WorldWideScience

Sample records for integral airframe structures

  1. Supersonic Cruise Research 1979, part 2. [airframe structures and materials, systems integration, economic analysis

    Science.gov (United States)

    1980-01-01

    Advances in airframe structure and materials technology for supersonic cruise aircraft are reported with emphasis on titanium and composite structures. The operation of the Concorde is examined as a baseline for projections into the future. A market survey of U.S. passenger attitudes and preferences, the impact of advanced air transport technology and the integration of systems for the advanced SST and for a smaller research/business jet vehicle are also discussed.

  2. Ramjets: Airframe integration

    NARCIS (Netherlands)

    Moerel, J.L.; Halswijk, W.

    2010-01-01

    These notes deal with the integration of a (sc)ramjet engine in either an axisymmetric or a waverider type of cruise missile configuration. The integration aspects relate to the integration of the external and internal flow paths in geometrical configurations that are being considered worldwide.

  3. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    International technical experts in durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The symposium focused on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure, criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and advanced approaches to resist corrosion and environmentally assisted fatigue. Separate abstracts have been indexed for articles from this report.

  4. Numerical methods for engine-airframe integration

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Paynter, G.C.

    1986-01-01

    Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment

  5. Airframe Integration Trade Studies for a Reusable Launch Vehicle

    Science.gov (United States)

    Dorsey, John T.; Wu, Chauncey; Rivers, Kevin; Martin, Carl; Smith, Russell

    1999-01-01

    Future launch vehicles must be lightweight, fully reusable and easily maintained if low-cost access to space is to be achieved. The goal of achieving an economically viable Single-Stage-to-Orbit (SSTO) Reusable Launch Vehicle (RLV) is not easily achieved and success will depend to a large extent on having an integrated and optimized total system. A series of trade studies were performed to meet three objectives. First, to provide structural weights and parametric weight equations as inputs to configuration-level trade studies. Second, to identify, assess and quantify major weight drivers for the RLV airframe. Third, using information on major weight drivers, and considering the RLV as an integrated thermal structure (composed of thrust structures, tanks, thermal protection system, insulation and control surfaces), identify and assess new and innovative approaches or concepts that have the potential for either reducing airframe weight, improving operability, and/or reducing cost.

  6. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Energy Technology Data Exchange (ETDEWEB)

    Harris, C.E.

    1994-09-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance. Separate articles from this report have been indexed into the database.

  7. FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, part 2

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1994-01-01

    The international technical experts in the areas of durability and damage tolerance of metallic airframe structures were assembled to present and discuss recent research findings and the development of advanced design and analysis methods, structural concepts, and advanced materials. The principal focus of the symposium was on the dissemination of new knowledge and the peer-review of progress on the development of advanced methodologies. Papers were presented on the following topics: structural concepts for enhanced durability, damage tolerance, and maintainability; new metallic alloys and processing technology; fatigue crack initiation and small crack effects; fatigue crack growth models; fracture mechanics failure criteria for ductile materials; structural mechanics methodology for residual strength and life prediction; development of flight load spectra for design and testing; and corrosion resistance.

  8. Computational Structures Technology for Airframes and Propulsion Systems

    International Nuclear Information System (INIS)

    Noor, A.K.; Housner, J.M.; Starnes, J.H. Jr.; Hopkins, D.A.; Chamis, C.C.

    1992-05-01

    This conference publication contains the presentations and discussions from the joint University of Virginia (UVA)/NASA Workshops. The presentations included NASA Headquarters perspectives on High Speed Civil Transport (HSCT), goals and objectives of the UVA Center for Computational Structures Technology (CST), NASA and Air Force CST activities, CST activities for airframes and propulsion systems in industry, and CST activities at Sandia National Laboratory

  9. Analysis of airframe/engine interactions in integrated flight and propulsion control

    Science.gov (United States)

    Schierman, John D.; Schmidt, David K.

    1991-01-01

    An analysis framework for the assessment of dynamic cross-coupling between airframe and engine systems from the perspective of integrated flight/propulsion control is presented. This analysis involves to determining the significance of the interactions with respect to deterioration in stability robustness and performance, as well as critical frequency ranges where problems may occur due to these interactions. The analysis illustrated here investigates both the airframe's effects on the engine control loops and the engine's effects on the airframe control loops in two case studies. The second case study involves a multi-input/multi-output analysis of the airframe. Sensitivity studies are performed on critical interactions to examine the degradations in the system's stability robustness and performance. Magnitudes of the interactions required to cause instabilities, as well as the frequencies at which the instabilities occur are recorded. Finally, the analysis framework is expanded to include control laws which contain cross-feeds between the airframe and engine systems.

  10. Thrust Augmentation by Airframe-Integrated Linear-Spike Nozzle Concept for High-Speed Aircraft

    Directory of Open Access Journals (Sweden)

    Hidemi Takahashi

    2018-02-01

    Full Text Available The airframe-integrated linear-spike nozzle concept applied to an external nozzle for high-speed aircraft was evaluated with regard to the thrust augmentation capability and the trim balance. The main focus was on the vehicle aftbody. The baseline airframe geometry was first premised to be a hypersonic waverider design. The baseline aftbody case had an external nozzle comprised of a simple divergent nozzle and was hypothetically replaced with linear-spike external nozzle configurations. Performance evaluation was mainly conducted by considering the nozzle thrust generated by the pressure distribution on the external nozzle surface at the aftbody portion calculated by computer simulation at a given cruise condition with zero angle of attack. The thrust performance showed that the proposed linear-spike external nozzle concept was beneficial in thrust enhancement compared to the baseline geometry because the design of the proposed concept had a compression wall for the exhaust flow, which resulted in increasing the wall pressure. The configuration with the boattail and the angled inner nozzle exhibited further improvement in thrust performance. The trim balance evaluation showed that the aerodynamic center location appeared as acceptable. Thus, benefits were obtained by employing the airframe-integrated linear-spike external nozzle concept.

  11. Validation of an Integrated Airframe and Turbofan Engine Simulation for Evaluation of Propulsion Control Modes

    Science.gov (United States)

    Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei

    2015-01-01

    The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.

  12. New Tools Being Developed for Engine- Airframe Blade-Out Structural Simulations

    Science.gov (United States)

    Lawrence, Charles

    2003-01-01

    One of the primary concerns of aircraft structure designers is the accurate simulation of the blade-out event. This is required for the aircraft to pass Federal Aviation Administration (FAA) certification and to ensure that the aircraft is safe for operation. Typically, the most severe blade-out occurs when a first-stage fan blade in a high-bypass gas turbine engine is released. Structural loading results from both the impact of the blade onto the containment ring and the subsequent instantaneous unbalance of the rotating components. Reliable simulations of blade-out are required to ensure structural integrity during flight as well as to guarantee successful blade-out certification testing. The loads generated by these analyses are critical to the design teams for several components of the airplane structures including the engine, nacelle, strut, and wing, as well as the aircraft fuselage. Currently, a collection of simulation tools is used for aircraft structural design. Detailed high-fidelity simulation tools are used to capture the structural loads resulting from blade loss, and then these loads are used as input into an overall system model that includes complete structural models of both the engines and the airframe. The detailed simulation (shown in the figure) includes the time-dependent trajectory of the lost blade and its interactions with the containment structure, and the system simulation includes the lost blade loadings and the interactions between the rotating turbomachinery and the remaining aircraft structural components. General-purpose finite element structural analysis codes are typically used, and special provisions are made to include transient effects from the blade loss and rotational effects resulting from the engine s turbomachinery. To develop and validate these new tools with test data, the NASA Glenn Research Center has teamed with GE Aircraft Engines, Pratt & Whitney, Boeing Commercial Aircraft, Rolls-Royce, and MSC.Software.

  13. Identification of integrated airframe: Propulsion effects on an F-15 aircraft for application to drag minimization

    Science.gov (United States)

    Schkolnik, Gerard S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  14. SRGULL - AN ADVANCED ENGINEERING MODEL FOR THE PREDICTION OF AIRFRAME INTEGRATED SCRAMJET CYCLE PERFORMANCE

    Science.gov (United States)

    Walton, J. T.

    1994-01-01

    The development of a single-stage-to-orbit aerospace vehicle intended to be launched horizontally into low Earth orbit, such as the National Aero-Space Plane (NASP), has concentrated on the use of the supersonic combustion ramjet (scramjet) propulsion cycle. SRGULL, a scramjet cycle analysis code, is an engineer's tool capable of nose-to-tail, hydrogen-fueled, airframe-integrated scramjet simulation in a real gas flow with equilibrium thermodynamic properties. This program facilitates initial estimates of scramjet cycle performance by linking a two-dimensional forebody, inlet and nozzle code with a one-dimensional combustor code. Five computer codes (SCRAM, SEAGUL, INLET, Progam HUD, and GASH) originally developed at NASA Langley Research Center in support of hypersonic technology are integrated in this program to analyze changing flow conditions. The one-dimensional combustor code is based on the combustor subroutine from SCRAM and the two-dimensional coding is based on an inviscid Euler program (SEAGUL). Kinetic energy efficiency input for sidewall area variation modeling can be calculated by the INLET program code. At the completion of inviscid component analysis, Program HUD, an integral boundary layer code based on the Spaulding-Chi method, is applied to determine the friction coefficient which is then used in a modified Reynolds Analogy to calculate heat transfer. Real gas flow properties such as flow composition, enthalpy, entropy, and density are calculated by the subroutine GASH. Combustor input conditions are taken from one-dimensionalizing the two-dimensional inlet exit flow. The SEAGUL portions of this program are limited to supersonic flows, but the combustor (SCRAM) section can handle supersonic and dual-mode operation. SRGULL has been compared to scramjet engine tests with excellent results. SRGULL was written in FORTRAN 77 on an IBM PC compatible using IBM's FORTRAN/2 or Microway's NDP386 F77 compiler. The program is fully user interactive, but can

  15. Global-local Knowledge Coupling Approach to Support Airframe Structural Design

    NARCIS (Netherlands)

    Wang, H.

    2014-01-01

    The outsourcing that has taken place in the aircraft industry over the last few decades has created a globalized supply chain from and to a limited number of original equipment manufacturers (OEMs). This has led to multi-level design due to the shift from airframe subsystem design to suppliers.

  16. Identification of integrated airframe-propulsion effects on an F-15 aircraft for application to drag minimization

    Science.gov (United States)

    Schkolnik, Gerald S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  17. Structural Integrity and Aging-Related Issues of Helicopters

    Science.gov (United States)

    2000-10-01

    inherently damage lolerant , any damage- inspection in critical locations where tests have indicated tolerant features in airframe design only enhances...required, so European Rotorcraft Forum. Marseilles, France, 15- that helicopters are equipped with such features as fly- 17 September 1998 . by-wire and...fatigue Evaluation of structural integrity issues of aging helicopters. The Structure," 29 April, 1998 . extended safe-life approach encompasses the best

  18. The Structural Integrity Centre

    International Nuclear Information System (INIS)

    Tomkins, B.

    1987-01-01

    The paper concerns the development and work of the Structural Integrity Centre (SIC) at Risley Nuclear Laboratories, United Kingdom. The centre was set up to provide authoritative advice to plant designers and operators on the integrity and life assessment of structures and components across the reactor projects in the United Kingdom. A description is given of the structure and role of the SIC, as well as the Structural Integrity Assessment work. The assessment methods are described for thermally loaded structures and welded structures. Finally, defect significance assessment and environmental effects are outlined. (U.K.)

  19. Integrated smart structures wingbox

    Science.gov (United States)

    Simon, Solomon H.

    1993-09-01

    One objective of smart structures development is to demonstrate the ability of a mechanical component to monitor its own structural integrity and health. Achievement of this objective requires the integration of different technologies, i.e.: (1) structures, (2) sensors, and (3) artificial intelligence. We coordinated a team of experts from these three fields. These experts used reliable knowledge towards the forefront of their technologies and combined the appropriate features into an integrated hardware/software smart structures wingbox (SSW) test article. A 1/4 in. hole was drilled into the SSW test article. Although the smart structure had never seen damage of this type, it correctly recognized and located the damage. Based on a knowledge-based simulation, quantification and assessment were also carried out. We have demonstrated that the SSW integrated hardware & software test article can perform six related functions: (1) identification of a defect; (2) location of the defect; (3) quantification of the amount of damage; (4) assessment of performance degradation; (5) continued monitoring in spite of damage; and (6) continuous recording of integrity data. We present the successful results of the integrated test article in this paper, along with plans for future development and deployment of the technology.

  20. Integrated Structural Design Education

    DEFF Research Database (Denmark)

    Bjerregaard Jensen, Lotte; Almegaard, Henrik

    2011-01-01

    to EU legislation. And a successful engineering student must be prepared to work in the open-ended, multidisciplinary environment necessary to produce structures which comply with EIA demands. This paper describes an innovative course developed at the Technical University of Denmark which integrates...... landscaping and structural design. The integrated courses create a setting for learning about the design of large-scale structures and involve geometry, statics, computer simulation, graphical design and landscape architecture. Together, they educate engineers who can take part in the early design phases...... of a project, function well in design teams, and comply with EU EIA demands....

  1. Crashworthy airframe design concepts: Fabrication and testing

    Science.gov (United States)

    Cronkhite, J. D.; Berry, V. L.

    1982-01-01

    Crashworthy floor concepts applicable to general aviation aircraft metal airframe structures were investigated. Initially several energy absorbing lower fuselage structure concepts were evaluated. Full scale floor sections representative of a twin engine, general aviation airplane lower fuselage structure were designed and fabricated. The floors featured an upper high strength platform with an energy absorbing, crushable structure underneath. Eighteen floors were fabricated that incorporated five different crushable subfloor concepts. The floors were then evaluated through static and dynamic testing. Computer programs NASTRAN and KRASH were used for the static and dynamic analysis of the floor section designs. Two twin engine airplane fuselages were modified to incorporate the most promising crashworthy floor sections for test evaluation.

  2. Assessment of airframe-subsystems synergy on overall aircraft performance in a Collaborative Design Environment.

    OpenAIRE

    Shiva Prakasha, Prajwal; Ciampa, Pier Davide

    2016-01-01

    A Collaborative Multidisciplinary Design Optimization (MDO) methodology is presented, which uses physics based analysis to evaluate the correlations between the airframe design and its sub-systems integration from the early design process, and to exploit the synergies within a simultaneous optimization process. Further, the disciplinary analysis modules involved in the optimization task are located in different organization. Hence, the Airframe and Subsystem design tools are integrated within...

  3. Corrosion in airframes

    OpenAIRE

    PETROVIC ZORAN C.

    2016-01-01

    The introductory chapter provides a brief reference to the issue of corrosion and corrosion damage to aircraft structures. Depending on the nature and dimensions of this non uniformity, three different categories of corrosion are defined: uniform, selective and localized corrosion. The following chapters present the forms of corrosion that can occur in three defined categories of corrosion. Conditions that cause certain types of corrosion in various corrosive environments are discussed. Examp...

  4. Integrated circuit structure

    International Nuclear Information System (INIS)

    1981-01-01

    The invention describes the fabrication of integrated circuit structures, such as read-only memory components of field-effect transistors, which may be fabricated and then maintained in inventory, and later selectively modified in accordance with a desired pattern. It is claimed that MOS depletion-mode devices in accordance with the invention can be fabricated at lower cost and at higher yields. (U.K.)

  5. Damage Adaptation Using Integrated Structural, Propulsion, and Aerodynamic Control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed SBIR Phase I plan of research seeks to develop and demonstrate an integrated architecture designed to compensate for combined propulsion, airframe,...

  6. Study on structural integrity in box structures

    International Nuclear Information System (INIS)

    Asano, Masayuki; Ueta, Masahiro; Kanaoka, Tadashi; Ikeuchi, Toshiaki; Kodama, Tetsuhiro.

    1991-01-01

    This study was carried out to give an experimental foundation to the structural integrity of a box structure. Crack growth tests were performed on the reduced scale models, simulating typical portions of the box structure, in air at room temperature. The results show that the amount of crack growth is too small to injure the structural integrity of the models for the postulated loading cycle, and make clear the effective structure against crack growth. (author)

  7. Fluidic actuators for active flow control on airframe

    Science.gov (United States)

    Schueller, M.; Weigel, P.; Lipowski, M.; Meyer, M.; Schlösser, P.; Bauer, M.

    2016-04-01

    One objective of the European Projects AFLoNext and Clean Sky 2 is to apply Active Flow Control (AFC) on the airframe in critical aerodynamic areas such as the engine/wing junction or the outer wing region for being able to locally improve the aerodynamics in certain flight conditions. At the engine/wing junction, AFC is applied to alleviate or even eliminate flow separation at low speeds and high angle of attacks likely to be associated with the integration of underwing- mounted Ultra High Bypass Ratio (UHBR) engines and the necessary slat-cut-outs. At the outer wing region, AFC can be used to allow more aggressive future wing designs with improved performance. A relevant part of the work on AFC concepts for airframe application is the development of suitable actuators. Fluidic Actuated Flow Control (FAFC) has been introduced as a Flow Control Technology that influences the boundary layer by actively blowing air through slots or holes out of the aircraft skin. FAFC actuators can be classified by their Net Mass Flux and accordingly divided into ZNMF (Zero Net Mass Flux) and NZNMF (Non Zero Net-Mass-Flux) actuators. In the frame of both projects, both types of the FAFC actuator concepts are addressed. In this paper, the objectives of AFC on the airframe is presented and the actuators that are used within the project are discussed.

  8. Should we attempt global (inlet engine airframe) control design?

    Science.gov (United States)

    Carlin, C. M.

    1980-01-01

    The feasibility of multivariable design of the entire airplane control system is briefly addressed. An intermediate step in that direction is to design a control for an inlet engine augmentor system by using multivariable techniques. The supersonic cruise large scale inlet research program is described which will provide an opportunity to develop, integrate, and wind tunnel test a control for a mixed compression inlet and variable cycle engine. The integrated propulsion airframe control program is also discussed which will introduce the problem of implementing MVC within a distributed processing avionics architecture, requiring real time decomposition of the global design into independent modules in response to hardware communication failures.

  9. SRS Tank Structural Integrity Program

    International Nuclear Information System (INIS)

    Maryak, Matthew

    2010-01-01

    The mission of the Structural Integrity Program is to ensure continued safe management and operation of the waste tanks for whatever period of time these tanks are required. Matthew Maryak provides an overview of the Structural Integrity Program to open Session 5 (Waste Storage and Tank Inspection) of the 2010 EM Waste Processing Technical Exchange.

  10. Integrated Control Using the SOFFT Control Structure

    Science.gov (United States)

    Halyo, Nesim

    1996-01-01

    The need for integrated/constrained control systems has become clearer as advanced aircraft introduced new coupled subsystems such as new propulsion subsystems with thrust vectoring and new aerodynamic designs. In this study, we develop an integrated control design methodology which accomodates constraints among subsystem variables while using the Stochastic Optimal Feedforward/Feedback Control Technique (SOFFT) thus maintaining all the advantages of the SOFFT approach. The Integrated SOFFT Control methodology uses a centralized feedforward control and a constrained feedback control law. The control thus takes advantage of the known coupling among the subsystems while maintaining the identity of subsystems for validation purposes and the simplicity of the feedback law to understand the system response in complicated nonlinear scenarios. The Variable-Gain Output Feedback Control methodology (including constant gain output feedback) is extended to accommodate equality constraints. A gain computation algorithm is developed. The designer can set the cross-gains between two variables or subsystems to zero or another value and optimize the remaining gains subject to the constraint. An integrated control law is designed for a modified F-15 SMTD aircraft model with coupled airframe and propulsion subsystems using the Integrated SOFFT Control methodology to produce a set of desired flying qualities.

  11. Integrated materials–structural models

    DEFF Research Database (Denmark)

    Stang, Henrik; Geiker, Mette Rica

    2008-01-01

    , repair works and strengthening methods for structures. A very significant part of the infrastructure consists of reinforced concrete structures. Even though reinforced concrete structures typically are very competitive, certain concrete structures suffer from various types of degradation. A framework...... should define a framework in which materials research results eventually should fit in and on the other side the materials research should define needs and capabilities in structural modelling. Integrated materials-structural models of a general nature are almost non-existent in the field of cement based...

  12. Microstructural and Mechanical Characterization of Shear Formed Aluminum Alloys for Airframe and Space Applications

    Science.gov (United States)

    Troeger, L. P.; Domack, M. S.; Wagner, J. A.

    1998-01-01

    Advanced manufacturing processes such as near-net-shape forming can reduce production costs and increase the reliability of launch vehicle and airframe structural components through the reduction of material scrap and part count and the minimization of joints. The current research is an investigation of the processing-microstructure-property relationship for shear formed cylinders of the Al-Cu-Li-Mg-Ag alloy 2195 for space applications and the Al-Cu-Mg-Ag alloy C415 for airframe applications. Cylinders which have undergone various amounts of shear-forming strain have been studied to assess the microstructure and mechanical properties developed during and after shear forming.

  13. European networks in structural integrity

    International Nuclear Information System (INIS)

    Crutzen, S.; Davies, M.; Hemsworth, B.; Hurst, R.; Kussmaul, K.

    1994-01-01

    Several institutions and electrical utilities in Europe, including the Joint Research Centre (JRC) have the capability to deal problems posed by the operation and ageing of structural components and with their structural integrity assessment. These institutions and the JRC have developed cooperative programmes now organised in networks. They include utilities, engineering companies, R and D laboratories and Regulatory Bodies. Networks are organised and managed like the successful PISC programme: The Institute for Advanced Materials of JRC plays the role of Operating Agent and Manager of these networks: ENIQ, AMES, NESC, each of them dealing with a specific aspect of fitness for purpose of materials in structural components. There exist strong links between the networks and EC Working Groups on Structural Integrity Codes and Standards. (orig.)

  14. Corrosion and corrosion fatigue of airframe aluminum alloys

    Science.gov (United States)

    Chen, G. S.; Gao, M.; Harlow, D. G.; Wei, R. P.

