WorldWideScience

Sample records for integral constitutive equations

  1. Integral equations

    CERN Document Server

    Moiseiwitsch, B L

    2005-01-01

    Two distinct but related approaches hold the solutions to many mathematical problems--the forms of expression known as differential and integral equations. The method employed by the integral equation approach specifically includes the boundary conditions, which confers a valuable advantage. In addition, the integral equation approach leads naturally to the solution of the problem--under suitable conditions--in the form of an infinite series.Geared toward upper-level undergraduate students, this text focuses chiefly upon linear integral equations. It begins with a straightforward account, acco

  2. What constitutes information integrity?

    Directory of Open Access Journals (Sweden)

    S. Flowerday

    2008-01-01

    Full Text Available This research focused on what constitutes information integrity as this is a problem facing companies today. Moreover, information integrity is a pillar of information security and is required in order to have a sound security management programme. However, it is acknowledged that 100% information integrity is not currently achievable due to various limitations and therefore the auditing concept of reasonable assurance is adopted. This is in line with the concept that 100% information security is not achievable and the notion that adequate security is the goal, using appropriate countermeasures. The main contribution of this article is to illustrate the importance of and provide a macro view of what constitutes information integrity. The findings are in harmony with Samuel Johnson's words (1751: 'Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous and dreadful.'

  3. What constitutes information integrity?

    Directory of Open Access Journals (Sweden)

    S. Flowerday

    2007-12-01

    Full Text Available This research focused on what constitutes information integrity as this is a problem facing companies today. Moreover, information integrity is a pillar of information security and is required in order to have a sound security management programme. However, it is acknowledged that 100% information integrity is not currently achievable due to various limitations and therefore the auditing concept of reasonable assurance is adopted. This is in line with the concept that 100% information security is not achievable and the notion that adequate security is the goal, using appropriate countermeasures. The main contribution of this article is to illustrate the importance of and provide a macro view of what constitutes information integrity. The findings are in harmony with Samuel Johnson's words (1751: 'Integrity without knowledge is weak and useless, and knowledge without integrity is dangerous and dreadful.'

  4. Constitutive equations for two-phase flows

    International Nuclear Information System (INIS)

    Boure, J.A.

    1974-12-01

    The mathematical model of a system of fluids consists of several kinds of equations complemented by boundary and initial conditions. The first kind equations result from the application to the system, of the fundamental conservation laws (mass, momentum, energy). The second kind equations characterize the fluid itself, i.e. its intrinsic properties and in particular its mechanical and thermodynamical behavior. They are the mathematical model of the particular fluid under consideration, the laws they expressed are so called the constitutive equations of the fluid. In practice the constitutive equations cannot be fully stated without reference to the conservation laws. Two classes of model have been distinguished: mixture model and two-fluid models. In mixture models, the mixture is considered as a single fluid. Besides the usual friction factor and heat transfer correlations, a single constitutive law is necessary. In diffusion models, the mixture equation of state is replaced by the phasic equations of state and by three consitutive laws, for phase change mass transfer, drift velocity and thermal non-equilibrium respectively. In the two-fluid models, the two phases are considered separately; two phasic equations of state, two friction factor correlations, two heat transfer correlations and four constitutive laws are included [fr

  5. Constitutive equations for Zr1Nb. II

    International Nuclear Information System (INIS)

    Novak, J.

    1986-01-01

    Based on existing knowledge and constitutive equations for non-irradiated material, constitutive equations were written for Zr1Nb irradiated at 573 K at deformation in the direction of forming. Constitutive equations express the following material characteristics: dependence of shear strength on fast neutron fluence, superposition of deformation hardening and subsequent radiation hardening, the effect of stress on deformation rate, and for fluences above ca. 10 24 n.m -2 (E>1 MeV) the course of the deformation curve for various fluence levels. The values apply for temperatures and rates of deformation which are characteristic of transient processes during changes in the power output of fuel elements of pressurized water reactors. (J.B.)

  6. Application of viscoplastic constitutive equations in finite element programs

    International Nuclear Information System (INIS)

    Hornberger, K.; Stamm, H.

    1987-04-01

    The general mathematical formulation of frequently used viscoplastic constitutive equations is explained and Robinson's model is discussed in more detail. The implementation of viscoplastic constitutive equations into Finite Element programs (such as ABAQUS) is described using Robinson's model as an example. For the numerical integration both an explicit (explicit Euler) and an implicit (generalized midpoint rule) integration scheme is utilized in combination with a time step control strategy. In the implicit integration scheme, convergence in solving a system of nonlinear algebraic equation is improved introducing a projection method. The efficiency of the implemented procedures is demonstrated for different homogeneous load cases as well as for creep loading and strain controlled cyclic loading of a perforated plate. (orig./HP) [de

  7. Validation of constitutive equations for steel

    International Nuclear Information System (INIS)

    Valentin, T.; Magain, P.; Quik, M.; Labibes, K.; Albertini, C.

    1997-01-01

    High strain rate mechanical properties are a major concern for each steel manufacturer, especially with respect to thin sheet steel used in the automotive branch. We began to study this topic by starting a project with the following goals: acquiring reliable experimental data, understanding in depth the energy absorption in thin sheet steel and finding the right constitutive material equation. The first part of the project has been presented in. In this paper we present data computation and comparison with the existing material model theories to exploit the experimental data. (orig.)

  8. Constitutive equation of butter at static loading

    Directory of Open Access Journals (Sweden)

    Šárka Nedomová

    2008-01-01

    Full Text Available This study focuses on the constitutive modelling of finite deformation in the commercially obtained butter (composition is 83 % of milk fat at the temperature 17–20 °C. The specimens from the butter (height L0=14.6 mm and diameter 20 mm have been compressed between two parallel metal plates at a fixed crosshead speed 20 mm/min using of the testing device TIRA TEST. The force F and the deformation ∆L are measured during compression and both quantities are recorded. The experimental records force F – displacement (deformation were obtained. These records have been transformed into stress–strain dependences and into true stress–true strain. The basic data on the strain behaviour of a butter under low strain rates have been obtained. Experimental results show that the behaviour of butter can be described by a hyperelastic material model. In this model, the quasi–static response is defined by compressible hyperelasticity, whereby the strain energy potential is assumed to be representable by a newly proposed polynomial series with three independent parameters. The material parameters in the constitutive model are determined from compression test. A comparison of predictions based on the proposed constitutive equation with experiments shows that the model is able to describe the strain behaviour of the butter examined.

  9. Handbook of integral equations

    CERN Document Server

    Polyanin, Andrei D

    2008-01-01

    This handbook contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, WienerHopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. This second edition includes new chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs, along with over 400 new equations with exact solutions. With many examples added for illustrative purposes, it presents new material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions.

  10. Constitutive equations for discrete electromagnetic problems over polyhedral grids

    International Nuclear Information System (INIS)

    Codecasa, Lorenzo; Trevisan, Francesco

    2007-01-01

    In this paper a novel approach is proposed for constructing discrete counterparts of constitutive equations over polyhedral grids which ensure both consistency and stability of the algebraic equations discretizing an electromagnetic field problem. The idea is to construct discrete constitutive equations preserving the thermodynamic relations for constitutive equations. In this way, consistency and stability of the discrete equations are ensured. At the base, a purely geometric condition between the primal and the dual grids has to be satisfied for a given primal polyhedral grid, by properly choosing the dual grid. Numerical experiments demonstrate that the proposed discrete constitutive equations lead to accurate approximations of the electromagnetic field

  11. Mathematical modeling and the two-phase constitutive equations

    International Nuclear Information System (INIS)

    Boure, J.A.

    1975-01-01

    The problems raised by the mathematical modeling of two-phase flows are summarized. The models include several kinds of equations, which cannot be discussed independently, such as the balance equations and the constitutive equations. A review of the various two-phase one-dimensional models proposed to date, and of the constitutive equations they imply, is made. These models are either mixture models or two-fluid models. Due to their potentialities, the two-fluid models are discussed in more detail. To avoid contradictions, the form of the constitutive equations involved in two-fluid models must be sufficiently general. A special form of the two-fluid models, which has particular advantages, is proposed. It involves three mixture balance equations, three balance equations for slip and thermal non-equilibriums, and the necessary constitutive equations [fr

  12. Integration of Chandrasekhar's integral equation

    International Nuclear Information System (INIS)

    Tanaka, Tasuku

    2003-01-01

    We solve Chandrasekhar's integration equation for radiative transfer in the plane-parallel atmosphere by iterative integration. The primary thrust in radiative transfer has been to solve the forward problem, i.e., to evaluate the radiance, given the optical thickness and the scattering phase function. In the area of satellite remote sensing, our problem is the inverse problem: to retrieve the surface reflectance and the optical thickness of the atmosphere from the radiance measured by satellites. In order to retrieve the optical thickness and the surface reflectance from the radiance at the top-of-the atmosphere (TOA), we should express the radiance at TOA 'explicitly' in the optical thickness and the surface reflectance. Chandrasekhar formalized radiative transfer in the plane-parallel atmosphere in a simultaneous integral equation, and he obtained the second approximation. Since then no higher approximation has been reported. In this paper, we obtain the third approximation of the scattering function. We integrate functions derived from the second approximation in the integral interval from 1 to ∞ of the inverse of the cos of zenith angles. We can obtain the indefinite integral rather easily in the form of a series expansion. However, the integrals at the upper limit, ∞, are not yet known to us. We can assess the converged values of those series expansions at ∞ through calculus. For integration, we choose coupling pairs to avoid unnecessary terms in the outcome of integral and discover that the simultaneous integral equation can be deduced to the mere integral equation. Through algebraic calculation, we obtain the third approximation as a polynomial of the third degree in the atmospheric optical thickness

  13. Extended irreversible thermodynamics and the Jeffreys type constitutive equations

    International Nuclear Information System (INIS)

    Serdyukov, S.I.

    2003-01-01

    A postulate of extended irreversible thermodynamics is considered, according to which the entropy density is a function of the internal energy, the specific volume, and their material time derivatives. On the basis of this postulate, entropy balance equations and phenomenological equations are obtained, which directly lead to the Jeffreys type constitutive equations

  14. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Hada, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    A creep constitutive equation of Hastelloy X was obtained from available experimental data. A sensitivity analysis of this creep constitutive equation was carried out. As the result, the following were revealed: (i) Variations in creep behavior with creep constitutive equation are not small. (ii) In a simpler stress change pattern, variations in creep behavior are similar to those in the corresponding fundamental creep characteristics (creep strain curve, stress relaxation curve, etc.). (iii) Cumulative creep damage estimated in accordance with ASME Boiler and Pressure Vessel Code Case N-47 from a stress history predicted by ''the standard creep constitutive equation'' which predicts the average behavior of creep strain curve data is not thought to be on the safe side on account of uncertainties in creep damage caused by variations in creep strain curve. (author)

  15. National Constitutional Avenues for Further EU Integration

    NARCIS (Netherlands)

    Besselink, L.F.M.; Claes, M.; Imamovic, Š.; Reestman, J.H.

    2014-01-01

    This study investigates national constitutional limits to further EU integration and explores ways to overcome them. It includes an in-depth examination of the constitutional systems of 12 Member States (Croatia, the Czech Republic, Estonia, Finland, France, Germany, Hungary, Ireland, Italy, the

  16. Constitutive Equation with Varying Parameters for Superplastic Flow Behavior

    Science.gov (United States)

    Guan, Zhiping; Ren, Mingwen; Jia, Hongjie; Zhao, Po; Ma, Pinkui

    2014-03-01

    In this study, constitutive equations for superplastic materials with an extra large elongation were investigated through mechanical analysis. From the view of phenomenology, firstly, some traditional empirical constitutive relations were standardized by restricting some strain paths and parameter conditions, and the coefficients in these relations were strictly given new mechanical definitions. Subsequently, a new, general constitutive equation with varying parameters was theoretically deduced based on the general mechanical equation of state. The superplastic tension test data of Zn-5%Al alloy at 340 °C under strain rates, velocities, and loads were employed for building a new constitutive equation and examining its validity. Analysis results indicated that the constitutive equation with varying parameters could characterize superplastic flow behavior in practical superplastic forming with high prediction accuracy and without any restriction of strain path or deformation condition, showing good industrial or scientific interest. On the contrary, those empirical equations have low prediction capabilities due to constant parameters and poor applicability because of the limit of special strain path or parameter conditions based on strict phenomenology.

  17. Study on the creep constitutive equation of Hastelloy X, (1)

    International Nuclear Information System (INIS)

    Suzuki, Kazuhiko; Mutoh, Yasushi

    1983-01-01

    In order to carry out the structural design of high temperature pipings, intermediate heat exchangers and isolating valves for a multipurpose high temperature gas-cooled reactor, in which coolant temperature reaches 1000 deg C, the creep characteristics of Hastelloy X used as the heat resistant material must be clarified. In addition to usual creep rupture life and the time to reach a specified creep strain, the dependence of creep strain curves on time, temperature and stress must be determined and expressed with equations. Therefore, using the creep data of Hastelloy X given in the literatures, the creep constitutive equation was made. Since the creep strain curves under the same test condition were different according to heats, the sensitivity analysis of the creep constitutive equation was performed. The form of the creep constitutive equation was determined to be Garofalo type. The result of the sensitivity analysis is reported. (Kako, I.)

  18. Implementation of thermo-viscoplastic constitutive equations into the finite element code ABAQUS

    International Nuclear Information System (INIS)

    Youn, Sam Son; Lee, Soon Bok; Kim, Jong Bum; Lee, Hyeong Yeon; Yoo, Bong

    1998-01-01

    Sophisticated viscoplatic constitutive laws describing material behavior at high temperature have been implemented in the general-purpose finite element code ABAQUS to predict the viscoplastic response of structures to cyclic loading. Because of the complexity of viscoplastic constitutive equation, the general implementation methods are developed. The solution of the non-linear system of algebraic equations arising from time discretization is determined using line-search and back-tracking in combination with Newton method. The time integration method of the constitutive equations is based on semi-implicit method with efficient time step control. For numerical examples, the viscoplastic model proposed by Chaboche is implemented and several applications are illustrated

  19. A stable computational scheme for stiff time-dependent constitutive equations

    International Nuclear Information System (INIS)

    Shih, C.F.; Delorenzi, H.G.; Miller, A.K.

    1977-01-01

    Viscoplasticity and creep type constitutive equations are increasingly being employed in finite element codes for evaluating the deformation of high temperature structural members. These constitutive equations frequently exhibit stiff regimes which makes an analytical assessment of the structure very costly. A computational scheme for handling deformation in stiff regimes is proposed in this paper. By the finite element discretization, the governing partial differential equations in the spatial (x) and time (t) variables are reduced to a system of nonlinear ordinary differential equations in the independent variable t. The constitutive equations are expanded in a Taylor's series about selected values of t. The resulting system of differential equations are then integrated by an implicit scheme which employs a predictor technique to initiate the Newton-Raphson procedure. To examine the stability and accuracy of the computational scheme, a series of calculations were carried out for uniaxial specimens and thick wall tubes subjected to mechanical and thermal loading. (Auth.)

  20. Development of constitutive equations for nuclear reactor core materials

    International Nuclear Information System (INIS)

    Lee, D.; Zaverl, F. Jr.; Plaza-Meyer, E.

    1980-01-01

    A set of strain rate dependent constitutive equations has been described which is capable of predicting deformation behavior of anisotropic metals under complex loading conditions with or without the presence of a neutron flux. The important feature of the constitutive equations is that they describe history dependent plastic deformation behavior of anisotropic metals under three-dimensional stress states. Since the analytical model accounts for the effect of prior deformation history at all times, it is capable of handling consecutive or simultaneous loading histories, such as post-irradiation loading, in-pile loading, etc. It is demonstrated that the general form of the constitutive relations is consistent with experimental observations made for Zircaloys under both unirradiated and irradiated conditions. (orig.)

  1. Structure and Calibration of Constitutive Equations for Granular Soils

    Directory of Open Access Journals (Sweden)

    Sawicki Andrzej

    2015-02-01

    Full Text Available The form of incremental constitutive equations for granular soils is discussed for the triaxial configuration. The classical elasto-plastic approach and the semi-empirical model are discussed on the basis of constitutive relations determined directly from experimental data. First, the general structure of elasto-plastic constitutive equations is presented. Then, the structure of semiempirical constitutive equations is described, and a method of calibrating the model is presented. This calibration method is based on a single experiment, performed in the triaxial apparatus, which also involves a partial verification of the model, on an atypical stress path. The model is shown to give reasonable predictions. An important feature of the semi-empirical incremental model is the definition of loading and unloading, which is different from that assumed in elasto-plasticity. This definition distinguishes between spherical and deviatoric loading/unloading. The definition of deviatoric loading/unloading has been subject to some criticism. It was therefore discussed and clarified in this paper on the basis of the experiment presented.

  2. Multidimensional singular integrals and integral equations

    CERN Document Server

    Mikhlin, Solomon Grigorievich; Stark, M; Ulam, S

    1965-01-01

    Multidimensional Singular Integrals and Integral Equations presents the results of the theory of multidimensional singular integrals and of equations containing such integrals. Emphasis is on singular integrals taken over Euclidean space or in the closed manifold of Liapounov and equations containing such integrals. This volume is comprised of eight chapters and begins with an overview of some theorems on linear equations in Banach spaces, followed by a discussion on the simplest properties of multidimensional singular integrals. Subsequent chapters deal with compounding of singular integrals

  3. Constitutional equations of thermal stresses of particle-reinforced composite

    International Nuclear Information System (INIS)

    Asakawa, Atsushi; Noda, Naotake; Tohgo, Keiichiro; Tsuji, Tomoaki.

    1994-01-01

    Functionally gradient materials (FGM) have been developed as ultrahigh-heat-resistant materials in aircraft, space engineering and nuclear fields. In the heat-resistant FGM which contain particles (ceramics) in the matrix (metal), the matrix will be subjected to plastic deformation, particles will be debonded, and finally cracks will be generated. The constitutive equations of FGM which take into account the damage process and change in temperature are necessary in order to solve these phenomena. In this paper, the constitutive equations of particle-reinforced composites with consideration of the damage process and change in temperature are estimated by the equivalent inclusion method in terms of elastoplasticity. The stress-strain relations and the coefficients of linear thermal expansion of the composites (Al-PSZ and Ti-PSZ) are calculated in ultrahigh temperature. (author)

  4. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bo Hoon; Kim, Min Sung; Yoh, Jack J. [Dept. of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Sun, Tae Boo [Hanwha Corporation Defense Rand D Center, Daejeon (Korea, Republic of)

    2016-12-15

    A Sympathetic detonation (SD) is a detonation of an explosive charge by a nearby explosion. Most of times it is unintended while the impact of blast fragments or strong shock waves from the initiating donor explosive is the cause of SD. We investigate the SD of a cylindrical explosive charge (64 % RDX, 20 % Al, 16 % HTPB) contained in a steel casing. The constitutive relations for high explosive are obtained from a thermo-chemical code that provides the size effect data without the rate stick data typically used for building the rate law and equation of state. A full size SD test of eight pallet-packaged artillery shells is performed that provides the pressure data while the hydrodynamic model with proper constitutive relations for reactive materials and the fragmentation model for steel casing is conducted to replicate the experimental findings. The work presents a novel effort to accurately model and reproduce the sympathetic detonation event with a reduced experimental effort.

  5. Integral equations and their applications

    CERN Document Server

    Rahman, M

    2007-01-01

    For many years, the subject of functional equations has held a prominent place in the attention of mathematicians. In more recent years this attention has been directed to a particular kind of functional equation, an integral equation, wherein the unknown function occurs under the integral sign. The study of this kind of equation is sometimes referred to as the inversion of a definite integral. While scientists and engineers can already choose from a number of books on integral equations, this new book encompasses recent developments including some preliminary backgrounds of formulations of integral equations governing the physical situation of the problems. It also contains elegant analytical and numerical methods, and an important topic of the variational principles. Primarily intended for senior undergraduate students and first year postgraduate students of engineering and science courses, students of mathematical and physical sciences will also find many sections of direct relevance. The book contains eig...

  6. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  7. On some constitutive equations for inelastic materials and their application

    International Nuclear Information System (INIS)

    Valeva, V.V.; Karagiozova, D.D.; Baltov, A.A.; Hadjikov, L.M.

    1987-01-01

    The problems of the mechano-mathematical modelling of the behaviour of materials under irradiation become more topical with development of atomic energetics. Many protective and technological structures could be subjected to irradiation in case of operation or average. The irradiation affects the process of deformation by causing inelastic swelling of materials, it affects their physico-mechanical properties, i.e. it changes their elastic, plastic, viscous, thermal, etc. properties. This effect varies depending on the material. Due to this reason it is very important to indicate exactly the class of materials for which a mechano-mathematical model is created. Grounding on the analysis of experimental data about the behaviour of different types of steel used in nuclear reactors and on the existing models, the present paper proposes constitutive equations for inelastic materials which account temperature, strain rate and radiation effects. The thermodynamic theory of systems with internal state parameters is utilized and for the description of the radiation effects two scalar parameters are introduced - dose φ r and temperature θ r of irradiation. Problem of the behaviour of irradiated structure element in stress concentrator zone is solved on the basis of these constitutive equations and of Boundary Element Method (BEM). (orig.)

  8. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  9. Integral equation methods for electromagnetics

    CERN Document Server

    Volakis, John

    2012-01-01

    This text/reference is a detailed look at the development and use of integral equation methods for electromagnetic analysis, specifically for antennas and radar scattering. Developers and practitioners will appreciate the broad-based approach to understanding and utilizing integral equation methods and the unique coverage of historical developments that led to the current state-of-the-art. In contrast to existing books, Integral Equation Methods for Electromagnetics lays the groundwork in the initial chapters so students and basic users can solve simple problems and work their way up to the mo

  10. New constitutive equations to describe infinitesimal elastic-plastic deformations

    International Nuclear Information System (INIS)

    Boecke, B.; Link, F.; Schneider, G.; Bruhns, O.T.

    1983-01-01

    A set of constitutive equations is presented to describe infinitesimal elastic-plastic deformations of austenitic steel in the range up to 600 deg C. This model can describe the hardening behaviour in the case of mechanical loading and hardening, and softening behaviour in the case of thermal loading. The loading path can be either monotonic or cyclic. For this purpose, the well-known isotropic hardening model is continually transferred into the kinematic model according to Prager, whereby suitable internal variables are chosen. The occurring process-dependent material functions are to be determined by uniaxial experiments. The hardening function g and the translation function c are determined by means of a linearized stress-strain behaviour in the plastic range, whereby a coupling condition must be taken into account. As a linear hardening process is considered to be too unrealistic, nonlinearity is achieved by introducing a small function w, the determination procedure of which is given. (author)

  11. Integral equation for Coulomb problem

    International Nuclear Information System (INIS)

    Sasakawa, T.

    1986-01-01

    For short range potentials an inhomogeneous (homogeneous) Lippmann-Schwinger integral equation of the Fredholm type yields the wave function of scattering (bound) state. For the Coulomb potential, this statement is no more valid. It has been felt difficult to express the Coulomb wave function in a form of an integral equation with the Coulomb potential as the perturbation. In the present paper, the author shows that an inhomogeneous integral equation of a Volterra type with the Coulomb potential as the perturbation can be constructed both for the scattering and the bound states. The equation yielding the binding energy is given in an integral form. The present treatment is easily extended to the coupled Coulomb problems

  12. The Use of Nonlinear Constitutive Equations to Evaluate Draw Resistance and Filter Ventilation

    Directory of Open Access Journals (Sweden)

    Eitzinger B

    2014-12-01

    Full Text Available This study investigates by nonlinear constitutive equations the influence of tipping paper, cigarette paper, filter, and tobacco rod on the degree of filter ventilation and draw resistance. Starting from the laws of conservation, the path to the theory of fluid dynamics in porous media and Darcy's law is reviewed and, as an extension to Darcy's law, two different nonlinear pressure drop-flow relations are proposed. It is proven that these relations are valid constitutive equations and the partial differential equations for the stationary flow in an unlit cigarette covering anisotropic, inhomogeneous and nonlinear behaviour are derived. From these equations a system of ordinary differential equations for the one-dimensional flow in the cigarette is derived by averaging pressure and velocity over the cross section of the cigarette. By further integration, the concept of an electrical analog is reached and discussed in the light of nonlinear pressure drop-flow relations. By numerical calculations based on the system of ordinary differential equations, it is shown that the influence of nonlinearities cannot be neglected because variations in the degree of filter ventilation can reach up to 20% of its nominal value.

  13. Feynman integrals and difference equations

    International Nuclear Information System (INIS)

    Moch, S.; Schneider, C.

    2007-09-01

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called ΠΣ * -fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  14. Feynman integrals and difference equations

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Schneider, C. [Johannes Kepler Univ., Linz (Austria). Research Inst. for Symbolic Computation

    2007-09-15

    We report on the calculation of multi-loop Feynman integrals for single-scale problems by means of difference equations in Mellin space. The solution to these difference equations in terms of harmonic sums can be constructed algorithmically over difference fields, the so-called {pi}{sigma}{sup *}-fields. We test the implementation of the Mathematica package Sigma on examples from recent higher order perturbative calculations in Quantum Chromodynamics. (orig.)

  15. Integration rules for scattering equations

    International Nuclear Information System (INIS)

    Baadsgaard, Christian; Bjerrum-Bohr, N.E.J.; Bourjaily, Jacob L.; Damgaard, Poul H.

    2015-01-01

    As described by Cachazo, He and Yuan, scattering amplitudes in many quantum field theories can be represented as integrals that are fully localized on solutions to the so-called scattering equations. Because the number of solutions to the scattering equations grows quite rapidly, the contour of integration involves contributions from many isolated components. In this paper, we provide a simple, combinatorial rule that immediately provides the result of integration against the scattering equation constraints for any Möbius-invariant integrand involving only simple poles. These rules have a simple diagrammatic interpretation that makes the evaluation of any such integrand immediate. Finally, we explain how these rules are related to the computation of amplitudes in the field theory limit of string theory.

  16. Materials with memory initial-boundary value problems for constitutive equations with internal variables

    CERN Document Server

    Alber, Hans-Dieter

    1998-01-01

    This book contributes to the mathematical theory of systems of differential equations consisting of the partial differential equations resulting from conservation of mass and momentum, and of constitutive equations with internal variables. The investigations are guided by the objective of proving existence and uniqueness, and are based on the idea of transforming the internal variables and the constitutive equations. A larger number of constitutive equations from the engineering sciences are presented. The book is therefore suitable not only for specialists, but also for mathematicians seeking for an introduction in the field, and for engineers with a sound mathematical background.

  17. A strategy of implementation of the improved constitutive equations for the advanced subchannel code

    International Nuclear Information System (INIS)

    Shirai, Hiroshi; Hotta, Akitoshi; Ninokata, Hisashi

    2004-01-01

    To develop the advanced subchannel analysis code, the dominant factors that influence the boiling transitional process must be taken into account in the mechanistic constitutive equations based on the flow geometries and the fluid properties. The dominant factors that influence the boiling transitional processes are (1) the gas-liquid re-distribution by cross flow, (2) the liquid film dryout, (3) the two-phase flow regime transition, (4) the droplet deposition, and (5) the spacer-droplet interaction. At first, we indicated the strategy for the development of the constitutive equations for the five dominant factors based on the experimental database by the latest measurement technique and the latest computational fluid dynamics method. Then, the problems of the present constitutive equations and the improvement plan of the constitutive equations were indicated. Finally, the layered structure for the two-phase/three-field subchannel code including the new constitutive equations was designed. (author)

  18. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  19. Stochastic integration and differential equations

    CERN Document Server

    Protter, Philip E

    2003-01-01

    It has been 15 years since the first edition of Stochastic Integration and Differential Equations, A New Approach appeared, and in those years many other texts on the same subject have been published, often with connections to applications, especially mathematical finance. Yet in spite of the apparent simplicity of approach, none of these books has used the functional analytic method of presenting semimartingales and stochastic integration. Thus a 2nd edition seems worthwhile and timely, though it is no longer appropriate to call it "a new approach". The new edition has several significant changes, most prominently the addition of exercises for solution. These are intended to supplement the text, but lemmas needed in a proof are never relegated to the exercises. Many of the exercises have been tested by graduate students at Purdue and Cornell Universities. Chapter 3 has been completely redone, with a new, more intuitive and simultaneously elementary proof of the fundamental Doob-Meyer decomposition theorem, t...

  20. Modeling of rock friction 1. Experimental results and constitutive equations

    International Nuclear Information System (INIS)

    Dieterich, J.H.

    1979-01-01

    Direct shear experiments on ground surfaces of a granodiorite from Raymond, California, at normal stresses of approx.6 MPa demonstrate that competing time, displacement, and velocity, effects control rock friction. It is proposed that the strength of the population of points of contacts between sliding surfaces determines frictional strength and that the population of contacts changes continuously with displacements. Previous experiments demonstrate that the strength of the contacts increases with the age of the contacts. The present experiments establish that a characteristic displacement, proportional to surface roughness, is required to change the population of contacts. Hence during slip the average age of the points of contact and therefore frictional strength decrease as slip velocity increases. Displacement weakening and consequently the potential for unstable slip occur whenever displacement reduces the average age of the contacts. In addition to this velocity dependency, which arises from displacement dependency and time dependency, the experiments also show a competing but transient increase in friction whenever slip velocity increases. Creep of the sliding surface at stresses below that for steady state slip also observed. Constitutive relationships are developed that permit quantitative simulation of the friction versus displacement data as a function of surface roughness and for different time and velocity histories. Unstable slip in experiments is controlled by these constitutive effects and by the stiffness of the experimental system. It is argued that analogous properties control earthquake instability

  1. Linear integral equations and soliton systems

    International Nuclear Information System (INIS)

    Quispel, G.R.W.

    1983-01-01

    A study is presented of classical integrable dynamical systems in one temporal and one spatial dimension. The direct linearizations are given of several nonlinear partial differential equations, for example the Korteweg-de Vries equation, the modified Korteweg-de Vries equation, the sine-Gordon equation, the nonlinear Schroedinger equation, and the equation of motion for the isotropic Heisenberg spin chain; the author also discusses several relations between these equations. The Baecklund transformations of these partial differential equations are treated on the basis of a singular transformation of the measure (or equivalently of the plane-wave factor) occurring in the corresponding linear integral equations, and the Baecklund transformations are used to derive the direct linearization of a chain of so-called modified partial differential equations. Finally it is shown that the singular linear integral equations lead in a natural way to the direct linearizations of various nonlinear difference-difference equations. (Auth.)

  2. Formulation and integration of constitutive models describing large deformations in thermoplasticity and thermoviscoplasticity

    International Nuclear Information System (INIS)

    Jansohn, W.

    1997-10-01

    This report deals with the formulation and numerical integration of constitutive models in the framework of finite deformation thermomechanics. Based on the concept of dual variables, plasticity and viscoplasticity models exhibiting nonlinear kinematic hardening as well as nonlinear isotropic hardening rules are presented. Care is taken that the evolution equations governing the hardening response fulfill the intrinsic dissipation inequality in every admissible process. In view of the development of an efficient numerical integration procedure, simplified versions of these constitutive models are supposed. In these versions, the thermoelastic strains are assumed to be small and a simplified kinematic hardening rule is considered. Additionally, in view of an implementation into the ABAQUS finite element code, the elasticity law is approximated by a hypoelasticity law. For the simplified onstitutive models, an implicit time-integration algorithm is developed. First, in order to obtain a numerical objective integration scheme, use is made of the HUGHES-WINGET-Algorithm. In the resulting system of ordinary differential equations, it can be distinguished between three differential operators representing different physical effects. The structure of this system of differential equations allows to apply an operator split scheme, which leads to an efficient integration scheme for the constitutive equations. By linearizing the integration algorithm the consistent tangent modulus is derived. In this way, the quadratic convergence of Newton's method used to solve the basic finite element equations (i.e. the finite element discretization of the governing thermomechanical field equations) is preserved. The resulting integration scheme is implemented as a user subroutine UMAT in ABAQUS. The properties of the applied algorithm are first examined by test calculations on a single element under tension-compression-loading. For demonstrating the capabilities of the constitutive theory

  3. Completely integrable operator evolution equations. II

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The author continues the investigation of operator classical completely integrable systems. The main attention is devoted to the stationary operator non-linear Schroedinger equation. It is shown that this equation can be used for separation of variables for a large class of completely integrable equations. (Auth.)

  4. Transformation properties of the integrable evolution equations

    International Nuclear Information System (INIS)

    Konopelchenko, B.G.

    1981-01-01

    Group-theoretical properties of partial differential equations integrable by the inverse scattering transform method are discussed. It is shown that nonlinear transformations typical to integrable equations (symmetry groups, Baecklund-transformations) and these equations themselves are contained in a certain universal nonlinear transformation group. (orig.)

  5. Mechanical modeling for magnetorheological elastomer isolators based on constitutive equations and electromagnetic analysis

    Science.gov (United States)

    Wang, Qi; Dong, Xufeng; Li, Luyu; Ou, Jinping

    2018-06-01

    As constitutive models are too complicated and existing mechanical models lack universality, these models are beyond satisfaction for magnetorheological elastomer (MRE) devices. In this article, a novel universal method is proposed to build concise mechanical models. Constitutive model and electromagnetic analysis were applied in this method to ensure universality, while a series of derivations and simplifications were carried out to obtain a concise formulation. To illustrate the proposed modeling method, a conical MRE isolator was introduced. Its basic mechanical equations were built based on equilibrium, deformation compatibility, constitutive equations and electromagnetic analysis. An iteration model and a highly efficient differential equation editor based model were then derived to solve the basic mechanical equations. The final simplified mechanical equations were obtained by re-fitting the simulations with a novel optimal algorithm. In the end, verification test of the isolator has proved the accuracy of the derived mechanical model and the modeling method.

  6. An integral transform of the Salpeter equation

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1980-03-01

    We find a new form of relativistic wave equation for two spin-1/2 particles, which arises by an integral transformation (in the position space) of the wave function in the Salpeter equation. The non-locality involved in this transformation is extended practically over the Compton wavelength of the lighter of two particles. In the case of equal masses the new equation assumes the form of the Breit equation with an effective integral interaction. In the one-body limit it reduces to the Dirac equation also with an effective integral interaction. (author)

  7. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    International Nuclear Information System (INIS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-01-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material

  8. Integral equations with contrasting kernels

    Directory of Open Access Journals (Sweden)

    Theodore Burton

    2008-01-01

    Full Text Available In this paper we study integral equations of the form $x(t=a(t-\\int^t_0 C(t,sx(sds$ with sharply contrasting kernels typified by $C^*(t,s=\\ln (e+(t-s$ and $D^*(t,s=[1+(t-s]^{-1}$. The kernel assigns a weight to $x(s$ and these kernels have exactly opposite effects of weighting. Each type is well represented in the literature. Our first project is to show that for $a\\in L^2[0,\\infty$, then solutions are largely indistinguishable regardless of which kernel is used. This is a surprise and it leads us to study the essential differences. In fact, those differences become large as the magnitude of $a(t$ increases. The form of the kernel alone projects necessary conditions concerning the magnitude of $a(t$ which could result in bounded solutions. Thus, the next project is to determine how close we can come to proving that the necessary conditions are also sufficient. The third project is to show that solutions will be bounded for given conditions on $C$ regardless of whether $a$ is chosen large or small; this is important in real-world problems since we would like to have $a(t$ as the sum of a bounded, but badly behaved function, and a large well behaved function.

  9. Evaluation of high temperature mechanical properties and constitutive equation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Blanchard, P.; Tortel, J.

    1985-08-01

    A large amount of experimental data (tensile tests, creep tests, cyclic strain tests, relaxation experiments and biaxial experiments) on 17-12 Mo SPH (316 L SPH) stainless steel used for building the primary loop of Super Phenix Reactor have been obtained during the last years. The aim of this paper is to illustrate by a few examples the work done in the constitutive equations area using this powerful data base. Numerous semiempirical equations have been developed to represent tensile, cyclic, creep or relaxation tests on 17-12 Mo SPH (316 L SPH) stainless steel. These equations, althrough not being able to be properly called ''constitutive equations'' in the full sense of the word, are nevertheless very useful for design studies. Actually these semiempirical equations are necessary tools for building elastic analysis's rules. Some examples of these equations are given along with specific applications (creep-fatigue rules). The qualitative and semiquantitative comparisons of the stress-strain behaviour (both uniaxial and biaxial) predicted by the most common constitutive equations (PRAGER, MEIJERS, HART, CHABOCHE, KRIEB, MILLER, ROBINSON) with the actual behaviour of 17-12 Mo SPH (316 L SPH) steel, allows us to shed some light on the strengths and weaknesses of these equations. This comparison is presented and discussed. The way to more realistic equations is shown. A detailed and quantitative comparison of the capabilities of two models, the CHABOCHE model and the multilayer unified model which has been developed is presented

  10. On integrability of the Killing equation

    Science.gov (United States)

    Houri, Tsuyoshi; Tomoda, Kentaro; Yasui, Yukinori

    2018-04-01

    Killing tensor fields have been thought of as describing the hidden symmetry of space(-time) since they are in one-to-one correspondence with polynomial first integrals of geodesic equations. Since many problems in classical mechanics can be formulated as geodesic problems in curved space and spacetime, solving the defining equation for Killing tensor fields (the Killing equation) is a powerful way to integrate equations of motion. Thus it has been desirable to formulate the integrability conditions of the Killing equation, which serve to determine the number of linearly independent solutions and also to restrict the possible forms of solutions tightly. In this paper, we show the prolongation for the Killing equation in a manner that uses Young symmetrizers. Using the prolonged equations, we provide the integrability conditions explicitly.

  11. Integrable discretizations of the short pulse equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    In this paper, we propose integrable semi-discrete and full-discrete analogues of the short pulse (SP) equation. The key construction is the bilinear form and determinant structure of solutions of the SP equation. We also give the determinant formulas of N-soliton solutions of the semi-discrete and full-discrete analogues of the SP equations, from which the multi-loop and multi-breather solutions can be generated. In the continuous limit, the full-discrete SP equation converges to the semi-discrete SP equation, and then to the continuous SP equation. Based on the semi-discrete SP equation, an integrable numerical scheme, i.e. a self-adaptive moving mesh scheme, is proposed and used for the numerical computation of the short pulse equation.

  12. On establishing constitutive equations for use in design of high-temperature fast-reactor structures

    International Nuclear Information System (INIS)

    Pugh, C.E.

    1978-01-01

    The presentation describes the approach being used to establish constitutive equations for wide use in the design of fast breeder reactor (FBR) components in the US. The approach combines exploratory experiments, constitutive model studies, studies of computational techniques, and tests of simple structural configurations. Short-time (elastic-plastic) behavior, long-time (creep) behavior, and their interactions are considered, and some of the background to equations now identified for use in current FBR design applications involving three structural alloys is discussed. Comments are also given on current efforts aimed at identifying improved constitutive equations for these alloys and on properties data required for design applications. References are cited which have addressed the status of the process at various times. (Auth.)

  13. Development and validation of constitutive equation of HBS irradiation swelling considering hydrostatic pressure

    International Nuclear Information System (INIS)

    Gao Lijun; Jiang Shengyao; Yu Jiyang; Chen Bingde; Xiao Zhong

    2014-01-01

    The mechanism of hydrostatic pressure affecting the irradiation swelling of UO_2 high burnup structure was analyzed. Three basic assumptions used to develop the constitutive equation of irradiation swelling were made accordingly. It is concluded that hydrostatic pressure imposes an important impact on irradiation swelling mainly through compressing the UO_2 high burnup structure pores. Based on the already developed correlation of the irradiation swelling of UO_2 high burnup structure, pore shrinkage due to the application of hydrostatic pressure and thus the reduction of irradiation swelling of UO_2 high burnup structure were determined quantitatively, and the constitutive equation of irradiation swelling of UO_2 high burnup structure considering the hydrostatic pressure was constructed successfully. The constitutive equation is validated using available irradiation swelling data of UO_2 high burnup structure, which demonstrates its reasonability. (authors)

  14. Baecklund transformations for integrable lattice equations

    International Nuclear Information System (INIS)

    Atkinson, James

    2008-01-01

    We give new Baecklund transformations (BTs) for some known integrable (in the sense of being multidimensionally consistent) quadrilateral lattice equations. As opposed to the natural auto-BT inherent in every such equation, these BTs are of two other kinds. Specifically, it is found that some equations admit additional auto-BTs (with Baecklund parameter), whilst some pairs of apparently distinct equations admit a BT which connects them

  15. ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY

    OpenAIRE

    Enrique Gonzalo Reyes Garcia

    2004-01-01

    ON DIFFERENTIAL EQUATIONS, INTEGRABLE SYSTEMS, AND GEOMETRY Equations in partial derivatives appeared in the 18th century as essential tools for the analytic study of physical models and, later, they proved to be fundamental for the progress of mathematics. For example, fundamental results of modern differential geometry are based on deep theorems on differential equations. Reciprocally, it is possible to study differential equations through geometrical means just like it was done by o...

  16. Asymptotic integration of differential and difference equations

    CERN Document Server

    Bodine, Sigrun

    2015-01-01

    This book presents the theory of asymptotic integration for both linear differential and difference equations. This type of asymptotic analysis is based on some fundamental principles by Norman Levinson. While he applied them to a special class of differential equations, subsequent work has shown that the same principles lead to asymptotic results for much wider classes of differential and also difference equations. After discussing asymptotic integration in a unified approach, this book studies how the application of these methods provides several new insights and frequent improvements to results found in earlier literature. It then continues with a brief introduction to the relatively new field of asymptotic integration for dynamic equations on time scales. Asymptotic Integration of Differential and Difference Equations is a self-contained and clearly structured presentation of some of the most important results in asymptotic integration and the techniques used in this field. It will appeal to researchers i...

