporation of spectroscopic techniques into diagnostic procedures may greatly improve the chances for precise diagnostics. One promising technique is fluorescence spectroscopy, which has recently been used to detect many different types of diseases. In this work, we use laser-induced tissue fluorescence to detect hepatocarcinoma in rats using excitation light at wavelengths of 443 and 532 nm. Hepatocarcinoma was induced chemically in Wistar rats. The collected fluorescence spectrum ranges from the excitation wavelength up to 850 nm. A mathematical procedure carried out on the spectrum determines a figure of merit value, which allows the detection of hepatocarcinoma. The figure of merit involves a procedure which evaluates the ratio between the backscattered excitation wavelength and the broad emission fluorescence band. We demonstrate that a normalization allowed by integration of the fluorescence spectra is a simple operation that may allow the detection of hepatocarcinoma.

  1. Re-inventing electromagnetics - Supercomputing solution of Maxwell's equations via direct time integration on space grids

    International Nuclear Information System (INIS)

    Taflove, A.

    1992-01-01

    This paper summarizes the present state and future directions of applying finite-difference and finite-volume time-domain techniques for Maxwell's equations on supercomputers to model complex electromagnetic wave interactions with structures. Applications so far have been dominated by radar cross section technology, but by no means are limited to this area. In fact, the gains we have made place us on the threshold of being able to make tremendous contributions to non-defense electronics and optical technology. Some of the most interesting research in these commercial areas is summarized. 47 refs

  2. Fabrication and electromagnetic interference shielding performance of open-cell foam of a Cu–Ni alloy integrated with CNTs

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Keju; Zhao, Huihui; Zhang, Jun; Chen, Jia; Dai, Zhendong, E-mail: zddai@nuaa.edu.cn

    2014-08-30

    Highlights: • Cu–Ni alloy open-cell foam integrated with CNTs was used for EMI shielding. • The composite was prepared by electroless, electro-, and electrophoretic deposition. • The main shielding mechanism was multiple reflections and absorptions of microwaves. • The composite had a porous structure, large surface area, and inherent permeability. - Abstract: A lightweight multi-layered electromagnetic interference (EMI) shielding material made of open-cell foam of a Cu–Ni alloy integrated with carbon nanotubes (CNTs) was prepared by electroless copper plating, then nickel electroplating, and finally electrophoretic deposition of CNTs. The foamed Cu–Ni–CNT composite comprises, from inside to outside, Cu, Ni, and CNT layers. Scanning electron microscopy, energy dispersive spectroscopy, and EMI tests were employed to characterize the morphology, composition, and EMI performance of the composite, respectively. The results indicated that the shielding effectiveness (SE) of the composite increased with increasing pore density (indicated as pores per inch (PPI)) and increasing thickness. A specimen with a PPI of 110 and a 1.5-mm thickness had a maximum SE of up to 54.6 dB, and a SE as high as 47.5 dB on average in the 8–12 GHz range. Integrating the inherent superiority of Cu, Ni, and CNTs, the porous structure of the composite can attenuate the incident electromagnetic microwaves by reflecting, scattering, and absorbing them between the metallic skeleton and the CNT layer. The multiple reflections and absorptions make it difficult for the microwaves to escape from the composite before being absorbed, thereby making the composite a potential shielding material.

  3. The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum

    Science.gov (United States)

    Margutti, R.; Alexander, K. D.; Xie, X.; Sironi, L.; Metzger, B. D.; Kathirgamaraju, A.; Fong, W.; Blanchard, P. K.; Berger, E.; MacFadyen, A.; Giannios, D.; Guidorzi, C.; Hajela, A.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Nicholl, M.; Villar, V. A.; Williams, P. K. G.; Zrake, J.

    2018-03-01

    We report deep Chandra X-ray Observatory (CXO), Hubble Space Telescope (HST), and Karl J. Jansky Very Large Array (VLA) observations of the binary neutron star event GW170817 at t spectrum extending for eight orders of magnitude in frequency enables the most precise measurement of the index p of the distribution of non-thermal relativistic electrons N(γ )\\propto {γ }-p accelerated by a shock launched by a neutron star (NS)–NS merger to date. We find p = 2.17 ± 0.01, which indicates that radiation from ejecta with Γ ∼ 3–10 dominates the observed emission. While constraining the nature of the emission process, these observations do not constrain the nature of the relativistic ejecta. We employ simulations of explosive outflows launched in NS ejecta clouds to show that the spectral and temporal evolution of the non-thermal emission from GW170817 is consistent with both emission from radially stratified quasi-spherical ejecta traveling at mildly relativistic speeds, and emission from off-axis collimated ejecta characterized by a narrow cone of ultra-relativistic material with slower wings extending to larger angles. In the latter scenario, GW170817 harbored a normal short gamma-ray burst (SGRB) directed away from our line of sight. Observations at t ≤ 200 days are unlikely to settle the debate, as in both scenarios the observed emission is effectively dominated by radiation from mildly relativistic material.

  4. EXTRAPOLATION TECHNIQUES EVALUATING 24 HOURS OF AVERAGE ELECTROMAGNETIC FIELD EMITTED BY RADIO BASE STATION INSTALLATIONS: SPECTRUM ANALYZER MEASUREMENTS OF LTE AND UMTS SIGNALS.

    Science.gov (United States)

    Mossetti, Stefano; de Bartolo, Daniela; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina; Nava, Elisa

    2017-04-01

    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Interaction between pancreatic β cell and electromagnetic fields: A systematic study toward finding the natural frequency spectrum of β cell system.

    Science.gov (United States)

    Farashi, Sajjad

    2017-01-01

    Interaction between biological systems and environmental electric or magnetic fields has gained attention during the past few decades. Although there are a lot of studies that have been conducted for investigating such interaction, the reported results are considerably inconsistent. Besides the complexity of biological systems, the important reason for such inconsistent results may arise due to different excitation protocols that have been applied in different experiments. In order to investigate carefully the way that external electric or magnetic fields interact with a biological system, the parameters of excitation, such as intensity or frequency, should be selected purposefully due to the influence of these parameters on the system response. In this study, pancreatic β cell, the main player of blood glucose regulating system, is considered and the study is focused on finding the natural frequency spectrum of the system using modeling approach. Natural frequencies of a system are important characteristics of the system when external excitation is applied. The result of this study can help researchers to select proper frequency parameter for electrical excitation of β cell system. The results show that there are two distinct frequency ranges for natural frequency of β cell system, which consist of extremely low (or near zero) and 100-750 kHz frequency ranges. There are experimental works on β cell exposure to electromagnetic fields that support such finding.

  6. Extrapolation techniques evaluating 24 hours of average electromagnetic field emitted by radio base station installations: spectrum analyzer measurements of LTE and UMTS signals

    International Nuclear Information System (INIS)

    Mossetti, Stefano; Bartolo, Daniela de; Nava, Elisa; Veronese, Ivan; Cantone, Marie Claire; Cosenza, Cristina

    2017-01-01

    International and national organizations have formulated guidelines establishing limits for occupational and residential electromagnetic field (EMF) exposure at high-frequency fields. Italian legislation fixed 20 V/m as a limit for public protection from exposure to EMFs in the frequency range 0.1 MHz-3 GHz and 6 V/m as a reference level. Recently, the law was changed and the reference level must now be evaluated as the 24-hour average value, instead of the previous highest 6 minutes in a day. The law refers to a technical guide (CEI 211-7/E published in 2013) for the extrapolation techniques that public authorities have to use when assessing exposure for compliance with limits. In this work, we present measurements carried out with a vectorial spectrum analyzer to identify technical critical aspects in these extrapolation techniques, when applied to UMTS and LTE signals. We focused also on finding a good balance between statistically significant values and logistic managements in control activity, as the signal trend in situ is not known. Measurements were repeated several times over several months and for different mobile companies. The outcome presented in this article allowed us to evaluate the reliability of the extrapolation results obtained and to have a starting point for defining operating procedures. (authors)

  7. Emerging Telecommunications Technologies. Hearings on H.R. 707, A Bill To Establish Procedures To Improve the Allocation and Assignment of the Electromagnetic Spectrum, before the Subcommittee on Telecommunications and Finance of the Committee on Energy and Commerce. House of Representatives, One Hundred Third Congress, First Session (February 4 and April 22, 1993).

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Subcommittee on Telecommunications and Finance.

    The testimony responds to H.R. 707, a bill to identify 200 megahertz of electromagnetic spectrum for allocation to private and non-federal government users. The witnesses address how the spectrum can be used to deliver new products and services to all Americans; how additional radio spectrum is needed to keep America competitive; how wireless…

  8. Perceptual Integration Deficits in Autism Spectrum Disorders Are Associated with Reduced Interhemispheric Gamma-Band Coherence.

    Science.gov (United States)

    Peiker, Ina; David, Nicole; Schneider, Till R; Nolte, Guido; Schöttle, Daniel; Engel, Andreas K

    2015-12-16

    The integration of visual details into a holistic percept is essential for object recognition. This integration has been reported as a key deficit in patients with autism spectrum disorders (ASDs). The weak central coherence account posits an altered disposition to integrate features into a coherent whole in ASD. Here, we test the hypothesis that such weak perceptual coherence may be reflected in weak neural coherence across different cortical sites. We recorded magnetoencephalography from 20 adult human participants with ASD and 20 matched controls, who performed a slit-viewing paradigm, in which objects gradually passed behind a vertical or horizontal slit so that only fragments of the object were visible at any given moment. Object recognition thus required perceptual integration over time and, in case of the horizontal slit, also across visual hemifields. ASD participants were selectively impaired in the horizontal slit condition, indicating specific difficulties in long-range synchronization between the hemispheres. Specifically, the ASD group failed to show condition-related enhancement of imaginary coherence between the posterior superior temporal sulci in both hemispheres during horizontal slit-viewing in contrast to controls. Moreover, local synchronization reflected in occipitocerebellar beta-band power was selectively reduced for horizontal compared with vertical slit-viewing in ASD. Furthermore, we found disturbed connectivity between right posterior superior temporal sulcus and left cerebellum. Together, our results suggest that perceptual integration deficits co-occur with specific patterns of abnormal global and local synchronization in ASD. The weak central coherence account proposes a tendency of individuals with autism spectrum disorders (ASDs) to focus on details at the cost of an integrated coherent whole. Here, we provide evidence, at the behavioral and the neural level, that visual integration in object recognition is impaired in ASD, when

  9. Neutron metrology file NMF-90. An integrated database for performing neutron spectrum adjustment calculations

    International Nuclear Information System (INIS)

    Kocherov, N.P.

    1996-01-01

    The Neutron Metrology File NMF-90 is an integrated database for performing neutron spectrum adjustment (unfolding) calculations. It contains 4 different adjustment codes, the dosimetry reaction cross-section library IRDF-90/NMF-G with covariances files, 6 input data sets for reactor benchmark neutron fields and a number of utility codes for processing and plotting the input and output data. The package consists of 9 PC HD diskettes and manuals for the codes. It is distributed by the Nuclear Data Section of the IAEA on request free of charge. About 10 MB of diskspace is needed to install and run a typical reactor neutron dosimetry unfolding problem. (author). 8 refs

  10. Transient analysis of electromagnetic wave interactions on high-contrast scatterers using volume electric field integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2014-07-01

    A marching on-in-time (MOT)-based time domain volume electric field integral equation (TD-VEFIE) solver is proposed for accurate and stable analysis of electromagnetic wave interactions on high-contrast scatterers. The stability is achieved using band-limited but two-sided (non-causal) temporal interpolation functions and an extrapolation scheme to cast the time marching into a causal form. The extrapolation scheme is designed to be highly accurate for oscillating and exponentially decaying fields, hence it accurately captures the physical behavior of the resonant modes that are excited inside the dielectric scatterer. Numerical results demonstrate that the resulting MOT scheme maintains its stability as the number of resonant modes increases with the contrast of the scatterer.

  11. Model structural uncertainty quantification and hydrogeophysical data integration using airborne electromagnetic data (Invited)

    DEFF Research Database (Denmark)

    Minsley, Burke; Christensen, Nikolaj Kruse; Christensen, Steen

    of airborne electromagnetic (AEM) data to estimate large-scale model structural geometry, i.e. the spatial distribution of different lithological units based on assumed or estimated resistivity-lithology relationships, and the uncertainty in those structures given imperfect measurements. Geophysically derived...... estimates of model structural uncertainty are then combined with hydrologic observations to assess the impact of model structural error on hydrologic calibration and prediction errors. Using a synthetic numerical model, we describe a sequential hydrogeophysical approach that: (1) uses Bayesian Markov chain...... Monte Carlo (McMC) methods to produce a robust estimate of uncertainty in electrical resistivity parameter values, (2) combines geophysical parameter uncertainty estimates with borehole observations of lithology to produce probabilistic estimates of model structural uncertainty over the entire AEM...

  12. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    Science.gov (United States)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  13. Integrative Analyses of De Novo Mutations Provide Deeper Biological Insights into Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Atsushi Takata

    2018-01-01

    Full Text Available Recent studies have established important roles of de novo mutations (DNMs in autism spectrum disorders (ASDs. Here, we analyze DNMs in 262 ASD probands of Japanese origin and confirm the “de novo paradigm” of ASDs across ethnicities. Based on this consistency, we combine the lists of damaging DNMs in our and published ASD cohorts (total number of trios, 4,244 and perform integrative bioinformatics analyses. Besides replicating the findings of previous studies, our analyses highlight ATP-binding genes and fetal cerebellar/striatal circuits. Analysis of individual genes identified 61 genes enriched for damaging DNMs, including ten genes for which our dataset now contributes to statistical significance. Screening of compounds altering the expression of genes hit by damaging DNMs reveals a global downregulating effect of valproic acid, a known risk factor for ASDs, whereas cardiac glycosides upregulate these genes. Collectively, our integrative approach provides deeper biological and potential medical insights into ASDs.

  14. Investigation of the influence of the neutron spectrum in determinations of integral cross-section ratios

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.

    1987-11-01

    Ratio measurements are routinely employed in studies of neutron interaction processes in order to generate new differential cross-section data or to test existing differential cross-section information through examination of the corresponding response in integral neutron spectra. Interpretation of such data requires that careful attention be given to details of the neutron spectra involved in these measurements. Two specific tasks are undertaken in the present investigation: (1) Using perturbation theory, a formula is derived which permits one to relate the ratio measured in a realistic quasimonoenergetic spectrum to the desired pure monoenergetic ratio. This expression involves only the lowest-order moments of the neutron energy distribution and corresponding parameters which serve to characterize the energy dependence of the differential cross sections, quantities which can generally be estimated with reasonable precision from the uncorrected data or from auxiliary information. (2) Using covariance methods, a general formalism is developed for calculating the uncertainty of a measured integral cross-section ratio which involves an arbitrary neutron spectrum. This formalism is employed to further examine the conditions which influence the sensitivity of such measured ratios to details of the neutron spectra and to their uncertainties. Several numerical examples are presented in this report in order to illustrate these principles, and some general conclusion are drawn concerning the development and testing of neutron cross-section data by means of ratio experiments. 16 refs., 1 fig., 4 tabs.

  15. The Development and Course of Bipolar Spectrum Disorders: An Integrated Reward and Circadian Rhythm Dysregulation Model

    Science.gov (United States)

    Alloy, Lauren B.; Nusslock, Robin; Boland, Elaine M.

    2014-01-01

    In this article, we present and review the evidence for two major biopsychosocial theories of the onset and course of bipolar spectrum disorders (BSDs) that integrate behavioral, environmental, and neurobiological mechanisms: the reward hypersensitivity and the social and circadian rhythm disruption models. We describe the clinical features, spectrum, age of onset, and course of BSDs. We then discuss research designs relevant to demonstrating whether a hypothesized mechanism represents a correlate, vulnerability, or predictor of the course of BSDs, as well as important methodological issues. We next present the reward hypersensitivity model of BSD, followed by the social/circadian rhythm disruption model of BSD. For each model, we review evidence regarding whether the proposed underlying mechanism is associated with BSDs, provides vulnerability to the onset of BSDs, and predicts the course of BSDs. We then present a new integrated reward/circadian rhythm (RCR) dysregulation model of BSD and discuss how the RCR model explains the symptoms, onset, and course of BSDs. We end with recommendations for future research directions. PMID:25581235

  16. Investigation of the influence of the neutron spectrum in determinations of integral cross-section ratios

    International Nuclear Information System (INIS)

    Smith, D.L.

    1987-11-01

    Ratio measurements are routinely employed in studies of neutron interaction processes in order to generate new differential cross-section data or to test existing differential cross-section information through examination of the corresponding response in integral neutron spectra. Interpretation of such data requires that careful attention be given to details of the neutron spectra involved in these measurements. Two specific tasks are undertaken in the present investigation: (1) Using perturbation theory, a formula is derived which permits one to relate the ratio measured in a realistic quasimonoenergetic spectrum to the desired pure monoenergetic ratio. This expression involves only the lowest-order moments of the neutron energy distribution and corresponding parameters which serve to characterize the energy dependence of the differential cross sections, quantities which can generally be estimated with reasonable precision from the uncorrected data or from auxiliary information. (2) Using covariance methods, a general formalism is developed for calculating the uncertainty of a measured integral cross-section ratio which involves an arbitrary neutron spectrum. This formalism is employed to further examine the conditions which influence the sensitivity of such measured ratios to details of the neutron spectra and to their uncertainties. Several numerical examples are presented in this report in order to illustrate these principles, and some general conclusion are drawn concerning the development and testing of neutron cross-section data by means of ratio experiments. 16 refs., 1 fig., 4 tabs

  17. Electromagnetic modes in cold magnetized strongly coupled plasmas

    OpenAIRE

    Tkachenko, I. M.; Ortner, J.; Rylyuk, V. M.

    1999-01-01

    The spectrum of electromagnetic waves propagating in a strongly coupled magnetized fully ionized hydrogen plasma is found. The ion motion and damping being neglected, the influence of the Coulomb coupling on the electromagnetic spectrum is analyzed.

  18. A Comparison of the Development of Audiovisual Integration in Children with Autism Spectrum Disorders and Typically Developing Children

    Science.gov (United States)

    Taylor, Natalie; Isaac, Claire; Milne, Elizabeth

    2010-01-01

    This study aimed to investigate the development of audiovisual integration in children with Autism Spectrum Disorder (ASD). Audiovisual integration was measured using the McGurk effect in children with ASD aged 7-16 years and typically developing children (control group) matched approximately for age, sex, nonverbal ability and verbal ability.…

  19. Mapping White Matter Integrity and Neurobehavioral Correlates in Children with Fetal Alcohol Spectrum Disorders

    Science.gov (United States)

    Sowell, Elizabeth R.; Johnson, Arianne; Kan, Eric; Lu, Lisa H.; Van Horn, John Darrell; Toga, Arthur W.; O’Connor, Mary J.; Bookheimer, Susan Y.

    2013-01-01

    Brain structural abnormalities and neurocognitive dysfunction have been observed in individuals with fetal alcohol spectrum disorders (FASDs). Little is known about how white matter integrity is related to these functional and morphological deficits. We used a combination of diffusion tensor and T1-weighted magnetic resonance imaging to evaluate white matter integrity in individuals with FASDs and related these findings to neurocognitive deficits. Seventeen children and adolescents with FASDs were compared with 19 typically developing age-and gender-matched controls. Lower fractional anisotropy (FA) was observed in individuals with FASDs relative to controls in the right lateral temporal lobe and bilaterally in the lateral aspects of the splenium of the corpus callosum. White matter density was also lower in some, but not all regions in which FA was lower. FA abnormalities were confirmed to be in areas of white matter in post hoc region of interest analyses, further supporting that less myelin or disorganized fiber tracts are associated with heavy prenatal alcohol exposure. Significant correlations between performance on a test of visuomotor integration and FA in bilateral splenium, but not temporal regions were observed within the FASD group. Correlations between the visuomotor task and FA within the splenium were not significant with in the control group, and were not significant for measures of reading ability. This suggests that this region of white matter is particularly susceptible to damage from prenatal alcohol exposure and that disruption of splenial fibers in this group is associated with poorer visuomotor integration. PMID:18256251

  20. A comparison of response spectrum and direct integration analysis methods as applied to a nuclear component support structure

    International Nuclear Information System (INIS)

    Bryan, B.J.; Flanders, H.E. Jr.

    1992-01-01

    Seismic qualification of Class I nuclear components is accomplished using a variety of analytical methods. This paper compares the results of time history dynamic analyses of a heat exchanger support structure using response spectrum and time history direct integration analysis methods. Dynamic analysis is performed on the detailed component models using the two methods. A nonlinear elastic model is used for both the response spectrum and direct integration methods. A nonlinear model which includes friction and nonlinear springs, is analyzed using time history input by direct integration. The loads from the three cases are compared

  1. External circuit integration with electromagnetic particle in cell modeling of plasma focus devices

    International Nuclear Information System (INIS)

    Seng, Y. S.; Lee, P.; Rawat, R. S.

    2015-01-01

    The pinch performance of a plasma focus (PF) device is sensitive to the physical conditions of the breakdown phase. It is therefore essential to model and study the initial phase in order to optimize device performance. An external circuit is self consistently coupled to the electromagnetic particle in cell code to model the breakdown and initial lift phase of the United Nations University/International Centre for Theoretical Physics (UNU-ICTP) plasma focus device. Gas breakdown during the breakdown phase is simulated successfully, following a drop in the applied voltage across the device and a concurrent substantial rise in the circuit current. As a result, the plasma becomes magnetized, with the growing value of the magnetic field over time leading to the gradual lift off of the well formed current sheath into the axial acceleration phase. This lifting off, with simultaneous outward sheath motion along the anode and vertical cathode, and the strong magnetic fields in the current sheath region, was demonstrated in this work, and hence validates our method of coupling the external circuit to PF devices. Our method produces voltage waveforms that are qualitatively similar to the observed experimental voltage profiles of the UNU-ICTP device. Values of the mean electron energy before and after voltage breakdown turned out to be different, with the values after breakdown being much lower. In both cases, the electron energy density function turned out to be non-Maxwellian

  2. The integrated radio continuum spectrum of M33 - Evidence for free-free absorption by cool ionized gas

    Science.gov (United States)

    Israel, F. P.; Mahoney, M. J.; Howarth, N.

    1992-01-01

    We present measurements of the integrated radio continuum flux density of M33 at frequencies between 22 and 610 MHz and discuss the radio continuum spectrum of M33 between 22 MHz and 10 GHz. This spectrum has a turnover between 500 and 900 MHz, depending on the steepness of the high frequency radio spectrum of M33. Below 500 MHz the spectrum is relatively flat. We discuss possible mechanisms to explain this spectral shape and consider efficient free-free absorption of nonthermal emission by a cool (not greater than 1000 K) ionized gas to be a very likely possibility. The surface filling factor of both the nonthermal and the thermal material appears to be small (of order 0.001), which could be explained by magnetic field/density fluctuations in the M 33 interstellar medium. We briefly speculate on the possible presence of a nuclear radio source with a steep spectrum.

  3. 3-D electromagnetic modeling for very early time sounding of shallow targets using integral equations

    International Nuclear Information System (INIS)

    Xiong, Z.; Tripp, A.C.

    1994-01-01

    This paper presents an integral equation algorithm for 3D EM modeling at high frequencies for applications in engineering an environmental studies. The integral equation method remains the same for low and high frequencies, but the dominant roles of the displacements currents complicate both numerical treatments and interpretations. With singularity extraction technique they successively extended the application of the Hankel filtering technique to the computation of Hankel integrals occurring in high frequency EM modeling. Time domain results are calculated from frequency domain results via Fourier transforms. While frequency domain data are not obvious for interpretations, time domain data show wave-like pictures that resemble seismograms. Both 1D and 3D numerical results show clearly the layer interfaces

  4. Engineering Electromagnetics

    International Nuclear Information System (INIS)

    Kim, Se Yun

    2009-01-01

    This book deals with engineering electromagnetics. It contains seven chapters, which treats understanding of engineering electromagnetics such as magnet and electron spin, current and a magnetic field and an electromagnetic wave, Essential tool for engineering electromagnetics on rector and scalar, rectangular coordinate system and curl vector, electrostatic field with coulomb rule and method of electric images, Biot-Savart law, Ampere law and magnetic force, Maxwell equation and an electromagnetic wave and reflection and penetration of electromagnetic plane wave.

  5. Autism spectrum disorders: Integration of the genome, transcriptome and the environment.

    Science.gov (United States)

    Vijayakumar, N Thushara; Judy, M V

    2016-05-15

    Autism spectrum disorders denote a series of lifelong neurodevelopmental conditions characterized by an impaired social communication profile and often repetitive, stereotyped behavior. Recent years have seen the complex genetic architecture of the disease being progressively unraveled with advancements in gene finding technology and next generation sequencing methods. However, a complete elucidation of the molecular mechanisms behind autism is necessary for potential diagnostic and therapeutic applications. A multidisciplinary approach should be adopted where the focus is not only on the 'genetics' of autism but also on the combinational roles of epigenetics, transcriptomics, immune system disruption and environmental factors that could all influence the etiopathogenesis of the disease. ASD is a clinically heterogeneous disorder with great genetic complexity; only through an integrated multidimensional effort can modern autism research progress further. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Comunicação, vigilância e infraestrutura: tecnopolíticas do espectro eletromagnético | Communication, surveillance and infrastructure: techno-politics of the electromagnetic spectrum

    Directory of Open Access Journals (Sweden)

    Adriano Belisário

    2016-11-01

    Full Text Available RESUMO Este trabalho analisa algumas dinâmicas técnicas e políticas em torno dos usos e aplicações do espectro eletromagnético. Argumentando que a vigilância é parte intrínseca do desenvolvimento de certo modelo e arquitetura tecnológica em um nível infraestrutural, exploramos conceitos e práticas que buscam novas perspectivas de entendimento e ação dentro dessa camada essencial para os processos de comunicação que é o espectro. Iniciamos apresentando o espectro radioelétrico e seu gerenciamento para em seguida debater a noção de “espectro aberto” e seus usos mais recentes. Ao final, apresentamos exemplos que ilustram concepções alternativas técnicas e políticas por meio da noção de “espectro livre”. Palavras-Chave: Vigilância; Comunicação; Rádio; Espectro Eletromagnético; Tecnologia. ABSTRACT This paper examines technical and political dynamics around the uses and applications of the electromagnetic spectrum. Arguing that surveillance is an intrinsic part of the development of a certain technological model and architecture at an infrastructural level, we explore concepts and practices that seek new prospects for understanding and acting in this essential layer for communication processes that is the spectrum. We begin presenting the radio spectrum and its management to then discuss the notion of 'open spectrum' and its most recent uses. At the end, we present examples that illustrate alternative technical and political conceptions by means of the notion of a "free spectrum". Keywords: Surveillance; Communication; Radio, Electromagnetic Spectrum; Technology.

  7. The electromagnetic spectrum : an overview

    International Nuclear Information System (INIS)

    Major, G.

    1988-01-01

    Ionizing and non-ionizing radiations should be practically non-issues for Australian occupational health and safety professionals but the person who ignores them does so at his or her risk. The prophets of doom will ensure that ionizing and non-ionizing radiation stay on the agenda for a least another generation and occupational health and safety advisers will need to remain well informed on the subject so that they will be competent to reassure over-anxious employees and employers alike

  8. Integration of electromagnetic induction sensor data in soil sampling scheme optimization using simulated annealing.

    Science.gov (United States)

    Barca, E; Castrignanò, A; Buttafuoco, G; De Benedetto, D; Passarella, G

    2015-07-01

    Soil survey is generally time-consuming, labor-intensive, and costly. Optimization of sampling scheme allows one to reduce the number of sampling points without decreasing or even increasing the accuracy of investigated attribute. Maps of bulk soil electrical conductivity (EC a ) recorded with electromagnetic induction (EMI) sensors could be effectively used to direct soil sampling design for assessing spatial variability of soil moisture. A protocol, using a field-scale bulk EC a survey, has been applied in an agricultural field in Apulia region (southeastern Italy). Spatial simulated annealing was used as a method to optimize spatial soil sampling scheme taking into account sampling constraints, field boundaries, and preliminary observations. Three optimization criteria were used. the first criterion (minimization of mean of the shortest distances, MMSD) optimizes the spreading of the point observations over the entire field by minimizing the expectation of the distance between an arbitrarily chosen point and its nearest observation; the second criterion (minimization of weighted mean of the shortest distances, MWMSD) is a weighted version of the MMSD, which uses the digital gradient of the grid EC a data as weighting function; and the third criterion (mean of average ordinary kriging variance, MAOKV) minimizes mean kriging estimation variance of the target variable. The last criterion utilizes the variogram model of soil water content estimated in a previous trial. The procedures, or a combination of them, were tested and compared in a real case. Simulated annealing was implemented by the software MSANOS able to define or redesign any sampling scheme by increasing or decreasing the original sampling locations. The output consists of the computed sampling scheme, the convergence time, and the cooling law, which can be an invaluable support to the process of sampling design. The proposed approach has found the optimal solution in a reasonable computation time. The

  9. Experimental Study of WBFC method for testing electromagnetic immunity of integrated circuits

    OpenAIRE

    香川, 直己; カガワ, ナオキ; Naoki, KAGAWA

    2004-01-01

    The author made a workbench faraday cage, WBFC, in order to estimate performance of the WBFC method for the measurement of common mode noise immunity of integrated circuits. In this report, characteristics of the constructed workbench faraday cage and results of experimental study of effects of the common mode noise on a circuit board including an electronic device are shown. Selected DUT, LM324 is popular operational amplifier for electrical circuits in vehicles.

  10. Protected string spectrum in AdS{sub 3}/CFT{sub 2} from worldsheet integrability

    Energy Technology Data Exchange (ETDEWEB)

    Baggio, Marco [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Sax, Olof Ohlsson [Nordita, Stockholm University and KTH Royal Institute of Technology,Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden); Sfondrini, Alessandro [Institut für Theoretische Physik, ETH Zürich,Wolfgang-Pauli-Str. 27, 8093 Zürich (Switzerland); Stefański, Bogdan Jr. [Centre for Mathematical Science, City, University of London,Northampton Square, EC1V 0HB London (United Kingdom); Torrielli, Alessandro [Department of Mathematics, University of Surrey,Guildford, GU2 7XH (United Kingdom)

    2017-04-14

    We derive the protected closed-string spectra of AdS{sub 3}/CFT{sub 2} dual pairs with 16 supercharges at arbitrary values of the string tension and of the three-form fluxes. These follow immediately from the all-loop Bethe equations for the spectra of the integrable worldsheet theories. Further, representing the underlying integrable systems as spin chains, we find that their dynamics involves length-changing interactions and that protected states correspond to gapless excitations above the Berenstein-Maldacena-Nastase vacuum. In the case of AdS{sub 3}×S{sup 3}×T{sup 4} the degeneracies of such operators precisely match those of the dual CFT{sub 2} and the supergravity spectrum. On the other hand, we find that for AdS{sub 3}×S{sup 3}×S{sup 3}×S{sup 1} there are fewer protected states than previous supergravity calculations had suggested. In particular, protected states have the same su(2) charge with respect to the two three-spheres.

  11. Electromagnetic Waves

    DEFF Research Database (Denmark)

    This book is dedicated to various aspects of electromagnetic wave theory and its applications in science and technology. The covered topics include the fundamental physics of electromagnetic waves, theory of electromagnetic wave propagation and scattering, methods of computational analysis......, material characterization, electromagnetic properties of plasma, analysis and applications of periodic structures and waveguide components, etc....

  12. A fast-multipole domain decomposition integral equation solver for characterizing electromagnetic wave propagation in mine environments

    KAUST Repository

    Yücel, Abdulkadir C.

    2013-07-01

    Reliable and effective wireless communication and tracking systems in mine environments are key to ensure miners\\' productivity and safety during routine operations and catastrophic events. The design of such systems greatly benefits from simulation tools capable of analyzing electromagnetic (EM) wave propagation in long mine tunnels and large mine galleries. Existing simulation tools for analyzing EM wave propagation in such environments employ modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), and full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of miners and their equipments, as well as wall roughness (especially when the latter is comparable to the wavelength). Full-wave methods do not suffer from such restrictions but require prohibitively large computational resources. To partially alleviate this computational burden, a 2D integral equation-based domain decomposition technique has recently been proposed (Bakir et. al., in Proc. IEEE Int. Symp. APS, 1-2, 8-14 July 2012). © 2013 IEEE.

  13. Emerging Telecommunications Technologies (Part 2). Hearing before the Subcommittee on Telecommunications and Finance of the Committee on Energy and Commerce on H.R. 1407, a Bill To Establish Procedures To Improve the Allocation and Assignment to the Electromagnetic Spectrum. House of Representatives, One Hundred Second Congress, First Session.

    Science.gov (United States)

    Congress of the U.S., Washington, DC. House Committee on Energy and Commerce.