    1994-01-01

    Localized corrosion and corrosion fatigue crack nucleation and growth are recognized as degradation mechanisms that effect the durability and integrity of commercial transport aircraft. Mechanically based understanding is needed to aid the development of effective methodologies for assessing durability and integrity of airframe components. As a part of the methodology development, experiments on pitting corrosion, and on corrosion fatigue crack nucleation and early growth from these pits were conducted. Pitting was found to be associated with constituent particles in the alloys and pit growth often involved coalescence of individual particle-nucleated pits, both laterally and in depth. Fatigue cracks typically nucleated from one of the larger pits that formed by a cluster of particles. The size of pit at which fatigue crack nucleates is a function of stress level and fatigue loading frequency. The experimental results are summarized, and their implications on service performance and life prediction are discussed.

  15. Overview of the Transport Rotorcraft Airframe Crash Testbed (TRACT) Full Scale Crash Tests

    Science.gov (United States)

    Annett, Martin; Littell, Justin

    2015-01-01

    The Transport Rotorcraft Airframe Crash Testbed (TRACT) full-scale tests were performed at NASA Langley Research Center's Landing and Impact Research Facility in 2013 and 2014. Two CH-46E airframes were impacted at 33-ft/s forward and 25-ft/s vertical combined velocities onto soft soil, which represents a severe, but potentially survivable impact scenario. TRACT 1 provided a baseline set of responses, while TRACT 2 included retrofits with composite subfloors and other crash system improvements based on TRACT 1. For TRACT 2, a total of 18 unique experiments were conducted to evaluate Anthropomorphic Test Devices (ATD) responses, seat and restraint performance, cargo restraint effectiveness, patient litter behavior, and activation of emergency locator transmitters and crash sensors. Combinations of Hybrid II, Hybrid III, and ES-2 ATDs were placed in forward and side facing seats and occupant results were compared against injury criteria. The structural response of the airframe was assessed based on accelerometers located throughout the airframe and using three-dimensional photogrammetric techniques. Analysis of the photogrammetric data indicated regions of maximum deflection and permanent deformation. The response of TRACT 2 was noticeably different in the horizontal direction due to changes in the cabin configuration and soil surface, with higher acceleration and damage occurring in the cabin. Loads from ATDs in energy absorbing seats and restraints were within injury limits. Severe injury was likely for ATDs in forward facing passenger seats.

  16. Licensing aspects of structural integrity

    International Nuclear Information System (INIS)

    Turner, M.J.; Hemsworth, B.; Boydon, F.M.D.; Harrop, L.P.; Waters, R.

    1992-01-01

    Examples are given of the wide variety of structural integrity assessments of nuclear plant carried out by the United Kingdom Nuclear Installations Inspectorate (NII) and the consequent need for a flexible approach within the framework provided by the Safety Assessment Principles. The paper describes the use of the Special Case Procedure and draws the distinction between the assessment of incredibility of failure of components and components whose failures are considered within the design basis. Assessment examples provided are the Sizewell B reactor pressure vessel, Magnox reactor pressure vessels, the Prototype Fast Reactor core support structure, Advanced Gas-cooled Reactor steam plant, Thermal Oxide Reprocessing Plant (THORP) vessels, and Steam Generating Heavy Water Reactor pressure tubes. (author)

  17. Simulating the Impact Response of Composite Airframe Components

    Science.gov (United States)

    Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.

    2014-01-01

    In 2010, NASA Langley Research Center obtained residual hardware from the US Army's Survivable Affordable Repairable Airframe Program (SARAP). The hardware consisted of a composite fuselage section that was representative of the center section of a Black Hawk helicopter. The section was fabricated by Sikorsky Aircraft Corporation and designated the Test Validation Article (TVA). The TVA was subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead mass items, such as the rotor transmission, into the fuselage cabin. As a result of the 2008 test, damage to the hardware was limited primarily to the roof. Consequently, when the post-test article was obtained in 2010, the roof area was removed and the remaining structure was cut into six different types of test specimens including: (1) tension and compression coupons for material property characterization, (2) I-beam sections, (3) T-sections, (4) cruciform sections, (5) a large subfloor section, and (6) a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Finite element models of the composite specimens were developed and impact simulations were performed. The properties of the composite material were represented using both a progressive in-plane damage model (Mat 54) and a continuum damage mechanics model (Mat 58) in LS-DYNA. This paper provides test-analysis comparisons of time history responses and the location and type of damage for representative I-beam, T-section, and cruciform section components.

  18. Aerodynamic Engine/Airframe Integration for High Performance Aircraft and Missiles (L’Integration Aerodynamique des Moteurs et des Cellules dans les Avions et les Missiles a Hautes Performances)

    Science.gov (United States)

    1992-09-01

    baisse du niveas da plateau supersonique (Fig.9). L’onde de choc DCZ 0,30 0068avance de 1% dc Ia corde ci cc dilplacement ye rilperesic sur toute CX 104...propulsion component, which is very helpful for a better understanding of the underlying pheno- mena and finding possible areas of improve- men t.I...of excessive, and for a plane and plug nozzle of a hypersonic aircraft, for probably prohibitive, fine meshes. It has to be men - a highly integrated

  19. Integrated piping structural analysis system

    International Nuclear Information System (INIS)

    Motoi, Toshio; Yamadera, Masao; Horino, Satoshi; Idehata, Takamasa

    1979-01-01

    Structural analysis of the piping system for nuclear power plants has become larger in scale and in quantity. In addition, higher quality analysis is regarded as of major importance nowadays from the point of view of nuclear plant safety. In order to fulfill to the above requirements, an integrated piping structural analysis system (ISAP-II) has been developed. Basic philosophy of this system is as follows: 1. To apply the date base system. All information is concentrated. 2. To minimize the manual process in analysis, evaluation and documentation. Especially to apply the graphic system as much as possible. On the basis of the above philosophy four subsystems were made. 1. Data control subsystem. 2. Analysis subsystem. 3. Plotting subsystem. 4. Report subsystem. Function of the data control subsystem is to control all information of the data base. Piping structural analysis can be performed by using the analysis subsystem. Isometric piping drawing and mode shape, etc. can be plotted by using the plotting subsystem. Total analysis report can be made without the manual process through the reporting subsystem. (author)

  20. Application of Circulation Control Technology to Airframe Noise Reduction

    Science.gov (United States)

    Ahuja, K. K.; Sankar, L. N.; Englar, R. J.; Munro, Scott E.; Li, Yi; Gaeta, R. J.

    2003-01-01

    This report is a summary of the work performed by Georgia Tech Research Institute (GTRI) under NASA Langley Grant NAG-1-2146, which was awarded as a part of NASA's Breakthrough Innovative Technologies (BIT) initiative. This was a three-year program, with a one-year no-cost extension. Each year's study has been an integrated effort consisting of computational fluid dynamics, experimental aerodynamics, and detailed noise and flow measurements. Year I effort examined the feasibility of reducing airframe noise by replacing the conventional wing systems with a Circulation Control Wing (CCW), where steady blowing was used through the trailing edge of the wing over a Coanda surface. It was shown that the wing lift increases with CCW blowing and indeed for the same lift, a CCW wing was shown to produce less noise. Year 2 effort dealt with a similar study on the role of pulsed blowing on airframe noise. The main objective of this portion of the study was to assess whether pulse blowing from the trailing edge of a CCW resulted in more, less, or the same amount of radiated noise to the farfield. Results show that a reduction in farfield noise of up to 5 dB is measured when pulse flow is compared with steady flow for an equivalent lift configuration. This reduction is in the spectral region associated with the trailing edge jet noise. This result is due to the unique advantage that pulsed flow has over steady flow. For a range of frequencies, more lift is experienced with the same mass flow as the steady case. Thus, for an equivalent lift and slot height, the pulsed system can operate at lower jet velocities, and hence lower jet noise. The computational analysis showed that for a given time-averaged mass flow rate, pulsed jets give a higher value of C(sub l) and a higher L/D than equivalent steady jets. This benefit is attributable to higher instantaneous jet velocities, and higher instantaneous C(sub mu) values for the pulsed jet. Pulsed jet benefits increase at higher

  1. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  2. Airframe Icing Research Gaps: NASA Perspective

    Science.gov (United States)

    Potapczuk, Mark

    2009-01-01

    qCurrent Airframe Icing Technology Gaps: Development of a full 3D ice accretion simulation model. Development of an improved simulation model for SLD conditions. CFD modeling of stall behavior for ice-contaminated wings/tails. Computational methods for simulation of stability and control parameters. Analysis of thermal ice protection system performance. Quantification of 3D ice shape geometric characteristics Development of accurate ground-based simulation of SLD conditions. Development of scaling methods for SLD conditions. Development of advanced diagnostic techniques for assessment of tunnel cloud conditions. Identification of critical ice shapes for aerodynamic performance degradation. Aerodynamic scaling issues associated with testing scale model ice shape geometries. Development of altitude scaling methods for thermal ice protections systems. Development of accurate parameter identification methods. Measurement of stability and control parameters for an ice-contaminated swept wing aircraft. Creation of control law modifications to prevent loss of control during icing encounters. 3D ice shape geometries. Collection efficiency data for ice shape geometries. SLD ice shape data, in-flight and ground-based, for simulation verification. Aerodynamic performance data for 3D geometries and various icing conditions. Stability and control parameter data for iced aircraft configurations. Thermal ice protection system data for simulation validation.

  3. Structural Integrity in Measures of Self Concept.

    Science.gov (United States)

    Stenner, A. Jackson; Katzenmeyer, W.G.

    Structural integrity of a measure is defined in terms of its replicability, constancy, invariance, and stability. Work completed in the development and validation of the Self Observation Scales (SOS) Primary Level (Stenner and Katzenmeyer, 1973) serves to illustrate one method of establishing structural integrity. The name of each scale of the SOS…

  4. Quantum integrals from coalgebra structure

    International Nuclear Information System (INIS)

    Post, S; Riglioni, D

    2015-01-01

    Quantum versions of the hydrogen atom and the harmonic oscillator are studied on non Euclidean spaces of dimension N. 2N−1 integrals, of arbitrary order, are constructed via a multi-dimensional version of the factorization method, thus confirming the conjecture of Riglioni (2013 J. Phys. A: Math. Theor. 46 265207). The systems are extended via coalgebra extension of sl(2) representations, although not all integrals are expressible in these generators. As an example, dimensional reduction is applied to four-dimensional systems to obtain extension and new proofs of the superintegrability of known families of Hamiltonians. (paper)

  5. The European structural integrity research programme

    International Nuclear Information System (INIS)

    Townley, C.H.A.; Acker, D.; Laue, H.

    1990-01-01

    A thermal hydraulics evaluation of the European Fast Reactor (EFR) design followed by structural analysis is presented in this article to assess the structural integrity research programme to date. Improved design methods are being achieved as a result of the structural integrity programme for the EFR. Excellent collaboration between the nationally based research organizations and the design and construction companies has been important in achieving these improvements. (UK)

  6. Integrating SEA in institutional structures

    DEFF Research Database (Denmark)

    Kørnøv, Lone

    The paper decribes and disusses how institutional structures influenced the decision making proces during the development of the regional planning in the Danish county of North Jutland for the period 1993-1997.......The paper decribes and disusses how institutional structures influenced the decision making proces during the development of the regional planning in the Danish county of North Jutland for the period 1993-1997....

  7. Plated lamination structures for integrated magnetic devices

    Science.gov (United States)

    Webb, Bucknell C.

    2014-06-17

    Semiconductor integrated magnetic devices such as inductors, transformers, etc., having laminated magnetic-insulator stack structures are provided, wherein the laminated magnetic-insulator stack structures are formed using electroplating techniques. For example, an integrated laminated magnetic device includes a multilayer stack structure having alternating magnetic and insulating layers formed on a substrate, wherein each magnetic layer in the multilayer stack structure is separated from another magnetic layer in the multilayer stack structure by an insulating layer, and a local shorting structure to electrically connect each magnetic layer in the multilayer stack structure to an underlying magnetic layer in the multilayer stack structure to facilitate electroplating of the magnetic layers using an underlying conductive layer (magnetic or seed layer) in the stack as an electrical cathode/anode for each electroplated magnetic layer in the stack structure.

  8. Contracted and expanded integrable structures

    International Nuclear Information System (INIS)

    Doikou, Anastasia; Sfetsos, Konstadinos

    2009-01-01

    We propose a generic framework to obtain certain types of contracted and centrally extended algebras. This is based on the existence of quadratic algebras (reflection algebras and twisted Yangians), naturally arising in the context of boundary integrable models. A quite old misconception regarding the 'expansion' of the E 2 algebra into sl 2 is resolved using the representation theory of the aforementioned quadratic algebras. We also obtain centrally extended algebras associated with rational and trigonometric (q-deformed) R-matrices that are solutions of the Yang-Baxter equation.

  9. Subdomain Precise Integration Method for Periodic Structures

    Directory of Open Access Journals (Sweden)

    F. Wu

    2014-01-01

    Full Text Available A subdomain precise integration method is developed for the dynamical responses of periodic structures comprising many identical structural cells. The proposed method is based on the precise integration method, the subdomain scheme, and the repeatability of the periodic structures. In the proposed method, each structural cell is seen as a super element that is solved using the precise integration method, considering the repeatability of the structural cells. The computational efforts and the memory size of the proposed method are reduced, while high computational accuracy is achieved. Therefore, the proposed method is particularly suitable to solve the dynamical responses of periodic structures. Two numerical examples are presented to demonstrate the accuracy and efficiency of the proposed method through comparison with the Newmark and Runge-Kutta methods.

  10. Test Structures For Bumpy Integrated Circuits

    Science.gov (United States)

    Buehler, Martin G.; Sayah, Hoshyar R.

    1989-01-01

    Cross-bridge resistors added to comb and serpentine patterns. Improved combination of test structures built into integrated circuit used to evaluate design rules, fabrication processes, and quality of interconnections. Consist of meshing serpentines and combs, and cross bridge. Structures used to make electrical measurements revealing defects in design or fabrication. Combination of test structures includes three comb arrays, two serpentine arrays, and cross bridge. Made of aluminum or polycrystalline silicon, depending on material in integrated-circuit layers evaluated. Aluminum combs and serpentine arrays deposited over steps made by polycrystalline silicon and diffusion layers, while polycrystalline silicon versions of these structures used to cross over steps made by thick oxide layer.

  11. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  12. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    Science.gov (United States)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  13. A Comparative Study of Learning Curve Models in Defense Airframe Cost Estimating

    Science.gov (United States)

    2015-03-26

    production history and availability of relevant airframe costs. F-15 airframe costs were discovered in two data bases. The F-15 A-D airframe lot...an assembly line at Ford or Toyota . Given this dynamic, assuming the real incompressibility factor is somewhere between 0.0 and 0.1 is not

  14. Structural integrity aspects of reactor safety

    Indian Academy of Sciences (India)

    A large experimental programme supported the structural integrity demonstration. ... Categories in which the structures, systems and components (SSC) are .... One of the ways in which the decision to live with the defect can be aided is the .... The Advanced Heavy Water Reactor (AHWR) (figure 18) being designed by BARC ...

  15. Assessment of integrity of structures containing cracks

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    The object of the investigations is to provide a method of assessing the safety and integrity of structures containing cracklike defects. Estimated load at which the cracked structure will fail is compared with the highest load likely to be applied in service

  16. Nonlinear structural analysis using integrated force method

    Indian Academy of Sciences (India)

    A new formulation termed the Integrated Force Method (IFM) was proposed by Patnaik ... nated ``Structure (nY m)'' where (nY m) are the force and displacement degrees of ..... Patnaik S N, Yadagiri S 1976 Frequency analysis of structures.

  17. Risk Informed Structural Systems Integrity Management

    DEFF Research Database (Denmark)

    Nielsen, Michael Havbro Faber

    2017-01-01

    The present paper is predominantly a conceptual contribution with an appraisal of major developments in risk informed structural integrity management for offshore installations together with a discussion of their merits and the challenges which still lie ahead. Starting point is taken in a selected...... overview of research and development contributions which have formed the basis for Risk Based Inspection Planning (RBI) as we know it today. Thereafter an outline of the methodical basis for risk informed structural systems integrity management, i.e. the Bayesian decision analysis is provided in summary....... The main focus is here directed on RBI for offshore facilities subject to fatigue damages. New ideas and methodical frameworks in the area of robustness and resilience modeling of structural systems are then introduced, and it is outlined how these may adequately be utilized to enhance Structural Integrity...

  18. Structural integrity assessment of HANARO pool cover

    International Nuclear Information System (INIS)

    Ryu, Jeong Soo

    2001-11-01

    This report is for the seismic analysis and the structural integrity evaluation of HANARO Pool Cover in accordances with the requirement of the Technical Specification for Seismic Analysis of HANARO Pool Cover. For performing the seismic analysis and evaluating the structural integrity for HANARO Pool Cover, the finite element analysis model using ANSYS 5.7 was developed and the dynamic characteristics were analyzed. The seismic response spectrum analyses of HANARO Pool Cover under the design floor response spectrum loads of OBE and SSE were performed. The analysis results show that the stress values in HANARO Pool Cover for the seismic loads are within the ASME Code limits. It is also confirmed that the fatigue usage factor is less than 1.0. Therefore any damage on structural integrity is not expected when an HANARO Pool Cover is installed in the upper part of the reactor pool

  19. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    Science.gov (United States)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  20. The Benchmarking of Integrated Business Structures

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-12-01

    Full Text Available The aim of the article is to study the role of the benchmarking in the process of integration of business structures in the aspect of knowledge sharing. The results of studying the essential content of the concept “integrated business structure” and its semantic analysis made it possible to form our own understanding of this category with an emphasis on the need to consider it in the plane of three projections — legal, economic and organizational one. The economic projection of the essential content of integration associations of business units is supported by the organizational projection, which is expressed through such essential aspects as existence of a single center that makes key decisions; understanding integration as knowledge sharing; using the benchmarking as exchange of experience on key business processes. Understanding the process of integration of business units in the aspect of knowledge sharing involves obtaining certain information benefits. Using the benchmarking as exchange of experience on key business processes in integrated business structures will help improve the basic production processes, increase the efficiency of activity of both the individual business unit and the IBS as a whole.

  1. Integrated Management of Structural Pests in Schools.

    Science.gov (United States)

    Illinois State Dept. of Public Health, Springfield.

    The state of Illinois is encouraging schools to better inspect and evaluate the causes of their pest infestation problems through use of the Integrated Pest Management (IPM) guidelines developed by the Illinois Department of Public Health. This guide reviews the philosophy and organization of an IPM program for structural pests in schools,…

  2. MMM: A toolbox for integrative structure modeling.

    Science.gov (United States)

    Jeschke, Gunnar

    2018-01-01

    Structural characterization of proteins and their complexes may require integration of restraints from various experimental techniques. MMM (Multiscale Modeling of Macromolecules) is a Matlab-based open-source modeling toolbox for this purpose with a particular emphasis on distance distribution restraints obtained from electron paramagnetic resonance experiments on spin-labelled proteins and nucleic acids and their combination with atomistic structures of domains or whole protomers, small-angle scattering data, secondary structure information, homology information, and elastic network models. MMM does not only integrate various types of restraints, but also various existing modeling tools by providing a common graphical user interface to them. The types of restraints that can support such modeling and the available model types are illustrated by recent application examples. © 2017 The Protein Society.

  3. Structural integrity of graphite core support structures of HTTR

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Iyoku, Tatsuo; Toyota, Junji; Sato, Sadao; Shiozawa, Shusaku

    1990-02-01

    The graphite core support structures (GCSSs) of the HTTR (High Temperature Engineering Test Reactor) are an arrangement of graphite blocks and posts that support the core and provide a lower plenum and a hot-leg path for the primary coolant. The GCSSs are designed not to be replaced by new items during plant life time (about twenty years). To maintain structural integrity of the GCSSs, conservative design has been made sufficiently on the basis of structural tests. The present study confirmed that reactor safety was still maintained even if failure and destruction of the GCSSs is supposed to occur. The GCSSs are fabricated under strict quality control and the observation and surveillance programs are planed to examine the structual integrity of the GCSSs during an operation. This paper describes the concept of design and quality control and summarizes structural tests, observation and surveillance programs. (author)

  4. Integrating structural health and condition monitoring

    DEFF Research Database (Denmark)

    May, Allan; Thöns, Sebastian; McMillan, David

    2015-01-01

    window’ allowing for the possible detection of faults up to 6 months in advance. The SHM system model uses a reduction in the probability of failure factor to account for lower modelling uncertainties. A case study is produced that shows a reduction in operating costs and also a reduction in risk......There is a large financial incentive to minimise operations and maintenance (O&M) costs for offshore wind power by optimising the maintenance plan. The integration of condition monitoring (CM) and structural health monitoring (SHM) may help realise this. There is limited work on the integration...

  5. Development of Technology for Structural Integrity Evaluation

    International Nuclear Information System (INIS)

    Choun, Young Sun; Choi, I. K.; Kim, M. K. and others

    2005-03-01

    The purpose of this study is a development of seismic safety and structural integrity evaluation method of the structure in the Nuclear Power plant (NPP). The purpose of 1st sub-Topic is the development and improvement of the seismic safety evaluation methodology for the Nuclear Power Plant structures and safety related equipment. The purpose of 2nd sub-topic is the increasing of structure and equipment seismic capacity through the reducing of seismic force. The purpose of 3rd sub-topic is the development of 3-D nonlinear finite element analysis program for prestressed concrete containment building. The last purpose if the evaluation of the failure mechanism of containment structure and structure capacity and the assessment of integrity of containment through the of leakage test. As a result of this research, there are many research results were produced. The scenario earthquake developing method was developed and the effect of the structures and equipment was analyzed. The effectiveness of isolation system was determined and optimum isolation systems for each equipment were selected. The NUCAS-3D program for the 3 dimensional numerical analysis of containment building using the embedded tendon element and rebar element was developed. The tension behavior of containment building was examined and the leakage rate of the concrete crack was determined. The results of this research can be successfully used for many fields of integrity of NPP site. It can be used for development of design earthquake for the seismic design and safety evaluation and establishment of seismic safety evaluation program and seismic capacity improvement program for existing NPP. In case of seismic isolation part, it can be used for the application to the selection of optimum isolation devices for equipment isolation and to the effective evaluation of each seismic isolation devices. In containment analysis part, it can be used for ultimate pressure capacity evaluation of prestressed concrete

  6. Design Processes and Criteria for the X-51A Flight Vehicle Airframe

    National Research Council Canada - National Science Library

    Lane, Jeffrey

    2007-01-01

    .... This paper summarizes the X-51A vehicle mission requirements, system design, design processes used for airframe synthesis, design safety factors, success criteria and issues facing the incorporation...