  17. Integrable boundary conditions and modified Lax equations

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia

    2008-01-01

    We consider integrable boundary conditions for both discrete and continuum classical integrable models. Local integrals of motion generated by the corresponding 'transfer' matrices give rise to time evolution equations for the initial Lax operator. We systematically identify the modified Lax pairs for both discrete and continuum boundary integrable models, depending on the classical r-matrix and the boundary matrix

  18. Constitutive equations for describing high-temperature inelastic behavior of structural alloys

    International Nuclear Information System (INIS)

    Robinson, D.N.; Pugh, C.E.; Corum, J.M.

    1976-01-01

    This paper addresses constitutive equations for the description of inelastic behavior of LMFBR structural alloys at elevated temperatures. Both elastic-plastic (time-independent) and creep (time-dependent) deformations are considered for types 304 and 316 stainless steel and 2 1 / 4 Cr--1 Mo steel. The constitutive equations identified for interim use in design analyses are described along with the assumptions and data on which they are based. Areas where improvements are needed are identified, and some alternate theories that are being pursued are outlined

  19. A constitutive equation for creep fracture under constant, variable or cyclic positive stress

    International Nuclear Information System (INIS)

    Snedden, J.D.

    1977-01-01

    Prediction of creep fracture of metals under variable stress is one of the most difficult problems of applied mechanics. At NEL this problem is under investigation using an approach in which creep is represented by two macroscopic components: an anelastic (reversible) component and a plastic (irreversible) component. Under variable loading conditions, the anelastic component's behaviour will be most important and, if an experimental programme is logically planned, the structural processes responsible will be implicit in the resulting constitutive equation describing the material's behaviour. The present paper deals with the development and application of a constitutive equation for creep fracture of RR58 Aluminium alloy at 180 0 C under variable stress and such a constitutive equation can be extrapolated to cover long-time behaviour just as with conventional constant stress creep fracture equations. Constant stress, in fact, is one of the boundary conditions of the general constitutive equation, representing zero prior damage. The other boundary condition is that of 'cadence loading' in which the stress is completely removed and then re-applied in a cyclic fashion. (Auth.)

  20. Direct test of a nonlinear constitutive equation for simple turbulent shear flows using DNS data

    Science.gov (United States)

    Schmitt, François G.

    2007-10-01

    Several nonlinear constitutive equations have been proposed to overcome the limitations of the linear eddy-viscosity models to describe complex turbulent flows. These nonlinear equations have often been compared to experimental data through the outputs of numerical models. Here we perform a priori analysis of nonlinear eddy-viscosity models using direct numerical simulation (DNS) of simple shear flows. In this paper, the constitutive equation is directly checked using a tensor projection which involves several invariants of the flow. This provides a 3 terms development which is exact for 2D flows, and a best approximation for 3D flows. We provide the quadratic nonlinear constitutive equation for the near-wall region of simple shear flows using DNS data, and estimate their coefficients. We show that these coefficients have several common properties for the different simple shear flow databases considered. We also show that in the central region of pipe flows, where the shear rate is very small, the coefficients of the constitutive equation diverge, indicating the failure of this representation for vanishing shears.

  1. Nonlocal constitutive equations of elasto-visco-plasticity coupled with damage and temperature

    Directory of Open Access Journals (Sweden)

    Liu Weijie

    2016-01-01

    Full Text Available In this paper, the nonlocal anisothermal elasto-visco-plastic constitutive equations strongly coupled with ductile isotropic damage, nonlinear isotropic hardening and kinematic hardening are developed to model the material behaviour under finite strain. The new micromorphic variable of damage is introduced into the principle of virtual power and new additional balance equations are obtained. Thermodynamically-consistent nonlocal constitutive equations are then deduced. The evolution equations are deduced from the generalized normality rule for the Norton-Hoff visco-plastic potential. This model is used to simulate various material responses under different velocities at high temperature. The micromorphic parameters of damage: micromorphic density and H moduli are studied to examine the effects of micromorphic damage. Biaxial tension is performed to make a comparison between the local damage model and the micromorphic damage model.

  2. Constitutive equations for extensional flow of wormlike micelles : stability analysis of the Bautista-Manero model

    NARCIS (Netherlands)

    Boek, E.S.; Padding, J.T.; Anderson, V.J.; Tardy, P.M.J.; Crawshaw, J.P.; Pearson, J.R.A.

    2005-01-01

    We carry out a stability analysis of the Bautista-Manero (B-M) constitutive equations for extensional flow of wormlike micelles. We show that all solutions for the steady-state extensional viscosity ¿E are unstable when the elongational rates e exceed some critical value. In some cases the only real

  3. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes

    International Nuclear Information System (INIS)

    Parsa, M.H.; Ohadi, D.

    2013-01-01

    Highlights: • A hot deformation constitutive equation based on invariant theory is proposed. • Deformation variables are evaluated based on objectivity, entropy principle, etc. • Using hot compression tests, coefficients of equation have been found. • The ability of equation to show the variation of stress with strain is examined. - Abstract: A general constitutive equation based on the framework of invariant theory by consideration of hot deformation key variables and also the properties of the material such as initial grain size is presented in the current work. Soundness of the considered parameters to be used in the developed formula was initially verified based on the important axioms such as objectivity, entropy principle, and thermodynamics stability. To access the prediction ability of the method, the formula was simplified for the simple hot compression test. To evaluate the simplified formula, single-hit hot compression tests were carried out at the temperature range of 900–1100 °C under true strain rate of 0.01–1 s −1 on a AISI 304 stainless steel. The capability of proposed formula for reproducing the variation of flow stress with strain and the strain hardening rate with stress for the resultant flow stress data was examined. The good agreement between model predictions and actual results signified the applicability of this method as a general constitutive equation in hot deformation studies

  4. Irreversible thermodynamics models and constitutive equations of the irradiation induced deformation and damage accumulating processes

    International Nuclear Information System (INIS)

    Wassilew, C.

    1989-11-01

    This report gives an overall evaluation of several in-reactor deformation and creep-rupture experiments performed in BR-2, FFTF, and Rapsodie on pressurised tubes of the stabilized austenitic stainless steels 1.4970, 1.4981, 1.4988, and the nickel base alloy Hastelloy-X. The irradiation induced deformation processes observed in the components operating in a neutron environment can be divided into two main groups: 1. volume conserving creep and 2. volumetric swelling. Since the observed deformation as well as damage accumulating phenomena are caused by the same constrained generated and free disposable point defects and helium atoms, it is obvious and advisable to analyze, and to model simultaneously the ensemble of the elementary mechanisms and processes effective at the same time. Phenomenological models based on the thermodynamics of irreversible processes have been developed, with the aim of: 1. grasping the partial relationships between the external variables and the response functions (creep, swelling, creep driven swelling, and time to rupture), 2. fathoming the rate-controlling mechanisms, 3. providing insight into the structural details and changes occurring during the deformation and the damage accumulating processes, 4. integrating the damage accumulating processes comprehensively, and 5. formulating the constitutive equations required to describe the elementary processes that generate plastic deformations as well as damage accumulation. (orig./MM)

  5. Counting master integrals. Integration by parts vs. functional equations

    International Nuclear Information System (INIS)

    Kniehl, Bernd A.; Tarasov, Oleg V.

    2016-01-01

    We illustrate the usefulness of functional equations in establishing relationships between master integrals under the integration-by-parts reduction procedure by considering a certain two-loop propagator-type diagram as an example.

  6. Scattering integral equations and four nucleon problem

    International Nuclear Information System (INIS)

    Narodetskii, I.M.

    1980-01-01

    Existing results from the application of integral equation technique to the four-nucleon bound states and scattering are reviewed. The first numerical calculations of the four-body integral equations have been done ten years ago. Yet, it is still widely believed that these equations are too complicated to solve numerically. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. The presentation is based on the quasiparticle approach. This permits a simple interpretation of the equations in terms of quasiparticle scattering. The mathematical basis for the quasiparticle approach is the Hilbert-Schmidt method of the Fredholm integral equation theory. The first part of this review contains a detailed discussion of the Hilbert-Schmidt expansion as applied to the 2-particle amplitudes and to the kernel of the four-body equations. The second part contains the discussion of the four-body quasiparticle equations and of the resed forullts obtain bound states and scattering

  7. Coupling Integrable Couplings of an Equation Hierarchy

    International Nuclear Information System (INIS)

    Wang Hui; Xia Tie-Cheng

    2013-01-01

    Based on a kind of Lie algebra G proposed by Zhang, one isospectral problem is designed. Under the framework of zero curvature equation, a new kind of integrable coupling of an equation hierarchy is generated using the methods proposed by Ma and Gao. With the help of variational identity, we get the Hamiltonian structure of the hierarchy. (general)

  8. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    Science.gov (United States)

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  9. Evaluation of high temperature mechanical properties and constitutive equation of austenitic stainless steels

    International Nuclear Information System (INIS)

    Blanchard, P.; Tortel, J.

    1986-07-01

    A large amount of experimental data on 17-12 Mo SPH (316 L SPH) stainless steel have been obtained during the last years. The aim of this paper is to illustrate by a few examples the work done in the constitutive equations area using this powerful data base. Numerous semiempirical equations have been developed to represent tensile, cyclic, creep or relaxation tests on 17-12 Mo SPH (316 L SPH) stainless steel used for building the primary loop of the SUPER PHENIX 1 reactor. These equations are necessary tools for building elastic analysis's rules. Some examples are given with specific applications. The qualitative and semiquantitative comparisons of the stress-strain behaviour (both uniaxial and biaxial) predicted by the most common constitutive equations with the actual behaviour of 17-12 Mo SPH (316 L SPH) steel, shed some light on the strengths and weaknesses of these equations. This comparison is presented and discussed. The way to more realistic equations is shown. A detailed and quantitative comparison of the capabilities of two models, the CHABOCHE model and the multilayer unified model, is presented

  10. Modification of the Integrated Sasang Constitutional Diagnostic Model

    Directory of Open Access Journals (Sweden)

    Jiho Nam

    2017-01-01

    Full Text Available In 2012, the Korea Institute of Oriental Medicine proposed an objective and comprehensive physical diagnostic model to address quantification problems in the existing Sasang constitutional diagnostic method. However, certain issues have been raised regarding a revision of the proposed diagnostic model. In this paper, we propose various methodological approaches to address the problems of the previous diagnostic model. Firstly, more useful variables are selected in each component. Secondly, the least absolute shrinkage and selection operator is used to reduce multicollinearity without the modification of explanatory variables. Thirdly, proportions of SC types and age are considered to construct individual diagnostic models and classify the training set and the test set for reflecting the characteristics of the entire dataset. Finally, an integrated model is constructed with explanatory variables of individual diagnosis models. The proposed integrated diagnostic model significantly improves the sensitivities for both the male SY type (36.4% → 62.0% and the female SE type (43.7% → 64.5%, which were areas of limitation of the previous integrated diagnostic model. The ideas of these new algorithms are expected to contribute not only to the scientific development of Sasang constitutional medicine in Korea but also to that of other diagnostic methods for traditional medicine.

  11. Integrable peakon equations with cubic nonlinearity

    International Nuclear Information System (INIS)

    Hone, Andrew N W; Wang, J P

    2008-01-01

    We present a new integrable partial differential equation found by Vladimir Novikov. Like the Camassa-Holm and Degasperis-Procesi equations, this new equation admits peaked soliton (peakon) solutions, but it has nonlinear terms that are cubic, rather than quadratic. We give a matrix Lax pair for V Novikov's equation, and show how it is related by a reciprocal transformation to a negative flow in the Sawada-Kotera hierarchy. Infinitely many conserved quantities are found, as well as a bi-Hamiltonian structure. The latter is used to obtain the Hamiltonian form of the finite-dimensional system for the interaction of N peakons, and the two-body dynamics (N = 2) is explicitly integrated. Finally, all of this is compared with some analogous results for another cubic peakon equation derived by Zhijun Qiao. (fast track communication)

  12. On a Volterra Stieltjes integral equation

    Directory of Open Access Journals (Sweden)

    P. T. Vaz

    1990-01-01

    Full Text Available The paper deals with a study of linear Volterra integral equations involving Lebesgue-Stieltjes integrals in two independent variables. The authors prove an existence theorem using the Banach fixed-point principle. An explicit example is also considered.

  13. Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, Akira; Akimoto, Hajime [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Kamo, Hideki

    1996-11-01

    In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A {kappa}-{epsilon} turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)

  14. Development of multidimensional two-fluid model code ACE-3D for evaluation of constitutive equations

    International Nuclear Information System (INIS)

    Ohnuki, Akira; Akimoto, Hajime; Kamo, Hideki.

    1996-11-01

    In order to perform design calculations for a passive safety reactor with good accuracy by a multidimensional two-fluid model, we developed an analysis code, ACE-3D, which can apply for evaluation of constitutive equations. The developed code has the following features: 1. The basic equations are based on 3-dimensional two-fluid model and the orthogonal or the cylindrical coordinate system can be selected. The fluid system is air-water or steam-water. 2. The basic equations are formulated by the finite-difference scheme of staggered mesh. The convection term is formulated by an upwind scheme and the diffusion term by a center-difference scheme. 3. Semi-implicit numerical scheme is adopted and the mass and the energy equations are treated equally in convergent steps for Jacobi equations. 4. The interfacial stress term consists of drag force, life force, turbulent dispersion force, wall force and virtual mass force. 5. A κ-ε turbulent model for bubbly flow is incorporated as the turbulent model. The predictive capability of ACE-3D has been verified using a data-base for bubbly flow in a small-scale vertical pipe. In future, the constitutive equations will be improved with a data-base in a large vertical pipe developed in our laboratory and we have a plan to construct a reliable analytical tool through the improvement work, the progress of calculational speed with vector and parallel processing, the assessments for phase change terms and so on. This report describes the outline for the basic equations and the finite-difference equations in ACE-3D code and also the outline for the program structure. Besides, the results for the assessments of ACE-3D code for the small-scale pipe are summarized. (author)

  15. A regression approach for Zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to Zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor Zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) When there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets. (2) Regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections. Multiple regression analysis performed on a set of carefully selected Zircaloy-2 in-reactor creep data leads to a model which provides excellent correlations for the data. (Auth.)

  16. Modification of Flow Stress Curves and Constitutive Equations During Hot Compression Deformation of 5083 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    FU Ping

    2017-08-01

    Full Text Available The flow stress behavior of 5083 aluminum alloy was investigated under hot compression deformation at 523-723K,strain rates of 0.01-10s-1 and true strains of 0-0.7 with Gleeble-3800 thermal simulator. Based on the heat transfer effect on alloy deformation heat effect, the flow stress curves were corrected. The results show that influence of heat conduction can not be neglected and becomes more obvious with the increase of true strain. The corrected flow stress has little influence on the peak stress, but the steady flow stress softening trends to be diminished to some degree. The flow stress can be predicted by the Zener-Hollomon parameters in the constitutive equation. The corrected measured value exhibits a good agreement with the flow stress predicted by the constitutive equation, and the average relative error is only 5.21%.

  17. Hot workability of γ + α2 titanium aluminide: Development of processing map and constitutive equations

    International Nuclear Information System (INIS)

    Gupta, R.K.; Narayana Murty, S.V.S.; Pant, Bhanu; Agarwala, Vijaya; Sinha, P.P.

    2012-01-01

    Highlights: ► Deformation studies of five TiAl alloys carried out through processing map. ► DRX domain and superplastic domain identified in power efficiency map. ► Safe working zone for alloys found at 1223–1423 K at strain rates (10 −2 –10 −3 s −1 ). ► Strain rate sensitivity, activation energy, Zener Hollomon parameter (Z) are obtained. ► Constitutive equations derived and verified. DRX grain size correlated with Z. - Abstract: Gamma titanium alumindes are intermetallics, which have very narrow working range. Hot isothermal working is the most suitable process for hot working of alloy. Accordingly, hot isothermal compression test is carried out on reaction synthesized and homogenized titanium aluminide alloys at different temperatures and strain rates using Gleeble thermomechanical simulator. Three alloys of Ti48Al2Cr2Nb0.1B (atom%) have been used in the study. Stress–strain data obtained from the test has been used to construct processing map, which indicates the safe and unsafe working zone. Strain rate sensitivity and Zener–Hollomon parameter has been calculated. Further, constitutive equations have been generated and verified. It is found that alloy has good workability in the temperature range of 1223–1423 K at strain rates of 0.01–0.001 s −1 . In this range of parameters, the alloys nearly follow the constitutive equations.

  18. Adaptive integral equation methods in transport theory

    International Nuclear Information System (INIS)

    Kelley, C.T.

    1992-01-01

    In this paper, an adaptive multilevel algorithm for integral equations is described that has been developed with the Chandrasekhar H equation and its generalizations in mind. The algorithm maintains good performance when the Frechet derivative of the nonlinear map is singular at the solution, as happens in radiative transfer with conservative scattering and in critical neutron transport. Numerical examples that demonstrate the algorithm's effectiveness are presented

  19. Inequalities for differential and integral equations

    CERN Document Server

    Ames, William F

    1997-01-01

    Inequalities for Differential and Integral Equations has long been needed; it contains material which is hard to find in other books. Written by a major contributor to the field, this comprehensive resource contains many inequalities which have only recently appeared in the literature and which can be used as powerful tools in the development of applications in the theory of new classes of differential and integral equations. For researchers working in this area, it will be a valuable source of reference and inspiration. It could also be used as the text for an advanced graduate course.Key Features* Covers a variety of linear and nonlinear inequalities which find widespread applications in the theory of various classes of differential and integral equations* Contains many inequalities which have only recently appeared in literature and cannot yet be found in other books* Provides a valuable reference to engineers and graduate students

  20. A regression approach for zircaloy-2 in-reactor creep constitutive equations

    International Nuclear Information System (INIS)

    Yung Liu, Y.; Bement, A.L.

    1977-01-01

    In this paper the methodology of multiple regressions as applied to zircaloy-2 in-reactor creep data analysis and construction of constitutive equation are illustrated. While the resulting constitutive equation can be used in creep analysis of in-reactor zircaloy structural components, the methodology itself is entirely general and can be applied to any creep data analysis. From data analysis and model development point of views, both the assumption of independence and prior committment to specific model forms are unacceptable. One would desire means which can not only estimate the required parameters directly from data but also provide basis for model selections, viz., one model against others. Basic understanding of the physics of deformation is important in choosing the forms of starting physical model equations, but the justifications must rely on their abilities in correlating the overall data. The promising aspects of multiple regression creep data analysis are briefly outlined as follows: (1) when there are more than one variable involved, there is no need to make the assumption that each variable affects the response independently. No separate normalizations are required either and the estimation of parameters is obtained by solving many simultaneous equations. The number of simultaneous equations is equal to the number of data sets, (2) regression statistics such as R 2 - and F-statistics provide measures of the significance of regression creep equation in correlating the overall data. The relative weights of each variable on the response can also be obtained. (3) Special regression techniques such as step-wise, ridge, and robust regressions and residual plots, etc., provide diagnostic tools for model selections

  1. Algorithms For Integrating Nonlinear Differential Equations

    Science.gov (United States)

    Freed, A. D.; Walker, K. P.

    1994-01-01

    Improved algorithms developed for use in numerical integration of systems of nonhomogenous, nonlinear, first-order, ordinary differential equations. In comparison with integration algorithms, these algorithms offer greater stability and accuracy. Several asymptotically correct, thereby enabling retention of stability and accuracy when large increments of independent variable used. Accuracies attainable demonstrated by applying them to systems of nonlinear, first-order, differential equations that arise in study of viscoplastic behavior, spread of acquired immune-deficiency syndrome (AIDS) virus and predator/prey populations.

  2. Abel integral equations analysis and applications

    CERN Document Server

    Gorenflo, Rudolf

    1991-01-01

    In many fields of application of mathematics, progress is crucially dependent on the good flow of information between (i) theoretical mathematicians looking for applications, (ii) mathematicians working in applications in need of theory, and (iii) scientists and engineers applying mathematical models and methods. The intention of this book is to stimulate this flow of information. In the first three chapters (accessible to third year students of mathematics and physics and to mathematically interested engineers) applications of Abel integral equations are surveyed broadly including determination of potentials, stereology, seismic travel times, spectroscopy, optical fibres. In subsequent chapters (requiring some background in functional analysis) mapping properties of Abel integral operators and their relation to other integral transforms in various function spaces are investi- gated, questions of existence and uniqueness of solutions of linear and nonlinear Abel integral equations are treated, and for equatio...

  3. On formal structure of constitutive equations for materials exhibiting shape memory effects

    International Nuclear Information System (INIS)

    Dobovsek, I.

    2000-01-01

    A derivation of constitutive equations in a general three-dimensional setting is described, based on an additive decomposition of the rate of deformation tensor. The rate of deformation tensor is assumed to consist of an elastic part, a thermoelastic part, a plastic part, a part due to shape memory transformation, and a part due to phase transformation. The thermoelastic part due to thermoelastic coupling accounts for the influence of temperature near phase transformation, while the plastic part is taken in the form of classical J 2 flow theory of plasticity with combined isotropic and kinematic hardening, where the back stress represents a tensor of orientational microstresses. It is assumed that the phase transformation part depends on the first and the second invariant of the tensor of crystallographic distortion, on the deviatoric part of the stress tensor, and on a special evolution parameter describing the rate of forming of a new phase. The elastic part of the rate of deformation tensor is connected with the objective rate of Cauchy stress through the tensor of elastic compliance. As a result, a general form of derived constitutive equations exhibits a similar structure as constitutive relations in finite deformation plasticity. (orig.)

  4. Integral equation hierarchy for continuum percolation

    International Nuclear Information System (INIS)

    Given, J.A.

    1988-01-01

    In this thesis a projection operator technique is presented that yields hierarchies of integral equations satisfied exactly by the n-point connectedness functions in a continuum version of the site-bond percolation problem. The n-point connectedness functions carry the same structural information for a percolation problem as then-point correlation functions do for a thermal problem. This method extends the Potts model mapping of Fortuin and Kastelyn to the continuum by exploiting an s-state generalization of the Widom-Rowlinson model, a continuum model for phase separation. The projection operator technique is used to produce an integral equation hierarchy for percolation similar to the Born-Green heirarchy. The Kirkwood superposition approximation (SA) is extended to percolation in order to close this hierarchy and yield a nonlinear integral equation for the two-point connectedness function. The fact that this function, in the SA, is the analytic continuation to negative density of the two-point correlation function in a corresponding thermal problem is discussed. The BGY equation for percolation is solved numerically, both by an expansion in powers of the density, and by an iterative technique due to Kirkwood. It is argued both analytically and numerically, that the BYG equation for percolation, unlike its thermal counterpart, shows non-classical critical behavior, with η = 1 and γ = 0.05 ± .1. Finally a sequence of refinements to the superposition approximations based in the theory of fluids by Rice and Lekner is discussed

  5. PREFACE: Symmetries and Integrability of Difference Equations

    Science.gov (United States)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of

  6. Complete integrability of the difference evolution equations

    International Nuclear Information System (INIS)

    Gerdjikov, V.S.; Ivanov, M.I.; Kulish, P.P.

    1980-01-01

    The class of exactly solvable nonlinear difference evolution equations (DEE) related to the discrete analog of the one-dimensional Dirac problem L is studied. For this starting from L we construct a special linear non-local operator Λ and obtain the expansions of w and σ 3 deltaw over its eigenfunctions, w being the potential in L. This allows us to obtain compact expressions for the integrals of motion and to prove that these DEE are completely integrable Hamiltonian systems. Moreover, it is shown that there exists a hierarchy of Hamiltonian structures, generated by Λ, and the action-angle variables are explicity calculated. As particular cases the difference analog of the non-linear Schroedinger equation and the modified Korteweg-de-Vries equation are considered. The quantization of these Hamiltonian system through the use of the quantum inverse scattering method is briefly discussed [ru

  7. Creep constitutive equation of dual phase 9Cr-ODS steel

    International Nuclear Information System (INIS)

    Sakasegawa, Hideo; Ukai, Shigeharu; Tamura, Manabu; Ohtsuka, Satoshi; Tanigawa, Hiroyasu; Ogiwara, Hiroyuki; Kohyama, Akira; Fujiwara, Masayuki

    2008-01-01

    9Cr-ODS (oxide dispersion strengthened) steels developed by JAEA (Japan Atomic Energy Agency) have superior creep properties compared with conventional heat resistant steels. The ODS steels can enormously contribute to practical applications of fast breeder reactors and more attractive fusion reactors. Key issues are developments of material processing procedures for mass production and creep life prediction methods in present R and D. In this study, formulation of creep constitutive equation was performed against the backdrop. The 9Cr-ODS steel displaying an excellent creep property is a dual phase steel. The ODS steel is strengthened by the δ ferrite which has a finer dispersion of oxide particles and shows a higher hardness than the α' martensite. The δ ferrite functions as a reinforcement in the dual phase 9Cr-ODS steel. Its creep behavior is very unique and cannot be interpreted by conventional theories of heat resistant steels. Alternative qualitative model of creep mechanism was formulated at the start of this study using the results of microstructural observations. Based on the alternative creep mechanism model, a novel creep constitutive equation was formulated using the exponential type creep equation extended by a law of mixture

  8. Polynomial solutions of nonlinear integral equations

    International Nuclear Information System (INIS)

    Dominici, Diego

    2009-01-01

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials

  9. Polynomial solutions of nonlinear integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu

    2009-05-22

    We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.

  10. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    Verwer, J.G.; Bochev, Mikhail A.

    Numerical integration of Maxwell's equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit finite difference

  11. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    J.G. Verwer (Jan); M.A. Botchev

    2008-01-01

    htmlabstractNumerical integration of Maxwell''s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction

  12. Unconditionally stable integration of Maxwell's equations

    NARCIS (Netherlands)

    J.G. Verwer (Jan); M.A. Botchev

    2009-01-01

    textabstractNumerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit –

  13. Lectures on differential equations for Feynman integrals

    International Nuclear Information System (INIS)

    Henn, Johannes M

    2015-01-01

    Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations (DE). These lectures give a review of these developments, while not assuming any prior knowledge of the subject. After an introduction to DE for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that is based on properties of the space–time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the DE. Finally, as an application of these ideas we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a DE. (topical review)

  14. Anisotropic constitutive equations for the viscoplastic behaviour of the single crystal superalloy CMSX-4

    International Nuclear Information System (INIS)

    Fleury, G.; Schubert, F.

    1997-09-01

    Nickel-base superalloy blades of the first rotor stage in a gas turbine have to withstand extremely severe thermomechanical loading conditions. Single crystal blades exhibit a highly anisotropic deformation behaviour and are subjected to triaxial stress fields induced by complex cooling systems. Consequently the prediction of their deformation behaviour requires constitutive equations based on multiaxial formulations. The microstructural evolution of γ/γ' superalloys during the service time modifies the material properties and has therefore to be taken into account in the constitutive equations. For the modelling of the anisotropic, viscoplastic behaviour of single crystal blades taking into account the evolution of the microstructure, a microstructure-dependent, orthotropic Hills potential, whose anisotropy coefficients are connected to the edge length of the γ'-particles, is applied. The prediction was validated by investigating the deformation behaviour of the superalloy CMSX-4 in the range of temperatures [750 C-950 C]. If the shape of γ'-particles remain cubic, for example, in creep testing at low temperatures (up to about 850 C), the microstructure-dependent potential leads to the cubic version of the Hills potential. The prediction is in good agreement with creep results for left angle 001 right angle - and left angle 111 right angle - orientated specimens but overestimates the creep resistance of left angle 011 right angle - orientated specimens. (orig.)

  15. Phenomenological inelastic constitutive equations for SiC and SiC fibers under irradiation

    International Nuclear Information System (INIS)

    El-Azab, A.; Ghoniem, N.M.

    1994-01-01

    Experimental data on irradiation-induced dimensional changes and creep in β-SiC and SiC fibers is analyzed, with the objective of studying the constitutive behavior of these materials under high-temperature irradiation. The data analysis includes empirical representation of irradiation-induced dimensional changes in SiC matrix and SiC fibers as function of time and irradiation temperature. The analysis also includes formulation of simple scaling laws to extrapolate the existing data to fusion conditions on the basis of the physical mechanisms of radiation effects on crystalline solids. Inelastic constitutive equations are then developed for SCS-6 SiC fibers, Nicalon fibers and CVD SiC. The effects of applied stress, temperature, and irradiation fields on the deformation behavior of this class of materials are simultaneously represented. Numerical results are presented for the relevant creep functions under the conditions of the fusion reactor (ARIES IV) first wall. The developed equations can be used in estimating the macro mechanical properties of SiC-SiC composite systems as well as in performing time-dependent micro mechanical analysis that is relevant to slow crack growth and fiber pull-out under fusion conditions

  16. A unified inelastic constitutive equation in terms of anisotropic yield function

    International Nuclear Information System (INIS)

    Inoue, T.; Imatani, S.

    1989-01-01

    In order to describe the material behavior under complicated loading conditions, inelastic constitutive equations accounting for the plasticity-creep interaction have been proposed by several researchers. However, these models are developed to predict the hardening and/or softening phenomena during the inelastic deformation processes, and two important features still remain to be considered; material anisotropy induced by the prior deformation history and inelastic flow or, in another word, directionality of the inelastic strain rate. This paper deals with a unified constitutive model capable of expressing both the deformation-induced anisotropy and the anisotropic flow. In the first part of the paper, an anisotropic yield function which can simulate both the Bauschinger effect and the cross effect is proposed. Then, the excess stress theory is applied to a viscoplastic constitutive relationship so as to describe the plasticity-creep interaction behavior. The experimental verification is carried out for SUS304 stainless steel at 650 degrees C in a biaxial stress state. Moreover, a generalized flow rule of the inelastic strain rate is also developed, by which the description of the ratcheting process can be improved

  17. Nonlinear integral equations for the sausage model

    Science.gov (United States)

    Ahn, Changrim; Balog, Janos; Ravanini, Francesco

    2017-08-01

    The sausage model, first proposed by Fateev, Onofri, and Zamolodchikov, is a deformation of the O(3) sigma model preserving integrability. The target space is deformed from the sphere to ‘sausage’ shape by a deformation parameter ν. This model is defined by a factorizable S-matrix which is obtained by deforming that of the O(3) sigma model by a parameter λ. Clues for the deformed sigma model are provided by various UV and IR information through the thermodynamic Bethe ansatz (TBA) analysis based on the S-matrix. Application of TBA to the sausage model is, however, limited to the case of 1/λ integer where the coupled integral equations can be truncated to a finite number. In this paper, we propose a finite set of nonlinear integral equations (NLIEs), which are applicable to generic value of λ. Our derivation is based on T-Q relations extracted from the truncated TBA equations. For a consistency check, we compute next-leading order corrections of the vacuum energy and extract the S-matrix information in the IR limit. We also solved the NLIE both analytically and numerically in the UV limit to get the effective central charge and compared with that of the zero-mode dynamics to obtain exact relation between ν and λ. Dedicated to the memory of Petr Petrovich Kulish.

  18. MINI-TRAC code: a driver program for assessment of constitutive equations of two-fluid model

    International Nuclear Information System (INIS)

    Akimoto, Hajime; Abe, Yutaka; Ohnuki, Akira; Murao, Yoshio

    1991-05-01

    MINI-TRAC code, a driver program for assessment of constitutive equations of two-fluid model, has been developed to perform assessment and improvement of constitutive equations of two-fluid model widely and efficiently. The MINI-TRAC code uses one-dimensional conservation equations for mass, momentum and energy based on the two-fluid model. The code can work on a personal computer because it can be operated with a core memory size less than 640 KB. The MINI-TRAC code includes constitutive equations of TRAC-PF1/MOD1 code, TRAC-BF1 code and RELAP5/MOD2 code. The code is modulated so that one can easily change constitutive equations to perform a test calculation. This report is a manual of the MINI-TRAC code. The basic equations, numerics, constitutive, equations included in the MINI-TRAC code will be described. The user's manual such as input description will be presented. The program structure and contents of main variables will also be mentioned in this report. (author)

  19. Darboux invariants of integrable equations with variable spectral parameters

    International Nuclear Information System (INIS)

    Shin, H J

    2008-01-01

    The Darboux transformation for integrable equations with variable spectral parameters is introduced. Darboux invariant quantities are calculated, which are used in constructing the Lax pair of integrable equations. This approach serves as a systematic method for constructing inhomogeneous integrable equations and their soliton solutions. The structure functions of variable spectral parameters determine the integrability and nonlinear coupling terms. Three cases of integrable equations are treated as examples of this approach

  20. Constitutive equations for energy balance evaluation in metals under inelastic deformation

    Science.gov (United States)

    Kostina, A.; Plekhov, O.; Venkatraman, B.

    2017-12-01

    The work is devoted to the development of constitutive equations for energy balance evaluation in plastically deformed metals. The evolution of the defect system is described by a previously obtained model based on the Boltzmann-Gibbs statistics. In the framework of this model, a collective behavior of mesodefect ensembles is taken into account by the introduction of an internal variable representing additional structural strain. This parameter enables the partition of plastic work into dissipated heat and stored energy. The proposed model is applied to energy balance calculation in a Ti-1Al-1Mn specimen subjected to cyclic loading. Simulation results have shown that the model is able to describe an upward trend in the stored energy value with the increase in the load ratio.

  1. Using constitutive equation gap method for identification of elastic material parameters: Technical insights and illustrations

    KAUST Repository

    Florentin, Éric

    2011-08-09

    The constitutive equation gap method (CEGM) is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. Recently, CEGM-based functional has been proposed to identify local elastic parameters based on experimental full-field measurement. From a technical point of view, this approach requires to quickly describe a space of statically admissible stress fields. We present here the technical insights, inspired from previous works in verification, that leads to the construction of such a space. Then, the identification strategy is implemented and the obtained results are compared with the actual material parameters for numerically generated benchmarks. The quality of the identification technique is demonstrated that makes it a valuable tool for interactive design as a way to validate local material properties. © 2011 Springer-Verlag.

  2. Identification of the parameters of an elastic material model using the constitutive equation gap method

    KAUST Repository

    Florentin, Éric

    2010-04-23

    Today, the identification ofmaterialmodel parameters is based more and more on full-field measurements. This article explains how an appropriate use of the constitutive equation gap method (CEGM) can help in this context. The CEGM is a well-known concept which, until now, has been used mainly for the verification of finite element simulations. This has led to many developments, especially concerning the techniques for constructing statically admissible stress fields. The originality of the present study resides in the application of these recent developments to the identification problem. The proposed CEGM is described in detail, then evaluated through the identification of heterogeneous isotropic elastic properties. The results obtained are systematically compared with those of the equilibrium gap method, which is a well-known technique for the resolution of such identification problems. We prove that the use of the enhanced CEGM significantly improves the quality of the results. © Springer-Verlag 2010.

  3. Influence of constitutive equations and calculation methods on the results of inelastic analysis of benchmark problems

    International Nuclear Information System (INIS)

    Konter, A.W.A.; Kusters, G.M.A.

    1981-01-01

    Several constitutive equations are used to analyse the structural behaviour of a simply supported beam and circular plate loaded at its center, both tested at 1100 0 F. The time-independent plastic behaviour has been analysed with the isotropic and kinematic hardening model as well as with the ORNL 10th cycle model and the fraction model of Besseling. The time-dependent creep behaviour has been analysed using the isotropic hardening rules and the ORNL auxiliary hardening rules. No interaction of the creep and plastic behaviour was taken into account. Especially for cyclic loading conditions, large differences occur in the predictions of the inelastic behaviour. Good agreement between theory and prediction can be obtained with models which accurately account for the ratio of kinematic and saturating isotropic hardening of the used material. (orig./HP)

  4. Creep-recovery constitutive equation and its time-independent limit

    International Nuclear Information System (INIS)

    Chang, S.J.

    1978-01-01

    The effect of strain recovery is taken into consideration in establishing a constitutive equation for metals at elevated temperatures. Internal state variables and Rice's flow potential are used in the representation. Growth law for the state variables is discussed and interpreted to be a more general form of the kinematic hardening condition. Yield condition is obtained from the flow law. Accordingly, the flow rule is established with the effect of the recovery mechanism, as a slightly general version of the time-independent theory with the kinematic hardening rule. In the discussion of the time-independent limit, the duration of time required for the inelastic strain to reach its saturated value is defined

  5. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    A new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. As a result through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  6. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Brian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Scherzinger, William [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, and compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.

  7. On the constitutive law of environment assisted fatigue: The physical meaning of the Paris type equations. Pt. 1

    International Nuclear Information System (INIS)

    Krausz, K.; Wu Xijia; Krausz, A.S.; Lian Zhiwen

    1992-01-01

    Environment assisted fatigue crack growth is a complex of thermally activated processes. Accordingly, the framework for the expression of rational constitutive law is developed from fracture kinetics theory. The correlation of the constitutive law with the Paris equation is discussed and the empirical parameters in the Paris equation are expressed explicitly in terms of activation energy, stress intensity factor range, temperature, stress ratio, and other physically rigorous engineering quantities. The theory assures and facilitates, the rigorous quantitative evaluation of the effects of the microstructure: the constitutive law gives guidance to its measurement and expresses it in terms of energy-related quantities. (orig.) [de

  8. Comparison between the Norton - and Mukherjee constitutive equations in the determination of stress - strain analysis of a material under creep

    International Nuclear Information System (INIS)

    Bevilacqua, L.; Feijoo, R.A.; Freire, J.L.; Miranda, P.E.V. de; Monteiro, E.; Silveira, T.L. da; Taroco, E.

    1981-06-01

    The Norton and Mukherjee constitutive equations are used to approximate the experimental results of creep in AISI 304 steel. Both equations are applied to the stress-strain analysis of a rotating disk with a concentric circular hole. From the design point of view it is shown that the stresses obtained with both equations are equivalents, which is not true for the velocities. (Author) [pt

  9. A new constitutive equation for strain hardening and softening of fcc metals during severe plastic deformation

    International Nuclear Information System (INIS)

    Wei, W.; Wei, K.X.; Fan, G.J.

    2008-01-01

    The stress-strain relationship for strain hardening and softening of high-purity aluminum and copper, which were deformed by equal channel angular pressing (ECAP) at ambient temperature, was analyzed by combining the Estrin and Mecking (EM) model and an Avrami-type equation with experimental data during severe plastic deformation. The initial strain hardening can be described by the EM model, while the flow stress arrives at the peak stress after it was saturated. However, strain softening similar to plastic deformation at high temperatures is observed after the peak stress. Moreover, the peak strain at the maximum flow stress is ∼4 for copper and ∼2 for aluminum. A new constitutive equation was developed to describe strain softening at high strain levels, which was supported well by tensile, compression and microhardness tests at room temperature and low strain rate. It was observed that dynamic recovery and recrystallization occurs in copper, and recrystallized grains and their growth in aluminum. The results indicate that dynamic recovery and recrystallization was the dominant softening mechanism, which was confirmed by scanning electron microscopy-electron channeling contrast observations and the abnormal relationship between the imposed strain during ECAP and subsequent recrystallization temperature after ECAP

  10. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Gomez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain); Ruiz-Hervias, J. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain)

    2017-04-15

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  11. Bounded solutions for fuzzy differential and integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Nieto, Juan J. [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amnieto@usc.es; Rodriguez-Lopez, Rosana [Departamento de Analisis Matematico Facultad de Matematicas Universidad de Santiago de Compostela, 15782 (Spain)] e-mail: amrosana@usc.es

    2006-03-01

    We find sufficient conditions for the boundness of every solution of first-order fuzzy differential equations as well as certain fuzzy integral equations. Our results are based on several theorems concerning crisp differential and integral inequalities.

  12. Variational Integrals of a Class of Nonhomogeneous -Harmonic Equations

    Directory of Open Access Journals (Sweden)

    Guanfeng Li

    2014-01-01

    Full Text Available We introduce a class of variational integrals whose Euler equations are nonhomogeneous -harmonic equations. We investigate the relationship between the minimization problem and the Euler equation and give a simple proof of the existence of some nonhomogeneous -harmonic equations by applying direct methods of the calculus of variations. Besides, we establish some interesting results on variational integrals.

  13. Recovering an obstacle using integral equations

    KAUST Repository

    Rundell, William

    2009-05-01

    We consider the inverse problem of recovering the shape, location and surface properties of an object where the surrounding medium is both conductive and homogeneous and we measure Cauchy data on an accessible part of the exterior boundary. It is assumed that the physical situation is modelled by harmonic functions and the boundary condition on the obstacle is one of Dirichlet type. The purpose of this paper is to answer some of the questions raised in a recent paper that introduced a nonlinear integral equation approach for the solution of this type of problem.

  14. Integral Equation Methods for Electromagnetic and Elastic Waves

    CERN Document Server

    Chew, Weng; Hu, Bin

    2008-01-01

    Integral Equation Methods for Electromagnetic and Elastic Waves is an outgrowth of several years of work. There have been no recent books on integral equation methods. There are books written on integral equations, but either they have been around for a while, or they were written by mathematicians. Much of the knowledge in integral equation methods still resides in journal papers. With this book, important relevant knowledge for integral equations are consolidated in one place and researchers need only read the pertinent chapters in this book to gain important knowledge needed for integral eq

  15. An Integrated Theory of Constitutionalism in World Society

    DEFF Research Database (Denmark)

    Kjær, Poul F.

    is formal organisations as such and not the particular type of formal organisation which is associated with statehood. Thus, they can be public or private, national or transnational. On this background, a distinction is introduced between the internal setup of constitutional orders, the external strive...