    A discussion of H.R. 1407, a bill to establish procedures to improve the allocation and assignment to the electromagnetic spectrum centered on the current policy of allocating portions of the spectrum through lotteries and auction. This report includes a copy of the bill, the text of testimony presented and materials submitted for the record, and…

  14. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  15. Integration of infrared thermography and high-frequency electromagnetic methods in archaeological surveys

    International Nuclear Information System (INIS)

    Carlomagno, Giovanni Maria; Meola, Carosena; Di Maio, Rosa; Fedi, Maurizio

    2011-01-01

    This work is focused on the integration of infrared thermography and ground penetrating radar for the inspection of architectonic structures. First, laboratory tests were carried out with both techniques by considering an ad hoc specimen made of concrete and with the insertion of anomalies of a different nature and at different depths. Such tests provided helpful information for ongoing inspections in situ, which were later performed in two important Italian archaeological sites, namely Pompeii (Naples) and Nora (Cagliari). In the first site, the exploration was devoted to the analysis of the wall paintings of Villa Imperiale with the aim of evaluating the state of conservation of frescoes as well of the underneath masonry structure. As main findings, the applied techniques allowed outlining some areas, which were damaged by ingression in-depth of moisture and/or by disaggregation of the constituent materials, and also for recognition of previous restoration. In the archaeological area of Nora, instead, the attention was driven towards the evaluation of the state of degradation of the theatre remnants. Our prospections show that the front side of the theatre, being more strongly affected by degradation, needs a massive restoration work. As a general result, we demonstrated that a joint interpretation of infrared thermography and ground penetrating radar data supplies detailed 3D information from near-surface to deep layers, which may assist in restoration planning

  16. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder.

    Science.gov (United States)

    Andrews, Shan V; Ellis, Shannon E; Bakulski, Kelly M; Sheppard, Brooke; Croen, Lisa A; Hertz-Picciotto, Irva; Newschaffer, Craig J; Feinberg, Andrew P; Arking, Dan E; Ladd-Acosta, Christine; Fallin, M Daniele

    2017-10-24

    Integration of emerging epigenetic information with autism spectrum disorder (ASD) genetic results may elucidate functional insights not possible via either type of information in isolation. Here we use the genotype and DNA methylation (DNAm) data from cord blood and peripheral blood to identify SNPs associated with DNA methylation (meQTL lists). Additionally, we use publicly available fetal brain and lung meQTL lists to assess enrichment of ASD GWAS results for tissue-specific meQTLs. ASD-associated SNPs are enriched for fetal brain (OR = 3.55; P < 0.001) and peripheral blood meQTLs (OR = 1.58; P < 0.001). The CpG targets of ASD meQTLs across cord, blood, and brain tissues are enriched for immune-related pathways, consistent with other expression and DNAm results in ASD, and reveal pathways not implicated by genetic findings. This joint analysis of genotype and DNAm demonstrates the potential of both brain and blood-based DNAm for insights into ASD and psychiatric phenotypes more broadly.

  17. [Determination of Bloodstain Age by UV Visible Integrating Sphere Reflection Spectrum].

    Science.gov (United States)

    Yan, L Q; Gao, Y

    2016-10-01

    To establish a method for rapid identification of bloodstain age. Under laboratory conditions (20 ℃, 25 ℃ and 30 ℃), an integrating sphere ISR-240A was used as a reflection accessory on an UV-2450 UV-vis spectrophotometer, and a standard white board of BaSO₄ was used as reference, the reflection spectrums of bloodstain from human ears' venous blood were measured at regular intervals. The reflection radios R ₅₄₁ and R ₅₇₇ at a specific wavelength were collected and the value of R ₅₄₁/ R ₅₇₇ was calculated. The linear fitting and regression analysis were done by SPSS 17.0. The results of regression analysis showed that R ² of the ratios of bloodstain age to UV visible reflectivity in specific wavelengths were larger than 0.8 within 8 hours and under certain circumstances. The regression equation was established. The bloodstain age had significant correlation with the value of R ₅₄₁/ R ₅₇₇. The method of inspection is simple, rapid and nondestructive with a good reliability, and can be used to identify the bloodstain age within 8 hours elapsed-time standards under laboratory conditions. Copyright© by the Editorial Department of Journal of Forensic Medicine

  18. Sensory Integration Training Tool Design for Children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Jiang Lijun

    2017-01-01

    Full Text Available This study aims to design a training tool for therapy of children with autism spectrum disorder (ASDs. Typically, ASDs pass through obstacle track several times with sandbags, which should be picked up from starting point and threw into a box at the end during sensory integration therapy. Counting the sandbags can help ASDs to have concept about the progress of mission. We redesign the counting box named “Skybox” which can help counting by playing sound after detect something throw in it. Aims to probe into the sound preference of two main subjects, an experiment with four kinds of sounds is conducted in this paper by using the method of paired comparisons. The result shows they like animals most, followed by human voice and nature sounds, and music instrument is the last. The material preference experiment shows two subjects like acrylic most, wood and paper are secondary while furry is the last. Skybox shortens their training time for 23.53%, 29.87% and 37.37% in three different projects. We consider that Skybox attracts ASDs therefore reduces their distraction and improves their performance in the usability test.

  19. Integration of auto analysis program of gamma spectrum and software and determination of element content in sample by k-zero method

    International Nuclear Information System (INIS)

    Trinh Quang Vinh; Truong Thi Hong Loan; Mai Van Nhon; Huynh Truc Phuong

    2014-01-01

    Integrating the gamma spectrum auto-analysis program with elemental analysis software by k-zero method is the objective for many researchers. This work is the first stepin building an auto analysis program of gamma spectrum, which includes modules of reading spectrum, displaying spectrum, calibrating energy of peak, smoothing spectrum, calculating peak area and determining content of elements in sample. Then, the results from the measurements of standard samples by a low level spectrometer using HPGe detector are compared to those of other gamma spectrum auto-analysis programs. (author)

  20. Integrated DNA walking system to characterize a broad spectrum of GMOs in food/feed matrices.

    Science.gov (United States)

    Fraiture, Marie-Alice; Herman, Philippe; Lefèvre, Loic; Taverniers, Isabel; De Loose, Marc; Deforce, Dieter; Roosens, Nancy H

    2015-08-14

    In order to provide a system fully integrated with qPCR screening, usually used in GMO routine analysis, as well as being able to detect, characterize and identify a broad spectrum of GMOs in food/feed matrices, two bidirectional DNA walking methods targeting p35S or tNOS, the most common transgenic elements found in GM crops, were developed. These newly developed DNA walking methods are completing the previously implemented DNA walking method targeting the t35S pCAMBIA element. Food/feed matrices containing transgenic crops (Bt rice or MON863 maize) were analysed using the integrated DNA walking system. First, the newly developed DNA walking methods, anchored on the sequences used for the p35S or tNOS qPCR screening, were tested on Bt rice that contains these two transgenic elements. Second, the methods were assessed on a maize sample containing a low amount of the GM MON863 event, representing a more complex matrix in terms of genome size and sensitivity. Finally, to illustrate its applicability in GMO routine analysis by enforcement laboratories, the entire workflow of the integrated strategy, including qPCR screening to detect the potential presence of GMOs and the subsequent DNA walking methods to characterize and identify the detected GMOs, was applied on a GeMMA Scheme Proficiency Test matrix. Via the characterization of the transgene flanking region between the transgenic cassette and the plant genome as well as of a part of the transgenic cassette, the presence of GMOs was properly confirmed or infirmed in all tested samples. Due to their simple procedure and their short time-frame to get results, the developed DNA walking methods proposed here can be easily implemented in GMO routine analysis by the enforcement laboratories. In providing crucial information about the transgene flanking regions and/or the transgenic cassettes, this DNA walking strategy is a key molecular tool to prove the presence of GMOs in any given food/feed matrix.

  1. Nonlinear surface electromagnetic phenomena

    CERN Document Server

    Ponath, H-E

    1991-01-01

    In recent years the physics of electromagnetic surface phenomena has developed rapidly, evolving into technologies for communications and industry, such as fiber and integrated optics. The variety of phenomena based on electromagnetism at surfaces is rich and this book was written with the aim of summarizing the available knowledge in selected areas of the field. The book contains reviews written by solid state and optical physicists on the nonlinear interaction of electromagnetic waves at and with surfaces and films. Both the physical phenomena and some potential applications are

  2. Integrated analysis of whole-exome sequencing and transcriptome profiling in males with autism spectrum disorders.

    Science.gov (United States)

    Codina-Solà, Marta; Rodríguez-Santiago, Benjamín; Homs, Aïda; Santoyo, Javier; Rigau, Maria; Aznar-Laín, Gemma; Del Campo, Miguel; Gener, Blanca; Gabau, Elisabeth; Botella, María Pilar; Gutiérrez-Arumí, Armand; Antiñolo, Guillermo; Pérez-Jurado, Luis Alberto; Cuscó, Ivon

    2015-01-01

    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders with high heritability. Recent findings support a highly heterogeneous and complex genetic etiology including rare de novo and inherited mutations or chromosomal rearrangements as well as double or multiple hits. We performed whole-exome sequencing (WES) and blood cell transcriptome by RNAseq in a subset of male patients with idiopathic ASD (n = 36) in order to identify causative genes, transcriptomic alterations, and susceptibility variants. We detected likely monogenic causes in seven cases: five de novo (SCN2A, MED13L, KCNV1, CUL3, and PTEN) and two inherited X-linked variants (MAOA and CDKL5). Transcriptomic analyses allowed the identification of intronic causative mutations missed by the usual filtering of WES and revealed functional consequences of some rare mutations. These included aberrant transcripts (PTEN, POLR3C), deregulated expression in 1.7% of mutated genes (that is, SEMA6B, MECP2, ANK3, CREBBP), allele-specific expression (FUS, MTOR, TAF1C), and non-sense-mediated decay (RIT1, ALG9). The analysis of rare inherited variants showed enrichment in relevant pathways such as the PI3K-Akt signaling and the axon guidance. Integrative analysis of WES and blood RNAseq data has proven to be an efficient strategy to identify likely monogenic forms of ASD (19% in our cohort), as well as additional rare inherited mutations that can contribute to ASD risk in a multifactorial manner. Blood transcriptomic data, besides validating 88% of expressed variants, allowed the identification of missed intronic mutations and revealed functional correlations of genetic variants, including changes in splicing, expression levels, and allelic expression.

  3. Electromagnetic Fields Exposure Limits

    Science.gov (United States)

    2018-01-01

    Mr. T.P. (Tjerk) KUIPERS Senior Adviser Health Physics Military Healthcare & Occupational Health Expertise Co-ordination Centre Support...Test of Biological Integrity in Dogs Exposed to an Electromagnetic Pulse Environment”, Health Physics 36:159-165, 1979. [11] Baum, S.J., Ekstrom, M.E...Electromagnetic Radiation”, Health Physics 30:161-166, 1976. [12] Baum, S., Skidmore, W. and Ekstrom, M., “Continuous Exposure of Rodents to 108 Pulses

  4. Electromagnetic cellular interactions.

    Science.gov (United States)

    Cifra, Michal; Fields, Jeremy Z; Farhadi, Ashkan

    2011-05-01

    Chemical and electrical interaction within and between cells is well established. Just the opposite is true about cellular interactions via other physical fields. The most probable candidate for an other form of cellular interaction is the electromagnetic field. We review theories and experiments on how cells can generate and detect electromagnetic fields generally, and if the cell-generated electromagnetic field can mediate cellular interactions. We do not limit here ourselves to specialized electro-excitable cells. Rather we describe physical processes that are of a more general nature and probably present in almost every type of living cell. The spectral range included is broad; from kHz to the visible part of the electromagnetic spectrum. We show that there is a rather large number of theories on how cells can generate and detect electromagnetic fields and discuss experimental evidence on electromagnetic cellular interactions in the modern scientific literature. Although small, it is continuously accumulating. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Method of moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2007-01-01

    Responding to the need for a clear, up-to-date introduction to the field, The Method of Moments in Electromagnetics explores surface integral equations in electromagnetics and presents their numerical solution using the method of moments (MOM) technique. It provides the numerical implementation aspects at a nuts-and-bolts level while discussing integral equations and electromagnetic theory at a higher level. The author covers a range of topics in this area, from the initial underpinnings of the MOM to its current applications. He first reviews the frequency-domain electromagnetic theory and t

  6. Combined Approach for Solving the Electromagnetic Induction ...

    African Journals Online (AJOL)

    Nafiisah

    boundary. For example, in electromagnetic induction imaging, it is the magnetic ... Applications of electromagnetic .... The first integral is referred to as a single layer potential and is continuous across ..... Scattering Theory, 2nd ed., Springer.

  7. Regular-chaos transition of the energy spectrum and electromagnetic transition intensities in 44V nucleus using the framework of the nuclear shell model

    International Nuclear Information System (INIS)

    Hamoudi, A.K.; Abdul Majeed Al-Rahmani, A.

    2012-01-01

    The spectral fluctuations and the statistics of electromagnetic transition intensities and electromagnetic moments in 44 V nucleus are studied by the framework of the interacting shell model, using the FPD6 as a realistic effective interaction in the isospin formalism for 4 particles move in the fp-model space with a 40 Ca core. To look for a regular-chaos transition in 44 V nucleus, we perform shell model calculations using various interaction strengths β to the off-diagonal matrix elements of the FPD6. The nearest-neighbors level spacing distribution P(s) and the distribution of electromagnetic transition intensities [such as, B(M1) and B(E2) transitions] are found to have a regular dynamic at β=0, a chaotic dynamic at β⩾0.3 and an intermediate situation at 0 3 statistic we have found a regular dynamic at β=0, a chaotic dynamic at β⩾0.4 and an intermediate situation at 0<β<0.4. It is also found that the statistics of the squares of M1 and E2 moments, which are consistent with a Porter-Thomas distribution, have no dependence on the interaction strength β.

  8. Metamaterial electromagnetic wave absorbers.

    Science.gov (United States)

    Watts, Claire M; Liu, Xianliang; Padilla, Willie J

    2012-06-19

    The advent of negative index materials has spawned extensive research into metamaterials over the past decade. Metamaterials are attractive not only for their exotic electromagnetic properties, but also their promise for applications. A particular branch-the metamaterial perfect absorber (MPA)-has garnered interest due to the fact that it can achieve unity absorptivity of electromagnetic waves. Since its first experimental demonstration in 2008, the MPA has progressed significantly with designs shown across the electromagnetic spectrum, from microwave to optical. In this Progress Report we give an overview of the field and discuss a selection of examples and related applications. The ability of the MPA to exhibit extreme performance flexibility will be discussed and the theory underlying their operation and limitations will be established. Insight is given into what we can expect from this rapidly expanding field and future challenges will be addressed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Simulation of electron, positron and Bremsstrahlung spectrum generated due to electromagnetic cascade by 2.5 GeV electron hitting lead target using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Haridas, G.; Thakkar, K.K.; Singh, Gurnam; Sarkar, P.K.; Sharma, D.N.

    2009-01-01

    INDUS-2 is a high energy electron accelerator facility where electrons are accelerated in circular ring up to maximum energy 2.5 GeV, to generate synchrotron radiation. During normal operation of the machine a fraction of these electrons is lost, which interact with the accelerator structures and components like vacuum chamber and residual gases in the cavity and hence generates significant amount of Bremsstrahlung radiation. The Bremsstrahlung radiation is highly dependent on the incident electron energy, target material and its thickness. The Bremsstrahlung radiation dominates the radiation environment in such electron storage rings. Because of its broad spectrum extending up to incident electron energy and pulsed nature, it is very difficult to segregate the Bremsstrahlung component from the mixed field environment in accelerators. With the help of FLUKA Monte Carlo code, Bremsstrahlung spectrum generated from 2.5 GeV electron on bombardment of high Z lead target is simulated. To study the variation in Bremsstrahlung spectrum on target thickness, lead targets of 3, 6, 9, 12, 15, 18 mm thickness was used. The energy spectrum of emerging electron and positron is also simulated. The study suggests that as the target thickness increases, the emergent Bremsstrahlung photon fluence increases. With increase in the target thickness Bremsstrahlung photons in the spectrum dominate the low energy part and degrade in high energy part. The electron and positron spectra also extend up to incident electron energy. (author)

  10. Integrating surface and borehole geophysics in ground water studies - an example using electromagnetic soundings in south Florida

    Science.gov (United States)

    Paillet, Frederick; Hite, Laura; Carlson, Matthew

    1999-01-01

    Time domain surface electromagnetic soundings, borehole induction logs, and other borehole logging techniques are used to construct a realistic model for the shallow subsurface hydraulic properties of unconsolidated sediments in south Florida. Induction logs are used to calibrate surface induction soundings in units of pore water salinity by correlating water sample specific electrical conductivity with the electrical conductivity of the formation over the sampled interval for a two‐layered aquifer model. Geophysical logs are also used to show that a constant conductivity layer model is appropriate for the south Florida study. Several physically independent log measurements are used to quantify the dependence of formation electrical conductivity on such parameters as salinity, permeability, and clay mineral fraction. The combined interpretation of electromagnetic soundings and induction logs was verified by logging three validation boreholes, confirming quantitative estimates of formation conductivity and thickness in the upper model layer, and qualitative estimates of conductivity in the lower model layer.

  11. SAS Enterprise Data Integration Server - A Complete Solution Designed To Meet the Full Spectrum of Enterprise Data Integration Needs

    Directory of Open Access Journals (Sweden)

    Silvia BOLOHAN

    2012-05-01

    Full Text Available This paper is about why is Data Integration important for organisations around the world. Organizations struggle daily with the challenges of large distributed data volumes, inconsistently defined data across disparate systems and the high expectations of data consumers who depend on information to be correct, complete and available when they need it. SAS Enterprise Data Integration Server provides a comprehensive solution that enables organizations to solve these challenges in a timely, cost-effective manner with the ability to efficiently manage data integration projects on an enterprise scale, increasing overall productivity and reducing the total cost of ownership.

  12. Applied Electromagnetics

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, H; Marinova, I; Cingoski, V [eds.

    2002-07-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics.

  13. Applied Electromagnetics

    International Nuclear Information System (INIS)

    Yamashita, H.; Marinova, I.; Cingoski, V.

    2002-01-01

    These proceedings contain papers relating to the 3rd Japanese-Bulgarian-Macedonian Joint Seminar on Applied Electromagnetics. Included are the following groups: Numerical Methods I; Electrical and Mechanical System Analysis and Simulations; Inverse Problems and Optimizations; Software Methodology; Numerical Methods II; Applied Electromagnetics

  14. Electromagnetic interactions

    International Nuclear Information System (INIS)

    Bosanac, Slobodan Danko

    2016-01-01

    This book is devoted to theoretical methods used in the extreme circumstances of very strong electromagnetic fields. The development of high power lasers, ultrafast processes, manipulation of electromagnetic fields and the use of very fast charged particles interacting with other charges requires an adequate theoretical description. Because of the very strong electromagnetic field, traditional theoretical approaches, which have primarily a perturbative character, have to be replaced by descriptions going beyond them. In the book an extension of the semi-classical radiation theory and classical dynamics for particles is performed to analyze single charged atoms and dipoles submitted to electromagnetic pulses. Special attention is given to the important problem of field reaction and controlling dynamics of charges by an electromagnetic field.

  15. Study of an automatic readout integrated circuit for the signal shaping of the ATLAS electromagnetic calorimeter; Etude d`un circuit integre de commutation automatique de gain pour le circuit de mise en forme du signal du calorimetre electromagnetique d`ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Bussat, J.M. [Laboratoire d`Annecy-le-Vieux de Physique des Particules, 74 - Annecy-le-Vieux (France)

    1996-12-01

    This paper describes the present state of the development of an automatic readout integrated circuit that can be used, connected to the four gain shaper of LAL, at the ATLAS electromagnetic calorimeter.

  16. Altered Cortical Thickness and Tract Integrity of the Mirror Neuron System and Associated Social Communication in Autism Spectrum Disorder.

    Science.gov (United States)

    Chien, Hsiang-Yun; Gau, Susan Shur-Fen; Hsu, Yung-Chin; Chen, Yu-Jen; Lo, Yu-Chun; Shih, Yao-Chia; Tseng, Wen-Yih Isaac

    2015-12-01

    Previous studies using neural activity recording and neuroimaging techniques have reported functional deficits in the mirror neuron system (MNS) for individuals with autism spectrum disorder (ASD). However, a few studies focusing on gray and white matter structures of the MNS have yielded inconsistent results. The current study recruited adolescents and young adults with ASD (aged 15-26 years) and age-matched typically developing (TD) controls (aged 14-25 years). The cortical thickness (CT) and microstructural integrity of the tracts connecting the regions forming the classical MNS were investigated. High-resolution T1-weighted imaging and diffusion spectrum imaging were performed to quantify the CT and tract integrity, respectively. The structural covariance of the CT of the MNS regions revealed a weaker coordination of the MNS network in ASD. A strong correlation was found between the integrity of the right frontoparietal tracts and the social communication subscores measured by the Chinese version of the Social Communication Questionnaire. The results showed that there were no significant mean differences in the CTs and tract integrity between the ASD and TD groups, but revealed a moderate or even reverse age effect on the frontal MNS structures in ASD. In conclusion, aberrant structural coordination may be an underlying factor affecting the function of the MNS in ASD patients. The association between the right frontoparietal tracts and social communication performance implies a neural correlate of communication processing in the autistic brain. This study provides evidence of abnormal MNS structures and their influence on social communication in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  17. Integral test on activation cross section of tag gas nuclides using fast neutron spectrum fields

    Energy Technology Data Exchange (ETDEWEB)

    Aoyama, Takafumi; Suzuki, Soju [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-03-01

    Activation cross sections of tag gas nuclides, which will be used for the failed fuel detection and location in FBR plants, were evaluated by the irradiation tests in the fast neutron spectrum fields in JOYO and YAYOI. The comparison of their measured radioactivities and the calculated values using the JENDL-3.2 cross section set showed that the C/E values ranged from 0.8 to 2.8 for the calibration tests in YAYOI and that the present accuracies of these cross sections were confirmed. (author)

  18. Measurements of integral cross sections in the californium-252 fission neutron spectrum

    International Nuclear Information System (INIS)

    Alberts, W.G.; Guenther, E.; Matzke, M.; Rassl, G.

    1977-01-01

    In a low-scattering arrangement cross sections averaged over the californium-252 spontaneous fission neutron spectrum were measured. The reactions 27 Al(n,α) 46 Ti, 47 Ti, 48 Ti(n,p), 54 Fe, 56 Fe(n,p), 58 Ni(n,p), 64 Zn(n,p), 115 In(n,n') were studied in order to obtain a consistent set of threshold detectors used in fast neutron flux density measurements. Overall uncertainties between 2 and 2.5% could be achieved; corrections due to neutron scattering in source and samples are discussed

  19. Theory and computation of the matrix elements of the full interaction of the electromagnetic field with an atomic state: Application to the Rydberg and the continuous spectrum

    International Nuclear Information System (INIS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2002-01-01

    We develop practical formulas for the calculation of the matrix elements of the interaction of the electromagnetic field with an atomic state, beyond the long-wavelength approximation. The atom-plus-field Hamiltonian is chosen to have the multipolar form, containing the electric, paramagnetic, and diamagnetic operators. The final workable expressions include the interactions to all orders and are derived by first expanding the fields in partial waves. The electric-field operator reaches a constant value as the radial variable becomes large, contrary to the result of the electric-dipole approximation (EDA) where the value of the corresponding operator increases indefinitely. Applications are given for Rydberg states of hydrogen up to n=50 and for free-free transitions in a Coulomb potential. Such matrix elements are relevant to a number of real and virtual processes occurring during laser-atom interactions. The computation is done numerically, using a combination of analytic with numerical techniques. By comparing the results of the EDA with those of the exact treatment, it is shown that the former is inadequate in such cases. This finding has repercussions on the theory and understanding of the physics of quantum systems in high-lying Rydberg levels and wave packets or in scattering states

  20. Electromagnetic shield

    International Nuclear Information System (INIS)

    Miller, J.S.

    1987-01-01

    An electromagnetic shield is described comprising: closed, electrically-conductive rings, each having an open center; and binder means for arranging the rings in a predetermined, fixed relationship relative to each other, the so-arranged rings and binder means defining an outer surface; wherein electromagnetic energy received by the shield from a source adjacent its outer surface induces an electrical current to flow in a predetermined direction adjacent and parallel to the outer surface, through the rings; and wherein each ring is configured to cause source-induced alternating current flowing through the portion of the ring closest to the outer surface to electromagnetically induce an oppositely-directed current in the portion of the ring furthest from the surface, such oppositely-directed current bucking any source-induced current in the latter ring portion and thus reducing the magnitude of current flowing through it, whereby the electromagnetic shielding effected by the shield is enhanced

  1. Engineering electromagnetics

    CERN Document Server

    Thomas, David T; Hartnett, James P; Hughes, William F

    1973-01-01

    The applications involving electromagnetic fields are so pervasive that it is difficult to estimate their contribution to the industrial output: generation of electricity, power transmission lines, electric motors, actuators, relays, radio, TV and microwave transmission and reception, magnetic storage, and even the mundane little magnet used to hold a paper note on the refrigerator are all electromagnetic in nature. One would be hard pressed to find a device that works without relaying on any electromagnetic principle or effect. This text provides a good theoretical understanding of the electromagnetic field equations but also treats a large number of applications. In fact, no topic is presented unless it is directly applicable to engineering design or unless it is needed for the understanding of another topic. In electrostatics, for example, the text includes discussions of photocopying, ink-jet printing, electrostatic separation and deposition, sandpaper production, paint spraying, and powder coating. In ma...

  2. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Jørgensen, Stina Marie Hasse

    2015-01-01

    Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015.......Daniel Cermak-Sassenrath, Ayaka Okutsu, Stina Hasse. Electromagnetic Landscape - In-between Signal, Noise and Environment. Installation and artist talk. 21th International Symposium on Electronic Art (ISEA) 2015, Vancouver, CAN, Aug 14-18, 2015....

  3. A hybrid finite-difference and integral-equation method for modeling and inversion of marine controlled-source electromagnetic data

    DEFF Research Database (Denmark)

    Yoon, Daeung; Zhdanov, Michael; Mattsson, Johan

    2016-01-01

    One of the major problems in the modeling and inversion of marine controlled-source electromagnetic (CSEM) data is related to the need for accurate representation of very complex geoelectrical models typical for marine environment. At the same time, the corresponding forward-modeling algorithms...... should be powerful and fast enough to be suitable for repeated use in hundreds of iterations of the inversion and for multiple transmitter/receiver positions. To this end, we have developed a novel 3D modeling and inversion approach, which combines the advantages of the finite-difference (FD......) and integral-equation (IE) methods. In the framework of this approach, we have solved Maxwell’s equations for anomalous electric fields using the FD approximation on a staggered grid. Once the unknown electric fields in the computation domain of the FD method are computed, the electric and magnetic fields...

  4. Re-integration and Consolidation of the Detector Control System for the Compact Muon Solenoid Electromagnetic Calorimeter

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Djambazov, Lubomir; Lustermann, Werner; Zelepoukine, Serguei

    2013-01-01

    The current shutdown of the Large Hadron Collider (LHC), following three successful years of physics data-taking, provides an opportunity for major upgrades to be performed on the Detector Control System (DCS) of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment. The upgrades involve changes to both hardware and software, with particular emphasis on taking advantage of more powerful servers and updating third-party software to the latest supported versions. The considerable increase in available processing power enables a reduction from fifteen to three or four servers. To host the control system on fewer machines and to ensure that previously independent software components could run side-by-side without incompatibilities, significant changes in the software and databases were required. Additional work was undertaken to modernise and concentrate I/O interfaces. The challenges to prepare and validate the hardware and software upgrades are described along with details of the ...

  5. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths

    Science.gov (United States)

    Jiang, Zhi Hao; Turpin, Jeremy P.; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H.

    2015-01-01

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. PMID:26217054

  6. Spatial transformation-enabled electromagnetic devices: from radio frequencies to optical wavelengths.

    Science.gov (United States)

    Jiang, Zhi Hao; Turpin, Jeremy P; Morgan, Kennith; Lu, Bingqian; Werner, Douglas H

    2015-08-28

    Transformation optics provides scientists and engineers with a new powerful design paradigm to manipulate the flow of electromagnetic waves in a user-defined manner and with unprecedented flexibility, by controlling the spatial distribution of the electromagnetic properties of a medium. Using this approach, over the past decade, various previously undiscovered physical wave phenomena have been revealed and novel electromagnetic devices have been demonstrated throughout the electromagnetic spectrum. In this paper, we present versatile theoretical and experimental investigations on designing transformation optics-enabled devices for shaping electromagnetic wave radiation and guidance, at both radio frequencies and optical wavelengths. Different from conventional coordinate transformations, more advanced and versatile coordinate transformations are exploited here to benefit diverse applications, thereby providing expanded design flexibility, enhanced device performance, as well as reduced implementation complexity. These design examples demonstrate the comprehensive capability of transformation optics in controlling electromagnetic waves, while the associated novel devices will open up new paths towards future integrated electromagnetic component synthesis and design, from microwave to optical spectral regimes. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  7. Gravitation and electromagnetism

    CERN Document Server

    Apsel, D

    1979-01-01

    Through an examination of the Bohm-Aharonov experiment, a new theory of gravitation and electromagnetism is proposed. The fundamental assumption of the theory is that the motion of a particle in a combination of gravitational and electromagnetic fields is determined from a variational principle of the form delta integral /sub A//sup B /d tau =0. The form of the physical time is determined from an examination of the Maxwell-Einstein action function. The field and motion equations are formally identical to those of Maxwell-Einstein theory. The theory predicts that even in a field-free region of space, electromagnetic potentials can alter the phase of a wave function and the lifetime of a charged particle. The phase alteration has been observed in the Bohm-Aharonov experiment. There is an indication that the lifetime alteration has shown up in a recent CERN storage ring experiment. Experimental tests are proposed. (11 refs).

  8. Calculation of the fine spectrum and integration of the resonance cross sections in the cells

    International Nuclear Information System (INIS)

    Paratte, J.M.

    1986-10-01

    The code BOXER is used for the neutronics calculations of two-dimensional LWR arrays. During the calculation of the group constants of the cells (pin, clad and moderator), the program SLOFIN, a BOXER module, allows taking into account the self-shielding of the resonances. The resonance range is devided into two parts: - above 907 eV the cross sections are condensed into groups by the library code ETOBOX. In SLOFIN, these values are interpolated over the equivalent cross section and the temperature. The interpolation formula chosen gives an accuracy better than 1% for values of the equivalent cross section larger than 5 barns. - between 4 and 907 eV, the cross sections are given in pointwise form as a function of the lethargy. At first a list of pointwise macroscopic cross section is established. Then the fine spectrum in the cell is calculated in 2 or 3 zones by means of the collision probability theory. In the central zone one resonant pseudo-nuclide is considered for the calculation of the scattering source, while the light nuclides are explicitly treated but under the assumption of energy independent cross sections. The fine spectrum is then used as a weihting function for the condensation of the pointwise cross sections of the resonant nuclides into energy groups. The procedure was checked on the basis of the TRX-1 to -4 and BAPL-UO 2 -1 to -3 experiments which are used as benchmarks for the tests of the ENDF/B libraries. The comparisons with other calculation results show that the deviations observed are typical for the basic cross sections. The method proposed shows a good accuracy in the application range foreseen for BOXER. It is also fast enough to be used as a standard method in a cell code. (author)

  9. Postural Control Deficits in Autism Spectrum Disorder: The Role of Sensory Integration

    Science.gov (United States)

    Doumas, Michail; McKenna, Roisin; Murphy, Blain

    2016-01-01

    We investigated the nature of sensory integration deficits in postural control of young adults with ASD. Postural control was assessed in a fixed environment, and in three environments in which sensory information about body sway from visual, proprioceptive or both channels was inaccurate. Furthermore, two levels of inaccurate information were…

  10. Electromagnetic wave energy converter

    Science.gov (United States)

    Bailey, R. L. (Inventor)

    1973-01-01

    Electromagnetic wave energy is converted into electric power with an array of mutually insulated electromagnetic wave absorber elements each responsive to an electric field component of the wave as it impinges thereon. Each element includes a portion tapered in the direction of wave propagation to provide a relatively wideband response spectrum. Each element includes an output for deriving a voltage replica of the electric field variations intercepted by it. Adjacent elements are positioned relative to each other so that an electric field subsists between adjacent elements in response to the impinging wave. The electric field results in a voltage difference between adjacent elements that is fed to a rectifier to derive dc output power.

  11. Neurobiological foundations of multisensory processing integration in people with autism spectrum disorders: The role of the medial prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Sonia eMartínez-Sanchis

    2014-12-01

    Full Text Available This review aims to relate the sensory processing problems in people with Autism spectrum disorders (ASD, especially Multisensory interaction (MSI, to the role of the medial prefrontal cortex (mPFC by exploring neuroanatomical findings; brain connectivity and Default Network (DN; global or locally directed attention; and temporal multisensory binding. The mPFC is part of the brain’s DN, which is deactivated when attention is focused on a particular task and activated on rest when spontaneous cognition emerges. In those with ASD, it is hypoactive and the higher the social impairment the greater the atypical activity. With an immature DN, cross-modal integration is impaired, resulting in a collection of disconnected fragments instead of a coherent global perception. The deficit in MSI may lie in the temporal synchronization of neural networks. The time interval in which the stimulation of one sensory channel could influence another would be higher, preventing integration in the typical shorter time range. Thus, the underconnectivity between distant brain areas would be involved in top-down information processes (relying on global integration of data from different sources and would enhance low level perception processes such as over focused attention to sensory details.