  7. Hybrid methods for airframe noise numerical prediction

    Energy Technology Data Exchange (ETDEWEB)

    Terracol, M.; Manoha, E.; Herrero, C.; Labourasse, E.; Redonnet, S. [ONERA, Department of CFD and Aeroacoustics, BP 72, Chatillon (France); Sagaut, P. [Laboratoire de Modelisation en Mecanique - UPMC/CNRS, Paris (France)

    2005-07-01

    This paper describes some significant steps made towards the numerical simulation of the noise radiated by the high-lift devices of a plane. Since the full numerical simulation of such configuration is still out of reach for present supercomputers, some hybrid strategies have been developed to reduce the overall cost of such simulations. The proposed strategy relies on the coupling of an unsteady nearfield CFD with an acoustic propagation solver based on the resolution of the Euler equations for midfield propagation in an inhomogeneous field, and the use of an integral solver for farfield acoustic predictions. In the first part of this paper, this CFD/CAA coupling strategy is presented. In particular, the numerical method used in the propagation solver is detailed, and two applications of this coupling method to the numerical prediction of the aerodynamic noise of an airfoil are presented. Then, a hybrid RANS/LES method is proposed in order to perform some unsteady simulations of complex noise sources. This method allows for significant reduction of the cost of such a simulation by considerably reducing the extent of the LES zone. This method is described and some results of the numerical simulation of the three-dimensional unsteady flow in the slat cove of a high-lift profile are presented. While these results remain very difficult to validate with experiments on similar configurations, they represent up to now the first 3D computations of this kind of flow. (orig.)

  8. Advanced structural integrity assessment procedures. Working material

    International Nuclear Information System (INIS)

    1994-01-01

    The purpose of the meeting was to provide an international forum for discussion on recent results in research and utility practice in the field of methodology for the structural integrity assessment of components including relevant non-codified procedures. The scope of the meeting included deterministic and probabilistic approaches. The papers covered the following topics: Leak-before-break concepts; non-destructive examination (NDE) and surveillance results; statistical evaluation of non-destructive examination data; pressurized thermal shock evaluation; fatigue effects (including vibration); and verification qualification. The meeting was attended by 32 specialists from 8 countries. Refs, figs and tabs

  9. Plant life management. Progress for structural integrity

    International Nuclear Information System (INIS)

    Solin, J.

    2003-03-01

    A joint project cluster of industry, VTT and other R and D suppliers is dealing with managing of lifetime of critical structures and components in energy and process industry. The research topics include systematic component lifetime management, data management, integrity and lifetime of pressure bearing components, non-destructive inspection, interactions of coolant and materials, environmentally assisted cracking and ageing of reactor internals. This Symposium is a compilation of selected papers describing an intermediate status of the projects after three years of research and development. (orig.)

  10. Dynamic kirigami structures for integrated solar tracking

    Science.gov (United States)

    Lamoureux, Aaron; Lee, Kyusang; Shlian, Matthew; Forrest, Stephen R.; Shtein, Max

    2015-01-01

    Optical tracking is often combined with conventional flat panel solar cells to maximize electrical power generation over the course of a day. However, conventional trackers are complex and often require costly and cumbersome structural components to support system weight. Here we use kirigami (the art of paper cutting) to realize novel solar cells where tracking is integral to the structure at the substrate level. Specifically, an elegant cut pattern is made in thin-film gallium arsenide solar cells, which are then stretched to produce an array of tilted surface elements which can be controlled to within ±1°. We analyze the combined optical and mechanical properties of the tracking system, and demonstrate a mechanically robust system with optical tracking efficiencies matching conventional trackers. This design suggests a pathway towards enabling new applications for solar tracking, as well as inspiring a broader range of optoelectronic and mechanical devices. PMID:26348820

  11. Integrated corporate structure life cycle management modeling and organization

    OpenAIRE

    Naumenko, M.; Morozova, L.

    2011-01-01

    Integrated business structure presented as complementary pool of its participants skills. The methodical approach to integrated business structure life cycle modeling proposed. Recommendations of enterprises life cycles stages correlate are submitted.

  12. Structural integrity evaluations of CANDU pressure tubes

    International Nuclear Information System (INIS)

    Radu, Vasile

    2003-01-01

    The core of a CANDU-6 pressurized heavy water reactor consists of some hundred horizontal pressure tubes that are manufactured from a Zr-2.5%Nb alloy and which contain the fuel bundles. These tubes are susceptible to a damaging phenomenon known as Delayed Hydride Cracking (DHC). The Zr-2.5%Nb alloy is susceptible to DHC phenomenon when there is diffusion of hydrogen atoms to a service-induced flaws, followed by the hydride platelets formation on the certain crystallographic planes in the matrix material. Finally, the development of hydride regions at the flaw-tip will happened. These hydride regions are able to fracture under stress-temperature conditions (DHC initiation) and the cracks can extend and grow by DHC mechanism. Some studies have been focused on the potential to initiate DHC at the blunt flaws in a CANDU reactor pressure tube and a methodology for structural integrity evaluation was developed. The methodology based on the Failure Assessment Diagrams (FAD's) consists in an integrated graphical plot, where the fracture failure and plastic collapse are simultaneously evaluated by means of two non-dimensional variables (K r and L r ). These two variables represent the ratio of the applied value of either stress or stress intensity factor and the resistance parameter of corresponding magnitude (yield stress or fracture toughness, respectively). Once the plotting plane is determined by the variables K r and L r , the procedure defines a critical failure line that establishes the safe area. The paper will demonstrate the possibility to perform structural integrity evaluations by means of Failure Assessment Diagrams for flaws occurring in CANDU pressure tubes. (author)

  13. Parallel processing of structural integrity analysis codes

    International Nuclear Information System (INIS)

    Swami Prasad, P.; Dutta, B.K.; Kushwaha, H.S.

    1996-01-01

    Structural integrity analysis forms an important role in assessing and demonstrating the safety of nuclear reactor components. This analysis is performed using analytical tools such as Finite Element Method (FEM) with the help of digital computers. The complexity of the problems involved in nuclear engineering demands high speed computation facilities to obtain solutions in reasonable amount of time. Parallel processing systems such as ANUPAM provide an efficient platform for realising the high speed computation. The development and implementation of software on parallel processing systems is an interesting and challenging task. The data and algorithm structure of the codes plays an important role in exploiting the parallel processing system capabilities. Structural analysis codes based on FEM can be divided into two categories with respect to their implementation on parallel processing systems. The first category codes such as those used for harmonic analysis, mechanistic fuel performance codes need not require the parallelisation of individual modules of the codes. The second category of codes such as conventional FEM codes require parallelisation of individual modules. In this category, parallelisation of equation solution module poses major difficulties. Different solution schemes such as domain decomposition method (DDM), parallel active column solver and substructuring method are currently used on parallel processing systems. Two codes, FAIR and TABS belonging to each of these categories have been implemented on ANUPAM. The implementation details of these codes and the performance of different equation solvers are highlighted. (author). 5 refs., 12 figs., 1 tab

  14. Airframe Noise from a Hybrid Wing Body Aircraft Configuration

    Science.gov (United States)

    Hutcheson, Florence V.; Spalt, Taylor B.; Brooks, Thomas F.; Plassman, Gerald E.

    2016-01-01

    A high fidelity aeroacoustic test was conducted in the NASA Langley 14- by 22-Foot Subsonic Tunnel to establish a detailed database of component noise for a 5.8% scale HWB aircraft configuration. The model has a modular design, which includes a drooped and a stowed wing leading edge, deflectable elevons, twin verticals, and a landing gear system with geometrically scaled wheel-wells. The model is mounted inverted in the test section and noise measurements are acquired at different streamwise stations from an overhead microphone phased array and from overhead and sideline microphones. Noise source distribution maps and component noise spectra are presented for airframe configurations representing two different approach flight conditions. Array measurements performed along the aircraft flyover line show the main landing gear to be the dominant contributor to the total airframe noise, followed by the nose gear, the inboard side-edges of the LE droop, the wing tip/LE droop outboard side-edges, and the side-edges of deployed elevons. Velocity dependence and flyover directivity are presented for the main noise components. Decorrelation effects from turbulence scattering on spectral levels measured with the microphone phased array are discussed. Finally, noise directivity maps obtained from the overhead and sideline microphone measurements for the landing gear system are provided for a broad range of observer locations.

  15. Combat Maintenance Concepts and Repair Techniques for Helicopter Airframe Structures

    Science.gov (United States)

    1981-01-01

    probably more vulnerable to frontal and top hits than were aircraft operating in Viet Nam . And aircraft in terrain-following and nap-of-the-earth (NÖE...Addition of substantial weight and/or aerodynamic protrusions to the aircraft. 5. Neglect of finishing work ( cosmetic appearance). 6. Restrictions on

  16. Airframe related aeroacoustics of transport aircraft� -research into prediction and reduction of sound radiation-�

    OpenAIRE

    Delfs, Jan Werner

    2013-01-01

    As the sound generation in turbofan engines has decreased the significance of airframe related sound has increased. For example in landing approach the sound associated with the airframe may even dominate the overall sound radiation of an aircraft. The influence of the airframe on aerosound is threefold: i) Airframe components subjected to either their own turbulent boundary layer flow or to installation related turbulent flow act as sources of sound, ii) The aerodynamic influence of the airf...

  17. Structural integrity analysis of a steam turbine

    International Nuclear Information System (INIS)

    Villagarcia, Maria P.

    1997-01-01

    One of the most critical components of a power utility is the rotor of the steam turbine. Catastrophic failures of the last decades have promoted the development of life assessment procedures for rotors. The present study requires the knowledge of operating conditions, component geometry, the properties of materials, history of the component, size, location and nature of the existing flaws. The aim of the present work is the obtention of a structural integrity analysis procedure for a steam turbine rotor, taking into account the above-mentioned parameters. In this procedure, a stress thermal analysis by finite elements is performed initially, in order to obtain the temperature and stress distribution for a subsequent analysis by fracture mechanics. The risk of a fast fracture due to flaws in the central zone of the rotor is analyzed. The procedure is applied to an operating turbine: the main steam turbine of the Atucha I nuclear power utility. (author)

  18. Superconducting power distribution structure for integrated circuits

    International Nuclear Information System (INIS)

    Ruby, R.C.

    1991-01-01

    This patent describes a superconducting power distribution structure for an integrated circuit. It comprises a first superconducting capacitor plate; a second superconducting capacitor plate provided with electrical isolation means within the second capacitor plate; dielectric means separating the first capacitor plate from the second capacitor plate; first via means coupled at a first end to the first capacitor plate and extending through the dielectric and the electrical isolation means of the second capacitor plate; first contact means coupled to a second end of the first via means; and second contact means coupled to the second capacitor plate such that the first contact means and the second contact means are accessible from the same side of the second capacitor plate

  19. CREATING EFFECTIVE MODELS OF VERTICAL INTEGRATED STRUCTURES IN UKRAINE

    Directory of Open Access Journals (Sweden)

    D. V. Koliesnikov

    2011-01-01

    Full Text Available The results of scientific research aimed at development of methodology-theoretical mechanisms of building the effective models of vertically-integrated structures are presented. A presence of vertically-integrated structures on natural-monopolistic markets at private and governmental sectors of economy and priority directions of integration are given.

  20. Spaceflight Effect on White Matter Structural Integrity

    Science.gov (United States)

    Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.

    2017-01-01

    Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.

  1. Crack turning in integrally stiffened aircraft structures

    Science.gov (United States)

    Pettit, Richard Glen

    Current emphasis in the aircraft industry toward reducing manufacturing cost has created a renewed interest in integrally stiffened structures. Crack turning has been identified as an approach to improve the damage tolerance and fail-safety of this class of structures. A desired behavior is for skin cracks to turn before reaching a stiffener, instead of growing straight through. A crack in a pressurized fuselage encounters high T-stress as it nears the stiffener---a condition favorable to crack turning. Also, the tear resistance of aluminum alloys typically varies with crack orientation, a form of anisotropy that can influence the crack path. The present work addresses these issues with a study of crack turning in two-dimensions, including the effects of both T-stress and fracture anisotropy. Both effects are shown to have relation to the process zone size, an interaction that is central to this study. Following an introduction to the problem, the T-stress effect is studied for a slightly curved semi-infinite crack with a cohesive process zone, yielding a closed form expression for the future crack path in an infinite medium. For a given initial crack tip curvature and tensile T-stress, the crack path instability is found to increase with process zone size. Fracture orthotropy is treated using a simple function to interpolate between the two principal fracture resistance values in two-dimensions. An extension to three-dimensions interpolates between the six principal values of fracture resistance. Also discussed is the transition between mode I and mode II fracture in metals. For isotropic materials, there is evidence that the crack seeks out a direction of either local symmetry (pure mode I) or local asymmetry (pure mode II) growth. For orthotropic materials the favored states are not pure modal, and have mode mixity that is a function of crack orientation. Drawing upon these principles, two crack turning prediction approaches are extended to include fracture

  2. THE ESSENCE OF STRATEGY DEVELOPMENT COMPANY IN THE INTEGRATED STRUCTURE

    Directory of Open Access Journals (Sweden)

    A. I. Khorev

    2014-01-01

    Full Text Available Summary. In the beginning of the article is defined a rational sequence of the consideration of the nature of the strategy of a company development, included into an integrated structure. Further the article describes the following items separately: "a strategy", "a development of a company", and "an integrational structure", applying them to companies included to the integrated structure; separating them from a strategy of development of an autonomous company. The article defines functions which such strategy must define, taking into consideration the nature of the strategy of the company development, included into an integrated structure. Next, the article defines six steps which describe a sequence of development of the strategy of the company development, included into an integrated structure. The analysis which is defined in the article allows determining a complete definition of essence of the strategy of the company development, included into an integrated structure. The article also defines a place of the strategy of development into the hierarchical structure of the strategies. The strategy of the company development, included into an integrated structure (as well as the strategy of development of an autonomous company -- is a competition strategy, and it separates "strategy of leadership for costs", “differentiation strategy”, and “strategy of focusing for costs”. Also authors are analyzed the strategy of the cost optimization. According to the complex definition of the strategy, and the strategy's place inside the hierarchical structure, the article defines functions which corporate, competitive, and functional strategies execute during the management of companies inside an integrational structure. The article presents characteristics of applied strategic decisions at different levels of all three types of strategies. The article's researches allow companies included to the integrated structure define their place inside the

  3. Structural integration of separation and reaction systems: I. Integration of stage-wise processes

    Directory of Open Access Journals (Sweden)

    Mitrović Milan

    2002-01-01

    Full Text Available The structural integration of separation processes, using multifunctional equipment, has been studied on four stage-wise liquid-liquid separations extraction, absorption, distillation, adsorption and on some combinations of these processes. It was shown for stage - wise processes that the ultimate aim of equipment integration is 3-way integration (by components by steps and by stages and that membrane multiphase contactors present concerning the equipment optimal solutions in many cases. First, by using partially integrated equipment and, later by developing fully integrated systems it was experimentally confirmed that structural 3-way integration produces much higher degrees of component separations and component enrichments in compact and safe equipment.

  4. Quantum algebra structure of certain Jackson integrals

    International Nuclear Information System (INIS)

    Matsuo, Atsushi

    1993-01-01

    The q-difference system satisfied by Jackson integrals with a configuration of A-type root system is studied. We explicitly construct some linear combination of Jackson integrals, which satisfies the quantum Knizhnik-Zamolodchikov equation for the 2-point correlation function of q-vertex operators, introduced by Frenkel and Reshetik hin, for the quantum affine algebra U q (sl 2 ). The expression of integrands for the n-point case is conjectured, and a set of linear relations for the corresponding Jackson integrals is proved. (orig.)

  5. High Order Wavelet-Based Multiresolution Technology for Airframe Noise Prediction, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel, high-accuracy, high-fidelity, multiresolution (MRES), wavelet-based framework for efficient prediction of airframe noise sources and...

  6. Some failure analyses of South African Air Force aircraft engine and airframe components

    CSIR Research Space (South Africa)

    Benson, JM

    1998-06-01

    Full Text Available Failure analyses of various engine and airframe components from South African Air Force aircraft have been performed by the Division of Materials Science and Technology over several years and these have ranged from crash investigations to minor...

  7. METHODS OF THE APPROXIMATE ESTIMATIONS OF FATIGUE DURABILITY OF COMPOSITE AIRFRAME COMPONENT TYPICAL ELEMENTS

    Directory of Open Access Journals (Sweden)

    V. E. Strizhius

    2015-01-01

    Full Text Available Methods of the approximate estimations of fatigue durability of composite airframe component typical elements which can be recommended for application at the stage of outline designing of the airplane are generated and presented.

  8. Propulsion Airframe Aeroacoustics Technology Evaluation and Selection Using a Multi-Attribute Decision Making Process and Non-Deterministic Design

    Science.gov (United States)

    Burg, Cecile M.; Hill, Geoffrey A.; Brown, Sherilyn A.; Geiselhart, Karl A.

    2004-01-01

    The Systems Analysis Branch at NASA Langley Research Center has investigated revolutionary Propulsion Airframe Aeroacoustics (PAA) technologies and configurations for a Blended-Wing-Body (BWB) type aircraft as part of its research for NASA s Quiet Aircraft Technology (QAT) Project. Within the context of the long-term NASA goal of reducing the perceived aircraft noise level by a factor of 4 relative to 1997 state of the art, major configuration changes in the propulsion airframe integration system were explored with noise as a primary design consideration. An initial down-select and assessment of candidate PAA technologies for the BWB was performed using a Multi-Attribute Decision Making (MADM) process consisting of organized brainstorming and decision-making tools. The assessments focused on what effect the PAA technologies had on both the overall noise level of the BWB and what effect they had on other major design considerations such as weight, performance and cost. A probabilistic systems analysis of the PAA configurations that presented the best noise reductions with the least negative impact on the system was then performed. Detailed results from the MADM study and the probabilistic systems analysis will be published in the near future.

  9. Integrable structure in discrete shell membrane theory.

    Science.gov (United States)

    Schief, W K

    2014-05-08

    We present natural discrete analogues of two integrable classes of shell membranes. By construction, these discrete shell membranes are in equilibrium with respect to suitably chosen internal stresses and external forces. The integrability of the underlying equilibrium equations is proved by relating the geometry of the discrete shell membranes to discrete O surface theory. We establish connections with generalized barycentric coordinates and nine-point centres and identify a discrete version of the classical Gauss equation of surface theory.

  10. Exploring RNA structure by integrative molecular modelling

    DEFF Research Database (Denmark)

    Masquida, Benoît; Beckert, Bertrand; Jossinet, Fabrice

    2010-01-01

    RNA molecular modelling is adequate to rapidly tackle the structure of RNA molecules. With new structured RNAs constituting a central class of cellular regulators discovered every year, the need for swift and reliable modelling methods is more crucial than ever. The pragmatic method based...... on interactive all-atom molecular modelling relies on the observation that specific structural motifs are recurrently found in RNA sequences. Once identified by a combination of comparative sequence analysis and biochemical data, the motifs composing the secondary structure of a given RNA can be extruded...

  11. Towards an Airframe Noise Prediction Methodology: Survey of Current Approaches

    Science.gov (United States)

    Farassat, Fereidoun; Casper, Jay H.

    2006-01-01

    In this paper, we present a critical survey of the current airframe noise (AFN) prediction methodologies. Four methodologies are recognized. These are the fully analytic method, CFD combined with the acoustic analogy, the semi-empirical method and fully numerical method. It is argued that for the immediate need of the aircraft industry, the semi-empirical method based on recent high quality acoustic database is the best available method. The method based on CFD and the Ffowcs William- Hawkings (FW-H) equation with penetrable data surface (FW-Hpds ) has advanced considerably and much experience has been gained in its use. However, more research is needed in the near future particularly in the area of turbulence simulation. The fully numerical method will take longer to reach maturity. Based on the current trends, it is predicted that this method will eventually develop into the method of choice. Both the turbulence simulation and propagation methods need to develop more for this method to become useful. Nonetheless, the authors propose that the method based on a combination of numerical and analytical techniques, e.g., CFD combined with FW-H equation, should also be worked on. In this effort, the current symbolic algebra software will allow more analytical approaches to be incorporated into AFN prediction methods.

  12. Integrated structure/control design - Present methodology and future opportunities

    Science.gov (United States)

    Weisshaar, T. A.; Newsom, J. R.; Zeiler, T. A.; Gilbert, M. G.

    1986-01-01

    Attention is given to current methodology applied to the integration of the optimal design process for structures and controls. Multilevel linear decomposition techniques proved to be most effective in organizing the computational efforts necessary for ISCD (integrated structures and control design) tasks. With the development of large orbiting space structures and actively controlled, high performance aircraft, there will be more situations in which this concept can be applied.

  13. Structure, deformation, and integrity of materials

    NARCIS (Netherlands)

    With, de G.

    2006-01-01

    This first integrated approach to thermomechanics deals equally with the atomic scale, the mesoscale of microstructures and morphology, as well as the macroscopic level of actual components and workpieces for applications. With some 85 examples and 150 problems, it covers the three important

  14. Regional Power Integration : Structural and Regulatory Challenges

    OpenAIRE

    World Bank

    2011-01-01

    The Central America Regional Electricity Market (MER) trades electricity and transmission capacity among six Central American countries: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua and Panama. The market differs from other electricity markets worldwide because it has its own regulatory body and system operator. Economic integration of the Central American countries has followed...