  16. Implementation of numerical integration schemes for the simulation of magnetic SMA constitutive response

    International Nuclear Information System (INIS)

    Kiefer, B; Bartel, T; Menzel, A

    2012-01-01

    Several constitutive models for magnetic shape memory alloys (MSMAs) have been proposed in the literature. The implementation of numerical integration schemes, which allow the prediction of constitutive response for general loading cases and ultimately the incorporation of MSMA response into numerical solution algorithms for fully coupled magneto-mechanical boundary value problems, however, has received only very limited attention. In this work, we establish two algorithmic implementations of the internal variable model for MSMAs proposed in (Kiefer and Lagoudas 2005 Phil. Mag. Spec. Issue: Recent Adv. Theor. Mech. 85 4289–329, Kiefer and Lagoudas 2009 J. Intell. Mater. Syst. 20 143–70), where we restrict our attention to pure martensitic variant reorientation to limit complexity. The first updating scheme is based on the numerical integration of the reorientation strain evolution equation and represents a classical predictor–corrector-type general return mapping algorithm. In the second approach, the inequality-constrained optimization problem associated with internal variable evolution is converted into an unconstrained problem via Fischer–Burmeister complementarity functions and then iteratively solved in standard Newton–Raphson format. Simulations are verified by comparison to closed-form solutions for experimentally relevant loading cases. (paper)

  17. An integral equation arising in two group neutron transport theory

    International Nuclear Information System (INIS)

    Cassell, J S; Williams, M M R

    2003-01-01

    An integral equation describing the fuel distribution necessary to maintain a flat flux in a nuclear reactor in two group transport theory is reduced to the solution of a singular integral equation. The formalism developed enables the physical aspects of the problem to be better understood and its relationship with the corresponding diffusion theory model is highlighted. The integral equation is solved by reducing it to a non-singular Fredholm equation which is then evaluated numerically

  18. The compressive behaviour and constitutive equation of polyimide foam in wide strain rate and temperature

    Directory of Open Access Journals (Sweden)

    Yoshimoto Akifumi

    2015-01-01

    Full Text Available These days, polymer foams, such as polyurethane foam and polystyrene foam, are used in various situations as a thermal insulator or shock absorber. In general, however, their strength is insufficient in high temperature environments because of their low glass transition temperature. Polyimide is a polymer which has a higher glass transition temperature and high strength. Its mechanical properties do not vary greatly, even in low temperature environments. Therefore, polyimide foam is expected to be used in the aerospace industry. Thus, the constitutive equation of polyimide foam that can be applied across a wide range of strain rates and ambient temperature is very useful. In this study, a series of compression tests at various strain rates, from 10−3 to 103 s−1 were carried out in order to examine the effect of strain rate on the compressive properties of polyimide foam. The flow stress of polyimide foam increased rapidly at dynamic strain rates. The effect of ambient temperature on the properties of polyimide foam was also investigated at temperature from − 190 °C to 270°∘C. The flow stress decreased with increasing temperature.

  19. Time-independent limit of a creep-recovery constitutive equation

    International Nuclear Information System (INIS)

    Chang, S.J.

    1984-01-01

    The effect of strain recovery is taken into consideration in ORNL efforts to establish unified constitutive equations for time-dependent plastic deformation for metals at elevated temperatures. Representation by internal state variables and Rice's flow potential are under consideration. Here the growth law for the internal state variables is discussed and interpreted in terms of a generalized form of the kinematic hardening condition of Prager. The yield condition is obtained from the flow potential representation of the inelastic strain rate. A consistency condition is derived from the yield condition and leads to a flow rule which assumes a slightly general form as compared with that of the classical plasticity due to the effect of strain recovery and the time-dependent property of the yield condition. Based on this representation, the time-independent limit is discussed. From a vanishing effect of recovery and a rate-independent limit for the yield condition at low temperature, this flow rule reduces to the well-known form of time-independent plasticity with a kinematic hardening condition. The duration of time (the characteristic time) required for the inelastic strain to reach its saturated value is defined for the inelastic loading condition. It provides the measure of a minimum duration of time which is required for a valid approximation made by the time-independent plasticity model

  20. The one-parameter-model - a constitutive equation applied to a heat resistant alloy

    International Nuclear Information System (INIS)

    Schwarze, E.; Schuster, H.; Nickel, H.

    1992-01-01

    In the present work a constitutive model earlier developed and used to predict experimental results of hot tests and fatigue tests from creep experiments of metallic materials were modified to comply with the properties of a high temperature resistant material. The improved model accounts for the properties of a material developing a density and a structure of dislocation lines which are capable of interactions with particles (carbides) from a second phase. The time and temperature dependent evolution of the carbide structure has been described by an equation which explains the formation of seeds as well as their growths (Ostwald ripening). The extended model was applied to Incoloy 800H which is known to develop a carbide structure. Therefore hot tensile and fatigue tests, creep and relaxation experiments using the heats ADU and BAK (KFA specifications) at temperature between 800deg C and 900deg C were performed including both solution treated specimens and specimens heat treated for 10, 100 and 1000 hours. As compared with the results from tensile tests where the carbide structures play a subordinated role, alternately, these structures have a decisive influence on the creep properties of specimens during the primary creep phase, i.e. low stresses and high temperatures. (orig.) [de

  1. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  2. Anisotropic constitutive equation for use in finite difference wave propagation calculations. [Incorporation into TOODY code

    Energy Technology Data Exchange (ETDEWEB)

    Swegle, J.W.; Hicks, D.L.

    1979-05-01

    An anisotropic constitutive relation was incorporated into the Lagrangian finite-difference wavecode TOODY. The details of the implementation of the constitutive relation in the wavecode and an example of its use are discussed. 4 figures, 1 table.

  3. Numerical method for solving integral equations of neutron transport. II

    International Nuclear Information System (INIS)

    Loyalka, S.K.; Tsai, R.W.

    1975-01-01

    In a recent paper it was pointed out that the weakly singular integral equations of neutron transport can be quite conveniently solved by a method based on subtraction of singularity. This previous paper was devoted entirely to the consideration of simple one-dimensional isotropic-scattering and one-group problems. The present paper constitutes interesting extensions of the previous work in that in addition to a typical two-group anisotropic-scattering albedo problem in the slab geometry, the method is also applied to an isotropic-scattering problem in the x-y geometry. These results are compared with discrete S/sub N/ (ANISN or TWOTRAN-II) results, and for the problems considered here, the proposed method is found to be quite effective. Thus, the method appears to hold considerable potential for future applications. (auth)

  4. Numerov iteration method for second order integral-differential equation

    International Nuclear Information System (INIS)

    Zeng Fanan; Zhang Jiaju; Zhao Xuan

    1987-01-01

    In this paper, Numerov iterative method for second order integral-differential equation and system of equations are constructed. Numerical examples show that this method is better than direct method (Gauss elimination method) in CPU time and memoy requireing. Therefore, this method is an efficient method for solving integral-differential equation in nuclear physics

  5. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  6. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    Science.gov (United States)

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first

  7. Partially integrable nonlinear equations with one higher symmetry

    International Nuclear Information System (INIS)

    Mikhailov, A V; Novikov, V S; Wang, J P

    2005-01-01

    In this letter, we present a family of second order in time nonlinear partial differential equations, which have only one higher symmetry. These equations are not integrable, but have a solution depending on one arbitrary function. (letter to the editor)

  8. Viscoplastic behaviour including damage for deep argillaceous rocks: from in situ observations to constitutives equations

    International Nuclear Information System (INIS)

    Souley, Mountaka; Ghoreychi, Mehdi; Armand, Gilles

    2010-01-01

    viscoplastic model which aims to improve the viscoplastic strain prediction in the EDZ (Excavated Damaged Zone) is proposed by introducing damage variable in Lemaitre's model. The mains characteristics of the model are: (a) the short-term behaviour is based on a generalized Hoek-Brown model; (b) the long-term behaviour is based on the modified Lemaitre's model, the changes of viscoplastic strain rates due to damage (in pre peak phase) and failure (post-peak and residual phases) are taken into account by varying the creep activation energy and the strain-hardening as a function of the current damage rate. In addition, in order to prevent the overestimation of volumetric strain the associated flow rule initially assumed is revisited for the short term behaviour. The proposed model is implemented in FLAC3D C . In order to verify both constitutive equations and their implementations, several simulations of classical laboratory tests (uniaxial/triaxial, mono/multi stage creep and relaxation) are performed. As practical applications, the proposed model has been used to predict the behaviour of two galleries of the laboratory (at -490 m level): parallel and perpendicular to the major horizontal stress. Comparison between predicted results and the in situ measurements are then presented and discussed Finally the model limitations as well as possible improvements are discussed in this paper. (authors)

  9. A generic validation methodology and its application to a set of multi-axial creep damage constitutive equations

    International Nuclear Information System (INIS)

    Xu Qiang

    2005-01-01

    A generic validation methodology for a set of multi-axial creep damage constitutive equations is proposed and its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel which is featured as brittle or intergranular rupture. The objective of this research is to develop a methodology to guide systematically assess the quality of a set of multi-axial creep damage constitutive equations in order to ensure its general applicability. This work adopted a total quality assurance approach and expanded as a Four Stages procedure (Theories and Fundamentals, Parameter Identification, Proportional Load, and Non-proportional load). Its use is illustrated with 0.5Cr0.5Mo0.25V ferritic steel and this material is chosen due to its industry importance, the popular use of KRH type of constitutive equations, and the available qualitative experimental data including damage distribution from notched bar test. The validation exercise clearly revealed the deficiencies existed in the KRH formulation (in terms of mathematics and physics of damage mechanics) and its incapability to predict creep deformation accurately. Consequently, its use should be warned, which is particularly important due to its wide use as indicated in literature. This work contributes to understand the rational for formulation and the quality assurance of a set of constitutive equations in creep damage mechanics as well as in general damage mechanics. (authors)

  10. Some New Integrable Equations from the Self-Dual Yang-Mills Equations

    International Nuclear Information System (INIS)

    Ivanova, T.A.; Popov, A.D.

    1994-01-01

    Using the symmetry reductions of the self-dual Yang-Mills (SDYM) equations in (2+2) dimensions, we introduce new integrable equations which are 'deformations' of the chiral model in (2+1) dimensions, generalized nonlinear Schroedinger, Korteweg-de Vries, Toda lattice, Garnier, Euler-Arnold, generalized Calogero-Moser and Euler-Calogero-Moser equations. The Lax pairs for all of these equations are derived by the symmetry reductions of the Lax pair for the SDYM equations. 34 refs

  11. Integrable dissipative nonlinear second order differential equations via factorizations and Abel equations

    Energy Technology Data Exchange (ETDEWEB)

    Mancas, Stefan C. [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICYT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, SLP (Mexico)

    2013-09-02

    We emphasize two connections, one well known and another less known, between the dissipative nonlinear second order differential equations and the Abel equations which in their first-kind form have only cubic and quadratic terms. Then, employing an old integrability criterion due to Chiellini, we introduce the corresponding integrable dissipative equations. For illustration, we present the cases of some integrable dissipative Fisher, nonlinear pendulum, and Burgers–Huxley type equations which are obtained in this way and can be of interest in applications. We also show how to obtain Abel solutions directly from the factorization of second order nonlinear equations.

  12. Partial differential equations of mathematical physics and integral equations

    CERN Document Server

    Guenther, Ronald B

    1996-01-01

    This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself. Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the t

  13. Integral equations for four identical particles in angular momentum representation

    International Nuclear Information System (INIS)

    Kharchenko, V.F.; Shadchin, S.A.

    1975-01-01

    In integral equations of motion for a system of four identical spinless particles with central pair interactions, transition is realized from the representation of relative Jacobi momenta to the representation of their moduli and relative angular moments. As a result, the variables associated with the rotation of the system as a whole are separated in the equations. The integral equations of motion for four particles are reduced to the form of an infinite system of three-demensional integral equations. The four-particle kinematic factors contained in integral kernels are expressed in terms of three-particle type kinematic factors. In the case of separable two-particle interaction, the equations of motion for four particles have the form of an infinite system of two-dimensional integral equations

  14. The flow behavior and constitutive equation in isothermal compression of FGH4096-GH4133B dual alloy

    International Nuclear Information System (INIS)

    Liu, Yanhui; Yao, Zekun; Ning, Yongquan; Nan, Yang; Guo, Hongzhen; Qin, Chun; Shi, Zhifeng

    2014-01-01

    Highlights: • Hot compression behaviors of the FGH4096-GH4133B dual alloy were investigated. • Constitutive equation also represented deformation behavior of a dual alloy. • The effects of deformation activation energy on the microstructures were discussed. • Constitutive equation represented an accurate and precise estimate of flow stress. - Abstract: The electron beam welding of superalloy FGH4096 and GH4133B was conducted, and the cylindrical compression specimens were machined from the central part of the electron beam weldments. Isothermal compression tests were carried out on electron beam weldments FGH4096-GH4133B alloy at the temperatures of 1020–11140 °C (the nominal γ′-transus temperature is about 1080 °C) and the strain rates of 0.001–1.0 s −1 with the height reduction of 50%. True stress–true strain curves are sensitive to the deformation temperature and strain rate, and the flow stress decreases with the increasing deformation temperature and the decreasing strain rate. The true stress–true strain curves can indicate the intrinsic relationship between the flow stress and the thermal-dynamic behavior. The apparent activation energy of deformation at the strain of 0.6 was calculated to be 550 kJ/mol, and the apparent activation energy has a great effect on the microstructure. The constitutive equation that describes the flow stress as a function of strain rate and deformation temperature was proposed for modeling the hot deformation process of FGH4096-GH4133B electron beam weldments. The constitutive equation at the strain of 0.6 was established using the hyperbolic law. The relationship between the strain and the values of parameters was studied, and the cubic functions were built. The constitutive equation during the whole process can be obtained based on the parameters under different strains. Comparing the experimental flow stress and the calculated flow stress, the constitutive equation obtained in this paper can be very good

  15. On discrete 2D integrable equations of higher order

    International Nuclear Information System (INIS)

    Adler, V E; Postnikov, V V

    2014-01-01

    We study two-dimensional discrete integrable equations of order 1 with respect to one independent variable and m with respect to another one. A generalization of the multidimensional consistency property is proposed for this type of equations. The examples are related to the Bäcklund–Darboux transformations for the lattice equations of Bogoyavlensky type. (paper)

  16. Energy preserving integration of bi-Hamiltonian partial differential equations

    NARCIS (Netherlands)

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  17. Fuchs indices and the first integrals of nonlinear differential equations

    International Nuclear Information System (INIS)

    Kudryashov, Nikolai A.

    2005-01-01

    New method of finding the first integrals of nonlinear differential equations in polynomial form is presented. Basic idea of our approach is to use the scaling of solution of nonlinear differential equation and to find the dimensions of arbitrary constants in the Laurent expansion of the general solution. These dimensions allows us to obtain the scalings of members for the first integrals of nonlinear differential equations. Taking the polynomials with unknown coefficients into account we present the algorithm of finding the first integrals of nonlinear differential equations in the polynomial form. Our method is applied to look for the first integrals of eight nonlinear ordinary differential equations of the fourth order. The general solution of one of the fourth order ordinary differential equations is given

  18. Application of wavelets to singular integral scattering equations

    International Nuclear Information System (INIS)

    Kessler, B.M.; Payne, G.L.; Polyzou, W.N.

    2004-01-01

    The use of orthonormal wavelet basis functions for solving singular integral scattering equations is investigated. It is shown that these basis functions lead to sparse matrix equations which can be solved by iterative techniques. The scaling properties of wavelets are used to derive an efficient method for evaluating the singular integrals. The accuracy and efficiency of the wavelet transforms are demonstrated by solving the two-body T-matrix equation without partial wave projection. The resulting matrix equation which is characteristic of multiparticle integral scattering equations is found to provide an efficient method for obtaining accurate approximate solutions to the integral equation. These results indicate that wavelet transforms may provide a useful tool for studying few-body systems

  19. Quadratic algebras in the noncommutative integration method of wave equation

    International Nuclear Information System (INIS)

    Varaksin, O.L.

    1995-01-01

    The paper deals with the investigation of applications of the method of noncommutative integration of linear differential equations by partial derivatives. Nontrivial example was taken for integration of three-dimensions wave equation with the use of non-Abelian quadratic algebras

  20. On monotonic solutions of an integral equation of Abel type

    International Nuclear Information System (INIS)

    Darwish, Mohamed Abdalla

    2007-08-01

    We present an existence theorem of monotonic solutions for a quadratic integral equation of Abel type in C[0, 1]. The famous Chandrasekhar's integral equation is considered as a special case. The concept of measure of noncompactness and a fi xed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  1. A hierarchy of Liouville integrable discrete Hamiltonian equations

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2008-05-12

    Based on a discrete four-by-four matrix spectral problem, a hierarchy of Lax integrable lattice equations with two potentials is derived. Two Hamiltonian forms are constructed for each lattice equation in the resulting hierarchy by means of the discrete variational identity. A strong symmetry operator of the resulting hierarchy is given. Finally, it is shown that the resulting lattice equations are all Liouville integrable discrete Hamiltonian systems.

  2. Simplifying Differential Equations for Multiscale Feynman Integrals beyond Multiple Polylogarithms.

    Science.gov (United States)

    Adams, Luise; Chaubey, Ekta; Weinzierl, Stefan

    2017-04-07

    In this Letter we exploit factorization properties of Picard-Fuchs operators to decouple differential equations for multiscale Feynman integrals. The algorithm reduces the differential equations to blocks of the size of the order of the irreducible factors of the Picard-Fuchs operator. As a side product, our method can be used to easily convert the differential equations for Feynman integrals which evaluate to multiple polylogarithms to an ϵ form.

  3. Determination of parameters for a stress-strain constitutive equation considering time-dependent behavior of Toki granite

    International Nuclear Information System (INIS)

    Hirano, Toru; Seno, Yasuhiro; Nakama, Shigeo; Okubo, Seisuke

    2008-01-01

    Toki granite was tested to obtain parameters for the constitutive equation. The testing method was uniaxial compressive loading at the moderate a constant strain rate that is decreased after yielding to obtain the complete stress-strain curve. In addition, two kinds of the strain rate were alternately switched to obtain the parameter n from one specimen. The n represents the strength time-dependence in the constitutive equation. The second parameter m can be obtained by fitting the experimental stress-strain curve to the calculated curve. The m accounts for the behavior after yielding. According to the results, Toki granite has n=52 and m=60, showing relatively weak time-dependence of creep failure. (author)

  4. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  5. Numerical integration of asymptotic solutions of ordinary differential equations

    Science.gov (United States)

    Thurston, Gaylen A.

    1989-01-01

    Classical asymptotic analysis of ordinary differential equations derives approximate solutions that are numerically stable. However, the analysis also leads to tedious expansions in powers of the relevant parameter for a particular problem. The expansions are replaced with integrals that can be evaluated by numerical integration. The resulting numerical solutions retain the linear independence that is the main advantage of asymptotic solutions. Examples, including the Falkner-Skan equation from laminar boundary layer theory, illustrate the method of asymptotic analysis with numerical integration.

  6. Analytic solution of integral equations for molecular fluids

    International Nuclear Information System (INIS)

    Cummings, P.T.

    1984-01-01

    We review some recent progress in the analytic solution of integral equations for molecular fluids. The site-site Ornstein-Zernike (SSOZ) equation with approximate closures appropriate to homonuclear diatomic fluids both with and without attractive dispersion-like interactions has recently been solved in closed form analytically. In this paper, the close relationship between the SSOZ equation for homonuclear dumbells and the usual Ornstein-Zernike (OZ) equation for atomic fluids is carefully elucidated. This relationship is a key motivation for the analytic solutions of the SSOZ equation that have been obtained to date. (author)

  7. On a new series of integrable nonlinear evolution equations

    International Nuclear Information System (INIS)

    Ichikawa, Y.H.; Wadati, Miki; Konno, Kimiaki; Shimizu, Tohru.

    1980-10-01

    Recent results of our research are surveyed in this report. The derivative nonlinear Schroedinger equation for the circular polarized Alfven wave admits the spiky soliton solutions for the plane wave boundary condition. The nonlinear equation for complex amplitude associated with the carrier wave is shown to be a generalized nonlinear Schroedinger equation, having the ordinary cubic nonlinear term and the derivative of cubic nonlinear term. A generalized scheme of the inverse scattering transformation has confirmed that superposition of the A-K-N-S scheme and the K-N scheme for the component equations valids for the generalized nonlinear Schroedinger equation. Then, two types of new integrable nonlinear evolution equation have been derived from our scheme of the inverse scattering transformation. One is the type of nonlinear Schroedinger equation, while the other is the type of Korteweg-de Vries equation. Brief discussions are presented for physical phenomena, which could be accounted by the second type of the new integrable nonlinear evolution equation. Lastly, the stationary solitary wave solutions have been constructed for the integrable nonlinear evolution equation of the second type. These solutions have peculiar structure that they are singular and discrete. It is a new challenge to construct singular potentials by the inverse scattering transformation. (author)

  8. Integral equation for inhomogeneous condensed bosons generalizing the Gross-Pitaevskii differential equation

    International Nuclear Information System (INIS)

    Angilella, G.G.N.; Pucci, R.; March, N.H.

    2004-01-01

    We give here the derivation of a Gross-Pitaevskii-type equation for inhomogeneous condensed bosons. Instead of the original Gross-Pitaevskii differential equation, we obtain an integral equation that implies less restrictive assumptions than are made in the very recent study of Pieri and Strinati [Phys. Rev. Lett. 91, 030401 (2003)]. In particular, the Thomas-Fermi approximation and the restriction to small spatial variations of the order parameter invoked in their study are avoided

  9. The Integral Equation Method and the Neumann Problem for the Poisson Equation on NTA Domains

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar

    2009-01-01

    Roč. 63, č. 21 (2009), s. 227-247 ISSN 0378-620X Institutional research plan: CEZ:AV0Z10190503 Keywords : Poisson equation * Neumann problem * integral equation method Subject RIV: BA - General Mathematics Impact factor: 0.477, year: 2009

  10. Alternate Solution to Generalized Bernoulli Equations via an Integrating Factor: An Exact Differential Equation Approach

    Science.gov (United States)

    Tisdell, C. C.

    2017-01-01

    Solution methods to exact differential equations via integrating factors have a rich history dating back to Euler (1740) and the ideas enjoy applications to thermodynamics and electromagnetism. Recently, Azevedo and Valentino presented an analysis of the generalized Bernoulli equation, constructing a general solution by linearizing the problem…

  11. Transmission problem for the Laplace equation and the integral equation method

    Czech Academy of Sciences Publication Activity Database

    Medková, Dagmar

    2012-01-01

    Roč. 387, č. 2 (2012), s. 837-843 ISSN 0022-247X Institutional research plan: CEZ:AV0Z10190503 Keywords : transmission problem * Laplace equation * boundary integral equation Subject RIV: BA - General Mathematics Impact factor: 1.050, year: 2012 http://www.sciencedirect.com/science/article/pii/S0022247X11008985

  12. Localization of the eigenvalues of linear integral equations with applications to linear ordinary differential equations.

    Science.gov (United States)

    Sloss, J. M.; Kranzler, S. K.

    1972-01-01

    The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.

  13. Unified inelastic constitutive equations incorporating dynamic strain aging for Mod. 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Yaguchi, Masatsugu; Takahashi, Yukio

    1998-01-01

    A unified constitutive model considering dynamic strain aging effect was developed in order to describe inelastic deformation behavior of the Mod. 9Cr-1Mo steel precisely. The inelastic behavior of the steel was summarized as follows. A rate dependent deformation was observed above 500degC, and there was no rate dependency under 400degC. However, stress relaxation behavior was observed even at rate independent temperature region. Further, a stress after relaxation depended on prior loading strain rate, and it showed a higher value as the strain rate was slow. A feature of the proposed constitutive model was that an applied stress consists of three stress components: a back stress, an overstress and an aging stress which corresponds to dynamics strain aging and shows a negative strain rate dependency. The aging stress was measured by strain rate change tests, and it showed larger values as the strain rates were slow and the temperatures were low. The backstress and the overstress were measured by strain dip tests. The backstress was approximately rate independent under 400degC, however it showed rate dependency above 500degC. The overstress showed larger values as the strain rates were fast and the temperatures were high. The material constants were determined systematically based on the measured values of each internal variable. In order to evaluate the validity of the constitutive model, numerical simulations were done for various inelastic deformation behavior of Mod. 9Cr-1Mo steel. The simulations agreed with experimental results very well in all cases. (author)

  14. APPLICATION OF BOUNDARY INTEGRAL EQUATION METHOD FOR THERMOELASTICITY PROBLEMS

    Directory of Open Access Journals (Sweden)

    Vorona Yu.V.

    2015-12-01

    Full Text Available Boundary Integral Equation Method is used for solving analytically the problems of coupled thermoelastic spherical wave propagation. The resulting mathematical expressions coincide with the solutions obtained in a conventional manner.

  15. A New Algorithm for System of Integral Equations

    Directory of Open Access Journals (Sweden)

    Abdujabar Rasulov

    2014-01-01

    Full Text Available We develop a new algorithm to solve the system of integral equations. In this new method no need to use matrix weights. Beacause of it, we reduce computational complexity considerable. Using the new algorithm it is also possible to solve an initial boundary value problem for system of parabolic equations. To verify the efficiency, the results of computational experiments are given.

  16. Feynman path integral related to stochastic schroedinger equation

    International Nuclear Information System (INIS)

    Belavkin, V.P.; Smolyanov, O.G.

    1998-01-01

    The derivation of the Schroedinger equation describing the continuous measurement process is presented. The representation of the solution of the stochastic Schroedinger equation for continuous measurements is obtained by means of the Feynman path integral. The connection with the heuristic approach to the description of continuous measurements is considered. The connection with the Senon paradox is established [ru

  17. Multi-component bi-Hamiltonian Dirac integrable equations

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenxiu [Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700 (United States)], E-mail: mawx@math.usf.edu

    2009-01-15

    A specific matrix iso-spectral problem of arbitrary order is introduced and an associated hierarchy of multi-component Dirac integrable equations is constructed within the framework of zero curvature equations. The bi-Hamiltonian structure of the obtained Dirac hierarchy is presented be means of the variational trace identity. Two examples in the cases of lower order are computed.

  18. Differential equations for loop integrals in Baikov representation

    Science.gov (United States)

    Bosma, Jorrit; Larsen, Kasper J.; Zhang, Yang

    2018-05-01

    We present a proof that differential equations for Feynman loop integrals can always be derived in Baikov representation without involving dimension-shift identities. We moreover show that in a large class of two- and three-loop diagrams it is possible to avoid squared propagators in the intermediate steps of setting up the differential equations.

  19. Monograph - The Numerical Integration of Ordinary Differential Equations.

    Science.gov (United States)

    Hull, T. E.

    The materials presented in this monograph are intended to be included in a course on ordinary differential equations at the upper division level in a college mathematics program. These materials provide an introduction to the numerical integration of ordinary differential equations, and they can be used to supplement a regular text on this…

  20. Distribution theory for Schrödinger’s integral equation

    NARCIS (Netherlands)

    Lange, R.J.

    2015-01-01

    Much of the literature on point interactions in quantum mechanics has focused on the differential form of Schrödinger's equation. This paper, in contrast, investigates the integral form of Schrödinger's equation. While both forms are known to be equivalent for smooth potentials, this is not true for

  1. Solving differential equations with unknown constitutive relations as recurrent neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Hagge, Tobias J.; Stinis, Panagiotis; Yeung, Enoch H.; Tartakovsky, Alexandre M.

    2017-12-08

    We solve a system of ordinary differential equations with an unknown functional form of a sink (reaction rate) term. We assume that the measurements (time series) of state variables are partially available, and use a recurrent neural network to “learn” the reaction rate from this data. This is achieved by including discretized ordinary differential equations as part of a recurrent neural network training problem. We extend TensorFlow’s recurrent neural network architecture to create a simple but scalable and effective solver for the unknown functions, and apply it to a fedbatch bioreactor simulation problem. Use of techniques from recent deep learning literature enables training of functions with behavior manifesting over thousands of time steps. Our networks are structurally similar to recurrent neural networks, but differ in purpose, and require modified training strategies.

  2. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    Energy Technology Data Exchange (ETDEWEB)

    Zayadeh, Raphael

    2013-12-15

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is

  3. Picard-Fuchs equations of dimensionally regulated Feynman integrals

    International Nuclear Information System (INIS)

    Zayadeh, Raphael

    2013-12-01

    This thesis is devoted to studying differential equations of Feynman integrals. A Feynman integral depends on a dimension D. For integer values of D it can be written as a projective integral, which is called the Feynman parameter prescription. A major complication arises from the fact that for some values of D the integral can diverge. This problem is solved within dimensional regularization by continuing the integral as a meromorphic function on the complex plane and replacing the ill-defined quantity by a Laurent series in a dimensional regularization parameter. All terms in such a Laurent expansion are periods in the sense of Kontsevich and Zagier. We describe a new method to compute differential equations of Feynman integrals. So far, the standard has been to use integration-by-parts (IBP) identities to obtain coupled systems of linear differential equations for the master integrals. Our method is based on the theory of Picard-Fuchs equations. In the case we are interested in, that of projective and quasiprojective families, a Picard-Fuchs equation can be computed by means of the Griffiths-Dwork reduction. We describe a method that is designed for fixed integer dimension. After a suitable integer shift of dimension we obtain a period of a family of hypersurfaces, hence a Picard-Fuchs equation. This equation is inhomogeneous because the domain of integration has a boundary and we only obtain a relative cycle. As a second step we shift back the dimension using Tarasov's generalized dimensional recurrence relations. Furthermore, we describe a method to directly compute the differential equation for general D without shifting the dimension. This is based on the Griffiths-Dwork reduction. The success of this method depends on the ability to solve large systems of linear equations. We give examples of two and three-loop graphs. Tarasov classifies two-loop two-point functions and we give differential equations for these. For us the most interesting example is the two

  4. Integrability of a system of two nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Zhukhunashvili, V.Z.

    1989-01-01

    In recent years the inverse scattering method has achieved significant successes in the integration of nonlinear models that arise in different branches of physics. However, its region of applicability is still restricted, i.e., not all nonlinear models can be integrated. In view of the great mathematical difficulties that arise in integration, it is clearly worth testing a model for integrability before turning to integration. Such a possibility is provided by the Zakharov-Schulman method. The question of the integrability of a system of two nonlinear Schroedinger equations is resolved. It is shown that the previously known cases exhaust all integrable variants

  5. Some trends in constitutive equation model development for high-temperature behavior of fast-reactor structural alloys

    International Nuclear Information System (INIS)

    Pugh, C.E.; Robinson, D.N.

    1977-01-01

    The paper addresses some important features of the inelastic behavior of 2 1 / 4 Cr--1Mo steel and indicates a mathematical framework that is capable of representing these types of response. While the constitutive model discussed embraces capabilities beyond those of equations presently used in design analyses; their implementation into practicable analysis methods (such as finite-element programs) is more demanding. For example, in the case of slow time-dependent deformations, the equations governing accumulation of the inelastic strain components and the evolution of the tensorial state variable α are intimately coupled. A part of recommending any such model for use in design must be a quantitative assessment of the economic feasibility of implementation

  6. Potential constitutive models for salt: Survey of phenomenology, micromechanisms, and equations

    International Nuclear Information System (INIS)

    Senseny, P.E.; Hansen, F.D.

    1987-12-01

    Results are given of a literature survey performed to document the thermomechanical phenomena and micromechanical processes observed for salt over the ranges of stress and temperature of interest for a high-level nuclear repository. The elastic and thermal expansion behavior of salt can be readily modeled by the generalized Duhamel Neumann form of Hooke's law with temperature-dependent elastic constants and coefficient of thermal expansion. Inelastic deformation is primarily viscoplastic, but also has a brittle component. The observed phenomenological behavior of salt occurs because of micromechanical processes. To the extent that these processes have been studied, a summary of deformation mechanisms in natural salt is included in this report. Eight constitutive models that appear to be capable of modeling the viscoplastic deformation have been selected from the literature. Two models have been selected to model brittle deformation. Insufficient data are available to develop a model for failure. 92 refs., 39 figs., 6 tabs

  7. On the complete integrability of the discrete Nahm equations

    International Nuclear Information System (INIS)

    Murray, M.K.

    2000-01-01

    The discrete Nahm equations, a system of matrix valued difference equations, arose in the work of Braam and Austin on half-integral mass hyperbolic monopoles. We show that the discrete Nahm equations are completely integrable in a natural sense: to any solution we can associate a spectral curve and a holomorphic line-bundle over the spectral curve, such that the discrete-time DN evolution corresponds to walking in the Jacobian of the spectral curve in a straight line through the line-bundle with steps of a fixed size. Some of the implications for hyperbolic monopoles are also discussed. (orig.)

  8. Integrable semi-discretizations of the reduced Ostrovsky equation

    International Nuclear Information System (INIS)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2015-01-01

    Based on our previous work on the reduced Ostrovsky equation (J. Phys. A: Math. Theor. 45 355203), we construct its integrable semi-discretizations. Since the reduced Ostrovsky equation admits two alternative representations, one being its original form, the other the differentiated form (the short wave limit of the Degasperis–Procesi equation) two semi-discrete analogues of the reduced Ostrovsky equation are constructed possessing the same N-loop soliton solution. The relationship between these two versions of semi-discretizations is also clarified. (paper)

  9. First integrals of the axisymmetric shape equation of lipid membranes

    Science.gov (United States)

    Zhang, Yi-Heng; McDargh, Zachary; Tu, Zhan-Chun

    2018-03-01

    The shape equation of lipid membranes is a fourth-order partial differential equation. Under the axisymmetric condition, this equation was transformed into a second-order ordinary differential equation (ODE) by Zheng and Liu (Phys. Rev. E 48 2856 (1993)). Here we try to further reduce this second-order ODE to a first-order ODE. First, we invert the usual process of variational calculus, that is, we construct a Lagrangian for which the ODE is the corresponding Euler–Lagrange equation. Then, we seek symmetries of this Lagrangian according to the Noether theorem. Under a certain restriction on Lie groups of the shape equation, we find that the first integral only exists when the shape equation is identical to the Willmore equation, in which case the symmetry leading to the first integral is scale invariance. We also obtain the mechanical interpretation of the first integral by using the membrane stress tensor. Project supported by the National Natural Science Foundation of China (Grant No. 11274046) and the National Science Foundation of the United States (Grant No. 1515007).

  10. Abecedarian School on Symmetries and Integrability of Difference Equations (ASIDE) & SIDE 12 International Conference Symmetries and Integrability of Difference Equations

    CERN Document Server

    Rebelo, Raphaël; Winternitz, Pavel

    2017-01-01

    This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers...

  11. Differential equations and integrable models: the SU(3) case

    International Nuclear Information System (INIS)

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  12. Periodic solutions of Volterra integral equations

    Directory of Open Access Journals (Sweden)

    M. N. Islam

    1988-01-01

    Full Text Available Consider the system of equationsx(t=f(t+∫−∞tk(t,sx(sds,           (1andx(t=f(t+∫−∞tk(t,sg(s,x(sds.       (2Existence of continuous periodic solutions of (1 is shown using the resolvent function of the kernel k. Some important properties of the resolvent function including its uniqueness are obtained in the process. In obtaining periodic solutions of (1 it is necessary that the resolvent of k is integrable in some sense. For a scalar convolution kernel k some explicit conditions are derived to determine whether or not the resolvent of k is integrable. Finally, the existence and uniqueness of continuous periodic solutions of (1 and (2 are btained using the contraction mapping principle as the basic tool.

  13. An algorithm of computing inhomogeneous differential equations for definite integrals

    OpenAIRE

    Nakayama, Hiromasa; Nishiyama, Kenta

    2010-01-01

    We give an algorithm to compute inhomogeneous differential equations for definite integrals with parameters. The algorithm is based on the integration algorithm for $D$-modules by Oaku. Main tool in the algorithm is the Gr\\"obner basis method in the ring of differential operators.

  14. Constitutive equations of a ballistic steel alloy as a function of temperature

    Directory of Open Access Journals (Sweden)

    Coghe F.

    2012-08-01

    Full Text Available In the present work, dynamic tests have been performed on a new ballistic steel alloy by means of split Hopkinson pressure bars (SHPB. The impact behavior was investigated for strain rates ranging from 1000 to 2500 s−1, and temperatures in the range from − 196 to 300∘C. A robotized sample device was developed for transferring the sample from the heating or cooling device to the position between the bars. Simulations of the temperature evolution and its distribution in the specimen were performed using the finite element method. Measurements with thermocouples added inside the sample were carried out in order to validate the FEM simulations. The results show that a thermal gradient is present inside the sample; the average temperature loss during the manipulation of the sample is evaluated. In a last stage, optimal material constants for different constitutive models (Johnson-Cook, Zerilli-Amstrong, Cowper-Symonds has been computed by fitting, in a least square sense, the numerical and experimental stress-strain curves. They have been implemented in a hydrocode for validation using a simple impact problem: an adapted projectile geometry with a truncated nose (.50 calibre fragment simulating projectiles was fired directly against an armor plate. The parameters of the selected strength and failure models were determined. There is a good correspondence between the experimental and computed results. Nevertheless, an improved failure model is necessary to get satisfactory computed residual projectile velocities.

  15. The Implications of the European Integration Process of Kosovo's Constitutional Order

    Directory of Open Access Journals (Sweden)

    Flamur Hyseni

    2017-08-01

    Full Text Available In this article I have analyzed and studied on what are the implications of the European integration process of Kosovo’s constitutional order and how much of institutional order Kosovo has, also how much of the effects of the European integration process has used. I’ve made a brief analysis of the establishment of the constitutional order of Kosovo in the former federal state of Yugoslavia and establishment of Kosovo under international administration. However an analyze and more detailed study I’ve made on the first report of contracting between Kosovo and EU, Stabilization and Association Agreement which will be implemented in Kosovo through the National Program for the Implementation of the Stabilization and Association Agreement that was approved by the Government on 16 December 2015 and by the Assembly on 10 March 2016. The other aspect of the study and analysis in this article is the study of acts to protect the territorial integrity of Kosovo, which are: 12244/99 resolution of the UN Security Council, Constitutional Framework for Provisional Self- Government in Kosovo, 16 May 2001, Declaration of Independence, 17 February 2008 and the Constitution of the Republic of Kosovo, 09 April 2008.

  16. Constitutive equations for the Doi-Edwards model without independent alignment

    DEFF Research Database (Denmark)

    Hassager, Ole; Hansen, Rasmus

    2010-01-01

    We present two representations of the Doi-Edwards model without Independent Alignment explicitly expressed in terms of the Finger strain tensor, its inverse and its invariants. The two representations provide explicit expressions for the stress prior to and after Rouse relaxation of chain stretch......, respectively. The maximum deviations from the exact representations in simple shear, biaxial extension and uniaxial extension are of order 2%. Based on these two representations, we propose a framework for Doi-Edwards models including chain stretch in the memory integral form....

  17. Canonical algorithms for numerical integration of charged particle motion equations

    Science.gov (United States)

    Efimov, I. N.; Morozov, E. A.; Morozova, A. R.

    2017-02-01

    A technique for numerically integrating the equation of charged particle motion in a magnetic field is considered. It is based on the canonical transformations of the phase space in Hamiltonian mechanics. The canonical transformations make the integration process stable against counting error accumulation. The integration algorithms contain a minimum possible amount of arithmetics and can be used to design accelerators and devices of electron and ion optics.

  18. Numerical solution of boundary-integral equations for molecular electrostatics.

    Science.gov (United States)

    Bardhan, Jaydeep P

    2009-03-07

    Numerous molecular processes, such as ion permeation through channel proteins, are governed by relatively small changes in energetics. As a result, theoretical investigations of these processes require accurate numerical methods. In the present paper, we evaluate the accuracy of two approaches to simulating boundary-integral equations for continuum models of the electrostatics of solvation. The analysis emphasizes boundary-element method simulations of the integral-equation formulation known as the apparent-surface-charge (ASC) method or polarizable-continuum model (PCM). In many numerical implementations of the ASC/PCM model, one forces the integral equation to be satisfied exactly at a set of discrete points on the boundary. We demonstrate in this paper that this approach to discretization, known as point collocation, is significantly less accurate than an alternative approach known as qualocation. Furthermore, the qualocation method offers this improvement in accuracy without increasing simulation time. Numerical examples demonstrate that electrostatic part of the solvation free energy, when calculated using the collocation and qualocation methods, can differ significantly; for a polypeptide, the answers can differ by as much as 10 kcal/mol (approximately 4% of the total electrostatic contribution to solvation). The applicability of the qualocation discretization to other integral-equation formulations is also discussed, and two equivalences between integral-equation methods are derived.