  12. Designing a broad-spectrum integrative approach for cancer prevention and treatment.

    Science.gov (United States)

    Block, Keith I; Gyllenhaal, Charlotte; Lowe, Leroy; Amedei, Amedeo; Amin, A R M Ruhul; Amin, Amr; Aquilano, Katia; Arbiser, Jack; Arreola, Alexandra; Arzumanyan, Alla; Ashraf, S Salman; Azmi, Asfar S; Benencia, Fabian; Bhakta, Dipita; Bilsland, Alan; Bishayee, Anupam; Blain, Stacy W; Block, Penny B; Boosani, Chandra S; Carey, Thomas E; Carnero, Amancio; Carotenuto, Marianeve; Casey, Stephanie C; Chakrabarti, Mrinmay; Chaturvedi, Rupesh; Chen, Georgia Zhuo; Chen, Helen; Chen, Sophie; Chen, Yi Charlie; Choi, Beom K; Ciriolo, Maria Rosa; Coley, Helen M; Collins, Andrew R; Connell, Marisa; Crawford, Sarah; Curran, Colleen S; Dabrosin, Charlotta; Damia, Giovanna; Dasgupta, Santanu; DeBerardinis, Ralph J; Decker, William K; Dhawan, Punita; Diehl, Anna Mae E; Dong, Jin-Tang; Dou, Q Ping; Drew, Janice E; Elkord, Eyad; El-Rayes, Bassel; Feitelson, Mark A; Felsher, Dean W; Ferguson, Lynnette R; Fimognari, Carmela; Firestone, Gary L; Frezza, Christian; Fujii, Hiromasa; Fuster, Mark M; Generali, Daniele; Georgakilas, Alexandros G; Gieseler, Frank; Gilbertson, Michael; Green, Michelle F; Grue, Brendan; Guha, Gunjan; Halicka, Dorota; Helferich, William G; Heneberg, Petr; Hentosh, Patricia; Hirschey, Matthew D; Hofseth, Lorne J; Holcombe, Randall F; Honoki, Kanya; Hsu, Hsue-Yin; Huang, Gloria S; Jensen, Lasse D; Jiang, Wen G; Jones, Lee W; Karpowicz, Phillip A; Keith, W Nicol; Kerkar, Sid P; Khan, Gazala N; Khatami, Mahin; Ko, Young H; Kucuk, Omer; Kulathinal, Rob J; Kumar, Nagi B; Kwon, Byoung S; Le, Anne; Lea, Michael A; Lee, Ho-Young; Lichtor, Terry; Lin, Liang-Tzung; Locasale, Jason W; Lokeshwar, Bal L; Longo, Valter D; Lyssiotis, Costas A; MacKenzie, Karen L; Malhotra, Meenakshi; Marino, Maria; Martinez-Chantar, Maria L; Matheu, Ander; Maxwell, Christopher; McDonnell, Eoin; Meeker, Alan K; Mehrmohamadi, Mahya; Mehta, Kapil; Michelotti, Gregory A; Mohammad, Ramzi M; Mohammed, Sulma I; Morre, D James; Muralidhar, Vinayak; Muqbil, Irfana; Murphy, Michael P; Nagaraju, Ganji Purnachandra; Nahta, Rita; Niccolai, Elena; Nowsheen, Somaira; Panis, Carolina; Pantano, Francesco; Parslow, Virginia R; Pawelec, Graham; Pedersen, Peter L; Poore, Brad; Poudyal, Deepak; Prakash, Satya; Prince, Mark; Raffaghello, Lizzia; Rathmell, Jeffrey C; Rathmell, W Kimryn; Ray, Swapan K; Reichrath, Jörg; Rezazadeh, Sarallah; Ribatti, Domenico; Ricciardiello, Luigi; Robey, R Brooks; Rodier, Francis; Rupasinghe, H P Vasantha; Russo, Gian Luigi; Ryan, Elizabeth P; Samadi, Abbas K; Sanchez-Garcia, Isidro; Sanders, Andrew J; Santini, Daniele; Sarkar, Malancha; Sasada, Tetsuro; Saxena, Neeraj K; Shackelford, Rodney E; Shantha Kumara, H M C; Sharma, Dipali; Shin, Dong M; Sidransky, David; Siegelin, Markus David; Signori, Emanuela; Singh, Neetu; Sivanand, Sharanya; Sliva, Daniel; Smythe, Carl; Spagnuolo, Carmela; Stafforini, Diana M; Stagg, John; Subbarayan, Pochi R; Sundin, Tabetha; Talib, Wamidh H; Thompson, Sarah K; Tran, Phuoc T; Ungefroren, Hendrik; Vander Heiden, Matthew G; Venkateswaran, Vasundara; Vinay, Dass S; Vlachostergios, Panagiotis J; Wang, Zongwei; Wellen, Kathryn E; Whelan, Richard L; Yang, Eddy S; Yang, Huanjie; Yang, Xujuan; Yaswen, Paul; Yedjou, Clement; Yin, Xin; Zhu, Jiyue; Zollo, Massimo

    2015-12-01

    Targeted therapies and the consequent adoption of "personalized" oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested, many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to be relatively inexpensive, it should help us

  13. Development of an Automated LIBS Analytical Test System Integrated with Component Control and Spectrum Analysis Capabilities

    International Nuclear Information System (INIS)

    Ding Yu; Tian Di; Chen Feipeng; Chen Pengfei; Qiao Shujun; Yang Guang; Li Chunsheng

    2015-01-01

    The present paper proposes an automated Laser-Induced Breakdown Spectroscopy (LIBS) analytical test system, which consists of a LIBS measurement and control platform based on a modular design concept, and a LIBS qualitative spectrum analysis software and is developed in C#. The platform provides flexible interfacing and automated control; it is compatible with different manufacturer component models and is constructed in modularized form for easy expandability. During peak identification, a more robust peak identification method with improved stability in peak identification has been achieved by applying additional smoothing on the slope obtained by calculation before peak identification. For the purpose of element identification, an improved main lines analysis method, which detects all elements on the spectral peak to avoid omission of certain elements without strong spectral lines, is applied to element identification in the tested LIBS samples. This method also increases the identification speed. In this paper, actual applications have been carried out. According to tests, the analytical test system is compatible with components of various models made by different manufacturers. It can automatically control components to get experimental data and conduct filtering, peak identification and qualitative analysis, etc. on spectral data. (paper)

  14. A FMM-FFT accelerated hybrid volume surface integral equation solver for electromagnetic analysis of re-entry space vehicles

    KAUST Repository

    Yücel, Abdulkadir C.

    2014-07-01

    Space vehicles that re-enter the atmosphere often experience communication blackout. The blackout occurs when the vehicle becomes engulfed in plasma produced by interactions between the vehicle surface and the atmosphere. The plasma often is concentrated in a relatively thin shell around the vehicle, with higher densities near its nose than rear. A less structured, sometimes turbulent plasma wake often trails the vehicle. The plasma shell severely affects the performance of side-mounted antennas as it alters their characteristics (frequency response, gain patterns, axial ratio, and impedance) away from nominal, free-space values, sometimes entirely shielding the antenna from the outside world. The plasma plume/turbulent wake similarly affect the performance of antennas mounted at the back of the vehicle. The electromagnetic characteristics of the thin plasma shell and plume/turbulent wake heavily depend on the type of re-entry trajectory, the vehicle\\'s speed, angles of attack, and chemical composition, as well as environmental conditions. To analyze the antennas\\' performance during blackout and to design robust communication antennas, efficient and accurate simulation tools for charactering the antennas\\' performance along the trajectory are called for.

  15. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.

    Science.gov (United States)

    Xu, Qianfan; Sandhu, Sunil; Povinelli, Michelle L; Shakya, Jagat; Fan, Shanhui; Lipson, Michal

    2006-03-31

    We provide the first experimental observation of structure tuning of the electromagnetically induced transparency-like spectrum in integrated on-chip optical resonator systems. The system consists of coupled silicon ring resonators with 10 microm diameter on silicon, where the coherent interference between the two coupled resonators is tuned. We measured a transparency-resonance mode with a quality factor of 11,800.

  16. Integrability for the full spectrum of planar AdS/CFT

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Vieira, Pedro; Porto Univ.

    2009-03-01

    We present a set of functional equations defining the anomalous dimensions of arbitrary local single trace operators in planar N=4 SYM theory. It takes the form of a Y-system based on the integrability of the dual superstring σ-model on the AdS 5 x S 5 background. This Y-system passes some very important tests: it incorporates the full asymptotic Bethe ansatz at large length of operator L, including the dressing factor, and it confirms all recently found wrapping corrections. The recently proposed AdS 4 /CFT 3 duality is also treated in a similar fashion. (orig.)

  17. Electromagnetic pump

    International Nuclear Information System (INIS)

    Ito, Koji; Suetake, Norio; Aizawa, Toshie; Nakasaki, Masayoshi

    1998-01-01

    The present invention provides an electromagnetic pump suitable to a recycling pump for liquid sodium as coolants of an FBR type reactor. Namely, a stator module of the electromagnetic pump of the present invention comprises a plurality of outer laminate iron core units and outer stator modules stacked alternately in the axial direction. With such a constitution, even a long electromagnetic pump having a large number of outer stator coils can be manufactured without damaging electric insulation of the outer stator coils. In addition, the inner circumferential surface of the outer laminate iron cores is urged and brought into contact with the outer circumferential surface of the outer duct by an elastic material. With such a constitution, Joule loss heat generated in the outer stator coils and internal heat generated in the outer laminate iron cores can be released to an electroconductive fluid flowing the inner circumference of the outer duct by way of the outer duct. (I.S.)

  18. A Broad-Spectrum Integrative Design for Cancer Prevention and Therapy

    Science.gov (United States)

    Block, Keith I.; Gyllenhaal, Charlotte; Lowe, Leroy; Amedei, Amedeo; Amin, A.R.M. Ruhul; Amin, Amr; Aquilano, Katia; Arbiser, Jack; Arreola, Alexandra; Arzumanyan, Alla; Ashraf, S. Salman; Azmi, Asfar S.; Benencia, Fabian; Bhakta, Dipita; Bilsland, Alan; Bishayee, Anupam; Blain, Stacy W.; Block, Penny B.; Boosani, Chandra S.; Carey, Thomas E.; Carnero, Amancio; Carotenuto, Marianeve; Casey, Stephanie C.; Chakrabarti, Mrinmay; Chaturvedi, Rupesh; Chen, Georgia Zhuo; Chen, Helen; Chen, Sophie; Chen, Yi Charlie; Choi, Beom K.; Ciriolo, Maria Rosa; Coley, Helen M.; Collins, Andrew R.; Connell, Marisa; Crawford, Sarah; Curran, Colleen S.; Dabrosin, Charlotta; Damia, Giovanna; Dasgupta, Santanu; DeBerardinis, Ralph J.; Decker, William K.; Dhawan, Punita; Diehl, Anna Mae E.; Dong, Jin-Tang; Dou, Q. Ping; Drew, Janice E.; Elkord, Eyad; El-Rayes, Bassel; Feitelson, Mark A.; Felsher, Dean W.; Ferguson, Lynnette R; Fimognari, Carmela; Firestone, Gary L.; Frezza, Christian; Fujii, Hiromasa; Fuster, Mark M.; Generali, Daniele; Georgakilas, Alexandros G.; Gieseler, Frank; Gilbertson, Michael; Green, Michelle F.; Grue, Brendan; Guha, Gunjan; Halicka, Dorota; Helferich, William G.; Heneberg, Petr; Hentosh, Patricia; Hirschey, Matthew D.; Hofseth, Lorne J.; Holcombe, Randall F.; Honoki, Kanya; Hsu, Hsue-Yin; Huang, Gloria S.; Jensen, Lasse D.; Jiang, Wen G.; Jones, Lee W.; Karpowicz, Phillip A.; Keith, W Nicol; Kerkar, Sid P.; Khan, Gazala N.; Khatami, Mahin; Ko, Young H.; Kucuk, Omer; Kulathinal, Rob J.; Kumar, Nagi B.; Kumara, H.M.C. Shantha; Kwon, Byoung S.; Le, Anne; Lea, Michael A.; Lee, Ho-Young; Lichtor, Terry; Lin, Liang-Tzung; Locasale, Jason W.; Lokeshwar, Bal L.; Longo, Valter D.; Lyssiotis, Costas A.; MacKenzie, Karen L.; Malhotra, Meenakshi; Marino, Maria; Martinez-Chantar, Maria L.; Matheu, Ander; Maxwell, Christopher; McDonnell, Eoin; Meeker, Alan K.; Mehrmohamadi, Mahya; Mehta, Kapil; Michelotti, Gregory A.; Mohammad, Ramzi M.; Mohammed, Sulma I.; Morre, D. James; Muqbil, Irfana; Muralidhar, Vinayak; Murphy, Michael P.; Nagaraju, Ganji Purnachandra; Nahta, Rita; Niccolai, Elena; Nowsheen, Somaira; Panis, Carolina; Pantano, Francesco; Parslow, Virginia R.; Pawelec, Graham; Pedersen, Peter L.; Poore, Brad; Poudyal, Deepak; Prakash, Satya; Prince, Mark; Raffaghello, Lizzia; Rathmell, Jeffrey C.; Rathmell, W. Kimryn; Ray, Swapan K.; Reichrath, Jörg; Rezazadeh, Sarallah; Ribatti, Domenico; Ricciardiello, Luigi; Robey, R. Brooks; Rodier, Francis; Rupasinghe, H.P. Vasantha; Russo, Gian Luigi; Ryan, Elizabeth P.; Samadi, Abbas K.; Sanchez-Garcia, Isidro; Sanders, Andrew J.; Santini, Daniele; Sarkar, Malancha; Sasada, Tetsuro; Saxena, Neeraj K.; Shackelford, Rodney E; Sharma, Dipali; Shin, Dong M.; Sidransky, David; Siegelin, Markus David; Signori, Emanuela; Singh, Neetu; Sivanand, Sharanya; Sliva, Daniel; Smythe, Carl; Spagnuolo, Carmela; Stafforini, Diana M.; Stagg, John; Subbarayan, Pochi R.; Sundin, Tabetha; Talib, Wamidh H.; Thompson, Sarah K.; Tran, Phuoc T.; Ungefroren, Hendrik; Vander Heiden, Matthew G.; Venkateswaran, Vasundara; Vinay, Dass S.; Vlachostergios, Panagiotis J.; Wang, Zongwei; Wellen, Kathryn E.; Whelan, Richard L.; Yang, Eddy S.; Yang, Huanjie; Yang, Xujuan; Yaswen, Paul; Yedjou, Clement; Yin, Xin; Zhu, Jiyue; Zollo, Massimo

    2016-01-01

    Targeted therapies and the consequent adoption of “personalized” oncology have achieved notable successes in some cancers; however, significant problems remain with this approach. Many targeted therapies are highly toxic, costs are extremely high, and most patients experience relapse after a few disease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistant immortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are not reliant upon the same mechanisms as those which have been targeted). To address these limitations, an international task force of 180 scientists was assembled to explore the concept of a low-toxicity “broad-spectrum” therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspects of relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a wide range of high-priority targets (74 in total) that could be modified to improve patient outcomes. For these targets, corresponding low-toxicity therapeutic approaches were then suggested; many of which were phytochemicals. Proposed actions on each target and all of the approaches were further reviewed for known effects on other hallmark areas and the tumor microenvironment. Potential contrary or procarcinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixed evidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of the relationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. This novel approach has potential to help us address disease relapse, which is a

  19. Electromagnetic dissociation of relativistic [sup 28]Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, U.J.

    1992-12-01

    A detailed study of the electromagnetic dissociation of [sup 28]Si by nucleon emission at E[sub lab]/A = 14.6 (GeV/nucleon was carried out with [sup 28]Si beams interacting on [sup 208]Pb). [sup 120]Sn. [sup 64]C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge Z[sub T] and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of [sup 28]Si [yields] p+[sup 27]Al and [sup 28]Si [yields] n+[sup 27]Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in [sup 28]Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear [sup 28]Si([sub [gamma],p])[sup 27]Al and [sup 28]Si([sub [gamma],n])[sup 27]Si. The possibilities of observing double giant dipole resonance excitations in [sup 28]Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  20. Electromagnetic and nuclear radiation detector using micromechanical sensors

    Science.gov (United States)

    Thundat, Thomas G.; Warmack, Robert J.; Wachter, Eric A.

    2000-01-01

    Electromagnetic and nuclear radiation is detected by micromechanical sensors that can be coated with various interactive materials. As the micromechanical sensors absorb radiation, the sensors bend and/or undergo a shift in resonance characteristics. The bending and resonance changes are detected with high sensitivity by any of several detection methods including optical, capacitive, and piezoresistive methods. Wide bands of the electromagnetic spectrum can be imaged with picoJoule sensitivity, and specific absorptive coatings can be used for selective sensitivity in specific wavelength bands. Microcantilevers coated with optical cross-linking polymers are useful as integrating optical radiation dosimeters. Nuclear radiation dosimetry is possible by fabricating cantilevers from materials that are sensitive to various nuclear particles or radiation. Upon exposure to radiation, the cantilever bends due to stress and its resonance frequency shifts due to changes in elastic properties, based on cantilever shape and properties of the coating.

  1. SU-F-BRA-03: Integrating Novel Electromagnetic Tracking Hollow Needle Assistance in Permanent Implant Brachytherapy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Racine, E; Hautvast, G; Binnekamp, D [Philips Group Innovation - Biomedical Systems, Eindhoven (Netherlands); Beaulieu, L [Centre Hospitalier Univ de Quebec, Quebec, QC (Canada)

    2015-06-15

    Purpose: To report on the results of a complete permanent implant brachytherapy procedure assisted by an electromagnetic (EM) hollow needle possessing both 3D tracking and seed drop detection abilities. Methods: End-to-end in-phantom EM-assisted LDR procedures were conducted. The novel system consisted of an EM tracking apparatus (NDI Aurora V2, Planar Field Generator), a 3D US scanner (Philips CX50), a hollow needle prototype allowing 3D tracking and seed drop detection and a specially designed treatment planning software (Philips Healthcare). A tungsten-doped 30 cc spherical agarose prostate immersed in gelatin was used for the treatment. A cylindrical shape of 0.8 cc was carved along its diameter to mimic the urethra. An initial plan of 26 needles and 47 seeds was established with the system. The plan was delivered with the EM-tracked hollow needle, and individual seed drop locations were recorded on the fly. The phantom was subsequently imaged with a CT scanner from which seed positions and contour definitions were obtained. The DVHs were then independently recomputed and compared with those produced by the planning system, both before and after the treatment. Results: Of the 47 seeds, 45 (96%) were detected by the EM technology embedded in the hollow needle design. The executed plan (from CT analysis) differed from the initial plan by 2%, 14% and 8% respectively in terms of V100, D90 and V150 for the prostate, and by 8%, 7% and 10% respectively in terms of D5, V100 and V120 for the urethra. Conclusion: The average DVH deviations between initial and executed plans were within a 5% tolerance imposed for this proof-of-concept assessment. This relatively good concordance demonstrates the feasibility and potential benefits of combining EM tracking and seed drop detection for real-time dosimetry validation and assistance in permanent implant brachytherapy procedures. This project has been entirely funded by Philips Healthcare.

  2. Electromagnetic Landscape

    DEFF Research Database (Denmark)

    Cermak, Daniel; Okutsu, Ayaka; Hasse, Stina

    2015-01-01

    Electromagnetic Landscape demonstrates in direct, tangible and immediate ways effects of the disruption of the familiar. An ubiquitous technological medium, FM radio, is turned into an alien and unfamiliar one. Audience participation, the environment, radio signals and noise create a site...

  3. Effect of integrated treatment on the use of coercive measures in first-episode schizophrenia-spectrum disorder. A randomized clinical trial

    DEFF Research Database (Denmark)

    Ohlenschlaeger, Johan; Nordentoft, Merete; Thorup, Anne

    2008-01-01

    The effect of integrated treatment on the use of coercive measures in first-episode schizophrenia-spectrum disorder in Denmark is not known. A total of 328 patients were randomly assigned to integrated treatment (167 patients) or standard treatment (161 patients). Integrated treatment consisted...... of assertive community treatment, psycho-educational multi-family groups, and social skills training. Data on coercion were extracted from the register from the National Board of Health, and data on continuity from medical records. Even though the level of continuity seemed higher in integrated treatment...

  4. Strategic Vision for Spectrum

    Science.gov (United States)

    2010-01-01

    maneuverable, flexible , and tactically effective. In the last few years, the rapid adoption of commercial communication tech- nologies has taxed...Logistics. The foundation that supports the mobility, flexibility , and precision necessary to accomplish these goals is the electromagnetic spectrum. 2...eGovernment, Enterprise Knowledge, Enterprise Licensing, Information Assurance, Librarian of the Navy, Organizational eLearning , Planning and Measurement

  5. The development of co-speech gesture and its semantic integration with speech in 6- to 12-year-old children with autism spectrum disorders.

    Science.gov (United States)

    So, Wing-Chee; Wong, Miranda Kit-Yi; Lui, Ming; Yip, Virginia

    2015-11-01

    Previous work leaves open the question of whether children with autism spectrum disorders aged 6-12 years have delay in producing gestures compared to their typically developing peers. This study examined gestural production among school-aged children in a naturalistic context and how their gestures are semantically related to the accompanying speech. Delay in gestural production was found in children with autism spectrum disorders through their middle to late childhood. Compared to their typically developing counterparts, children with autism spectrum disorders gestured less often and used fewer types of gestures, in particular markers, which carry culture-specific meaning. Typically developing children's gestural production was related to language and cognitive skills, but among children with autism spectrum disorders, gestural production was more strongly related to the severity of socio-communicative impairment. Gesture impairment also included the failure to integrate speech with gesture: in particular, supplementary gestures are absent in children with autism spectrum disorders. The findings extend our understanding of gestural production in school-aged children with autism spectrum disorders during spontaneous interaction. The results can help guide new therapies for gestural production for children with autism spectrum disorders in middle and late childhood. © The Author(s) 2014.

  6. On the integrated continuum radio spectrum of supernova remnant W44 (G34.7-0.4: New insights from Planck

    Directory of Open Access Journals (Sweden)

    Onić D.

    2015-01-01

    Full Text Available In this paper, the integrated continuum radio spectrum of supernova remnant (SNR W44 was analyzed up to 70 GHz, testing the different emission models that can be responsible for its particular shape. The observations by the Planck space telescope made it possible to analyze the high frequency part of radio emission from SNRs. Although the quality of radio continuum spectrum (a high scatter of data points at same frequencies prevents us to make definite conclusions, the possibility of spinning dust emission detection towards this remnant is emphasized. In addition, a concave-down feature, due to synchrotron losses, can not be definitely dismissed by the present knowledge of the integrated radio continuum spectrum of this SNR. [Projekat Ministarstva nauke Republike Srbije, br. 176005: Emission Nebulae: Structure and Evolution

  7. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Science.gov (United States)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-12-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract.

  8. Absorption of high-frequency electromagnetic energy in a high-temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Sagdeyev, R S; Shafranov, V D

    1958-07-01

    In this paper an analysis of the cyclotron and Cherenkov mechanisms is given. These are two fundamental mechanisms for noncollisional absorption of electromagnetic radiation by plasma in a magnetic field. The expressions for the dielectric permeability tensor, for plasma with a nonisotropic temperature distribution in a magnetic field, are obtained by integrating the kinetic equation with Lagrangian particle co-ordinates in a form suitable to allow a comprehensive physical interpretation of the absorption mechanisms. The oscillations of a plasma column stabilized by a longitudinal field have been analyzed. For uniform plasma, the frequency spectrum has been obtained together with the direction of electromagnetic wave propagation when both the cyclotron and Cherenkov absorption mechanisms take place. The influence of nonlinear effects on the electromagnetic wave absorption and the part which cyclotron and Cherenkov absorption play in plasma heating have also been investigated.

  9. The Method of Moments in electromagnetics

    CERN Document Server

    Gibson, Walton C

    2014-01-01

    Now Covers Dielectric Materials in Practical Electromagnetic DevicesThe Method of Moments in Electromagnetics, Second Edition explains the solution of electromagnetic integral equations via the method of moments (MOM). While the first edition exclusively focused on integral equations for conducting problems, this edition extends the integral equation framework to treat objects having conducting as well as dielectric parts.New to the Second EditionExpanded treatment of coupled surface integral equations for conducting and composite conducting/dielectric objects, including objects having multipl

  10. Application of an Integrated and Self-contained Electromagnetic Acoustic Recorder for Monitoring the Rock Mass Structure and Development of Geodynamic Processes in Ore Mines

    Directory of Open Access Journals (Sweden)

    Bespal’ko Anatoly

    2016-01-01

    Full Text Available The paper presents a block diagram of the recorder of electromagnetic and acoustic signals. The recorder provides monitoring of electromagnetic and acoustic signals under changing stress-strain state of heterogeneous materials and rocks. The analog amplifier input sensitivity of electromagnetic signals in 4 channels is 10 μV, that of the electromagnetic signal intensity is 10 μ and that of acoustic signals is 50 μV. The operating frequency range of recording is (1÷100 kHz. The averaging of electromagnetic and acoustic signal amplitudes is performed within 1 or 5 seconds. The data on electromagnetic and acoustic emission materials is recorded in digital format in the internal memory of the recorder. The recorder operates off-line within 7 days. Repeated testing of the recorder in natural conditions of the Tashtagol mine showed that the changes in the amplitude and frequency parameters of electromagnetic signals (EMC indicate the structural damage in mines made of rocks which differ in their electrical properties. Measurements of the intensity of electromagnetic signals enable monitoring the changes in the stress-strain state of rocks during and after blasting and other geodynamic phenomena.

  11. Electromagnetic shielding

    International Nuclear Information System (INIS)

    Tzeng, Wen-Shian V.

    1991-01-01

    Electromagnetic interference (EMI) shielding materials are well known in the art in forms such as gaskets, caulking compounds, adhesives, coatings and the like for a variety of EMI shielding purposes. In the past, where high shielding performance is necessary, EMI shielding has tended to use silver particles or silver coated copper particles dispersed in a resin binder. More recently, aluminum core silver coated particles have been used to reduce costs while maintaining good electrical and physical properties. (author). 8 figs

  12. Electromagnetic Reciprocity.

    Energy Technology Data Exchange (ETDEWEB)

    Aldridge, David F.

    2014-11-01

    A reciprocity theorem is an explicit mathematical relationship between two different wavefields that can exist within the same space - time configuration. Reciprocity theorems provi de the theoretical underpinning for mod ern full waveform inversion solutions, and also suggest practical strategies for speed ing up large - scale numerical modeling of geophysical datasets . In the present work, several previously - developed electromagnetic r eciprocity theorems are generalized to accommodate a broader range of medi um, source , and receiver types. Reciprocity relations enabling the interchange of various types of point sources and point receivers within a three - dimensional electromagnetic model are derived. Two numerical modeling algorithms in current use are successfully tested for adherence to reciprocity. Finally, the reciprocity theorem forms the point of departure for a lengthy derivation of electromagnetic Frechet derivatives. These mathe matical objects quantify the sensitivity of geophysical electromagnetic data to variatio ns in medium parameters, and thus constitute indispensable tools for solution of the full waveform inverse problem. ACKNOWLEDGEMENTS Sandia National Labor atories is a multi - program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE - AC04 - 94AL85000. Signif icant portions of the work reported herein were conducted under a Cooperative Research and Development Agreement (CRADA) between Sandia National Laboratories (SNL) and CARBO Ceramics Incorporated. The author acknowledges Mr. Chad Cannan and Mr. Terry Pa lisch of CARBO Ceramics, and Ms. Amy Halloran, manager of SNL's Geophysics and Atmospheric Sciences Department, for their interest in and encouragement of this work. Special thanks are due to Dr . Lewis C. Bartel ( recently retired from Sandia National Labo ratories

  13. Engineering electromagnetics

    CERN Document Server

    Ida, Nathan

    2015-01-01

    This book provides students with a thorough theoretical understanding of electromagnetic field equations and it also treats a large number of applications. The text is a comprehensive two-semester textbook. The work treats most topics in two steps – a short, introductory chapter followed by a second chapter with in-depth extensive treatment; between 10 to 30 applications per topic; examples and exercises throughout the book; experiments, problems  and summaries.   The new edition includes: updated end of chapter problems; a new introduction to electromagnetics based on behavior of charges; a new section on units; MATLAB tools for solution of problems and demonstration of subjects; most chapters include a summary. The book is an undergraduate textbook at the Junior level, intended for required classes in electromagnetics. It is written in simple terms with all details of derivations included and all steps in solutions listed. It requires little beyond basic calculus and can be used for self-study. The weal...

  14. Toward an Interdisciplinary Understanding of Sensory Dysfunction in Autism Spectrum Disorder: An Integration of the Neural and Symptom Literatures.

    Science.gov (United States)

    Schauder, Kimberly B; Bennetto, Loisa

    2016-01-01

    Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and mechanisms underlying sensory processing. The purpose of this paper is to integrate the empirical literature on sensory processing in ASD from the last decade, including both studies characterizing sensory symptoms and those that investigate neural response to sensory stimuli. We begin with a discussion of definitions to clarify some of the inconsistencies in terminology that currently exist in the field. Next, the sensory symptoms literature is reviewed with a particular focus on developmental considerations and the relationship of sensory symptoms to other core features of the disorder. Then, the neuroscience literature is reviewed with a focus on methodological approaches and specific sensory modalities. Currently, these sensory symptoms and neuroscience perspectives are largely developing independently from each other leading to multiple, but separate, theories and methods, thus creating a multidisciplinary approach to sensory processing in ASD. In order to progress our understanding of sensory processing in ASD, it is now critical to integrate these two research perspectives and move toward an interdisciplinary approach. This will inevitably aid in a better understanding of the underlying biological basis of these symptoms and help realize the translational value through its application to early identification and treatment. The review ends with specific recommendations for future research to help bridge these two research perspectives in order to advance our understanding

  15. In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.

    Science.gov (United States)

    Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine

    2017-02-01

    Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.

  16. Neuromodulation integrating rTMS and neurofeedback for the treatment of autism spectrum disorder: An exploratory study

    Science.gov (United States)

    Sokhadze, Estate M.; El-Baz, Ayman S.; Tasman, Allan; Sears, Lonnie L.; Wang, Yao; Lamina, Eva V.; Casanova, Manuel F.

    2014-01-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by deficits in social interaction, language, stereotyped behaviors, and restricted range of interests. In previous studies low frequency repetitive transcranial magnetic stimulation (rTMS) has been used, with positive behavioral and electrophysiological results, for the experimental treatment in ASD. In this study we combined prefrontal rTMS sessions with electroencephalographic (EEG) neurofeedback (NFB) to prolong and reinforce TMS-induced EEG changes. The pilot trial recruited 42 children with ASD (~14.5 yrs). Outcome measures included behavioral evaluations and reaction time test with event-related potential (ERP) recording. For the main goal of this exploratory study we used rTMS-neurofeedback combination (TMS-NFB, N=20) and waitlist (WTL, N=22) groups to examine effects of 18 sessions of integrated rTMS-NFB treatment or wait period) on behavioral responses, stimulus and response-locked ERPs, and other functional and clinical outcomes. The underlying hypothesis was that combined TMS-NFB will improve executive functions in autistic patients as compared to the waitlist group. Behavioral and ERP outcomes were collected in pre- and post-treatment tests in both groups. Results of the study supported our hypothesis by demonstration of positive effects of combined TMS-NFB neurotherapy in active treatment group as compared to control waitlist group, as the TMS-NFB group showed significant improvements in behavioral and functional outcomes as compared to the waitlist group. PMID:25267414

  17. Electromagnetic wave in a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Krasovitskiy, V. B.

    2009-01-01

    Results are presented from a theoretical investigation of the dispersion properties of a relativistic plasma in which an electromagnetic wave propagates along an external magnetic field. The dielectric tensor in integral form is simplified by separating its imaginary and real parts. A dispersion relation for an electromagnetic wave is obtained that makes it possible to analyze the dispersion and collisionless damping of electromagnetic perturbations over a broad parameter range for both nonrelativistic and ultrarelativistic plasmas.

  18. Advanced computational electromagnetic methods and applications

    CERN Document Server

    Li, Wenxing; Elsherbeni, Atef; Rahmat-Samii, Yahya

    2015-01-01

    This new resource covers the latest developments in computational electromagnetic methods, with emphasis on cutting-edge applications. This book is designed to extend existing literature to the latest development in computational electromagnetic methods, which are of interest to readers in both academic and industrial areas. The topics include advanced techniques in MoM, FEM and FDTD, spectral domain method, GPU and Phi hardware acceleration, metamaterials, frequency and time domain integral equations, and statistics methods in bio-electromagnetics.

  19. Interactions of electromagnetic radiations and reactive oxygen species on skin

    International Nuclear Information System (INIS)

    Ferramola de Sancovich, A.M.; Sancovich, H.A. . E- mail: ferramol@qb.fcen.uba.ar

    2006-01-01

    The energy of electromagnetic radiation is derived from the fusion in the sun of four hydrogen nuclei to form a helium nucleus. The sun radiates energy representing the entire electromagnetic spectrum. Light is a form of electromagnetic radiation: all electromagnetic radiation has wave characteristics and travels at the same speed (c: speed of light). But radiations differ in wavelength (λ). Light energy is transmitted not in a continuum stream but only in individual units or photons: E = h c / λ. Short wave light is more energetic than photons of light of longer wavelength. Ultraviolet radiations (UV) (λ s 200- 400 nm) can be classified in UV A (λ s 315 - 400 nm.); UV B (λ s 280 - 315 nm) and UV C (λ s 2 content in biological systems promotes ROS synthesis. If ROS are not controlled by endogenous antioxidants, cell redox status is affected and tissue damage is produced ('oxidative stress'). ROS induce lipid peroxidation, protein cross-linking, enzyme inhibition, loss of integrity and function of plasmatic and mitochondrial membranes conducing to inflammation, aging, carcinogenesis and cell death. While infra-red radiations lead to noticeable tissue temperature conducing to severe burns, UV A and UV B undercover react with skin chromophores producing photochemical alterations involved in cellular aging and cancer induction. As UV radiations can reach cellular nucleus, DNA can be damage. Human beings need protection from the damaging sunbeams. This is a very important concern of public health. While humans need to protect their skin with appropriate clothing and/or by use of skin sun blocks of broad spectrum, some bacteria that are extensively exposed to sunlight have developed genomic evolution (plasmid-encoded DNA repair system) which confers protection from the damaging effect of UV radiation. (author) [es

  20. Radical Software. Number Two. The Electromagnetic Spectrum.

    Science.gov (United States)

    Korot, Beryl, Ed.; Gershuny, Phyllis, Ed.