  15. Structural integrity assessment of piping components

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Chattopadhyay, J.

    2008-01-01

    Integrity assessment of piping components is very essential for safe and reliable operation of power plants. Over the last several decades, considerable work has been done throughout the world to develop a methodology for integrity assessment of pipes and elbows, appropriate for the material involved. However, there is scope of further development/improvement of issues, particularly for pipe bends, that are important for accurate integrity assessment of piping. Considering this aspect, a comprehensive Component Integrity Test Program was initiated in 1998 at Bhabha Atomic Research Centre (BARC), India. In this program, both theoretical and experimental investigations were undertaken to address various issues related to the integrity assessment of pipes and elbows. Under the experimental investigations, fracture mechanics tests have been conducted on pipes and elbows of 200-400 mm nominal bore (NB) diameter with various crack configurations and sizes under different loading conditions. Tests on small tensile and three point bend specimens, machined from the tested pipes, have also been done to evaluate the actual stress-strain and fracture resistance properties of pipe/elbow material. The load-deflection curve and crack initiation loads predicted by non-linear finite element analysis matched well with the experimental results. The theoretical collapse moments of throughwall circumferentially cracked elbows, predicted by the recently developed equations, are found to be closer to the test data compared to the other existing equations. The role of stress triaxialities ahead of crack tip is also shown in the transferability of J-Resistance curve from specimen to component. The cyclic loading and system compliance effect on the load carrying capacity of piping components are investigated and new recommendations are made. (author)

  16. Integrated seismic design of structure and control systems

    CERN Document Server

    Castaldo, Paolo

    2014-01-01

    The structural optimization procedure presented in this book makes it possible to achieve seismic protection through integrated structural/control system design. In particular, it is explained how slender structural systems with a high seismic performance can be achieved through inclusion of viscous and viscoelastic dampers as an integral part of the system. Readers are provided with essential introductory information on passive structural control and passive energy dissipation systems. Dynamic analyses of both single and multiple degree of freedom systems are performed in order to verify the achievement of pre-assigned performance targets, and it is explained how the optimal integrated design methodology, also relevant to retrofitting of existing buildings, should be applied. The book illustrates how structural control research is opening up new possibilities in structural forms and configurations without compromising structural performance.

  17. Structural integrity evaluation of FTL in-pool piping

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. Y

    1998-05-01

    HANARO fuel test loop will be equipped in HANARO to obtain the development betterment of advanced fuel and materials through the irradiation test. The object of this study is to evaluate the structural integrity of FTL in-pool piping by investigating a dynamic analysis of the loop containing a postulated rupture section. The method to perform the dynamic analysis and structural integrity evaluation caused by the pipe whip in water environment can be a reference for a similar structural integrity evaluation. (author). 7 refs., 39 tabs., 34 figs.

  18. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 4: Sections 15 through 21

    Science.gov (United States)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The analyses performed to provide structural mass estimates for the arrow wing supersonic cruise aircraft are presented. To realize the full potential for structural mass reduction, a spectrum of approaches for the wing and fuselage primary structure design were investigated. The objective was: (1) to assess the relative merits of various structural arrangements, concepts, and materials; (2) to select the structural approach best suited for the Mach 2.7 environment; and (3) to provide construction details and structural mass estimates based on in-depth structural design studies. Production costs, propulsion-airframe integration, and advanced technology assessment are included.

  19. Hamiltonian structure for rescaled integrable Lorenz systems

    International Nuclear Information System (INIS)

    Haas, F.; Goedert, J.

    1993-01-01

    It is shown that three among the known invariants for the Lorenz system recast the original equations into a Hamiltonian form. This is made possible by an appropriate time-dependent rescaling and the use of a generalized formalism with non-trivial structure functions. (author)

  20. Integrating spatial and numerical structure in mathematical patterning

    Science.gov (United States)

    Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.

    2018-03-01

    This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.

  1. Structural Integrity Inspection and Visualization System, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the successful feasibility demonstration in Phase I, Physical Optics Corporation (POC) proposes to continue the development of a novel Structural Integrity...

  2. Economic analysis of the structure, Integration and Performance of ...

    African Journals Online (AJOL)

    The data for the study were collected with the aid of a questionnaire. Statistical tools such as simple descriptive statistics, Gini coefficient, Shepherd-Futrel functional ... Key words: Rice; Market structure; Market integration and Performance.

  3. Integrating personality structure, personality process, and personality development

    NARCIS (Netherlands)

    Baumert, Anna; Schmitt, Manfred; Perugini, Marco; Johnson, Wendy; Blum, Gabriela; Borkenau, Peter; Costantini, Giulio; Denissen, J.J.A.; Fleeson, William; Grafton, Ben; Jayawickreme, Eranda; Kurzius, Elena; MacLeod, Colin; Miller, Lynn C.; Read, Stephen J.; Robinson, Michael D.; Wood, Dustin; Wrzus, Cornelia

    2017-01-01

    In this target article, we argue that personality processes, personality structure, and personality development have to be understood and investigated in integrated ways in order to provide comprehensive responses to the key questions of personality psychology. The psychological processes and

  4. Integrating Intelligent Structured Training with a Virtual Dismounted Environment

    National Research Council Canada - National Science Library

    Jensen, Randy; Tasoluk, Coskun; Marshall, Henry; Sims, Jason; Green, Gary

    2007-01-01

    .... This paper reviews results from the integration of an Intelligent Structured Trainer with the embedded Virtual Warrior Soldier prototype developed for the Army RDECOM Simulation and Training Technology Center...

  5. Integrated optical interrogation of micro-structures

    Science.gov (United States)

    Evans, III, Boyd M.; Datskos, Panagiotis G.; Rajic, Slobodan

    2003-01-01

    The invention is an integrated optical sensing element for detecting and measuring changes in position or deflection. A deflectable member, such as a microcantilever, is configured to receive a light beam. A waveguide, such as an optical waveguide or an optical fiber, is positioned to redirect light towards the deflectable member. The waveguide can be incorporated into the deflectable member or disposed adjacent to the deflectable member. Means for measuring the extent of position change or deflection of the deflectable member by receiving the light beam from the deflectable member, such as a photodetector or interferometer, receives the reflected light beam from the deflectable member. Changes in the light beam are correlated to the changes in position or deflection of the deflectable member. A plurality of deflectable members can be arranged in a matrix or an array to provide one or two-dimensional imaging or sensing capabilities.

  6. Addressable-Matrix Integrated-Circuit Test Structure

    Science.gov (United States)

    Sayah, Hoshyar R.; Buehler, Martin G.

    1991-01-01

    Method of quality control based on use of row- and column-addressable test structure speeds collection of data on widths of resistor lines and coverage of steps in integrated circuits. By use of straightforward mathematical model, line widths and step coverages deduced from measurements of electrical resistances in each of various combinations of lines, steps, and bridges addressable in test structure. Intended for use in evaluating processes and equipment used in manufacture of application-specific integrated circuits.

  7. Path Integration Applied to Structural Systems with Uncertain Properties

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.; Köylüoglu, H. Ugur

    Path integration (cell-to-cell mapping) method is applied to evaluate the joint probability density function (jpdf) of the response of the structural systems, with uncertain properties, subject to white noise excitation. A general methodology to deal with uncertainties is outlined and applied...... to the friction controlled slip of a structure on a foundation where the friction coefficient is modelled as a random variable. Exact results derived using the total probability theorem are compared to the ones obtained via path integration....

  8. A Few Expanding Integrable Models, Hamiltonian Structures and Constrained Flows

    International Nuclear Information System (INIS)

    Zhang Yufeng

    2011-01-01

    Two kinds of higher-dimensional Lie algebras and their loop algebras are introduced, for which a few expanding integrable models including the coupling integrable couplings of the Broer-Kaup (BK) hierarchy and the dispersive long wave (DLW) hierarchy as well as the TB hierarchy are obtained. From the reductions of the coupling integrable couplings, the corresponding coupled integrable couplings of the BK equation, the DLW equation, and the TB equation are obtained, respectively. Especially, the coupling integrable coupling of the TB equation reduces to a few integrable couplings of the well-known mKdV equation. The Hamiltonian structures of the coupling integrable couplings of the three kinds of soliton hierarchies are worked out, respectively, by employing the variational identity. Finally, we decompose the BK hierarchy of evolution equations into x-constrained flows and t n -constrained flows whose adjoint representations and the Lax pairs are given. (general)

  9. Integral Design workshops: organization, structure and testing

    OpenAIRE

    Zeiler, W Wim; Savanovic, P Perica

    2010-01-01

    The purpose of this paper is to achieve an understanding of design activities in the context of building design. The starting point is an overview of design research and design methodology. From the insights gained by this analysis of design in this specific context, we present an 'organization structure and design' workshop approach for collaborative multi-discipline design management. The workshops set-up, used to implement and to test the approach, are presented as well as the experiences ...

  10. Integrative Structural Biomechanical Concepts of Ankylosing Spondylitis

    Directory of Open Access Journals (Sweden)

    Alfonse T. Masi

    2011-01-01

    Full Text Available Ankylosing spondylitis (AS is not fully explained by inflammatory processes. Clinical, epidemiological, genetic, and course of disease features indicate additional host-related risk processes and predispositions. Collectively, the pattern of predisposition to onset in adolescent and young adult ages, male preponderance, and widely varied severity of AS is unique among rheumatic diseases. However, this pattern could reflect biomechanical and structural differences between the sexes, naturally occurring musculoskeletal changes over life cycles, and a population polymorphism. During juvenile development, the body is more flexible and weaker than during adolescent maturation and young adulthood, when strengthening and stiffening considerably increase. During middle and later ages, the musculoskeletal system again weakens. The novel concept of an innate axial myofascial hypertonicity reflects basic mechanobiological principles in human function, tissue reactivity, and pathology. However, these processes have been little studied and require critical testing. The proposed physical mechanisms likely interact with recognized immunobiological pathways. The structural biomechanical processes and tissue reactions might possibly precede initiation of other AS-related pathways. Research in the combined structural mechanobiology and immunobiology processes promises to improve understanding of the initiation and perpetuation of AS than prevailing concepts. The combined processes might better explain characteristic enthesopathic and inflammatory processes in AS.

  11. Reactor pressure vessel structural integrity research

    International Nuclear Information System (INIS)

    Pennell, W.E.; Corwin, W.R.

    1994-01-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT NDT ) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties

  12. Tutorial: Integrated-photonic switching structures

    Science.gov (United States)

    Soref, Richard

    2018-02-01

    Recent developments in waveguided 2 × 2 and N × M photonic switches are reviewed, including both broadband and narrowband resonant devices for the Si, InP, and AlN platforms. Practical actuation of switches by electro-optical and thermo-optical techniques is discussed. Present datacom-and-computing applications are reviewed, and potential applications are proposed for chip-scale photonic and optoelectronic integrated switching networks. Potential is found in the reconfigurable, programmable "mesh" switches that enable a promising group of applications in new areas beyond those in data centers and cloud servers. Many important matrix switches use gated semiconductor optical amplifiers. The family of broadband, directional-coupler 2 × 2 switches featuring two or three side-coupled waveguides deserves future experimentation, including devices that employ phase-change materials. The newer 2 × 2 resonant switches include standing-wave resonators, different from the micro-ring traveling-wave resonators. The resonant devices comprise nanobeam interferometers, complex-Bragg interferometers, and asymmetric contra-directional couplers. Although the fast, resonant devices offer ultralow switching energy, ˜1 fJ/bit, they have limitations. They require several trade-offs when deployed, but they do have practical application.

  13. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  14. Model reduction in integrated controls-structures design

    Science.gov (United States)

    Maghami, Peiman G.

    1993-01-01

    It is the objective of this paper to present a model reduction technique developed for the integrated controls-structures design of flexible structures. Integrated controls-structures design problems are typically posed as nonlinear mathematical programming problems, where the design variables consist of both structural and control parameters. In the solution process, both structural and control design variables are constantly changing; therefore, the dynamic characteristics of the structure are also changing. This presents a problem in obtaining a reduced-order model for active control design and analysis which will be valid for all design points within the design space. In other words, the frequency and number of the significant modes of the structure (modes that should be included) may vary considerably throughout the design process. This is also true as the locations and/or masses of the sensors and actuators change. Moreover, since the number of design evaluations in the integrated design process could easily run into thousands, any feasible order-reduction method should not require model reduction analysis at every design iteration. In this paper a novel and efficient technique for model reduction in the integrated controls-structures design process, which addresses these issues, is presented.

  15. Adaptive, tolerant and efficient composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Martin; Sinapius, Michael (eds.) [German Aerospace Center DLR, Braunschweig (Germany). Inst. of Composite Structures and Adaptive Systems

    2013-07-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances. Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along the complete process chain. The book provides basics as well as inspiring ideas for engineers working in the field of adaptive, tolerant and robust composite structures.

  16. Romanian network for structural integrity assessment of nuclear components

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin

    2008-01-01

    Full text: Based of the Romanian option to develop and operate nuclear facilities, using as model the networks created at European level and taking into account the international importance of the structural integrity assessments for lifetime extension of the nuclear components, a national Project started since 2005 in the framework of the National Program 'Research of Excellence', Modulus I 2006-2008, managed by the Ministry of Education and Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', with the acronym RIMIS, the Project had two main objectives: - to elaborate a procedure applicable to the structural integrity assessment of the critical components used in Romanian nuclear facilities; - to integrate the national networking in a similar one, at European level, to enhance the scientific significance of Romanian R and D organizations as well as to increase the contribution to solving one of the major issue of the nuclear field. The paper aimed to present the activities performed in the Romanian institutes, involved in the Project, the final results obtained as part of the R and D activities, including experimental, theoretical and modeling ones regarding structural integrity assessment of nuclear components employed in CANDU type reactors. Also the activity carried out in the framework of the NULIFE network, created at European level of the FP6 Program and sustained by the RIMIS network will be described. (authors)

  17. Overview Of Hanford Single Shell Tank (SST) Structural Integrity - 12123

    International Nuclear Information System (INIS)

    Rast, R.S.; Rinker, M.W.; Washenfelder, D.J.; Johnson, J.B.

    2012-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS(reg s ign) The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  18. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-11-14

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  19. OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123

    Energy Technology Data Exchange (ETDEWEB)

    RAST RS; RINKER MW; WASHENFELDER DJ; JOHNSON JB

    2012-01-25

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and

  20. Overview of Hanford Single Shell Tank (SST) Structural Integrity

    International Nuclear Information System (INIS)

    Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2013-01-01

    To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of

  1. Structurally Integrated Coatings for Wear and Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, M. Brad; Sebright, Jason L.

    2008-11-18

    Wear and corrosion of structures cuts across industries and continues to challenge materials scientists and engineers to develop cost effective solutions. Industries typically seek mature technologies that can be implemented for production with rapid or minimal development and have little appetite for the longer-term materials research and development required to solve complex problems. The collaborative work performed in this project addressed the complexity of this problem in a multi-year program that industries would be reluctant to undertake without government partnership. This effort built upon the prior development of Advanced Abrasion Resistant Materials conduct by Caterpillar Inc. under DOE Cooperative Agreement No. DE-FC26-01NT41054. In this referenced work, coatings were developed that exhibited significant wear life improvements over standard carburized heat treated steel in abrasive wear applications. The technology used in this referenced work, arc lamp fusing of thermal spray coatings, was one of the primary technical paths in this work effort. In addition to extending the capability of the coating technology to address corrosion issues, additional competitive coating technologies were evaluated to insure that the best technology was developed to meet the goals of the program. From this, plasma transferred arc (PTA) welding was selected as the second primary technology that was investigated. Specifically, this project developed improved, cost effective surfacing materials and processes for wear and corrosion resistance in both sliding and abrasive wear applications. Materials with wear and corrosion performance improvements that are 4 to 5 times greater than heat treated steels were developed. The materials developed were based on low cost material systems utilizing ferrous substrates and stainless steel type matrix with hard particulates formed from borides and carbides. Affordability was assessed against other competing hard surfacing or coating

  2. Structural integrity monitoring of critical components in nuclear facilities

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2007-01-01

    Full text: The paper presents the results obtained as part of the Project 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities', RIMIS, a research work underway within the framework of the Ministry of Education and Research Programme 'Research of Excellence'. The main objective of the Project is to constitute a network integrating the national R and D institutes with preoccupations in the structural integrity assessment of critical components in the nuclear facilities operating in Romania, in order to elaborate a specific procedure for this field. The degradation mechanisms of the structural materials used in the CANDU type reactors, operated by Unit 1 and Unit 2 at Cernavoda (pressure tubes, fuel elements sheaths, steam generator tubing) and in the nuclear facilities relating to reactors of this type as, for instance, the Hydrogen Isotopes Separation facility, will be investigated. The development of a flexible procedure will offer the opportunity to extend the applications to other structural materials used in the nuclear field and in the non-nuclear fields as well, in cooperation with other institutes involved in the developed network. The expected results of the project will allow the integration of the network developed at national level in the structures of similar networks operating within the EU, the enhancement of the scientific importance of Romanian R and D organizations as well as the increase of our country's contribution in solving the major issues of the nuclear field. (authors)

  3. Structural Integrity Management for Fixed Offshore Platforms in Malaysia

    OpenAIRE

    Narayanan Sambu Potty; Mohammad Kabir B. Mohd Akram

    2009-01-01

    Structural Integrity Management (SIM) is important for the protection of offshore crew, environment, business assets and company and industry reputation. API RP 2A contained guidelines for assessment of existing platforms mostly for the Gulf of Mexico (GOM). ISO 19902 SIM framework also does not specifically cater for Malaysia. There are about 200 platforms in Malaysia with 90 exceeding their design life. The Petronas Carigali Sdn Bhd (PCSB) uses the Asset Integrity Management ...

  4. Structural Integrity and Hydraulic Stability of Dolos Armour Layers

    DEFF Research Database (Denmark)

    Burcharth, H. F.

    A method for development of design diagrams to ensure structural integrity of slender unreinforced concrete breakwater armour units is presented. The method is based on experimental data from small scale flume tests as well as impact loading of prototype and small scale units. A prerequisite......-parameter characterization makes it possible to develop simple design diagrams for engineering purposes. Specific design diagrams for integrity of Dolos armour units with the waist ratio as a variable have been produced....

  5. First Canadian workshop on engineering structural integrity : CWESI. Proceedings

    International Nuclear Information System (INIS)

    2002-01-01

    The First Canadian Workshop on Engineering Structural Integrity (CWESI) was held on October 16 and 17, 2002, in Toronto, Canada. The purpose of the Workshop was to review strategies for ESI in a number of key industries, and to attempt to plot a course for co-operation in ESI activities and implementation of ESI initiatives in Canadian industry, together with support for appropriate educational, research and development activities. The Workshop consisted of presentations by speakers from a number of industries. Presentations focused on in-service experience under service conditions related to the Canadian environment. This Workshop was attended by practising structural integrity engineers, managers with the responsibility for delivery of safe and reliable operation, and researchers in the structural integrity area

  6. Calibration of Airframe and Occupant Models for Two Full-Scale Rotorcraft Crash Tests

    Science.gov (United States)

    Annett, Martin S.; Horta, Lucas G.; Polanco, Michael A.

    2012-01-01

    Two full-scale crash tests of an MD-500 helicopter were conducted in 2009 and 2010 at NASA Langley's Landing and Impact Research Facility in support of NASA s Subsonic Rotary Wing Crashworthiness Project. The first crash test was conducted to evaluate the performance of an externally mounted composite deployable energy absorber under combined impact conditions. In the second crash test, the energy absorber was removed to establish baseline loads that are regarded as severe but survivable. Accelerations and kinematic data collected from the crash tests were compared to a system integrated finite element model of the test article. Results from 19 accelerometers placed throughout the airframe were compared to finite element model responses. The model developed for the purposes of predicting acceleration responses from the first crash test was inadequate when evaluating more severe conditions seen in the second crash test. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used to calibrate model results for the second full-scale crash test. This combination of heuristic and quantitative methods was used to identify modeling deficiencies, evaluate parameter importance, and propose required model changes. It is shown that the multi-dimensional calibration techniques presented here are particularly effective in identifying model adequacy. Acceleration results for the calibrated model were compared to test results and the original model results. There was a noticeable improvement in the pilot and co-pilot region, a slight improvement in the occupant model response, and an over-stiffening effect in the passenger region. This approach should be adopted early on, in combination with the building-block approaches that are customarily used, for model development and test planning guidance. Complete crash simulations with validated finite element models can be used

  7. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level

    Science.gov (United States)

    Cavagna, Luca; Ricci, Sergio; Travaglini, Lorenzo

    2011-11-01

    This paper presents a design framework called NeoCASS (Next generation Conceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering of Politecnico di Milano in the frame of SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by EU in the context of 6th Framework Program. It enables the creation of efficient low-order, medium fidelity models particularly suitable for structural sizing, aeroelastic analysis and optimization at the conceptual design level. The whole methodology is based on the integration of geometry construction, aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semi-empirical methods, validated in an aircraft design environment. The work here presented aims at including the airframe and its effect from the very beginning of the conceptual design. This aspect is usually not considered in this early phase. In most cases, very simplified formulas and datasheets are adopted, which implies a low level of detail and a poor accuracy. Through NeoCASS, a preliminar distribution of stiffness and inertias can be determined, given the initial layout. The adoption of empirical formulas is reduced to the minimum in favor of simple numerical methods. This allows to consider the aeroelastic behavior and performances, as well, improving the accuracy of the design tools during the iterative steps and lowering the development costs and reducing the time to market. The result achieved is a design tool based on computational methods for the aero-structural analysis and Multi-Disciplinary Optimization (MDO) of aircraft layouts at the conceptual design stage. A complete case study regarding the TransoniCRuiser aircraft, including validation of the results obtained using industrial standard tools like MSC/NASTRAN and a CFD (Computational Fluid Dynamics) code, is reported. As it will be shown, it is possible to improve the degree of

  8. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Control structure selection for energy integrated distillation column

    DEFF Research Database (Denmark)

    Hansen, J.E.; Jørgensen, Sten Bay

    1998-01-01

    This paper treats a case study on control structure selection for an almost binary distillation column. The column is energy integrated with a heat pump in order to transfer heat from the condenser to the reboiler. This integrated plant configuration renders the possible control structures somewhat...... different from what is usual for binary distillation columns. Further the heat pump enables disturbances to propagate faster through the system. The plant has six possible actuators of which three must be used to stabilize the system. Hereby three actuators are left for product purity control. An MILP...