  19. Lax Pairs for Discrete Integrable Equations via Darboux Transformations

    International Nuclear Information System (INIS)

    Cao Ce-Wen; Zhang Guang-Yao

    2012-01-01

    A method is developed to construct discrete Lax pairs using Darboux transformations. More kinds of Lax pairs are found for some newly appeared discrete integrable equations, including the H1, the special H3 and the Q1 models in the Adler—Bobenko—Suris list and the closely related discrete and semi-discrete pKdV, pMKdV, SG and Liouville equations. (general)

  20. Discrete Painlevé equations: an integrability paradigm

    International Nuclear Information System (INIS)

    Grammaticos, B; Ramani, A

    2014-01-01

    In this paper we present a review of results on discrete Painlevé equations. We begin with an introduction which serves as a refresher on the continuous Painlevé equations. Next, in the first, main part of the paper, we introduce the discrete Painlevé equations, the various methods for their derivation, and their properties as well as their classification scheme. Along the way we present a brief summary of the two major discrete integrability detectors and of Quispel–Roberts–Thompson mapping, which plays a primordial role in the derivation of discrete Painlevé equations. The second part of the paper is more technical and focuses on the presentation of new results on what are called asymmetric discrete Painlevé equations. (comment)

  1. Field Method for Integrating the First Order Differential Equation

    Institute of Scientific and Technical Information of China (English)

    JIA Li-qun; ZHENG Shi-wang; ZHANG Yao-yu

    2007-01-01

    An important modern method in analytical mechanics for finding the integral, which is called the field-method, is used to research the solution of a differential equation of the first order. First, by introducing an intermediate variable, a more complicated differential equation of the first order can be expressed by two simple differential equations of the first order, then the field-method in analytical mechanics is introduced for solving the two differential equations of the first order. The conclusion shows that the field-method in analytical mechanics can be fully used to find the solutions of a differential equation of the first order, thus a new method for finding the solutions of the first order is provided.

  2. Babenko’s Approach to Abel’s Integral Equations

    Directory of Open Access Journals (Sweden)

    Chenkuan Li

    2018-03-01

    Full Text Available The goal of this paper is to investigate the following Abel’s integral equation of the second kind: y ( t + λ Γ ( α ∫ 0 t ( t − τ α − 1 y ( τ d τ = f ( t , ( t > 0 and its variants by fractional calculus. Applying Babenko’s approach and fractional integrals, we provide a general method for solving Abel’s integral equation and others with a demonstration of different types of examples by showing convergence of series. In particular, we extend this equation to a distributional space for any arbitrary α ∈ R by fractional operations of generalized functions for the first time and obtain several new and interesting results that cannot be realized in the classical sense or by the Laplace transform.

  3. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.

    2017-08-29

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\\\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  4. Symbolic-Numeric Integration of the Dynamical Cosserat Equations

    KAUST Repository

    Lyakhov, Dmitry A.; Gerdt, Vladimir P.; Weber, Andreas G.; Michels, Dominik L.

    2017-01-01

    We devise a symbolic-numeric approach to the integration of the dynamical part of the Cosserat equations, a system of nonlinear partial differential equations describing the mechanical behavior of slender structures, like fibers and rods. This is based on our previous results on the construction of a closed form general solution to the kinematic part of the Cosserat system. Our approach combines methods of numerical exponential integration and symbolic integration of the intermediate system of nonlinear ordinary differential equations describing the dynamics of one of the arbitrary vector-functions in the general solution of the kinematic part in terms of the module of the twist vector-function. We present an experimental comparison with the well-established generalized \\alpha -method illustrating the computational efficiency of our approach for problems in structural mechanics.

  5. Recursive integral equations with positive kernel for lattice calculations

    International Nuclear Information System (INIS)

    Illuminati, F.; Isopi, M.

    1990-11-01

    A Kirkwood-Salzburg integral equation, with positive defined kernel, for the states of lattice models of statistical mechanics and quantum field theory is derived. The equation is defined in the thermodynamic limit, and its iterative solution is convergent. Moreover, positivity leads to an exact a priori bound on the iteration. The equation's relevance as a reliable algorithm for lattice calculations is therefore suggested, and it is illustrated with a simple application. It should provide a viable alternative to Monte Carlo methods for models of statistical mechanics and lattice gauge theories. 10 refs

  6. Master equations and the theory of stochastic path integrals

    Science.gov (United States)

    Weber, Markus F.; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a ‘generating functional’, which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a ‘forward’ and a ‘backward’ path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from

  7. Master equations and the theory of stochastic path integrals.

    Science.gov (United States)

    Weber, Markus F; Frey, Erwin

    2017-04-01

    This review provides a pedagogic and self-contained introduction to master equations and to their representation by path integrals. Since the 1930s, master equations have served as a fundamental tool to understand the role of fluctuations in complex biological, chemical, and physical systems. Despite their simple appearance, analyses of master equations most often rely on low-noise approximations such as the Kramers-Moyal or the system size expansion, or require ad-hoc closure schemes for the derivation of low-order moment equations. We focus on numerical and analytical methods going beyond the low-noise limit and provide a unified framework for the study of master equations. After deriving the forward and backward master equations from the Chapman-Kolmogorov equation, we show how the two master equations can be cast into either of four linear partial differential equations (PDEs). Three of these PDEs are discussed in detail. The first PDE governs the time evolution of a generalized probability generating function whose basis depends on the stochastic process under consideration. Spectral methods, WKB approximations, and a variational approach have been proposed for the analysis of the PDE. The second PDE is novel and is obeyed by a distribution that is marginalized over an initial state. It proves useful for the computation of mean extinction times. The third PDE describes the time evolution of a 'generating functional', which generalizes the so-called Poisson representation. Subsequently, the solutions of the PDEs are expressed in terms of two path integrals: a 'forward' and a 'backward' path integral. Combined with inverse transformations, one obtains two distinct path integral representations of the conditional probability distribution solving the master equations. We exemplify both path integrals in analysing elementary chemical reactions. Moreover, we show how a well-known path integral representation of averaged observables can be recovered from them. Upon

  8. Dhage Iteration Method for Generalized Quadratic Functional Integral Equations

    Directory of Open Access Journals (Sweden)

    Bapurao C. Dhage

    2015-01-01

    Full Text Available In this paper we prove the existence as well as approximations of the solutions for a certain nonlinear generalized quadratic functional integral equation. An algorithm for the solutions is developed and it is shown that the sequence of successive approximations starting at a lower or upper solution converges monotonically to the solutions of related quadratic functional integral equation under some suitable mixed hybrid conditions. We rely our main result on Dhage iteration method embodied in a recent hybrid fixed point theorem of Dhage (2014 in partially ordered normed linear spaces. An example is also provided to illustrate the abstract theory developed in the paper.

  9. A study on creep-fatigue life analysis using a unified constitutive equation and a continuous damage law

    International Nuclear Information System (INIS)

    Hiroe, Tetsuyuki; Igari, Toshihide; Nakajima, Keiichi

    1986-01-01

    A newly developed type of life analysis is introduced using a unified constitutive equation and a continuous damage law on 2 1/4Cr - 1Mo steel at 600 deg C. the viscoplasticity theory based on total strain and overstress used for the rate effect at room temperature is extended for application to the inelastic analysis at elevated temperature, and the extended uniaxial model is shown to reproduce the inelastic stress and strain behavior with a strain rate change observed in the experiment. The incremental life prediction law is employed and its coupling with the viscoplasticity model produces both an inelastic stress-strain response and the damage accumulation, simultaneously and continuously. The life prediction for creep, fatigue and creep-fatigue loading shows good correspondence with the experimental data. (author)

  10. Integrability of the one dimensional Schrödinger equation

    Science.gov (United States)

    Combot, Thierry

    2018-02-01

    We present a definition of integrability for the one-dimensional Schrödinger equation, which encompasses all known integrable systems, i.e., systems for which the spectrum can be explicitly computed. For this, we introduce the class of rigid functions, built as Liouvillian functions, but containing all solutions of rigid differential operators in the sense of Katz, and a notion of natural of boundary conditions. We then make a complete classification of rational integrable potentials. Many new integrable cases are found, some of them physically interesting.

  11. Development of an artificial neural network model integrated with constitutive and FEM models

    International Nuclear Information System (INIS)

    Kong, L.X.; Hodgson, P.D.

    2000-01-01

    Although the standard error of IPANN model developed by Kong and Hodgson is lower than the constitutive model, it is found that the prediction of reaction force and torque during rolling with FEM is less accurate for IPANN model in some deformation regions. It is the summation of the product of the strain and stress in the deformation range, which contributes most to the precise prediction. An ANN model is therefore, developed in this work by integrating both the IPANN and FEM models. It is found that the integrated IPANN and FEM model is the most accurate model. (author)

  12. Numerical treatments for solving nonlinear mixed integral equation

    Directory of Open Access Journals (Sweden)

    M.A. Abdou

    2016-12-01

    Full Text Available We consider a mixed type of nonlinear integral equation (MNLIE of the second kind in the space C[0,T]×L2(Ω,T<1. The Volterra integral terms (VITs are considered in time with continuous kernels, while the Fredholm integral term (FIT is considered in position with singular general kernel. Using the quadratic method and separation of variables method, we obtain a nonlinear system of Fredholm integral equations (NLSFIEs with singular kernel. A Toeplitz matrix method, in each case, is then used to obtain a nonlinear algebraic system. Numerical results are calculated when the kernels take a logarithmic form or Carleman function. Moreover, the error estimates, in each case, are then computed.

  13. Numerical Integration of the Transport Equation For Infinite Homogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Haakansson, Rune

    1962-01-15

    The transport equation for neutrons in infinite homogeneous media is solved by direct numerical integration. Accounts are taken to the anisotropy and the inelastic scattering. The integration has been performed by means of the trapezoidal rule and the length of the energy intervals are constant in lethargy scale. The machine used is a Ferranti Mercury computer. Results are given for water, heavy water, aluminium water mixture and iron-aluminium-water mixture.

  14. An integrable semi-discretization of the Boussinesq equation

    International Nuclear Information System (INIS)

    Zhang, Yingnan; Tian, Lixin

    2016-01-01

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  15. Minimally coupled N-particle scattering integral equations

    International Nuclear Information System (INIS)

    Kowalski, K.L.

    1977-01-01

    A concise formalism is developed which permits the efficient representation and generalization of several known techniques for deriving connected-kernel N-particle scattering integral equations. The methods of Kouri, Levin, and Tobocman and Bencze and Redish which lead to minimally coupled integral equations are of special interest. The introduction of channel coupling arrays is characterized in a general manner and the common base of this technique and that of the so-called channel coupling scheme is clarified. It is found that in the Bencze-Redish formalism a particular coupling array has a crucial function but one different from that of the arrays employed by Kouri, Levin, and Tobocman. The apparent dependence of the proof of the minimality of the Bencze-Redish integral equations upon the form of the inhomogeneous term in these equations is eliminated. This is achieved by an investigation of the full (nonminimal) Bencze-Redish kernel. It is shown that the second power of this operator is connected, a result which is needed for the full applicability of the Bencze-Redish formalism. This is used to establish the relationship between the existence of solutions to the homogeneous form of the minimal equations and eigenvalues of the full Bencze-Redish kernel

  16. An integrable semi-discretization of the Boussinesq equation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yingnan, E-mail: ynzhang@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Tian, Lixin, E-mail: tianlixin@njnu.edu.cn [Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, Jiangsu (China); Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang, Jiangsu (China)

    2016-10-23

    Highlights: • A new integrable semi-discretization of the Boussinesq equation is present. • A Bäcklund transformation and a Lax pair for the differential-difference system is derived by using Hirota's bilinear method. • The soliton solutions of 'good' Boussinesq equation and numerical algorithms are investigated. - Abstract: In this paper, we present an integrable semi-discretization of the Boussinesq equation. Different from other discrete analogues, we discretize the ‘time’ variable and get an integrable differential-difference system. Under a standard limitation, the differential-difference system converges to the continuous Boussinesq equation such that the discrete system can be used to design numerical algorithms. Using Hirota's bilinear method, we find a Bäcklund transformation and a Lax pair of the differential-difference system. For the case of ‘good’ Boussinesq equation, we investigate the soliton solutions of its discrete analogue and design numerical algorithms. We find an effective way to reduce the phase shift caused by the discretization. The numerical results coincide with our analysis.

  17. Development of PARA-ID Code to Simulate Inelastic Constitutive Equations and Their Parameter Identifications for the Next Generation Reactor Designs

    International Nuclear Information System (INIS)

    Koo, Gyeong Hoi; Lee, J. H.

    2006-03-01

    The establishment of the inelastic analysis technology is essential issue for a development of the next generation reactors subjected to elevated temperature operations. In this report, the peer investigation of constitutive equations in points of a ratcheting and creep-fatigue analysis is carried out and the methods extracting the constitutive parameters from experimental data are established. To perform simulations for each constitutive model, the PARA-ID (PARAmeter-IDentification) computer program is developed. By using this code, various simulations related with the parameter identification of the constitutive models are carried out

  18. Numerical Simulation of Antennas with Improved Integral Equation Method

    International Nuclear Information System (INIS)

    Ma Ji; Fang Guang-You; Lu Wei

    2015-01-01

    Simulating antennas around a conducting object is a challenge task in computational electromagnetism, which is concerned with the behaviour of electromagnetic fields. To analyze this model efficiently, an improved integral equation-fast Fourier transform (IE-FFT) algorithm is presented in this paper. The proposed scheme employs two Cartesian grids with different size and location to enclose the antenna and the other object, respectively. On the one hand, IE-FFT technique is used to store matrix in a sparse form and accelerate the matrix-vector multiplication for each sub-domain independently. On the other hand, the mutual interaction between sub-domains is taken as the additional exciting voltage in each matrix equation. By updating integral equations several times, the whole electromagnetic system can achieve a stable status. Finally, the validity of the presented method is verified through the analysis of typical antennas in the presence of a conducting object. (paper)

  19. Integrated vehicle dynamics control using State Dependent Riccati Equations

    NARCIS (Netherlands)

    Bonsen, B.; Mansvelders, R.; Vermeer, E.

    2010-01-01

    In this paper we discuss a State Dependent Riccati Equations (SDRE) solution for Integrated Vehicle Dynamics Control (IVDC). The SDRE approach is a nonlinear variant of the well known Linear Quadratic Regulator (LQR) and implements a quadratic cost function optimization. A modified version of this

  20. An approximation method for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Moore, C.

    1989-05-01

    The solution of a nonlinear integral equation of Hammerstein type in Hilbert spaces is approximated by means of a fixed point iteration method. Explicit error estimates are given and, in some cases, convergence is shown to be at least as fast as a geometric progression. (author). 25 refs

  1. Higher-Order Integral Equation Methods in Computational Electromagnetics

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Meincke, Peter

    Higher-order integral equation methods have been investigated. The study has focused on improving the accuracy and efficiency of the Method of Moments (MoM) applied to electromagnetic problems. A new set of hierarchical Legendre basis functions of arbitrary order is developed. The new basis...

  2. On Fredholm-Stieltjes quadratic integral equation with supremum

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    We prove an existence theorem of monotonic solutions for a quadratic integral equation of Fredholm-Stieltjes type in C[0,1]. The concept of measure of non-compactness and a fixed point theorem due to Darbo are the main tools in carrying out our proof. (author)

  3. Unconditionally stable integration of Maxwell’s equations

    NARCIS (Netherlands)

    Verwer, J.G.; Botchev, M.A.

    2009-01-01

    Numerical integration of Maxwell’s equations is often based on explicit methods accepting a stability step size restriction. In literature evidence is given that there is also a need for unconditionally stable methods, as exemplified by the successful alternating direction implicit - finite

  4. Fringe integral equation method for a truncated grounded dielectric slab

    DEFF Research Database (Denmark)

    Jørgensen, Erik; Maci, S.; Toccafondi, A.

    2001-01-01

    The problem of scattering by a semi-infinite grounded dielectric slab illuminated by an arbitrary incident TMz polarized electric field is studied by solving a new set of “fringe” integral equations (F-IEs), whose functional unknowns are physically associated to the wave diffraction processes...

  5. Local first integrals for systems of differential equations

    International Nuclear Information System (INIS)

    Zhang Xiang

    2003-01-01

    The main purpose of this paper is to provide some sufficient conditions for a system of differential equations to have local first integrals in a certain neighbourhood of a singularity. Our results generalize those given in Kwek et al (2003 Z. Angew. Math. Phys. 54 26) and Li et al (2003 Z. Angew. Math. Phys. 54 235)

  6. Cut cancellation in the planar integral equation for the Reggeon

    International Nuclear Information System (INIS)

    Bishari, M.; Veneziano, G.

    1975-01-01

    Planar unitarity for the Reggeon, analyticity and the multi-Regge assumption with cluster production lead to integral equations of the Chew-Goldberger-Low type with separable self-consistent kernel. Contrary to common prejudice, the authors show the existence of solutions exhibiting moving poles and exact, non-perturbative cancellation of the cut. Previously studied consistency conditions are rederived. (Auth.)

  7. On the use of the Lie group technique for differential equations with a small parameter: Approximate solutions and integrable equations

    International Nuclear Information System (INIS)

    Burde, G.I.

    2002-01-01

    A new approach to the use of the Lie group technique for partial and ordinary differential equations dependent on a small parameter is developed. In addition to determining approximate solutions to the perturbed equation, the approach allows constructing integrable equations that have solutions with (partially) prescribed features. Examples of application of the approach to partial differential equations are given

  8. Poisson's theorem and integrals of KdV equation

    International Nuclear Information System (INIS)

    Tasso, H.

    1978-01-01

    Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)

  9. Integral propagator solvers for Vlasov-Fokker-Planck equations

    International Nuclear Information System (INIS)

    Donoso, J M; Rio, E del

    2007-01-01

    We briefly discuss the use of short-time integral propagators on solving the so-called Vlasov-Fokker-Planck equation for the dynamics of a distribution function. For this equation, the diffusion tensor is singular and the usual Gaussian representation of the short-time propagator is no longer valid. However, we prove that the path-integral approach on solving the equation is, in fact, reliable by means of our generalized propagator, which is obtained through the construction of an auxiliary solvable Fokker-Planck equation. The new representation of the grid-free advancing scheme describes the inherent cross- and self-diffusion processes, in both velocity and configuration spaces, in a natural manner, although these processes are not explicitly depicted in the differential equation. We also show that some splitting methods, as well as some finite-difference schemes, could fail in describing the aforementioned diffusion processes, governed in the whole phase space only by the velocity diffusion tensor. The short-time transition probability offers a stable and robust numerical algorithm that preserves the distribution positiveness and its norm, ensuring the smoothness of the evolving solution at any time step. (fast track communication)

  10. Kwong-Wong-type integral equation on time scales

    Directory of Open Access Journals (Sweden)

    Baoguo Jia

    2011-09-01

    Full Text Available Consider the second-order nonlinear dynamic equation $$ [r(tx^Delta(ho(t]^Delta+p(tf(x(t=0, $$ where $p(t$ is the backward jump operator. We obtain a Kwong-Wong-type integral equation, that is: If $x(t$ is a nonoscillatory solution of the above equation on $[T_0,infty$, then the integral equation $$ frac{r^sigma(tx^Delta(t}{f(x^sigma(t} =P^sigma(t+int^infty_{sigma(t}frac{r^sigma(s [int^1_0f'(x_h(sdh][x^Delta(s]^2}{f(x(s f(x^sigma(s}Delta s $$ is satisfied for $tgeq T_0$, where $P^sigma(t=int^infty_{sigma(t}p(sDelta s$, and $x_h(s=x(s+hmu(sx^Delta(s$. As an application, we show that the superlinear dynamic equation $$ [r(tx^{Delta}(ho(t]^Delta+p(tf(x(t=0, $$ is oscillatory, under certain conditions.

  11. Development of an integrated Sasang constitution diagnosis method using face, body shape, voice, and questionnaire information.

    Science.gov (United States)

    Do, Jun-Hyeong; Jang, Eunsu; Ku, Boncho; Jang, Jun-Su; Kim, Honggie; Kim, Jong Yeol

    2012-07-04

    Sasang constitutional medicine (SCM) is a unique form of traditional Korean medicine that divides human beings into four constitutional types (Tae-Yang: TY, Tae-Eum: TE, So-Yang: SY, and So-Eum: SE), which differ in inherited characteristics, such as external appearance, personality traits, susceptibility to particular diseases, drug responses, and equilibrium among internal organ functions. According to SCM, herbs that belong to a certain constitution cannot be used in patients with other constitutions; otherwise, this practice may result in no effect or in an adverse effect. Thus, the diagnosis of SC type is the most crucial step in SCM practice. The diagnosis, however, tends to be subjective due to a lack of quantitative standards for SC diagnosis. We have attempted to make the diagnosis method as objective as possible by basing it on an analysis of quantitative data from various Oriental medical clinics. Four individual diagnostic models were developed with multinomial logistic regression based on face, body shape, voice, and questionnaire responses. Inspired by SCM practitioners' holistic diagnostic processes, an integrated diagnostic model was then proposed by combining the four individual models. The diagnostic accuracies in the test set, after the four individual models had been integrated into a single model, improved to 64.0% and 55.2% in the male and female patient groups, respectively. Using a cut-off value for the integrated SC score, such as 1.6, the accuracies increased by 14.7% in male patients and by 4.6% in female patients, which showed that a higher integrated SC score corresponded to a higher diagnostic accuracy. This study represents the first trial of integrating the objectification of SC diagnosis based on quantitative data and SCM practitioners' holistic diagnostic processes. Although the diagnostic accuracy was not great, it is noted that the proposed diagnostic model represents common rules among practitioners who have various points of

  12. New multidimensional partially integrable generalization of S-integrable N-wave equation

    International Nuclear Information System (INIS)

    Zenchuk, A. I.

    2007-01-01

    This paper develops a modification of the dressing method based on the inhomogeneous linear integral equation with integral operator having nonempty kernel. The method allows one to construct the systems of multidimensional partial differential equations having differential polynomial structure in any dimension n. The associated solution space is not full, although it is parametrized by certain number of arbitrary functions of (n-1) variables. We consider four-dimensional generalization of the classical (2+1)-dimensional S-integrable N-wave equation as an example

  13. Rational first integrals of geodesic equations and generalised hidden symmetries

    International Nuclear Information System (INIS)

    Aoki, Arata; Houri, Tsuyoshi; Tomoda, Kentaro

    2016-01-01

    We discuss novel generalisations of Killing tensors, which are introduced by considering rational first integrals of geodesic equations. We introduce the notion of inconstructible generalised Killing tensors, which cannot be constructed from ordinary Killing tensors. Moreover, we introduce inconstructible rational first integrals, which are constructed from inconstructible generalised Killing tensors, and provide a method for checking the inconstructibility of a rational first integral. Using the method, we show that the rational first integral of the Collinson–O’Donnell solution is not inconstructible. We also provide several examples of metrics admitting an inconstructible rational first integral in two and four-dimensions, by using the Maciejewski–Przybylska system. Furthermore, we attempt to generalise other hidden symmetries such as Killing–Yano tensors. (paper)

  14. Lagrangian structures, integrability and chaos for 3D dynamical equations

    International Nuclear Information System (INIS)

    Bustamante, Miguel D; Hojman, Sergio A

    2003-01-01

    In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion

  15. Method of mechanical quadratures for solving singular integral equations of various types

    Science.gov (United States)

    Sahakyan, A. V.; Amirjanyan, H. A.

    2018-04-01

    The method of mechanical quadratures is proposed as a common approach intended for solving the integral equations defined on finite intervals and containing Cauchy-type singular integrals. This method can be used to solve singular integral equations of the first and second kind, equations with generalized kernel, weakly singular equations, and integro-differential equations. The quadrature rules for several different integrals represented through the same coefficients are presented. This allows one to reduce the integral equations containing integrals of different types to a system of linear algebraic equations.

  16. Integral equation methods for vesicle electrohydrodynamics in three dimensions

    Science.gov (United States)

    Veerapaneni, Shravan

    2016-12-01

    In this paper, we develop a new boundary integral equation formulation that describes the coupled electro- and hydro-dynamics of a vesicle suspended in a viscous fluid and subjected to external flow and electric fields. The dynamics of the vesicle are characterized by a competition between the elastic, electric and viscous forces on its membrane. The classical Taylor-Melcher leaky-dielectric model is employed for the electric response of the vesicle and the Helfrich energy model combined with local inextensibility is employed for its elastic response. The coupled governing equations for the vesicle position and its transmembrane electric potential are solved using a numerical method that is spectrally accurate in space and first-order in time. The method uses a semi-implicit time-stepping scheme to overcome the numerical stiffness associated with the governing equations.

  17. High-precision numerical integration of equations in dynamics

    Science.gov (United States)

    Alesova, I. M.; Babadzanjanz, L. K.; Pototskaya, I. Yu.; Pupysheva, Yu. Yu.; Saakyan, A. T.

    2018-05-01

    An important requirement for the process of solving differential equations in Dynamics, such as the equations of the motion of celestial bodies and, in particular, the motion of cosmic robotic systems is high accuracy at large time intervals. One of effective tools for obtaining such solutions is the Taylor series method. In this connection, we note that it is very advantageous to reduce the given equations of Dynamics to systems with polynomial (in unknowns) right-hand sides. This allows us to obtain effective algorithms for finding the Taylor coefficients, a priori error estimates at each step of integration, and an optimal choice of the order of the approximation used. In the paper, these questions are discussed and appropriate algorithms are considered.

  18. Integrable equation of state for noisy cosmic string

    International Nuclear Information System (INIS)

    Carter, B.

    1990-01-01

    It is argued that, independently of the detailed (thermal or more general) noise spectrum of the microscopic extrinsic excitations that can be expected on an ordinary cosmic string, their effect can be taken into account at a macroscopic level by replacing the standard isotropic Goto-Nambu-type string model by the nondegenerate string model characterized by an equation of state of the nondispersive ''fixed determinant'' type, with the effective surface stress-energy tensor satisfying (T ν ν ) 2 -T μ ν T ν μ =2T 0 2 , where T 0 is a constant representing the null-state limit of the string tension T, whose product with the energy density U of the string is thereby held fixed: TU=T 0 2 . It is shown that this equation of state has the special property of giving rise (in a flat background) to explicitly integrable dynamical equations

  19. Description of creep-plasticity interaction with non-unified constitutive equations: Application to an austenitic stainless steel

    International Nuclear Information System (INIS)

    Contesti, E.; Cailletaud, G.

    1989-01-01

    We present constitutive equations able to account for time independent plasticity together with creep and creep-plasticity interaction. A classical decomposition of the inelastic strain into a time independent plastic strain and a time dependent viscoplastic part is assumed. The coupling between both deformation modes (i.e. creep and plasticity) is obtained through an interaction between the plastic and viscoplastic state variables. In a first part, the capabilities of the model are described, and qualitative identifications are given in order to characterize the behaviour of the model. The practical applicability of the model is then tested, mainly using test results from the literature, but also specific data including creep, relaxation and tensile tests with various loading rates, as reported in the paper. The model is found able to discriminate between the increase of hardening produced by plasticity or creep. The effect of the loading rate on the subsequent amount of relaxation is correctly described and a good general agreement is observed between experiment and model predictions, even for complex loading paths (monotonic with temporary unloading periods, multiaxial loading paths in the stress space). (orig.)

  20. Boundary-integral equation formulation for time-dependent inelastic deformation in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S

    1977-01-01

    The mathematical structure of various constitutive relations proposed in recent years for representing time-dependent inelastic deformation behavior of metals at elevated temperatues has certain features which permit a simple formulation of the three-dimensional inelasticity problem in terms of real time rates. A direct formulation of the boundary-integral equation method in terms of rates is discussed for the analysis of time-dependent inelastic deformation of arbitrarily shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading histories and obeying constitutive relations of the kind mentioned above. The formulation is based on the assumption of infinitesimal deformations. Several illustrative examples involving creep of thick-walled spheres, long thick-walled cylinders, and rotating discs are discussed. The implementation of the method appears to be far easier than analogous BIE formulations that have been suggested for elastoplastic problems.

  1. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  2. Integral equations with difference kernels on finite intervals

    CERN Document Server

    Sakhnovich, Lev A

    2015-01-01

    This book focuses on solving integral equations with difference kernels on finite intervals. The corresponding problem on the semiaxis was previously solved by N. Wiener–E. Hopf and by M.G. Krein. The problem on finite intervals, though significantly more difficult, may be solved using our method of operator identities. This method is also actively employed in inverse spectral problems, operator factorization and nonlinear integral equations. Applications of the obtained results to optimal synthesis, light scattering, diffraction, and hydrodynamics problems are discussed in this book, which also describes how the theory of operators with difference kernels is applied to stable processes and used to solve the famous M. Kac problems on stable processes. In this second edition these results are extensively generalized and include the case of all Levy processes. We present the convolution expression for the well-known Ito formula of the generator operator, a convolution expression that has proven to be fruitful...

  3. TBA-like integral equations from quantized mirror curves

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)

    2016-03-15

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  4. TBA-like integral equations from quantized mirror curves

    Science.gov (United States)

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  5. Implementation of constitutive equations for creep damage mechanics into the ABAQUS finite element code - some practical cases in high temperature component design and life assessment

    International Nuclear Information System (INIS)

    Segle, P.; Samuelson, L.Aa.; Andersson, Peder; Moberg, F.

    1996-01-01

    Constitutive equations for creep damage mechanics are implemented into the finite element program ABAQUS using a user supplied subroutine, UMAT. A modified Kachanov-Rabotnov constitutive equation which accounts for inhomogeneity in creep damage is used. With a user defined material a number of bench mark tests are analyzed for verification. In the cases where analytical solutions exist, the numerical results agree very well. In other cases, the creep damage evolution response appear to be realistic in comparison with laboratory creep tests. The appropriateness of using the creep damage mechanics concept in design and life assessment of high temperature components is demonstrated. 18 refs

  6. Optimum biasing of integral equations in Monte Carlo calculations

    International Nuclear Information System (INIS)

    Hoogenboom, J.E.

    1979-01-01

    In solving integral equations and estimating average values with the Monte Carlo method, biasing functions may be used to reduce the variancee of the estimates. A simple derivation was used to prove the existence of a zero-variance collision estimator if a specific biasing function and survival probability are applied. This optimum biasing function is the same as that used for the well known zero-variance last-event estimator

  7. The integral equation method applied to eddy currents

    International Nuclear Information System (INIS)

    Biddlecombe, C.S.; Collie, C.J.; Simkin, J.; Trowbridge, C.W.

    1976-04-01

    An algorithm for the numerical solution of eddy current problems is described, based on the direct solution of the integral equation for the potentials. In this method only the conducting and iron regions need to be divided into elements, and there are no boundary conditions. Results from two computer programs using this method for iron free problems for various two-dimensional geometries are presented and compared with analytic solutions. (author)

  8. Deterministic methods to solve the integral transport equation in neutronic

    International Nuclear Information System (INIS)

    Warin, X.

    1993-11-01

    We present a synthesis of the methods used to solve the integral transport equation in neutronic. This formulation is above all used to compute solutions in 2D in heterogeneous assemblies. Three kinds of methods are described: - the collision probability method; - the interface current method; - the current coupling collision probability method. These methods don't seem to be the most effective in 3D. (author). 9 figs

  9. Introduction to stochastic analysis integrals and differential equations

    CERN Document Server

    Mackevicius, Vigirdas

    2013-01-01

    This is an introduction to stochastic integration and stochastic differential equations written in an understandable way for a wide audience, from students of mathematics to practitioners in biology, chemistry, physics, and finances. The presentation is based on the naïve stochastic integration, rather than on abstract theories of measure and stochastic processes. The proofs are rather simple for practitioners and, at the same time, rather rigorous for mathematicians. Detailed application examples in natural sciences and finance are presented. Much attention is paid to simulation diffusion pro

  10. Functional analysis in the study of differential and integral equations

    International Nuclear Information System (INIS)

    Sell, G.R.

    1976-01-01

    This paper illustrates the use of functional analysis in the study of differential equations. Our particular starting point, the theory of flows or dynamical systems, originated with the work of H. Poincare, who is the founder of the qualitative theory of ordinary differential equations. In the qualitative theory one tries to describe the behaviour of a solution, or a collection of solutions, without ''solving'' the differential equation. As a starting point one assumes the existence, and sometimes the uniqueness, of solutions and then one tries to describe the asymptotic behaviour, as time t→+infinity, of these solutions. We compare the notion of a flow with that of a C 0 -group of bounded linear operators on a Banach space. We shall show how the concept C 0 -group, or more generally a C 0 -semigroup, can be used to study the behaviour of solutions of certain differential and integral equations. Our main objective is to show how the concept of a C 0 -group and especially the notion of weak-compactness can be used to prove the existence of an invariant measure for a flow on a compact Hausdorff space. Applications to the theory of ordinary differential equations are included. (author)

  11. A New time Integration Scheme for Cahn-hilliard Equations

    KAUST Repository

    Schaefer, R.

    2015-06-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  12. A New time Integration Scheme for Cahn-hilliard Equations

    KAUST Repository

    Schaefer, R.; Smol-ka, M.; Dalcin, L; Paszyn'ski, M.

    2015-01-01

    In this paper we present a new integration scheme that can be applied to solving difficult non-stationary non-linear problems. It is obtained by a successive linearization of the Crank- Nicolson scheme, that is unconditionally stable, but requires solving non-linear equation at each time step. We applied our linearized scheme for the time integration of the challenging Cahn-Hilliard equation, modeling the phase separation in fluids. At each time step the resulting variational equation is solved using higher-order isogeometric finite element method, with B- spline basis functions. The method was implemented in the PETIGA framework interfaced via the PETSc toolkit. The GMRES iterative solver was utilized for the solution of a resulting linear system at every time step. We also apply a simple adaptivity rule, which increases the time step size when the number of GMRES iterations is lower than 30. We compared our method with a non-linear, two stage predictor-multicorrector scheme, utilizing a sophisticated step length adaptivity. We controlled the stability of our simulations by monitoring the Ginzburg-Landau free energy functional. The proposed integration scheme outperforms the two-stage competitor in terms of the execution time, at the same time having a similar evolution of the free energy functional.

  13. A Generalized Analytic Operator-Valued Function Space Integral and a Related Integral Equation

    International Nuclear Information System (INIS)

    Chang, K.S.; Kim, B.S.; Park, C.H.; Ryu, K.S.

    2003-01-01

    We introduce a generalized Wiener measure associated with a Gaussian Markov process and define a generalized analytic operator-valued function space integral as a bounded linear operator from L p into L p-ci r cumflexprime (1< p ≤ 2) by the analytic continuation of the generalized Wiener integral. We prove the existence of the integral for certain functionals which involve some Borel measures. Also we show that the generalized analytic operator-valued function space integral satisfies an integral equation related to the generalized Schroedinger equation. The resulting theorems extend the theory of operator-valued function space integrals substantially and previous theorems about these integrals are generalized by our results

  14. On solvability of some quadratic functional-integral equation in Banach algebra

    International Nuclear Information System (INIS)

    Darwish, M.A.

    2007-08-01

    Using the technique of a suitable measure of non-compactness in Banach algebra, we prove an existence theorem for some functional-integral equations which contain, as particular cases, a lot of integral and functional-integral equations that arise in many branches of nonlinear analysis and its applications. Also, the famous Chandrasekhar's integral equation is considered as a special case. (author)

  15. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-01

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  16. A Time Marching Scheme for Solving Volume Integral Equations on Nonlinear Scatterers

    KAUST Repository

    Bagci, Hakan

    2015-01-07

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are oftentimes solved using marchingon-in-time (MOT) schemes. Unlike finite difference and finite element schemes, MOT-TDVIE solvers require discretization of only the scatterers, do not call for artificial absorbing boundary conditions, and are more robust to numerical phase dispersion. On the other hand, their computational cost is high, they suffer from late-time instabilities, and their implicit nature makes incorporation of nonlinear constitutive relations more difficult. Development of plane-wave time-domain (PWTD) and FFT-based schemes has significantly reduced the computational cost of the MOT-TDVIE solvers. Additionally, latetime instability problem has been alleviated for all practical purposes with the development of accurate integration schemes and specially designed temporal basis functions. Addressing the third challenge is the topic of this presentation. I will talk about an explicit MOT scheme developed for solving the TDVIE on scatterers with nonlinear material properties. The proposed scheme separately discretizes the TDVIE and the nonlinear constitutive relation between electric field intensity and flux density. The unknown field intensity and flux density are expanded using half and full Schaubert-Wilton-Glisson (SWG) basis functions in space and polynomial temporal interpolators in time. The resulting coupled system of the discretized TDVIE and constitutive relation is integrated in time using an explicit P E(CE) m scheme to yield the unknown expansion coefficients. Explicitness of time marching allows for straightforward incorporation of the nonlinearity as a function evaluation on the right hand side of the coupled system of equations. Consequently, the resulting MOT scheme does not call for a Newton-like nonlinear solver. Numerical examples, which demonstrate the applicability

  17. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  18. One-way spatial integration of hyperbolic equations

    Science.gov (United States)

    Towne, Aaron; Colonius, Tim

    2015-11-01

    In this paper, we develop and demonstrate a method for constructing well-posed one-way approximations of linear hyperbolic systems. We use a semi-discrete approach that allows the method to be applied to a wider class of problems than existing methods based on analytical factorization of idealized dispersion relations. After establishing the existence of an exact one-way equation for systems whose coefficients do not vary along the axis of integration, efficient approximations of the one-way operator are constructed by generalizing techniques previously used to create nonreflecting boundary conditions. When physically justified, the method can be applied to systems with slowly varying coefficients in the direction of integration. To demonstrate the accuracy and computational efficiency of the approach, the method is applied to model problems in acoustics and fluid dynamics via the linearized Euler equations; in particular we consider the scattering of sound waves from a vortex and the evolution of hydrodynamic wavepackets in a spatially evolving jet. The latter problem shows the potential of the method to offer a systematic, convergent alternative to ad hoc regularizations such as the parabolized stability equations.

  19. On the Volterra integral equation relating creep and relaxation

    International Nuclear Information System (INIS)

    Anderssen, R S; De Hoog, F R; Davies, A R

    2008-01-01

    The evolving stress–strain response of a material to an applied deformation is causal. If the current response depends on the earlier history of the stress–strain dynamics of the material (i.e. the material has memory), then Volterra integral equations become the natural framework within which to model the response. For viscoelastic materials, when the response is linear, the dual linear Boltzmann causal integral equations are the appropriate model. The choice of one rather than the other depends on whether the applied deformation is a stress or a strain, and the associated response is, respectively, a creep or a relaxation. The duality between creep and relaxation is known explicitly and is referred to as the 'interconversion equation'. Rheologically, its importance relates to the fact that it allows the creep to be determined from knowledge of the relaxation and vice versa. Computationally, it has been known for some time that the recovery of the relaxation from the creep is more problematic than the creep from the relaxation. Recent research, using discrete models for the creep and relaxation, has confirmed that this is an essential feature of interconversion. In this paper, the corresponding result is generalized for continuous models of the creep and relaxation

  20. An integrated approach to determine phenomenological equations in metallic systems

    Science.gov (United States)

    Ghamarian, Iman

    It is highly desirable to be able to make predictions of properties in metallic materials based upon the composition of the material and the microstructure. Unfortunately, the complexity of real, multi-component, multi-phase engineering alloys makes the provision of constituent-based (i.e., composition or microstructure) phenomenological equations extremely difficult. Due to these difficulties, qualitative predictions are frequently used to study the influence of microstructure or composition on the properties. Neural networks were used as a tool to get a quantitative model from a database. However, the developed model is not a phenomenological model. In this study, a new method based upon the integration of three separate modeling approaches, specifically artificial neural networks, genetic algorithms, and monte carlo was proposed. These three methods, when coupled in the manner described in this study, allows for the extraction of phenomenological equations with a concurrent analysis of uncertainty. This approach has been applied to a multi-component, multi-phase microstructure exhibiting phases with varying spatial and morphological distributions. Specifically, this approach has been applied to derive a phenomenological equation for the prediction of yield strength in alpha+beta processed Ti-6-4. The equation is consistent with not only the current dataset but also, where available, the limited information regarding certain parameters such as intrinsic yield strength of pure hexagonal close-packed alpha titanium.

  1. A structure-based constitutive equation for filler-reinforced rubber-like networks and for the description of the Mullins effect

    Czech Academy of Sciences Publication Activity Database

    Meissner, Bohumil; Matějka, Libor

    2006-01-01

    Roč. 47, č. 23 (2006), s. 7997-8012 ISSN 0032-3861 R&D Projects: GA ČR GA203/05/2252 Institutional research plan: CEZ:AV0Z40500505 Keywords : elastomers * fillers * constitutive equation Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.773, year: 2006

  2. Well-posed two-temperature constitutive equations for stable dense fluid shock waves using molecular dynamics and generalizations of Navier-Stokes-Fourier continuum mechanics.

    Science.gov (United States)

    Hoover, Wm G; Hoover, Carol G

    2010-04-01

    Guided by molecular dynamics simulations, we generalize the Navier-Stokes-Fourier constitutive equations and the continuum motion equations to include both transverse and longitudinal temperatures. To do so we partition the contributions of the heat transfer, the work done, and the heat flux vector between the longitudinal and transverse temperatures. With shockwave boundary conditions time-dependent solutions of these equations converge to give stationary shockwave profiles. The profiles include anisotropic temperature and can be fitted to molecular dynamics results, demonstrating the utility and simplicity of a two-temperature description of far-from-equilibrium states.