    1970-01-01

    In an effort to foster the innovative uses of television technology, this tabloid format periodical details social, educational, and artistic experiments with television and lists a large number of experimental videotapes available from various television-centered groups and individuals. The principal areas explored in this issue include cable…

  1. Histories electromagnetism

    International Nuclear Information System (INIS)

    Burch, Aidan

    2004-01-01

    Working within the HPO (History Projection Operator) Consistent Histories formalism, we follow the work of Savvidou on (scalar) field theory [J. Math. Phys. 43, 3053 (2002)] and that of Savvidou and Anastopoulos on (first-class) constrained systems [Class. Quantum Gravt. 17, 2463 (2000)] to write a histories theory (both classical and quantum) of Electromagnetism. We focus particularly on the foliation-dependence of the histories phase space/Hilbert space and the action thereon of the two Poincare groups that arise in histories field theory. We quantize in the spirit of the Dirac scheme for constrained systems

  2. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  3. The OSMOSE program for the qualification of integral cross sections of actinides: Preliminary results in a PWR-UOx spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Hudelot, J. P. [CEA Cadarache, DEN/DER, 13108 Saint Paul lez Durance (France); Klann, R. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Antony, M.; Bernard, D.; Fougeras, P. [CEA Cadarache, DEN/DER, 13108 Saint Paul lez Durance (France); Jorion, F.; Drin, N.; Donnet, L.; Leorier, C. [CEA VALRHO, DEN/DRCP, BP171, 30207 Bagnols-sur-Ceze Cedex (France); Zhong, Z. [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

    2006-07-01

    The need for improved nuclear data for minor actinides has been stressed by various organizations throughout the world - especially for studies relating to plutonium management, waste incineration, transmutation of waste, and Pu burning in future nuclear concepts. Several international programs have indicated a strong desire to obtain accurate integral reaction rate data for improving the major and minor actinides cross sections. Data on major actinides (i.e. {sup 235}U, {sup 236}U, {sup 238}U, {sup 239}Pu, {sup 240}Pu, {sup 241}Pu, {sup 242}Pu and {sup 241}Am) are reasonably well-known and available in the Evaluated Nuclear Data Files (JEFF, JENDL, ENDF-BX However information on the minor actinides (i.e. {sup 232}Th, {sup 233}U, {sup 237}Np, {sup 238}Pu, {sup 242}Am, {sup 243}Am, {sup 243}Cm, {sup 235}Cm, {sup 244}Cm, {sup 245}Cm, {sup 246}Cm and {sup 247}Cm) is less well-known and considered to be relatively poor in some cases, having to rely on model and extrapolation of few data points. In this framework, the ambitious OSMOSE program between the Commissariat a l'Energie Atomique (CEA), Electricite de France (EDF) and the U.S. Dept. of Energy (DOE) has been undertaken with the aim of measuring the integral absorption rate parameters of actinides in the MINERVE experimental facility located at the CEA Cadarache Research Center. The OSMOSE Program (Oscillation in Minerve of isotopes in 'Eupraxic' Spectra) includes a complete analytical program associated with the experimental measurement program and aims at understanding and resolving potential discrepancies between calculated and measured values. In the OSMOSE program, the reactivity worth of samples containing separated actinides are measured in different neutron spectra using an oscillation technique with an overall expected accuracy better than 3%. Reactivity effects of less than 10 pcm (0.0001 or approximately 1.5 cents) are measured and compared with calibrations to determine the differential

  4. Advanced electromagnetics and scattering theory

    CERN Document Server

    2015-01-01

    This book present the lecture notes used in two courses that the late Professor Kasra Barkeshli had offered at Sharif University of Technology, namely, Advanced Electromagnetics and Scattering Theory. The prerequisite for the sequence is vector calculus and electromagnetic fields and waves. Some familiarity with Green's functions and integral equations is desirable but not necessary. The book  provides a brief but concise introduction to classical topics in the field. It is divided into three parts including annexes. Part I covers principle of electromagnetic theory. The discussion starts with a review of the Maxwell's equations in differential and integral forms and basic boundary conditions. The solution of inhomogeneous wave equation and various field representations including Lorentz's potential functions and the Green's function method are discussed next. The solution of Helmholtz equation and wave harmonics follow. Next, the book presents plane wave propagation in dielectric and lossy media and various...

  5. Electromagnetic and thermal analysis of electromagnet for SMART control element drive mechanism

    International Nuclear Information System (INIS)

    Huh, H.; Kim, J. H.; Park, J. S.; Kim, Y. W.; Kim, J. I.

    1999-01-01

    A numerical electromagnetic and thermal analysis was performed for the electromagnet which is installed in the control element drive mechanism(CEDM) of the integral reactor SMART. A model for the electromagnetic analysis of the electromagnet was developed and theoretical bases for the model were established. Design parameters related to thrust force were identified, and the optimum design point was determined by analyzing the trend of the magnetic saturation with finite element method. Also It is important that the temperature of the electomagnet windings be maintained within the allowable limit of the insulation, since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. The electromagnetic and thermal properties obtained here will be used as input for the optimization analysis of the electromagnet

  6. Electromagnetic fields and life

    CERN Document Server

    Presman, A S

    1970-01-01

    A broad region of the electromagnetic spectrum long assumed to have no influence on living systems under natural conditions has been critically re-examined over the past decade. This spectral region extends from the superhigh radio frequencies, through de­ creasing frequencies, to and including essentially static electric and magnetic fields. The author of this monograph, A. S. Presman, has reviewed not only the extensive Russian literatur!;"l, but also al­l most equally comprehensively the non-Russian literature, dealing with biological influences of these fields. Treated also is literature shedding some light on possible theoretical foundations for these phenomena. A substantial, rapidly increasing number of studies in many laboratories and countries has now clearly established bio­ logical influences which are independent of the theoretically predictable, simple thermal effects. Indeed many of the effects are produced by field strengths very close to those within the natural environment. The author has,...

  7. Narrow field electromagnetic sensor system and method

    International Nuclear Information System (INIS)

    McEwan, T.E.

    1996-01-01

    A narrow field electromagnetic sensor system and method of sensing a characteristic of an object provide the capability to realize a characteristic of an object such as density, thickness, or presence, for any desired coordinate position on the object. One application is imaging. The sensor can also be used as an obstruction detector or an electronic trip wire with a narrow field without the disadvantages of impaired performance when exposed to dirt, snow, rain, or sunlight. The sensor employs a transmitter for transmitting a sequence of electromagnetic signals in response to a transmit timing signal, a receiver for sampling only the initial direct RF path of the electromagnetic signal while excluding all other electromagnetic signals in response to a receive timing signal, and a signal processor for processing the sampled direct RF path electromagnetic signal and providing an indication of the characteristic of an object. Usually, the electromagnetic signal is a short RF burst and the obstruction must provide a substantially complete eclipse of the direct RF path. By employing time-of-flight techniques, a timing circuit controls the receiver to sample only the initial direct RF path of the electromagnetic signal while not sampling indirect path electromagnetic signals. The sensor system also incorporates circuitry for ultra-wideband spread spectrum operation that reduces interference to and from other RF services while allowing co-location of multiple electronic sensors without the need for frequency assignments. 12 figs

  8. Electromagnetic topology: Characterization of internal electromagnetic coupling

    Science.gov (United States)

    Parmantier, J. P.; Aparicio, J. P.; Faure, F.

    1991-01-01

    The main principles are presented of a method dealing with the resolution of electromagnetic internal problems: Electromagnetic Topology. A very interesting way is to generalize the multiconductor transmission line network theory to the basic equation of the Electromagnetic Topology: the BLT equation. This generalization is illustrated by the treatment of an aperture as a four port junction. Analytical and experimental derivations of the scattering parameters are presented. These concepts are used to study the electromagnetic coupling in a scale model of an aircraft, and can be seen as a convenient means to test internal electromagnetic interference.

  9. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  10. Bottomonium spectrum revisited

    CERN Document Server

    Segovia, Jorge; Entem, David R.; Fernández, Francisco

    2016-01-01

    We revisit the bottomonium spectrum motivated by the recently exciting experimental progress in the observation of new bottomonium states, both conventional and unconventional. Our framework is a nonrelativistic constituent quark model which has been applied to a wide range of hadronic observables from the light to the heavy quark sector and thus the model parameters are completely constrained. Beyond the spectrum, we provide a large number of electromagnetic, strong and hadronic decays in order to discuss the quark content of the bottomonium states and give more insights about the better way to determine their properties experimentally.

  11. Electromagnetically shielded building

    International Nuclear Information System (INIS)

    Takahashi, T.; Nakamura, M.; Yabana, Y.; Ishikawa, T.; Nagata, K.

    1992-01-01

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs

  12. Electromagnetically shielded building

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, T; Nakamura, M; Yabana, Y; Ishikawa, T; Nagata, K

    1992-04-21

    This invention relates to a building having an electromagnetic shield structure well-suited for application to an information network system utilizing electromagnetic waves, and more particularly to an electromagnetically shielded building for enhancing the electromagnetic shielding performance of an external wall. 6 figs.

  13. A review of electromagnetic missiles

    International Nuclear Information System (INIS)

    Wu, T.T.; Shen, H.M.; Myers, J.M.

    1988-01-01

    Theoretical results are reviewed pertaining to the behavior of transient electromagnetic fields in the limit of great distances from their sources. In 1985 it was shown that pulses of finite total radiated energy could propagate to a distant receiver, delivering energy that decreases much more slowly than the usual r - 2 . Such pulses have been referred to as electromagnetic (EM) missiles. The types first discovered propagate along a straight line with a monotonically (though slowly) decreasing time-integrated flux. Other types are now known. One type can be made to rise and fall with increasing distance; another is the curved EM missile. Early efforts to classify EM missiles are reviewed

  14. Gauge invariant fractional electromagnetic fields

    Science.gov (United States)

    Lazo, Matheus Jatkoske

    2011-09-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators.

  15. Electromagnetic reciprocity in antenna theory

    CERN Document Server

    Stumpf, Martin

    2018-01-01

    The reciprocity theorem is among the most intriguing concepts in wave field theory and has become an integral part of almost all standard textbooks on electromagnetic (EM) theory. This book makes use of the theorem to quantitatively describe EM interactions concerning general multiport antenna systems. It covers a general reciprocity-based description of antenna systems, their EM scattering properties, and further related aspects. Beginning with an introduction to the subject, Electromagnetic Reciprocity in Antenna Theory provides readers first with the basic prerequisites before offering coverage of the equivalent multiport circuit antenna representations, EM coupling between multiport antenna systems and their EM interactions with scatterers, accompanied with the corresponding EM compensation theorems.

  16. Study on the spectrum and inelastic interactions of muons using Baksan underground scintillation telescope

    International Nuclear Information System (INIS)

    Bakatanov, V.P.; Novosel'tsev, Yu.F.; Novosel'tseva, R.V.; Semenov, A.M.; Sten'kin, Yu.V.; Chudakov, A.E.

    1989-01-01

    Muon inelastic interaction process was investigated and spectrum of cosmic ray muons was calculated using Baksan underground scintillation telescope. Possibility to separate electromagnetic and nuclear cascades generated at muon inelastic interaction was provided in the experiment. Calculation of spectrum of energy yields initated at cascade passage through the telescope which shows that on an average about 13% of electromagnetic cascade energy and about 11% of nuclear one are detected is presented. Electromagnetic cascades with E k e =0.906 TeV mean energy and E k n =1.14 TeV energy nuclear ones response energy yield within 01.11 ≤ E ≤ 0.133 TeV range. Integral energy spectrum of cascades and dependence of cross section of photonuclear interaction with A=26 nucleus on energy are shown. Measurement results for R exp (E)=N n N e ratio of number of nuclear cascades to number of electromagnetic ones within energy yield different regions are given

  17. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Radulović, Vladimir, E-mail: vladimir.radulovic@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Trkov, Andrej [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); IAEA, Vienna International Centre, PO Box 100, A-1400 Vienna (Austria); Jaćimović, Radojko [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Gregoire, Gilles; Destouches, Christophe [CEA, DEN, DER, Instrumentation Sensors and Dosimetry Laboratory, Cadarache, F-13108 St. Paul-Lez-Durance (France)

    2016-12-21

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract. - Graphical abstract: Neutron spectra inside the JSI TRIGA Mark II PT irradiation position, obtained with a Monte Carlo calculation: blue: unperturbed, green inside a BN container, of wall thickness 4 mm, 13 mm in diameter and 14 mm in height.

  18. Use of boron nitride for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements

    International Nuclear Information System (INIS)

    Radulović, Vladimir; Trkov, Andrej; Jaćimović, Radojko; Gregoire, Gilles; Destouches, Christophe

    2016-01-01

    A recent experimental irradiation and measurement campaign using containers made from boron nitride (BN) at the Jožef Stefan Institute (JSI) TRIGA Mark II reactor in Ljubljana, Slovenia, has shown the applicability of BN for neutron spectrum characterization and cross-section validation in the epithermal range through integral activation measurements. The first part of the paper focuses on the determination of the transmission function of a BN container through Monte Carlo calculations and experimental measurements. The second part presents the process of tayloring the sensitivity of integral activation measurements to specific needs and a selection of suitable radiative capture reactions for neutron spectrum characterization in the epithermal range. A BN container used in our experiments and its qualitative effect on the neutron spectrum in the irradiation position employed is displayed in the Graphical abstract. - Graphical abstract: Neutron spectra inside the JSI TRIGA Mark II PT irradiation position, obtained with a Monte Carlo calculation: blue: unperturbed, green inside a BN container, of wall thickness 4 mm, 13 mm in diameter and 14 mm in height.

  19. Gravitational radiation from electromagnetic systems

    International Nuclear Information System (INIS)

    Nikishov, A.I.; Ritus, V.I.

    1989-01-01

    It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a region of the order of the radius of curvature, differs in the ultrarelativistic limit from the spectrum of the charge's electromagnetic radiation. The difference consists of the frequency-independent coefficient 4πGm 2 Λ 2 /e 2 , where Λ is of the order of the Lorentz factor of the charge and depends on the direction of the wave vector and on the behavior of the field in the above-indicated region. For a plane-wave external field the gravitational and electromagnetic spectra are strictly proportional to each other for arbitrary velocities of the charge. Localization of the external forces near the orbit violates this proportionality of the spectra and weakens the gravitational radiation by an amount of the order of the square of the Lorentz factor

  20. Focusing of electromagnetic waves

    International Nuclear Information System (INIS)

    Dhayalan, V.

    1996-01-01

    The focusing of electromagnetic waves inside a slab has been examined together with two special cases in which the slab is reduced to a single interface or a single medium. To that end the exact solutions for the fields inside a layered medium have been used, given in terms of the outside current source in order to obtain the solutions for the focused electric field inside a slab. Both exact and asymptotic solutions of the problem have been considered, and the validity of the latter has been discussed. The author has developed a numerical algorithm for evaluation of the diffraction integral with special emphasis on reducing the computing time. The numerical techniques in the paper can be readily applied to evaluate similar diffraction integrals occurring e.g. in microstrip antennas. 46 refs

  1. Electromagnetic launchers

    Science.gov (United States)

    Kolm, H.; Mongeau, P.; Williams, F.

    1980-09-01

    Recent advances in energy storage, switching and magnet technology make electromagnetic acceleration a viable alternative to chemical propulsion for certain tasks, and a means to perform other tasks not previously feasible. Applications include the acceleration of gram-size particles for hypervelocity research and the initiation of fusion by impact, a replacement for chemically propelled artillery, the transportation of cargo and personnel over inaccessible terrain, and the launching of space vehicles to supply massive space operations, and for the disposal of nuclear waste. The simplest launcher of interest is the railgun, in which a short-circuit slide or an arc is driven along two rails by direct current. The most sophisticated studied thus far is the mass driver, in which a superconducting shuttle bucket is accelerated by a line of pulse coils energized by capacitors at energy conversion efficiencies better than 90%. Other accelerators of interest include helical, brush-commutated motors, discrete coil arc commutated drivers, flux compression momentum transformers, and various hybrid electrochemical devices.

  2. Topological Foundations of Electromagnetism

    CERN Document Server

    Barrett, Terrence W

    2008-01-01

    Topological Foundations of Electromagnetism seeks a fundamental understanding of the dynamics of electromagnetism; and marshals the evidence that in certain precisely defined topological conditions, electromagnetic theory (Maxwell's theory) must be extended or generalized in order to provide an explanation and understanding of, until now, unusual electromagnetic phenomena. Key to this generalization is an understanding of the circumstances under which the so-called A potential fields have physical effects. Basic to the approach taken is that the topological composition of electromagnetic field

  3. Gauge invariant fractional electromagnetic fields

    International Nuclear Information System (INIS)

    Lazo, Matheus Jatkoske

    2011-01-01

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.

  4. Gauge invariant fractional electromagnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lazo, Matheus Jatkoske, E-mail: matheuslazo@furg.br [Instituto de Matematica, Estatistica e Fisica - FURG, Rio Grande, RS (Brazil)

    2011-09-26

    Fractional derivatives and integrations of non-integers orders was introduced more than three centuries ago but only recently gained more attention due to its application on nonlocal phenomenas. In this context, several formulations of fractional electromagnetic fields was proposed, but all these theories suffer from the absence of an effective fractional vector calculus, and in general are non-causal or spatially asymmetric. In order to deal with these difficulties, we propose a spatially symmetric and causal gauge invariant fractional electromagnetic field from a Lagrangian formulation. From our fractional Maxwell's fields arose a definition for the fractional gradient, divergent and curl operators. -- Highlights: → We propose a fractional Lagrangian formulation for fractional Maxwell's fields. → We obtain gauge invariant fractional electromagnetic fields. → Our generalized fractional Maxwell's field is spatially symmetrical. → We discuss the non-causality of the theory.

  5. High performance electromagnetic simulation tools

    Science.gov (United States)

    Gedney, Stephen D.; Whites, Keith W.

    1994-10-01

    Army Research Office Grant #DAAH04-93-G-0453 has supported the purchase of 24 additional compute nodes that were installed in the Intel iPsC/860 hypercube at the Univesity Of Kentucky (UK), rendering a 32-node multiprocessor. This facility has allowed the investigators to explore and extend the boundaries of electromagnetic simulation for important areas of defense concerns including microwave monolithic integrated circuit (MMIC) design/analysis and electromagnetic materials research and development. The iPSC/860 has also provided an ideal platform for MMIC circuit simulations. A number of parallel methods based on direct time-domain solutions of Maxwell's equations have been developed on the iPSC/860, including a parallel finite-difference time-domain (FDTD) algorithm, and a parallel planar generalized Yee-algorithm (PGY). The iPSC/860 has also provided an ideal platform on which to develop a 'virtual laboratory' to numerically analyze, scientifically study and develop new types of materials with beneficial electromagnetic properties. These materials simulations are capable of assembling hundreds of microscopic inclusions from which an electromagnetic full-wave solution will be obtained in toto. This powerful simulation tool has enabled research of the full-wave analysis of complex multicomponent MMIC devices and the electromagnetic properties of many types of materials to be performed numerically rather than strictly in the laboratory.

  6. Integrating Family Capacity-Building and Child Outcomes to Support Social Communication Development in Young Children with Autism Spectrum Disorder

    Science.gov (United States)

    Woods, Juliann J.; Brown, Jennifer A.

    2011-01-01

    The focus of this article is on the transactional relationship of research and practice for speech-language pathologists serving infants and toddlers with and at risk for autism spectrum disorder in Individuals with Disabilities Education Act supported early intervention. Specifically, information is provided on (a) the relationship between…

  7. Instantaneous Shoreline Extraction Utilizing Integrated Spectrum and Shadow Analysis From LiDAR Data and High-resolution Satellite Imagery

    Science.gov (United States)

    Lee, I.-Chieh

    Shoreline delineation and shoreline change detection are expensive processes in data source acquisition and manual shoreline delineation. These costs confine the frequency and interval of shoreline mapping periods. In this dissertation, a new shoreline delineation approach was developed targeting on lowering the data source cost and reducing human labor. To lower the cost of data sources, we used the public domain LiDAR data sets and satellite images to delineate shorelines without the requirement of data sets being acquired simultaneously, which is a new concept in this field. To reduce the labor cost, we made improvements in classifying LiDAR points and satellite images. Analyzing shadow relations with topography to improve the satellite image classification performance is also a brand-new concept. The extracted shoreline of the proposed approach could achieve an accuracy of 1.495 m RMSE, or 4.452m at the 95% confidence level. Consequently, the proposed approach could successfully lower the cost and shorten the processing time, in other words, to increase the shoreline mapping frequency with a reasonable accuracy. However, the extracted shoreline may not compete with the shoreline extracted by aerial photogrammetric procedures in the aspect of accuracy. Hence, this is a trade-off between cost and accuracy. This approach consists of three phases, first, a shoreline extraction procedure based mainly on LiDAR point cloud data with multispectral information from satellite images. Second, an object oriented shoreline extraction procedure to delineate shoreline solely from satellite images; in this case WorldView-2 images were used. Third, a shoreline integration procedure combining these two shorelines based on actual shoreline changes and physical terrain properties. The actual data source cost would only be from the acquisition of satellite images. On the other hand, only two processes needed human attention. First, the shoreline within harbor areas needed to be

  8. Electromagnetic Wave Chaos in Gradient Refractive Index Optical Cavities

    International Nuclear Information System (INIS)

    Wilkinson, P. B.; Fromhold, T. M.; Taylor, R. P.; Micolich, A. P.

    2001-01-01

    Electromagnetic wave chaos is investigated using two-dimensional optical cavities formed in a cylindrical gradient refractive index lens with reflective surfaces. When the planar ends of the lens are cut at an angle to its axis, the geometrical ray paths are chaotic. In this regime, the electromagnetic mode spectrum of the cavity is modulated by both real and ghost periodic ray paths, which also 'scar' the electric field intensity distributions of many modes. When the cavity is coupled to waveguides, the eigenmodes generate complex series of resonant peaks in the electromagnetic transmission spectrum

  9. Reduced tract integrity of the model for social communication is a neural substrate of social communication deficits in autism spectrum disorder.

    Science.gov (United States)

    Lo, Yu-Chun; Chen, Yu-Jen; Hsu, Yung-Chin; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen

    2017-05-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication subserves social language functions, we hypothesized that the tract integrity of the model for social communication may be reduced in ASD, and the reduction may be related to social communication deficits. Sixty-two right-handed boys with ASD and 55 typically developing (TD) boys received clinical evaluations, intelligence tests, the Social Communication Questionnaire (SCQ), and MRI scans. Generalized fractional anisotropy (GFA) was measured by diffusion spectrum imaging to indicate the microstructural integrity of the tracts for each level of the social communication model. Group difference in the tract integrity and its relationship with the SCQ subscales of social communication and social interaction were investigated. We found that the GFA values of the superior longitudinal fasciculus III (SLF III, level 1) and the frontal aslant tracts (FAT, level 2) were decreased in ASD compared to TD. Moreover, the GFA values of the SLF III and the FAT were associated with the social interaction subscale in ASD. The tract integrity of the model for social communication is reduced in ASD, and the reduction is associated with impaired social interaction. Our results support that reduced tract integrity of the model for social communication might be a neural substrate of social communication deficits in ASD. © 2016 Association for Child and Adolescent Mental Health.

  10. Electromagnetic shielding effectiveness of 3D printed polymer composites

    Science.gov (United States)

    Viskadourakis, Z.; Vasilopoulos, K. C.; Economou, E. N.; Soukoulis, C. M.; Kenanakis, G.

    2017-12-01

    We report on preliminary results regarding the electromagnetic shielding effectiveness of various 3D printed polymeric composite structures. All studied samples were fabricated using 3D printing technology, following the fused deposition modeling approach, using commercially available filaments as starting materials. The electromagnetic shielding performance of the fabricated 3D samples was investigated in the so called C-band of the electromagnetic spectrum (3.5-7.0 GHz), which is typically used for long-distance radio telecommunications. We provide evidence that 3D printing technology can be effectively utilized to prepare operational shields, making them promising candidates for electromagnetic shielding applications for electronic devices.

  11. Toward an Interdisciplinary Understanding of Sensory Dysfunction in Autism Spectrum Disorder: An Integration of the Neural and Symptom Literatures

    OpenAIRE

    Schauder, Kimberly B.; Bennetto, Loisa

    2016-01-01

    Sensory processing differences have long been associated with autism spectrum disorder (ASD), and they have recently been added to the diagnostic criteria for the disorder. The focus on sensory processing in ASD research has increased substantially in the last decade. This research has been approached from two different perspectives: the first focuses on characterizing the symptoms that manifest in response to real world sensory stimulation, and the second focuses on the neural pathways and m...

  12. An FMM-FFT accelerated integral equation solver for characterizing electromagnetic wave propagation in mine tunnels and galleries loaded with conductors

    KAUST Repository

    Yücel, Abdulkadir C.

    2014-07-01

    Reliable wireless communication and tracking systems in underground mines are of paramount importance to increase miners\\' productivity while monitoring the environmental conditions and increasing the effectiveness of rescue operations. Key to the design and optimization of such systems are electromagnetic (EM) simulation tools capable of analyzing wave propagation in electromagnetically large mine tunnels and galleries loaded with conducting cables (power, telephone) and mining equipment (trolleys, rails, carts), and potentially partially obstructed by debris from a cave-in. Current tools for simulating EM propagation in mine environments leverage (multi-) modal decompositions (Emslie et. al., IEEE Trans. Antennas Propag., 23, 192-205, 1975; Sun and Akyildiz, IEEE Trans. Commun., 58, 1758-1768, 2010), ray-tracing techniques (Zhang, IEEE Tran. Vehic. Tech., 5, 1308-1314, 2003), or full wave methods. Modal approaches and ray-tracing techniques cannot accurately account for the presence of conductors, intricate details of transmitters/receivers, wall roughness, or unstructured debris from a cave-in. Classical full-wave methods do not suffer from such restrictions. However, they require prohibitively large computational resources when applied to the analysis of electromagnetically large tunnels loaded with conductors. Recently, an efficient hybrid method of moment and transmission line solver has been developed to analyze the EM wave propagation inside tunnels loaded with conductors (Brocker et. al., in Proc IEEE AP-S Symp, pp.1,2, 2012). However, the applicability of the solver is limited to the characterization of EM wave propagation at medium frequency band.

  13. Electromagnetic radiation properties of foods and agricultural products

    International Nuclear Information System (INIS)

    Mohsenin, N.N.

    1984-01-01

    In this book, the author examines the effects of the various regions of the electromagnetic radiation spectrum on foods and agricultural products. Among the regions of the electromagnetic radiation spectrum covered are high-energy beta and neutron particles, gamma-rays and X-rays, to lower-energy visible, near infrared, infrared, microwave and low-energy radiowaves and electric currents. Dr. Mohsenin applies these electromagnetic phenomena to food products such as fruits, vegetables, seeds, dairy products, meat and processed foods. Contents: Some Basic Concepts of Electromagnetic Radiation. Basic Instruments for Measurement of Optical Properties. Applications of Radiation in the Visible Spectrum. Color and its Measurement. Sorting for Color and Appearance. Near-Infrared and Infrared Radiation Applications. Applications of High-Energy Radiation. Related Concepts of Microwaves, Radiowaves, and Electric Currents. Measurement of Electrical Properties of Foods and Agricultural Products. Applications of Electrical Properties. Appendix, Cited References. Subject Index

  14. Intermediate energy electromagnetic interactions

    International Nuclear Information System (INIS)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.)

  15. Intermediate energy electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Garcon, M.

    1994-11-01

    Polarization measurements in electromagnetic interactions are reviewed. Deep inelastic scattering of polarized electrons and muons an polarized targets, photoproduction of pseudoscalar mesons on protons, photonuclear reactions, and the electromagnetic structure of the deuteron are discussed. (K.A.).

  16. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides an electromagnetic wave matching capable of reducing a cost for the transmission system in a system of using electromagnetic waves for plasma heating of a thermonuclear reactor. Namely, incident electromagnetic waves are reflected by using a plurality of phase correction mirrors. The reflected electromagnetic waves are connected to an external transmission system through an exit. The phase correction mirrors have such a shape to receive a plurality of beam-like electromagnetic waves and output electromagnetic waves by the number different from the number of the received electromagnetic wave beams having a predetermined distribution. Further, at least two of the phase correction mirrors have such a shape to change the phase of the electromagnetic waves beams incident to the reflection surface of the phase correction mirrors by a predetermined amount corresponding to the position of the reflection surface. Then, the cost for transmission system can greatly be reduced. (I.S.)

  17. Electromagnetic scattering theory

    Science.gov (United States)

    Bird, J. F.; Farrell, R. A.

    1986-01-01

    Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.

  18. Electromagnetic Education in India

    Science.gov (United States)

    Bajpai, Shrish; Asif, Siddiqui Sajida; Akhtar, Syed Adnan

    2016-01-01

    Out of the four fundamental interactions in nature, electromagnetics is one of them along with gravitation, strong interaction and weak interaction. The field of electromagnetics has made much of the modern age possible. Electromagnets are common in day-to-day appliances and are becoming more conventional as the need for technology increases.…

  19. Electromagnetic Compatibility of Devices on Hybrid Electromagnetic Components

    Science.gov (United States)

    Konesev, S. G.; Khazieva, R. T.; Kirillov, R. V.; Gainutdinov, I. Z.; Kondratyev, E. Y.

    2018-01-01

    There is a general tendency to reduce the weight and dimensions, the consumption of conductive and electrical insulating materials, increase the reliability and energy efficiency of electrical devices. In recent years, designers have been actively developing devices based on hybrid electromagnetic components (HEMC) such as inductive-capacitive converters (ICC), voltages pulse generators (VPG), secondary power supplies (SPS), capacitive storage devices (CSD), induction heating systems (IHS). Sources of power supplies of similar electrical devices contain, as a rule, links of increased frequency and function in key (pulse) modes, which leads to an increase in electromagnetic interference (EMI). Nonlinear and periodic (impulse) loads, non-sinusoidal (pulsation) of the electromotive force and nonlinearity of the internal parameters of the source and input circuits of consumers distort the shape of the input voltage lead to an increase in thermal losses from the higher harmonic currents, aging of the insulation, increase in the weight of the power supply filter units, resonance at higher harmonics. The most important task is to analyze the operation of electrotechnical devices based on HEMC from the point of view of creating EMIs and assessing their electromagnetic compatibility (EMC) with power supply systems (PSS). The article presents the results of research on the operation of an IHS, the operation principle of a secondary power supply source of which is based on the operation of a half-bridge autonomous inverter, the switching circuit of which is made in the form of a HEMC, called the «multifunctional integrated electromagnetic component»" (MIEC).

  20. Applications of Advanced Electromagnetics Components and Systems

    CERN Document Server

    Kouzaev, Guennadi A

    2013-01-01

    This text, directed to the microwave engineers and Master and PhD students, is on the use of electromagnetics to the development and design of advanced integrated components distinguished by their extended field of applications. The results of hundreds of authors scattered in numerous journals and conference proceedings are carefully reviewed and classed.  Several chapters are to refresh the knowledge of readers in advanced electromagnetics. New techniques are represented by compact electromagnetic–quantum equations which can be used in modeling of microwave-quantum integrated circuits of future In addition, a topological method to the boundary value problem analysis is considered with the results and examples.  One extended chapter is for the development and design of integrated components for extended bandwidth applications, and the technology and electromagnetic issues of silicon integrated transmission lines, transitions, filters, power dividers, directional couplers, etc are considered. Novel prospec...

  1. Severe Multisensory Speech Integration Deficits in High-Functioning School-Aged Children with Autism Spectrum Disorder (ASD) and Their Resolution During Early Adolescence

    Science.gov (United States)

    Foxe, John J.; Molholm, Sophie; Del Bene, Victor A.; Frey, Hans-Peter; Russo, Natalie N.; Blanco, Daniella; Saint-Amour, Dave; Ross, Lars A.