  10. The integrable structure of nonrational conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A. [Steklov Mathematics Institute, St. Petersburg (Russian Federation); Teschner, J. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-02-15

    Using the example of Liouville theory, we show how the separation into left- and rightmoving degrees of freedom of a nonrational conformal field theory can be made explicit in terms of its integrable structure. The key observation is that there exist separate Baxter Q-operators for left- and right-moving degrees of freedom. Combining a study of the analytic properties of the Q-operators with Sklyanin's Separation of Variables Method leads to a complete characterization of the spectrum. Taking the continuum limit allows us in particular to rederive the Liouville reflection amplitude using only the integrable structure. (orig.)

  11. Adaptive, tolerant and efficient composite structures

    CERN Document Server

    Sinapius, Michael

    2013-01-01

    Polymer composites offer the possibility for functional integration since the material is produced simultaneously with the product. The efficiency of composite structures raises through functional integration. The specific production processes of composites offer the possibility to improve and to integrate more functions thus making the structure more valuable. Passive functions can be improved by combination of different materials from nano to macro scale, i.e. strength, toughness, bearing strength, compression after impact properties or production tolerances.  Active functions can be realized by smart materials, i.e. morphing, active vibration control, active structure acoustic control or structure health monitoring. The basis is a comprehensive understanding of materials, simulation, design methods, production technologies and adaptronics. These disciplines together deliver advanced lightweight solutions for applications ranging from mechanical engineering to vehicles, airframe and space structures along ...

  12. Integrity of Safety-Related Fast Reactor Structures

    International Nuclear Information System (INIS)

    Rose, R.T.; Tomkins, B.

    1981-01-01

    The LMFBR contains several structural items whose integrity must be safeguarded during the life of the plant. These items include the main core support structures (strongback, diagrid) and the primary tank to which these structures are attached. In order to demonstrate an acceptable level of structural integrity, the chosen design philosophy must be supported by both analytical and experimental evidence. This paper describes the current approaches in the UK to these requirements. Section 2 describes the materials mechanical properties tests performed to date on both fracture toughness and fatigue crack growth in Type 316 austenitic stainless steel plate and weldments. This data illustrates the problems in identifying the relevant materials fracture parameters for use in assessments. Section 3 shows the test programmes in hand to extend the materials programmes to tests on structural features (mainly welded wide plate tests) which incorporate the complexity of weldments in a structural context. This includes experimental evidence on the effects of local weld residual stresses on structural failure. Various routes are open for the integrity assessment of FR structures. These are discussed in Section 4 but in effect they reduce to a fracture mechanics approach using some technique to cope with elastic-plastic fracture. The main problems at present relate to our ability in analysis to cope with residual stresses and the post-initiation region of the fracture resistance curve. Also, there is the problem of initial defect sizing by current NDE techniques. Current conservative analytical assessments give acceptable defect sizes of order a few millimetres in irradiated weldments. Finally, Section 5 discusses the options open in design to cope with safety related structures under normal and abnormal loading conditions. It is clear that several options exist in design to satisfy the demand for high integrity

  13. Integrated network for structural integrity monitoring of critical components in nuclear facilities, RIMIS

    International Nuclear Information System (INIS)

    Roth, Maria; Constantinescu, Dan Mihai; Brad, Sebastian; Ducu, Catalin; Malinovschi, Viorel

    2008-01-01

    The round table aims to join specialists working in the research area of the Romanian R and D Institutes and Universities involved in structural integrity assessment of materials, especially those working in the nuclear field, together with the representatives of the end user, the Cernavoda NPP. This scientific event will offer the opportunity to disseminate the theoretical, experimental and modelling activities, carried out to date, in the framework of the National Program 'Research of Excellence', Module I 2006-2008, managed by the National Authority for Scientific Research. Entitled 'Integrated Network for Structural Integrity Monitoring of Critical Components in Nuclear Facilities, RIMIS, the project has two main objectives: 1. - to elaborate a procedure applicable to the structural integrity assessment of critical components used in Romanian nuclear facilities (CANDU type Reactor, Hydrogen Isotopes Separation installations); 2. - to integrate the national networking into a similar one of European level, and to enhance the scientific significance of Romanian R and D organisations as well as to increase the contribution in solving major issues of the nuclear field. The topics of the round table will be focused on: 1. Development of a Structural Integrity Assessment Methodology applicable to the nuclear facilities components; 2. Experimental investigation methods and procedures; 3. Numeric simulation of nuclear components behaviour; 4. Further activities to finalize the assessment procedure. Also participations and contributions to sustain the activity in the European Network NULIFE, FP6 will be discussed. (authors)

  14. West-Life, Tools for Integrative Structural Biology

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Structural biology is part of molecular biology focusing on determining structure of macromolecules inside living cells and cell membranes. As macromolecules determines most of the functions of cells the structural knowledge is very useful for further research in metabolism, physiology to application in pharmacology etc. As macromolecules are too small to be observed directly by light microscope, there are other methods used to determine the structure including nuclear magnetic resonance (NMR), X-Ray crystalography, cryo electron microscopy and others. Each method has it's advantages and disadvantages in the terms of availability, sample preparation, resolution. West-Life project has ambition to facilitate integrative approach using multiple techniques mentioned above. As there are already lot of software tools to process data produced by the techniques above, the challenge is to integrate them together in a way they can be used by experts in one technique but not experts in other techniques. One product ...

  15. Visualization of RNA structure models within the Integrative Genomics Viewer.

    Science.gov (United States)

    Busan, Steven; Weeks, Kevin M

    2017-07-01

    Analyses of the interrelationships between RNA structure and function are increasingly important components of genomic studies. The SHAPE-MaP strategy enables accurate RNA structure probing and realistic structure modeling of kilobase-length noncoding RNAs and mRNAs. Existing tools for visualizing RNA structure models are not suitable for efficient analysis of long, structurally heterogeneous RNAs. In addition, structure models are often advantageously interpreted in the context of other experimental data and gene annotation information, for which few tools currently exist. We have developed a module within the widely used and well supported open-source Integrative Genomics Viewer (IGV) that allows visualization of SHAPE and other chemical probing data, including raw reactivities, data-driven structural entropies, and data-constrained base-pair secondary structure models, in context with linear genomic data tracks. We illustrate the usefulness of visualizing RNA structure in the IGV by exploring structure models for a large viral RNA genome, comparing bacterial mRNA structure in cells with its structure under cell- and protein-free conditions, and comparing a noncoding RNA structure modeled using SHAPE data with a base-pairing model inferred through sequence covariation analysis. © 2017 Busan and Weeks; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Development of Probabilistic Structural Analysis Integrated with Manufacturing Processes

    Science.gov (United States)

    Pai, Shantaram S.; Nagpal, Vinod K.

    2007-01-01

    An effort has been initiated to integrate manufacturing process simulations with probabilistic structural analyses in order to capture the important impacts of manufacturing uncertainties on component stress levels and life. Two physics-based manufacturing process models (one for powdered metal forging and the other for annular deformation resistance welding) have been linked to the NESSUS structural analysis code. This paper describes the methodology developed to perform this integration including several examples. Although this effort is still underway, particularly for full integration of a probabilistic analysis, the progress to date has been encouraging and a software interface that implements the methodology has been developed. The purpose of this paper is to report this preliminary development.

  17. Safety Concepts in Structural Glass Engineering : Towards an Integrated Approach

    NARCIS (Netherlands)

    Bos, F.P.

    2009-01-01

    This dissertation proposes the Integrated Approach to Structural Glass Safety, based on four clearly defined element safety properties, damage sensitivity, relative resistance, redundancy, and fracture mode. The Element Safety Diagram (ESD) is introduced to provide an easy-to-read graphical

  18. Periodic reviews of structural integrity of gas-cooled reactors

    International Nuclear Information System (INIS)

    Banks, P.J.; Stokoe, T.Y.; Thomas, D.L.

    1995-01-01

    Nuclear Electric operates 12 gas-cooled reactor power stations which have been in service for between 5 and 30 years. Periodically, comprehensive reviews of the safety cases are carried out for each station. The approach followed in these reviews in respect of structural integrity is outlined with the use of illustrative examples. (author)

  19. 16 CFR 1511.5 - Structural integrity tests.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Structural integrity tests. 1511.5 Section 1511.5 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT... lowest position in the cylinder. If the uppermost edge of the component or fragment is below the plane of...

  20. Integrating structural and mutagenesis data to elucidate GPCR ligand binding

    DEFF Research Database (Denmark)

    Munk, Christian; Harpsøe, Kasper; Hauser, Alexander S

    2016-01-01

    is reported that exhibit activity through multiple receptors, binding in allosteric sites, and bias towards different intracellular signalling pathways. Furthermore, a wealth of single point mutants has accumulated in literature and public databases. Integrating these structural and mutagenesis data will help...

  1. Integration of fluidic jet actuators in composite structures

    Science.gov (United States)

    Schueller, Martin; Lipowski, Mathias; Schirmer, Eckart; Walther, Marco; Otto, Thomas; Geßner, Thomas; Kroll, Lothar

    2015-04-01

    Fluidic Actuated Flow Control (FAFC) has been introduced as a technology that influences the boundary layer by actively blowing air through slots or holes in the aircraft skin or wind turbine rotor blade. Modern wing structures are or will be manufactured using composite materials. In these state of the art systems, AFC actuators are integrated in a hybrid approach. The new idea is to directly integrate the active fluidic elements (such as SJAs and PJAs) and their components in the structure of the airfoil. Consequently, the integration of such fluidic devices must fit the manufacturing process and the material properties of the composite structure. The challenge is to integrate temperature-sensitive active elements and to realize fluidic cavities at the same time. The transducer elements will be provided for the manufacturing steps using roll-to-roll processes. The fluidic parts of the actuators will be manufactured using the MuCell® process that provides on the one hand the defined reproduction of the fluidic structures and, on the other hand, a high light weight index. Based on the first design concept, a demonstrator was developed in order to proof the design approach. The output velocity on the exit was measured using a hot-wire anemometer.

  2. Strengthening, modification and repair techniques’ prioritization for structural integrity control of ageing offshore structures

    International Nuclear Information System (INIS)

    Samarakoon, Samindi M.K.; Ratnayake, R.M. Chandima

    2015-01-01

    Structural integrity control is vital for existing ageing as well as newly built offshore and onshore structures. Structural integrity control becomes highly sensitive to interventions under a potential loss of structural integrity when it comes to offshore oil and gas production and process facilities. This is mainly due to the inherent constraints present in carrying out engineering work in the offshore atmosphere. It has been further exacerbated by the ageing offshore structures and the necessity of carrying out life extension toward the end of their design service lives. Local and international regulations demand the implementation of appropriate strengthening, modification and repair plans when significant changes in the structural integrity are revealed. In this context, strengthening, modification and repair techniques such as welding, member removal/reduction of loading, mechanical clamping and grouted repairs play a vital role. This manuscript presents an approach for prioritizing the strengthening, modification and repair techniques using a multi-criteria analysis approach. An analytic hierarchy process has been selected for the analysis via an illustrative case. It also provides a comprehensive overview of currently existing; strengthening, modification and repair techniques and their comparative pros and cons. - Highlights: • Structural integrity control (SIC) of ageing and intact offshore structures. • Strengthening, modification and/or repair (SMR) techniques have been explained. • Application of multi-criteria analysis conserving SI has been illustrated. • SMR techniques prioritization and sensitivity analysis has been performed

  3. Integrated Multidisciplinary Constrained Optimization of Offshore Support Structures

    International Nuclear Information System (INIS)

    Haghi, Rad; Molenaar, David P; Ashuri, Turaj; Van der Valk, Paul L C

    2014-01-01

    In the current offshore wind turbine support structure design method, the tower and foundation, which form the support structure are designed separately by the turbine and foundation designer. This method yields a suboptimal design and it results in a heavy, overdesigned and expensive support structure. This paper presents an integrated multidisciplinary approach to design the tower and foundation simultaneously. Aerodynamics, hydrodynamics, structure and soil mechanics are the modeled disciplines to capture the full dynamic behavior of the foundation and tower under different environmental conditions. The objective function to be minimized is the mass of the support structure. The model includes various design constraints: local and global buckling, modal frequencies, and fatigue damage along different stations of the structure. To show the usefulness of the method, an existing SWT-3.6-107 offshore wind turbine where its tower and foundation are designed separately is used as a case study. The result of the integrated multidisciplinary design optimization shows 12.1% reduction in the mass of the support structure, while satisfying all the design constraints

  4. Structural integrity analyses: can we manage the advances?

    International Nuclear Information System (INIS)

    Sauve, R.

    2006-01-01

    Engineering has been one of a number of disciplines in which significant advances in analysis procedures has taken place in the last two decades. In particular, advances in computer technology and engineering software have revolutionized the assessment of component structural integrity for a wide range of applications. A significant development in computational mechanics directly related to computer technology that has had a profound impact on the field of structural integrity is the finite element method. The finite element method has re-defined and expanded the role of structural integrity assessments by providing comprehensive modelling capabilities to engineers involved in design and failure analyses. As computer processing speeds and capacity have increased, so has the role of computer modelling in assessments of component structural integrity. With new product development cycles shrinking, the role of initial testing is being reduced in favour of computer modelling and simulation to assess component life and durability. For ageing structures, the evaluation of remaining life and the impact of degraded structural integrity becomes tractable with the modern advances in computational methods. The areas of structural integrity that have derived great benefit from the advances in numerical techniques include stress analysis, fracture mechanics, dynamics, heat transfer, structural reliability, probabilistic methods and continuum mechanics in general. One of the salient features of the current methods is the ability to handle large complex steady state or transient dynamic problems that exhibit highly non-linear behaviour. With the ever-increasing usage of these advanced methods, the question is posed: Can we manage the advances? Better still are we managing the advances? As with all technological advances that enter mainstream use, comes the need for education, training and certification in the application of these methods, improved quality assurance procedures and

  5. Effect of high temperature on integrity of concrete containment structures

    International Nuclear Information System (INIS)

    Bhat, P.D.

    1986-01-01

    The effect of high temperature on concrete material properties and structural behavior are studied in order to relate these effects to the performance of concrete containment structures. Salient data obtained from a test program undertaken to study the behavior of a restrained concrete structure under thermal gradient loads up to its ultimate limit are described. The preliminary results indicate that concrete material properties can be considered to remain unaltered up to temperatures of 100 0 C. The presence of thermal gradients did not significantly affect the structures ultimate mechanical load capacity. Relaxation of restraint forces due to creep was found to be an important factor. The test findings are compared with the observations made in available literature. The effect of test findings on the integrity analysis of a containment structure are discussed. The problem is studied from the viewpoint of a CANDU heavy water reactor containment

  6. The structural integrity safety case for Sizewell B power station

    International Nuclear Information System (INIS)

    Gerachty, J.E.

    1993-01-01

    This paper presents the safety case approach adopted for the components of the Sizewell 'B' Power Station for which a high degree of structural integrity is required. Such components include the Reactor Pressure Vessel, Steam Generator and Pressuriser for which Incredibility of Failure is claimed. The two parts of the case involve achievement and demonstration of integrity. This is achieved by extensive measures involving design, manufacture, materials and inspection. The demonstration has required a fracture mechanics approach. The specific role of inspection validation and its relation to critical defect size is described. (author)

  7. Global symplectic structure-preserving integrators for spinning compact binaries

    Science.gov (United States)

    Zhong, Shuang-Ying; Wu, Xin; Liu, San-Qiu; Deng, Xin-Fa

    2010-12-01

    This paper deals mainly with the application of the second-order symplectic implicit midpoint rule and its symmetric compositions to a post-Newtonian Hamiltonian formulation with canonical spin variables in relativistic compact binaries. The midpoint rule, as a basic algorithm, is directly used to integrate the completely canonical Hamiltonian system. On the other hand, there are symmetric composite methods based on a splitting of the Hamiltonian into two parts: the Newtonian part associated with a Kepler motion, and a perturbation part involving the orbital post-Newtonian and spin contributions, where the Kepler flow has an analytic solution and the perturbation can be calculated by the midpoint rule. An example is the second-order mixed leapfrog symplectic integrator with one stage integration of the perturbation flow and two semistage computations of the Kepler flow at every integration step. Also, higher-order composite methods such as the Forest-Ruth fourth-order symplectic integrator and its optimized algorithm are applicable. Various numerical tests including simulations of chaotic orbits show that the mixed leapfrog integrator is always superior to the midpoint rule in energy accuracy, while both of them are almost equivalent in computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides good precision and needs no expensive additional computational time. As a result, it is worth performing a more detailed and careful examination of the dynamical structure of chaos and order in the parameter windows and phase space of the binary system.

  8. Structural integrity analysis of an INPP building under external loading

    International Nuclear Information System (INIS)

    Dundulis, G.; Karalevicius, R.; Uspuras, E.; Kulak, R.F.; Marchertas, A.

    2005-01-01

    After the terrorist attacks in New York and Washington D. C. using civil airplanes, the evaluation of civil airplane crashes into civil and NPP structures has become very important. The interceptions of many terrorists' communications reveal that the use of commandeered commercial aircraft is still a major part of their plans for destruction. Aircraft crash or other flying objects in the territory of the Ignalina Nuclear Power Plant (INPP) represents a concern to the plant. Aircraft traveling at high velocity have a destructive potential. The aircraft crash may damage the roof and walls of buildings, pipelines, electric motors, cases of power supplies, power cables of electricity transmission and other elements and systems, which are important for safety. Therefore, the evaluation of the structural response to an of aircraft crash is important and was selected for analysis. The structural integrity analysis due to the effects of an aircraft crash on an NPP building structure is the subject of this paper. The finite element method was used for the structural analysis of a typical Ignalina NPP building. The structural integrity analysis was performed for a portion of the ALS using the dynamic loading of an aircraft crash impact model. The computer code NEPTUNE was used for this analysis. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. (authors)

  9. Photonic Structure-Integrated Two-Dimensional Material Optoelectronics

    Directory of Open Access Journals (Sweden)

    Tianjiao Wang

    2016-12-01

    Full Text Available The rapid development and unique properties of two-dimensional (2D materials, such as graphene, phosphorene and transition metal dichalcogenides enable them to become intriguing candidates for future optoelectronic applications. To maximize the potential of 2D material-based optoelectronics, various photonic structures are integrated to form photonic structure/2D material hybrid systems so that the device performance can be manipulated in controllable ways. Here, we first introduce the photocurrent-generation mechanisms of 2D material-based optoelectronics and their performance. We then offer an overview and evaluation of the state-of-the-art of hybrid systems, where 2D material optoelectronics are integrated with photonic structures, especially plasmonic nanostructures, photonic waveguides and crystals. By combining with those photonic structures, the performance of 2D material optoelectronics can be further enhanced, and on the other side, a high-performance modulator can be achieved by electrostatically tuning 2D materials. Finally, 2D material-based photodetector can also become an efficient probe to learn the light-matter interactions of photonic structures. Those hybrid systems combine the advantages of 2D materials and photonic structures, providing further capacity for high-performance optoelectronics.

  10. A Lax integrable hierarchy, bi-Hamiltonian structure and finite-dimensional Liouville integrable involutive systems

    International Nuclear Information System (INIS)

    Xia Tiecheng; Chen Xiaohong; Chen Dengyuan

    2004-01-01

    An eigenvalue problem and the associated new Lax integrable hierarchy of nonlinear evolution equations are presented in this paper. As two reductions, the generalized nonlinear Schroedinger equations and the generalized mKdV equations are obtained. Zero curvature representation and bi-Hamiltonian structure are established for the whole hierarchy based on a pair of Hamiltonian operators (Lenard's operators), and it is shown that the hierarchy of nonlinear evolution equations is integrable in Liouville's sense. Thus the hierarchy of nonlinear evolution equations has infinitely many commuting symmetries and conservation laws. Moreover the eigenvalue problem is nonlinearized as a finite-dimensional completely integrable system under the Bargmann constraint between the potentials and the eigenvalue functions. Finally finite-dimensional Liouville integrable system are found, and the involutive solutions of the hierarchy of equations are given. In particular, the involutive solutions are developed for the system of generalized nonlinear Schroedinger equations

  11. Tools for integrated sequence-structure analysis with UCSF Chimera

    Directory of Open Access Journals (Sweden)

    Huang Conrad C

    2006-07-01

    Full Text Available Abstract Background Comparing related structures and viewing the structures in the context of sequence alignments are important tasks in protein structure-function research. While many programs exist for individual aspects of such work, there is a need for interactive visualization tools that: (a provide a deep integration of sequence and structure, far beyond mapping where a sequence region falls in the structure and vice versa; (b facilitate changing data of one type based on the other (for example, using only sequence-conserved residues to match structures, or adjusting a sequence alignment based on spatial fit; (c can be used with a researcher's own data, including arbitrary sequence alignments and annotations, closely or distantly related sets of proteins, etc.; and (d interoperate with each other and with a full complement of molecular graphics features. We describe enhancements to UCSF Chimera to achieve these goals. Results The molecular graphics program UCSF Chimera includes a suite of tools for interactive analyses of sequences and structures. Structures automatically associate with sequences in imported alignments, allowing many kinds of crosstalk. A novel method is provided to superimpose structures in the absence of a pre-existing sequence alignment. The method uses both sequence and secondary structure, and can match even structures with very low sequence identity. Another tool constructs structure-based sequence alignments from superpositions of two or more proteins. Chimera is designed to be extensible, and mechanisms for incorporating user-specific data without Chimera code development are also provided. Conclusion The tools described here apply to many problems involving comparison and analysis of protein structures and their sequences. Chimera includes complete documentation and is intended for use by a wide range of scientists, not just those in the computational disciplines. UCSF Chimera is free for non-commercial use and is

  12. An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang, E-mail: xu_xixiang@hotmail.co [College of Science, Shandong University of Science and Technology, Qingdao, 266510 (China)

    2010-01-04

    An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.