  3. Is Yang-Mills equation a totally integrable system. Lecture III

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1981-01-01

    Topics covered include: loop-space formulation of gauge theory - loop-space chiral equation; two dimensional chiral equation - conservation laws, linear system and integrability; and parallel development for the loop-space chiral equation - subtlety

  4. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Directory of Open Access Journals (Sweden)

    D.X. Horváth

    2016-01-01

    Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  5. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)

    2016-01-15

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  6. Comparative analysis of the influence of creep of concrete composite beams of steel - concrete model based on Volterra integral equation

    Directory of Open Access Journals (Sweden)

    Partov Doncho

    2017-01-01

    Full Text Available The paper presents analysis of the stress-strain behaviour and deflection changes due to creep in statically determinate composite steel-concrete beam according to EUROCODE 2, ACI209R-92 and Gardner&Lockman models. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann - Volterra for the concrete part considering the above mentioned models. On the basis of the theory of viscoelastic body of Maslov-Arutyunian-Trost-Zerna-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time 't', two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernel function in the integral equation is presented. Example with the model proposed is investigated.

  7. Need of integrated dietary therapy for persons with diabetes mellitus and "unhealthy" body constitution presentations.

    Science.gov (United States)

    Wong, Yee Chi Peggy

    2016-07-01

    From a perspective of Chinese medicine (CM), persons with unregulated "unhealthy" body constitution (BC) will further develop chronic diseases, such as diabetes mellitus (DM). Conventional dietary therapy with nutrition component has its limitations in the regulation of "unhealthy" BC. However, empirical evidence supports that "unhealthy" BC can be regulated with food natures and flavors from a perspective of CM. Presentations of "unhealthy" BC types, such as Yin-deficiency, Yang-deficiency and Yin-Yang-deficiency were found in persons with DM. It would be necessary to regulate the "unhealthy" BC presentations with integration of conventional dietary therapy and Chinese food therapy. The ultimate goal is to either stabilize glycaemic control or prevent the development of other chronic diseases leading to reduction of disease burden, such as disease-related poor quality of life, stress of healthcare professionals and the rising of healthcare cost.

  8. Integrating ribosomal promoter vectors that offer a choice of constitutive expression profiles in Leishmania donovani.

    Science.gov (United States)

    Soysa, Radika; Tran, Khoa D; Ullman, Buddy; Yates, Phillip A

    2015-12-01

    We have designed a novel series of integrating ribosomal RNA promoter vectors with five incrementally different constitutive expression profiles, covering a 250-fold range. Differential expression was achieved by placing different combinations of synthetic or leishmanial DNA sequences upstream and downstream of the transgene coding sequence in order to modulate pre-mRNA processing efficiency and mRNA stability, respectively. All of the vectors have extensive multiple cloning sites, and versions are available for producing N- or C- terminal GFP fusions at each of the possible relative expression levels. In addition, the modular configuration of the vectors allows drug resistance cassettes and other components to be readily exchanged. In toto, these vectors should be useful additions to the toolkit available for molecular and genetic studies of Leishmania donovani. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Spheroidal Integral Equations for Geodetic Inversion of Geopotential Gradients

    Science.gov (United States)

    Novák, Pavel; Šprlák, Michal

    2018-03-01

    The static Earth's gravitational field has traditionally been described in geodesy and geophysics by the gravitational potential (geopotential for short), a scalar function of 3-D position. Although not directly observable, geopotential functionals such as its first- and second-order gradients are routinely measured by ground, airborne and/or satellite sensors. In geodesy, these observables are often used for recovery of the static geopotential at some simple reference surface approximating the actual Earth's surface. A generalized mathematical model is represented by a surface integral equation which originates in solving Dirichlet's boundary-value problem of the potential theory defined for the harmonic geopotential, spheroidal boundary and globally distributed gradient data. The mathematical model can be used for combining various geopotential gradients without necessity of their re-sampling or prior continuation in space. The model extends the apparatus of integral equations which results from solving boundary-value problems of the potential theory to all geopotential gradients observed by current ground, airborne and satellite sensors. Differences between spherical and spheroidal formulations of integral kernel functions of Green's kind are investigated. Estimated differences reach relative values at the level of 3% which demonstrates the significance of spheroidal approximation for flattened bodies such as the Earth. The observation model can be used for combined inversion of currently available geopotential gradients while exploring their spectral and stochastic characteristics. The model would be even more relevant to gravitational field modelling of other bodies in space with more pronounced spheroidal geometry than that of the Earth.

  10. Normal and adjoint integral and integrodifferential neutron transport equations. Pt. 2

    International Nuclear Information System (INIS)

    Velarde, G.

    1976-01-01

    Using the simplifying hypotheses of the integrodifferential Boltzmann equations of neutron transport, given in JEN 334 report, several integral equations, and theirs adjoint ones, are obtained. Relations between the different normal and adjoint eigenfunctions are established and, in particular, proceeding from the integrodifferential Boltzmann equation it's found out the relation between the solutions of the adjoint equation of its integral one, and the solutions of the integral equation of its adjoint one (author)

  11. On integrability conditions of the equations of nonsymmetrical chiral field on SO(4)

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.

    1990-01-01

    Possibility of integrating the equations of nonsymmetrical chiral field on SO(4) by means of the inverse scattering method is investigated. Maximal number of the motion integrals is found for the corresponding system of ordinary differential equations

  12. Numerical solution of the potential problem by integral equations without Green's functions

    International Nuclear Information System (INIS)

    De Mey, G.

    1977-01-01

    An integral equation technique will be presented to solve Laplace's equation in a two-dimensional area S. The Green's function has been replaced by a particular solution of Laplace equation in order to establish the integral equation. It is shown that accurate results can be obtained provided the pivotal elimination method is used to solve the linear algebraic set

  13. Any order approximate analytical solution of the nonlinear Volterra's integral equation for accelerator dynamic systems

    International Nuclear Information System (INIS)

    Liu Chunliang; Xie Xi; Chen Yinbao

    1991-01-01

    The universal nonlinear dynamic system equation is equivalent to its nonlinear Volterra's integral equation, and any order approximate analytical solution of the nonlinear Volterra's integral equation is obtained by exact analytical method, thus giving another derivation procedure as well as another computation algorithm for the solution of the universal nonlinear dynamic system equation

  14. Tokamak plasma shape identification based on the boundary integral equations

    International Nuclear Information System (INIS)

    Kurihara, Kenichi; Kimura, Toyoaki

    1992-05-01

    A necessary condition for tokamak plasma shape identification is discussed and a new identification method is proposed in this article. This method is based on the boundary integral equations governing a vacuum region around a plasma with only the measurement of either magnetic fluxes or magnetic flux intensities. It can identify various plasmas with low to high ellipticities with the precision determined by the number of the magnetic sensors. This method is applicable to real-time control and visualization using a 'table-look-up' procedure. (author)

  15. Integral solution for the spherically symmetric Fokker-Planck equation

    International Nuclear Information System (INIS)

    Donoso, J.M.; Soler, M.

    1993-01-01

    We propose an integral method to deal with the spherically symmetric non-linear Fokker-Planck equation appearing in plasma physics. A probability transition expression is obtained, which takes into account the proper domain for the radial velocity component. The analytical and computational results are new, and the time evolution is completely satisfactory. The main achievement of the method is conservation of both the initial norm and energy for unlimited times, which has not been attained in the differential approach to the problem. (orig.)

  16. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2015-01-01

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

  17. Recent advances in marching-on-in-time schemes for solving time domain volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2015-05-16

    Transient electromagnetic field interactions on inhomogeneous penetrable scatterers can be analyzed by solving time domain volume integral equations (TDVIEs). TDVIEs are constructed by setting the summation of the incident and scattered field intensities to the total field intensity on the volumetric support of the scatterer. The unknown can be the field intensity or flux/current density. Representing the total field intensity in terms of the unknown using the relevant constitutive relation and the scattered field intensity in terms of the spatiotemporal convolution of the unknown with the Green function yield the final form of the TDVIE. The unknown is expanded in terms of local spatial and temporal basis functions. Inserting this expansion into the TDVIE and testing the resulting equation at discrete times yield a system of equations that is solved by the marching on-in-time (MOT) scheme. At each time step, a smaller system of equations, termed MOT system is solved for the coefficients of the expansion. The right-hand side of this system consists of the tested incident field and discretized spatio-temporal convolution of the unknown samples computed at the previous time steps with the Green function.

  18. Explicit solution of Calderon preconditioned time domain integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2013-07-01

    An explicit marching on-in-time (MOT) scheme for solving Calderon-preconditioned time domain integral equations is proposed. The scheme uses Rao-Wilton-Glisson and Buffa-Christiansen functions to discretize the domain and range of the integral operators and a PE(CE)m type linear multistep to march on in time. Unlike its implicit counterpart, the proposed explicit solver requires the solution of an MOT system with a Gram matrix that is sparse and well-conditioned independent of the time step size. Numerical results demonstrate that the explicit solver maintains its accuracy and stability even when the time step size is chosen as large as that typically used by an implicit solver. © 2013 IEEE.

  19. Geometrical-integrability constraints and equations of motion in four plus extended super spaces

    International Nuclear Information System (INIS)

    Chau, L.L.

    1987-01-01

    It is pointed out that many equations of motion in physics, including gravitational and Yang-Mills equations, have a common origin: i.e. they are the results of certain geometrical integrability conditions. These integrability conditions lead to linear systems and conservation laws that are important in integrating these equations of motion

  20. Hierarchical Matrices Method and Its Application in Electromagnetic Integral Equations

    Directory of Open Access Journals (Sweden)

    Han Guo

    2012-01-01

    Full Text Available Hierarchical (H- matrices method is a general mathematical framework providing a highly compact representation and efficient numerical arithmetic. When applied in integral-equation- (IE- based computational electromagnetics, H-matrices can be regarded as a fast algorithm; therefore, both the CPU time and memory requirement are reduced significantly. Its kernel independent feature also makes it suitable for any kind of integral equation. To solve H-matrices system, Krylov iteration methods can be employed with appropriate preconditioners, and direct solvers based on the hierarchical structure of H-matrices are also available along with high efficiency and accuracy, which is a unique advantage compared to other fast algorithms. In this paper, a novel sparse approximate inverse (SAI preconditioner in multilevel fashion is proposed to accelerate the convergence rate of Krylov iterations for solving H-matrices system in electromagnetic applications, and a group of parallel fast direct solvers are developed for dealing with multiple right-hand-side cases. Finally, numerical experiments are given to demonstrate the advantages of the proposed multilevel preconditioner compared to conventional “single level” preconditioners and the practicability of the fast direct solvers for arbitrary complex structures.

  1. Discretization of the induced-charge boundary integral equation.

    Science.gov (United States)

    Bardhan, Jaydeep P; Eisenberg, Robert S; Gillespie, Dirk

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  2. Crossover integral equation theory for the liquid structure study

    International Nuclear Information System (INIS)

    Lai, S.K.; Chen, H.C.

    1994-08-01

    The main purpose of this work is to report on a calculation that describes the role of the long-range bridge function [H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982)] as applied to the study of structure of simple liquid metals. It was found here that this bridge function accounts pretty well for the major part of long-range interactions but is physically inadequate for describing the short-range part of liquid structure. To improve on the theory we have drawn attention to the crossover integral equation method which, in essence, amounts to adding to the above bridge function a short-range correction of bridge diagrams. The suggested crossover procedure has been tested for the case of liquid metal Cs. Remarkably good agreement with experiment was obtained confirming our conjecture that the crossover integral equation approach as stressed in this work is potentially an appropriate theory for an accurate study of liquid structure possibly for the supercooled liquid regime. (author). 21 refs, 3 figs

  3. Discretization of the induced-charge boundary integral equation.

    Energy Technology Data Exchange (ETDEWEB)

    Bardhan, J. P.; Eisenberg, R. S.; Gillespie, D.; Rush Univ. Medical Center

    2009-07-01

    Boundary-element methods (BEMs) for solving integral equations numerically have been used in many fields to compute the induced charges at dielectric boundaries. In this paper, we consider a more accurate implementation of BEM in the context of ions in aqueous solution near proteins, but our results are applicable more generally. The ions that modulate protein function are often within a few angstroms of the protein, which leads to the significant accumulation of polarization charge at the protein-solvent interface. Computing the induced charge accurately and quickly poses a numerical challenge in solving a popular integral equation using BEM. In particular, the accuracy of simulations can depend strongly on seemingly minor details of how the entries of the BEM matrix are calculated. We demonstrate that when the dielectric interface is discretized into flat tiles, the qualocation method of Tausch et al. [IEEE Trans Comput.-Comput.-Aided Des. 20, 1398 (2001)] to compute the BEM matrix elements is always more accurate than the traditional centroid-collocation method. Qualocation is not more expensive to implement than collocation and can save significant computational time by reducing the number of boundary elements needed to discretize the dielectric interfaces.

  4. Bargmann Symmetry Constraint for a Family of Liouville Integrable Differential-Difference Equations

    International Nuclear Information System (INIS)

    Xu Xixiang

    2012-01-01

    A family of integrable differential-difference equations is derived from a new matrix spectral problem. The Hamiltonian forms of obtained differential-difference equations are constructed. The Liouville integrability for the obtained integrable family is proved. Then, Bargmann symmetry constraint of the obtained integrable family is presented by binary nonliearization method of Lax pairs and adjoint Lax pairs. Under this Bargmann symmetry constraints, an integrable symplectic map and a sequences of completely integrable finite-dimensional Hamiltonian systems in Liouville sense are worked out, and every integrable differential-difference equations in the obtained family is factored by the integrable symplectic map and a completely integrable finite-dimensional Hamiltonian system. (general)

  5. Set-Valued Stochastic Equation with Set-Valued Square Integrable Martingale

    Directory of Open Access Journals (Sweden)

    Li Jun-Gang

    2017-01-01

    Full Text Available In this paper, we shall introduce the stochastic integral of a stochastic process with respect to set-valued square integrable martingale. Then we shall give the Aumann integral measurable theorem, and give the set-valued stochastic Lebesgue integral and set-valued square integrable martingale integral equation. The existence and uniqueness of solution to set-valued stochastic integral equation are proved. The discussion will be useful in optimal control and mathematical finance in psychological factors.

  6. Discrete integrable couplings associated with Toda-type lattice and two hierarchies of discrete soliton equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Fan Engui; Zhang Yongqing

    2006-01-01

    With the help of two semi-direct sum Lie algebras, an efficient way to construct discrete integrable couplings is proposed. As its applications, the discrete integrable couplings of the Toda-type lattice equations are obtained. The approach can be devoted to establishing other discrete integrable couplings of the discrete lattice integrable hierarchies of evolution equations

  7. Green function of the double-fractional Fokker-Planck equation: Path integral and stochastic differential equations

    Science.gov (United States)

    Kleinert, H.; Zatloukal, V.

    2013-11-01

    The statistics of rare events, the so-called black-swan events, is governed by non-Gaussian distributions with heavy power-like tails. We calculate the Green functions of the associated Fokker-Planck equations and solve the related stochastic differential equations. We also discuss the subject in the framework of path integration.

  8. The reduced basis method for the electric field integral equation

    International Nuclear Information System (INIS)

    Fares, M.; Hesthaven, J.S.; Maday, Y.; Stamm, B.

    2011-01-01

    We introduce the reduced basis method (RBM) as an efficient tool for parametrized scattering problems in computational electromagnetics for problems where field solutions are computed using a standard Boundary Element Method (BEM) for the parametrized electric field integral equation (EFIE). This combination enables an algorithmic cooperation which results in a two step procedure. The first step consists of a computationally intense assembling of the reduced basis, that needs to be effected only once. In the second step, we compute output functionals of the solution, such as the Radar Cross Section (RCS), independently of the dimension of the discretization space, for many different parameter values in a many-query context at very little cost. Parameters include the wavenumber, the angle of the incident plane wave and its polarization.

  9. Integrable equations, addition theorems, and the Riemann-Schottky problem

    International Nuclear Information System (INIS)

    Buchstaber, Viktor M; Krichever, I M

    2006-01-01

    The classical Weierstrass theorem claims that, among the analytic functions, the only functions admitting an algebraic addition theorem are the elliptic functions and their degenerations. This survey is devoted to far-reaching generalizations of this result that are motivated by the theory of integrable systems. The authors discovered a strong form of the addition theorem for theta functions of Jacobian varieties, and this form led to new approaches to known problems in the geometry of Abelian varieties. It is shown that strong forms of addition theorems arise naturally in the theory of the so-called trilinear functional equations. Diverse aspects of the approaches suggested here are discussed, and some important open problems are formulated.

  10. Acoustic 3D modeling by the method of integral equations

    Science.gov (United States)

    Malovichko, M.; Khokhlov, N.; Yavich, N.; Zhdanov, M.

    2018-02-01

    This paper presents a parallel algorithm for frequency-domain acoustic modeling by the method of integral equations (IE). The algorithm is applied to seismic simulation. The IE method reduces the size of the problem but leads to a dense system matrix. A tolerable memory consumption and numerical complexity were achieved by applying an iterative solver, accompanied by an effective matrix-vector multiplication operation, based on the fast Fourier transform (FFT). We demonstrate that, the IE system matrix is better conditioned than that of the finite-difference (FD) method, and discuss its relation to a specially preconditioned FD matrix. We considered several methods of matrix-vector multiplication for the free-space and layered host models. The developed algorithm and computer code were benchmarked against the FD time-domain solution. It was demonstrated that, the method could accurately calculate the seismic field for the models with sharp material boundaries and a point source and receiver located close to the free surface. We used OpenMP to speed up the matrix-vector multiplication, while MPI was used to speed up the solution of the system equations, and also for parallelizing across multiple sources. The practical examples and efficiency tests are presented as well.

  11. Stability of non-linear constitutive formulations for viscoelastic fluids

    CERN Document Server

    Siginer, Dennis A

    2014-01-01

    Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

  12. Analysis of electromagnetic wave interactions on nonlinear scatterers using time domain volume integral equations

    KAUST Repository

    Ulku, Huseyin Arda

    2014-07-06

    Effects of material nonlinearities on electromagnetic field interactions become dominant as field amplitudes increase. A typical example is observed in plasmonics, where highly localized fields “activate” Kerr nonlinearities. Naturally, time domain solvers are the method of choice when it comes simulating these nonlinear effects. Oftentimes, finite difference time domain (FDTD) method is used for this purpose. This is simply due to the fact that explicitness of the FDTD renders the implementation easier and the material nonlinearity can be easily accounted for using an auxiliary differential equation (J.H. Green and A. Taflove, Opt. Express, 14(18), 8305-8310, 2006). On the other hand, explicit marching on-in-time (MOT)-based time domain integral equation (TDIE) solvers have never been used for the same purpose even though they offer several advantages over FDTD (E. Michielssen, et al., ECCOMAS CFD, The Netherlands, Sep. 5-8, 2006). This is because explicit MOT solvers have never been stabilized until not so long ago. Recently an explicit but stable MOT scheme has been proposed for solving the time domain surface magnetic field integral equation (H.A. Ulku, et al., IEEE Trans. Antennas Propag., 61(8), 4120-4131, 2013) and later it has been extended for the time domain volume electric field integral equation (TDVEFIE) (S. B. Sayed, et al., Pr. Electromagn. Res. S., 378, Stockholm, 2013). This explicit MOT scheme uses predictor-corrector updates together with successive over relaxation during time marching to stabilize the solution even when time step is as large as in the implicit counterpart. In this work, an explicit MOT-TDVEFIE solver is proposed for analyzing electromagnetic wave interactions on scatterers exhibiting Kerr nonlinearity. Nonlinearity is accounted for using the constitutive relation between the electric field intensity and flux density. Then, this relation and the TDVEFIE are discretized together by expanding the intensity and flux - sing half

  13. The Neumann Type Systems and Algebro-Geometric Solutions of a System of Coupled Integrable Equations

    International Nuclear Information System (INIS)

    Chen Jinbing; Qiao Zhijun

    2011-01-01

    A system of (1+1)-dimensional coupled integrable equations is decomposed into a pair of new Neumann type systems that separate the spatial and temporal variables for this system over a symplectic submanifold. Then, the Neumann type flows associated with the coupled integrable equations are integrated on the complex tour of a Riemann surface. Finally, the algebro-geometric solutions expressed by Riemann theta functions of the system of coupled integrable equations are obtained by means of the Jacobi inversion.

  14. On the structure of the commutative Z2 graded algebra valued integrable equations

    International Nuclear Information System (INIS)

    Konopelchenko, B.G.

    1980-01-01

    Partial differential equations integrable by the linear matrix spectral problem of arbitrary order are considered for the case that the 'potentials' take their values in the commutative infinte-dimensional Z 2 graded algebra (superalgebra). The general form of the integrable equations and their Baecklund transformations are found. The infinite sets of the integrals of the motion are constructed. The hamiltonian character of the integrable equations is proved. (orig.)

  15. Nonlinear Fredholm Integral Equation of the Second Kind with Quadrature Methods

    Directory of Open Access Journals (Sweden)

    M. Jafari Emamzadeh

    2010-06-01

    Full Text Available In this paper, a numerical method for solving the nonlinear Fredholm integral equation is presented. We intend to approximate the solution of this equation by quadrature methods and by doing so, we solve the nonlinear Fredholm integral equation more accurately. Several examples are given at the end of this paper

  16. Reformulation of nonlinear integral magnetostatic equations for rapid iterative convergence

    International Nuclear Information System (INIS)

    Bloomberg, D.S.; Castelli, V.

    1985-01-01

    The integral equations of magnetostatics, conventionally given in terms of the field variables M and H, are reformulated with M and B. Stability criteria and convergence rates of the eigenvectors of the linear iteration matrices are evaluated. The relaxation factor β in the MH approach varies inversely with permeability μ, and nonlinear problems with high permeability converge slowly. In contrast, MB iteration is stable for β 3 , the number of iterations is reduced by two orders of magnitude over the conventional method, and at higher permeabilities the reduction is proportionally greater. The dependence of MB convergence rate on β, degree of saturation, element aspect ratio, and problem size is found numerically. An analytical result for the MB convergence rate for small nonlinear problems is found to be accurate for βless than or equal to1.2. The results are generally valid for two- and three-dimensional integral methods and are independent of the particular discretization procedures used to compute the field matrix

  17. Modern integral equation techniques for quantum reactive scattering theory

    International Nuclear Information System (INIS)

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence

  18. On the integration of equations of motion for particle-in-cell codes

    International Nuclear Information System (INIS)

    Fuchs, V.; Gunn, J.P.

    2006-01-01

    An area-preserving implementation of the 2nd order Runge-Kutta integration method for equations of motion is presented. For forces independent of velocity the scheme possesses the same numerical simplicity and stability as the leapfrog method, and is not implicit for forces which do depend on velocity. It can be therefore easily applied where the leapfrog method in general cannot. We discuss the stability of the new scheme and test its performance in calculations of particle motion in three cases of interest. First, in the ubiquitous and numerically demanding example of nonlinear interaction of particles with a propagating plane wave, second, in the case of particle motion in a static magnetic field and, third, in a nonlinear dissipative case leading to a limit cycle. We compare computed orbits with exact orbits and with results from the leapfrog and other low-order integration schemes. Of special interest is the role of intrinsic stochasticity introduced by time differencing, which can destroy orbits of an otherwise exactly integrable system and therefore constitutes a restriction on the applicability of an integration scheme in such a context [A. Friedman, S.P. Auerbach, J. Comput. Phys. 93 (1991) 171]. In particular, we show that for a plane wave the new scheme proposed herein can be reduced to a symmetric standard map. This leads to the nonlinear stability condition Δt ω B ≤ 1, where Δt is the time step and ω B the particle bounce frequency

  19. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2009-01-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation

  20. On the constitutive law of environment assisted fatigue: The physical meaning of the Paris type equations. Pt. 2

    International Nuclear Information System (INIS)

    Krausz, A.S.; Wu Xijia; Krausz, K.; Lian Zhiwen

    1992-01-01

    The physically based constitutive law of corrosion fatigue, derived in Part I from the principles of thermally activated processes and fracture kinetics, is applied for the representation of the crack growth rate over the whole stress intensity range. The behavior is expressed in terms of design and environmental factors and microstructural quantities. The constitutive law of fracture kinetics defines explicitly the effects of stress and temperature. Similarly, the role of the stress ratio R, the frequency and microstructure, follow rigorously. The influence of these factors on the crack growth rate and threshold behavior is discussed extensively. It is also demonstrated that fracture kinetics provides the framework for the detailed incorporation of corrosion chemical reaction and the associated diffusion processes. (orig.) [de

  1. Integrable systems of partial differential equations determined by structure equations and Lax pair

    International Nuclear Information System (INIS)

    Bracken, Paul

    2010-01-01

    It is shown how a system of evolution equations can be developed both from the structure equations of a submanifold embedded in three-space as well as from a matrix SO(6) Lax pair. The two systems obtained this way correspond exactly when a constraint equation is selected and imposed on the system of equations. This allows for the possibility of selecting the coefficients in the second fundamental form in a general way.

  2. The role of the commutator equations in integration methods in tetrad formalisms in general relativity

    International Nuclear Information System (INIS)

    Edgar, S.B.

    1990-01-01

    The structures of the N.P. and G.H.P formalisms are reviewed in order to understand and demonstrate the important role played by the commutator equations in the associated integration procedures. Particular attention is focused on how the commutator equations are to be satisfied, or checked for consistency. It is shown that Held's integration method will only guarantee genuine solutions of Einstein's equations when all the commutator equations are correctly and completely satisfied. (authors)

  3. Solution of a modified Lame equation with an integral term

    International Nuclear Information System (INIS)

    Hagelstein, P.L.

    1978-01-01

    We consider an equation which occurs in the stability analysis of a passively modelocked laser system in which the pulses overlap. The equation is related to a Lame equation and can be written su(x) =]d 2 /dx 2 -[(2-m)-6dn 2 (x,m)

  4. Integrable discretizations of the (2+1)-dimensional sinh-Gordon equation

    International Nuclear Information System (INIS)

    Hu, Xing-Biao; Yu, Guo-Fu

    2007-01-01

    In this paper, we propose two semi-discrete equations and one fully discrete equation and study them by Hirota's bilinear method. These equations have continuum limits into a system which admits the (2+1)-dimensional generalization of the sinh-Gordon equation. As a result, two integrable semi-discrete versions and one fully discrete version for the sinh-Gordon equation are found. Baecklund transformations, nonlinear superposition formulae, determinant solution and Lax pairs for these discrete versions are presented

  5. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Directory of Open Access Journals (Sweden)

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  6. On integration of the first order differential equations in a finite terms

    International Nuclear Information System (INIS)

    Malykh, M D

    2017-01-01

    There are several approaches to the description of the concept called briefly as integration of the first order differential equations in a finite terms or symbolical integration. In the report three of them are considered: 1.) finding of a rational integral (Beaune or Poincaré problem), 2.) integration by quadratures and 3.) integration when the general solution of given differential equation is an algebraical function of a constant (Painlevé problem). Their realizations in Sage are presented. (paper)

  7. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind

    Energy Technology Data Exchange (ETDEWEB)

    Abbasbandy, S. [Department of Mathematics, Imam Khomeini International University, P.O. Box 288, Ghazvin 34194 (Iran, Islamic Republic of)]. E-mail: saeid@abbasbandy.com; Babolian, E. [Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University, Tehran 15618 (Iran, Islamic Republic of); Alavi, M. [Department of Mathematics, Arak Branch, Islamic Azad University, Arak 38135 (Iran, Islamic Republic of)

    2007-01-15

    In this paper we use parametric form of fuzzy number and convert a linear fuzzy Fredholm integral equation to two linear system of integral equation of the second kind in crisp case. We can use one of the numerical method such as Nystrom and find the approximation solution of the system and hence obtain an approximation for fuzzy solution of the linear fuzzy Fredholm integral equations of the second kind. The proposed method is illustrated by solving some numerical examples.

  8. Geometry, heat equation and path integrals on the Poincare upper half-plane

    International Nuclear Information System (INIS)

    Kubo, Reijiro.

    1987-08-01

    Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation δf/δt = Δ H f is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's proof that Feynman's path integral satisfies the Schroedinger equation is also valid for our case. (author)

  9. Geometry, Heat Equation and Path Integrals on the Poincare Upper Half-Plane

    OpenAIRE

    Reijiro, KUBO; Research Institute for Theoretical Physics Hiroshima University

    1988-01-01

    Geometry, heat equation and Feynman's path integrals are studied on the Poincare upper half-plane. The fundamental solution to the heat equation ∂f/∂t=Δ_Hf is expressed in terms of a path integral defined on the upper half-plane. It is shown that Kac's statement that Feynman's path integral satisfies the Schrodinger equation is also valid for our case.

  10. Integrator Performance Analysis In Solving Stiff Differential Equation System

    International Nuclear Information System (INIS)

    B, Alhadi; Basaruddin, T.

    2001-01-01

    In this paper we discuss the four-stage index-2 singly diagonally implicit Runge-Kutta method, which is used to solve stiff ordinary differential equations (SODE). Stiff problems require a method where step size is not restricted by the method's stability. We desire SDIRK to be A-stable that has no stability restrictions when solving y'= λy with Reλ>0 and h>0, so by choosing suitable stability function we can determine appropriate constant g) to formulate SDIRK integrator to solve SODE. We select the second stage of the internal stage as embedded method to perform low order estimate for error predictor. The strategy for choosing the step size is adopted from the strategy proposed by Hall(1996:6). And the algorithm that is developed in this paper is implemented using MATLAB 5.3, which is running on Window's 95 environment. Our performance measurement's local truncation error accuracy, and efficiency were evaluated by statistical results of sum of steps, sum of calling functions, average of Newton iterations and elapsed times.As the results, our numerical experiment show that SDIRK is unconditionally stable. By using Hall's step size strategy, the method can be implemented efficiently, provided that suitable parameters are used

  11. Transition flow ion transport via integral Boltzmann equation

    International Nuclear Information System (INIS)

    Darcie, T.E.

    1983-10-01

    A new approach is developed to solve the Integral Boltzmann Equation for the evolving velocity distribution of a source of ions, undergoing electrostatic acceleration through a neutral gas target. The theory is applicable to arbitrarily strong electric fields, any ion/neutral mass ratio greater than unity, and is not limited to spatially isotropic gas targets. A hard sphere collision model is used, with a provision for inelasticity. Both axial and radial velocity distributions are calculated for applications where precollision radial velocities are negligible, as is the case for ion beam extractions from high pressure sources. Theoretical predictions are tested through an experiment in which an atmospheric pressure ion source is coupled to a high vacuum energy analyser. Excellent agreement results for configurations in which the radial velocity remains small. Velocity distributions are applied to predicting the efficiency of coupling an atmospheric pressure ion source to a quadrupole mass spectrometer and results clearly indicate the most desirable extracting configuration. A method is devised to calculate ion-molecule hard sphere collision cross sections for easily fragmented organic ions

  12. Accurate and efficient quadrature for volterra integral equations

    International Nuclear Information System (INIS)

    Knirk, D.L.

    1976-01-01

    Four quadrature schemes were tested and compared in considerable detail to determine their usefulness in the noniterative integral equation method for single-channel quantum-mechanical calculations. They are two forms of linear approximation (trapezoidal rule) and two forms of quadratic approximation (Simpson's rule). Their implementation in this method is shown, a formal discussion of error propagation is given, and tests are performed to determine actual operating characteristics on various bound and scattering problems in different potentials. The quadratic schemes are generally superior to the linear ones in terms of accuracy and efficiency. The previous implementation of Simpson's rule is shown to possess an inherent instability which requires testing on each problem for which it is used to assure its reliability. The alternative quadratic approximation does not suffer this deficiency, but still enjoys the advantages of higher order. In addition, the new scheme obeys very well an h 4 Richardson extrapolation, whereas the old one does so rather poorly. 6 figures, 11 tables

  13. Aitken extrapolation and epsilon algorithm for an accelerated solution of weakly singular nonlinear Volterra integral equations

    International Nuclear Information System (INIS)

    Mesgarani, H; Parmour, P; Aghazadeh, N

    2010-01-01

    In this paper, we apply Aitken extrapolation and epsilon algorithm as acceleration technique for the solution of a weakly singular nonlinear Volterra integral equation of the second kind. In this paper, based on Tao and Yong (2006 J. Math. Anal. Appl. 324 225-37.) the integral equation is solved by Navot's quadrature formula. Also, Tao and Yong (2006) for the first time applied Richardson extrapolation to accelerating convergence for the weakly singular nonlinear Volterra integral equations of the second kind. To our knowledge, this paper may be the first attempt to apply Aitken extrapolation and epsilon algorithm for the weakly singular nonlinear Volterra integral equations of the second kind.

  14. ON ASYMTOTIC APPROXIMATIONS OF FIRST INTEGRALS FOR DIFFERENTIAL AND DIFFERENCE EQUATIONS

    Directory of Open Access Journals (Sweden)

    W.T. van Horssen

    2007-04-01

    Full Text Available In this paper the concept of integrating factors for differential equations and the concept of invariance factors for difference equations to obtain first integrals or invariants will be presented. It will be shown that all integrating factors have to satisfya system of partial differential equations, and that all invariance factors have to satisfy a functional equation. In the period 1997-2001 a perturbation method based on integrating vectors was developed to approximate first integrals for systems of ordinary differential equations. This perturbation method will be reviewed shortly. Also in the paper the first results in the development of a perturbation method for difference equations based on invariance factors will be presented.

  15. Development and validation of bubble breakup and coalescence constitutive models for the one-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Pellacani, Filippo

    2012-01-01

    A local mechanistic model for bubble coalescence and breakup for the one-group interfacial area transport equation has been developed, in agreement and within the limits of the current understanding, based on an exhaustive survey of the theory and of the state of the art models for bubble dynamics simulation. The new model has been tested using the commercial 3D CFD code ANSYS CFX. Upward adiabatic turbulent air-water bubbly flow has been simulated and the results have been compared with the data obtained in the experimental facility PUMA. The range of the experimental data available spans between 0.5 to 2 m/s liquid velocity and 5 to 15 % volume fraction. For the implementation of the models, both the monodispersed and the interfacial area transport equation approaches have been used. The first one to perform a detailed analysis of the forces and models to reproduce the dynamic of the dispersed phase adequately and to be used in the next phases of the work. Also two different bubble induced turbulence models have been tested to consider the effect of the presence of the gas phase on the turbulence of the liquid phase. The interfacial area transport equation has been successfully implemented into the CFD code and the state of the art breakup and coalescence models have been used for simulation. The limitations of the actual theory have been shown and a new bubble interactions model has been developed. The simulations showed that a considerable improvement is achieved if compared to the state of the art closure models. Limits in the implementation derive from the actual understanding and formulation of the bubbly dynamics. A strong dependency on the interfacial non-drag force models and coefficients have been shown. More experimental and theory work needs to be done in this field to increase the prediction capability of the simulation tools regarding the distribution of the phases along the pipe radius.

  16. Quadratic algebras and noncommutative integration of Klein-Gordon equations in non-steckel Riemann spaces

    International Nuclear Information System (INIS)

    Varaksin, O.L.; Firstov, V.V.; Shapovalov, A.V.; Shirokov, I.V.

    1995-01-01

    The method of noncommutative integration of linear partial differential equations is used to solve the Klein-Gordon equations in Riemann space, in the case when the set of noncommutating symmetry operators of this equation for a quadratic algebra consists of one second-order operator and several first-order operators. Solutions that do not permit variable separation are presented

  17. Integration of equations of parabolic type by the method of nets

    CERN Document Server

    Saul'Yev, V K; Stark, M; Ulam, S

    1964-01-01

    International Series of Monographs in Pure and Applied Mathematics, Volume 54: Integration of Equations of Parabolic Type by the Method of Nets deals with solving parabolic partial differential equations using the method of nets. The first part of this volume focuses on the construction of net equations, with emphasis on the stability and accuracy of the approximating net equations. The method of nets or method of finite differences (used to define the corresponding numerical method in ordinary differential equations) is one of many different approximate methods of integration of partial diff

  18. Constitutive Equation and Hot Compression Deformation Behavior of Homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr Alloy

    Directory of Open Access Journals (Sweden)

    Jianliang He

    2017-10-01

    Full Text Available The deformation behavior of homogenized Al–7.5Zn–1.5Mg–0.2Cu–0.2Zr alloy has been studied by a set of isothermal hot compression tests, which were carried out over the temperature ranging from 350 °C to 450 °C and the strain rate ranging from 0.001 s−1 to 10 s−1 on Gleeble-3500 thermal simulation machine. The associated microstructure was studied using electron back scattered diffraction (EBSD and transmission electron microscopy (TEM. The results showed that the flow stress is sensitive to strain rate and deformation temperature. The shape of true stress-strain curves obtained at a low strain rate (≤0.1 s−1 conditions shows the characteristic of dynamic recrystallization (DRX. Two Arrhenius-typed constitutive equation without and with strain compensation were established based on the true stress-strain curves. Constitutive equation with strain compensation has more precise predictability. The main softening mechanism of the studied alloy is dynamic recovery (DRV accompanied with DRX, particularly at deformation conditions, with low Zener-Holloman parameters.

  19. Approximate solutions for the two-dimensional integral transport equation. The critically mixed methods of resolution

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1980-11-01

    This work is divided into two part the first part (note CEA-N-2165) deals with the solution of complex two-dimensional transport problems, the second one treats the critically mixed methods of resolution. These methods are applied for one-dimensional geometries with highly anisotropic scattering. In order to simplify the set of integral equation provided by the integral transport equation, the integro-differential equation is used to obtain relations that allow to lower the number of integral equation to solve; a general mathematical and numerical study is presented [fr

  20. Two Ways to Examine Differential Constitutive Equations: Initiated on Steady or Initiated on Unsteady (LAOS Shear Characteristics

    Directory of Open Access Journals (Sweden)

    Jana Zelenkova

    2017-06-01

    Full Text Available The exponential Phan–Tien and Tanner (PTT, Giesekus, Leonov, and modified extended Pom–Pom (mXPP differential constitutive models are evaluated in two ways: with regard to steady shear characteristics and with regard to large amplitude oscillatory shear characteristics of a solution of poly(ethylene oxide in dimethyl sulfoxide. Efficiency of the models with nonlinear parameters optimized with respect to steady shear measurements is evaluated by their ability to describe large amplitude oscillatory shear (LAOS characteristics. The reciprocal problem is also analyzed: The nonlinear parameters are optimized with respect to the LAOS measurements, and the models are confronted with the steady shear characteristics. In this case, optimization is based on the LAOS measurements and equal emphasis is placed on both real and imaginary parts of the stress amplitude. The results show that the chosen models are not adequately able to fit the LAOS characteristics if the optimization of nonlinear parameters is based on steady shear measurements. It follows that the optimization of nonlinear parameters is much more responsible if it is carried out with respect to the LAOS data. In this case, when the optimized parameters are used for a description of steady shear characteristics, efficiency of the individual models as documented differs.

  1. Stability of negative solitary waves for an integrable modified Camassa-Holm equation

    International Nuclear Information System (INIS)

    Yin Jiuli; Tian Lixin; Fan Xinghua

    2010-01-01

    In this paper, we prove that the modified Camassa-Holm equation is Painleve integrable. We also study the orbital stability problem of negative solitary waves for this integrable equation. It is shown that the negative solitary waves are stable for arbitrary wave speed of propagation.

  2. A boundary integral equation for boundary element applications in multigroup neutron diffusion theory

    International Nuclear Information System (INIS)

    Ozgener, B.

    1998-01-01

    A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation

  3. Analysis and regularization of the thin-wire integral equation with reduced kernel

    NARCIS (Netherlands)

    Beurden, van M.C.; Tijhuis, A.G.

    2007-01-01

    For the straight wire, modeled as a hollow tube, we establish a conditional equivalence relation between the integral equations with exact and reduced kernel. This relation allows us to examine the existence and uniqueness conditions for the integral equation with reduced kernel, based on a local

  4. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, H. Arda; Bagci, Hakan

    2015-01-01

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep

  5. Alternative integral equations and perturbation expansions for self-coupled scalar fields

    International Nuclear Information System (INIS)

    Ford, L.H.

    1985-01-01

    It is shown that the theory of a self-coupled scalar field may be expressed in terms of a class of integral equations which include the Yang-Feldman equation as a particular case. Other integral equations in this class could be used to generate alternative perturbation expansions which contain a nonanalytic dependence upon the coupling constant and are less ultraviolet divergent than the conventional perturbation expansion. (orig.)

  6. Integration of differential equations by the pseudo-linear (PL) approximation

    International Nuclear Information System (INIS)

    Bonalumi, Riccardo A.

    1998-01-01

    A new method of integrating differential equations was originated with the technique of approximately calculating the integrals called the pseudo-linear (PL) procedure: this method is A-stable. This article contains the following examples: 1st order ordinary differential equations (ODEs), 2nd order linear ODEs, stiff system of ODEs (neutron kinetics), one-dimensional parabolic (diffusion) partial differential equations. In this latter case, this PL method coincides with the Crank-Nicholson method

  7. Block-pulse functions approach to numerical solution of Abel’s integral equation

    Directory of Open Access Journals (Sweden)

    Monireh Nosrati Sahlan

    2015-12-01

    Full Text Available This study aims to present a computational method for solving Abel’s integral equation of the second kind. The introduced method is based on the use of Block-pulse functions (BPFs via collocation method. Abel’s integral equations as singular Volterra integral equations are hard and heavy in computation, but because of the properties of BPFs, as is reported in examples, this method is more efficient and more accurate than some other methods for solving this class of integral equations. On the other hand, the benefit of this method is low cost of computing operations. The applied method transforms the singular integral equation into triangular linear algebraic system that can be solved easily. An error analysis is worked out and applications are demonstrated through illustrative examples.