    2015-01-01

    Under noisy listening conditions, visualizing a speaker's articulations substantially improves speech intelligibility. This multisensory speech integration ability is crucial to effective communication, and the appropriate development of this capacity greatly impacts a child's ability to successfully navigate educational and social settings. Research shows that multisensory integration abilities continue developing late into childhood. The primary aim here was to track the development of these abilities in children with autism, since multisensory deficits are increasingly recognized as a component of the autism spectrum disorder (ASD) phenotype. The abilities of high-functioning ASD children (n = 84) to integrate seen and heard speech were assessed cross-sectionally, while environmental noise levels were systematically manipulated, comparing them with age-matched neurotypical children (n = 142). Severe integration deficits were uncovered in ASD, which were increasingly pronounced as background noise increased. These deficits were evident in school-aged ASD children (5–12 year olds), but were fully ameliorated in ASD children entering adolescence (13–15 year olds). The severity of multisensory deficits uncovered has important implications for educators and clinicians working in ASD. We consider the observation that the multisensory speech system recovers substantially in adolescence as an indication that it is likely amenable to intervention during earlier childhood, with potentially profound implications for the development of social communication abilities in ASD children. PMID:23985136

  2. Integration of Full Tensor Gravity and Z-Axis Tipper Electromagnetic Passive Low Frequency EM Instruments for Simultaneous Data Acquisition - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Wieberg, Scott [Bell Geospace, Inc., Houston, TX (United States)

    2016-12-02

    Ground gravity is a common and useful tool for geothermal exploration. Gravity surveys map density changes in the subsurface that may be caused by tectonic deformation such as faulting, fracturing, plutonism, volcanism, hydrothermal alteration, etc. Full Tensor Gravity Gradient (FTG) data has been used for over a decade in both petroleum and mining exploration to map changes in density associated with geologic structure. Measuring the gravity gradient, rather than the gravity field, provides significantly higher resolution data. Modeling studies have shown FTG data to be a viable tool for geothermal exploration, but no FTG data had been acquired for geothermal applications to date. Electromagnetic methods have been used for geothermal exploration for some time. The Z-Axis Tipper Electromagnetic (ZTEM) was a newer technology that had found success in mapping deep conductivity changes for mining applications. ZTEM had also been used in limited tests for geothermal exploration. This newer technology provided the ability to cost effectively map large areas whilst detailing the electrical properties of the geological structures at depths. The ZTEM is passive and it uses naturally occurring audio frequency magnetic (AFMAG) signals as the electromagnetic triggering source. These geophysical methods were to be tested over a known geothermal site to determine whether or not the data provided the information required for accurately interpreting the subsurface geologic structure associated with a geothermal deposit. After successful acquisition and analysis of the known source area, an additional survey of a “greenfield” area was to be completed. The final step was to develop a combined interpretation model and determine if the combination produced a higher confident geophysical model compared to models developed using each of the technologies individually.

  3. Electromagnetic wave energy conversion research

    Science.gov (United States)

    Bailey, R. L.; Callahan, P. S.

    1975-01-01

    Known electromagnetic wave absorbing structures found in nature were first studied for clues of how one might later design large area man-made radiant-electric converters. This led to the study of the electro-optics of insect dielectric antennae. Insights were achieved into how these antennae probably operate in the infrared 7-14um range. EWEC theoretical models and relevant cases were concisely formulated and justified for metal and dielectric absorber materials. Finding the electromagnetic field solutions to these models is a problem not yet solved. A rough estimate of losses in metal, solid dielectric, and hollow dielectric waveguides indicates future radiant-electric EWEC research should aim toward dielectric materials for maximum conversion efficiency. It was also found that the absorber bandwidth is a theoretical limitation on radiant-electric conversion efficiency. Ideally, the absorbers' wavelength would be centered on the irradiating spectrum and have the same bandwith as the irradiating wave. The EWEC concept appears to have a valid scientific basis, but considerable more research is needed before it is thoroughly understood, especially for the complex randomly polarized, wide band, phase incoherent spectrum of the sun. Specific recommended research areas are identified.

  4. The electromagnetic calorimeter for the solenoidal tracker at RHIC. A Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Beddo, M.E.; Bielick, E.; Dawson, J.W. [Argonne National Lab., IL (United States)] [and others; The STAR EMC Collaboration

    1993-09-22

    This report discusses the following on the electromagnetic calorimeter for the solenoidal tracker at RHIC: conceptual design; the physics of electromagnetic calorimetry in STAR; trigger capability; integration into STAR; and cost, schedule, manpower, and funding.

  5. A general analytical expression for the three-dimensional Franck-Condon integral and simulation of the photodetachment spectrum of the PO2- anion

    Science.gov (United States)

    Liang, Jun; Cui, Fang; Wang, Ru; Huang, Wei; Cui, Zhifeng

    2013-04-01

    Calculations of Franck-Condon factors are crucial for interpreting vibronic spectra of molecules and studying nonradiative processes. We have derived straightforwardly a more general analytical expression for the calculation of the three-dimensional Franck-Condon overlap integrals on the basis of harmonic oscillator approximation under the influence of mode mixing effects. This new analytical expression was applied to study the photoelectron spectra of PO2-. The theoretical spectrum obtained by employing CCSD(T) values is in excellent agreement with the observed one. An 'irregular spacing' observed in the experimental photoelectron spectrum of PO2- is interpreted as contributing from a hot-band sequence of the bending vibration ω2 and combination bands of the stretching vibration ω1 and the bending vibration ω2. In addition, the equilibrium geometry parameters, r(O-P) = 1.495 ± 0.005 Å and ∠(O-P-O) = 119.5 ± 0.5°, of theXA1 state of PO2-, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation.

  6. Dynamic event Tress applied to sequences Full Spectrum LOCA. Calculating the frequency of excedeence of damage by integrated Safety Analysis Methodology

    International Nuclear Information System (INIS)

    Gomez-Magan, J. J.; Fernandez, I.; Gil, J.; Marrao, H.; Queral, C.; Gonzalez-Cadelo, J.; Montero-Mayorga, J.; Rivas, J.; Ibane-Llano, C.; Izquierdo, J. M.; Sanchez-Perea, M.; Melendez, E.; Hortal, J.

    2013-01-01

    The Integrated Safety Analysis (ISA) methodology, developed by the Spanish Nuclear Safety council (CSN), has been applied to obtain the dynamic Event Trees (DETs) for full spectrum Loss of Coolant Accidents (LOCAs) of a Westinghouse 3-loop PWR plant. The purpose of this ISA application is to obtain the Damage Excedence Frequency (DEF) for the LOCA Event Tree by taking into account the uncertainties in the break area and the operator actuation time needed to cool down and de pressurize reactor coolant system by means of steam generator. Simulations are performed with SCAIS, a software tool which includes a dynamic coupling with MAAP thermal hydraulic code. The results show the capability of the ISA methodology to obtain the DEF taking into account the time uncertainty in human actions. (Author)

  7. Microscopic integral cross section measurements in the Be(d,n) neutron spectrum for applications in neutron dosimetry, radiation damage and the production of long-lived radionuclides

    International Nuclear Information System (INIS)

    Smith, D.L.; Meadows, J.W.; Greenwood, L.R.

    1990-01-01

    Integral neutron-reaction cross sections have been measured, relative to the U-238 neutron fission cross-section standard, for 27 reactions which are of contemporary interest in various nuclear applications (e.g., fast-neutron dosimetry, neutron radiation damage and the production of long-lived activities which affect nuclear waste disposal). The neutron radiation field employed in this study was produced by bombarding a thick Be-metal target with 7-MeV deuterons from an accelerator. The experimental results are reported along with detailed information on the associated measurement uncertainties and their correlations. These data are also compared with corresponding calculated values, based on contemporary knowledge of the differential cross sections and of the Be(d,n) neutron spectrum. Some conclusions are reached on the utility of this procedure for neutron-reaction data testing

  8. Spectrum integrated (n,He) cross section comparison and least squares analysis for /sup 6/Li and /sup 10/B in benchmark fields

    International Nuclear Information System (INIS)

    Schenter, R.E.; Oliver, B.M.; Farrar, H. IV

    1987-01-01

    Spectrum integrated cross sections for /sup 6/Li and /sup 10/B from five benchmark fast reactor neutron fields are compared with calculated values obtained using the ENDF/B-V Cross Section Files. The benchmark fields include the Coupled Fast Reactivity Measurements Facility (CFRMF) at the Idaho National Engineering Laboratory, the 10% Enriched U-235 Critical Assembly (BIG-10) at Los Alamos National Laboratory, the Sigma Sigma and Fission Cavity fields of the BR-1 reactor at CEN/SCK, and the Intermediate-Energy Standard Neutron Field (ISNF) at the National Bureau of Standards. Results from least square analyses using the FERRET computer code to obtain adjusted cross section values and their uncertainties are presented. Input to these calculations include the above five benchmark data sets. These analyses indicate a need for revision in the ENDF/B-V files for the /sup 10/B cross section for energies above 50 keV

  9. Spectrum integrated (n,He) cross section comparisons and least squares analyses for 6Li and 10B in benchmark fields

    International Nuclear Information System (INIS)

    Schenter, R.E.; Oliver, B.M.; Farrar, H. IV.

    1986-06-01

    Spectrum integrated cross sections for 6 Li and 10 B from five benchmark fast reactor neutron fields are compared with calculated values obtained using the ENDF/B-V Cross Section Files. The benchmark fields include the Coupled Fast Reactivity Measurements Facility (CFRMF) at the Idaho National Engineering Laboratory, the 10% Enriched U-235 Critical Assembly (BIG-10) at Los Alamos National Laboratory, the Sigma-Sigma and Fission Cavity fields of the BR-1 reactor at CEN/SCK, and the Intermediate Energy Standard Neutron Field (ISNF) at the National Bureau of Standards. Results from least square analyses using the FERRET computer code to obtain adjusted cross section values and their uncertainties are presented. Input to these calculations include the above five benchmark data sets. These analyses indicate a need for revision in the ENDF/B-V files for the 10 B and 6 Li cross sections for energies above 50 keV

  10. Integration of GIS, Electromagnetic and Electrical Methods in the Delimitation of Groundwater Polluted by Effluent Discharge (Salamanca, Spain: A Case Study

    Directory of Open Access Journals (Sweden)

    Rubén Vidal Montes

    2017-11-01

    Full Text Available The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance. Geophysical methods (electromagnetic induction and electric resistivity tomography use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.

  11. Integration of GIS, Electromagnetic and Electrical Methods in the Delimitation of Groundwater Polluted by Effluent Discharge (Salamanca, Spain): A Case Study.

    Science.gov (United States)

    Montes, Rubén Vidal; Martínez-Graña, Antonio Miguel; Martínez Catalán, José Ramón; Arribas, Puy Ayarza; Sánchez San Román, Francisco Javier; Zazo, Caridad

    2017-11-10

    The present work envisages the possible geometry of a contaminated plume of groundwater near hospital facilities by combining GIS (Geographic Information System) and geophysical methods. The rock underlying the soil and thin sedimentary cover of the study area is moderately fractured quartzite, which makes aquifers vulnerable to pollution. The GIS methodology is used to calculate the area that would be affected by the effluent source of residual water, based on algorithms that consider ground surface mapping (slopes, orientations, accumulated costs and cost per distance). Geophysical methods (electromagnetic induction and electric resistivity tomography) use changes in the electrical conductivity or resistivity of the subsurface to determine the geometry of the discharge and the degree of contamination. The model presented would allow a preliminary investigation regarding potential corrective measures.

  12. Study on Electromagnetic Interference of high-speed railway EMU

    OpenAIRE

    CHENG Qiang; LIU Jin-jiang; CHENG Ning

    2013-01-01

    Electromagnetic radiation generated by pantograph-catenaries detachment is one of the inevitable problems with the development of high-speed railway this paper is focusing on the generating mechanism and characteristics of electromagnetic noise caused by pantograph-catenaries system. Based on previous research, we build an integrated model of catenaries and locomotive system, and study the electromagnetic disturbance characteristics using software FEKO. The simulation experiment results in th...

  13. Electromagnetic wave scattering by aerial and ground radar objects

    CERN Document Server

    Sukharevsky, Oleg I

    2014-01-01

    Electromagnetic Wave Scattering by Aerial and Ground Radar Objects presents the theory, original calculation methods, and computational results of the scattering characteristics of different aerial and ground radar objects. This must-have book provides essential background for computing electromagnetic wave scattering in the presence of different kinds of irregularities, as well as Summarizes fundamental electromagnetic statements such as the Lorentz reciprocity theorem and the image principleContains integral field representations enabling the study of scattering from various layered structur

  14. Electromagnetic wave matching device

    International Nuclear Information System (INIS)

    Hirata, Yosuke; Mitsunaka, Yoshika; Hayashi, Ken-ichi; Ito, Yasuyuki.

    1997-01-01

    The present invention provides a matching device capable of increasing an efficiency of combining beams of electromagnetic waves outputted from an output window of a gyrotron which is expected for plasma heating of a thermonuclear reactor and an electromagnetic wave transmission system as high as possible. Namely, an electromagnetic wave matching device reflects beams of electromagnetic waves incident from an inlet by a plurality of phase correction mirrors and combines them to an external transmission system through an exit. In this case, the phase correction mirrors change the phase of the beams of electromagnetic waves incident to the phase correction mirrors by a predetermined amount corresponding to the position of the reflection mirrors. Then, the beams of electromagnetic waves outputted, for example, from a gyrotron can properly be shaped as desired for the intensity and the phase. As a result, combination efficiency with the transmission system can be increased. (I.S.)

  15. Electromagnetic Gowdy universe

    International Nuclear Information System (INIS)

    Charach, C.

    1979-01-01

    Following Gowdy and Berger we construct an inhomogeneous closed electromagnetic universe with three-torus topology. This model is obtained as a result of the homogeneity breaking in the electromagnetic Bianchi type-I universe and contains interacting gravitational and electromagnetic waves. This cosmological solution provides an exactly solvable model for the study of the nonlinear fully relativistic regime of coupled electromagnetic and gravitational fields in the early universe. The asymptotic behavior is considered (i) in the vicinity of the initial singularity and (ii) in the high-frequency limit. It is shown that the effects of coupling between electromagnetic and gravitational waves cause an evolution which is significantly different from that of the vacuum model. The influence of the primordial homogeneous electromagnetic field on the dynamics of the model is also discussed

  16. Electromagnetic ultrasonic guided waves

    CERN Document Server

    Huang, Songling; Li, Weibin; Wang, Qing

    2016-01-01

    This book introduces the fundamental theory of electromagnetic ultrasonic guided waves, together with its applications. It includes the dispersion characteristics and matching theory of guided waves; the mechanism of production and theoretical model of electromagnetic ultrasonic guided waves; the effect mechanism between guided waves and defects; the simulation method for the entire process of electromagnetic ultrasonic guided wave propagation; electromagnetic ultrasonic thickness measurement; pipeline axial guided wave defect detection; and electromagnetic ultrasonic guided wave detection of gas pipeline cracks. This theory and findings on applications draw on the author’s intensive research over the past eight years. The book can be used for nondestructive testing technology and as an engineering reference work. The specific implementation of the electromagnetic ultrasonic guided wave system presented here will also be of value for other nondestructive test developers.

  17. Basic Electromagnetism and Materials

    CERN Document Server

    Moliton, André

    2007-01-01

    Basic Electromagnetism and Materials is the product of many years of teaching basic and applied electromagnetism. This textbook can be used to teach electromagnetism to a wide range of undergraduate science majors in physics, electrical engineering or materials science. However, by making lesser demands on mathematical knowledge than competing texts, and by emphasizing electromagnetic properties of materials and their applications, this textbook is uniquely suited to students of materials science. Many competing texts focus on the study of propagation waves either in the microwave or optical domain, whereas Basic Electromagnetism and Materials covers the entire electromagnetic domain and the physical response of materials to these waves. Professor André Moliton is Director of the Unité de Microélectronique, Optoélectronique et Polymères (Université de Limoges, France), which brings together three groups studying the optoelectronics of molecular and polymer layers, micro-optoelectronic systems for teleco...

  18. Review on Computational Electromagnetics

    Directory of Open Access Journals (Sweden)

    P. Sumithra

    2017-03-01

    Full Text Available Computational electromagnetics (CEM is applied to model the interaction of electromagnetic fields with the objects like antenna, waveguides, aircraft and their environment using Maxwell equations.  In this paper the strength and weakness of various computational electromagnetic techniques are discussed. Performance of various techniques in terms accuracy, memory and computational time for application specific tasks such as modeling RCS (Radar cross section, space applications, thin wires, antenna arrays are presented in this paper.

  19. Static electromagnetic frequency changers

    CERN Document Server

    Rozhanskii, L L

    1963-01-01

    Static Electromagnetic Frequency Changers is about the theory, design, construction, and applications of static electromagnetic frequency changers, devices that used for multiplication or division of alternating current frequency. It is originally published in the Russian language. This book is organized into five chapters. The first three chapters introduce the readers to the principles of operation, the construction, and the potential applications of static electromagnetic frequency changers and to the principles of their design. The two concluding chapters use some hitherto unpublished work

  20. Ionization in a quantized electromagnetic field

    International Nuclear Information System (INIS)

    Gonoskov, I. A.; Vugalter, G. A.; Mironov, V. A.

    2007-01-01

    An analytical expression for a matrix element of the transition from a bound state of an electron in an atom to continuum states is obtained by solving the problem of interaction of the electron with a quantized electromagnetic field. This expression is used to derive formulas for the photoelectron spectrum and the rate of ionization of the simplest model atomic system upon absorption of an arbitrary number of photons. The expressions derived are analyzed and compared with the corresponding relationships obtained via other approaches. It is demonstrated that there are differences as compared to the case of the classical field. In particular, the photoelectron spectrum exhibits dips due to the destructive interference of the transition amplitudes in the quantized electromagnetic field

  1. Model for Electromagnetic Information Leakage

    OpenAIRE

    Mao Jian; Li Yongmei; Zhang Jiemin; Liu Jinming

    2013-01-01

    Electromagnetic leakage will happen in working information equipments; it could lead to information leakage. In order to discover the nature of information in electromagnetic leakage, this paper combined electromagnetic theory with information theory as an innovative research method. It outlines a systematic model of electromagnetic information leakage, which theoretically describes the process of information leakage, intercept and reproduction based on electromagnetic radiation, and ana...

  2. Electromagnetic Interface Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Electromagnetic Interface Testing facilitysupports such testing asEmissions, Field Strength, Mode Stirring, EMP Pulser, 4 Probe Monitoring/Leveling System, and...

  3. Measurement of electromagnetic pulses generated during interactions of high power lasers with solid targets

    International Nuclear Information System (INIS)

    De Marco, M.; Krása, J.; Margarone, D.; Giuffrida, L.; Vrana, R.; Velyhan, A.; Korn, G.; Weber, S.; Cikhardt, J.; Pfeifer, M.; Krouský, E.; Ullschmied, J.; Ahmed, H.; Borghesi, M.; Kar, S.; Limpouch, J.; Velardi, L.; Side, D. Delle; Nassisi, V.

    2016-01-01

    A target irradiated with a high power laser pulse, blows off a large amount of charge and as a consequence the target itself becomes a generator of electromagnetic pulses (EMP) owing to high return current flowing to the ground through the target holder. The first measurement of the magnetic field induced by the neutralizing current reaching a value of a few kA was performed with the use of an inductive target probe at the PALS Laser Facility (Cikhardt et al. Rev. Sci. Instrum. 85 (2014) 103507). A full description of EMP generation should contain information on the spatial distribution and temporal variation of the electromagnetic field inside and outside of the interaction chamber. For this reason, we consider the interaction chamber as a resonant cavity in which different modes of EMP oscillate for hundreds of nanoseconds, until the EMP is transmitted outside through the glass windows and EM waves are attenuated. Since the experimental determination of the electromagnetic field distribution is limited by the number of employed antennas, a mapping of the electromagnetic field has to be integrated with numerical simulations. Thus, this work reports on a detailed numerical mapping of the electromagnetic field inside the interaction chamber at the PALS Laser Facility (covering a frequency spectrum from 100 MHz to 3 GHz) using the commercial code COMSOL Multiphysics 5.2. Moreover we carried out a comparison of the EMP generated in the parallelepiped-like interaction chamber used in the Vulcan Petawatt Laser Facility at the Rutherford Appleton Laboratory, against that produced in the spherical interaction chamber of PALS.

  4. Understanding zero-point energy in the context of classical electromagnetism

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2016-01-01

    Today’s textbooks of electromagnetism give the particular solution to Maxwell’s equations involving the integral over the charge and current sources at retarded times. However, the texts fail to emphasise that the choice of the incoming-wave boundary conditions corresponding to solutions of the homogeneous Maxwell equations must be made based upon experiment. Here we discuss the role of these incoming-wave boundary conditions for an experimenter with a hypothetical charged harmonic oscillator as his equipment. We describe the observations of the experimenter when located near a radio station or immersed in thermal radiation at temperature T . The classical physicists at the end of the 19th century chose the incoming-wave boundary conditions for the homogeneous Maxwell equations based upon the experimental observations of Lummer and Pringsheim which measured only the thermal radiation which exceeded the random radiation surrounding their measuring equipment; the physicists concluded that they could take the homogeneous solutions to vanish at zero temperature. Today at the beginning of the 21st century, classical physicists must choose the incoming-wave boundary conditions for the homogeneous Maxell equations to correspond to the full radiation spectrum revealed by the recent Casimir force measurements which detect all the radiation surrounding conducting parallel plates, including the radiation absorbed and emitted by the plates themselves. The random classical radiation spectrum revealed by the Casimir force measurements includes electromagnetic zero-point radiation, which is missing from the spectrum measured by Lummer and Pringsheim, and which cannot be eliminated by going to zero temperature. This zero-point radiation will lead to zero-point energy for all systems which have electromagnetic interactions. Thus the choice of the incoming-wave boundary conditions on the homogeneous Maxwell equations is intimately related to the ideas of zero-point energy and

  5. An Electromagnetic Beam Converter

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to an electromagnetic beam converter and a method for conversion of an input beam of electromagnetic radiation having a bell shaped intensity profile a(x,y) into an output beam having a prescribed target intensity profile l(x',y') based on a further development...

  6. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  7. Electromagnetically Operated Counter

    Science.gov (United States)

    Goldberg, H D; Goldberg, M I

    1951-12-18

    An electromagnetically operated counter wherein signals to be counted are applied to cause stepwise rotation of a rotatable element which is connected to a suitable register. The mechanism involved consists of a rotatable armature having three spaced cores of magnetic material and a pair of diametrically opposed electromagnets with a suitable pulsing circuit to actuate the magnets.

  8. Electromagnetic cyclotron harmonic waves

    International Nuclear Information System (INIS)

    Ohnuma, T.; Watanabe, T.; Hamamatsu, K.

    1981-09-01

    Electromagnetic electron cyclotron harmonic waves just below the electron cyclotron harmonics are investigated numerically and experimentally. Backward waves which are observed to propagate nearly perpendicular to the magnetic field just below the electron cyclotron frequency in a high density magnetoplasma are confirmed to be in accord with the theoretical electromagnetic cyclotron waves. (author)

  9. Influence of gravitation on the propagation of electromagnetic radiation

    Science.gov (United States)

    Mashhoon, B.

    1975-01-01

    The existence of a general helicity-rotation coupling is demonstrated for electromagnetic waves propagating in the field of a slowly rotating body and in the Goedel universe. This coupling leads to differential focusing of circularly polarized radiation by a gravitational field which is detectable for a rapidly rotating collapsed body. The electromagnetic perturbations and their frequency spectrum are given for the Goedel universe. The spectrum of frequencies is bounded from below by the characteristic rotation frequency of the Goedel universe. If the universe were rotating, the differential focusing effect would be extremely small due to the present upper limit on the anisotropy of the microwave background radiation.

  10. Electromagnetic fields from mobile phone base station - variability analysis.

    Science.gov (United States)

    Bienkowski, Pawel; Zubrzak, Bartlomiej

    2015-09-01

    The article describes the character of electromagnetic field (EMF) in mobile phone base station (BS) surroundings and its variability in time with an emphasis on the measurement difficulties related to its pulse and multi-frequency nature. Work also presents long-term monitoring measurements performed recently in different locations in Poland - small city with dispersed building development and in major polish city - dense urban area. Authors tried to determine the trends in changing of EMF spectrum analyzing daily changes of measured EMF levels in those locations. Research was performed using selective electromagnetic meters and also EMF meter with spectrum analysis.

  11. Speak, Move, Play and Learn with Children on the Autism Spectrum: Activities to Boost Communication Skills, Sensory Integration and Coordination Using Simple Ideas from Speech and Language Pathology and Occupational Therapy

    Science.gov (United States)

    Brady, Lois Jean; Gonzalez, America X.; Zawadzki, Maciej; Presley, Corinda

    2012-01-01

    This practical resource is brimming with ideas and guidance for using simple ideas from speech and language pathology and occupational therapy to boost communication, sensory integration, and coordination skills in children on the autism spectrum. Suitable for use in the classroom, at home, and in community settings, it is packed with…

  12. Electromagnetic Methods of Lightning Detection

    Science.gov (United States)

    Rakov, V. A.

    2013-11-01

    Both cloud-to-ground and cloud lightning discharges involve a number of processes that produce electromagnetic field signatures in different regions of the spectrum. Salient characteristics of measured wideband electric and magnetic fields generated by various lightning processes at distances ranging from tens to a few hundreds of kilometers (when at least the initial part of the signal is essentially radiation while being not influenced by ionospheric reflections) are reviewed. An overview of the various lightning locating techniques, including magnetic direction finding, time-of-arrival technique, and interferometry, is given. Lightning location on global scale, when radio-frequency electromagnetic signals are dominated by ionospheric reflections, is also considered. Lightning locating system performance characteristics, including flash and stroke detection efficiencies, percentage of misclassified events, location accuracy, and peak current estimation errors, are discussed. Both cloud and cloud-to-ground flashes are considered. Representative examples of modern lightning locating systems are reviewed. Besides general characterization of each system, the available information on its performance characteristics is given with emphasis on those based on formal ground-truth studies published in the peer-reviewed literature.

  13. Pion electromagnetic mass difference in QCD

    International Nuclear Information System (INIS)

    Margvelashvili, M.V.

    1989-01-01

    The results of currents algebra and the theory of partial conservation of axial currents the sum rules for the calculation of electromagnetic pion mass difference are developed. The procedure applied is suitable for other physical applications as it permits to calculate the integrals from different correlators with the assigned weight functions

  14. Electromagnetic shaft seal

    International Nuclear Information System (INIS)

    Takahashi, Kenji.

    1994-01-01

    As an electromagnetic shaft seal, there are disposed outwarding electromagnetic induction devices having generating power directing to an electroconductive fluid as an object of sealing, and inwarding electromagnetic induction device added coaxially. There are disposed elongate rectangular looped first coils having a predetermined inner diameter, second coils having the same shape and shifted by a predetermined pitch relative to the first coil and third coil having the same shape and shifted by a predetermined pitch relative to the second coil respectively each at a predetermined inner diameter of clearance to the outwarding electromagnetic induction devices and the inwarding electromagnetic induction device. If the inwarding electromagnetic induction device and the outwarding electromagnetic induction device are operated, they are stopped at a point that the generating power of the former is equal with the sum of the generating power of the latter and a differential pressure. When three-phase AC is charged to the first coil, the second coil and the third coil successively, a force is generated in the advancing direction of the magnetic field in the electroconductive fluid by the similar effect to that of a linear motor, and the seal is maintained at high reliability. Moreover, the limit for the rotational angle of the shaft is not caused. (N.H.)

  15. Bio-WiTel: A Low-Power Integrated Wireless Telemetry System for Healthcare Applications in 401-406 MHz Band of MedRadio Spectrum.

    Science.gov (United States)

    Srivastava, Abhishek; Sankar K, Nithin; Chatterjee, Baibhab; Das, Devarshi; Ahmad, Meraj; Kukkundoor, Rakesh Keshava; Saraf, Vivek; Ananthapadmanabhan, Jayachandran; Sharma, Dinesh Kumar; Baghini, Maryam Shojaei

    2018-03-01

    This paper presents a low-power integrated wireless telemetry system (Bio-WiTel) for healthcare applications in 401-406 MHz frequency band of medical device radiocommunication (MedRadio) spectrum. In this paper, necessary design considerations for telemetry system for short-range (upto 3 m) communication of biosignals are presented. These considerations help greatly in making important design decisions, which eventually lead to a simple, low power, robust, and reliable wireless system implementation. Transmitter (TX) and receiver (RX) of Bio-WiTel system have been fabricated in 180 nm mixed mode CMOS technology. While radiating -18 dBm output power to a 50 antenna, the packaged TX IC consumes 250 μW power in 100% on state from 1 V supply, whereas the RX IC consumes 990 μW power from 1.8 V supply with a sensitivity of -75 dBm. Measurement results show that TX fulfils the spectral mask requirement at a maximum data rate of 72 kb/s. The measured bit error rate (BER) of RX is less than for a data rate of 200 kb/s. The proposed Bio-WiTel system is tested successfully in home and hospital environments for the communication of electrocardiogram and photoplethysmogram signals at a data rate of 57.6 kb/s with a measured BER of <10 for a maximum distance of 3 m.

  16. Dependence of the Ratio between the Resonance Integral and Thermal Neutron Cross Section on the Deviation of the Epithermal Neutron Spectrum from the 1/E Law

    International Nuclear Information System (INIS)

    Soliman, N.F.

    2012-01-01

    In k 0 - Neutron Activation Analysis (k 0 -NAA), the conversion from the tabulated Q 0 (ratio of the resonance integral to thermal neutron cross-section)to Q 0 (α) (α is the shape factor of the epithermal neutron flux, indicating the deviation of the epithermal neutron spectrum from the ideal 1/E shape) are calculated using a FORTRAN program. The calculations are done for most elements that can be detected by neutron activation using different values of the parameter (α) ranging from -0.1≤α≤+0.1. The obtained data are used to study the dependence of the values (α) on the irradiation position factor in (k 0 -NAA)equation for some selected isotopes differ in their resonance energy and its Q 0 values. The results show that, the irradiation factor is affective mainly for low thermal tro epithermal flux ratio f especially for Q 0 value greater than 50. so consequently determining the irradiation parameters α value is not needed for irradiation positions that rich with thermal neutron. But for high f values the irradiation position factor should be taken into account. On the other hand the constructed FORTRAN program can be used to calculate the value Q 0 (α) directly for different value of α

  17. Curved electromagnetic missiles

    International Nuclear Information System (INIS)

    Myers, J.M.; Shen, H.M.; Wu, T.T.

    1989-01-01

    Transient electromagnetic fields can exhibit interesting behavior in the limit of great distances from their sources. In situations of finite total radiated energy, the energy reaching a distant receiver can decrease with distance much more slowly than the usual r - 2 . Cases of such slow decrease have been referred to as electromagnetic missiles. All of the wide variety of known missiles propagate in essentially straight lines. A sketch is presented here of a missile that can follow a path that is strongly curved. An example of a curved electromagnetic missile is explicitly constructed and some of its properties are discussed. References to details available elsewhere are given

  18. Electromagnetic spatial coherence wavelets

    International Nuclear Information System (INIS)

    Castaneda, R.; Garcia-Sucerquia, J.

    2005-10-01

    The recently introduced concept of spatial coherence wavelets is generalized for describing the propagation of electromagnetic fields in the free space. For this aim, the spatial coherence wavelet tensor is introduced as an elementary amount, in terms of which the formerly known quantities for this domain can be expressed. It allows analyzing the relationship between the spatial coherence properties and the polarization state of the electromagnetic wave. This approach is completely consistent with the recently introduced unified theory of coherence and polarization for random electromagnetic beams, but it provides a further insight about the causal relationship between the polarization states at different planes along the propagation path. (author)

  19. Comparison of RF spectrum prediction methods for dynamic spectrum access

    Science.gov (United States)

    Kovarskiy, Jacob A.; Martone, Anthony F.; Gallagher, Kyle A.; Sherbondy, Kelly D.; Narayanan, Ram M.

    2017-05-01

    Dynamic spectrum access (DSA) refers to the adaptive utilization of today's busy electromagnetic spectrum. Cognitive radio/radar technologies require DSA to intelligently transmit and receive information in changing environments. Predicting radio frequency (RF) activity reduces sensing time and energy consumption for identifying usable spectrum. Typical spectrum prediction methods involve modeling spectral statistics with Hidden Markov Models (HMM) or various neural network structures. HMMs describe the time-varying state probabilities of Markov processes as a dynamic Bayesian network. Neural Networks model biological brain neuron connections to perform a wide range of complex and often non-linear computations. This work compares HMM, Multilayer Perceptron (MLP), and Recurrent Neural Network (RNN) algorithms and their ability to perform RF channel state prediction. Monte Carlo simulations on both measured and simulated spectrum data evaluate the performance of these algorithms. Generalizing spectrum occupancy as an alternating renewal process allows Poisson random variables to generate simulated data while energy detection determines the occupancy state of measured RF spectrum data for testing. The results suggest that neural networks achieve better prediction accuracy and prove more adaptable to changing spectral statistics than HMMs given sufficient training data.

  20. Statistical electromagnetics: Complex cavities

    NARCIS (Netherlands)

    Naus, H.W.L.

    2008-01-01

    A selection of the literature on the statistical description of electromagnetic fields and complex cavities is concisely reviewed. Some essential concepts, for example, the application of the central limit theorem and the maximum entropy principle, are scrutinized. Implicit assumptions, biased

  1. Broadband Electromagnetic Technology

    Science.gov (United States)

    2011-06-23

    The objectives of this project are to continue the enhancements to the combined Broadband Electromagnetic and Full Encirclement Unit (BEM-FEU) technologies and to evaluate the systems capability in the laboratory and the field. The BEM instrument ...