  13. An integrable coupling family of Merola-Ragnisco-Tu lattice systems, its Hamiltonian structure and related nonisospectral integrable lattice family

    International Nuclear Information System (INIS)

    Xu Xixiang

    2010-01-01

    An integrable coupling family of Merola-Ragnisco-Tu lattice systems is derived from a four-by-four matrix spectral problem. The Hamiltonian structure of the resulting integrable coupling family is established by the discrete variational identity. Each lattice system in the resulting integrable coupling family is proved to be integrable discrete Hamiltonian system in Liouville sense. Ultimately, a nonisospectral integrable lattice family associated with the resulting integrable lattice family is constructed through discrete zero curvature representation.

  14. The Development of Two Composite Energy Absorbers for Use in a Transport Rotorcraft Airframe Crash Testbed (TRACT 2) Full-Scale Crash Test

    Science.gov (United States)

    Littell, Justin D.; Jackson, Karen E.; Annett, Martin S.; Seal, Michael D.; Fasanella, Edwin L.

    2015-01-01

    Two composite energy absorbers were developed and evaluated at NASA Langley Research Center through multi-level testing and simulation performed under the Transport Rotorcraft Airframe Crash Testbed (TRACT) research program. A conical-shaped energy absorber, designated the conusoid, was evaluated that consisted of four layers of hybrid carbon-Kevlar plain weave fabric oriented at [+45deg/-45deg/-45deg/+45deg] with respect to the vertical direction. A sinusoidal-shaped energy absorber, designated the sinusoid, was developed that consisted of hybrid carbon-Kevlar plain weave fabric face sheets, two layers for each face sheet oriented at +/-45deg with respect to the vertical direction, and a closed-cell ELFOAM P200 polyisocyanurate (2.0-lb/cu ft) foam core. The design goal for the energy absorbers was to achieve average floor-level accelerations of between 25- and 40-g during the full-scale crash test of a retrofitted CH-46E helicopter airframe, designated TRACT 2. Variations in both designs were assessed through dynamic crush testing of component specimens. Once the designs were finalized, subfloor beams of each configuration were fabricated and retrofitted into a barrel section of a CH-46E helicopter. A vertical drop test of the barrel section was conducted onto concrete to evaluate the performance of the energy absorbers prior to retrofit into TRACT 2. The retrofitted airframe was crash tested under combined forward and vertical velocity conditions onto soft soil. Finite element models were developed of all test articles and simulations were performed using LS-DYNA, a commercial nonlinear explicit transient dynamic finite element code. Test-analysis results are presented for each energy absorber as comparisons of time-history responses, as well as predicted and experimental structural deformations and progressive damage under impact loading for each evaluation level.

  15. Recent Advances in Airframe-Propulsion Concepts with Distributed Propulsion

    OpenAIRE

    Isikveren , A.T.; Seitz , A.; Bijewitz , J.; Hornung , M.; Mirzoyan , A.; Isyanov , A.; Godard , J.L.; Stückl , S.; Van Toor , J.

    2014-01-01

    International audience; This paper discusses design and integration associated with distributed propulsion as a means of providing motive power for future aircraft concepts. The technical work reflects activities performed within a European Commission funded Framework 7 project entitled Distributed Propulsion and Ultra-high By-Pass Rotor Study at Aircraft Level, or, DisPURSAL. In this instance, the approach of distributed propulsion includes one unique solution that integrates the fuselage wi...

  16. Preliminary Guideline for the High Temperature Structure Integrity Assessment Procedure Part II. High Temperature Structural Integrity Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Kim, J. B.; Lee, H. Y.; Park, C. G.; Joo, Y. S.; Koo, G. H.; Kim, S. H

    2007-02-15

    A high temperature structural integrity assessment belongs to the Part II of a whole preliminary guideline for the high temperature structure. The main contents of this guideline are the evaluation procedures of the creep-fatigue crack initiation and growth in high temperature condition, the high temperature LBB evaluation procedure, and the inelastic evaluations of the welded joints in SFR structures. The methodologies for the proper inelastic analysis of an SFR structures in high temperatures are explained and the guidelines of inelastic analysis options using ANSYS and ABAQUS are suggested. In addition, user guidelines for the developed NONSTA code are included. This guidelines need to be continuously revised to improve the applicability to the design and analysis of the SFR structures.

  17. Integrative Analysis of Metabolic Models – from Structure to Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Anja, E-mail: hartmann@ipk-gatersleben.de [Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben (Germany); Schreiber, Falk [Monash University, Melbourne, VIC (Australia); Martin-Luther-University Halle-Wittenberg, Halle (Germany)

    2015-01-26

    The characterization of biological systems with respect to their behavior and functionality based on versatile biochemical interactions is a major challenge. To understand these complex mechanisms at systems level modeling approaches are investigated. Different modeling formalisms allow metabolic models to be analyzed depending on the question to be solved, the biochemical knowledge and the availability of experimental data. Here, we describe a method for an integrative analysis of the structure and dynamics represented by qualitative and quantitative metabolic models. Using various formalisms, the metabolic model is analyzed from different perspectives. Determined structural and dynamic properties are visualized in the context of the metabolic model. Interaction techniques allow the exploration and visual analysis thereby leading to a broader understanding of the behavior and functionality of the underlying biological system. The System Biology Metabolic Model Framework (SBM{sup 2} – Framework) implements the developed method and, as an example, is applied for the integrative analysis of the crop plant potato.

  18. Evaluation of structure integrity of the lifting handle of CRB

    Energy Technology Data Exchange (ETDEWEB)

    Wu, S.-Y. [Radiation Protection Association, Taiwan (China); Lin, S.-R. [Radiation Protection Association, Taiwan (China)], E-mail: srlin@iner.gov.tw; Kang, L.-C. [Institute of Nuclear Energy Research, Taiwan (China); Chang, Han-Jou [Department of Nuclear Safety, TPC, Taiwan (China)

    2008-09-15

    Since visual inspection was applied to inspect the control rod blades (CRBs) of nuclear power plants in Taiwan, indications have been found in areas such as roller-pin hole, sheath and tie-rod of CRB. Many preliminary safety analyses with conservative assumptions have been conducted to endorse the continuing operation of the units. The objective of this study is to evaluate the structural integrity of those CRBs during lifting operation. Detailed finite element models of the lifting handle of the CRB are built with emphasis on the postulated crack near the roller-pin hole. Both the D-215 type CRB and the Marathon type CRB are evaluated. It is concluded that the structural integrity is guaranteed even under the worst postulated situation.

  19. Integrative structure and functional anatomy of a nuclear pore complex

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.

    2018-03-01

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  20. Integrative structure and functional anatomy of a nuclear pore complex.

    Science.gov (United States)

    Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P

    2018-03-22

    Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.

  1. Flexible PCPDTBT:PCBM solar cells with integrated grating structures

    DEFF Research Database (Denmark)

    Oliveira Hansen, Roana Melina de; Liu, Yinghui; Madsen, Morten

    2013-01-01

    We report on development of flexible PCPDTBT:PCBM solar cells with integrated diffraction gratings on the bottom electrodes. The presented results address PCPDTBT:PCBM solar cells in an inverted geometry, which contains implemented grating structures whose pitch is tuned to match the absorption...... spectra of the active layer. This optimized solar cell structure leads to an enhanced absorption in the active layer and thus improved short-circuit currents and power conversion efficiencies in the fabricated devices. Fabrication of the solar cells on thin polyimide substrates which are compatible...

  2. Structural integrity of materials in nuclear service: a bibliography

    International Nuclear Information System (INIS)

    Heddleson, F.A.

    1977-01-01

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user

  3. Structural reasons for vertical integration in the international oil industry

    International Nuclear Information System (INIS)

    Luciani, G.

    1991-01-01

    Once upon a time, the international oil industry was vertically integrated. A small group of companies controlled a very substantial share of international oil flows, extending their operations from the oil well to the gas pump, and relying on intracorporate transfers for most in-between transactions. The historical reasons for vertical disintegration, the market role, and structural reasons for vertical reintegration are examined. (author)

  4. Structural integrity of materials in nuclear service: a bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Heddleson, F.A.

    1977-06-07

    This report contains 679 abstracts from the Nuclear Safety Information Center (NSIC) computer file dated 1973 through 1976 covering material properties with respect to structural integrity. All materials important to the nuclear industry (except concrete) are covered for mechanical properties, chemical properties, corrosion, fracture or failure, radiation damage, creep, cracking, and swelling. Keyword, author, and permuted-title indexes are included for the convenience of the user.

  5. Towards risk-based structural integrity methods for PWRs

    International Nuclear Information System (INIS)

    Chapman, O.J.V.; Lloyd, R.B.

    1992-01-01

    This paper describes the development of risk-based structural integrity assurance methods and their application to Pressurized Water Reactor (PWR) plant. In-service inspection is introduced as a way of reducing the failure probability of high risk sites and the latter are identified using reliability analysis; the extent and interval of inspection can also be optimized. The methodology is illustrated by reference to the aspect of reliability of weldments in PWR systems. (author)

  6. An information integration system for structured documents, Web, and databases

    OpenAIRE

    Morishima, Atsuyuki

    1998-01-01

    Rapid advance in computer network technology has changed the style of computer utilization. Distributed computing resources over world-wide computer networks are available from our local computers. They include powerful computers and a variety of information sources. This change is raising more advanced requirements. Integration of distributed information sources is one of such requirements. In addition to conventional databases, structured documents have been widely used, and have increasing...

  7. Poling of PVDF matrix composites for integrated structural load sensing

    Science.gov (United States)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.; Zhao, Ping

    2014-03-01

    The purpose of this study is to create and evaluate a smart composite structure that can be used for integrated load sensing and structural health monitoring. In this structure, PVDF films are used as the matrix material instead of epoxy resin or other thermoplastics. The reinforcements are two layers of carbon fiber with one layer of Kevlar separating them. Due to the electrical conductivity properties of carbon fiber and the dielectric effect of Kevlar, the structure acts as a capacitor. Furthermore, the piezoelectric properties of the PVDF matrix can be used to monitor the response of the structure under applied loads. In order to exploit the piezoelectric properties of PVDF, the PVDF material must be polarized to align the dipole moments of its crystalline structure. The optimal condition for poling the structure was found by performing a 23 factorial design of experiment (DoE). The factors that were studied in DoE were temperature, voltage, and duration of poling. Finally, the response of the poled structure was monitored by exposing the samples to an applied load.

  8. Structural Integrity Assessment of Reactor Containment Subjected to Aircraft Crash

    International Nuclear Information System (INIS)

    Kim, Junyong; Chang, Yoonsuk

    2013-01-01

    When an accident occurs at the NPP, containment building which acts as the last barrier should be assessed and analyzed structural integrity by internal loading or external loading. On many occasions that can occur in the containment internal such as LOCA(Loss Of Coolant Accident) are already reflected to design. Likewise, there are several kinds of accidents that may occur from the outside of containment such as earthquakes, hurricanes and strong wind. However, aircraft crash that at outside of containment is not reflected yet in domestic because NPP sites have been selected based on the probabilistic method. After intentional aircraft crash such as World Trade Center and Pentagon accident in US, social awareness for safety of infrastructure like NPP was raised world widely and it is time for assessment of aircraft crash in domestic. The object of this paper is assessment of reactor containment subjected to aircraft crash by FEM(Finite Element Method). In this paper, assessment of structural integrity of containment building subjected to certain aircraft crash was carried out. Verification of structure integrity of containment by intentional severe accident. Maximum stress 61.21MPa of horizontal shell crash does not penetrate containment. Research for more realistic results needed by steel reinforced concrete model

  9. New unified fracture toughness estimation scheme for structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, K.; Nevasmaa, P. [VTT, Espoo (Finland); Bannister, A. [Research and Development, British Steel plc., Swinden Technology Centre Rotherham (United Kingdom)

    1998-12-31

    At present, treatment of fracture toughness data varies depending on the type of data (K{sub IC}, J, CTOD) that are available for fracture mechanics analysis. This complicates structural integrity assessment and makes it difficult to apply any single, unified procedure. Within the Brite-Euram project `SINTAP` a fracture toughness estimation scheme has been developed for the unified treatment of data for use in structural integrity assessment. As a procedure, it can be applied to Charpy data, as well as to fracture toughness data, and is suitable for the treatment of data at both single and different temperatures. The data sets may contain results from both homogeneous and inhomogeneous material, making the procedure applicable also to welded joints. The procedure allows fracture toughness assessment with quantified probability and confidence levels. Irrespective of the type of the original data, one material-specific K{sub mat} value representing a conservative estimate of the mean fracture toughness is obtained (with its probability distribution). This information can then be applied to structural integrity assessment. (orig.) 4 refs.

  10. New unified fracture toughness estimation scheme for structural integrity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wallin, K; Nevasmaa, P [VTT, Espoo (Finland); Bannister, A [Research and Development, British Steel plc., Swinden Technology Centre Rotherham (United Kingdom)

    1999-12-31

    At present, treatment of fracture toughness data varies depending on the type of data (K{sub IC}, J, CTOD) that are available for fracture mechanics analysis. This complicates structural integrity assessment and makes it difficult to apply any single, unified procedure. Within the Brite-Euram project `SINTAP` a fracture toughness estimation scheme has been developed for the unified treatment of data for use in structural integrity assessment. As a procedure, it can be applied to Charpy data, as well as to fracture toughness data, and is suitable for the treatment of data at both single and different temperatures. The data sets may contain results from both homogeneous and inhomogeneous material, making the procedure applicable also to welded joints. The procedure allows fracture toughness assessment with quantified probability and confidence levels. Irrespective of the type of the original data, one material-specific K{sub mat} value representing a conservative estimate of the mean fracture toughness is obtained (with its probability distribution). This information can then be applied to structural integrity assessment. (orig.) 4 refs.

  11. Longitudinal Acceleration Tests of Overhead Luggage Bins and Auxiliary Fuel Tank in a Transport Airplane Airframe Section

    National Research Council Canada - National Science Library

    McGuire, Robert

    1999-01-01

    This report contains the description and test results of overhead stowage bin calibrations and longitudinal impact testing of a 10-foot transport airframe section conducted at the Transportation Research Center Inc. (TRC...

  12. Longitudinal Acceleration Test of Overhead Luggage Bins and Auxiliary Fuel Tank in a Transport Airplane Airframe Section, Part 2

    National Research Council Canada - National Science Library

    McGuire, Robert

    2000-01-01

    This report contains the description and test results of overhead stowage bin calibrations and longitudinal impact testing of a 10-foot transport airframe section conducted at the Transportation Research Center Inc. (TRC...

  13. Validated Feasibility Study of Integrally Stiffened Metallic Fuselage Panels for Reducing Manufacturing Costs

    Science.gov (United States)

    Pettit, R. G.; Wang, J. J.; Toh, C.

    2000-01-01

    The continual need to reduce airframe cost and the emergence of high speed machining and other manufacturing technologies has brought about a renewed interest in large-scale integral structures for aircraft applications. Applications have been inhibited, however, because of the need to demonstrate damage tolerance, and by cost and manufacturing risks associated with the size and complexity of the parts. The Integral Airframe Structures (IAS) Program identified a feasible integrally stiffened fuselage concept and evaluated performance and manufacturing cost compared to conventional designs. An integral skin/stiffener concept was produced both by plate hog-out and near-net extrusion. Alloys evaluated included 7050-T7451 plate, 7050-T74511 extrusion, 6013-T6511 extrusion, and 7475-T7351 plate. Mechanical properties, structural details, and joint performance were evaluated as well as repair, static compression, and two-bay crack residual strength panels. Crack turning behavior was characterized through panel tests and improved methods for predicting crack turning were developed. Manufacturing cost was evaluated using COSTRAN. A hybrid design, made from high-speed machined extruded frames that are mechanically fastened to high-speed machined plate skin/stringer panels, was identified as the most cost-effective manufacturing solution. Recurring labor and material costs of the hybrid design are up to 61 percent less than the current technology baseline.

  14. Structural Integrity Evaluation for the IVTM Gripper in PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. H.; Koo, G. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The materials of the gripper used for the analysis are the 316SS in the gripper body parts and the Inconel 718 alloy in the gripper finger parts, respectively. For six sections of the IVTM gripper, the structural integrity according to ASME-NB design rule is checked for the dead weight and refueling load because it is under the low temperature during the refueling operation. As a result of the evaluation, it is reviewed the IVTM gripper design has the structural adequacy. IVTM (In-Vessel Transfer Machine) is the instrument for transferring the core assembly inside the reactor vessel. The IVTM use the gripper finger for the connection and disconnection with the core assembly, which is designed to be possible for the rotation and vertical movement of the gripper. We can see that the IVTM gripper is supported by the gripper guide structure. In the gripper movement, the gripper is lowered to pick up the core assembly with its fingers closed. On contact with the end of the core assembly, the gripper fingers are opened, and then connected with the core assembly. The gripper is then raised with the core assembly. This is the gripper mechanism to handle the core assembly. The purpose of this study is to analyze the gripper stresses and displacements for the design loads applied to the gripper, and also to evaluate the structural integrity of the gripper design for 60 year lifetime.

  15. Lightweight structure design for wind energy by integrating nanostructured materials

    International Nuclear Information System (INIS)

    Li, Ying; Lu, Jian

    2014-01-01

    Highlights: • Integrate high-strength nano-materials into lightweight design. • Lightweight design scheme for wind turbine tower application. • Expand the bending formulae for tapered tubular structures with varying thickness. • We rewrite the Secant Formula for a tapered beam under eccentric compression. - Abstract: Wind power develops very fast nowadays with high expectation. Although at the mean time, the use of taller towers, however, smacks head-on into the issue of transportability. The engineering base and computational tools have to be developed to match machine size and volume. Consequently the research on the light weight structures of tower is carrying out in the main countries which are actively developing wind energy. This paper reports a new design scheme of light weight structure for wind turbine tower. This design scheme is based on the integration of the nanostructured materials produced by the Surface Mechanical Attrition Treatment (SMAT) process. The objective of this study is to accomplish the weight reduction by optimizing the wall thickness of the tapered tubular structure. The basic methods include the identification of the critical zones and the distribution of the high strength materials according to different necessities. The equivalent strength or stiffness design method and the high strength material properties after SMAT process are combined together. Bending and buckling are two main kinds of static loads concerned in consideration. The study results reveal that there is still enough margin for weight reduction in the traditional wind turbine tower design

  16. Static and Dynamic Friction Behavior of Candidate High Temperature Airframe Seal Materials

    Science.gov (United States)

    Dellacorte, C.; Lukaszewicz, V.; Morris, D. E.; Steinetz, B. M.

    1994-01-01

    The following report describes a series of research tests to evaluate candidate high temperature materials for static to moderately dynamic hypersonic airframe seals. Pin-on-disk reciprocating sliding tests were conducted from 25 to 843 C in air and hydrogen containing inert atmospheres. Friction, both dynamic and static, was monitored and serves as the primary test measurement. In general, soft coatings lead to excessive static friction and temperature affected friction in air environments only.

  17. Fluorescence microscopy for the characterization of structural integrity

    Science.gov (United States)

    Street, Kenneth W.; Leonhardt, Todd A.

    1991-01-01

    The absorption characteristics of light and the optical technique of fluorescence microscopy for enhancing metallographic interpretation are presented. Characterization of thermally sprayed coatings by optical microscopy suffers because of the tendency for misidentification of the microstructure produced by metallographic preparation. Gray scale, in bright field microscopy, is frequently the only means of differentiating the actual structural details of porosity, cracking, and debonding of coatings. Fluorescence microscopy is a technique that helps to distinguish the artifacts of metallographic preparation (pullout, cracking, debonding) from the microstructure of the specimen by color contrasting structural differences. Alternative instrumentation and the use of other dye systems are also discussed. The combination of epoxy vacuum infiltration with fluorescence microscopy to verify microstructural defects is an effective means to characterize advanced materials and to assess structural integrity.

  18. Music and language perception: expectations, structural integration, and cognitive sequencing.

    Science.gov (United States)

    Tillmann, Barbara

    2012-10-01

    Music can be described as sequences of events that are structured in pitch and time. Studying music processing provides insight into how complex event sequences are learned, perceived, and represented by the brain. Given the temporal nature of sound, expectations, structural integration, and cognitive sequencing are central in music perception (i.e., which sounds are most likely to come next and at what moment should they occur?). This paper focuses on similarities in music and language cognition research, showing that music cognition research provides insight into the understanding of not only music processing but also language processing and the processing of other structured stimuli. The hypothesis of shared resources between music and language processing and of domain-general dynamic attention has motivated the development of research to test music as a means to stimulate sensory, cognitive, and motor processes. Copyright © 2012 Cognitive Science Society, Inc.