  8. Irreducibility and co-primeness as an integrability criterion for discrete equations

    International Nuclear Information System (INIS)

    Kanki, Masataka; Mada, Jun; Mase, Takafumi; Tokihiro, Tetsuji

    2014-01-01

    We study the Laurent property, the irreducibility and co-primeness of discrete integrable and non-integrable equations. First we study a discrete integrable equation related to the Somos-4 sequence, and also a non-integrable equation as a comparison. We prove that the conditions of irreducibility and co-primeness hold only in the integrable case. Next, we generalize our previous results on the singularities of the discrete Korteweg–de Vries (dKdV) equation. In our previous paper (Kanki et al 2014 J. Phys. A: Math. Theor. 47 065201) we described the singularity confinement test (one of the integrability criteria) using the Laurent property, and the irreducibility, and co-primeness of the terms in the bilinear dKdV equation, in which we only considered simplified boundary conditions. This restriction was needed to obtain simple (monomial) relations between the bilinear form and the nonlinear form of the dKdV equation. In this paper, we prove the co-primeness of the terms in the nonlinear dKdV equation for general initial conditions and boundary conditions, by using the localization of Laurent rings and the interchange of the axes. We assert that co-primeness of the terms can be used as a new integrability criterion, which is a mathematical re-interpretation of the confinement of singularities in the case of discrete equations. (paper)

  9. Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients

    International Nuclear Information System (INIS)

    Liao Cui-Cui; Cui Jin-Chao; Liang Jiu-Zhen; Ding Xiao-Hua

    2016-01-01

    In this paper, we propose a variational integrator for nonlinear Schrödinger equations with variable coefficients. It is shown that our variational integrator is naturally multi-symplectic. The discrete multi-symplectic structure of the integrator is presented by a multi-symplectic form formula that can be derived from the discrete Lagrangian boundary function. As two examples of nonlinear Schrödinger equations with variable coefficients, cubic nonlinear Schrödinger equations and Gross–Pitaevskii equations are extensively studied by the proposed integrator. Our numerical simulations demonstrate that the integrator is capable of preserving the mass, momentum, and energy conservation during time evolutions. Convergence tests are presented to verify that our integrator has second-order accuracy both in time and space. (paper)

  10. Numerical integration of the Teukolsky equation in the time domain

    International Nuclear Information System (INIS)

    Pazos-Avalos, Enrique; Lousto, Carlos O.

    2005-01-01

    We present a fourth-order convergent (2+1)-dimensional, numerical formalism to solve the Teukolsky equation in the time domain. Our approach is first to rewrite the Teukolsky equation as a system of first-order differential equations. In this way we get a system that has the form of an advection equation. This is then used in combination with a series expansion of the solution in powers of time. To obtain a fourth-order scheme we kept terms up to fourth derivative in time and use the advectionlike system of differential equations to substitute the temporal derivatives by spatial derivatives. This scheme is applied to evolve gravitational perturbations in the Schwarzschild and Kerr backgrounds. Our numerical method proved to be stable and fourth-order convergent in r* and θ directions. The correct power-law tail, ∼1/t 2l+3 , for general initial data, and ∼1/t 2l+4 , for time-symmetric data, was found in our runs. We noted that it is crucial to resolve accurately the angular dependence of the mode at late times in order to obtain these values of the exponents in the power-law decay. In other cases, when the decay was too fast and round-off error was reached before a tail was developed, then the quasinormal modes frequencies provided a test to determine the validity of our code

  11. Integrable discretizations and self-adaptive moving mesh method for a coupled short pulse equation

    International Nuclear Information System (INIS)

    Feng, Bao-Feng; Chen, Junchao; Chen, Yong; Maruno, Ken-ichi; Ohta, Yasuhiro

    2015-01-01

    In the present paper, integrable semi-discrete and fully discrete analogues of a coupled short pulse (CSP) equation are constructed. The key to the construction are the bilinear forms and determinant structure of the solutions of the CSP equation. We also construct N-soliton solutions for the semi-discrete and fully discrete analogues of the CSP equations in the form of Casorati determinants. In the continuous limit, we show that the fully discrete CSP equation converges to the semi-discrete CSP equation, then further to the continuous CSP equation. Moreover, the integrable semi-discretization of the CSP equation is used as a self-adaptive moving mesh method for numerical simulations. The numerical results agree with the analytical results very well. (paper)

  12. Integration Processes of Delay Differential Equation Based on Modified Laguerre Functions

    Directory of Open Access Journals (Sweden)

    Yeguo Sun

    2012-01-01

    Full Text Available We propose long-time convergent numerical integration processes for delay differential equations. We first construct an integration process based on modified Laguerre functions. Then we establish its global convergence in certain weighted Sobolev space. The proposed numerical integration processes can also be used for systems of delay differential equations. We also developed a technique for refinement of modified Laguerre-Radau interpolations. Lastly, numerical results demonstrate the spectral accuracy of the proposed method and coincide well with analysis.

  13. Constructing New Discrete Integrable Coupling System for Soliton Equation by Kronecker Product

    International Nuclear Information System (INIS)

    Yu Fajun; Zhang Hongqing

    2008-01-01

    It is shown that the Kronecker product can be applied to constructing new discrete integrable coupling system of soliton equation hierarchy in this paper. A direct application to the fractional cubic Volterra lattice spectral problem leads to a novel integrable coupling system of soliton equation hierarchy. It is also indicated that the study of discrete integrable couplings by using the Kronecker product is an efficient and straightforward method. This method can be used generally

  14. Integral equations for free-molecule ow in MEMS: recent advancements

    Directory of Open Access Journals (Sweden)

    Fedeli Patrick

    2017-03-01

    Full Text Available We address a Boundary Integral Equation (BIE approach for the analysis of gas dissipation in near-vacuum for Micro Electro Mechanical Systems (MEMS. Inspired by an analogy with the radiosity equation in computer graphics, we discuss an efficient way to compute the visible domain of integration. Moreover, we tackle the issue of near singular integrals by developing a set of analytical formulas for planar polyhedral domains. Finally a validation with experimental results taken from the literature is presented.

  15. Bifurcations of traveling wave solutions for an integrable equation

    International Nuclear Information System (INIS)

    Li Jibin; Qiao Zhijun

    2010-01-01

    This paper deals with the following equation m t =(1/2)(1/m k ) xxx -(1/2)(1/m k ) x , which is proposed by Z. J. Qiao [J. Math. Phys. 48, 082701 (2007)] and Qiao and Liu [Chaos, Solitons Fractals 41, 587 (2009)]. By adopting the phase analysis method of planar dynamical systems and the theory of the singular traveling wave systems to the traveling wave solutions of the equation, it is shown that for different k, the equation may have infinitely many solitary wave solutions, periodic wave solutions, kink/antikink wave solutions, cusped solitary wave solutions, and breaking loop solutions. We discuss in a detail the cases of k=-2,-(1/2),(1/2),2, and parametric representations of all possible bounded traveling wave solutions are given in the different (c,g)-parameter regions.

  16. Numerical integration of the Langevin equation: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ermak, D.L.; Buckholz, H.

    1980-01-01

    Monte Carlo simulation techniques are derived for solving the ordinary Langevin equation of motion for a Brownian particle in the presence of an external force. These methods allow considerable freedom in selecting the size of the time step, which is restricted only by the rate of change in the external force. This approach is extended to the generalized Langevin equation which uses a memory function in the friction force term. General simulation techniques are derived which are independent of the form of the memory function. A special method requiring less storage space is presented for the case of the exponential memory function

  17. Iterative Solutions of Nonlinear Integral Equations of Hammerstein Type

    Directory of Open Access Journals (Sweden)

    Abebe R. Tufa

    2015-11-01

    Full Text Available Let H be a real Hilbert space. Let F,K : H → H be Lipschitz monotone mappings with Lipschtiz constants L1and L2, respectively. Suppose that the Hammerstein type equation u + KFu = 0 has a solution in H. It is our purpose in this paper to construct a new explicit iterative sequence and prove strong convergence of the sequence to a solution of the generalized Hammerstein type equation. The results obtained in this paper improve and extend known results in the literature.

  18. Integrability and structural stability of solutions to the Ginzburg-Landau equation

    Science.gov (United States)

    Keefe, Laurence R.

    1986-01-01

    The integrability of the Ginzburg-Landau equation is studied to investigate if the existence of chaotic solutions found numerically could have been predicted a priori. The equation is shown not to possess the Painleveproperty, except for a special case of the coefficients that corresponds to the integrable, nonlinear Schroedinger (NLS) equation. Regarding the Ginzburg-Landau equation as a dissipative perturbation of the NLS, numerical experiments show all but one of a family of two-tori solutions, possessed by the NLS under particular conditions, to disappear under real perturbations to the NLS coefficients of O(10 to the -6th).

  19. Integral equations of the first kind, inverse problems and regularization: a crash course

    International Nuclear Information System (INIS)

    Groetsch, C W

    2007-01-01

    This paper is an expository survey of the basic theory of regularization for Fredholm integral equations of the first kind and related background material on inverse problems. We begin with an historical introduction to the field of integral equations of the first kind, with special emphasis on model inverse problems that lead to such equations. The basic theory of linear Fredholm equations of the first kind, paying particular attention to E. Schmidt's singular function analysis, Picard's existence criterion, and the Moore-Penrose theory of generalized inverses is outlined. The fundamentals of the theory of Tikhonov regularization are then treated and a collection of exercises and a bibliography are provided

  20. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  1. An Integrable Discrete Generalized Nonlinear Schrödinger Equation and Its Reductions

    International Nuclear Information System (INIS)

    Li Hong-Min; Li Yu-Qi; Chen Yong

    2014-01-01

    An integrable discrete system obtained by the algebraization of the difference operator is studied. The system is named discrete generalized nonlinear Schrödinger (GNLS) equation, which can be reduced to classical discrete nonlinear Schrödinger (NLS) equation. Furthermore, all of the linear reductions for the discrete GNLS equation are given through the theory of circulant matrices and the discrete NLS equation is obtained by one of the reductions. At the same time, the recursion operator and symmetries of continuous GNLS equation are successfully recovered by its corresponding discrete ones. (general)

  2. On the integrability of the generalized Fisher-type nonlinear diffusion equations

    International Nuclear Information System (INIS)

    Wang Dengshan; Zhang Zhifei

    2009-01-01

    In this paper, the geometric integrability and Lax integrability of the generalized Fisher-type nonlinear diffusion equations with modified diffusion in (1+1) and (2+1) dimensions are studied by the pseudo-spherical surface geometry method and prolongation technique. It is shown that the (1+1)-dimensional Fisher-type nonlinear diffusion equation is geometrically integrable in the sense of describing a pseudo-spherical surface of constant curvature -1 only for m = 2, and the generalized Fisher-type nonlinear diffusion equations in (1+1) and (2+1) dimensions are Lax integrable only for m = 2. This paper extends the results in Bindu et al 2001 (J. Phys. A: Math. Gen. 34 L689) and further provides the integrability information of (1+1)- and (2+1)-dimensional Fisher-type nonlinear diffusion equations for m = 2

  3. Oscillatory integrals on Hilbert spaces and Schroedinger equation with magnetic fields

    International Nuclear Information System (INIS)

    Albeverio, S.; Brzezniak, Z.

    1994-01-01

    We extend the theory of oscillatory integrals on Hilbert spaces (the mathematical version of ''Feynman path integrals'') to cover more general integrable functions, preserving the property of the integrals to have converging finite dimensional approximations. We give an application to the representation of solutions of the time dependent Schroedinger equation with a scalar and a magnetic potential by oscillatory integrals on Hilbert spaces. A relation with Ramer's functional in the corresponding probabilistic setting is found. (orig.)

  4. Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition

    Directory of Open Access Journals (Sweden)

    Malinowski Marek T.

    2015-01-01

    Full Text Available We analyze the set-valued stochastic integral equations driven by continuous semimartingales and prove the existence and uniqueness of solutions to such equations in the framework of the hyperspace of nonempty, bounded, convex and closed subsets of the Hilbert space L2 (consisting of square integrable random vectors. The coefficients of the equations are assumed to satisfy the Osgood type condition that is a generalization of the Lipschitz condition. Continuous dependence of solutions with respect to data of the equation is also presented. We consider equations driven by semimartingale Z and equations driven by processes A;M from decomposition of Z, where A is a process of finite variation and M is a local martingale. These equations are not equivalent. Finally, we show that the analysis of the set-valued stochastic integral equations can be extended to a case of fuzzy stochastic integral equations driven by semimartingales under Osgood type condition. To obtain our results we use the set-valued and fuzzy Maruyama type approximations and Bihari’s inequality.

  5. The Origin and Constitution of Facilities Management as an integrated corporate fuction

    DEFF Research Database (Denmark)

    Jensen, Per Anker

    2008-01-01

    Purpose – To understand how facilities management (FM) has evolved over time in a complex public corporation from internal functions of building operation and building client and the related service functions to become an integrated corporate function. Design/methodology/approach – The paper...... is based on results from a research project on space strategies and building values, which included a major longitudinal case study of the development of facilities for the Danish Broadcasting Corporation (DR) over time. The research presented here included literature studies, archive studies...... and a fully integrated corporate Facilities Management function are established. Research limitations/implications – The paper presents empirical evidence of the historical development ofFMfrom one case and provides a deeper understanding of the integration processes that are crucial to FM and which can...

  6. Existence Results for Some Nonlinear Functional-Integral Equations in Banach Algebra with Applications

    Directory of Open Access Journals (Sweden)

    Lakshmi Narayan Mishra

    2016-04-01

    Full Text Available In the present manuscript, we prove some results concerning the existence of solutions for some nonlinear functional-integral equations which contains various integral and functional equations that considered in nonlinear analysis and its applications. By utilizing the techniques of noncompactness measures, we operate the fixed point theorems such as Darbo's theorem in Banach algebra concerning the estimate on the solutions. The results obtained in this paper extend and improve essentially some known results in the recent literature. We also provide an example of nonlinear functional-integral equation to show the ability of our main result.

  7. Path integral solution of linear second order partial differential equations I: the general construction

    International Nuclear Information System (INIS)

    LaChapelle, J.

    2004-01-01

    A path integral is presented that solves a general class of linear second order partial differential equations with Dirichlet/Neumann boundary conditions. Elementary kernels are constructed for both Dirichlet and Neumann boundary conditions. The general solution can be specialized to solve elliptic, parabolic, and hyperbolic partial differential equations with boundary conditions. This extends the well-known path integral solution of the Schroedinger/diffusion equation in unbounded space. The construction is based on a framework for functional integration introduced by Cartier/DeWitt-Morette

  8. Solving Abel’s Type Integral Equation with Mikusinski’s Operator of Fractional Order

    Directory of Open Access Journals (Sweden)

    Ming Li

    2013-01-01

    Full Text Available This paper gives a novel explanation of the integral equation of Abel’s type from the point of view of Mikusinski’s operational calculus. The concept of the inverse of Mikusinski’s operator of fractional order is introduced for constructing a representation of the solution to the integral equation of Abel’s type. The proof of the existence of the inverse of the fractional Mikusinski operator is presented, providing an alternative method of treating the integral equation of Abel’s type.

  9. Integration of the three-dimensional Vlasov equation for a magnetized plasma

    International Nuclear Information System (INIS)

    Cheng, C.Z.

    1976-04-01

    A second order splitting scheme is developed to integrate the three dimensional Vlasov equation for a plasma in a magnetic field. The integration of the Vlasov equation is divided into a series of intermediate steps and Fourier interpolation and the ASD method with a third order Taylor expansion are used to integrate the fractional equations. Numerical experiments related to cyclotron waves in 2 and 2 1 / 2 D are demonstrated with high accuracy and efficiency. The computer storage requirements are modest; for example, a typical 2D nonlinear electron plasma simulation requires only 4000 ''particles.''

  10. Fibonacci-regularization method for solving Cauchy integral equations of the first kind

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Fariborzi Araghi

    2017-09-01

    Full Text Available In this paper, a novel scheme is proposed to solve the first kind Cauchy integral equation over a finite interval. For this purpose, the regularization method is considered. Then, the collocation method with Fibonacci base function is applied to solve the obtained second kind singular integral equation. Also, the error estimate of the proposed scheme is discussed. Finally, some sample Cauchy integral equations stem from the theory of airfoils in fluid mechanics are presented and solved to illustrate the importance and applicability of the given algorithm. The tables in the examples show the efficiency of the method.

  11. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2011-01-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a

  12. Modelling of fluid flow in fractured porous media by the singular integral equations method

    International Nuclear Information System (INIS)

    Vu, M.N.

    2012-01-01

    This thesis aims to develop a method for numerical modelling of fluid flow through fractured porous media and for determination of their effective permeability by taking advantage of recent results based on formulation of the problem by Singular Integral Equations. In parallel, it was also an occasion to continue on the theoretical development and to obtain new results in this area. The governing equations for flow in such materials are reviewed first and mass conservation at the fracture intersections is expressed explicitly. Using the theory of potential, the general potential solutions are proposed in the form of a singular integral equation that describes the steady-state flow in and around several fractures embedded in an infinite porous matrix under a far-field pressure condition. These solutions represent the pressure field in the whole body as functions of the infiltration in the fractures, which fully take into account the fracture interaction and intersections. Closed-form solutions for the fundamental problem of fluid flow around a single fracture are derived, which are considered as the benchmark problems to validate the numerical solutions. In particular, the solution obtained for the case of an elliptical disc-shaped crack obeying to the Poiseuille law has been compared to that obtained for ellipsoidal inclusions with Darcy law.The numerical programs have been developed based on the singular integral equations method to resolve the general potential equations. These allow modeling the fluid flow through a porous medium containing a great number of fractures. Besides, this formulation of the problem also allows obtaining a semi-analytical infiltration solution over a single fracture depending on the matrice permeability, the fracture conductivity and the fracture geometry. This result is the important key to up-scaling the effective permeability of a fractured porous medium by using different homogenisation schemes. The results obtained by the self

  13. Integrability of N=3 super Yang-Mills equations

    International Nuclear Information System (INIS)

    Devchand, C.; Ogievetsky, V.

    1993-10-01

    We describe the harmonic superspace formulation of the Witten-Manin supertwistor correspondence for N=3 extended super Yang-Mills theories. The essence in that on being sufficiently supersymmetrised (up to the N=3 extension), the Yang-Mills equations of motion can be recast in the form of Cauchy-Riemann-like holomorphicity conditions for a pair of prepotentials in the appropriate harmonic superspace. This formulation makes the explicit construction of solutions a rather more tractable proposition than previous attempts. (orig.)

  14. Solution of the Helmholtz-Poincare Wave Equation using the coupled boundary integral equations and optimal surface eigenfunctions

    International Nuclear Information System (INIS)

    Werby, M.F.; Broadhead, M.K.; Strayer, M.R.; Bottcher, C.

    1992-01-01

    The Helmholtz-Poincarf Wave Equation (H-PWE) arises in many areas of classical wave scattering theory. In particular it can be found for the cases of acoustical scattering from submerged bounded objects and electromagnetic scattering from objects. The extended boundary integral equations (EBIE) method is derived from considering both the exterior and interior solutions of the H-PWECs. This coupled set of expressions has the advantage of not only offering a prescription for obtaining a solution for the exterior scattering problem, but it also obviates the problem of irregular values corresponding to fictitious interior eigenvalues. Once the coupled equations are derived, they can be obtained in matrix form by expanding all relevant terms in partial wave expansions, including a bi-orthogonal expansion of the Green's function. However some freedom in the choice of the surface expansion is available since the unknown surface quantities may be expanded in a variety of ways so long as closure is obtained. Out of many possible choices, we develop an optimal method to obtain such expansions which is based on the optimum eigenfunctions related to the surface of the object. In effect, we convert part of the problem (that associated with the Fredholms integral equation of the first kind) an eigenvalue problem of a related Hermitian operator. The methodology will be explained in detail and examples will be presented

  15. On an integrable deformed affinsphären equation. A reciprocal gasdynamic connection

    International Nuclear Information System (INIS)

    Rogers, C.; Huang, Yehui

    2012-01-01

    The integrable affinsphären equation originally arose in a geometric context but has an interesting gasdynamic connection. Here, an integrable deformed version of the affinsphären equation is derived in a novel manner via the action of reciprocal transformations on a related anisentropic gasdynamics system. A linear representation for the deformed affinsphären equation is constructed by means of the reciprocal transformations. The latter are then employed to derive a class of exact solutions in parametric form. -- Highlights: ► A deformed affinsphären equation is derived via a reciprocal transformation. ► A linear representation for the deformed affinsphären equation is constructed. ► A class of exact solutions of the deformed affinsphären equation is presented.

  16. Low-frequency scaling of the standard and mixed magnetic field and Müller integral equations

    KAUST Repository

    Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2014-01-01

    The standard and mixed discretizations for the magnetic field integral equation (MFIE) and the Müller integral equation (MUIE) are investigated in the context of low-frequency (LF) scattering problems involving simply connected scatterers

  17. A calderón multiplicative preconditioner for the combined field integral equation

    KAUST Repository

    Bagci, Hakan

    2009-10-01

    A Calderón multiplicative preconditioner (CMP) for the combined field integral equation (CFIE) is developed. Just like with previously proposed Caldern-preconditioned CFIEs, a localization procedure is employed to ensure that the equation is resonance-free. The iterative solution of the linear system of equations obtained via the CMP-based discretization of the CFIE converges rapidly regardless of the discretization density and the frequency of excitation. © 2009 IEEE.

  18. Integrable discretizations for the short-wave model of the Camassa-Holm equation

    International Nuclear Information System (INIS)

    Feng Baofeng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2010-01-01

    The link between the short-wave model of the Camassa-Holm equation (SCHE) and bilinear equations of the two-dimensional Toda lattice equation is clarified. The parametric form of the N-cuspon solution of the SCHE in Casorati determinant is then given. Based on the above finding, integrable semi-discrete and full-discrete analogues of the SCHE are constructed. The determinant solutions of both semi-discrete and fully discrete analogues of the SCHE are also presented.

  19. Integral transform method for solving time fractional systems and fractional heat equation

    Directory of Open Access Journals (Sweden)

    Arman Aghili

    2014-01-01

    Full Text Available In the present paper, time fractional partial differential equation is considered, where the fractional derivative is defined in the Caputo sense. Laplace transform method has been applied to obtain an exact solution. The authors solved certain homogeneous and nonhomogeneous time fractional heat equations using integral transform. Transform method is a powerful tool for solving fractional singular Integro - differential equations and PDEs. The result reveals that the transform method is very convenient and effective.

  20. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Eden, Burkhard [Institut für Mathematik und Physik, Humboldt-Universität zu Berlin,Zum großen Windkanal 6, 12489 Berlin (Germany); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University,119992 Moscow (Russian Federation)

    2016-10-21

    We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.

  1. Evaluating four-loop conformal Feynman integrals by D-dimensional differential equations

    Science.gov (United States)

    Eden, Burkhard; Smirnov, Vladimir A.

    2016-10-01

    We evaluate a four-loop conformal integral, i.e. an integral over four four-dimensional coordinates, by turning to its dimensionally regularized version and applying differential equations for the set of the corresponding 213 master integrals. To solve these linear differential equations we follow the strategy suggested by Henn and switch to a uniformly transcendental basis of master integrals. We find a solution to these equations up to weight eight in terms of multiple polylogarithms. Further, we present an analytical result for the given four-loop conformal integral considered in four-dimensional space-time in terms of single-valued harmonic polylogarithms. As a by-product, we obtain analytical results for all the other 212 master integrals within dimensional regularization, i.e. considered in D dimensions.

  2. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-01-01

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge

  3. A predictor-corrector scheme for solving the Volterra integral equation

    KAUST Repository

    Al Jarro, Ahmed; Bagci, Hakan

    2011-01-01

    The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been

  4. On the mixed discretization of the time domain magnetic field integral equation

    KAUST Repository

    Ulku, Huseyin Arda; Bogaert, Ignace; Cools, Kristof; Andriulli, Francesco P.; Bagci, Hakan

    2012-01-01

    Time domain magnetic field integral equation (MFIE) is discretized using divergence-conforming Rao-Wilton-Glisson (RWG) and curl-conforming Buffa-Christiansen (BC) functions as spatial basis and testing functions, respectively. The resulting mixed

  5. Consistency of direct integral estimator for partially observed systems of ordinary differential equations

    NARCIS (Netherlands)

    Vujačić, Ivan; Dattner, Itai

    In this paper we use the sieve framework to prove consistency of the ‘direct integral estimator’ of parameters for partially observed systems of ordinary differential equations, which are commonly used for modeling dynamic processes.

  6. A new integral method for solving the point reactor neutron kinetics equations

    International Nuclear Information System (INIS)

    Li Haofeng; Chen Wenzhen; Luo Lei; Zhu Qian

    2009-01-01

    A numerical integral method that efficiently provides the solution of the point kinetics equations by using the better basis function (BBF) for the approximation of the neutron density in one time step integrations is described and investigated. The approach is based on an exact analytic integration of the neutron density equation, where the stiffness of the equations is overcome by the fully implicit formulation. The procedure is tested by using a variety of reactivity functions, including step reactivity insertion, ramp input and oscillatory reactivity changes. The solution of the better basis function method is compared to other analytical and numerical solutions of the point reactor kinetics equations. The results show that selecting a better basis function can improve the efficiency and accuracy of this integral method. The better basis function method can be used in real time forecasting for power reactors in order to prevent reactivity accidents.

  7. Numerical solution of integral equations, describing mass spectrum of vector mesons

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Nikonov, E.G.; Sidorov, A.V.; Skachkov, N.B.; Khoromskij, B.N.

    1988-01-01

    The description of the numerical algorithm for solving quasipotential integral equation in impulse space is presented. The results of numerical computations of the vector meson mass spectrum and the leptonic decay width are given in comparison with the experimental data

  8. Time-domain single-source integral equations for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdé s, Felipe; Andriulli, Francesco P.; Bagci, Hakan; Michielssen, Eric

    2013-01-01

    Single-source time-domain electric-and magnetic-field integral equations for analyzing scattering from homogeneous penetrable objects are presented. Their temporal discretization is effected by using shifted piecewise polynomial temporal basis

  9. Numerical Study of Two-Dimensional Volterra Integral Equations by RDTM and Comparison with DTM

    Directory of Open Access Journals (Sweden)

    Reza Abazari

    2013-01-01

    Full Text Available The two-dimensional Volterra integral equations are solved using more recent semianalytic method, the reduced differential transform method (the so-called RDTM, and compared with the differential transform method (DTM. The concepts of DTM and RDTM are briefly explained, and their application to the two-dimensional Volterra integral equations is studied. The results obtained by DTM and RDTM together are compared with exact solution. As an important result, it is depicted that the RDTM results are more accurate in comparison with those obtained by DTM applied to the same Volterra integral equations. The numerical results reveal that the RDTM is very effective, convenient, and quite accurate compared to the other kind of nonlinear integral equations. It is predicted that the RDTM can be found widely applicable in engineering sciences.

  10. On an integral equation arising in the transport of radiation through a slab involving internal reflection

    International Nuclear Information System (INIS)

    Williams, M.M.R.

    2005-01-01

    The integral equation derived by Nieuwenhuizen and Luck for transmission of radiation through an optically thick diffusive medium is reconsidered in the light of radiative transfer theory and extended to slabs of arbitrary thickness. (author)

  11. Combined Helmholtz Integral Equation - Fourier series formulation of acoustical radiation and scattering problems

    CSIR Research Space (South Africa)

    Fedotov, I

    2006-07-01

    Full Text Available The Combined Helmholtz Integral Equation – Fourier series Formulation (CHIEFF) is based on representation of a velocity potential in terms of Fourier series and finding the Fourier coefficients of this expansion. The solution could be substantially...

  12. Some applications of perturbation theory to numerical integration methods for the Schroedinger equation

    International Nuclear Information System (INIS)

    Killingbeck, J.

    1979-01-01

    By using the methods of perturbation theory it is possible to construct simple formulae for the numerical integration of the Schroedinger equation, and also to calculate expectation values solely by means of simple eigenvalue calculations. (Auth.)

  13. Integration of the time-dependent heat equation in the fuel rod performance program IAMBUS

    International Nuclear Information System (INIS)

    West, G.

    1982-01-01

    An iterative numerical method for integration of the time-dependent heat equation is described. No presuppositions are made for the dependency of the thermal conductivity and heat capacity on space, time and temperature. (orig.) [de

  14. Stability and square integrability of solutions of nonlinear fourth order differential equations

    Directory of Open Access Journals (Sweden)

    Moussadek Remili

    2016-05-01

    Full Text Available The aim of the present paper is to establish a new result, which guarantees the asymptotic stability of zero solution and square integrability of solutions and their derivatives to nonlinear differential equations of fourth order.

  15. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes; Bagci, Hakan; Ergin, A. Arif; Ulku, H. Arda

    2017-01-01

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced

  16. The Volterra's integral equation theory for accelerator single-freedom nonlinear components

    International Nuclear Information System (INIS)

    Wang Sheng; Xie Xi

    1996-01-01

    The Volterra's integral equation equivalent to the dynamic equation of accelerator single-freedom nonlinear components is given, starting from which the transport operator of accelerator single-freedom nonlinear components and its inverse transport operator are obtained. Therefore, another algorithm for the expert system of the beam transport operator of accelerator single-freedom nonlinear components is developed

  17. RBSDE's with jumps and the related obstacle problems for integral-partial differential equations

    Institute of Scientific and Technical Information of China (English)

    FAN; Yulian

    2006-01-01

    The author proves, when the noise is driven by a Brownian motion and an independent Poisson random measure, the one-dimensional reflected backward stochastic differential equation with a stopping time terminal has a unique solution. And in a Markovian framework, the solution can provide a probabilistic interpretation for the obstacle problem for the integral-partial differential equation.

  18. Integrable motion of curves in self-consistent potentials: Relation to spin systems and soliton equations

    Energy Technology Data Exchange (ETDEWEB)

    Myrzakulov, R.; Mamyrbekova, G.K.; Nugmanova, G.N.; Yesmakhanova, K.R. [Eurasian International Center for Theoretical Physics and Department of General and Theoretical Physics, Eurasian National University, Astana 010008 (Kazakhstan); Lakshmanan, M., E-mail: lakshman@cnld.bdu.ac.in [Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli 620 024 (India)

    2014-06-13

    Motion of curves and surfaces in R{sup 3} lead to nonlinear evolution equations which are often integrable. They are also intimately connected to the dynamics of spin chains in the continuum limit and integrable soliton systems through geometric and gauge symmetric connections/equivalence. Here we point out the fact that a more general situation in which the curves evolve in the presence of additional self-consistent vector potentials can lead to interesting generalized spin systems with self-consistent potentials or soliton equations with self-consistent potentials. We obtain the general form of the evolution equations of underlying curves and report specific examples of generalized spin chains and soliton equations. These include principal chiral model and various Myrzakulov spin equations in (1+1) dimensions and their geometrically equivalent generalized nonlinear Schrödinger (NLS) family of equations, including Hirota–Maxwell–Bloch equations, all in the presence of self-consistent potential fields. The associated gauge equivalent Lax pairs are also presented to confirm their integrability. - Highlights: • Geometry of continuum spin chain with self-consistent potentials explored. • Mapping on moving space curves in R{sup 3} in the presence of potential fields carried out. • Equivalent generalized nonlinear Schrödinger (NLS) family of equations identified. • Integrability of identified nonlinear systems proved by deducing appropriate Lax pairs.

  19. Integrable Hierarchy of the Quantum Benjamin-Ono Equation

    Directory of Open Access Journals (Sweden)

    Maxim Nazarov

    2013-12-01

    Full Text Available A hierarchy of pairwise commuting Hamiltonians for the quantum periodic Benjamin-Ono equation is constructed by using the Lax matrix. The eigenvectors of these Hamiltonians are Jack symmetric functions of infinitely many variables x_1,x_2,…. This construction provides explicit expressions for the Hamiltonians in terms of the power sum symmetric functions p_n=x^n_1+x^n_2+⋯ and is based on our recent results from [Comm. Math. Phys. 324 (2013, 831-849].

  20. Optimal Homotopy Asymptotic Method for Solving the Linear Fredholm Integral Equations of the First Kind

    Directory of Open Access Journals (Sweden)

    Mohammad Almousa

    2013-01-01

    Full Text Available The aim of this study is to present the use of a semi analytical method called the optimal homotopy asymptotic method (OHAM for solving the linear Fredholm integral equations of the first kind. Three examples are discussed to show the ability of the method to solve the linear Fredholm integral equations of the first kind. The results indicated that the method is very effective and simple.

  1. The ATOMFT integrator - Using Taylor series to solve ordinary differential equations

    Science.gov (United States)

    Berryman, Kenneth W.; Stanford, Richard H.; Breckheimer, Peter J.

    1988-01-01

    This paper discusses the application of ATOMFT, an integration package based on Taylor series solution with a sophisticated user interface. ATOMFT has the capabilities to allow the implementation of user defined functions and the solution of stiff and algebraic equations. Detailed examples, including the solutions to several astrodynamics problems, are presented. Comparisons with its predecessor ATOMCC and other modern integrators indicate that ATOMFT is a fast, accurate, and easy method to use to solve many differential equation problems.

  2. The multidensity integral equation approach in the theory of complex liquids

    International Nuclear Information System (INIS)

    Holovko, M.F.

    2001-01-01

    Recent development of the multi-density integral equation approach and its application to the statistical mechanical modelling of a different type of association and clusterization in liquids and solutions are reviewed. The effects of dimerization, polymerization and network formation are discussed. The numerical and analytical solutions of the integral equations in the multi-density formalism for pair correlation functions are used for the description of structural and thermodynamical properties of ionic solutions, polymers and network forming fluids

  3. Electromagnetic wave propagation over an inhomogeneous flat earth (two-dimensional integral equation formulation)

    International Nuclear Information System (INIS)

    de Jong, G.

    1975-01-01

    With the aid of a two-dimensional integral equation formulation, the ground wave propagation of electromagnetic waves transmitted by a vertical electric dipole over an inhomogeneous flat earth is investigated. For the configuration in which a ground wave is propagating across an ''island'' on a flat earth, the modulus and argument of the attenuation function have been computed. The results for the two-dimensional treatment are significantly more accurate in detail than the calculations using a one-dimensional integral equation

  4. A review of some basic aspects related to integration of airplane’s equations of motion

    Directory of Open Access Journals (Sweden)

    Dan TURCANU

    2017-09-01

    Full Text Available Numerical integration of the airplane’s equations of motion has long been considered among the most fundamental calculations in airplane’s analysis. Numerical algorithms have been implemented and experimentally validated. However, the need for superior speed and accuracy is still very topical, as, nowadays, various optimization algorithms rely heavily on data generated from the integration of the equations of motion and having access to larger amounts of data can increase the quality of the optimization. Now, for a number of decades, engineers have relied heavily on commercial codes based on automatically selected integration steps. However, optimally chosen constant integration steps can save time and allows for larger numbers of integrations to be performed. Yet, the basic papers that presented the fundamentals of numerical integration, as applied to airplane’s equations of motion are nowadays not easy to locate. Consequently, this paper presents a review of basic aspects related to the integration of airplane’s equation of motion. The discussion covers fundamentals of longitudinal and lateral-directional motion as well as the implementation of some numerical integration methods. The relation between numerical integration steps, accuracy, computational resource usage, numerical stability and their relation with the parameters describing the dynamic response of the airplane is considered and suggestions are presented for a faster yet accurate numerical integration.

  5. Mixed, Nonsplit, Extended Stability, Stiff Integration of Reaction Diffusion Equations

    KAUST Repository

    Alzahrani, Hasnaa H.

    2016-07-26

    A tailored integration scheme is developed to treat stiff reaction-diffusion prob- lems. The construction adapts a stiff solver, namely VODE, to treat reaction im- plicitly together with explicit treatment of diffusion. The second-order Runge-Kutta- Chebyshev (RKC) scheme is adjusted to integrate diffusion. Spatial operator is de- scretised by second-order finite differences on a uniform grid. The overall solution is advanced over S fractional stiff integrations, where S corresponds to the number of RKC stages. The behavior of the scheme is analyzed by applying it to three simple problems. The results show that it achieves second-order accuracy, thus, preserving the formal accuracy of the original RKC. The presented development sets the stage for future extensions, particularly, to multidimensional reacting flows with detailed chemistry.

  6. Integral geometry and inverse problems for hyperbolic equations

    CERN Document Server

    Romanov, V G

    1974-01-01

    There are currently many practical situations in which one wishes to determine the coefficients in an ordinary or partial differential equation from known functionals of its solution. These are often called "inverse problems of mathematical physics" and may be contrasted with problems in which an equation is given and one looks for its solution under initial and boundary conditions. Although inverse problems are often ill-posed in the classical sense, their practical importance is such that they may be considered among the pressing problems of current mathematical re­ search. A. N. Tihonov showed [82], [83] that there is a broad class of inverse problems for which a particular non-classical definition of well-posed ness is appropriate. This new definition requires that a solution be unique in a class of solutions belonging to a given subset M of a function space. The existence of a solution in this set is assumed a priori for some set of data. The classical requirement of continuous dependence of the solutio...

  7. Numerical Integration of the Vlasov Equation of Two Colliding Beams

    CERN Document Server

    Zorzano-Mier, M P

    2000-01-01

    In a circular collider the motion of particles of one beam is strongly perturbed at the interaction points by the electro-magnetic field associated with the counter-rotating beam. For any two arbitrary initial particle distributions the time evolution of the two beams can be known by solving the coupled system of two Vlasov equations. This collective description is mandatory when the two beams have similar strengths, as in the case of LEP or LHC. The coherent modes excited by this beam-beam interaction can be a strong limitation for the operation of LHC. In this work, the coupled Vlasov equations of two colliding flat beams are solved numerically using a finite difference scheme. The results suggest that, for the collision of beams with equal tunes, the tune shift between the $\\sigma$- and $\\pi$- coherent dipole mode depends on the unperturbed tune $q$ because of the deformation that the so-called dynamic beta effect induces on the beam distribution. Only when the unperturbed tune $q\\rightarrow 0.25$ this tun...

  8. Continuous limits for an integrable coupling system of Toda equation hierarchy

    International Nuclear Information System (INIS)

    Li Li; Yu Fajun

    2009-01-01

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  9. The ε-form of the differential equations for Feynman integrals in the elliptic case

    Science.gov (United States)

    Adams, Luise; Weinzierl, Stefan

    2018-06-01

    Feynman integrals are easily solved if their system of differential equations is in ε-form. In this letter we show by the explicit example of the kite integral family that an ε-form can even be achieved, if the Feynman integrals do not evaluate to multiple polylogarithms. The ε-form is obtained by a (non-algebraic) change of basis for the master integrals.

  10. Continuous limits for an integrable coupling system of Toda equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Li Li [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China); Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-09-21

    In this Letter, we present an integrable coupling system of lattice hierarchy and its continuous limits by using of Lie algebra sl(4). By introducing a complex discrete spectral problem, the integrable coupling system of Toda lattice hierarchy is derived. It is shown that a new complex lattice spectral problem converges to the integrable couplings of discrete soliton equation hierarchy, which has the integrable coupling system of C-KdV hierarchy as a new kind of continuous limit.

  11. Scattering integral equations and four nucleon problem. Four nucleon bound states and scattering

    International Nuclear Information System (INIS)

    Narodetskij, I.M.

    1981-01-01

    Existing results from the application of integral equation technique four-nucleon bound states and scattering are reviewed. The purpose of this review is to provide a clear and elementary introduction in the integral equation method and to demonstrate its usefulness in physical applications. Developments in the actual numerical solutions of Faddeev-Yakubovsky type equations are such that a detailed comparison can be made with experiment. Bound state calculations indicate that a nonrelativistic description with pairwise nuclear forces does not suffice and additional degrees of freedom are noted [ru

  12. A computational method for direct integration of motion equations of structural systems

    International Nuclear Information System (INIS)

    Brusa, L.; Ciacci, R.; Creco, A.; Rossi, F.

    1975-01-01

    The dynamic analysis of structural systems requires the solution of the matrix equations: Md 2 delta/dt(t) + Cddelta/dt(t) + Kdelta(t) = F(t). Many numerical methods are available for direct integration of this equation and their efficiency is due to the fulfillment of the following requirements: A reasonable order of accuracy must be obtained for the approximation of the response relevant to the first modes: the model contributions relevant to the eigenvalues with large real part must be essentially neglected. This paper presents a step-by-step numerical scheme for the integration of this equation which satisfies the requirements previously mentioned. (Auth.)

  13. Iterative solution for nonlinear integral equations of Hammerstein type

    International Nuclear Information System (INIS)

    Chidume, C.E.; Osilike, M.O.