  2. Magnetorheological suspension electromagnetic brake

    International Nuclear Information System (INIS)

    Bica, Ioan

    2004-01-01

    The magnetorheological suspension (MRS) brake is of the monoblock type. The main part of the electromagnetic brake is an electromagnet, between whose poles two MRS disks are placed. For distances between disks of 0.65x10 -3 m±10%, revolutions of the electric motor, coupled to the electromagnetic brake, ranging between 200 and 1600 rev/min and braking powers of up to 85 W, there are no differences in revolutions between the disks of the electromagnetic brake. For fixed revolutions of the electric motor, the revolution of the parallel disk can be modified continuously by means of the intensity of the magnetic field. In all cases, the quantity of MRS is of 0.35x10 -3 kg

  3. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  4. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  5. The classical electromagnetic field

    CERN Document Server

    Eyges, Leonard

    2010-01-01

    This excellent text covers a year's course in advanced theoretical electromagnetism, first introducing theory, then its application. Topics include vectors D and H inside matter, conservation laws for energy, momentum, invariance, form invariance, covariance in special relativity, and more.

  6. Spectrum Recombination.

    Science.gov (United States)

    Greenslade, Thomas B., Jr.

    1984-01-01

    Describes several methods of executing lecture demonstrations involving the recombination of the spectrum. Groups the techniques into two general classes: bringing selected portions of the spectrum together using lenses or mirrors and blurring the colors by rapid movement or foreshortening. (JM)

  7. Mathematics and electromagnetism

    International Nuclear Information System (INIS)

    Rodriguez Danta, M.

    2000-01-01

    Symbiosis between mathematics and electromagnetism is analyzed in a simple and concise manner by taking a historical perspective. The universal tool character of mathematical models allowed the transfer of models from several branches of physics into the realm of electromagnetism by drawing analogies. The mutual interdependence between covariant formulation and tensor calculus is marked. The paper focuses on the guiding idea of field theory and Maxwell's equations. Likewise, geometrization of interactions in connection with gauge fields is also noted. (Author)

  8. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  9. Electromagnetic Manifestation of Earthquakes

    OpenAIRE

    Uvarov Vladimir

    2017-01-01

    In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  10. Electromagnetic Manifestation of Earthquakes

    Directory of Open Access Journals (Sweden)

    Uvarov Vladimir

    2017-01-01

    Full Text Available In a joint analysis of the results of recording the electrical component of the natural electromagnetic field of the Earth and the catalog of earthquakes in Kamchatka in 2013, unipolar pulses of constant amplitude associated with earthquakes were identified, whose activity is closely correlated with the energy of the electromagnetic field. For the explanation, a hypothesis about the cooperative character of these impulses is proposed.

  11. Electromagnetic reverberation chambers

    CERN Document Server

    Besnier, Philippe

    2013-01-01

    Dedicated to a complete presentation on all aspects of reverberation chambers, this book provides the physical principles behind these test systems in a very progressive manner. The detailed panorama of parameters governing the operation of electromagnetic reverberation chambers details various applications such as radiated immunity, emissivity, and shielding efficiency experiments.In addition, the reader is provided with the elements of electromagnetic theory and statistics required to take full advantage of the basic operational rules of reverberation chambers, including calibration proc

  12. Nuclear β decay with a massive neutrino in an external electromagnetic field

    International Nuclear Information System (INIS)

    Ternov, I.M.; Rodionov, V.N.; Zhulego, V.G.; Lobanov, A.E.; Pavlova, O.S.; Dorofeev, O.F.

    1986-01-01

    Beta decay in the presence of an external electromagnetic field is investigated, taking into account the non-zero neutrino rest mass. The spectrum of electrons and polarisation effects of different orientations of nuclear spin are considered. It is shown that the electromagnetic wave substantially modifies the boundaries of the spectrum of β electrons. The results, which include an analysis of the total decay probability in intense magnetic fields, may have various astrophysical implications. (author)

  13. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  14. Electromagnetic processes and interactions

    International Nuclear Information System (INIS)

    Scheck, F.

    1983-01-01

    The electron and muon are important tools in testing the structure of the fundamental electromagnetic interactions. On the other hand, if these interactions are known, they serve as ideal probes for the internal structure of complex hadronic targets such as nucleons and nuclei. Purely electromagnetic interactions play a distinctive role, for obvious experimental reasons: At low and intermediate energies the effective electromagnetic coupling is larger by many orders of magnitude than the weak couplings, so that electromagnetic processes are measurable to much higher accuracy than purely weak processes. The present chapter deals primarily with applications of charged leptons to problems of nucleon and nuclear structure, and to selected precision tests of quantum electrodynamics (QED) at low momentum transfers. In most of these applications the electromagnetic interactions effectively appear in the form of external fields in the leptonic particle's Dirac equation. This is the domain where the physics of (electromagnetically) interacting leptons can still be described in the framework of an effective, though relativistic, single particle theory. (orig.)

  15. Covariant electromagnetic field lines

    Science.gov (United States)

    Hadad, Y.; Cohen, E.; Kaminer, I.; Elitzur, A. C.

    2017-08-01

    Faraday introduced electric field lines as a powerful tool for understanding the electric force, and these field lines are still used today in classrooms and textbooks teaching the basics of electromagnetism within the electrostatic limit. However, despite attempts at generalizing this concept beyond the electrostatic limit, such a fully relativistic field line theory still appears to be missing. In this work, we propose such a theory and define covariant electromagnetic field lines that naturally extend electric field lines to relativistic systems and general electromagnetic fields. We derive a closed-form formula for the field lines curvature in the vicinity of a charge, and show that it is related to the world line of the charge. This demonstrates how the kinematics of a charge can be derived from the geometry of the electromagnetic field lines. Such a theory may also provide new tools in modeling and analyzing electromagnetic phenomena, and may entail new insights regarding long-standing problems such as radiation-reaction and self-force. In particular, the electromagnetic field lines curvature has the attractive property of being non-singular everywhere, thus eliminating all self-field singularities without using renormalization techniques.

  16. The electromagnetic α3 contributions to e+e--annihilation into fermions in the electroweak theory. Total cross section σT and integrated asymmetry AFB

    International Nuclear Information System (INIS)

    Bardin, D.Yu.; Bilenky, S.M.; Riemann, T.

    1988-01-01

    Analytic expressions are obtained for the integrated α 3 QED contributions to the total cross section σ T and the forward-backward asymmtery A FB in the process e + e - → f + f - γ. Photons from soft and hard bremsstrahlung are assumed not to be observed. The calculations are performed in the ultrarelativistic approximation in fermion masses, m f 2 Z 2 , M Z I Z , but the mass M Z and width Γ Z of the neutral weak gauge boson Z are treated without any further approximations

  17. Classical radiation theory of charged particles moving in electromagnetic fields in nonabsorbable isotropic media

    International Nuclear Information System (INIS)

    Konstantinovich, A.V.; Melnychuk, S.V.; Konstantinovich, I.A.

    2002-01-01

    The integral expressions for spectral-angular and spectral distributions of the radiation power of heterogeneous charged particles system moving on arbitrary trajectory in nonabsorbable isotropic media media with ε≠1 , μ≠1 are obtained using the Lorentz's self-interaction method. In this method a proper electromagnetic field, acting on electron, is defined as a semi difference between retarded and advanced potentials (Dirac, 1938). The power spectrum of Cherenkov radiation for the linear uniformly moving heterogeneous system of charged particles are obtained. It is found that the expression for the radiation power of heterogeneous system of charged particles becomes simplified when a system of charged particles is homogeneous. In this case the radiation power includes the coherent factor. It is shown what the redistribution effects in energy of the radiation spectrum of the studied system are caused by the coherent factor. The radiation spectrum of the system of electrons moving in a circle in this medium is discrete. The Doppler effect causes the appearance of the new harmonics for the system of electrons moving in a spiral. These harmonics form the region of continuous radiation spectrum. (authors)

  18. Path integrals for inertialess classical particles under-going rapid stochastic trembling. I

    International Nuclear Information System (INIS)

    Bezak, V.

    1978-01-01

    Feynman path integrals are studied in reference to the Fokker-Planck (Smoluchowski) equation. Examples are presented including the motion of an inertialess classical charged particle between electrodes in plate and cylindrical capacitors with charges fluctuating rapidly as Gaussian white-noise stochastic processes. Another example concerns magnetodiffusion of a charged particle in an non-polarized electromagnetic beam characterized by a white-noise spectrum. (author)

  19. Volume integral equation for electromagnetic scattering: Rigorous derivation and analysis for a set of multilayered particles with piecewise-smooth boundaries in a passive host medium

    Science.gov (United States)

    Yurkin, Maxim A.; Mishchenko, Michael I.

    2018-04-01

    We present a general derivation of the frequency-domain volume integral equation (VIE) for the electric field inside a nonmagnetic scattering object from the differential Maxwell equations, transmission boundary conditions, radiation condition at infinity, and locally-finite-energy condition. The derivation applies to an arbitrary spatially finite group of particles made of isotropic materials and embedded in a passive host medium, including those with edges, corners, and intersecting internal interfaces. This is a substantially more general type of scatterer than in all previous derivations. We explicitly treat the strong singularity of the integral kernel, but keep the entire discussion accessible to the applied scattering community. We also consider the known results on the existence and uniqueness of VIE solution and conjecture a general sufficient condition for that. Finally, we discuss an alternative way of deriving the VIE for an arbitrary object by means of a continuous transformation of the everywhere smooth refractive-index function into a discontinuous one. Overall, the paper examines and pushes forward the state-of-the-art understanding of various analytical aspects of the VIE.

  20. UMTS signal measurements with digital spectrum analysers

    International Nuclear Information System (INIS)

    Licitra, G.; Palazzuoli, D.; Ricci, A. S.; Silvi, A. M.

    2004-01-01

    The launch of the Universal Mobile Telecommunications System (UNITS), the most recent mobile telecommunications standard has imposed the requirement of updating measurement instrumentation and methodologies. In order to define the most reliable measurement procedure, which is aimed at assessing the exposure to electromagnetic fields, modern spectrum analysers' features for correct signal characterisation has been reviewed. (authors)

  1. Vacuum energy of the electromagnetic field in a rotating system

    International Nuclear Information System (INIS)

    Hacyan, S.; Sarmiento, A.

    1986-01-01

    The vacuum energy of the electromagnetic field is calculated for a uniformly rotating observer. The spectrum of vacuum fluctuations is composed of the zero-point energy with a modified density of states and a contribution due to the rotation which is not thermal. (orig.)

  2. Electromagnetic Radiation: Final Range Environmental Assessment, Revision 1

    Science.gov (United States)

    2009-12-03

    typically include residential, commercial, industrial , agricultural, military, and recreational. Land use also includes areas set aside for...procedures, controls, shielding standards, nominal ocular hazard distance, protective eyewear verification, radiation footprint determination, and...from human activities. An example of these activities includes using the electromagnetic (EM) energy spectrum for communications and industrial

  3. Electromagnetic Evidence of Altered Visual Processing in Autism

    Science.gov (United States)

    Neumann, Nicola; Dubischar-Krivec, Anna M.; Poustka, Fritz; Birbaumer, Niels; Bolte, Sven; Braun, Christoph

    2011-01-01

    Individuals with autism spectrum disorder (ASD) demonstrate intact or superior local processing of visual-spatial tasks. We investigated the hypothesis that in a disembedding task, autistic individuals exhibit a more local processing style than controls, which is reflected by altered electromagnetic brain activity in response to embedded stimuli…

  4. Does electromagnetic radiation accelerate galactic cosmic rays

    Science.gov (United States)

    Eichler, D.

    1977-01-01

    The 'reactor' theories of Tsytovich and collaborators (1973) of cosmic-ray acceleration by electromagnetic radiation are examined in the context of galactic cosmic rays. It is shown that any isotropic synchrotron or Compton reactors with reasonable astrophysical parameters can yield particles with a maximum relativistic factor of only about 10,000. If they are to produce particles with higher relativistic factors, the losses due to inverse Compton scattering of the electromagnetic radiation in them outweigh the acceleration, and this violates the assumptions of the theory. This is a critical restriction in the context of galactic cosmic rays, which have a power-law spectrum extending up to a relativistic factor of 1 million.

  5. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  6. Electromagnetic dissociation of relativistic 28Si by nucleon emission

    Energy Technology Data Exchange (ETDEWEB)

    Sonnadara, Upal Jayasiri [Univ. of Pittsburgh, PA (United States)

    1992-12-01

    A detailed study of the electromagnetic dissociation of 28Si by nucleon emission at Elab/A = 14.6 (GeV/nucleon was carried out with 28Si beams interacting on 208Pb). 120Sn. 64C targets. The measurements apparatus consists of detectors in the target area which measure the energy and charged multiplicity, and a forward spectrometer which measures the position, momentum and energy of the reaction fragments. The exclusive electromagnetic dissociation cross sections for decay channels having multiple nucleons in the final state have been measured which enables the selection of events produced in pure electromagnetic interactions. The measured cross sections agree well with previous measurements obtained for the removal of a few nucleons as well as with measurements on total charge removal cross sections from other experiments. The dependence of the integrated cross sections on the target charge ZT and the target mass AT confirms that for higher Z targets the excitation is largely electromagnetic. Direct measurements of the excitation energy for the electromagnetic dissociation of 28Si → p+27Al and 28Si → n+27Si have been obtained through a calculation of the invariant mass in kinematically, reconstructed events. The excitation energy spectrum for all targets peak near the isovector giant dipole resonance in 28Si. These distributions are well reproduced by combining the photon spectrum calculated using the Weizsaecker-Williams approximation with the experimental data on the photonuclear 28Si(γ,p)27Al and 28Si(γ,n)27Si. The possibilities of observing double giant dipole resonance excitations in 28Si have been investigated with cross section measurements as well as with excitation energy reconstruction.

  7. Electromagnetic field induced biological effects in humans.

    Science.gov (United States)

    Kaszuba-Zwoińska, Jolanta; Gremba, Jerzy; Gałdzińska-Calik, Barbara; Wójcik-Piotrowicz, Karolina; Thor, Piotr J

    2015-01-01

    Exposure to artificial radio frequency electromagnetic fields (EMFs) has increased significantly in recent decades. Therefore, there is a growing scientific and social interest in its influence on health, even upon exposure significantly below the applicable standards. The intensity of electromagnetic radiation in human environment is increasing and currently reaches astronomical levels that had never before experienced on our planet. The most influential process of EMF impact on living organisms, is its direct tissue penetration. The current established standards of exposure to EMFs in Poland and in the rest of the world are based on the thermal effect. It is well known that weak EMF could cause all sorts of dramatic non-thermal effects in body cells, tissues and organs. The observed symptoms are hardly to assign to other environmental factors occurring simultaneously in the human environment. Although, there are still ongoing discussions on non-thermal effects of EMF influence, on May 31, 2011--International Agency for Research on Cancer (IARC)--Agenda of World Health Organization (WHO) has classified radio electromagnetic fields, to a category 2B as potentially carcinogenic. Electromagnetic fields can be dangerous not only because of the risk of cancer, but also other health problems, including electromagnetic hypersensitivity (EHS). Electromagnetic hypersensitivity (EHS) is a phenomenon characterized by the appearance of symptoms after exposure of people to electromagnetic fields, generated by EHS is characterized as a syndrome with a broad spectrum of non-specific multiple organ symptoms including both acute and chronic inflammatory processes located mainly in the skin and nervous systems, as well as in respiratory, cardiovascular systems, and musculoskeletal system. WHO does not consider the EHS as a disease-- defined on the basis of medical diagnosis and symptoms associated with any known syndrome. The symptoms may be associated with a single source of EMF

  8. Electromagnetic radiation optimum neutralizer

    International Nuclear Information System (INIS)

    Smirnov, Igor

    2002-01-01

    This particular article relates to subtle electrical effects, and provides some evidence of a fundamental nature on how subtle low frequency electromagnetic fields might be utilized to protect human body against harmful effects of high frequencies electromagnetic radiation. I have focused my efforts on definite polar polymer compound named EMRON which is patented in the USA. This polar polymer compound can be excited by external high frequencies electromagnetic fields to generate subtle low frequency oscillations that are beneficial for cellular life structures. This concept is based on the possibility of existence of resonance phenomenon between polar polymers and biopolymers such as proteins, nucleic acids, lipids, etc. Low frequency patterns generated by defined polar polymer compound can interact with biostructures and transmit the signals that support and improve cellular functions in the body. The mechanism of this process was confirmed by number of studies. The animal (including human) brain is affected by electromagnetic waves to the extent that production of Alpha or Theta waves can be directly induced into brain by carrying an ELF (extremely low frequency, 5-12 Hz) signal on a microwave carrier frequency. EMRON does not reduce the power of electromagnetic fields. It 'shields' the cellular structures of the body against the harmful effects of EMR. The radiation is still entering the body but the neutralizing effect of EMRON renders the radiation harmless

  9. Elastic metamaterials for tuning circular polarization of electromagnetic waves.

    Science.gov (United States)

    Zárate, Yair; Babaee, Sahab; Kang, Sung H; Neshev, Dragomir N; Shadrivov, Ilya V; Bertoldi, Katia; Powell, David A

    2016-06-20

    Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.

  10. Electromagnetic fields and their impacts

    Science.gov (United States)

    Prša, M. A.; Kasaš-Lažetić, K. K.

    2018-01-01

    The main goal of this paper is to briefly recall some different electromagnetic field definitions, some macroscopic sources of electromagnetic fields, electromagnetic fields classification regarding time dependences, and the ways of field determination in concrete cases. After that, all the mechanisms of interaction between electromagnetic field and substance, on atomic level, are described in details. Interaction between substance and electric field is investigated separately from the substance and magnetic field interaction. It is demonstrated that, in all cases of the unique electromagnetic field, total interaction can be treated as a superposition of two separated interactions. Finally, the main electromagnetic fields surrounding us is cited and discussed.

  11. Embedding electromagnetic band gap structures in printed circuit boards for electromagnetic interference reduction

    NARCIS (Netherlands)

    Tereshchenko, O.V.

    2015-01-01

    Due to the tendency of faster data rates and lower power supply voltage in the integrated circuit (IC) design, Simultaneously Switching Noise (SSN) and ground bounce become serious concerns for designers and testers. This noise can be a source of electromagnetic interference (EMI). It propagates

  12. Applied electromagnetic scattering theory

    CERN Document Server

    Osipov, Andrey A

    2017-01-01

    Besides classical applications (radar and stealth, antennas, microwave engineering), scattering and diffraction are enabling phenomena for some emerging research fields (artificial electromagnetic materials or metamaterials, terahertz technologies, electromagnetic aspects of nano-science). This book is a tutorial for advanced students who need to study diffraction theory. The textbook gives fundamental knowledge about scattering and diffraction of electromagnetic waves and provides some working examples of solutions for practical high-frequency scattering and diffraction problems. The book focuses on the most important diffraction effects and mechanisms influencing the scattering process and describes efficient and physically justified simulation methods - physical optics (PO) and the physical theory of diffraction (PTD) - applicable in typical remote sensing scenarios. The material is presented in a comprehensible and logical form, which relates the presented results to the basic principles of electromag...

  13. Design of a micromachined terahertz electromagnetic crystals (EMXT) channel-drop filter on silicon-substrate

    Science.gov (United States)

    Zhou, Kai; Liu, Yong; Si, Liming; Lv, Xin

    2013-08-01

    An integrated 0.5 THz electromagnetic crystals(EMXT) channel-drop filter based on PBG structure is presented in this paper. A channel-drop filter is a device in which a narrow bandwidth is redirected to another "drop" waveguide while other frequencies are unaffected. It's capable of extracting a certain frequency from a continuous spectrum in the bus channel and passing it to the test channel. It has potential applications in photonic integrated circuits, radio astronomy, THz spectroscopy, THz communication and remote sensing radar receiver. PBG structures(or photonic crystals) are periodic structures which possess band gaps, where the electromagnetic wave of certain ranges of frequencies cannot pass through and is reflected. The proposed channel-drop filter consists of input waveguide,output waveguide and PBG structure. The proposed filter is simulated using the finite element method and can be fabricated by micro-electromechanical systems (MEMS) technology,due to its low cost, high performance and high processing precision.The filter operation principle and fabrication process are discussed.The simulation results show its ability to filter the frequency of 496GHz with a linewidth of approximately 4GHz and transmission of 27.2 dB above background.The loss at resonant frequency is less than 1dB considering the thickness and roughness of gold layer required by the MEMS process.The channel drop efficiency is 84%.

  14. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  15. The theory of electromagnetism

    CERN Document Server

    Jones, D S

    1964-01-01

    The Theory of the Electomagnetism covers the behavior of electromagnetic fields and those parts of applied mathematics necessary to discover this behavior. This book is composed of 11 chapters that emphasize the Maxwell's equations. The first chapter is concerned with the general properties of solutions of Maxwell's equations in matter, which has certain macroscopic properties. The succeeding chapters consider specific problems in electromagnetism, including the determination of the field produced by a variable charge, first in isolation and then in the surface distributions of an antenna. The

  16. Lectures on electromagnetism

    CERN Document Server

    Das, Ashok

    2013-01-01

    These lecture notes on electromagnetism have evolved from graduate and undergraduate EM theory courses given by the author at the University of Rochester, with the basics presented with clarity and his characteristic attention to detail. The thirteen chapters cover, in logical sequence, topics ranging from electrostatics, magnetostatics and Maxwell's equations to plasmas and radiation. Boundary value problems are treated extensively, as are wave guides, electromagnetic interactions and fields. This second edition comprises many of the topics expanded with more details on the derivation of vari

  17. Electromagnetic clutches and couplings

    CERN Document Server

    Vorob'Yeva, T M; Fry, D W; Higinbotham, W

    2013-01-01

    Electromagnetic Clutches and Couplings contains a detailed description of U.S.S.R. electromagnetic friction clutches, magnetic couplings, and magnetic particle couplings. This book is divided into four chapters. The first chapter discusses the design and construction of magnetic (solenoid-operated) couplings, which are very quick-acting devices and used in low power high-speed servo-systems. Chapter 2 describes the possible fields of application, design, construction, and utilization of magnetic particle couplings. The aspects of construction, design, and utilization of induction clutches (sli

  18. Improved Electromagnetic Brake

    Science.gov (United States)

    Martin, Toby B.

    2004-01-01

    A proposed design for an electromagnetic brake would increase the reliability while reducing the number of parts and the weight, relative to a prior commercially available electromagnetic brake. The reductions of weight and the number of parts could also lead to a reduction of cost. A description of the commercial brake is prerequisite to a description of the proposed electromagnetic brake. The commercial brake (see upper part of figure) includes (1) a permanent magnet and an electromagnet coil on a stator and (2) a rotor that includes a steel contact plate mounted, with tension spring loading, on an aluminum hub. The stator is mounted securely on a stationary object, which would ordinarily be the housing of a gear drive or a motor. The rotor is mounted on the shaft of the gear drive or motor. The commercial brake nominally operates in a fail-safe (in the sense of normally braking) mode: In the absence of current in the electromagnet coil, the permanent magnet pulls the contact plate, against the spring tension, into contact with the stator. To release the brake, one excites the electromagnet with a current of the magnitude and polarity chosen to cancel the magnetic flux of the permanent magnet, thereby enabling the spring tension to pull the contact plate out of contact with the stator. The fail-safe operation of the commercial brake depends on careful mounting of the rotor in relation to the stator. The rotor/stator gap must be set with a tolerance between 10 and 15 mils (between about 0.25 and about 0.38 mm). If the gap or the contact pad is thicker than the maximum allowable value, then the permanent magnetic field will not be strong enough to pull the steel plate across the gap. (For this reason, any contact pad between the contact plate and the stator must also be correspondingly thin.) If the gap exceeds the maximum allowable value because of shaft end play, it becomes impossible to set the brake by turning off the electromagnet current. Although it may

  19. Essentials of Computational Electromagnetics

    CERN Document Server

    Sheng, Xin-Qing

    2012-01-01

    Essentials of Computational Electromagnetics provides an in-depth introduction of the three main full-wave numerical methods in computational electromagnetics (CEM); namely, the method of moment (MoM), the finite element method (FEM), and the finite-difference time-domain (FDTD) method. Numerous monographs can be found addressing one of the above three methods. However, few give a broad general overview of essentials embodied in these methods, or were published too early to include recent advances. Furthermore, many existing monographs only present the final numerical results without specifyin

  20. Electromagnetic Effices from Impacts on Spacecraft

    Science.gov (United States)

    Close, Sigrid

    2018-04-01

    Hypervelocity micro particles, including meteoroids and space debris with masses electromagnetic pulse (EMP) with a broad frequency spectrum. Subsequent plasma oscillations resulting from instabilities can also emit significant power and may be responsible for many reported satellite anomalies. We present theory and recent results from ground-based impact tests aimed at characterizing hypervelocity impact plasma and show that impact-produced radio frequency (RF) emissions occurred in frequencies ranging from VHF through L-band and that these emissions were highly correlated with fast (> 20 km/s) impacts that produced a fully ionized plasma.

  1. Collective electromagnetic mode in layered conductors

    International Nuclear Information System (INIS)

    Gokhfel'd, V.M.; Peschanskij, V.G.

    1999-01-01

    In the frames of the Landau theory we consider the transverse zero-sound wave in a single-component charged Fermi-liquid with the quasi-two-dimensional electron energy spectrum. In such media, unlike conventional metals, the electromagnetic wave propagation along the weak conductivity direction is possible even at low intensity of the Fermi-liquid interaction. We find the field distribution in a sample, calculate the wave impedance and discuss the possibility of observation of the effect under the pulse condition

  2. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    Science.gov (United States)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2018-01-09

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EM radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.

  3. Electromagnetic Fields in Reverberant Environments

    NARCIS (Netherlands)

    Vogt-Ardatjew, Robert Andrzej

    2017-01-01

    The phenomenon of resonating electromagnetic (EM) fields has been commonly and successfully exploited in reverberation chambers (RC) for the purpose of electromagnetic compatibility (EMC) testing, as well as modeling multipath environments. Although largely successful, the currently used statistical

  4. New perspectives on classical electromagnetism

    OpenAIRE

    Cote, Paul J.

    2009-01-01

    The fallacies associated with the gauge concept in electromagnetism are illustrated. A clearer and more valid formulation of the basics of classical electromagnetism is provided by recognizing existing physical constraints as well as the physical reality of the vector potential.

  5. Electromagnetic fields in stratified media

    CERN Document Server

    Li, Kai

    2009-01-01

    Dealing with an important branch of electromagnetic theory with many useful applications in subsurface communication, radar, and geophysical prospecting and diagnostics, this book introduces electromagnetic theory and wave propagation in complex media.

  6. Electromagnetic interference: a radiant future!

    NARCIS (Netherlands)

    Leferink, Frank Bernardus Johannes

    2015-01-01

    Although Electromagnetic Interference and Electromagnetic Compatibility are well established domains, the introduction of new technologies results in new challenges. Changes in both measurement techniques, and technological trends resulting in new types of interference are described. These are the

  7. Impact of Auditory Integrative Training on Transforming Growth Factor-β1 and Its Effect on Behavioral and Social Emotions in Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Al-Ayadhi, Laila; Alhowikan, Abdulrahman Mohammed; Halepoto, Dost Muhammad

    2018-01-01

    To explore the impact of auditory integrative training (AIT) on the inflammatory biomarker transforming growth factor (TGF)-β1 and to assess its effect on social behavior in children with autism spectrum disorder (ASD). In this cross-sectional study, 15 patients (14 males and 1 female) with ASD aged 3-12 years were recruited. All were screened for autism using the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). Plasma levels of TGF-β1 were measured in all patients using a sandwich enzyme-linked immunoassay (ELISA) immediately and 1 and 3 months after the AIT sessions. Pre- and post-AIT behavioral scores were also calculated for each child using the Childhood Autism Rating Scale (CARS), the Social Responsiveness Scale (SRS), and the Short Sensory Profile (SSP). Data were analyzed using the Statistical Package for the Social Sciences (SPSS 21.0 for Windows). Plasma levels of TGF-β1 significantly increased to 85% immediately after AIT (20.13 ± 12 ng/mL, p < 0.05), to 95% 1 month after AIT (21.2 ± 11 ng/mL, p < 0.01), and to 105% 3 months after AIT (22.25 ± 16 ng/mL, p < 0.01) compared to before AIT (10.85 ± 8 ng/mL). Results also revealed that behavioral rating scales (CARS, SRS, and SSP) improved in terms of disease severity after AIT. Increased plasma levels of TGF-β1 support the therapeutic effect of AIT on TGF-β1 followed by improvement in social awareness, social cognition, and social communication in children with ASD. Furthermore, TGF-β1 was associated with severity in all scores tested (CARS, SRS, and SSP); if confirmed in studies with larger sample sizes, TGF-β1 may be considered as a marker of ASD severity and to assess the efficacy of therapeutic interventions. © 2018 The Author(s) Published by S. Karger AG, Basel.

  8. Low frequency electromagnetic field sensor

    International Nuclear Information System (INIS)

    Zhu Min; Zhou Yan; He Yicheng; Zheng Zhenxing; Liu Sunkun

    2000-01-01

    The measurement technique of low frequency electromagnetic field is reported. According to this principle, the authors have designed a sensor, which is used to measure the natural electromagnetic field, SLEMP and electromagnetic signals generated by some explosions. The frequency band of this sensor is from 0.08 Hz to 2 MHz

  9. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  10. Disconnected electromagnetic form factors

    International Nuclear Information System (INIS)

    Wilcox, Walter

    2001-01-01

    Preliminary results of a calculation of disconnected nucleon electromagnetic factors factors on the lattice are presented. The implementation of the numerical subtraction scheme is outlined. A comparison of results for electric and magnetic disconnected form factors on two lattice sizes with those of the Kentucky group is presented. Unlike previous results, the results found in this calculation are consistent with zero in these sectors

  11. Electromagnetic distance measurement

    CERN Document Server

    1967-01-01

    This book brings together the work of forty-eight geodesists from twenty-five countries. They discuss various new electromagnetic distance measurement (EDM) instruments - among them the Tellurometer, Geodimeter, and air- and satellite-borne systems - and investigate the complex sources of error.

  12. Equivalence principles and electromagnetism

    Science.gov (United States)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  13. Electromagnetic Environments Simulator (EMES)

    International Nuclear Information System (INIS)

    Varnado, G.B.

    1975-11-01

    A multipurpose electromagnetic environments simulator has been designed to provide a capability for performing EMR, EMP, and lightning near stroke testing of systems, subsystems and components in a single facility. This report describes the final facility design and presents the analytical and experimental verification of the design

  14. Pregnancy and electromagnetic fields

    International Nuclear Information System (INIS)

    Bisseriex, Ch.; Laurent, P.; Cabaret, Ph.; Bonnet, C.; Marteau, E.; Le Berre, G.; Tirlemont, S.; Castro, H.; Becker, A.; Demaret, Ph.; Donati, M.; Ganem, Y.; Moureaux, P.

    2011-07-01

    This document briefly indicates the status of knowledge regarding the effect of magnetic fields on biological tissues and pregnancy, outlines the lack of data on some frequencies and the weakness of studies on long term effects on child development. It evokes the issue of exposure assessment and that of identification of workstations exposed to electromagnetic fields

  15. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  16. "Hearing" Electromagnetic Waves

    Science.gov (United States)

    Rojo, Marta; Munoz, Juan

    2014-01-01

    In this work, an educational experience is described in which a microwave communication link is used to make students aware that all electromagnetic waves have the same physical nature and properties. Experimental demonstrations are linked to theoretical concepts to increase comprehension of the physical principles underlying electromagnetic…

  17. Electromagnetic resonance waves

    International Nuclear Information System (INIS)

    Villaba, J.M.; Manjon, F.J.; Guirao, A.; Andres, M.V.

    1994-01-01

    We describe in this paper a set of experiments designed to make qualitative and quantitative measurements on electromagnetic resonances of several simple systems. The experiments are designed for the undergraduate laboratory of Electricity and Magnetism in Physics. These experiments can help the students understanding the concept of resonance, which appears in different fields of Physics. (Author) 8 refs

  18. Electromagnetic compatibility design and cabling system rules

    International Nuclear Information System (INIS)

    Raimbourg, J.

    2009-01-01

    This report is devoted to establish EMC (Electromagnetic Compatibility) design and cabling system rules. It is intended for hardware designers in charge of designing electronic maps or integrating existing materials into a comprehensive system. It is a practical guide. The rules described in this document do not require enhanced knowledge of advanced mathematical or physical concepts. The key point is to understand phenomena with a pragmatic approach to highlight the design and protection rules. (author)

  19. Gauge theory of weak, electromagnetic and dual electromagnetic interactions

    International Nuclear Information System (INIS)

    Soln, J.

    1980-01-01

    An SU 2 x U 1 algebra, in addition to the ordinary electric charge, also establishes the existence of the dual electric charge. This is taken as an indication of the existence of dual electromagnetic interactions in nature. Here, the unification of weak, electromagnetic and dual electromagnetic interactions is performed. The Yang-Mills-type group which contains the electromagnetic, dual electromagnetic and weak currents is SUsub(L,2) x U 1 x U' 1 . The masses of vector mesons are generated through the Higgs-Kibble mechanism. A simple consistency requirement suggests that dual electromagnetism and ordinary electromagnetism have the same strengths, leading the theory to a rather good agreement with experiments. (author)

  20. The Spectrum of the Universe.

    Science.gov (United States)

    Hill, Ryley; Masui, Kiyoshi W; Scott, Douglas

    2018-05-01

    Cosmic background (CB) radiation, encompassing the sum of emission from all sources outside our own Milky Way galaxy across the entire electromagnetic spectrum, is a fundamental phenomenon in observational cosmology. Many experiments have been conceived to measure it (or its constituents) since the extragalactic Universe was first discovered; in addition to estimating the bulk (cosmic monopole) spectrum, directional variations have also been detected over a wide range of wavelengths. Here we gather the most recent of these measurements and discuss the current status of our understanding of the CB from radio to γ-ray energies. Using available data in the literature, we piece together the sky-averaged intensity spectrum and discuss the emission processes responsible for what is observed. We examine the effect of perturbations to the continuum spectrum from atomic and molecular line processes and comment on the detectability of these signals. We also discuss how one could, in principle, obtain a complete census of the CB by measuring the full spectrum of each spherical harmonic expansion coefficient. This set of spectra of multipole moments effectively encodes the entire statistical history of nuclear, atomic, and molecular processes in the Universe.