  19. Experiences with integral microelectronics on smart structures for space

    Science.gov (United States)

    Nye, Ted; Casteel, Scott; Navarro, Sergio A.; Kraml, Bob

    1995-05-01

    One feature of a smart structure implies that some computational and signal processing capability can be performed at a local level, perhaps integral to the controlled structure. This requires electronics with a minimal mechanical influence regarding structural stiffening, heat dissipation, weight, and electrical interface connectivity. The Advanced Controls Technology Experiment II (ACTEX II) space-flight experiments implemented such a local control electronics scheme by utilizing composite smart members with integral processing electronics. These microelectronics, tested to MIL-STD-883B levels, were fabricated with conventional thick film on ceramic multichip module techniques. Kovar housings and aluminum-kapton multilayer insulation was used to protect against harsh space radiation and thermal environments. Development and acceptance testing showed the electronics design was extremely robust, operating in vacuum and at temperature range with minimal gain variations occurring just above room temperatures. Four electronics modules, used for the flight hardware configuration, were connected by a RS-485 2 Mbit per second serial data bus. The data bus was controlled by Actel field programmable gate arrays arranged in a single master, four slave configuration. An Intel 80C196KD microprocessor was chosen as the digital compensator in each controller. It was used to apply a series of selectable biquad filters, implemented via Delta Transforms. Instability in any compensator was expected to appear as large amplitude oscillations in the deployed structure. Thus, over-vibration detection circuitry with automatic output isolation was incorporated into the design. This was not used however, since during experiment integration and test, intentionally induced compensator instabilities resulted in benign mechanical oscillation symptoms. Not too surprisingly, it was determined that instabilities were most detectable by large temperature increases in the electronics, typically

  20. Structural hierarchy of autism spectrum disorder symptoms: an integrative framework.

    Science.gov (United States)

    Kim, Hyunsik; Keifer, Cara M; Rodriguez-Seijas, Craig; Eaton, Nicholas R; Lerner, Matthew D; Gadow, Kenneth D

    2018-01-01

    In an attempt to resolve questions regarding the symptom classification of autism spectrum disorder (ASD), previous research generally aimed to demonstrate superiority of one model over another. Rather than adjudicating which model may be optimal, we propose an alternative approach that integrates competing models using Goldberg's bass-ackwards method, providing a comprehensive understanding of the underlying symptom structure of ASD. The study sample comprised 3,825 individuals, consecutive referrals to a university hospital developmental disabilities specialty clinic or a child psychiatry outpatient clinic. This study analyzed DSM-IV-referenced ASD symptom statements from parent and teacher versions of the Child and Adolescent Symptom Inventory-4R. A series of exploratory structural equation models was conducted in order to produce interpretable latent factors that account for multivariate covariance. Results indicated that ASD symptoms were structured into an interpretable hierarchy across multiple informants. This hierarchy includes five levels; key features of ASD bifurcate into different constructs with increasing specificity. This is the first study to examine an underlying structural hierarchy of ASD symptomatology using the bass-ackwards method. This hierarchy demonstrates how core features of ASD relate at differing levels of resolution, providing a model for conceptualizing ASD heterogeneity and a structure for integrating divergent theories of cognitive processes and behavioral features that define the disorder. These findings suggest that a more coherent and complete understanding of the structure of ASD symptoms may be reflected in a metastructure rather than at one level of resolution. © 2017 Association for Child and Adolescent Mental Health.

  1. Role of contamination on the bondline integrity of composite structures

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Xu [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    Adhesively bonding composite structures have many applications in aerospace, automotive and submarine industries. The adhesive bonding joints have substantial advantage over the traditional metallic mechanical bonding joints, such as rivet and welding. However, the adhesive bonding joints require additional steps of surface preparation and cleaning to ensure consistent bond strength. In application, the adhesively bonded joints are exposed to environmental degradation and industrial solvent contaminates. Accordingly, the assurance of reliability of bonded composite structures requires detailed investigation of the role of contaminates on bondline integrity. This dissertation focuses on assessing the contaminates effect on the adhesive bondline integrity. A combined experimental and numerical framework is developed to study the contamination effect on the adhesive mechanical properties and adhesive joint strength. The bondline integrity were examined for a system of adhesive (EA9394) and the carbonfiber system (Hexply IM7/8552), after being subjected to different level of exposures to aviation hydraulic fluids and mold cleaning agents. A testing protocol based on nanoindentation for initial screening is used to predict the interfacial fracture characteristics after exposure to contamination. It is found the adhesive modulus and stiffness dropped by up to 10% for the hydraulic fluid contaminates, suggesting increase of the plastic dissipation within the bondline. However, the trend for the cleaning agent was not clear since the modulus drop while its hardness increased.

  2. Integrated failure probability estimation based on structural integrity analysis and failure data: Natural gas pipeline case

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Žutautaitė, Inga; Janulionis, Remigijus; Ušpuras, Eugenijus; Rimkevičius, Sigitas; Eid, Mohamed

    2016-01-01

    In this paper, the authors present an approach as an overall framework for the estimation of the failure probability of pipelines based on: the results of the deterministic-probabilistic structural integrity analysis (taking into account loads, material properties, geometry, boundary conditions, crack size, and defected zone thickness), the corrosion rate, the number of defects and failure data (involved into the model via application of Bayesian method). The proposed approach is applied to estimate the failure probability of a selected part of the Lithuanian natural gas transmission network. The presented approach for the estimation of integrated failure probability is a combination of several different analyses allowing us to obtain: the critical crack's length and depth, the failure probability of the defected zone thickness, dependency of the failure probability on the age of the natural gas transmission pipeline. A model's uncertainty analysis and uncertainty propagation analysis are performed, as well. - Highlights: • Degradation mechanisms of natural gas transmission pipelines. • Fracture mechanic analysis of the pipe with crack. • Stress evaluation of the pipe with critical crack. • Deterministic-probabilistic structural integrity analysis of gas pipeline. • Integrated estimation of pipeline failure probability by Bayesian method.

  3. Lagrangian structures, integrability and chaos for 3D dynamical equations

    International Nuclear Information System (INIS)

    Bustamante, Miguel D; Hojman, Sergio A

    2003-01-01

    In this paper, we consider the general setting for constructing action principles for three-dimensional first-order autonomous equations. We present the results for some integrable and non-integrable cases of the Lotka-Volterra equation, and show Lagrangian descriptions which are valid for systems satisfying Shil'nikov criteria on the existence of strange attractors, though chaotic behaviour has not been verified up to now. The Euler-Lagrange equations we get for these systems usually present 'time reparametrization' invariance, though other kinds of invariance may be found according to the kernel of the associated symplectic 2-form. The formulation of a Hamiltonian structure (Poisson brackets and Hamiltonians) for these systems from the Lagrangian viewpoint leads to a method of finding new constants of the motion starting from known ones, which is applied to some systems found in the literature known to possess a constant of the motion, to find the other and thus showing their integrability. In particular, we show that the so-called ABC system is completely integrable if it possesses one constant of the motion

  4. Structural integrated sensor and actuator systems for active flow control

    Science.gov (United States)

    Behr, Christian; Schwerter, Martin; Leester-Schädel, Monika; Wierach, Peter; Dietzel, Andreas; Sinapius, Michael

    2016-04-01

    An adaptive flow separation control system is designed and implemented as an essential part of a novel high-lift device for future aircraft. The system consists of MEMS pressure sensors to determine the flow conditions and adaptive lips to regulate the mass flow and the velocity of a wall near stream over the internally blown Coanda flap. By the oscillating lip the mass flow in the blowing slot changes dynamically, consequently the momentum exchange of the boundary layer over a high lift flap required mass flow can be reduced. These new compact and highly integrated systems provide a real-time monitoring and manipulation of the flow conditions. In this context the integration of pressure sensors into flow sensing airfoils of composite material is investigated. Mechanical and electrical properties of the integrated sensors are investigated under mechanical loads during tensile tests. The sensors contain a reference pressure chamber isolated to the ambient by a deformable membrane with integrated piezoresistors connected as a Wheatstone bridge, which outputs voltage signals depending on the ambient pressure. The composite material in which the sensors are embedded consists of 22 individual layers of unidirectional glass fiber reinforced plastic (GFRP) prepreg. The results of the experiments are used for adapting the design of the sensors and the layout of the laminate to ensure an optimized flux of force in highly loaded structures primarily for future aeronautical applications. It can be shown that the pressure sensor withstands the embedding process into fiber composites with full functional capability and predictable behavior under stress.

  5. Integral membrane protein structure determination using pseudocontact shifts

    Energy Technology Data Exchange (ETDEWEB)

    Crick, Duncan J.; Wang, Jue X. [University of Cambridge, Department of Biochemistry (United Kingdom); Graham, Bim; Swarbrick, James D. [Monash University, Monash Institute of Pharmaceutical Sciences (Australia); Mott, Helen R.; Nietlispach, Daniel, E-mail: dn206@cam.ac.uk [University of Cambridge, Department of Biochemistry (United Kingdom)

    2015-04-15

    Obtaining enough experimental restraints can be a limiting factor in the NMR structure determination of larger proteins. This is particularly the case for large assemblies such as membrane proteins that have been solubilized in a membrane-mimicking environment. Whilst in such cases extensive deuteration strategies are regularly utilised with the aim to improve the spectral quality, these schemes often limit the number of NOEs obtainable, making complementary strategies highly beneficial for successful structure elucidation. Recently, lanthanide-induced pseudocontact shifts (PCSs) have been established as a structural tool for globular proteins. Here, we demonstrate that a PCS-based approach can be successfully applied for the structure determination of integral membrane proteins. Using the 7TM α-helical microbial receptor pSRII, we show that PCS-derived restraints from lanthanide binding tags attached to four different positions of the protein facilitate the backbone structure determination when combined with a limited set of NOEs. In contrast, the same set of NOEs fails to determine the correct 3D fold. The latter situation is frequently encountered in polytopical α-helical membrane proteins and a PCS approach is thus suitable even for this particularly challenging class of membrane proteins. The ease of measuring PCSs makes this an attractive route for structure determination of large membrane proteins in general.

  6. Approaches to integrating paediatric diabetes care and structured education

    DEFF Research Database (Denmark)

    Murphy, H. R.; Wadham, C.; Rayman, G.

    2007-01-01

    .11% in non-attenders (P = 0.04). Conclusion: This family-centred education programme has been integrated into paediatric diabetes care with potential benefits on parental involvement and glycaemic control, but further study is warranted before routine application into clinical care.......Aims: The Families, Adolescents and Children's Teamwork Study (FACTS) is a family-centred structured education programme for children and adolescents with Type 1 diabetes. It aims to integrate group-based diabetes education into routine care, enhance parental responsibility for self management...... and improve glycaemic control. Methods: A randomized wait-list control group study allocated participants to either the immediate (four educational sessions during year 1) or delayed intervention (four educational sessions during year 2). In both groups, glycated haemoglobin (HbA1c) was measured 3-monthly...

  7. Structural integrity evaluation of PWR nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Cruz, Julio R.B.; Mattar Neto, Miguel

    1999-01-01

    The reactor pressure vessel (RPV) is the most important structural component of a PWR nuclear power plant. It contains the reactor core and is the main component of the primary system pressure boundary, the system responsible for removing the heat generated by the nuclear reactions. It is considered not replaceable and, therefore, its lifetime is a key element to define the plant life as a whole. Three critical issues related to the reliability of the RPV structural integrity come out by reason of the radiation damage imposed to the vessel material during operation. These issues concern the definition of pressure versus temperature limits for reactor heatup and cooldown, pressurized thermal shock evaluation and assessment of reactor vessels with low upper shelf Charpy impact energy levels. This work aims to present the major aspects related to these topics. The requirements for preventing fracture of the RPV are reviewed as well as the available technology for assessing the safety margins. For each mentioned problem, the several steps for structural integrity evaluation are described and the analysis methods are discussed. (author)

  8. Integrity analysis of an upper guide structure flange

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ki Hyoung; Kang, Sung Sik; Jhung, Myung Jo [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The integrity assessment of reactor vessel internals should be conducted in the design process to secure the safety of nuclear power plants. Various loads such as self-weight, seismic load, flow-induced load, and preload are applied to the internals. Therefore, the American Society of Mechanical Engineers (ASME) Code, Section III, defines the stress limit for reactor vessel internals. The present study focused on structural response analyses of the upper guide structure upper flange. The distributions of the stress intensity in the flange body were analyzed under various design load cases during normal operation. The allowable stress intensities along the expected sections of stress concentration were derived from the results of the finite element analysis for evaluating the structural integrity of the flange design. Furthermore, seismic analyses of the upper flange were performed to identify dynamic behavior with respect to the seismic and impact input. The mode superposition and full transient methods were used to perform time–history analyses, and the displacement at the lower end of the flange was obtained. The effect of the damping ratio on the response of the flange was also evaluated, and the acceleration was obtained. The results of elastic and seismic analyses in this study will be used as basic information to judge whether a flange design meets the acceptance criteria.

  9. Crossover integral equation theory for the liquid structure study

    International Nuclear Information System (INIS)

    Lai, S.K.; Chen, H.C.

    1994-08-01

    The main purpose of this work is to report on a calculation that describes the role of the long-range bridge function [H. Iyetomi and S. Ichimaru, Phys. Rev. A 25, 2434 (1982)] as applied to the study of structure of simple liquid metals. It was found here that this bridge function accounts pretty well for the major part of long-range interactions but is physically inadequate for describing the short-range part of liquid structure. To improve on the theory we have drawn attention to the crossover integral equation method which, in essence, amounts to adding to the above bridge function a short-range correction of bridge diagrams. The suggested crossover procedure has been tested for the case of liquid metal Cs. Remarkably good agreement with experiment was obtained confirming our conjecture that the crossover integral equation approach as stressed in this work is potentially an appropriate theory for an accurate study of liquid structure possibly for the supercooled liquid regime. (author). 21 refs, 3 figs

  10. Non-destructive testing and evaluation for structural integrity

    International Nuclear Information System (INIS)

    Baldev Raj; Jayakumar, T.; Rao, B.P.C.

    1995-01-01

    In this paper, a brief description of the physical concepts of non-destructive evaluation (NDE) methods and the physical/derived parameters that are used for assessing defects, stresses and microstructures are given. A few case studies highlighting the importance of non-destructive testing and evaluation for structural integrity assessment are also discussed based on the investigations carried out. Emerging concepts like intelligent processing of materials, expert systems, neural networks, use of multisensors with fusion of data and exploitation of signal analysis and imaging approaches are also addressed in this paper. (author). 92 refs., 1 tab

  11. An expert system for integrated structural analysis and design optimization for aerospace structures

    Science.gov (United States)

    1992-04-01

    The results of a research study on the development of an expert system for integrated structural analysis and design optimization is presented. An Object Representation Language (ORL) was developed first in conjunction with a rule-based system. This ORL/AI shell was then used to develop expert systems to provide assistance with a variety of structural analysis and design optimization tasks, in conjunction with procedural modules for finite element structural analysis and design optimization. The main goal of the research study was to provide expertise, judgment, and reasoning capabilities in the aerospace structural design process. This will allow engineers performing structural analysis and design, even without extensive experience in the field, to develop error-free, efficient and reliable structural designs very rapidly and cost-effectively. This would not only improve the productivity of design engineers and analysts, but also significantly reduce time to completion of structural design. An extensive literature survey in the field of structural analysis, design optimization, artificial intelligence, and database management systems and their application to the structural design process was first performed. A feasibility study was then performed, and the architecture and the conceptual design for the integrated 'intelligent' structural analysis and design optimization software was then developed. An Object Representation Language (ORL), in conjunction with a rule-based system, was then developed using C++. Such an approach would improve the expressiveness for knowledge representation (especially for structural analysis and design applications), provide ability to build very large and practical expert systems, and provide an efficient way for storing knowledge. Functional specifications for the expert systems were then developed. The ORL/AI shell was then used to develop a variety of modules of expert systems for a variety of modeling, finite element analysis, and

  12. Integrated Thermal Protection Systems and Heat Resistant Structures

    Science.gov (United States)

    Pichon, Thierry; Lacoste, Marc; Glass, David E.

    2006-01-01

    In the early stages of NASA's Exploration Initiative, Snecma Propulsion Solide was funded under the Exploration Systems Research & Technology program to develop integrated thermal protection systems and heat resistant structures for reentry vehicles. Due to changes within NASA's Exploration Initiative, this task was cancelled early. This presentation provides an overview of the work that was accomplished prior to cancellation. The Snecma team chose an Apollo-type capsule as the reference vehicle for the work. They began with the design of a ceramic aft heatshield (CAS) utilizing C/SiC panels as the capsule heatshield, a C/SiC deployable decelerator and several ablators. They additionally developed a health monitoring system, high temperature structures testing, and the insulation characterization. Though the task was pre-maturely cancelled, a significant quantity of work was accomplished.

  13. Host Proteins Determine MRSA Biofilm Structure and Integrity

    DEFF Research Database (Denmark)

    Dreier, Cindy; Nielsen, Astrid; Jørgensen, Nis Pedersen

    Human extracellular matrix (hECM) proteins aids the initial attachment and initiation of an infection, by specific binding to bacterial cell surface proteins. However, the importance of hECM proteins in structure, integrity and antibiotic resilience of a biofilm is unknown. This study aims...... to determine how specific hECM proteins affect S. aureus USA300 JE2 biofilms. Biofilms were grown in the presence of synovial fluid from rheumatoid arteritis patients to mimic in vivo conditions, where bacteria incorporate hECM proteins into the biofilm matrix. Difference in biofilm structure, with and without...... addition of hECM to growth media, was visualized by confocal laser scanning microscopy. Two enzymatic degradation experiments were used to study biofilm matrix composition and importance of hECM proteins: enzymatic removal of specific hECM proteins from growth media, before biofilm formation, and enzymatic...

  14. NET European Network on Neutron Techniques Standardization for Structural Integrity

    International Nuclear Information System (INIS)

    Youtsos, A.

    2004-01-01

    Improved performance and safety of European energy production systems is essential for providing safe, clean and inexpensive electricity to the citizens of the enlarged EU. The state of the art in assessing internal stresses, micro-structure and defects in welded nuclear components -as well as their evolution due to complex thermo-mechanical loads and irradiation exposure -needs to be improved before relevant structural integrity assessment code requirements can safely become less conservative. This is valid for both experimental characterization techniques and predictive numerical algorithms. In the course of the last two decades neutron methods have proven to be excellent means for providing valuable information required in structural integrity assessment of advanced engineering applications. However, the European industry is hampered from broadly using neutron research due to lack of harmonised and standardized testing methods. 35 European major industrial and research/academic organizations have joined forces, under JRC coordination, to launch the NET European Network on Neutron Techniques Standardization for Structural Integrity in May 2002. The NET collaborative research initiative aims at further development and harmonisation of neutron scattering methods, in support of structural integrity assessment. This is pursued through a number of testing round robin campaigns on neutron diffraction and small angle neutron scattering - SANS and supported by data provided by other more conventional destructive and non-destructive methods, such as X-ray diffraction and deep and surface hole drilling. NET also strives to develop more reliable and harmonized simulation procedures for the prediction of residual stress and damage in steel welded power plant components. This is pursued through a number of computational round robin campaigns based on advanced FEM techniques, and on reliable data obtained by such novel and harmonized experimental methods. The final goal of

  15. Brazilian Air Force aircraft structural integrity program: An overview

    Directory of Open Access Journals (Sweden)

    Alberto W. S. Mello Junior

    2009-01-01

    Full Text Available This paper presents an overview of the activities developed by the Structural Integrity Group at the Institute of Aeronautics and Space - IAE, Brazil, as well as the status of ongoing work related to the life extension program for aircraft operated by the Brazilian Air Force BAF. The first BAF-operated airplane to undergo a DTA-based life extension was the F-5 fighter, in the mid 1990s. From 1998 to 2001, BAF worked on a life extension project for the BAF AT- 26 Xavante trainer. All analysis and tests were performed at IAE. The fatigue critical locations (FCLs were presumed based upon structural design and maintenance data and also from exchange of technical information with other users of the airplane around the world. Following that work, BAF started in 2002 the extension of the operational life of the BAF T-25 “Universal”. The T-25 is the basic training airplane used by AFA - The Brazilian Air Force Academy. This airplane was also designed under the “safe-life” concept. As the T-25 fleet approached its service life limit, the Brazilian Air Force was questioning whether it could be kept in flight safely. The answer came through an extensive Damage Tolerance Analysis (DTA program, briefly described in this paper. The current work on aircraft structural integrity is being performed for the BAF F-5 E/F that underwent an avionics and weapons system upgrade. Along with the increase in weight, new configurations and mission profiles were established. Again, a DTA program was proposed to be carried out in order to establish the reliability of the upgraded F-5 fleet. As a result of all the work described, the BAF has not reported any accident due to structural failure on aircraft submitted to Damage Tolerance Analysis.

  16. The process flow and structure of an integrated stroke strategy

    Directory of Open Access Journals (Sweden)

    Emma F. van Bussel

    2013-06-01

    Full Text Available Introduction: In the Canadian province of Alberta access and quality of stroke care were suboptimal, especially in remote areas. The government introduced the Alberta Provincial Stroke Strategy (APSS in 2005, an integrated strategy to improve access to stroke care, quality and efficiency which utilizes telehealth. Research question: What is the process flow and the structure of the care pathways of the APSS? Methodology: Information for this article was obtained using documentation, archival APSS records, interviews with experts, direct observation and participant observation. Results: The process flow is described. The APSS integrated evidence-based practice, multidisciplinary communication, and telestroke services. It includes regular quality evaluation and improvement. Conclusion: Access, efficiency and quality of care improved since the start of the APSS across many domains, through improvement of expertise and equipment in small hospitals, accessible consultation of stroke specialists using telestroke, enhancing preventive care, enhancing multidisciplinary collaboration, introducing uniform best practice protocols and bypass-protocols for the emergency medical services. Discussion: The APSS overcame substantial obstacles to decrease discrepancies and to deliver integrated higher quality care. Telestroke has proven itself to be safe and feasible. The APSS works efficiently, which is in line to other projects worldwide, and is, based on limited results, cost effective. Further research on cost-effectiveness is necessary.

  17. Integrated Modeling for the James Webb Space Telescope (JWST) Project: Structural Analysis Activities

    Science.gov (United States)

    Johnston, John; Mosier, Mark; Howard, Joe; Hyde, Tupper; Parrish, Keith; Ha, Kong; Liu, Frank; McGinnis, Mark

    2004-01-01

    This paper presents viewgraphs about structural analysis activities and integrated modeling for the James Webb Space Telescope (JWST). The topics include: 1) JWST Overview; 2) Observatory Structural Models; 3) Integrated Performance Analysis; and 4) Future Work and Challenges.