    1990-12-01

    Let E be a real Banach space with a uniformly convex dual, E*. Suppose N is a nonlinear set-valued accretive map of E into itself with open domain D; K is a linear single-valued accretive map with domain D(K) in E such that Im(N) is contained in D(K); K -1 exists and satisfies -1 x-K -1 y,j(x-y)>≥β||x-y|| 2 for each x, y is an element of Im(K) and some constant β > 0, where j denotes the single-valued normalized duality map on E. Suppose also that for each h is an element Im(K) the equation h is an element x+KNx has a solution x* in D. An iteration method is constructed which converges strongly to x*. Explicit error estimates are also computed. (author). 25 refs

  14. Constituting fully integrated visual analysis system for Cu(II) on TiO₂/cellulose paper.

    Science.gov (United States)

    Li, Shun-Xing; Lin, Xiaofeng; Zheng, Feng-Ying; Liang, Wenjie; Zhong, Yanxue; Cai, Jiabai

    2014-07-15

    As a cheap and abundant porous material, cellulose filter paper was used to immobilize nano-TiO2 and denoted as TiO2/cellulose paper (TCP). With high adsorption capacity for Cu(II) (more than 1.65 mg), TCP was used as an adsorbent, photocatalyst, and colorimetric sensor at the same time. Under the optimum adsorption conditions, i.e., pH 6.5 and 25 °C, the adsorption ratio of Cu(II) was higher than 96.1%. Humic substances from the matrix could be enriched onto TCP but the interference of their colors on colorimetric detection could be eliminated by the photodegradation. In the presence of hydroxylamine, neocuproine, as a selective indicator, was added onto TCP, and a visual color change from white to orange was generated. The concentration of Cu(II) was quantified by the color intensity images using image processing software. This fully integrated visual analysis system was successfully applied for the detection of Cu(II) in 10.0 L of drinking water and seawater with a preconcentration factor of 10(4). The log-linear calibration curve for Cu(II) was in the range of 0.5-50.0 μg L(-1) with a determination coefficient (R(2)) of 0.985 and its detection limit was 0.073 μg L(-1).

  15. Universal and integrable nonlinear evolution systems of equations in 2+1 dimensions

    International Nuclear Information System (INIS)

    Maccari, A.

    1997-01-01

    Integrable systems of nonlinear partial differential equations (PDEs) are obtained from integrable equations in 2+1 dimensions, by means of a reduction method of broad applicability based on Fourier expansion and spatio endash temporal rescalings, which is asymptotically exact in the limit of weak nonlinearity. The integrability by the spectral transform is explicitly demonstrated, because the corresponding Lax pairs have been derived, applying the same reduction method to the Lax pair of the initial equation. These systems of nonlinear PDEs are likely to be of applicative relevance and have a open-quotes universalclose quotes character, inasmuch as they may be derived from a very large class of nonlinear evolution equations with a linear dispersive part. copyright 1997 American Institute of Physics

  16. On the maximal cut of Feynman integrals and the solution of their differential equations

    Directory of Open Access Journals (Sweden)

    Amedeo Primo

    2017-03-01

    Full Text Available The standard procedure for computing scalar multi-loop Feynman integrals consists in reducing them to a basis of so-called master integrals, derive differential equations in the external invariants satisfied by the latter and, finally, try to solve them as a Laurent series in ϵ=(4−d/2, where d are the space–time dimensions. The differential equations are, in general, coupled and can be solved using Euler's variation of constants, provided that a set of homogeneous solutions is known. Given an arbitrary differential equation of order higher than one, there exists no general method for finding its homogeneous solutions. In this paper we show that the maximal cut of the integrals under consideration provides one set of homogeneous solutions, simplifying substantially the solution of the differential equations.

  17. Non-integrability of time-dependent spherically symmetric Yang-Mills equations

    International Nuclear Information System (INIS)

    Matinyan, S.G.; Prokhorenko, E.V.; Savvidy, G.K.

    1986-01-01

    The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. The phase space of this system is shown to have no quasi-periodic motion specific for integrable systems. In particular, the well-known Wu-Yang static solution is unstable, so its vicinity in phase is the stochasticity region

  18. Numerical Treatment of Fixed Point Applied to the Nonlinear Fredholm Integral Equation

    Directory of Open Access Journals (Sweden)

    Berenguer MI

    2009-01-01

    Full Text Available The authors present a method of numerical approximation of the fixed point of an operator, specifically the integral one associated with a nonlinear Fredholm integral equation, that uses strongly the properties of a classical Schauder basis in the Banach space .

  19. Non-integrability of time-dependent spherically symmetric Yang-Mills equations

    Energy Technology Data Exchange (ETDEWEB)

    Matinyan, S G; Prokhorenko, E B; Savvidy, G K

    1988-03-07

    The integrability of time-dependent spherically symmetric Yang-Mills equations is studied using the Fermi-Pasta-Ulam method. It is shown that the motion of this system is ergodic, while the system itself is non-integrable, i.e. manifests dynamical chaos.

  20. Remark on the solution of the Schroedinger equation for anharmonic oscillators via the Feynman path integral

    International Nuclear Information System (INIS)

    Rezende, J.

    1983-01-01

    We give a simple proof of Feynman's formula for the Green's function of the n-dimensional harmonic oscillator valid for every time t with Im t<=0. As a consequence the Schroedinger equation for the anharmonic oscillator is integrated and expressed by the Feynman path integral on Hilbert space. (orig.)

  1. Soliton surfaces associated with generalized symmetries of integrable equations

    International Nuclear Information System (INIS)

    Grundland, A M; Post, S

    2011-01-01

    In this paper, based on the Fokas et al approach (Fokas and Gel'fand 1996 Commun. Math. Phys. 177 203-20; Fokas et al 2000 Sel. Math. 6 347-75), we provide a symmetry characterization of continuous deformations of soliton surfaces immersed in a Lie algebra using the formalism of generalized vector fields, their prolongation structure and links with the Frechet derivatives. We express the necessary and sufficient condition for the existence of such surfaces in terms of the invariance criterion for generalized symmetries and identify additional sufficient conditions which admit an explicit integration of the immersion functions of 2D surfaces in Lie algebras. We discuss in detail the su(N)-valued immersion functions generated by conformal symmetries of the CP N-1 sigma model defined on either the Minkowski or Euclidean space. We further show that the sufficient conditions for explicit integration of such immersion functions impose additional restrictions on the admissible conformal symmetries of the model defined on Minkowski space. On the other hand, the sufficient conditions are identically satisfied for arbitrary conformal symmetries of finite action solutions of the CP N-1 sigma model defined on Euclidean space.

  2. European Union’s integration issues after the rejection of the Constitutional Treaty. A Neo-Gramscian anaylsis (I

    Directory of Open Access Journals (Sweden)

    Anca Mădălina BONCILĂ

    2014-02-01

    Full Text Available Through this paper we have tried to question the reality of EU’ s integration and to identify the factors that shaped it. The complexity of this process led to multiple perspectives of analyzing it. We believe that Neo- Gramscian theory of European integration, although not so well-known, can be considered the most appropriate methodological support in explaining the events that have redefined the European integration: the rejection of the Constitutional Treaty, the financial crisis and the emergence of the Lisbon Treaty. We started from the assumption that the EU has obvious neo-liberal connotations, which led to the emergence of functional obstacles difficult to overcome, especially when it comes to the social dimension of the EU. Therefore, we divided the work into two basic parts, the first explains the methodology used, the main concepts, what neo-liberalism is and which are the EU’ s neo-liberal expressions and in the second part we focused on the social dimension of the EU, talking about the lack of substance that we found in the rhetoric of Fundamental Rights. Using the trade unions we have exemplified the inability of the EU to cope with social challenges, especially since there are forms of skepticism focused strictly on social discontent. The conclusions confirm that the Neo-Gramscian theory is the most suitable methodological support in an attempt to capture the nuances of EU’ s neo-liberal expressions.

  3. On randomized algorithms for numerical solution of applied Fredholm integral equations of the second kind

    Science.gov (United States)

    Voytishek, Anton V.; Shipilov, Nikolay M.

    2017-11-01

    In this paper, the systematization of numerical (implemented on a computer) randomized functional algorithms for approximation of a solution of Fredholm integral equation of the second kind is carried out. Wherein, three types of such algorithms are distinguished: the projection, the mesh and the projection-mesh methods. The possibilities for usage of these algorithms for solution of practically important problems is investigated in detail. The disadvantages of the mesh algorithms, related to the necessity of calculation values of the kernels of integral equations in fixed points, are identified. On practice, these kernels have integrated singularities, and calculation of their values is impossible. Thus, for applied problems, related to solving Fredholm integral equation of the second kind, it is expedient to use not mesh, but the projection and the projection-mesh randomized algorithms.

  4. Local linearization methods for the numerical integration of ordinary differential equations: An overview

    International Nuclear Information System (INIS)

    Jimenez, J.C.

    2009-06-01

    Local Linearization (LL) methods conform a class of one-step explicit integrators for ODEs derived from the following primary and common strategy: the vector field of the differential equation is locally (piecewise) approximated through a first-order Taylor expansion at each time step, thus obtaining successive linear equations that are explicitly integrated. Hereafter, the LL approach may include some additional strategies to improve that basic affine approximation. Theoretical and practical results have shown that the LL integrators have a number of convenient properties. These include arbitrary order of convergence, A-stability, linearization preserving, regularity under quite general conditions, preservation of the dynamics of the exact solution around hyperbolic equilibrium points and periodic orbits, integration of stiff and high-dimensional equations, low computational cost, and others. In this paper, a review of the LL methods and their properties is presented. (author)

  5. Integrability of the Gross-Pitaevskii equation with Feshbach resonance management

    International Nuclear Information System (INIS)

    Zhao Dun; Luo Honggang; Chai Huayue

    2008-01-01

    In this Letter we study the integrability of a class of Gross-Pitaevskii equations managed by Feshbach resonance in an expulsive parabolic external potential. By using WTC test, we find a condition under which the Gross-Pitaevskii equation is completely integrable. Under the present model, this integrability condition is completely consistent with that proposed by Serkin, Hasegawa, and Belyaeva [V.N. Serkin, A. Hasegawa, T.L. Belyaeva, Phys. Rev. Lett. 98 (2007) 074102]. Furthermore, this integrability can also be explicitly shown by a transformation, which can convert the Gross-Pitaevskii equation into the well-known standard nonlinear Schroedinger equation. By this transformation, each exact solution of the standard nonlinear Schroedinger equation can be converted into that of the Gross-Pitaevskii equation, which builds a systematical connection between the canonical solitons and the so-called nonautonomous ones. The finding of this transformation has a significant contribution to understanding the essential properties of the nonautonomous solitons and the dynamics of the Bose-Einstein condensates by using the Feshbach resonance technique

  6. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    Science.gov (United States)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  7. Numerical evaluation of path-integral solutions to Fokker-Planck equations. II. Restricted stochastic processes

    International Nuclear Information System (INIS)

    Wehner, M.F.

    1983-01-01

    A path-integral solution is derived for processes described by nonlinear Fokker-Plank equations together with externally imposed boundary conditions. This path-integral solution is written in the form of a path sum for small time steps and contains, in addition to the conventional volume integral, a surface integral which incorporates the boundary conditions. A previously developed numerical method, based on a histogram representation of the probability distribution, is extended to a trapezoidal representation. This improved numerical approach is combined with the present path-integral formalism for restricted processes and is show t give accurate results. 35 refs., 5 figs

  8. Retarded potentials and time domain boundary integral equations a road map

    CERN Document Server

    Sayas, Francisco-Javier

    2016-01-01

    This book offers a thorough and self-contained exposition of the mathematics of time-domain boundary integral equations associated to the wave equation, including applications to scattering of acoustic and elastic waves. The book offers two different approaches for the analysis of these integral equations, including a systematic treatment of their numerical discretization using Galerkin (Boundary Element) methods in the space variables and Convolution Quadrature in the time variable. The first approach follows classical work started in the late eighties, based on Laplace transforms estimates. This approach has been refined and made more accessible by tailoring the necessary mathematical tools, avoiding an excess of generality. A second approach contains a novel point of view that the author and some of his collaborators have been developing in recent years, using the semigroup theory of evolution equations to obtain improved results. The extension to electromagnetic waves is explained in one of the appendices...

  9. Splines and their reciprocal-bases in volume-integral equations

    International Nuclear Information System (INIS)

    Sabbagh, H.A.

    1993-01-01

    The authors briefly outline the use of higher-order splines and their reciprocal-bases in discretizing the volume-integral equations of electromagnetics. The discretization is carried out by means of the method of moments, in which the expansion functions are the higher-order splines, and the testing functions are the corresponding reciprocal-basis functions. These functions satisfy an orthogonality condition with respect to the spline expansion functions. Thus, the method is not Galerkin, but the structure of the resulting equations is quite regular, nevertheless. The theory is applied to the volume-integral equations for the unknown current density, or unknown electric field, within a scattering body, and to the equations for eddy-current nondestructive evaluation. Numerical techniques for computing the matrix elements are also given

  10. On a numereeical method for solving the Faddv integral equation without deformation of contour

    International Nuclear Information System (INIS)

    Belyaev, V.O.; Moller, K.

    1976-01-01

    A numerical method is proposed for solving the Faddeev equation for separable potentials at positive total energy. The method is based on the fact that after applying a simple interpolation procedure the logarithmic singularities in the kernel of the integral equation can be extracted in the same way as usually the pole singularity is extracted. The method has been applied to calculate the eigenvalues of the Faddeev kernel

  11. A novel hierarchy of differential—integral equations and their generalized bi-Hamiltonian structures

    International Nuclear Information System (INIS)

    Zhai Yun-Yun; Geng Xian-Guo; He Guo-Liang

    2014-01-01

    With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 × 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy

  12. Magnetostatic fields computed using an integral equation derived from Green's theorems

    International Nuclear Information System (INIS)

    Simkin, J.; Trowbridge, C.W.

    1976-04-01

    A method of computing magnetostatic fields is described that is based on a numerical solution of the integral equation obtained from Green's Theorems. The magnetic scalar potential and its normal derivative on the surfaces of volumes are found by solving a set of linear equations. These are obtained from Green's Second Theorem and the continuity conditions at interfaces between volumes. Results from a two-dimensional computer program are presented and these show the method to be accurate and efficient. (author)

  13. Exact Mathisson-Papapetrou equations in the Schwarzschild metric with integrals of motion

    International Nuclear Information System (INIS)

    Plyatsko, R.M.; Stefanishin, O.B.

    2011-01-01

    A new representation for exact Mathisson-Papapetrou equations under the Mathisson-Pirani condition in the Schwarzschild gravitational field, which does not contain third-order derivatives with respect to spinning particle coordinates, has been obtained. For this purpose, the integrals of energy and angular momentum of a spinning particle, as well as a differential relation following from the Mathisson-Papapetrou equations for an arbitrary metric, are used.

  14. ICM: an Integrated Compartment Method for numerically solving partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, G.T.

    1981-05-01

    An integrated compartment method (ICM) is proposed to construct a set of algebraic equations from a system of partial differential equations. The ICM combines the utility of integral formulation of finite element approach, the simplicity of interpolation of finite difference approximation, and the flexibility of compartment analyses. The integral formulation eases the treatment of boundary conditions, in particular, the Neumann-type boundary conditions. The simplicity of interpolation provides great economy in computation. The flexibility of discretization with irregular compartments of various shapes and sizes offers advantages in resolving complex boundaries enclosing compound regions of interest. The basic procedures of ICM are first to discretize the region of interest into compartments, then to apply three integral theorems of vectors to transform the volume integral to the surface integral, and finally to use interpolation to relate the interfacial values in terms of compartment values to close the system. The Navier-Stokes equations are used as an example of how to derive the corresponding ICM alogrithm for a given set of partial differential equations. Because of the structure of the algorithm, the basic computer program remains the same for cases in one-, two-, or three-dimensional problems.

  15. On Generating Discrete Integrable Systems via Lie Algebras and Commutator Equations

    International Nuclear Information System (INIS)

    Zhang Yu-Feng; Tam, Honwah

    2016-01-01

    In the paper, we introduce the Lie algebras and the commutator equations to rewrite the Tu-d scheme for generating discrete integrable systems regularly. By the approach the various loop algebras of the Lie algebra A_1 are defined so that the well-known Toda hierarchy and a novel discrete integrable system are obtained, respectively. A reduction of the later hierarchy is just right the famous Ablowitz–Ladik hierarchy. Finally, via two different enlarging Lie algebras of the Lie algebra A_1, we derive two resulting differential-difference integrable couplings of the Toda hierarchy, of course, they are all various discrete expanding integrable models of the Toda hierarchy. When the introduced spectral matrices are higher degrees, the way presented in the paper is more convenient to generate discrete integrable equations than the Tu-d scheme by using the software Maple. (paper)

  16. Solving differential equations for Feynman integrals by expansions near singular points

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Alexander V.; Smirnov, Vladimir A.

    2018-03-01

    We describe a strategy to solve differential equations for Feynman integrals by powers series expansions near singular points and to obtain high precision results for the corresponding master integrals. We consider Feynman integrals with two scales, i.e. non-trivially depending on one variable. The corresponding algorithm is oriented at situations where canonical form of the differential equations is impossible. We provide a computer code constructed with the help of our algorithm for a simple example of four-loop generalized sunset integrals with three equal non-zero masses and two zero masses. Our code gives values of the master integrals at any given point on the real axis with a required accuracy and a given order of expansion in the regularization parameter ɛ.

  17. Integral equation approach to time-dependent kinematic dynamos in finite domains

    International Nuclear Information System (INIS)

    Xu Mingtian; Stefani, Frank; Gerbeth, Gunter

    2004-01-01

    The homogeneous dynamo effect is at the root of cosmic magnetic field generation. With only a very few exceptions, the numerical treatment of homogeneous dynamos is carried out in the framework of the differential equation approach. The present paper tries to facilitate the use of integral equations in dynamo research. Apart from the pedagogical value to illustrate dynamo action within the well-known picture of the Biot-Savart law, the integral equation approach has a number of practical advantages. The first advantage is its proven numerical robustness and stability. The second and perhaps most important advantage is its applicability to dynamos in arbitrary geometries. The third advantage is its intimate connection to inverse problems relevant not only for dynamos but also for technical applications of magnetohydrodynamics. The paper provides the first general formulation and application of the integral equation approach to time-dependent kinematic dynamos, with stationary dynamo sources, in finite domains. The time dependence is restricted to the magnetic field, whereas the velocity or corresponding mean-field sources of dynamo action are supposed to be stationary. For the spherically symmetric α 2 dynamo model it is shown how the general formulation is reduced to a coupled system of two radial integral equations for the defining scalars of the poloidal and toroidal field components. The integral equation formulation for spherical dynamos with general stationary velocity fields is also derived. Two numerical examples - the α 2 dynamo model with radially varying α and the Bullard-Gellman model - illustrate the equivalence of the approach with the usual differential equation method. The main advantage of the method is exemplified by the treatment of an α 2 dynamo in rectangular domains

  18. The ICVSIE: A General Purpose Integral Equation Method for Bio-Electromagnetic Analysis.

    Science.gov (United States)

    Gomez, Luis J; Yucel, Abdulkadir C; Michielssen, Eric

    2018-03-01

    An internally combined volume surface integral equation (ICVSIE) for analyzing electromagnetic (EM) interactions with biological tissue and wide ranging diagnostic, therapeutic, and research applications, is proposed. The ICVSIE is a system of integral equations in terms of volume and surface equivalent currents in biological tissue subject to fields produced by externally or internally positioned devices. The system is created by using equivalence principles and solved numerically; the resulting current values are used to evaluate scattered and total electric fields, specific absorption rates, and related quantities. The validity, applicability, and efficiency of the ICVSIE are demonstrated by EM analysis of transcranial magnetic stimulation, magnetic resonance imaging, and neuromuscular electrical stimulation. Unlike previous integral equations, the ICVSIE is stable regardless of the electric permittivities of the tissue or frequency of operation, providing an application-agnostic computational framework for EM-biomedical analysis. Use of the general purpose and robust ICVSIE permits streamlining the development, deployment, and safety analysis of EM-biomedical technologies.

  19. An integral equation-based numerical solver for Taylor states in toroidal geometries

    Science.gov (United States)

    O'Neil, Michael; Cerfon, Antoine J.

    2018-04-01

    We present an algorithm for the numerical calculation of Taylor states in toroidal and toroidal-shell geometries using an analytical framework developed for the solution to the time-harmonic Maxwell equations. Taylor states are a special case of what are known as Beltrami fields, or linear force-free fields. The scheme of this work relies on the generalized Debye source representation of Maxwell fields and an integral representation of Beltrami fields which immediately yields a well-conditioned second-kind integral equation. This integral equation has a unique solution whenever the Beltrami parameter λ is not a member of a discrete, countable set of resonances which physically correspond to spontaneous symmetry breaking. Several numerical examples relevant to magnetohydrodynamic equilibria calculations are provided. Lastly, our approach easily generalizes to arbitrary geometries, both bounded and unbounded, and of varying genus.

  20. Integral equation models for image restoration: high accuracy methods and fast algorithms

    International Nuclear Information System (INIS)

    Lu, Yao; Shen, Lixin; Xu, Yuesheng

    2010-01-01

    Discrete models are consistently used as practical models for image restoration. They are piecewise constant approximations of true physical (continuous) models, and hence, inevitably impose bottleneck model errors. We propose to work directly with continuous models for image restoration aiming at suppressing the model errors caused by the discrete models. A systematic study is conducted in this paper for the continuous out-of-focus image models which can be formulated as an integral equation of the first kind. The resulting integral equation is regularized by the Lavrentiev method and the Tikhonov method. We develop fast multiscale algorithms having high accuracy to solve the regularized integral equations of the second kind. Numerical experiments show that the methods based on the continuous model perform much better than those based on discrete models, in terms of PSNR values and visual quality of the reconstructed images

  1. Thermodynamically self-consistent integral equations and the structure of liquid metals

    International Nuclear Information System (INIS)

    Pastore, G.; Kahl, G.

    1987-01-01

    We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)

  2. Nonperturbative time-convolutionless quantum master equation from the path integral approach

    International Nuclear Information System (INIS)

    Nan Guangjun; Shi Qiang; Shuai Zhigang

    2009-01-01

    The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

  3. On a Painleve test for the complete integrability of Bogomolny's monopole equation

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Chanda, P.K.

    1984-09-01

    We have made an analysis of the monopole equation of Bogomolny from the stand point of Painleve test. The idea that any non-linear partial differential equation admitting a Lax representation should conform to the criterion of the Painleve analysis seems to hold well in case of Bogomolny equation. We have determined the position for resonances and have proved that at each of these the coefficients in the Forbenius type expansion of the gauge potentials do become arbitrary signalling the complete integrability of the system. (author)

  4. Numerical Integration of a Class of Singularly Perturbed Delay Differential Equations with Small Shift

    Directory of Open Access Journals (Sweden)

    Gemechis File

    2012-01-01

    Full Text Available We have presented a numerical integration method to solve a class of singularly perturbed delay differential equations with small shift. First, we have replaced the second-order singularly perturbed delay differential equation by an asymptotically equivalent first-order delay differential equation. Then, Simpson’s rule and linear interpolation are employed to get the three-term recurrence relation which is solved easily by discrete invariant imbedding algorithm. The method is demonstrated by implementing it on several linear and nonlinear model examples by taking various values for the delay parameter and the perturbation parameter .

  5. Simulation electromagnetic scattering on bodies through integral equation and neural networks methods

    Science.gov (United States)

    Lvovich, I. Ya; Preobrazhenskiy, A. P.; Choporov, O. N.

    2018-05-01

    The paper deals with the issue of electromagnetic scattering on a perfectly conducting diffractive body of a complex shape. Performance calculation of the body scattering is carried out through the integral equation method. Fredholm equation of the second time was used for calculating electric current density. While solving the integral equation through the moments method, the authors have properly described the core singularity. The authors determined piecewise constant functions as basic functions. The chosen equation was solved through the moments method. Within the Kirchhoff integral approach it is possible to define the scattered electromagnetic field, in some way related to obtained electrical currents. The observation angles sector belongs to the area of the front hemisphere of the diffractive body. To improve characteristics of the diffractive body, the authors used a neural network. All the neurons contained a logsigmoid activation function and weighted sums as discriminant functions. The paper presents the matrix of weighting factors of the connectionist model, as well as the results of the optimized dimensions of the diffractive body. The paper also presents some basic steps in calculation technique of the diffractive bodies, based on the combination of integral equation and neural networks methods.

  6. Comments on the integrability of the loop-space chiral equations

    International Nuclear Information System (INIS)

    Gu, C.; Wang, L.L.C.

    1980-01-01

    A demonstration is given how the ordinary space chiral equations provide the existence conditions for the infinite number of conserved currents and how these currents are related to the so-called inverse-scattering equations, whose integrability is provided by the original chiral equations. Loop-space chiral equations are introduced. The integrability conditions of the non-local currents in two possible different situations are discussed. In the first case, the generating functions are functionals of the loop alone. The integrability conditions are not satisfied and higher order conserved non-local currents do not exist. In the second case, the generating functions are functionals of the loop as well as a parameter the integrability conditions at a restricted point of the parameter are satisfied, however there is an infinite fold of arbitrariness. It indicates that additional guiding principles are needed in addition to the original loop-space chiral equation in order to uniquely determine the infinite conserved non-local currents as functionals of the loop and the parameter

  7. On Models with Uncountable Set of Spin Values on a Cayley Tree: Integral Equations

    International Nuclear Information System (INIS)

    Rozikov, Utkir A.; Eshkobilov, Yusup Kh.

    2010-01-01

    We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order k ≥ 1. We reduce the problem of describing the 'splitting Gibbs measures' of the model to the description of the solutions of some nonlinear integral equation. For k = 1 we show that the integral equation has a unique solution. In case k ≥ 2 some models (with the set [0, 1] of spin values) which have a unique splitting Gibbs measure are constructed. Also for the Potts model with uncountable set of spin values it is proven that there is unique splitting Gibbs measure.

  8. A predictor-corrector scheme for solving the Volterra integral equation

    KAUST Repository

    Al Jarro, Ahmed

    2011-08-01

    The occurrence of late time instabilities is a common problem of almost all time marching methods developed for solving time domain integral equations. Implicit marching algorithms are now considered stable with various efforts that have been developed for removing low and high frequency instabilities. On the other hand, literature on stabilizing explicit schemes, which might be considered more efficient since they do not require a matrix inversion at each time step, is practically non-existent. In this work, a stable but still explicit predictor-corrector scheme is proposed for solving the Volterra integral equation and its efficacy is verified numerically. © 2011 IEEE.

  9. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin

    2016-11-02

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  10. Time-independent integral equation for Maxwell's system. Application of radar cross section computation

    International Nuclear Information System (INIS)

    Pujols, Agnes

    1991-01-01

    We prove that the scattering operator for the wave equation in the exterior of an non-homogeneous obstacle exists. Its distribution kernel is represented by a time-dependent boundary integral equation. A space-time integral variational formulation is developed for determining the current induced by the scattering of an electromagnetic wave by an homogeneous object. The discrete approximation of the variational problem using a finite element method in both space and time leads to stable convergent schemes, giving a numerical code for perfectly conducting cylinders. (author) [fr

  11. Transient analysis of scattering from ferromagnetic objects using Landau-Lifshitz-Gilbert and volume integral equations

    KAUST Repository

    Sayed, Sadeed Bin; Ulku, Huseyin Arda; Bagci, Hakan

    2016-01-01

    An explicit marching on-in-time scheme for analyzing transient electromagnetic wave interactions on ferromagnetic scatterers is described. The proposed method solves a coupled system of time domain magnetic field volume integral and Landau-Lifshitz-Gilbert (LLG) equations. The unknown fluxes and fields are discretized using full and half Schaubert-Wilton-Glisson functions in space and bandlimited temporal interpolation functions in time. The coupled system is cast in the form of an ordinary differential equation and integrated in time using a PE(CE)m type linear multistep method to obtain the unknown expansion coefficients. Numerical results demonstrating the stability and accuracy of the proposed scheme are presented.

  12. On the asymptotic solution to a class of linear integral equations

    International Nuclear Information System (INIS)

    Gautesen, A.K.

    1988-01-01

    The authors consider Fredholm integral equations of the first kind whose kernels are a function of the difference between two points times a large parameter. Conditions on the kernel are stated in terms of a function corresponding to a Wiener-Hopf factorization of the Fourier transform of the kernel. They give the complete asymptotic expansions of the solution to the integral equations. As applications of the author's results, the author considers the steady-state, acoustical scattering of a plane wave by both a hard strip and a soft strip. The author's results are uniform with respect to the direction of incidence

  13. Singular integral equations boundary problems of function theory and their application to mathematical physics

    CERN Document Server

    Muskhelishvili, N I

    2011-01-01

    Singular integral equations play important roles in physics and theoretical mechanics, particularly in the areas of elasticity, aerodynamics, and unsteady aerofoil theory. They are highly effective in solving boundary problems occurring in the theory of functions of a complex variable, potential theory, the theory of elasticity, and the theory of fluid mechanics.This high-level treatment by a noted mathematician considers one-dimensional singular integral equations involving Cauchy principal values. Its coverage includes such topics as the Hölder condition, Hilbert and Riemann-Hilbert problem

  14. Asymptotically Stable Solutions of a Generalized Fractional Quadratic Functional-Integral Equation of Erdélyi-Kober Type

    Directory of Open Access Journals (Sweden)

    Mohamed Abdalla Darwish

    2014-01-01

    Full Text Available We study a generalized fractional quadratic functional-integral equation of Erdélyi-Kober type in the Banach space BC(ℝ+. We show that this equation has at least one asymptotically stable solution.

  15. Time-dependent integral equations of neutron transport for calculating the kinetics of nuclear reactors by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.

  16. Feynman path integral application on deriving black-scholes diffusion equation for european option pricing

    International Nuclear Information System (INIS)

    Utama, Briandhika; Purqon, Acep

    2016-01-01

    Path Integral is a method to transform a function from its initial condition to final condition through multiplying its initial condition with the transition probability function, known as propagator. At the early development, several studies focused to apply this method for solving problems only in Quantum Mechanics. Nevertheless, Path Integral could also apply to other subjects with some modifications in the propagator function. In this study, we investigate the application of Path Integral method in financial derivatives, stock options. Black-Scholes Model (Nobel 1997) was a beginning anchor in Option Pricing study. Though this model did not successfully predict option price perfectly, especially because its sensitivity for the major changing on market, Black-Scholes Model still is a legitimate equation in pricing an option. The derivation of Black-Scholes has a high difficulty level because it is a stochastic partial differential equation. Black-Scholes equation has a similar principle with Path Integral, where in Black-Scholes the share's initial price is transformed to its final price. The Black-Scholes propagator function then derived by introducing a modified Lagrange based on Black-Scholes equation. Furthermore, we study the correlation between path integral analytical solution and Monte-Carlo numeric solution to find the similarity between this two methods. (paper)

  17. A calderón-preconditioned single source combined field integral equation for analyzing scattering from homogeneous penetrable objects

    KAUST Repository

    Valdés, Felipe

    2011-06-01

    A new regularized single source equation for analyzing scattering from homogeneous penetrable objects is presented. The proposed equation is a linear combination of a Calderón-preconditioned single source electric field integral equation and a single source magnetic field integral equation. The equation is immune to low-frequency and dense-mesh breakdown, and free from spurious resonances. Unlike dual source formulations, this equation involves operator products that cannot be discretized using standard procedures for discretizing standalone electric, magnetic, and combined field operators. Instead, the single source equation proposed here is discretized using a recently developed technique that achieves a well-conditioned mapping from div- to curl-conforming function spaces, thereby fully respecting the space mapping properties of the operators involved, and guaranteeing accuracy and stability. Numerical results show that the proposed equation and discretization technique give rise to rapidly convergent solutions. They also validate the equation\\'s resonant free character. © 2006 IEEE.

  18. On the initial condition problem of the time domain PMCHWT surface integral equation

    KAUST Repository

    Uysal, Ismail Enes

    2017-05-13

    Non-physical, linearly increasing and constant current components are induced in marching on-in-time solution of time domain surface integral equations when initial conditions on time derivatives of (unknown) equivalent currents are not enforced properly. This problem can be remedied by solving the time integral of the surface integral for auxiliary currents that are defined to be the time derivatives of the equivalent currents. Then the equivalent currents are obtained by numerically differentiating the auxiliary ones. In this work, this approach is applied to the marching on-in-time solution of the time domain Poggio-Miller-Chan-Harrington-Wu-Tsai surface integral equation enforced on dispersive/plasmonic scatterers. Accuracy of the proposed method is demonstrated by a numerical example.

  19. Tangent modulus in numerical integration of constitutive relations and its influence on convergence of N-R method

    Directory of Open Access Journals (Sweden)

    Poruba Z.

    2009-06-01

    Full Text Available For the numerical solution of elasto-plastic problems with use of Newton-Raphson method in global equilibrium equation it is necessary to determine the tangent modulus in each integration point. To reach the parabolic convergence of Newton-Raphson method it is convenient to use so called algorithmic tangent modulus which is consistent with used integration scheme. For more simple models for example Chaboche combined hardening model it is possible to determine it in analytical way. In case of more robust macroscopic models it is in many cases necessary to use the approximation approach. This possibility is presented in this contribution for radial return method on Chaboche model. An example solved in software Ansys corresponds to line contact problem with assumption of Coulomb's friction. The study shows at the end that the number of iteration of N-R method is higher in case of continuum tangent modulus and many times higher with use of modified N-R method, initial stiffness method.

  20. A generalized Clebsch transformation leading to a first integral of Navier–Stokes equations

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M., E-mail: markus.scholle@hs-heilbronn.de; Marner, F., E-mail: florian.marner@hs-heilbronn.de

    2016-09-23

    In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented. - Highlights: • A generalized Clebsch transformation is established applying to viscous flow. • The resulting 5 equations are a first integral of Navier–Stokes-equations. • An axisymmetric stagnation flow against a solid wall is considered as flow example. • Perspectives of the method for other problems, e.g. in solid mechanics are discussed.

  1. A generalized Clebsch transformation leading to a first integral of Navier–Stokes equations

    International Nuclear Information System (INIS)

    Scholle, M.; Marner, F.

    2016-01-01

    In fluid dynamics, the Clebsch transformation allows for the construction of a first integral of the equations of motion leading to a self-adjoint form of the equations. A remarkable feature is the description of the vorticity by means of only two potential fields fulfilling simple transport equations. Despite useful applications in fluid dynamics and other physical disciplines as well, the classical Clebsch transformation has ever been restricted to inviscid flow. In the present paper a novel, generalized Clebsch transformation is developed which also covers the case of incompressible viscous flow. The resulting field equations are discussed briefly and solved for a flow example. Perspectives for a further extension of the method as well as perspectives towards the development of new solution strategies are presented. - Highlights: • A generalized Clebsch transformation is established applying to viscous flow. • The resulting 5 equations are a first integral of Navier–Stokes-equations. • An axisymmetric stagnation flow against a solid wall is considered as flow example. • Perspectives of the method for other problems, e.g. in solid mechanics are discussed.

  2. Anti-symmetrically fused model and non-linear integral equations in the three-state Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Fujii, Akira; Kluemper, Andreas

    1999-01-01

    We derive the non-linear integral equations determining the free energy of the three-state pure bosonic Uimin-Sutherland model. In order to find a complete set of auxiliary functions, the anti-symmetric fusion procedure is utilized. We solve the non-linear integral equations numerically and see that the low-temperature behavior coincides with that predicted by conformal field theory. The magnetization and magnetic susceptibility are also calculated by means of the non-linear integral equation

  3. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Christoph [Institut für Physik, Humboldt-Universität zu Berlin,12489 Berlin (Germany)

    2017-04-03

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  4. Introduction to quantum mechanics Schrödinger equation and path integral

    CERN Document Server

    Müller-Kirsten, H J W

    2012-01-01

    This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrodinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions. In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introdu...

  5. A trick loop algebra and a corresponding Liouville integrable hierarchy of evolution equations

    International Nuclear Information System (INIS)

    Zhang Yufeng; Xu Xixiang

    2004-01-01

    A subalgebra of loop algebra A-bar 2 is first constructed, which has its own special feature. It follows that a new Liouville integrable hierarchy of evolution equations is obtained, possessing a tri-Hamiltonian structure, which is proved by us in this paper. Especially, three symplectic operators are constructed directly from recurrence relations. The conjugate operator of a recurrence operator is a hereditary symmetry. As reduction cases of the hierarchy presented in this paper, the celebrated MKdV equation and heat-conduction equation are engendered, respectively. Therefore, we call the hierarchy a generalized MKdV-H system. At last, a high-dimension loop algebra G-bar is constructed by making use of a proper scalar transformation. As a result, a type expanding integrable model of the MKdV-H system is given

  6. The First-Integral Method and Abundant Explicit Exact Solutions to the Zakharov Equations

    Directory of Open Access Journals (Sweden)

    Yadong Shang

    2012-01-01

    Full Text Available This paper is concerned with the system of Zakharov equations which involves the interactions between Langmuir and ion-acoustic waves in plasma. Abundant explicit and exact solutions of the system of Zakharov equations are derived uniformly by using the first integral method. These exact solutions are include that of the solitary wave solutions of bell-type for n and E, the solitary wave solutions of kink-type for E and bell-type for n, the singular traveling wave solutions, periodic wave solutions of triangle functions, Jacobi elliptic function doubly periodic solutions, and Weierstrass elliptic function doubly periodic wave solutions. The results obtained confirm that the first integral method is an efficient technique for analytic treatment of a wide variety of nonlinear systems of partial differential equations.

  7. Particle connectedness and cluster formation in sequential depositions of particles: integral-equation theory.

    Science.gov (United States)

    Danwanichakul, Panu; Glandt, Eduardo D

    2004-11-15

    We applied the integral-equation theory to the connectedness problem. The method originally applied to the study of continuum percolation in various equilibrium systems was modified for our sequential quenching model, a particular limit of an irreversible adsorption. The development of the theory based on the (quenched-annealed) binary-mixture approximation includes the Ornstein-Zernike equation, the Percus-Yevick closure, and an additional term involving the three-body connectedness function. This function is simplified by introducing a Kirkwood-like superposition approximation. We studied the three-dimensional (3D) system of randomly placed spheres and 2D systems of square-well particles, both with a narrow and with a wide well. The results from our integral-equation theory are in good accordance with simulation results within a certain range of densities.

  8. Transforming differential equations of multi-loop Feynman integrals into canonical form

    Science.gov (United States)

    Meyer, Christoph

    2017-04-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  9. Transforming differential equations of multi-loop Feynman integrals into canonical form

    International Nuclear Information System (INIS)

    Meyer, Christoph

    2017-01-01

    The method of differential equations has been proven to be a powerful tool for the computation of multi-loop Feynman integrals appearing in quantum field theory. It has been observed that in many instances a canonical basis can be chosen, which drastically simplifies the solution of the differential equation. In this paper, an algorithm is presented that computes the transformation to a canonical basis, starting from some basis that is, for instance, obtained by the usual integration-by-parts reduction techniques. The algorithm requires the existence of a rational transformation to a canonical basis, but is otherwise completely agnostic about the differential equation. In particular, it is applicable to problems involving multiple scales and allows for a rational dependence on the dimensional regulator. It is demonstrated that the algorithm is suitable for current multi-loop calculations by presenting its successful application to a number of non-trivial examples.

  10. Elliptic Euler–Poisson–Darboux equation, critical points and integrable systems

    International Nuclear Information System (INIS)

    Konopelchenko, B G; Ortenzi, G

    2013-01-01

    The structure and properties of families of critical points for classes of functions W(z, z-bar ) obeying the elliptic Euler–Poisson–Darboux equation E(1/2, 1/2) are studied. General variational and differential equations governing the dependence of critical points in variational (deformation) parameters are found. Explicit examples of the corresponding integrable quasi-linear differential systems and hierarchies are presented. There are the extended dispersionless Toda/nonlinear Schrödinger hierarchies, the ‘inverse’ hierarchy and equations associated with the real-analytic Eisenstein series E(β, β-bar ;1/2) among them. The specific bi-Hamiltonian structure of these equations is also discussed. (paper)

  11. Solution of four-nucleon integral equations using the effective UPA

    International Nuclear Information System (INIS)

    Perne, R.; Sandhas, W.

    1978-01-01

    In the three-body case it is standard to either solve the (two-dimensional) Faddeev equations directly, or to reduce them first to one-dimensional equations by means of separable approximation (expansion) of the underlying two-body interactions. The basic four-body operator identities are reduced by the latter treatment to effective three-body equations only. These may be handled like their genuine three-body analoga, i.e., by directly solving them, or by expanding the effective interactions ocurring into separable terms. Such a procedure provides us in a second step with one-dimensional integral equations for the four-body problem, too. (orig./WL) [de

  12. Nonlinear integral equations for thermodynamics of the sl(r + 1) Uimin-Sutherland model

    International Nuclear Information System (INIS)

    Tsuboi, Zengo

    2003-01-01

    We derive traditional thermodynamic Bethe ansatz (TBA) equations for the sl(r+1) Uimin-Sutherland model from the T-system of the quantum transfer matrix. These TBA equations are identical to the those from the string hypothesis. Next we derive a new family of nonlinear integral equations (NLIEs). In particular, a subset of these NLIEs forms a system of NLIEs which contains only a finite number of unknown functions. For r=1, this subset of NLIEs reduces to Takahashi's NLIE for the XXX spin chain. A relation between the traditional TBA equations and our new NLIEs is clarified. Based on our new NLIEs, we also calculate the high-temperature expansion of the free energy

  13. Stochastic integration of the Bethe-Salpeter equation for two bound fermions

    International Nuclear Information System (INIS)

    Salomon, M.

    1988-09-01

    A non-perturbative method using a Monte Carlo algorithm is used to integrate the Bethe-Salpeter equation in momentum space. Solutions for two scalars and two fermions with an arbitrary coupling constant are calculated for bound states in the ladder approximation. The results are compared with other numerical methods. (Author) (13 refs., 2 figs.)

  14. Explicit solution of the Volterra integral equation for transient fields on inhomogeneous arbitrarily shaped dielectric bodies

    KAUST Repository

    Al Jarro, Ahmed

    2011-09-01

    A new predictor-corrector scheme for solving the Volterra integral equation to analyze transient electromagnetic wave interactions with arbitrarily shaped inhomogeneous dielectric bodies is considered. Numerical results demonstrating stability and accuracy of the proposed method are presented. © 2011 IEEE.