  1. Zellweger Spectrum

    Science.gov (United States)

    ... severe defect, resulting in essentially nonfunctional peroxisomes. This phenomenon produces the range of severity of the disorders. How is the Zellweger Spectrum Diagnosed? The distinctive shape of the head and face of a child born with one of the diseases of the ...

  2. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    Science.gov (United States)

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  3. Weak turbulence and broad-spectrum excitation in a nonmagnetized electron beam via second-harmonic generation

    International Nuclear Information System (INIS)

    Bogdanov, A.T.

    1990-01-01

    The nonlinear evolution of an initially monoenergetic [ν-bar(t = 0) = (0,0,u)] electron beam propagating in a nonmagnetized dielectric medium of permittivity ε > 1, with initial velocity u ≥ c/√ε (where c is the vacuum speed of light) is investigated. The specific instability of the beam under such conditions is the cause of the generation of a broad spectrum of transverse electromagnetic waves coupled to the simultaneous excitation of the second harmonic of the beam's oscillations, both at the expense of the beam's initial kinetic energy. The system of self-consistent nonlinear equations, describing the particle-field dynamics, is treated in the spirit of the weak-turbulence approach. The integrals of the resulting nonlinear system of equations for the amplitudes of the fields of the electron density are used to evaluate the spectral distribution of the amplitudes in the saturation phase, and hence the efficiency of the transformation of the beam's energy into electromagnetic radiation as a function of the width of the spectrum of the initially present electromagnetic fluctuations. A substantial increase in this efficiency is observed in comparison with the single-mode case. (author)

  4. Disentanglement of Electromagnetic Baryon Properties

    Science.gov (United States)

    Sadasivan, Daniel; Doring, Michael

    2017-01-01

    Through recent advances in experimental techniques, the precise extraction of the spectrum of baryonic resonances and their properties becomes possible. Helicity couplings at the resonance pole are fundamental parameters describing the electromagnetic properties of resonances and enabling the comparison of theoretical models with data. We have extracted them from experiments carried out at Jefferson Lab and other facilities using a multipole analysis within the Julich-Bonn framework. Special attention has been paid to the uncertainties and correlations of helicity couplings. Using the world data on the reaction γp -> ηp , we have calculated, for the first time, the covariance matrix. Our results are useful in several ways. They quantify uncertainties but also correlations of helicity couplings. Second, they can tell us quantitatively how useful a given polarization measurement is. Third, they can tell us how the measurement of a new observable would constrain and disentangle the resonance properties which could be helpful in the design of new experiments. Finally, on the subject of the missing resonance problem, model selection techniques and statistical tests allow us to quantify the significance of whether a resonance exists. Supported by NSF CAREER Grant No. PHY-1452055, NSF PIF Grant No. 1415459, by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177, and by Research Center Julich through the HPC grant jikp07.

  5. Wave propagation in electromagnetic media

    International Nuclear Information System (INIS)

    Davis, J.L.

    1990-01-01

    This book is concerned with wave propagation in reacting media, specifically in electromagnetic materials. An account is presented of the mathematical methods of wave phenomena in electromagnetic materials. The author presents the theory of time-varying electromagnetic fields, which involves a discussion of Faraday's laws, Maxwell's equations and their application to electromagnetic wave propagation under a variety of conditions. The author gives a discussion of magnetohydrodynamics and plasma physics. Chapters are included on quantum mechanics and the theory of relativity. The mathematical foundation of electromagnetic waves vis a vis partial differential equations is discussed

  6. Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves

    International Nuclear Information System (INIS)

    Hsu, P.; Kuehl, H.H.

    1983-01-01

    Electromagnetic effects on the self-modulation of nonlinear lower hybrid waves in an inhomogeneous plasma are studied for both broad and narrow spectrum excitations. For broad spectrum excitation, the complex modified Korteweg--de Vries equation is modified by two additional terms due to the electromagnetic correction and inhomogeneity. Numerical solutions of this equation for typical tokamak parameters show that these terms suppress soliton formation. For narrow spectrum excitation, the electromagnetic correction produces an additional dispersive term in the differential equation governing the wave envelope. This term opposes thermal dispersion, resulting in significant self-modulation. Numerical solutions show constriction and splitting of the envelope as well as spreading of the Fourier spectrum

  7. Portable Electromagnetic Induction Sensor with Integrated Positioning

    Science.gov (United States)

    2013-08-20

    Society for Optical Engineering, 5794(Part I):346 – 357, 2005. ISSN 0277-786X. 4, 6, 79 [15] L. R. Pasion . A unified approach to uxo discrimination using...models. 2010. SERDP-MR-1572. 6 B. Barrowes, D. George, F. Shubitidze -References- -103- MR-1712 - Pedemis Final Report REFERENCES [29] L. Pasion . Uxo

  8. Multidisciplinary Assessment and Treatment of Self-Injurious Behavior in Autism Spectrum Disorder and Intellectual Disability: Integration of Psychological and Biological Theory and Approach

    Science.gov (United States)

    Minshawi, Noha F.; Hurwitz, Sarah; Morriss, Danielle; McDougle, Christopher J.

    2015-01-01

    The objective of this review is to consider the psychological (largely behavioral) and biological [neurochemical, medical (including genetic), and pharmacological] theories and approaches that contribute to current thinking about the etiology and treatment of self-injurious behavior (SIB) in individuals with autism spectrum disorder and/or…

  9. The Development of Co-Speech Gesture and Its Semantic Integration with Speech in 6- to 12-Year-Old Children with Autism Spectrum Disorders

    Science.gov (United States)

    So, Wing-Chee; Wong, Miranda Kit-Yi; Lui, Ming; Yip, Virginia

    2015-01-01

    Previous work leaves open the question of whether children with autism spectrum disorders aged 6-12?years have delay in producing gestures compared to their typically developing peers. This study examined gestural production among school-aged children in a naturalistic context and how their gestures are semantically related to the accompanying…

  10. Reduced Tract Integrity of the Model for Social Communication Is a Neural Substrate of Social Communication Deficits in Autism Spectrum Disorder

    Science.gov (United States)

    Lo, Yu-Chun; Chen, Yu-Jen; Hsu, Yung-Chin; Tseng, Wen-Yih Isaac; Gau, Susan Shur-Fen

    2017-01-01

    Background: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with social communication deficits as one of the core symptoms. Recently, a five-level model for the social communication has been proposed in which white matter tracts corresponding to each level of the model are identified. Given that the model for social communication…

  11. A study of coFeB magnetic yoke based on planar electromagnet

    Science.gov (United States)

    Qin, L.; Li, Q.; Yuan, Yong J.

    2017-07-01

    This paper studies the fabrication of a novel planar electromagnet consisting of a planar copper coil and a magnetic yoke. CoFeB was used as the magnetic yoke material instead of the traditional permanent magnets. The planar electromagnet was fabricated and optimized to maximize the electromagnetic force, especially with varying CoFeB thickness. The micro-planar electromagnet was fabricated successfully by the traditional micro-electro-mechanical-system (MEMS) techniques and XRD, VSM were used to characterize the performance of the electromagnet. The planar electromagnet exhibits superior perpendicular magnetic anisotropy (PMA) and 0.006 emu of MS was achieved following 2 min deposition of CoFeB thin film. By integrating with other micro apparatuses, it is anticipated that the planar electromagnet will have potential applications in areas such as biosensors, biological medicine, drug delivery, chemical analysis and environmental monitoring.

  12. Electromagnetic fields and waves

    CERN Document Server

    Iskander, Magdy F

    2013-01-01

    The latest edition of Electromagnetic Fields and Waves retains an authoritative, balanced approach, in-depth coverage, extensive analysis, and use of computational techniques to provide a complete understanding of electromagnetic—important to all electrical engineering students. An essential feature of this innovative text is the early introduction of Maxwell's equations, together with the quantifying experimental observations made by the pioneers who discovered electromagnetics. This approach directly links the mathematical relations in Maxwell's equations to real experiments and facilitates a fundamental understanding of wave propagation and use in modern practical applications, especially in today's wireless world. New and expanded topics include the conceptual relationship between Coulomb's law and Gauss's law for calculating electric fields, the relationship between Biot-Savart's and Ampere's laws and their use in calculating magnetic fields from current sources, the development of Faraday's law from e...

  13. Nanofocusing of electromagnetic radiation

    DEFF Research Database (Denmark)

    Gramotnev, D. K.; Bozhevolnyi, Sergey I.

    2014-01-01

    Nanofocusing of electromagnetic radiation, that is, reducing the cross sections of propagating optical modes far beyond the diffraction limit in dielectric media, can be achieved in tapered metal-dielectric waveguides that support surface plasmon-polariton modes. Although the main principles...... radiation on the nanoscale. Here, we present the underlying physical principles of radiation nanofocusing in metallic nanostructures, overview recent progress and major developments, and consider future directions and potential applications of this subfield of nano-optics....

  14. Electromagnetic Hammer for Metalworking

    Science.gov (United States)

    Anderson, S. A.; Brunet, F.; Dowd, A.; Durham, R.; Ezell, J.; Gorr, G.; Hartley, D.; Jackson, F.; Marchand, J.; Macfarlane, W.; hide

    1986-01-01

    High eddy currents apply pressure for cold-forming. Coil housing constructed for mechanical strength to hold coil against magnetic force, to maintain electrical contact with coil ends, and to maintain insulation between coil turns. Drilled holes placed to facilitate release of bubbles during potting. In contrast with mechanical hammers, electromagnetic hammer requires no dynamic material contact with workpiece; consequently, produces almost no change in metal grain structure.

  15. Electromagnetic compatibility and earths

    International Nuclear Information System (INIS)

    Duque Henao, Alan; Casas Ospina, Favio

    2001-01-01

    It is such the increment of applications of electric and electronic equipment in the modern companies that the lack of control of the electromagnetic perturbations, brings, get big losses and difficulties in the normal operations. The paper contribute to ago with base in the challenges that day-by-day are confronting, where the settings to earth, to be the foundation of the electric building, are fundamental for a good coexistence among the different equipment s

  16. Hard Electromagnetic Processes

    International Nuclear Information System (INIS)

    Richard, F.

    1987-09-01

    Among hard electromagnetic processes, I will use the most recent data and focus on quantitative test of QCD. More specifically, I will retain two items: - hadroproduction of direct photons, - Drell-Yan. In addition, I will briefly discuss a recent analysis of ISR data obtained with AFS (Axial Field Spectrometer) which sheds a new light on the e/π puzzle at low P T

  17. Introduction to electromagnetic theory

    CERN Document Server

    Owen, George E

    2003-01-01

    A direct, stimulating approach to electromagnetic theory, this text employs matrices and matrix methods for the simple development of broad theorems. The author uses vector representation throughout the book, with numerous applications of Poisson's equation and the Laplace equation (the latter occurring in both electronics and magnetic media). Contents include the electrostatics of point charges, distributions of charge, conductors and dielectrics, currents and circuits, and the Lorentz force and the magnetic field. Additional topics comprise the magnetic field of steady currents, induced ele

  18. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  19. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  20. Archaeology of active galaxies across the electromagnetic spectrum

    NARCIS (Netherlands)

    Morganti, Raffaella

    2017-01-01

    Analytical and numerical galaxy-formation models indicate that active galactic nuclei (AGNs) likely play a prominent role in the formation and evolution of galaxies. However, quantifying this effect requires knowledge of how the nuclear activity proceeds throughout the life of a galaxy, whether it

  1. The Supercritical Pile Model: Prompt Emission Across the Electromagnetic Spectrum

    Science.gov (United States)

    Kazanas, Demos; Mastichiadis, A.

    2008-01-01

    The "Supercritical Pile" GRB model is an economical model that provides the dissipation necessary to convert explosively the energy stored in relativistic protons in the blast wave of a GRB into radiation; at the same time it produces spectra whose luminosity peaks at 1 MeV in the lab frame, the result of the kinematics of the proton-photon - pair production reaction that effects the conversion of proton energy to radiation. We outline the fundamental notions behind the "Supercritical Pile" model and discuss the resulting spectra of the prompt emission from optical to gamma-ray energies of order Gamma^2 m_ec^2, (Gamma is the Lorentz factor of the blast wave) present even in the absence of an accelerated particle distribution and compare our results to bursts that cover this entire energy range. Particular emphasis is given on the emission at the GLAST energy range both in the prompt and the afterglow stages of the burst.

  2. Calibration of Star Formation Rates Across the Electromagnetic Spectrum

    Science.gov (United States)

    Cardiff, Ann H.

    2011-01-01

    Measuring and mapping star-forming activity in galaxies is a key element for our understanding of their broad- band spectra, and their structure and evolution in our local, as well as the high-redshift Universe. The main tool we use for these measurements is the observed luminosity in various spectral lines and/or continuum bands. However, the available star-formation rate (SFR) indicators are often discrepant and subject to physical biases and calibration uncertainties. We are organizing a special session at the 2012 IAU General Assembly in Beijing, China (August 20-31, 2012) in order to bring together theoreticians and observers working in different contexts of star-formation to discuss the status of current SFR indicators, to identify open issues and to define a strategic framework for their resolution. The is an ideal time to synthesize information from the current golden era of space astrophysics and still have influence on the upcoming missions that will broaden our view of star-formation. We will be including high-energy constraints on SFR in the program and encourage participation from the high energy astrophysics community.

  3. AESOP 3.0 Highlights: Afloat Electromagnetic Spectrum Operations Program

    Science.gov (United States)

    2011-03-01

    Restricted Frequency List (JRFL) MCEB Pub 8, Version 2.0.1 (1 July 2010); Tactical Information - JRFL  Enhanced Mapping Capability 2-D and 3-D maps with...includes Joint Restricted Frequency List (JRFL) frequencies UNCLASSIFIED 14 Satellite Availability & Analysis (SA2) AESOP 3.0 – SA2 v5.7.2 Software

  4. Electromagnetic radiation unmasked

    International Nuclear Information System (INIS)

    Hart, P.

    1996-01-01

    This article describes the nature of the electromagnetic waves, what they are and how do they affect us. Current concern is focused on exposure to low level power-frequency magnetic fields like microwave radiation from mobile phones and leaking microwave ovens; high power radiation from defence and airport radars; fields close to high voltage transmission lines; radio frequency fields from industrial welders and heaters and DC magnetic fields in aluminium smelters. These fields with frequency less than 300 GHz do not carry sufficient energy to break chemical bonds and it is assumed that they cannot damage cell DNA. The amount of radiation absorbed by a human exposed to far field electromagnetic radiation (EMR) depends on the orientation and size of the person. In the 30-300 MHz range it is possible to excite resonance in the whole or partial body such as the head. It is emphasised that since there are some evidence that electromagnetic fields do harm, a policy of prudent avoidance is recommended, especially for children. ills

  5. The electromagnetic dark sector

    International Nuclear Information System (INIS)

    Jimenez, Jose Beltran; Maroto, Antonio L.

    2010-01-01

    We consider electromagnetic field quantization in an expanding universe. We find that the covariant (Gupta-Bleuler) method exhibits certain difficulties when trying to impose the quantum Lorenz condition on cosmological scales. We thus explore the possibility of consistently quantizing without imposing such a condition. In this case there are three physical states, which are the two transverse polarizations of the massless photon and a new massless scalar mode coming from the temporal and longitudinal components of the electromagnetic field. An explicit example in de Sitter space-time shows that it is still possible to eliminate the negative norm state and to ensure the positivity of the energy in this theory. The new state is decoupled from the conserved electromagnetic currents, but is non-conformally coupled to gravity and therefore can be excited from vacuum fluctuations by the expanding background. The cosmological evolution ensures that the new state modifies Maxwell's equations in a totally negligible way on sub-Hubble scales. However, on cosmological scales it can give rise to a non-negligible energy density which could explain in a natural way the present phase of accelerated expansion of the universe.

  6. Coherent hybrid electromagnetic field imaging

    Science.gov (United States)

    Cooke, Bradly J [Jemez Springs, NM; Guenther, David C [Los Alamos, NM

    2008-08-26

    An apparatus and corresponding method for coherent hybrid electromagnetic field imaging of a target, where an energy source is used to generate a propagating electromagnetic beam, an electromagnetic beam splitting means to split the beam into two or more coherently matched beams of about equal amplitude, and where the spatial and temporal self-coherence between each two or more coherently matched beams is preserved. Two or more differential modulation means are employed to modulate each two or more coherently matched beams with a time-varying polarization, frequency, phase, and amplitude signal. An electromagnetic beam combining means is used to coherently combine said two or more coherently matched beams into a coherent electromagnetic beam. One or more electromagnetic beam controlling means are used for collimating, guiding, or focusing the coherent electromagnetic beam. One or more apertures are used for transmitting and receiving the coherent electromagnetic beam to and from the target. A receiver is used that is capable of square-law detection of the coherent electromagnetic beam. A waveform generator is used that is capable of generation and control of time-varying polarization, frequency, phase, or amplitude modulation waveforms and sequences. A means of synchronizing time varying waveform is used between the energy source and the receiver. Finally, a means of displaying the images created by the interaction of the coherent electromagnetic beam with target is employed.

  7. Electromagnetic force on a brane

    International Nuclear Information System (INIS)

    Li, Li-Xin

    2016-01-01

    A fundamental assumption in the theory of brane world is that all matter and radiation are confined on the four-dimensional brane and only gravitons can propagate in the five-dimensional bulk spacetime. The brane world theory did not provide an explanation for the existence of electromagnetic fields and the origin of the electromagnetic field equation. In this paper, we propose a model for explaining the existence of electromagnetic fields on a brane and deriving the electromagnetic field equation. Similar to the case in Kaluza–Klein theory, we find that electromagnetic fields and the electromagnetic field equation can be derived from the five-dimensional Einstein field equation. However, the derived electromagnetic field equation differs from the Maxwell equation by containing a term with the electromagnetic potential vector coupled to the spacetime curvature tensor. So it can be considered as generalization of the Maxwell equation in a curved spacetime. The gravitational field equation on the brane is also derived with the stress–energy tensor for electromagnetic fields explicitly included and the Weyl tensor term explicitly expressed with matter fields and their derivatives in the direction of the extra-dimension. The model proposed in the paper can be regarded as unification of electromagnetic and gravitational interactions in the framework of brane world theory. (paper)

  8. Determining hyperfine transitions with electromagnetically induced transparency and optical pumping

    International Nuclear Information System (INIS)

    Lee Yi-Chi; Tsai Chin-Chun; Huang Chen-Han; Chui Hsiang-Chen; Chang Yung-Yung

    2011-01-01

    A system is designed to observe the phenomena of electromagnetically induced transparency and optical pumping in cesium D 1 and D 2 lines at room temperature. When a pump laser is frequency-locked on the top of a hyperfine transition and the frequency of the probe laser scans over another hyperfine transition, a spectrum of V-type electromagnetically induced transparency or an optical pumping can be observed depending on whether the two lasers share a common ground state. Therefore, these results can be used to identify the unknown hyperfine transitions of the D 1 line transitions. For educational purposes, this system is helpful for understanding the electromagnetically induced transparency and the optical pumping

  9. 'Integration'

    DEFF Research Database (Denmark)

    Olwig, Karen Fog

    2011-01-01

    , while the countries have adopted disparate policies and ideologies, differences in the actual treatment and attitudes towards immigrants and refugees in everyday life are less clear, due to parallel integration programmes based on strong similarities in the welfare systems and in cultural notions...... of equality in the three societies. Finally, it shows that family relations play a central role in immigrants’ and refugees’ establishment of a new life in the receiving societies, even though the welfare society takes on many of the social and economic functions of the family....

  10. Electromagnetic Vibration Energy Harvesting Devices Architectures, Design, Modeling and Optimization

    CERN Document Server

    Spreemann, Dirk

    2012-01-01

    Electromagnetic vibration transducers are seen as an effective way of harvesting ambient energy for the supply of sensor monitoring systems. Different electromagnetic coupling architectures have been employed but no comprehensive comparison with respect to their output performance has been carried out up to now. Electromagnetic Vibration Energy Harvesting Devices introduces an optimization approach which is applied to determine optimal dimensions of the components (magnet, coil and back iron). Eight different commonly applied coupling architectures are investigated. The results show that correct dimensions are of great significance for maximizing the efficiency of the energy conversion. A comparison yields the architectures with the best output performance capability which should be preferably employed in applications. A prototype development is used to demonstrate how the optimization calculations can be integrated into the design–flow. Electromagnetic Vibration Energy Harvesting Devices targets the design...

  11. Electromagnetic terrorism – threats in buildings

    Directory of Open Access Journals (Sweden)

    Marek Kuchta

    2015-06-01

    Full Text Available The paper presents the impact of electromagnetic pulses (high power and high frequency pulses — weapon E on technical infrastructure of buildings [1]. The use of modern technologies in intelligent building management i.e. human resources, control and automation systems, efficient buildings space management, requires using a large number of integrated electronic systems. From technical point of view, the intelligent building is a building in which all subsystems (e.g. technical security, air conditioning, ventilation, lighting, power, electricity, etc., interact with each other and create human-friendly environment. The use of specialized electronic systems, processors, microcontrollers in these subsystems may be a trigger of the use of weapons E as an alternative of terrorist attack— disabling automatic building management systems.[b]Keywords[/b]: electromagnetic weapons, distortion, sensitivity, susceptibility

  12. Fast breeder reactor electromagnetic pump

    International Nuclear Information System (INIS)

    Araseki, Hideo; Murakami, Takahiro

    2008-01-01

    Main pumps circulating sodium in the FBR type reactor have been mechanical types, not electromagnetic pumps. Electromagnetic pump of 1-2 m 3 /min has been used as an auxiliary pump. Large sized electromagnetic pumps such as several hundred m 3 /min have not been commercialized due to technical difficulties with electromagnetic instability and pressure pulsations. This article explained electromagnetic and fluid equations and magnetic Reynolds number related with electromagnetic pumps and numerical analysis of instability characteristics and pressure pulsations and then described applications of the results to FBR system. Magnetic Reynolds number must be chosen less than one with appropriate operating frequency and optimum slip of 0.2-0.4. (T. Tanaka)

  13. Evaluation of electromagnetic interference between electromagnet and permanent magnet of reed switch of SMART control rod driver mechanism

    International Nuclear Information System (INIS)

    Hur, H.; Kim, J. H.; Park, J. S.; Yoo, J. Y.; Kim, J. I.

    2002-01-01

    Integral reactors require a fine reactivity control CEDM since the nuclear heating is used during the startup. Although a linear pulse motor type had been chosen for the SMART CEDM, a ball screw type is being considered as an alternative. A ball screw type CEDM driven by a rotary step motor has an emergency insertion system using electromagnet and also has a permanent magnet for RSPT in the upper pressure housing above the electromagnet. So it is necessary to evaluate an electromagnetic interference for reed switches in the vicinity of the electromagnet. This paper describes the design parameters for effective operation and the optimum design point was determined by analyzing the trend of the EMI characteristics

  14. Electromagnetic fields in biological systems

    National Research Council Canada - National Science Library

    Lin, James C

    2012-01-01

    "Focusing on exposure, induced fields, and absorbed energy, this volume covers the interaction of electromagnetic fields and waves with biological systems, spanning static fields to terahertz waves...

  15. Electromagnetic waves in stratified media

    CERN Document Server

    Wait, James R; Fock, V A; Wait, J R

    2013-01-01

    International Series of Monographs in Electromagnetic Waves, Volume 3: Electromagnetic Waves in Stratified Media provides information pertinent to the electromagnetic waves in media whose properties differ in one particular direction. This book discusses the important feature of the waves that enables communications at global distances. Organized into 13 chapters, this volume begins with an overview of the general analysis for the electromagnetic response of a plane stratified medium comprising of any number of parallel homogeneous layers. This text then explains the reflection of electromagne

  16. Handheld Broadband Electromagnetic UXO Sensor

    National Research Council Canada - National Science Library

    Won, I. J; San Filipo, William A; Marqusee, Jeffrey; Andrews, Anne; Robitaille, George; Fairbanks, Jeffrey; Overbay, Larry

    2005-01-01

    The broadband electromagnetic sensor improvement and demonstration undertaken in this project took the prototype GEM-3 and evolved it into an operational sensor with increased bandwidth and dynamic...

  17. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.; Yang, Yang

    2012-01-01

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  18. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  19. Electromagnetic shielding formulae

    International Nuclear Information System (INIS)

    Dahlberg, E.

    1979-02-01

    This addendum to an earlier collection of electromagnetic shielding formulae (TRITA-EPP-75-27) contains simple transfer matrices suitable for calculating the quasistatic shielding efficiency for multiple transverse-field and axial-field cylindrical and spherical shields, as well as for estimating leakage fields from long coaxial cables and the normal-incidence transmission of a plane wave through a multiple plane shield. The differences and similarities between these cases are illustrated by means of equivalent circuits and transmission line analogies. The addendum also includes a discussion of a possible heuristic improvement of some shielding formulae. (author)

  20. Handbook of electromagnetic compatibility

    CERN Document Server

    1995-01-01

    This""know-how""book gives readers a concise understanding of the fundamentals of EMC, from basic mathematical and physical concepts through present, computer-age methods used in analysis, design, and tests. With contributions from leading experts in their fields, the text provides a comprehensive overview. Fortified with information on how to solve potential electromagnetic interference (EMI) problems that may arise in electronic design, practitioners will be betterable to grasp the latest techniques, trends, and applications of this increasingly important engineering discipline.Handbook of E

  1. Introduction to electromagnetic engineering

    CERN Document Server

    Harrington, Roger E

    2003-01-01

    This study of electromagnetic theory introduces students to a broad range of quantities and concepts, imparting the necessary vector analysis and associated mathematics and reinforcing its teachings with several elementary field problems. Based on circuit theory rather than on the classical force-relationship approach, the text uses the theory of electric circuits to provide a system of experiments already familiar to the electrical engineer; a series of field concepts are then introduced as a logical extension of circuit theory. Virtually unobtainable elsewhere, this text was written by a pr

  2. Occupational exposure to electromagnetic fields and chronic diseases

    OpenAIRE

    Håkansson, Niclas

    2003-01-01

    This thesis consider two exposures from the electromagnetic spectrum extremely low-frequency magnetic fields (ELF MF) and ultraviolet (UV) radiation. ELF MF are the lowest and UV radiation ranges among the highest frequencies of non-ionizing radiation. The exposure prevalence of these fields is high in the general population. Most people are exposed daily to either or both types and potential health effects are of great concern. The aim of the thesis was to study occupationa...

  3. Dynamics and Control of a Chaotic Electromagnetic System

    OpenAIRE

    Shun-Chang Chang

    2012-01-01

    In this paper, different nonlinear dynamics analysis techniques are employed to unveil the rich nonlinear phenomena of the electromagnetic system. In particular, bifurcation diagrams, time responses, phase portraits, Poincare maps, power spectrum analysis, and the construction of basins of attraction are all powerful and effective tools for nonlinear dynamics problems. We also employ the method of Lyapunov exponents to show the occurrence of chaotic motion and to verify those numerical simula...

  4. Analysis of the fields emitted by mobile communication systems in terms of electromagnetic security

    International Nuclear Information System (INIS)

    Kerimov, E.A.; Abdullayeva, T.M.; Bayramova, Sh.A.; Mardakhayev, A.V.; Khidirov, A.Sh.

    2009-01-01

    The main technical characteristics of digital communication systems of cellular bond are analyzed in this paper.The peculiarities of the electromagnetic fields near the antenna of digital communication systems of cellular bond with frequency, time and code interleaving of subscriber channels.It is shown that it is necessary to pay attention to relative broadbandness of digital signal spectrum on antenna radiation characteristics at carrying out of works on electromagnetic monitoring

  5. Discrimination between preseismic electromagnetic anomalies and solar activity effects

    Science.gov (United States)

    Koulouras, Gr; Balasis, G.; Kontakos, K.; Ruzhin, Y.; Avgoustis, G.; Kavouras, D.; Nomicos, C.

    2009-04-01

    Laboratory studies suggest that electromagnetic emissions in a wide frequency spectrum ranging from kHz to very high MHz frequencies are produced by the opening of microcracks, with the MHz radiation appearing earlier than the kHz radiation. Earthquakes are large-scale fracture phenomena in the Earth's heterogeneous crust. Thus, the radiated kHz-MHz electromagnetic emissions are detectable not only at laboratory but also at geological scale. Clear MHz-to-kHz electromagnetic anomalies have been systematically detected over periods ranging from a few days to a few hours prior to recent destructive earthquakes in Greece. We bear in mind that whether electromagnetic precursors to earthquakes exist is an important question not only for earthquake prediction but mainly for understanding the physical processes of earthquake generation. An open question in this field of research is the classification of a detected electromagnetic anomaly as a pre-seismic signal associated to earthquake occurrence. Indeed, electromagnetic fluctuations in the frequency range of MHz are known to related to a few sources, i.e., they might be atmospheric noise (due to lightning), man-made composite noise, solar-terrestrial noise (resulting from the Sun-solar wind-magnetosphere-ionosphere-Earth's surface chain) or cosmic noise, and finally, lithospheric effect, namely pre-seismic activity. We focus on this point. We suggest that if a combination of detected kHz and MHz electromagnetic anomalies satisfies the herein presented set of criteria these anomalies could be considered as candidate precursory phenomena of an impending earthquake.

  6. Spectrum 101: An Introduction to Spectrum Management

    Science.gov (United States)

    2004-03-01

    produces a Joint Restricted Frequency List (JRFL). The JFRL consolidates and classifies the spectrum uses that are most critical to operations and to...Management Office JRFL Joint Restricted Frequency List JSC Joint Spectrum Center JSIR Joint Spectrum Interference Resolution JSME Joint Spectrum...Multifunctional Information Distribution System MILSATCOM Military Satellite Communications MOA Memorandum of Agreement MRFL Master Radio Frequency

  7. Metamaterials beyond electromagnetism

    International Nuclear Information System (INIS)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-01-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks. (review article)

  8. Metamaterials beyond electromagnetism

    Science.gov (United States)

    Kadic, Muamer; Bückmann, Tiemo; Schittny, Robert; Wegener, Martin

    2013-12-01

    Metamaterials are rationally designed man-made structures composed of functional building blocks that are densely packed into an effective (crystalline) material. While metamaterials are mostly associated with negative refractive indices and invisibility cloaking in electromagnetism or optics, the deceptively simple metamaterial concept also applies to rather different areas such as thermodynamics, classical mechanics (including elastostatics, acoustics, fluid dynamics and elastodynamics), and, in principle, also to quantum mechanics. We review the basic concepts, analogies and differences to electromagnetism, and give an overview on the current state of the art regarding theory and experiment—all from the viewpoint of an experimentalist. This review includes homogeneous metamaterials as well as intentionally inhomogeneous metamaterial architectures designed by coordinate-transformation-based approaches analogous to transformation optics. Examples are laminates, transient thermal cloaks, thermal concentrators and inverters, ‘space-coiling’ metamaterials, anisotropic acoustic metamaterials, acoustic free-space and carpet cloaks, cloaks for gravitational surface waves, auxetic mechanical metamaterials, pentamode metamaterials (‘meta-liquids’), mechanical metamaterials with negative dynamic mass density, negative dynamic bulk modulus, or negative phase velocity, seismic metamaterials, cloaks for flexural waves in thin plates and three-dimensional elastostatic cloaks.

  9. The basis of electromagnetism

    International Nuclear Information System (INIS)

    Waldron, R.A.

    1980-01-01

    Observations on fast mesons in cyclotrons have necessitated a revision of the earlier version of the ballistic theory. Insufficient information was available when the theory was first published to permit a unique choice of the velocity-dependent factors occurring in electromagnetic force formulas, and the forms chosen did not lead to an explanation of the decay times of fast mesons that were observed subsequently. These observations provide the information needed to permit a unique choice of the velocity-dependent factors. The new forms of the force formulae explain all observations, and lead to the conclusion that the velocities of mesons in cyclotrons are many times that of light. If these velocities could be directly measured, it would provide a method of discriminating between the Lorentz-Einstein and the ballistic theories, although it would not confirm the latter. In this revised form of the theory, magnetism appears as a residual effect of the velocity dependence of electric force laws, and the whole of electromagnetism then follows from a single basic equation, a modified form of Coulomb's law. (Auth.)

  10. Electro-magnetic flowmeters

    International Nuclear Information System (INIS)

    Dean, S.A.