  15. A surface-integral-equation approach to the propagation of waves in EBG-based devices

    NARCIS (Netherlands)

    Lancellotti, V.; Tijhuis, A.G.

    2012-01-01

    We combine surface integral equations with domain decomposition to formulate and (numerically) solve the problem of electromagnetic (EM) wave propagation inside finite-sized structures. The approach is of interest for (but not limited to) the analysis of devices based on the phenomenon of

  16. Two hierarchies of multi-component Kaup-Newell equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Zhu Fubo; Ji Jie; Zhang Jianbin

    2008-01-01

    Two hierarchies of multi-component Kaup-Newell equations are derived from an arbitrary order matrix spectral problem, including positive non-isospectral Kaup-Newell hierarchy and negative non-isospectral Kaup-Newell hierarchy. Moreover, new integrable couplings of the resulting Kaup-Newell soliton hierarchies are constructed by enlarging the associated matrix spectral problem

  17. Integral Boundary Value Problems for Fractional Impulsive Integro Differential Equations in Banach Spaces

    Directory of Open Access Journals (Sweden)

    A. Anguraj

    2014-02-01

    Full Text Available We study in this paper,the existence of solutions for fractional integro differential equations with impulsive and integral conditions by using fixed point method. We establish the Sufficient conditions and unique solution for given problem. An Example is also explained to the main results.

  18. Optimal Homotopy Asymptotic Method for Solving System of Fredholm Integral Equations

    Directory of Open Access Journals (Sweden)

    Bahman Ghazanfari

    2013-08-01

    Full Text Available In this paper, optimal homotopy asymptotic method (OHAM is applied to solve system of Fredholm integral equations. The effectiveness of optimal homotopy asymptotic method is presented. This method provides easy tools to control the convergence region of approximating solution series wherever necessary. The results of OHAM are compared with homotopy perturbation method (HPM and Taylor series expansion method (TSEM.

  19. A Calderón multiplicative preconditioner for coupled surface-volume electric field integral equations

    KAUST Repository

    Bagci, Hakan; Andriulli, Francesco P.; Cools, Kristof; Olyslager, Femke; Michielssen, Eric

    2010-01-01

    A well-conditioned coupled set of surface (S) and volume (V) electric field integral equations (S-EFIE and V-EFIE) for analyzing wave interactions with densely discretized composite structures is presented. Whereas the V-EFIE operator is well

  20. Application of homotopy perturbation method for systems of Volterra integral equations of the first kind

    International Nuclear Information System (INIS)

    Biazar, J.; Eslami, M.; Aminikhah, H.

    2009-01-01

    In this article, an application of He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the first kind. Some non-linear examples are prepared to illustrate the efficiency and simplicity of the method. Applying the method for linear systems is so easily that it does not worth to have any example.

  1. He's homotopy perturbation method for solving systems of Volterra integral equations of the second kind

    International Nuclear Information System (INIS)

    Biazar, J.; Ghazvini, H.

    2009-01-01

    In this paper, the He's homotopy perturbation method is applied to solve systems of Volterra integral equations of the second kind. Some examples are presented to illustrate the ability of the method for linear and non-linear such systems. The results reveal that the method is very effective and simple.

  2. Stability and square integrability of derivatives of solutions of nonlinear fourth order differential equations with delay.

    Science.gov (United States)

    Korkmaz, Erdal

    2017-01-01

    In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov's second method. The results obtained essentially improve, include and complement the results in the literature.

  3. A purely Lagrangian method for the numerical integration of Fokker-Planck equations

    International Nuclear Information System (INIS)

    Combis, P.; Fronteau, J.

    1986-01-01

    A new numerical approach to Fokker-Planck equations is presented, in which the integration grid moves according to the solution of a differential system. The method is purely Lagrangian, the mean effect of the diffusion being inserted into the differential system itself

  4. To the complete integrability of long-wave short-wave interaction equations

    International Nuclear Information System (INIS)

    Roy Chowdhury, A.; Chanda, P.K.

    1984-10-01

    We show that the non-linear partial differential equations governing the interaction of long and short waves are completely integrable. The methodology we use is that of Ablowitz et al. though in the last section of our paper we have discussed the problem also in the light of the procedure due to Weiss et al. and have obtained a Baecklund transformation. (author)

  5. Spatial symmetry, local integrability and tetrahedron equations in the Baxter-Bazhanov model

    International Nuclear Information System (INIS)

    Kashaev, R.M.; Mangazeev, V.V.; Stroganov, Yu.G.

    1992-01-01

    It is shown that the Baxter-Bazhanov model is invariant under the action of the cube symmetry group. The three-dimensional star-star relations, proposed by Baxter and Bazhanov as local integrability conditions, correspond to a particular transformation from this group. Invariant Boltzmann weights, parameterized in terms of the Zamolodchikov's angle variables, apparently satisfy the tetrahedron equations. 12 refs

  6. WKB: an interactive code for solving differential equations using phase integral methods

    International Nuclear Information System (INIS)

    White, R.B.

    1978-01-01

    A small code for the analysis of ordinary differential equations interactively through the use of Phase Integral Methods (WKB) has been written for use on the DEC 10. This note is a descriptive manual for those interested in using the code

  7. Stability and square integrability of derivatives of solutions of nonlinear fourth order differential equations with delay

    Directory of Open Access Journals (Sweden)

    Erdal Korkmaz

    2017-06-01

    Full Text Available Abstract In this paper, we give sufficient conditions for the boundedness, uniform asymptotic stability and square integrability of the solutions to a certain fourth order non-autonomous differential equations with delay by using Lyapunov’s second method. The results obtained essentially improve, include and complement the results in the literature.

  8. Two-dimensional nonlinear string-type equations and their exact integration

    International Nuclear Information System (INIS)

    Leznov, A.N.; Saveliev, M.V.

    1982-01-01

    On the base of group-theoretical formulation for exactly integrable two-dimensional non-linear dynamical systems associated with a local part of an arbitrary graded Lie algebra we study a string-type subclass of the equations. Explicit expressions have been obtained for their general solutions

  9. On the integration of equations of motion for particle-in-cell codes

    Czech Academy of Sciences Publication Activity Database

    Fuchs, Vladimír; Gunn, J. P.

    2006-01-01

    Roč. 214, - (2006), s. 299-315 ISSN 0021-9991 R&D Projects: GA ČR GA202/04/0360 Institutional research plan: CEZ:AV0Z20430508 Keywords : Equations of motion * 2nd order integration methods * nonlinear oscillations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.328, year: 2006

  10. Mixed problem with integral boundary condition for a high order mixed type partial differential equation

    OpenAIRE

    M. Denche; A. L. Marhoune

    2003-01-01

    In this paper, we study a mixed problem with integral boundary conditions for a high order partial differential equation of mixed type. We prove the existence and uniqueness of the solution. The proof is based on energy inequality, and on the density of the range of the operator generated by the considered problem.

  11. Analysis of Buried Dielectric Objects Using Higher-Order MoM for Volume Integral Equations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2004-01-01

    A higher-order method of moments (MoM) is applied to solve a volume integral equation for dielectric objects in layered media. In comparison to low-order methods, the higher-order MoM, which is based on higher-order hierarchical Legendre vector basis functions and curvilinear hexahedral elements,...

  12. Time-integration methods for finite element discretisations of the second-order Maxwell equation

    NARCIS (Netherlands)

    Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.

    This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic

  13. An Integral Spectral Representation of the Propagator for the Wave Equation in the Kerr Geometry

    Science.gov (United States)

    Finster, F.; Kamran, N.; Smoller, J.; Yau, S.-T.

    2005-12-01

    We consider the scalar wave equation in the Kerr geometry for Cauchy data which is smooth and compactly supported outside the event horizon. We derive an integral representation which expresses the solution as a superposition of solutions of the radial and angular ODEs which arise in the separation of variables. In particular, we prove completeness of the solutions of the separated ODEs.

  14. On preconditioning techniques for dense linear systems arising from singular boundary integral equations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ke [Univ. of Liverpool (United Kingdom)

    1996-12-31

    We study various preconditioning techniques for the iterative solution of boundary integral equations, and aim to provide a theory for a class of sparse preconditioners. Two related ideas are explored here: singularity separation and inverse approximation. Our preliminary conclusion is that singularity separation based preconditioners perform better than approximate inverse based while it is desirable to have both features.

  15. New Positive and Negative Hierarchies of Integrable Differential-Difference Equations and Conservation Laws

    International Nuclear Information System (INIS)

    Li Xinyue; Zhao Qiulan

    2009-01-01

    Two hierarchies of nonlinear integrable positive and negative lattice equations are derived from a discrete spectral problem. The two lattice hierarchies are proved to have discrete zero curvature representations associated with a discrete spectral problem, which also shows that the positive and negative hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. Moreover, the integrable lattice models in the positive hierarchy are of polynomial type, and the integrable lattice models in the negative hierarchy are of rational type. Further, we construct infinite conservation laws about the positive hierarchy.

  16. Solution of the Stokes system by boundary integral equations and fixed point iterative schemes

    International Nuclear Information System (INIS)

    Chidume, C.E.; Lubuma, M.S.

    1990-01-01

    The solution to the exterior three dimensional Stokes problem is sought in the form of a single layer potential of unknown density. This reduces the problem to a boundary integral equation of the first kind whose operator is the velocity component of the single layer potential. It is shown that this component is an isomorphism between two appropriate Sobolev spaces containing the unknown densities and the data respectively. The isomorphism corresponds to a variational problem with coercive bilinear form. The latter property allows us to consider various fixed point iterative schemes that converge to the unique solution of the integral equation. Explicit error estimates are also obtained. The successive approximations are also considered in a more computable form by using the product integration method of Atkinson. (author). 47 refs

  17. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

    International Nuclear Information System (INIS)

    Trowbridge, C.W.

    1976-06-01

    Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c) which both lead to a more economic use of the computer than (a) some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation. (author)

  18. 3-D electromagnetic modeling for very early time sounding of shallow targets using integral equations

    International Nuclear Information System (INIS)

    Xiong, Z.; Tripp, A.C.

    1994-01-01

    This paper presents an integral equation algorithm for 3D EM modeling at high frequencies for applications in engineering an environmental studies. The integral equation method remains the same for low and high frequencies, but the dominant roles of the displacements currents complicate both numerical treatments and interpretations. With singularity extraction technique they successively extended the application of the Hankel filtering technique to the computation of Hankel integrals occurring in high frequency EM modeling. Time domain results are calculated from frequency domain results via Fourier transforms. While frequency domain data are not obvious for interpretations, time domain data show wave-like pictures that resemble seismograms. Both 1D and 3D numerical results show clearly the layer interfaces

  19. Applications of integral equation methods for the numerical solution of magnetostatic and eddy current problems

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, C W

    1976-06-01

    Various integral equation methods are described. For magnetostatic problems three formulations are considered in detail, (a) the direct solution method for the magnetisation distribution in permeable materials, (b) a method based on a scalar potential, and (c) the use of an integral equation derived from Green's Theorem, i.e. the so-called Boundary Integral Method (BIM). In the case of (a) results are given for two-and three-dimensional non-linear problems with comparisons against measurement. For methods (b) and (c), which both lead to a more economical use of the computer than (a), some preliminary results are given for simple cases. For eddy current problems various methods are discussed and some results are given from a computer program based on a vector potential formulation.

  20. A higher order space-time Galerkin scheme for time domain integral equations

    KAUST Repository

    Pray, Andrew J.; Beghein, Yves; Nair, Naveen V.; Cools, Kristof; Bagci, Hakan; Shanker, Balasubramaniam

    2014-01-01

    Stability of time domain integral equation (TDIE) solvers has remained an elusive goal formany years. Advancement of this research has largely progressed on four fronts: 1) Exact integration, 2) Lubich quadrature, 3) smooth temporal basis functions, and 4) space-time separation of convolutions with the retarded potential. The latter method's efficacy in stabilizing solutions to the time domain electric field integral equation (TD-EFIE) was previously reported for first-order surface descriptions (flat elements) and zeroth-order functions as the temporal basis. In this work, we develop the methodology necessary to extend the scheme to higher order surface descriptions as well as to enable its use with higher order basis functions in both space and time. These basis functions are then used in a space-time Galerkin framework. A number of results are presented that demonstrate convergence in time. The viability of the space-time separation method in producing stable results is demonstrated experimentally for these examples.

  1. New lumps of Veselov-Novikov integrable nonlinear equation and new exact rational potentials of two-dimensional stationary Schroedinger equation via ∂-macron-dressing method

    International Nuclear Information System (INIS)

    Dubrovsky, V.G.; Formusatik, I.B.

    2003-01-01

    The scheme for calculating via Zakharov-Manakov ∂-macron-dressing method of new rational solutions with constant asymptotic values at infinity of the famous two-dimensional Veselov-Novikov (VN) integrable nonlinear evolution equation and new exact rational potentials of two-dimensional stationary Schroedinger (2DSchr) equation with multiple pole wave functions is developed. As examples new lumps of VN nonlinear equation and new exact rational potentials of 2DSchr equation with multiple pole of order two wave functions are calculated. Among the constructed rational solutions are as nonsingular and also singular

  2. Expressing Solutions of the Dirac Equation in Terms of Feynman Path Integral

    CERN Document Server

    Hose, R D

    2006-01-01

    Using the separation of the variables technique, the free particle solutions of the Dirac equation in the momentum space are shown to be actually providing the definition of Delta function for the Schr dinger picture. Further, the said solution is shown to be derivable on the sole strength of geometrical argument that the Dirac equation for free particle is an equation of a plane in momentum space. During the evolution of time in the Schr dinger picture, the normal to the said Dirac equation plane is shown to be constantly changing in direction due to the uncertainty principle and thereby, leading to a zigzag path for the Dirac particle in the momentum space. Further, the time evolution of the said Delta function solutions of the Dirac equation is shown to provide Feynman integral of all such zigzag paths in the momentum space. Towards the end of the paper, Feynman path integral between two fixed spatial points in the co-ordinate space during a certain time interv! al is shown to be composed, in time sequence...

  3. Some thoughts on the pressure integration requirements of the Navier–Stokes equations

    International Nuclear Information System (INIS)

    Saad, Tony; Majdalani, Joseph

    2012-01-01

    The Navier–Stokes formulation represents a uniquely challenging system of partial differential equations that continues to influence modern applied science and engineering. In its simplest form, the system can be used to prescribe the motion of a viscous incompressible fluid with constant properties. It consists of four equations in three-dimensional space that account for both the kinematic and dynamic conditions that a fluid element senses. In this work, we investigate the pressure integration rules and restrictions that affect the resolution of the scalar pressure field. We begin our analysis by exploring the integration properties of Euler's equations in two dimensions while making use of Clairaut's theorem on the commutativity of mixed partial derivatives. We then extend our findings to three-dimensional space. This process gives rise to a theorem and four corollaries that help to clarify the conditions needed to obtain exact or asymptotic solutions for the pressure distribution. Consequently, we identify the fundamental conditions under which the Navier–Stokes equations can be properly integrated to arrive at an analytic expression for the pressure field, namely, one that is continuous and twice differentiable. In closing, several configurations are used to test the theorem and showcase its connection with the pressure formulation. These include potential flows for which the pressure can be obtained unconditionally, and inviscid rotational motions of the Taylor–Culick type with and without headwall injection. (paper)

  4. CALL FOR PAPERS: Special issue on Symmetries and Integrability of Difference Equations

    Science.gov (United States)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stephane

    2006-10-01

    This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General entitled `Special issue on Symmetries and Integrability of Difference Equations' as featured at the SIDE VII meeting held during July 2006 in Melbourne (http://web.maths.unsw.edu.au/%7Eschief/side/side.html). Participants at that meeting, as well as other researchers working in the field of difference equations and discrete systems, are invited to submit a research paper to this issue. This meeting was the seventh of a series of biennial meetings devoted to the study of integrable difference equations and related topics. The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations, just as differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as: mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, quantum field theory, etc. It is thus crucial to develop tools to study and solve difference equations. While the theory of symmetry and integrability for differential equations is now well-established, this is not yet the case for discrete equations. The situation has undergone impressive development in recent years and has affected a broad range of fields, including the theory of special functions, quantum integrable systems, numerical analysis, cellular

  5. Bound states of quarks calculated with stochastic integration of the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Salomon, M.

    1992-07-01

    We have computed the masses, wave functions and sea quark content of mesons in their ground state by integrating the Bethe-Salpeter equation with a stochastic algorithm. This method allows the inclusion of a large set of diagrams. Inspection of the kernel of the equation shows that q-q-bar pairs with similar constituent masses in a singlet spin state exhibit a high bound state which is not present in other pairs. The pion, kaon and eta belongs to this category. 19 refs., 2 figs., 2 tabs

  6. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe

    2013-05-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  7. The Abel symposium 2008 on differential equations: geometry, symmetries and integrability

    CERN Document Server

    Lychagin, Valentin; Straume, Eldar; Abel symposium 2008; Differential equations; Geometry, symmetries and integrability

    2008-01-01

    The Abel Symposium 2008 focused on the modern theory of differential equations and their applications in geometry, mechanics, and mathematical physics. Following the tradition of Monge, Abel and Lie, the scientific program emphasized the role of algebro-geometric methods, which nowadays permeate all mathematical models in natural and engineering sciences. The ideas of invariance and symmetry are of fundamental importance in the geometric approach to differential equations, with a serious impact coming from the area of integrable systems and field theories. This volume consists of original contributions and broad overview lectures of the participants of the Symposium. The papers in this volume present the modern approach to this classical subject.

  8. Conservation properties of numerical integration methods for systems of ordinary differential equations

    Science.gov (United States)

    Rosenbaum, J. S.

    1976-01-01

    If a system of ordinary differential equations represents a property conserving system that can be expressed linearly (e.g., conservation of mass), it is then desirable that the numerical integration method used conserve the same quantity. It is shown that both linear multistep methods and Runge-Kutta methods are 'conservative' and that Newton-type methods used to solve the implicit equations preserve the inherent conservation of the numerical method. It is further shown that a method used by several authors is not conservative.

  9. High-Order Calderón Preconditioned Time Domain Integral Equation Solvers

    KAUST Repository

    Valdes, Felipe; Ghaffari-Miab, Mohsen; Andriulli, Francesco P.; Cools, Kristof; Michielssen,

    2013-01-01

    Two high-order accurate Calderón preconditioned time domain electric field integral equation (TDEFIE) solvers are presented. In contrast to existing Calderón preconditioned time domain solvers, the proposed preconditioner allows for high-order surface representations and current expansions by using a novel set of fully-localized high-order div-and quasi curl-conforming (DQCC) basis functions. Numerical results demonstrate that the linear systems of equations obtained using the proposed basis functions converge rapidly, regardless of the mesh density and of the order of the current expansion. © 1963-2012 IEEE.

  10. Hamiltonian structures and integrability for a discrete coupled KdV-type equation hierarchy

    International Nuclear Information System (INIS)

    Zhao Haiqiong; Zhu Zuonong; Zhang Jingli

    2011-01-01

    Coupled Korteweg-de Vries (KdV) systems have many important physical applications. By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy. Our hierarchy includes the coupled Volterra system proposed by Lou et al. (e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation. We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. (authors)

  11. Killing spinor equations in dimension 7 and geometry of integrable G2-manifolds

    International Nuclear Information System (INIS)

    Friedrich, Thomas; Ivanov, Stefan

    2001-12-01

    We compute the scalar curvature of 7-dimensional G 2 -manifolds admitting a connection with totally skew-symmetric torsion. We prove the formula for the general solution of the Killing spinor equation and express the Riemannian scalar curvature of the solution in terms of the dilation function and the NS 3-form field. In dimension n=7 the dilation function involved in the second fermionic string equation has an interpretation as a conformal change of the underlying integrable G 2 -structure into a cocalibrated one of pure type W 3 . (author)

  12. Application of the method of integral equations to calculating the electrodynamic characteristics of periodically corrugated waveguides

    International Nuclear Information System (INIS)

    Belov, V.E.; Rodygin, L.V.; Fil'chenko, S.E.; Yunakovskii, A.D.

    1988-01-01

    A method is described for calculating the electrodynamic characteristics of periodically corrugated waveguide systems. This method is based on representing the field as the solution of the Helmholtz vector equation in the form of a simple layer potential, transformed with the use of the Floquet conditions. Systems of compound integral equations based on a weighted vector function of the simple layer potential are derived for waveguides with azimuthally symmetric and helical corrugations. A numerical realization of the Fourier method is cited for seeking the dispersion relation of azimuthally symmetric waves of a circular corrugated waveguide

  13. Runge-Kutta Integration of the Equal Width Wave Equation Using the Method of Lines

    Directory of Open Access Journals (Sweden)

    M. A. Banaja

    2015-01-01

    Full Text Available The equal width (EW equation governs nonlinear wave phenomena like waves in shallow water. Numerical solution of the (EW equation is obtained by using the method of lines (MOL based on Runge-Kutta integration. Using von Neumann stability analysis, the scheme is found to be unconditionally stable. Solitary wave motion and interaction of two solitary waves are studied using the proposed method. The three invariants of the motion are evaluated to determine the conservation properties of the generated scheme. Accuracy of the proposed method is discussed by computing the L2 and L∞ error norms. The results are found in good agreement with exact solution.

  14. On a method for constructing the Lax pairs for nonlinear integrable equations

    International Nuclear Information System (INIS)

    Habibullin, I T; Poptsova, M N; Khakimova, A R

    2016-01-01

    We suggest a direct algorithm for searching the Lax pairs for nonlinear integrable equations. It is effective for both continuous and discrete models. The first operator of the Lax pair corresponding to a given nonlinear equation is found immediately, coinciding with the linearization of the considered nonlinear equation. The second one is obtained as an invariant manifold to the linearized equation. A surprisingly simple relation between the second operator of the Lax pair and the recursion operator is discussed: the recursion operator can immediately be found from the Lax pair. Examples considered in the article are convincing evidence that the found Lax pairs differ from the classical ones. The examples also show that the suggested objects are true Lax pairs which allow the construction of infinite series of conservation laws and hierarchies of higher symmetries. In the case of the hyperbolic type partial differential equation our algorithm is slightly modified; in order to construct the Lax pairs from the invariant manifolds we use the cutting off conditions for the corresponding infinite Laplace sequence. The efficiency of the method is illustrated by application to some equations given in the Svinolupov–Sokolov classification list for which the Lax pairs and the recursion operators have not been found earlier. (paper)

  15. Asymptotic integration of a linear fourth order differential equation of Poincaré type

    Directory of Open Access Journals (Sweden)

    Anibal Coronel

    2015-11-01

    Full Text Available This article deals with the asymptotic behavior of nonoscillatory solutions of fourth order linear differential equation where the coefficients are perturbations of constants. We define a change of variable and deduce that the new variable satisfies a third order nonlinear differential equation. We assume three hypotheses. The first hypothesis is related to the constant coefficients and set up that the characteristic polynomial associated with the fourth order linear equation has simple and real roots. The other two hypotheses are related to the behavior of the perturbation functions and establish asymptotic integral smallness conditions of the perturbations. Under these general hypotheses, we obtain four main results. The first two results are related to the application of a fixed point argument to prove that the nonlinear third order equation has a unique solution. The next result concerns with the asymptotic behavior of the solutions of the nonlinear third order equation. The fourth main theorem is introduced to establish the existence of a fundamental system of solutions and to precise the formulas for the asymptotic behavior of the linear fourth order differential equation. In addition, we present an example to show that the results introduced in this paper can be applied in situations where the assumptions of some classical theorems are not satisfied.

  16. A Special Variant of the Moment Method for Fredholm Integral Equations of the Second Kind

    Directory of Open Access Journals (Sweden)

    S. A. Solov’eva

    2015-01-01

    Full Text Available We consider the linear Fredholm integral equation of the second kind, where the kernel and the free term are smooth functions. We find the unknown function in this class as well.Exact and approximate methods for the solution of linear Fredholm integral equations of the second kind are well developed. However, classical methods do not take into account the structural properties of the kernel and the free term of equation.In this paper we develop and justify a special variant of the moment method to solve this equation, which takes into account the differential properties of initial data. The proposed paper furthers studies of N.S Gabbasov, I.P. Kasakina, and S.A Solov’eva. We use approximation theory, version of the general theory of approximate methods of analysis that Gabdulkhayev B.G suggested, and methods of functional analysis to prove theorems. In addition, we use N.S. Gabbasov’s ideas and methods in papers that are devoted to the Fredholm equations of the first kind, as well as N.S. Gabbasov and S.A Solov’eva’s investigations on the Fredholm equations of the third kind in the space of distributions.The first part of the paper provides a description of the basic function space and elements of the theory of approximation in it.In the second part we propose and theoretically justify a generalized moment method. We have demonstrated that the improvement of differential properties of the initial data improves the approximation accuracy. Since, in practice, the approximate equations are solved, as a rule, only approximately, we prove the stability and causality of the proposed method. The resulting estimate of the paper is in good agreement with the estimate for the ordinary moment method for equations of the second kind in the space of continuous functions.In the final section we have shown that a developed method is optimal in order of accuracy among all polynomial projection methods to solve Fredholm integral equations of the second

  17. Path integral solutions of the master equation. [Lagrangian function, Ehrenfest-type theorem, Cauchy method, inverse functions

    Energy Technology Data Exchange (ETDEWEB)

    Etim, E; Basili, C [Rome Univ. (Italy). Ist. di Matematica

    1978-08-21

    The lagrangian in the path integral solution of the master equation of a stationary Markov process is derived by application of the Ehrenfest-type theorem of quantum mechanics and the Cauchy method of finding inverse functions. Applied to the non-linear Fokker-Planck equation the authors reproduce the result obtained by integrating over Fourier series coefficients and by other methods.

  18. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    Science.gov (United States)

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  19. Direct Yaw Control of Vehicle using State Dependent Riccati Equation with Integral Terms

    Directory of Open Access Journals (Sweden)

    SANDHU, F.

    2016-05-01

    Full Text Available Direct yaw control of four-wheel vehicles using optimal controllers such as the linear quadratic regulator (LQR and the sliding mode controller (SMC either considers only certain parameters constant in the nonlinear equations of vehicle model or totally neglect their effects to obtain simplified models, resulting in loss of states for the system. In this paper, a modified state-dependent Ricatti equation method obtained by the simplification of the vehicle model is proposed. This method overcomes the problem of the lost states by including state integrals. The results of the proposed system are compared with the sliding mode slip controller and state-dependent Ricatti equation method using high fidelity vehicle model in the vehicle simulation software package, Carsim. Results show 38% reduction in the lateral velocity, 34% reduction in roll and 16% reduction in excessive yaw by only increasing the fuel consumption by 6.07%.

  20. Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms.

    Science.gov (United States)

    Chowdury, A; Kedziora, D J; Ankiewicz, A; Akhmediev, N

    2014-09-01

    We present the fifth-order equation of the nonlinear Schrödinger hierarchy. This integrable partial differential equation contains fifth-order dispersion and nonlinear terms related to it. We present the Lax pair and use Darboux transformations to derive exact expressions for the most representative soliton solutions. This set includes two-soliton collisions and the degenerate case of the two-soliton solution, as well as beating structures composed of two or three solitons. Ultimately, the new quintic operator and the terms it adds to the standard nonlinear Schrödinger equation (NLSE) are found to primarily affect the velocity of solutions, with complicated flow-on effects. Furthermore, we present a new structure, composed of coincident equal-amplitude solitons, which cannot exist for the standard NLSE.

  1. A parallel algorithm for solving the integral form of the discrete ordinates equations

    International Nuclear Information System (INIS)

    Zerr, R. J.; Azmy, Y. Y.

    2009-01-01

    The integral form of the discrete ordinates equations involves a system of equations that has a large, dense coefficient matrix. The serial construction methodology is presented and properties that affect the execution times to construct and solve the system are evaluated. Two approaches for massively parallel implementation of the solution algorithm are proposed and the current results of one of these are presented. The system of equations May be solved using two parallel solvers-block Jacobi and conjugate gradient. Results indicate that both methods can reduce overall wall-clock time for execution. The conjugate gradient solver exhibits better performance to compete with the traditional source iteration technique in terms of execution time and scalability. The parallel conjugate gradient method is synchronous, hence it does not increase the number of iterations for convergence compared to serial execution, and the efficiency of the algorithm demonstrates an apparent asymptotic decline. (authors)

  2. A Fibonacci collocation method for solving a class of Fredholm–Volterra integral equations in two-dimensional spaces

    Directory of Open Access Journals (Sweden)

    Farshid Mirzaee

    2014-06-01

    Full Text Available In this paper, we present a numerical method for solving two-dimensional Fredholm–Volterra integral equations (F-VIE. The method reduces the solution of these integral equations to the solution of a linear system of algebraic equations. The existence and uniqueness of the solution and error analysis of proposed method are discussed. The method is computationally very simple and attractive. Finally, numerical examples illustrate the efficiency and accuracy of the method.

  3. Integral-equation formulation for drift eigenmodes in cylindrically symmetric systems

    International Nuclear Information System (INIS)

    Linsker, R.

    1980-12-01

    A method for solving the integral eigenmode equation for drift waves in cylindrical (or slab) geometry is presented. A leading-order kinematic effect that has been noted in the past, but incorrectly ignored in recent integral-equation calculations, is incorporated. The present method also allows electrons to be treated with a physical mass ratio (unlike earlier work that is restricted to artificially small m/sub i//m/sub e/ owing to resolution limitations). Results for the universal mode and for the ion-temperature-gradient driven mode are presented. The kinematic effect qualitatively changes the spectrum of the ion mode, and a new second region of instability for k/sub perpendicular to/rho/sub i/greater than or equal to 1 is found

  4. REFLECT: a program to integrate the wave equation through a plane stratified plasma

    International Nuclear Information System (INIS)

    Greene, J.W.

    1975-01-01

    A program was developed to integrate the wave equation through a plane stratified plasma with a general density distribution. The reflection and transmission of a plane wave are computed as a function of the angle of incidence. The polarization of the electric vector is assumed to be perpendicular to the plane of incidence. The model for absorption by classical inverse bremsstrahlung avoids the improper extrapolation of underdense formulae that are singular at the plasma critical surface. Surprisingly good agreement with the geometric-optics analysis of a linear layer was found. The system of ordinary differential equations is integrated by the variable-step, variable-order Adams method in the Lawrence Livermore Laboratory Gear package. Parametric studies of the absorption are summarized, and some possibilities for further development of the code are discussed. (auth)

  5. Fuchsia. A tool for reducing differential equations for Feynman master integral to epsilon form

    International Nuclear Information System (INIS)

    Gituliar, Oleksandr; Magerya, Vitaly

    2017-01-01

    We present Fuchsia - an implementation of the Lee algorithm, which for a given system of ordinary differential equations with rational coefficients ∂ x f(x,ε)=A(x,ε)f(x,ε) finds a basis transformation T(x,ε), i.e., f(x,ε)=T(x,ε)g(x,ε), such that the system turns into the epsilon form: ∂ x g(x,ε)=εS(x)g(x,ε), where S(x) is a Fuchsian matrix. A system of this form can be trivially solved in terms of polylogarithms as a Laurent series in the dimensional regulator ε. That makes the construction of the transformation T(x,ε) crucial for obtaining solutions of the initial system. In principle, Fuchsia can deal with any regular systems, however its primary task is to reduce differential equations for Feynman master integrals. It ensures that solutions contain only regular singularities due to the properties of Feynman integrals.

  6. Approximations to the Probability of Failure in Random Vibration by Integral Equation Methods

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Sørensen, John Dalsgaard

    Close approximations to the first passage probability of failure in random vibration can be obtained by integral equation methods. A simple relation exists between the first passage probability density function and the distribution function for the time interval spent below a barrier before...... passage probability density. The results of the theory agree well with simulation results for narrow banded processes dominated by a single frequency, as well as for bimodal processes with 2 dominating frequencies in the structural response....... outcrossing. An integral equation for the probability density function of the time interval is formulated, and adequate approximations for the kernel are suggested. The kernel approximation results in approximate solutions for the probability density function of the time interval, and hence for the first...

  7. An efficient explicit marching on in time solver for magnetic field volume integral equation

    KAUST Repository

    Sayed, Sadeed Bin

    2015-07-25

    An efficient explicit marching on in time (MOT) scheme for solving the magnetic field volume integral equation is proposed. The MOT system is cast in the form of an ordinary differential equation and is integrated in time using a PE(CE)m multistep scheme. At each time step, a system with a Gram matrix is solved for the predicted/corrected field expansion coefficients. Depending on the type of spatial testing scheme Gram matrix is sparse or consists of blocks with only diagonal entries regardless of the time step size. Consequently, the resulting MOT scheme is more efficient than its implicit counterparts, which call for inversion of fuller matrix system at lower frequencies. Numerical results, which demonstrate the efficiency, accuracy, and stability of the proposed MOT scheme, are presented.

  8. Numerical Solution of Nonlinear Volterra Integral Equations System Using Simpson’s 3/8 Rule

    Directory of Open Access Journals (Sweden)

    Adem Kılıçman

    2012-01-01

    Full Text Available The Simpson’s 3/8 rule is used to solve the nonlinear Volterra integral equations system. Using this rule the system is converted to a nonlinear block system and then by solving this nonlinear system we find approximate solution of nonlinear Volterra integral equations system. One of the advantages of the proposed method is its simplicity in application. Further, we investigate the convergence of the proposed method and it is shown that its convergence is of order O(h4. Numerical examples are given to show abilities of the proposed method for solving linear as well as nonlinear systems. Our results show that the proposed method is simple and effective.

  9. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    Science.gov (United States)

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  10. Properties of linear integral equations related to the six-vertex model with disorder parameter II

    International Nuclear Information System (INIS)

    Boos, Hermann; Göhmann, Frank

    2012-01-01

    We study certain functions arising in the context of the calculation of correlation functions of the XXZ spin chain and of integrable field theories related to various scaling limits of the underlying six-vertex model. We show that several of these functions that are related to linear integral equations can be obtained by acting with (deformed) difference operators on a master function Φ. The latter is defined in terms of a functional equation and of its asymptotic behavior. Concentrating on the so-called temperature case, we show that these conditions uniquely determine the high-temperature series expansions of the master function. This provides an efficient calculation scheme for the high-temperature expansions of the derived functions as well. (paper)

  11. Nodal integral method for the neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1987-01-01

    The nodal methodology is based on retaining a higher a higher degree of analyticity in the process of deriving the discrete-variable equations compared to conventional numerical methods. As a result, extensive numerical testing of nodal methods developed for a wide variety of partial differential equations and comparison of the results to conventional methods have established the superior accuracy of nodal methods on coarse meshes. Moreover, these tests have shown that nodal methods are more computationally efficient than finite difference and finite-element methods in the sense that they require shorter CPU times to achieve comparable accuracy in the solutions. However, nodal formalisms and the final discrete-variable equations they produce are, in general, more complicated than their conventional counterparts. This, together with anticipated difficulties in applying the transverse-averaging procedure in curvilinear coordinates, has limited the applications of nodal methods, so far, to Cartesian geometry, and with additional approximations to hexagonal geometry. In this paper the authors report recent progress in deriving and numerically implementing a nodal integral method (NIM) for solving the neutron diffusion equation in cylindrical r-z geometry. Also, presented are comparisons of numerical solutions to two test problems with those obtained by the Exterminator-2 code, which indicate the superior accuracy of the nodal integral method solutions on much coarser meshes

  12. Creep constitutive equations for a 0.5Cr 0.5 Mo 0.25V ferritic steel in the temperature range 565 deg. C-675 deg. C

    International Nuclear Information System (INIS)

    Mustata, R.; Hayhurst, D.R.

    2005-01-01

    A two damage state variable model is used to describe the softening mechanisms, damage initiation and growth for a low alloy ferritic steel 1/2Cr-1/2Mo-1/4V at 565 and 590 deg. C within the Continuum Damage Mechanics framework. The level of complexity of the constitutive equations and the degree of coupling through damage is high and it is difficult to calibrate values of the constitutive constants without recourse to optimisation techniques. A methodology for the analysis of uni-axial experimental data, coupled with a traditional gradient-based optimisation technique, is presented for the unique determination of the constitutive constants. Two sets of experimental data on parent material are used for inversion purposes: at 565 deg. C, c.f. Cane [Cane BJ. Collaborative programme on the corelation of test data for high temperature design of welded steam pipes. Presentation and analysis of the material data. Note No. RD/L/2101N81, March, CEGB Laboratory; 1981]; and, at 590 deg. C, c.f. Miller [Miller DA. Private communication: 'Creep rupture testing of Cr M V pipe steel. ERA Project 63-01-040320009'. Barnwood, Gloucs, UK: British Energy; 2000]. The variation of the constitutive parameters with temperature in the range 565-590 deg. C has been deduced by considering the values of constitutive parameters for the same alloy deduced by Perrin and Hayhurst [Perrin IJ, Hayhurst DR. Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600-675 deg. C. J Strain Anal 1996;31:299-314] in the temperature range 620-675 deg. C

  13. Computation of the radiation Q of dielectric-loaded electrically small antennas in integral equation formulations

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2016-01-01

    A new technique for estimating the impedance frequency bandwidth of electrically small antennas loaded with magneto-dielectric material from a single-frequency simulation in a surface integral equation solver is presented. The estimate is based on the inverse of the radiation Q computed using newly...... derived expressions for the stored energy and the radiated power of arbitrary coupled electric and magnetic currents in free space....

  14. Explicit solution of the time domain magnetic field integral equation using a predictor-corrector scheme

    KAUST Repository

    Ulku, Huseyin Arda; Bagci, Hakan; Michielssen, Eric

    2012-01-01

    An explicit yet stable marching-on-in-time (MOT) scheme for solving the time domain magnetic field integral equation (TD-MFIE) is presented. The stability of the explicit scheme is achieved via (i) accurate evaluation of the MOT matrix elements using closed form expressions and (ii) a PE(CE) m type linear multistep method for time marching. Numerical results demonstrate the accuracy and stability of the proposed explicit MOT-TD-MFIE solver. © 2012 IEEE.

  15. Hierarchies of multi-component mKP equations and theirs integrable couplings

    International Nuclear Information System (INIS)

    Ji Jie; Yao Yuqin; Zhu Fubo; Chen Dengyuan

    2008-01-01

    First, a new multi-component modified Kadomtsev-Petviashvill (mKP) spectral problem is constructed by k-constraint imposed on a general pseudo-differential operator. Then, two hierarchies of multi-component mKP equations are derived, including positive non-isospectral mKP hierarchy and negative non-isospectral mKP hierarchy. Moreover, new integrable couplings of the resulting mKP soliton hierarchies are constructed by enlarging the associated matrix spectral problem

  16. Solution of volume-surface integral equations using higher-order hierarchical Legendre basis functions

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2007-01-01

    The problem of electromagnetic scattering by composite metallic and dielectric objects is solved using the coupled volume-surface integral equation (VSIE). The method of moments (MoM) based on higher-order hierarchical Legendre basis functions and higher-order curvilinear geometrical elements...... with the analytical Mie series solution. Scattering by more complex metal-dielectric objects are also considered to compare the presented technique with other numerical methods....

  17. Symmetries, integrals, and three-dimensional reductions of Plebanski's second heavenly equation

    International Nuclear Information System (INIS)

    Neyzi, F.; Sheftel, M. B.; Yazici, D.

    2007-01-01

    We study symmetries and conservation laws for Plebanski's second heavenly equation written as a first-order nonlinear evolutionary system which admits a multi-Hamiltonian structure. We construct an optimal system of one-dimensional subalgebras and all inequivalent three-dimensional symmetry reductions of the original four-dimensional system. We consider these two-component evolutionary systems in three dimensions as natural candidates for integrable systems

  18. Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods

    Czech Academy of Sciences Publication Activity Database

    Fiala, Zdeněk

    2015-01-01

    Roč. 226, č. 1 (2015), s. 17-35 ISSN 0001-5970 R&D Projects: GA ČR(CZ) GA103/09/2101 Institutional support: RVO:68378297 Keywords : solid mechanics * finite deformations * evolution equation of Lie-type * time-discrete integration Subject RIV: BA - General Mathematics OBOR OECD: Statistics and probability Impact factor: 1.694, year: 2015 http://link.springer.com/article/10.1007%2Fs00707-014-1162-9#page-1

  19. Modeling of Graphene Planar Grating in the THz Range by the Method of Singular Integral Equations

    Science.gov (United States)

    Kaliberda, Mstislav E.; Lytvynenko, Leonid M.; Pogarsky, Sergey A.

    2018-04-01

    Diffraction of the H-polarized electromagnetic wave by the planar graphene grating in the THz range is considered. The scattering and absorption characteristics are studied. The scattered field is represented in the spectral domain via unknown spectral function. The mathematical model is based on the graphene surface impedance and the method of singular integral equations. The numerical solution is obtained by the Nystrom-type method of discrete singularities.

  20. Numerical integration of electromagnetic cascade equations, discussion of results for air, copper, iron, and lead

    International Nuclear Information System (INIS)

    Adler, A.; Fuchs, B.; Thielheim, K.O.

    1977-01-01

    The longitudinal development of electromagnetic cascades in air, copper, iron, and lead is studied on the basis of results derived recently by numerical integration of the cascade equations applying rather accurate expressions for the cross-sections involved with the interactions of high energy electrons, positrons, and photons in electromagnetic cascades. Special attention is given to scaling properties of transition curves. It is demonstrated that a good scaling may be achieved by means of the depth of maximum cascade development. (author)