    1980-01-01

    Full details of the invention are given. A sensing unit assembly for an electromagnetic flux distortion flowmeter for use in liquid metal coolant of a nuclear reactor is described. The assembly comprises coils of electrically insulated conductors each wound on an individual former. The formers and coils are mounted coaxially on a spine to form at least three spaced groups arranged end to end. Each group comprises two secondary coils and an intermediate primary coil. Leads extend along a duct formed in the spine, each lead terminating at a common end. Alternative versions of the assembly are also described. The primary coil leads are connected to an alternating power supply; those for the secondary coils connected to suitable display instrumentation. When liquid metal flows along the conductor the electromagnetic field is disturbed and the induced voltage in the secondary coils is disturbed-(set at zero for no flow); the distortion depends on the rate of flow. When the induced voltage differential of at least two of the groups falls or rises outside a pre-set level a trip signal is initiated to shut down the reactor. (UK)

  11. QUICKSILVER - A general tool for electromagnetic PIC simulation

    International Nuclear Information System (INIS)

    Seidel, David B.; Coats, Rebecca S.; Johnson, William A.; Kiefer, Mark L.; Mix, L. Paul; Pasik, Michael F.; Pointon, Timothy D.; Quintenz, Jeffrey P.; Riley, Douglas J.; Turner, C. David

    1997-01-01

    The dramatic increase in computational capability that has occurred over the last ten years has allowed fully electromagnetic simulations of large, complex, three-dimensional systems to move progressively from impractical, to expensive, and recently, to routine and widespread. This is particularly true for systems that require the motion of free charge to be self-consistently treated. The QUICKSILVER electromagnetic Particle-In-Cell (EM-PIC) code has been developed at Sandia National Laboratories to provide a general tool to simulate a wide variety of such systems. This tool has found widespread use for many diverse applications, including high-current electron and ion diodes, magnetically insulated power transmission systems, high-power microwave oscillators, high-frequency digital and analog integrated circuit packages, microwave integrated circuit components, antenna systems, radar cross-section applications, and electromagnetic interaction with biological material. This paper will give a brief overview of QUICKSILVER and provide some thoughts on its future development

  12. Radome electromagnetic theory and design

    CERN Document Server

    Shavit, Reuven

    2018-01-01

    Radome Electromagnetic Theory and Design explores the theoretical tools and methods required to design radomes that are fully transparent to the electromagnetic energy transmitted or received by the enclosed antenna. A radome is a weatherproof and camouflaged enclosure that protects the enclosed radar or communication antenna, and are typically used on a fixed or moving platform such as an aircraft, ship or missile.

  13. Electromagnetic actuation in MEMS switches

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Mátéfi-Tempfli, Mária; Chemnitz, Steffen

    . Electromagnetic actuation is a very promising approach to operate such MEMS and Power MEMS devices, due to the long range, reproducible and strong forces generated by this method, among other advantages. However, the use of electromagnetic actuation in such devices requires the use of thick magnetic films, which...

  14. Electromagnetic compatibility in power electronics

    CERN Document Server

    Costa , François; Revol , Bertrand

    2014-01-01

    Scientists largely attribute the recent deterioration of the electromagnetic environment to power electronics. This realization has spurred the study of methodical approaches to electromagnetic compatibility designs as explored in this text. The book addresses major challenges, such as handling numerous parameters vital to predicting electro magnetic effects and achieving compliance with line-harmonics norms, while proposing potential solutions.

  15. Electromagnetic direct implicit PIC simulation

    International Nuclear Information System (INIS)

    Langdon, A.B.

    1983-01-01

    Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes

  16. Gravitational scattering of electromagnetic radiation

    Science.gov (United States)

    Brooker, J. T.; Janis, A. I.

    1980-01-01

    The scattering of electromagnetic radiation by linearized gravitational fields is studied to second order in a perturbation expansion. The incoming electromagnetic radiation can be of arbitrary multipole structure, and the gravitational fields are also taken to be advanced fields of arbitrary multipole structure. All electromagnetic multipole radiation is found to be scattered by gravitational monopole and time-varying dipole fields. No case has been found, however, in which any electromagnetic multipole radiation is scattered by gravitational fields of quadrupole or higher-order multipole structure. This lack of scattering is established for infinite classes of special cases, and is conjectured to hold in general. The results of the scattering analysis are applied to the case of electromagnetic radiation scattered by a moving mass. It is shown how the mass and velocity may be determined by a knowledge of the incident and scattered radiation.

  17. Electromagnetic current in weak interactions

    International Nuclear Information System (INIS)

    Ma, E.

    1983-01-01

    In gauge models which unify weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current. The exact nature of such a component can be explored using e + e - experimental data. In recent years, the existence of a new component of the weak interaction has become firmly established, i.e., the neutral-current interaction. As such, it competes with the electromagnetic interaction whenever the particles involved are also charged, but at a very much lower rate because its effective strength is so small. Hence neutrino processes are best for the detection of the neutral-current interaction. However, in any gauge model which unifies weak and electromagnetic interactions, the weak neutral-current interaction also involves the electromagnetic current

  18. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  19. Hybrid synchronous motor electromagnetic torque research

    Directory of Open Access Journals (Sweden)

    Suvorkova Elena E.

    2014-01-01

    Full Text Available Electromagnetic field distribution models in reluctance and permanent magnet parts were made by means of Elcut. Dependences of electromagnetic torque on torque angle were obtained.

  20. Electromagnetic Reactions and Few-Nucleon Dynamics

    Directory of Open Access Journals (Sweden)

    Bacca Sonia

    2014-03-01

    Full Text Available We present an update on recent theoretical studies of electromagnetic reactions obtained by using the Lorentz integral transform method. The 4He nucleus will be the main focus of this report: results for the photo-disintegration and the electro-disintegration processes will be shown, as well as a recent calculation of polarizability effects in muonic atoms. We also discuss the exciting possibility to investigate inelastic reactions for mediummass nuclei in coupled-cluster theory, highlighted by the recent application to the 16O photo-nuclear cross section.

  1. Electromagnetic wave scattering by many small particles

    International Nuclear Information System (INIS)

    Ramm, A.G.

    2007-01-01

    Scattering of electromagnetic waves by many small particles of arbitrary shapes is reduced rigorously to solving linear algebraic system of equations bypassing the usual usage of integral equations. The matrix elements of this linear algebraic system have physical meaning. They are expressed in terms of the electric and magnetic polarizability tensors. Analytical formulas are given for calculation of these tensors with any desired accuracy for homogeneous bodies of arbitrary shapes. An idea to create a 'smart' material by embedding many small particles in a given region is formulated

  2. Spontaneous electromagnetic radiation caused by binary ion-atom collisions in the quasiresonant case

    International Nuclear Information System (INIS)

    Mihajlov, A.A.; Popovic, M.M.

    1981-01-01

    The process of spontaneous electromagnetic radiation in the reaction A + + B → A + B + + hω is studied. Here A and B are the same kind of atoms or atoms with small differences in ionization potentials (quasiresonant case). Differential cross section, energy spectrum of the emitted photons, and total intensity of electromagnetic radiation are determined for thermal velocities of relative motion. Results are applicable in a wide range of temperatures: 500< or = T< or = 50,000 K. It is shown that the radiation spectrum is very broad and the radiation intensity is considerable

  3. Integrating animals in the classroom: The attitudes and experiences of Australian school teachers toward animal-assisted interventions for children with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Bradley P Smith

    2016-02-01

    Full Text Available The introduction of animals into school classrooms has been posited as a beneficial intervention for individuals with Autism Spectrum Disorder (ASD. Whilst evidence that animal-assisted interventions or activities can positively influence classroom behaviour and learning outcomes is emerging, little is known about the experiences and attitudes of those who implement it. We presented a series of open and close-ended questions via an online survey to Australian school teachers working with students on the autistic spectrum. Whether teachers had experienced companion animals in the classroom or not, companion animals were believed to provide a means for improving social skills and engagement within the classroom, as well as decreasing stress, anxiety, and the occurrence of problematic behaviours. Yet, despite an overall positive attitude, and 68% having had animals or pets in their classroom, only 16% of respondents had experience with ‘formal’ animal-assisted interventions. Explanations for why both formal and informal animal-assisted interventions were either not being adopted, or was not currently being considered, included a lack of knowledge, lack of support and resources, reactions of the student in relation to allergies and behaviour, and issues relating to animal welfare. It was also acknowledged that the evidence-base for animal-assisted interventions for students with ASD is currently lacking, and that such interventions were not suitable for all students, or all classroom situations. Moving forward, it is important that the inclusion of companion animals and more formal based animal intervention programs in classrooms be adequately designed and evaluated, because implementing or promoting time consuming and financially costly strategies without the evidence is problematic.

  4. Theoretical research relating to excitation spectrum of furan. Application of integral direct coupled cluster linear response (direct CCLR) method; Furan no reiki supekutoru ni kansuru ronriteki kenkyu. Integral-direct Coupled Cluster Linear Response (direct CCLR) ho no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Shigemitsu, Yasuhiro. [Nagasaki Industrial Technology Center, Nagasaki (Japan)

    1999-07-01

    heoretical researches relating to excitation spectrum of furan have been carried out for many years, and they reveal the problems that should be solved in order to predict highly reliable excitation energy. In general, it is difficult to uniformly obtain highly reliable calculation results for all excitation states since different excitation states show different electronic correlative effects. Means for obtaining the electron states in ground state and excited state and calculating the energy difference thereof is the mainstream of the theoretical calculation of the excitation energy. CASSCF/CASPT 2 developed by Roos et al. is a typical method excellent in quantitative description. Recently, the comparison between direct CCLR and CASSCF/CASPT 2 as examples for calculating the excitation spectrum of furan was carried out by using the same ground function. For Rydberg excitation, CC3, CAS, CASPT 2 show good agreement with each other. (NEDO)

  5. Solved problems in electromagnetics

    CERN Document Server

    Salazar Bloise, Félix; Bayón Rojo, Ana; Gascón Latasa, Francisco

    2017-01-01

    This book presents the fundamental concepts of electromagnetism through problems with a brief theoretical introduction at the beginning of each chapter. The present book has a strong  didactic character. It explains all the mathematical steps and the theoretical concepts connected with the development of the problem. It guides the reader to understand the employed procedures to learn to solve the exercises independently. The exercises are structured in a similar way: The chapters begin with easy problems increasing progressively in the level of difficulty. This book is written for students of physics and engineering in the framework of the new European Plans of Study for Bachelor and Master and also for tutors and lecturers. .

  6. PANDA electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Semenov, P.A.; Kharlov, Yu.V.; Uzunian, A.V.; Chernichenko, S.K.; Derevschikov, A.A.; Davidenko, A.M.; Goncharenko, Y.M.; Kachanov, V.A.; Konstantinov, A.S.; Kormilitsin, V.A.; Matulenko, Yu.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Novotny, R.W.; Ryazantsev, A.A.; Soldatov, A.P.; Soloviev, L.F.

    2009-01-01

    PANDA is a challenging experimental setup to be implemented at the high-energy storage ring (HESR) at the international facility FAIR, GSI (Germany). PANDA physics program relies heavily on the capability to measure photons with excellent energy, position and timing resolution. For this purpose PANDA proposed to employ electromagnetic calorimeters using two different technologies: compact crystal calorimeter cooled to -25 deg. C around target and lead-scintillator sandwich calorimeter with optical fibers light collection (so-called shashlyk calorimeter) in the forward region. Institute for High Energy Physics (IHEP) PANDA group reports on two types of measurements performed at IHEP, Protvino: radiation hardness of the PWO crystals at -25 deg. C and testbeam studies of the energy and position resolution of the shashlyk calorimeter prototype in the energy range up to 19 GeV.

  7. Electromagnetic form factors

    International Nuclear Information System (INIS)

    Desplanques, B.

    1987-01-01

    Electromagnetic form factors, in first approximation, are sensitive to spatial distribution of nucleons and to their current. In second approximation, more precise effects are concerned, whose role is increasing with momentum transfer and participating essentially of short range nuclei description. They concern of course the nucleon-nucleon interaction while approaching each other and keeping their free-state identity, but also mutually polarizing one the other. In this last effect, radial and orbital excitations of nucleon, the nucleon mesonic cloud modification and the nucleon antinucleon pair excitation are included. In this paper, these contributions are discussed while trying to find the important elements for a good description of form factors. Current questions are also discussed. Light nuclei are essentially concerned [fr

  8. Nucleon Electromagnetic Form Factors

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen; Charles Perdrisat; Vina Punjabi

    2007-10-01

    There has been much activity in the measurement of the elastic electromagnetic proton and neutron form factors in the last decade, and the quality of the data has greatly improved by performing double polarization experiments, in comparison with previous unpolarized data. Here we review the experimental data base in view of the new results for the proton, and neutron, obtained at JLab, MAMI, and MIT-Bates. The rapid evolution of phenomenological models triggered by these high-precision experiments will be discussed, including the recent progress in the determination of the valence quark generalized parton distributions of the nucleon, as well as the steady rate of improvements made in the lattice QCD calculations.

  9. Effect of integrated treatment on the use of coercive measures in first-episode schizophrenia-spectrum disorder. A randomized clinical trial

    DEFF Research Database (Denmark)

    Ohlenschlæger, Johan; Nordentoft, Merete; Thorup, Anne

    2008-01-01

    of assertive community treatment, psycho-educational multi-family groups, and social skills training. Data on coercion were extracted from the register from the National Board of Health, and data on continuity from medical records. Even though the level of continuity seemed higher in integrated treatment...

  10. Electromagnetic properties of neutrinos

    International Nuclear Information System (INIS)

    Ould-Saada, F.

    1996-01-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, μ ν , of the order of 10 -11 μ B would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of ≅10 eV would give μ ν ≅10 -18 μ B , much smaller than the present experimental upper limit of 2x10 -10 μ B . Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of μ ν , larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, νe - scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the ν e , extending down to 2x10 -11 μ B . (author) 15 figs., 5 tabs., 96 refs

  11. Electromagnetic properties of neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Ould-Saada, F [Zurich Univ. (Switzerland). Inst. fuer Physik

    1996-11-01

    Electromagnetic properties of neutrinos and their implications are discussed, and the experimental situation summarised. Spin precession in solar magnetic fields presents a solution of the solar neutrino problem. A magnetic moment, {mu}{sub {nu}}, of the order of 10{sup -11} {mu}{sub B} would be needed. In the simplest extension of the standard model, with no-vanishing neutrino masses, dipole moment interactions are allowed through higher order processes. A neutrino mass of {approx_equal}10 eV would give {mu}{sub {nu}}{approx_equal}10{sup -18} {mu}{sub B}, much smaller than the present experimental upper limit of 2x10{sup -10} {mu}{sub B}. Although model-dependent, upper bounds on dipole moments from astrophysics and cosmology are 10 to 100 times more stringent. Any values of {mu}{sub {nu}}, larger than the SM predictions, would then signal the onset of new physics. Among the processes sensitive to the magnetic moment, {nu}e{sup -} scattering presents two advantages: it is a pure weak, theoretically well understood process, and the recoil electron can be easily measured. A hypothetical electromagnetic contribution to the cross-section would dominate at low energies. A low background detector, MUNU, being built at the Bugey nuclear reactor is presented.It is based on a gas TPC, surrounded by a scintillator. The threshold on the electron recoil energy can be set very low, around 500 keV, giving the experiment a good sensitivity to the magnetic moment of the {nu}{sub e}, extending down to 2x10{sup -11} {mu}{sub B}. (author) 15 figs., 5 tabs., 96 refs.

  12. Electromagnetic Marchenko scheme based internal multiple elimination for lossless media

    NARCIS (Netherlands)

    Zhang, L.; Slob, E.C.

    2017-01-01

    Iterative substitution of the Marchenko equation has been introduced recently to integrate internal multiple reflection in the seismic and electromagnetic imaging process. In the so-called Marchenko imaging, solving the Marchenko equation at each imaging point is required to meet this objective.

  13. Utilization of large electromagnetic pumps in the fast breeder reactors

    International Nuclear Information System (INIS)

    Deverge, C.; Lefrere, J.P.; Peturaud, P.; Sauvage, M.

    1984-04-01

    After an overview concerning the induction annular electromagnetic pumps and the dimensioning methods usually utilized, development of these components for a fast breeder integrated reactor is considered: - utilization of cooled EMP in the intermediate circuit, - utilization of immersed pumps, coupled with the intermediate exchanger, for the primary pumping; dimensioning, energetic aspects, and effects on the power plant geometrical configurations [fr

  14. Python bindings for the open source electromagnetic simulator Meep

    OpenAIRE

    Lambert, Emmanuel; Fiers, Martin; Nizamov, Shavkat; Tassaert, Martijn; Johnson, Steven G; Bienstman, Peter; Bogaerts, Wim

    2011-01-01

    Meep is a broadly used open source package for finite-difference time-domain electromagnetic simulations. Python bindings for Meep make it easier to use for researchers and open promising opportunities for integration with other packages in the Python ecosystem. As this project shows, implementing Python-Meep offers benefits for specific disciplines and for the wider research community.

  15. Statistical Characterization of Electromagnetic Wave Propagation in Mine Environments

    KAUST Repository

    Yucel, Abdulkadir C.

    2013-01-01

    A computational framework for statistically characterizing electromagnetic (EM) wave propagation through mine tunnels and galleries is presented. The framework combines a multi-element probabilistic collocation method with a full-wave fast Fourier transform and fast multipole method accelerated surface integral equation-based EM simulator to statistically characterize fields from wireless transmitters in complex mine environments. 1536-1225 © 2013 IEEE.

  16. THE SIMULATION OF SCATTERING OF ELECTROMAGNETIC WAVES ON ANGULAR STRUCTURES.

    Directory of Open Access Journals (Sweden)

    P. A. Preobrazhensky

    2017-02-01

    Full Text Available The paper discusses the characteristics of scattering of electromagnetic waves on the angular diffraction structures. The solution of the problem is based on the method of integral equations. A comparative analysis of the scattering characteristics of structures with different shape is carried out.

  17. Simulation of coupled electromagnetic and heat dissipation problems

    NARCIS (Netherlands)

    Janssen, H.H.J.M.; Maten, ter E.J.W.; Houwelingen, van D.

    1994-01-01

    A description is given of an integrated simulation environment for the solution of coupled electromagnetic and heat dissipation problems in two dimensions, in particular for the field of induction heating, dielectric heating, and hysteresis heating. The equations are coupled because the most

  18. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  19. Coulomb's Law in a Moving Medium--A Review Exercise in Advanced Undergraduate Electromagnetism

    Science.gov (United States)

    Sastry, G. P.

    1978-01-01

    The electromagnetic field of a static charge in a moving medium is evaluated using elements of special relativity, residue calculus, and Fourier integration. Some of the concepts in electrodynamics that are of current research value are discussed. (BB)

  20. Eyes on the sky a spectrum of telescopes

    CERN Document Server

    Graham-Smith, Francis

    2016-01-01

    Astronomy is experiencing a golden age, with a new generation of innovative telescopes yielding a flood of information on the Universe. This book traces the development of telescopes from Galileo to the present day, and explains the basic principles of telescopes that operate in different parts of electromagnetic spectrum.

  1. Electro- and chromomagnetism in the charm meson spectrum

    CERN Document Server

    Fritzsch, Harald

    1977-01-01

    How the D and F meson spectrum is influenced by the chromomagnetic and electromagnetic hyperfine interaction is discussed. In particular a relation between the hyperfine splitting of charmed mesons and the magnetic moments of the baryons is derived. It is found that M(F/sub + /*)-M(F/sub +/) approximately=100+or-8 MeV. (12 refs).

  2. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  3. Differential forms on electromagnetic networks

    CERN Document Server

    Balasubramanian, N V; Sen Gupta, D P

    2013-01-01

    Differential Forms on Electromagnetic Networks deals with the use of combinatorial techniques in electrical circuit, machine analysis, and the relationship between circuit quantities and electromagnetic fields. The monograph is also an introduction to the organization of field equations by the methods of differential forms. The book covers topics such as algebraic structural relations in an electric circuit; mesh and node-pair analysis; exterior differential structures; generalized Stoke's theorem and tensor analysis; and Maxwell's electromagnetic equation. Also covered in the book are the app

  4. Electromagnetic modeling in accelerator designs

    International Nuclear Information System (INIS)

    Cooper, R.K.; Chan, K.C.D.

    1990-01-01

    Through the years, electromagnetic modeling using computers has proved to be a cost-effective tool for accelerator designs. Traditionally, electromagnetic modeling of accelerators has been limited to resonator and magnet designs in two dimensions. In recent years with the availability of powerful computers, electromagnetic modeling of accelerators has advanced significantly. Through the above conferences, it is apparent that breakthroughs have been made during the last decade in two important areas: three-dimensional modeling and time-domain simulation. Success in both these areas have been made possible by the increasing size and speed of computers. In this paper, the advances in these two areas will be described

  5. Electromagnetic foundations of electrical engineering

    CERN Document Server

    Faria, J A Brandao

    2008-01-01

    The applications of electromagnetic phenomena within electrical engineering have been evolving and progressing at a fast pace. In contrast, the underlying principles have been stable for a long time and are not expected to undergo any changes. It is these electromagnetic field fundamentals that are the subject of discussion in this book with an emphasis on basic principles, concepts and governing laws that apply across the electrical engineering discipline. Electromagnetic Foundations of Electrical Engineering begins with an explanation of Maxwell's equations, from which the fundament

  6. Essentials of Electromagnetics for Engineering

    Science.gov (United States)

    de Wolf, David A.

    2000-11-01

    Essentials of Electromagnetics for Engineering introduces the key physical and engineering principles of electromagnetics. Throughout the book, David de Wolf describes the intermediate steps in mathematical derivations that many other textbooks leave out. He covers in depth the concepts of fields and potentials and then progresses to magnetostatics, Maxwell's equations, electrodynamics and wave propagation, waveguides, transmission lines, and antennas. At each stage, de Wolf stresses the physical principles underlying the mathematical results. He also includes homework exercises, a separate chapter on numerical methods in electromagnetics, and a broad range of worked examples to illustrate important concepts. Solutions manual available.

  7. Dynamic event Tress applied to sequences Full Spectrum LOCA. Calculating the frequency of exceedance of damage by integrated Safety Analysis Methodology; Arboles de sucesos dinamicos aplicados a secuencias Full Spectrum LOCA. Calculo de la frequencia de excedencia del dano mediante la metodologia Analisis Integrados de Seguridad (ISA)

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Magan, J. J.; Fernandez, I.; Gil, J.; Marrao, H.; Queral, C.; Gonzalez-Cadelo, J.; Montero-Mayorga, J.; Rivas, J.; Ibane-Llano, C.; Izquierdo, J. M.; Sanchez-Perea, M.; Melendez, E.; Hortal, J.

    2013-09-01

    The Integrated Safety Analysis (ISA) methodology, developed by the Spanish Nuclear Safety council (CSN), has been applied to obtain the dynamic Event Trees (DETs) for full spectrum Loss of Coolant Accidents (LOCAs) of a Westinghouse 3-loop PWR plant. The purpose of this ISA application is to obtain the Damage Exceedance Frequency (DEF) for the LOCA Event Tree by taking into account the uncertainties in the break area and the operator actuation time needed to cool down and de pressurize reactor coolant system by means of steam generator. Simulations are performed with SCAIS, a software tool which includes a dynamic coupling with MAAP thermal hydraulic code. The results show the capability of the ISA methodology to obtain the DEF taking into account the time uncertainty in human actions. (Author)

  8. Far-infrared cw difference-frequency generation using vertically integrated and planar low temperature grown GaAs photomixers: application to H2S rotational spectrum up to 3 THz

    Science.gov (United States)

    Mouret, G.; Matton, S.; Bocquet, R.; Hindle, F.; Peytavit, E.; Lampin, J. F.; Lippens, D.

    2004-10-01

    The generation of continuous coherent THz radiation by mixing two cw Ti:Sa laser beams with a well-controlled frequency separation for a new scheme of vertically integrated low temperature grown GaAs (LTG-GaAs) spiral photomixer is reported. For this new photomixer device used in THz emission, the LTG-GaAs active layer is sandwiched between the two parallel metal plates of a high-speed photodetector loaded by a broadband spiral antenna. We have exploited the advantage of a higher delivered power in the low part of the spectrum (<2000 GHz), while a low RC time constant planar interdigitated detector was used at the upper frequency. The performances of the spectroscopic setup in terms of spectral resolution (5 MHz), tunability and frequency capability are assessed by measurements of the pure rotational spectra of hydrogen sulfide (H2S) up to 3000 GHz.

  9. The quartet theory: Implications for autism spectrum disorder. Comment on "The quartet theory of human emotions: An integrative and neurofunctional model" by S. Koelsch et al.

    Science.gov (United States)

    Pehrs, Corinna; Samson, Andrea C.; Gross, James J.

    2015-06-01

    Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits as well as restricted and repetitive behaviors [1]. Specific deficits include failure to initiate reciprocal social interactions, verbal and non-verbal communication difficulties, decreased sensitivity to social and emotional cues, and limited perspective-taking abilities. Social withdrawal, avoidance or indifference to affection or physical contact, lack of eye contact, and decreased joint attention and facial responsiveness are also common [2]. In addition to these core features, there is a growing body of literature that describes problematic patterns of emotional reactivity (increased negative and decreased positive emotions) and emotion regulation (increased use of maladaptive and decreased use of adaptive emotion regulation strategies) [3-5]. The present comment seeks to link difficulties in socio-emotional domains to the Quartet Theory of Human Emotions by mapping characteristic ASD social deficits and emotion dysregulation onto two of the affect systems described in this theory: the hippocampal and orbitofrontal-centered systems.

  10. Risks and Protective Factors for Stress Self-Management in Parents of Children With Autism Spectrum Disorder: An Integrated Review of the Literature.

    Science.gov (United States)

    Bonis, Susan A; Sawin, Kathleen J

    Stress in parents of children with autism spectrum disorder (ASD) has been reported to be very high. However, little is known about what risk and protective factors influence parental stress self-management in this population. Accordingly, this manuscript is a synthesis of the risk and protective factors that impact self-management of stress in these parents. The concepts in the individual and family self-management theory context domain were used as a framework to guide data collection and analysis. Searches were conducted using CINAHL, MedLine and PsychInfo. Studies were included if they addressed context factors in parents of children with ASD and were written in English. Ninety-eight studies met review criteria. This review highlighted risk factors to parental stress self-management within the context of condition-specific factors, physical and social environment, and individual and family. The most concerning of these findings is that parents struggle accessing a diagnosis and services for their child and are frustrated with health care providers' knowledge of ASD and lack of communication. The risks parents experience as they care for their child with ASD far outweigh the protective factors for self-management of parental stress. Nurses who are aware of these issues can make important changes to their practice and have a significant impact on parental stress self-management and the care of children with ASD. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Concise expression of a classical radiation spectrum

    International Nuclear Information System (INIS)

    Wang, C.

    1993-01-01

    In this paper we present a concise expression of the classical electromagnetic radiation spectrum of a moving charge. It is shown to be equivalent to the often used and much more complicated form derived from the Lienard-Wiechert potentials when the observation distance R satisfies the condition R much-gt γλ. The expression reveals a relationship between the radiation spectrum and the motion of the radiation source. It also forms the basis of an efficient computing approach, which is of practical value in numerical calculations of the spectral output of accelerated charges. The advantages of this approach for analytical and numerical applications are discussed and the bending-magnet synchrotron radiation spectrum is calculated according to the approach

  12. Low frequency electromagnetic fields and health problems

    International Nuclear Information System (INIS)

    Zahedi, A.; Cosic, I.

    1996-01-01

    Full text: Electromagnetic fields developed around the electric circuits are considered as magnetic pollution and these fields are produced wherever electric appliances or machinery are used at home as well as at workplace. Electric fields and magnetic fields around the home are produced by anything with electric current flowing through it including: the street power lines, the home wiring system, electric ovens, refrigerators, washing machines, electric clothes dryers, vacuum cleaners, television sets, video cassette recorders, toasters, light bulbs, clock radios, electric blankets, mobile phones, etc. In the workplace they would be produced by: nearby power lines, factory machinery, computers/video display units, lights, photocopiers, electrical cabling etc. As one can see, human life is strongly dependent on using-electric appliance. A large number of studies have been undertaken to find out the correlation between electromagnetic fields and health problems. The following significant results have been reported [Lerner E.J., IEEE Spectrum, 57-67, May 1984]: (a) Induction of chromosomal defects in mice spermatogenetic cells following microwave radiation in the Ghz range; (b) Changes in the calcium balance of living cats' brains exposed to microwaves modulated at extremely low frequencies; (c) Alternation of nerve and bone cells exposed to extremely low frequency fields; (d) Decreased activity of the immune cells of mice exposed to modulated microwaves; (e) Apparent increase in deformed foetuses among miniature swine exposed to intense power-line frequency fields. The mostly investigated effect is the effect of electromagnetic irradiation in particular one produced by power lines, and cancer. More than 100 epidemiological studies have been reported but no conclusive result was achieved. A number of studies with laboratory animals were also inconclusive. However, some of these experiments have shown improvements in immune system and tumour suppression when

  13. Electromagnetic modeling method for eddy current signal analysis

    International Nuclear Information System (INIS)

    Lee, D. H.; Jung, H. K.; Cheong, Y. M.; Lee, Y. S.; Huh, H.; Yang, D. J.

    2004-10-01

    An electromagnetic modeling method for eddy current signal analysis is necessary before an experiment is performed. Electromagnetic modeling methods consists of the analytical method and the numerical method. Also, the numerical methods can be divided by Finite Element Method(FEM), Boundary Element Method(BEM) and Volume Integral Method(VIM). Each modeling method has some merits and demerits. Therefore, the suitable modeling method can be chosen by considering the characteristics of each modeling. This report explains the principle and application of each modeling method and shows the comparison modeling programs

  14. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  15. Conical electromagnetic radiation flux concentrator

    Science.gov (United States)

    Miller, E. R.

    1972-01-01

    Concentrator provides method of concentrating a beam of electromagnetic radiation into a smaller beam, presenting a higher flux density. Smaller beam may be made larger by sending radiation through the device in the reverse direction.

  16. Earthquake prediction with electromagnetic phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, Masashi, E-mail: hayakawa@hi-seismo-em.jp [Hayakawa Institute of Seismo Electomagnetics, Co. Ltd., University of Electro-Communications (UEC) Incubation Center, 1-5-1 Chofugaoka, Chofu Tokyo, 182-8585 (Japan); Advanced Wireless & Communications Research Center, UEC, Chofu Tokyo (Japan); Earthquake Analysis Laboratory, Information Systems Inc., 4-8-15, Minami-aoyama, Minato-ku, Tokyo, 107-0062 (Japan); Fuji Security Systems. Co. Ltd., Iwato-cho 1, Shinjyuku-ku, Tokyo (Japan)

    2016-02-01

    Short-term earthquake (EQ) prediction is defined as prospective prediction with the time scale of about one week, which is considered to be one of the most important and urgent topics for the human beings. If this short-term prediction is realized, casualty will be drastically reduced. Unlike the conventional seismic measurement, we proposed the use of electromagnetic phenomena as precursors to EQs in the prediction, and an extensive amount of progress has been achieved in the field of seismo-electromagnetics during the last two decades. This paper deals with the review on this short-term EQ prediction, including the impossibility myth of EQs prediction by seismometers, the reason why we are interested in electromagnetics, the history of seismo-electromagnetics, the ionospheric perturbation as the most promising candidate of EQ prediction, then the future of EQ predictology from two standpoints of a practical science and a pure science, and finally a brief summary.

  17. Classical electromagnetism in a nutshell

    CERN Document Server

    Garg, Anupam

    2012-01-01

    This graduate-level physics textbook provides a comprehensive treatment of the basic principles and phenomena of classical electromagnetism. While many electromagnetism texts use the subject to teach mathematical methods of physics, here the emphasis is on the physical ideas themselves. Anupam Garg distinguishes between electromagnetism in vacuum and that in material media, stressing that the core physical questions are different for each. In vacuum, the focus is on the fundamental content of electromagnetic laws, symmetries, conservation laws, and the implications for phenomena such as radiation and light. In material media, the focus is on understanding the response of the media to imposed fields, the attendant constitutive relations, and the phenomena encountered in different types of media such as dielectrics, ferromagnets, and conductors. The text includes applications to many topical subjects, such as magnetic levitation, plasmas, laser beams, and synchrotrons.

  18. Electromagnetic Hadronic Form-Factors

    International Nuclear Information System (INIS)

    Edwards, Robert G.

    2005-01-01

    We present a calculation of the nucleon electromagnetic form-factors as well as the pion and rho to pion transition form-factors in a hybrid calculation with domain wall valence quarks and improved staggered (Asqtad) sea quarks

  19. Biological effects of electromagnetic fields

    African Journals Online (AJOL)

    2012-02-28

    Feb 28, 2012 ... radiofrequency emitting sources are radars, mobile phones and their base stations, ... and industrial applications, could have effect on living organisms. ...... Hazards of Electromagnetic Pollution (Msc Thesis). Department of ...

  20. Hadronic processes and electromagnetic corrections

    International Nuclear Information System (INIS)

    Scimemi, I.

    2004-01-01

    The inclusion of electromagnetism in a low energy effective theory is worth further study in view of the present high precision experiments (muon g - 2, π 0 → γγ, τ decays, etc.). In particular in many applications of chiral perturbation theory, one has to purify physical matrix elements from electromagnetic effects. The theoretical problems that I want to point out here are following: the splitting of a pure QCD and a pure electromagnetic part in a hadronic process is model dependent: is it possible to parametrise in a clear way this splitting? What kind of information (scale dependence, gauge dependence,) is actually included in the parameters of the low energy effective theory? I will attempt to answer these questions introducing a possible convention to perform the splitting between strong and electromagnetic parts in some examples