  18. Structured Matrix Completion with Applications to Genomic Data Integration.

    Science.gov (United States)

    Cai, Tianxi; Cai, T Tony; Zhang, Anru

    2016-01-01

    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  19. Experimental evaluation of structural integrity of scram release electromagnet

    International Nuclear Information System (INIS)

    Patri, Sudheer; Ruhela, S.P.; Punniyamoorthy, R.; Vijayashree, R.; Chandramouli, S.; Kumar, P. Madan; Rajendraprasad, R.; Rao, P. Vijayamohana; Narmadha, S.; Sreedhar, B.K.; Rajan, K.K.

    2014-01-01

    Highlights: • The structural integrity of scram release electromagnet is evaluated against thermal shocks. • A simple test facility, employed for simulating the thermal shocks in a typical FBR, is presented. • The cold shock experienced by electromagnet during scram is simulated. • The testing qualified electromagnet for 11.6 yr of reactor operation. - Abstract: Prototype fast breeder reactor (PFBR), under construction at Kalpakkam, India, plays an important role in the commercialisation of fast breeder reactors (FBR) in India. It consists of two independent, fast acting and diverse shutdown systems. An electromagnet (EM) immersed in sodium acts as scram release device for the second shutdown system of prototype fast breeder reactor. The inside of EM is sealed from the sodium to achieve the required response time and to prevent the exposure of EM coil to sodium. As the EM response time is an important parameter for reactor safety, the integrity of EM is to be maintained under all anticipated loadings. The EM experiences thermal shocks and thermal stresses during reactor transients such as scram. The dissimilar weld joint present in EM is more susceptible to fatigue failure due to these thermal stresses. Failure of weld joint results in the entry of sodium into the EM, increasing its response time with associated safety implications. In this connection, the structural integrity of EM against thermal shocks was experimentally evaluated in Thermal Shock Test Facility. The EM was subjected to 1000 cycles of thermal shocks, which constitutes 29% of total number of shocks required to qualify the EM for 40 years of reactor operation, thus qualifying it for 11.6 yr of reactor operation. The testing has enhanced the confidence level for safe and reliable operation of EM of DSRDM in PFBR. The testing not only qualified the EM for use in reactor but also provided input for licensing the erection of DSRDM on reactor pile. Moreover, it provided a direction for

  20. Integrity management of offshore structures and its implication on computation of structural action effects and resistance

    Science.gov (United States)

    Moan, T.

    2017-12-01

    An overview of integrity management of offshore structures, with emphasis on the oil and gas energy sector, is given. Based on relevant accident experiences and means to control the associated risks, accidents are categorized from a technical-physical as well as human and organizational point of view. Structural risk relates to extreme actions as well as structural degradation. Risk mitigation measures, including adequate design criteria, inspection, repair and maintenance as well as quality assurance and control of engineering processes, are briefly outlined. The current status of risk and reliability methodology to aid decisions in the integrity management is briefly reviewed. Finally, the need to balance the uncertainties in data, methods and computational efforts and the cautious use and quality assurance and control in applying high fidelity methods to avoid human errors, is emphasized, and with a plea to develop both high fidelity as well as efficient, simplified methods for design.

  1. A real nonlinear integrable couplings of continuous soliton hierarchy and its Hamiltonian structure

    International Nuclear Information System (INIS)

    Yu Fajun

    2011-01-01

    Some integrable coupling systems of existing papers are linear integrable couplings. In the Letter, beginning with Lax pairs from special non-semisimple matrix Lie algebras, we establish a scheme for constructing real nonlinear integrable couplings of continuous soliton hierarchy. A direct application to the AKNS spectral problem leads to a novel nonlinear integrable couplings, then we consider the Hamiltonian structures of nonlinear integrable couplings of AKNS hierarchy with the component-trace identity. - Highlights: → We establish a scheme to construct real nonlinear integrable couplings. → We obtain a novel nonlinear integrable couplings of AKNS hierarchy. → Hamiltonian structure of nonlinear integrable couplings AKNS hierarchy is presented.

  2. Identification of similar regions of protein structures using integrated sequence and structure analysis tools

    Directory of Open Access Journals (Sweden)

    Heiland Randy

    2006-03-01

    Full Text Available Abstract Background Understanding protein function from its structure is a challenging problem. Sequence based approaches for finding homology have broad use for annotation of both structure and function. 3D structural information of protein domains and their interactions provide a complementary view to structure function relationships to sequence information. We have developed a web site http://www.sblest.org/ and an API of web services that enables users to submit protein structures and identify statistically significant neighbors and the underlying structural environments that make that match using a suite of sequence and structure analysis tools. To do this, we have integrated S-BLEST, PSI-BLAST and HMMer based superfamily predictions to give a unique integrated view to prediction of SCOP superfamilies, EC number, and GO term, as well as identification of the protein structural environments that are associated with that prediction. Additionally, we have extended UCSF Chimera and PyMOL to support our web services, so that users can characterize their own proteins of interest. Results Users are able to submit their own queries or use a structure already in the PDB. Currently the databases that a user can query include the popular structural datasets ASTRAL 40 v1.69, ASTRAL 95 v1.69, CLUSTER50, CLUSTER70 and CLUSTER90 and PDBSELECT25. The results can be downloaded directly from the site and include function prediction, analysis of the most conserved environments and automated annotation of query proteins. These results reflect both the hits found with PSI-BLAST, HMMer and with S-BLEST. We have evaluated how well annotation transfer can be performed on SCOP ID's, Gene Ontology (GO ID's and EC Numbers. The method is very efficient and totally automated, generally taking around fifteen minutes for a 400 residue protein. Conclusion With structural genomics initiatives determining structures with little, if any, functional characterization

  3. Structural integrity analysis of the 224U elevator mothballing

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, W.M.

    1994-11-18

    As part of the preparation of Building 224U for turnover to Decontamination and Decommissioning, it is necessary to place the elevator in a mothballed condition so that it can be reactivated for use after 10 to 25 years. This mothballing is going to be accomplished by landing the counterweight on wooden timbers and suspending the elevator cab with wire rope or chain slings. This will take the load off the cables and make it relatively easy to reactive. The objective of this Supporting Document is to verify the structural integrity of all of the load bearing components involved in mothballing the 224U Building elevator. Building 224U is part of the UO{sub 3} Plant where uranyl nitrates from the PUREX Plant was converted to UO{sub 3} powder.

  4. Modelling Machine Tools using Structure Integrated Sensors for Fast Calibration

    Directory of Open Access Journals (Sweden)

    Benjamin Montavon

    2018-02-01

    Full Text Available Monitoring of the relative deviation between commanded and actual tool tip position, which limits the volumetric performance of the machine tool, enables the use of contemporary methods of compensation to reduce tolerance mismatch and the uncertainties of on-machine measurements. The development of a primarily optical sensor setup capable of being integrated into the machine structure without limiting its operating range is presented. The use of a frequency-modulating interferometer and photosensitive arrays in combination with a Gaussian laser beam allows for fast and automated online measurements of the axes’ motion errors and thermal conditions with comparable accuracy, lower cost, and smaller dimensions as compared to state-of-the-art optical measuring instruments for offline machine tool calibration. The development is tested through simulation of the sensor setup based on raytracing and Monte-Carlo techniques.

  5. On the structural integrity evaluation about aged components

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    About one third of the nuclear power plants in Japan have been operated more than 30 years and flaws due to age-related degradation mechanisms have been detected in some components such as piping systems or core shrouds these years. Moreover, several severe earthquakes such as the Tohoku District - off the Pacific Ocean Earthquake or the Niigata-ken Chuetsu-oki Earthquake have struck some nuclear power plants in Japan recent years. Therefore, the structural integrity evaluation about nuclear installations and components considering seismic loads and aging mechanisms has become more and more important. In this study, several evaluation methods were proposed to assess the crack growth rate under the seismic loading conditions, to assess the failure conditions or the realistic failure capacities of the aged piping systems considering seismic or general loading conditions. Furthermore, analysis codes were developed considering aging mechanisms to carry out the integrity evaluation, or the failure probability evaluation which is useful in the seismic PSA evaluation. All of these assessment methods and analysis codes are being used and will be used more and more in the cross-check analyses or the safety reviews about nuclear installations and components. (author)

  6. Effect of age on the structural integrity of HEPA filters

    International Nuclear Information System (INIS)

    Johnson, J.S.; Beason, D.G.; Smith, P.R.; Gregory, W.S.

    1989-01-01

    All of the controls on high-efficiency particulate air (HEPA) filters are based on rigid manufacturing standards with regard to filtration efficiency, temperature performance, pressure integrity, and strength. Third-party inspection and testing by the US Department of Energy increases the reliability of new HEPA filters, but only routine in-place testing is used to assure that an aging filter performs adequately. In 1980 the Lawrence Livermore National Laboratory initiated a small evaluation to determine if age has a significant effect on the structural integrity of HEPA filters. A series of used uncontaminated filters dating back to 1965 was obtained for these tests. Tensile strength tests on the old media indicated a decrease in strength. To provide additional measurement of the filters' overall strength, several of these aged filters were subjected to pressure pulses equivalent to the NRC Region I tornado pulses and shock wave over pressures. Data from these tests indicate a decrease in breaking pressure of from 25-50%. A large increase in complete filter pack blow-out during the simulated NRC Region I tornado tests was also observed. The preliminary results indicate the need for an administrative lifetime for HEPA filters used in critical nuclear facilities. Due to the unique conditions in each facility, different administrative lifetimes may be necessary

  7. Laser shock peening on a 6056-T4 aluminium alloy for airframe applications

    CSIR Research Space (South Africa)

    Glaser, D

    2014-03-01

    Full Text Available stream_source_info Pityana1_2014_ABSTRACT ONLY.pdf.txt stream_content_type text/plain stream_size 1356 Content-Encoding ISO-8859-1 stream_name Pityana1_2014_ABSTRACT ONLY.pdf.txt Content-Type text/plain; charset=ISO-8859-1... Laser Shock Peening on a 6056-T4 Aluminium Alloy for Airframe Applications Daniel Glaser, Claudia Polese, Rachana D. Bedekar, Jasper Plaisier,Sisa Pityana, Bathusile Masina, Tebogo Mathebula, and Enrico Troiani Keywords: Laser Shock Peening...

  8. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  9. Structural integrity and fatigue crack propagation life assessment of welded and weld-repaired structures

    Science.gov (United States)

    Alam, Mohammad Shah

    2005-11-01

    Structural integrity is the science and technology of the margin between safety and disaster. Proper evaluation of the structural integrity and fatigue life of any structure (aircraft, ship, railways, bridges, gas and oil transmission pipelines, etc.) is important to ensure the public safety, environmental protection, and economical consideration. Catastrophic failure of any structure can be avoided if structural integrity is assessed and necessary precaution is taken appropriately. Structural integrity includes tasks in many areas, such as structural analysis, failure analysis, nondestructive testing, corrosion, fatigue and creep analysis, metallurgy and materials, fracture mechanics, fatigue life assessment, welding metallurgy, development of repairing technologies, structural monitoring and instrumentation etc. In this research fatigue life assessment of welded and weld-repaired joints is studied both in numerically and experimentally. A new approach for the simulation of fatigue crack growth in two elastic materials has been developed and specifically, the concept has been applied to butt-welded joint in a straight plate and in tubular joints. In the proposed method, the formation of new surface is represented by an interface element based on the interface potential energy. This method overcomes the limitation of crack growth at an artificial rate of one element length per cycle. In this method the crack propagates only when the applied load reaches the critical bonding strength. The predicted results compares well with experimental results. The Gas Metal Arc welding processes has been simulated to predict post-weld distortion, residual stresses and development of restraining forces in a butt-welded joint. The effect of welding defects and bi-axial interaction of a circular porosity and a solidification crack on fatigue crack propagation life of butt-welded joints has also been investigated. After a weld has been repaired, the specimen was tested in a universal

  10. Aging Evaluation Programs for Jet Transport Aircraft Structural Integrity

    Directory of Open Access Journals (Sweden)

    Borivoj Galović

    2012-10-01

    Full Text Available The paper deals with criteria and procedures in evaluationof timely preventive maintenance recommendations that willsupport continued safe operation of aging jet transports untiltheir retirement from service. The active service life of commercialaircraft has increased in recent years as a result of low fuelcost, and increasing costs and delivery times for fleet replacements.Air transport industry consensus is that older jet transportswill continue in service despite anticipated substantial increasesin required maintenance. Design concepts, supportedby testing, have worked well due to the system that is used to ensureflying safety. Continuing structural integrity by inspectionand overhaul recommendation above the level contained inmaintenance and service bulletins is additional requirement, insuch cases. Airplane structural safety depends on the performanceof all participants in the system and the responsibility forsafety cannot be delegated to a single participant. This systemhas three major participants: the manufacturers who design,build and support airplanes in service, the airlines who operate,inspect and mantain airplanes and the airworthiness authoritieswho establish rules and regulations, approve the design andpromote airline maintenance performance.

  11. Structural Integrity of an Electron Beam Melted Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Robert Lancaster

    2016-06-01

    Full Text Available Advanced manufacturing encompasses the wide range of processes that consist of “3D printing” of metallic materials. One such method is Electron Beam Melting (EBM, a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.

  12. Smart fastener for KC-135 structural integrity monitoring

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg

    1997-06-01

    Hidden and inaccessible corrosion in aircraft structures is the number-one logistics problem for the U.S. Air Force, with an estimated maintenance cost in excess of $DOL1.0 billion per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system is being developed to provide early warning detection of corrosion- related symptoms in hidden locations of aircraft structures. The SAFE incorporates an in situ measurement approach that measures and autonomously records several environmental conditions (i.e., pH, temperature, chloride, free potential, time-of-wetness) within a Hi-Lok aircraft fastener that could cause corrosion to occur. The SAFE system integrates a miniature electrochemical microsensor array and a time-of- wetness sensor with an ultra-low-power 8-bit microcontroller and 5-Mbyte solid-state FLASH archival memory to measure the evidence of active corrosion. A summary of the technical approach, system design definition, software architecture, and future field test plans will be presented.

  13. Structural Integrity of an Electron Beam Melted Titanium Alloy.

    Science.gov (United States)

    Lancaster, Robert; Davies, Gareth; Illsley, Henry; Jeffs, Spencer; Baxter, Gavin

    2016-06-14

    Advanced manufacturing encompasses the wide range of processes that consist of "3D printing" of metallic materials. One such method is Electron Beam Melting (EBM), a modern build technology that offers significant potential for lean manufacture and a capability to produce fully dense near-net shaped components. However, the manufacture of intricate geometries will result in variable thermal cycles and thus a transient microstructure throughout, leading to a highly textured structure. As such, successful implementation of these technologies requires a comprehensive assessment of the relationships of the key process variables, geometries, resultant microstructures and mechanical properties. The nature of this process suggests that it is often difficult to produce representative test specimens necessary to achieve a full mechanical property characterisation. Therefore, the use of small scale test techniques may be exploited, specifically the small punch (SP) test. The SP test offers a capability for sampling miniaturised test specimens from various discrete locations in a thin-walled component, allowing a full characterisation across a complex geometry. This paper provides support in working towards development and validation strategies in order for advanced manufactured components to be safely implemented into future gas turbine applications. This has been achieved by applying the SP test to a series of Ti-6Al-4V variants that have been manufactured through a variety of processing routes including EBM and investigating the structural integrity of each material and how this controls the mechanical response.

  14. Direct Integration of Dynamic Emissive Displays into Knitted Fabric Structures

    Science.gov (United States)

    Bellingham, Alyssa

    Smart textiles are revolutionizing the textile industry by combining technology into fabric to give clothing new abilities including communication, transformation, and energy conduction. The advent of electroluminescent fibers, which emit light in response to an applied electric field, has opened the door for fabric-integrated emissive displays in textiles. This thesis focuses on the development of a flexible and scalable emissive fabric display with individually addressable pixels disposed within a fabric matrix. The pixels are formed in areas where a fiber supporting the dielectric and phosphor layers of an electroluminescent structure contacts a conductive surface. This conductive surface can be an external conductive fiber, yarn or wire, or a translucent conductive material layer deposited at set points along the electroluminescent fibers. Different contacting methods are introduced and the different ways the EL yarns can be incorporated into the knitted fabric are discussed. EL fibers were fabricated using a single yarn coating system with a custom, adjustable 3D printed slot die coater for even distribution of material onto the supporting fiber substrates. These fibers are mechanically characterized inside of and outside of a knitted fabric matrix to determine their potential for various applications, including wearables. A 4-pixel dynamic emissive display prototype is fabricated and characterized. This is the first demonstration of an all-knit emissive display with individually controllable pixels. The prototype is composed of a grid of fibers supporting the dielectric and phosphor layers of an electroluminescent (EL) device structure, called EL fibers, and conductive fibers acting as the top electrode. This grid is integrated into a biaxial weft knit structure where the EL fibers make up the rows and conductive fibers make up the columns of the reinforcement yarns inside the supporting weft knit. The pixels exist as individual segments of

  15. MUNI Ways and Structures Building Integrated Solar Membrane Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Randall

    2014-07-03

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of the 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was

  16. A quantum group structure in integrable conformal field theories

    International Nuclear Information System (INIS)

    Smit, D.J.

    1990-01-01

    We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)

  17. CFD application to supersonic/hypersonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Benson, Thomas J.

    1988-01-01

    Supersonic external compression inlets are introduced, and the computational fluid dynamics (CFD) codes and tests needed to study flow associated with these inlets are outlined. Normal shock wave turbulent boundary layer interaction is discussed. Boundary layer control is considered. Glancing sidewall shock interaction is treated. The CFD validation of hypersonic inlet configurations is explained. Scramjet inlet modules are shown.

  18. CFD application to subsonic inlet airframe integration. [computational fluid dynamics (CFD)

    Science.gov (United States)

    Anderson, Bernhard H.

    1988-01-01

    The fluid dynamics of curved diffuser duct flows of military aircraft is discussed. Three-dimensional parabolized Navier-Stokes analysis, and experiment techniques are reviewed. Flow measurements and pressure distributions are shown. Velocity vectors, and the effects of vortex generators are considered.

  19. Utility of an airframe referenced spatial auditory display for general aviation operations

    Science.gov (United States)

    Naqvi, M. Hassan; Wigdahl, Alan J.; Ranaudo, Richard J.

    2009-05-01

    The University of Tennessee Space Institute (UTSI) completed flight testing with an airframe-referenced localized audio cueing display. The purpose was to assess its affect on pilot performance, workload, and situational awareness in two scenarios simulating single-pilot general aviation operations under instrument meteorological conditions. Each scenario consisted of 12 test procedures conducted under simulated instrument meteorological conditions, half with the cue off, and half with the cue on. Simulated aircraft malfunctions were strategically inserted at critical times during each test procedure. Ten pilots participated in the study; half flew a moderate workload scenario consisting of point to point navigation and holding pattern operations and half flew a high workload scenario consisting of non precision approaches and missed approach procedures. Flight data consisted of aircraft and navigation state parameters, NASA Task Load Index (TLX) assessments, and post-flight questionnaires. With localized cues there was slightly better pilot technical performance, a reduction in workload, and a perceived improvement in situational awareness. Results indicate that an airframe-referenced auditory display has utility and pilot acceptance in general aviation operations.

  20. Cirrus Airframe Parachute System and Odds of a Fatal Accident in Cirrus Aircraft Crashes.

    Science.gov (United States)

    Alaziz, Mustafa; Stolfi, Adrienne; Olson, Dean M

    2017-06-01

    General aviation (GA) accidents have continued to demonstrate high fatality rates. Recently, ballistic parachute recovery systems (BPRS) have been introduced as a safety feature in some GA aircraft. This study evaluates the effectiveness and associated factors of the Cirrus Airframe Parachute System (CAPS) at reducing the odds of a fatal accident in Cirrus aircraft crashes. Publicly available Cirrus aircraft crash reports were obtained from the National Transportation Safety Board (NTSB) database for the period of January 1, 2001-December 31, 2016. Accident metrics were evaluated through univariate and multivariate analyses regarding odds of a fatal accident and use of the parachute system. Included in the study were 268 accidents. For CAPS nondeployed accidents, 82 of 211 (38.9%) were fatal as compared to 8 of 57 (14.0%) for CAPS deployed accidents. After controlling for all other factors, the adjusted odds ratio for a fatal accident when CAPS was not deployed was 13.1. The substantial increased odds of a fatal accident when CAPS was not deployed demonstrated the effectiveness of CAPS at providing protection of occupants during an accident. Injuries were shifted from fatal to serious or minor with the use of CAPS and postcrash fires were significantly reduced. These results suggest that BPRS could play a significant role in the next major advance in improving GA accident survival.Alaziz M, Stolfi A, Olson DM. Cirrus Airframe Parachute System and odds of a fatal accident in Cirrus aircraft crashes. Aerosp Med Hum Perform. 2017; 88(6):556-564.

  1. Integrated Flight and Propulsion Controls for Advanced Aircraft Configurations

    Science.gov (United States)

    Merrill, Walter; Garg, Sanjay

    1995-01-01

    The research vision of the NASA Lewis Research Center in the area of integrated flight and propulsion controls technologies is described. In particular the Integrated Method for Propulsion and Airframe Controls developed at the Lewis Research Center is described including its application to an advanced aircraft configuration. Additionally, future research directions in integrated controls are described.

  2. Structural integrity of a reinforced concrete structure and a pipe outlet under hydrogen detonation conditions

    International Nuclear Information System (INIS)

    Saarenheimo, A.; Silde, A.; Calonius, K.

    2002-05-01

    Structural integrity of a reinforced concrete wall and a pipe penetration under detonation conditions in a selected reactor building room of Olkiluoto BWR were studied. Hydrogen leakage from the pressurised containment to the sur rounding reactor building is possible during a severe accident. Leaked hydrogen tends to accumulate in the reactor building rooms where the leak is located leading to a stable stratification and locally very high hydrogen concentration. If ignited, a possibility to flame acceleration and detonation cannot be ruled out. The structure may survive the peak detonation transient because the eigenperiod of the structure is considerably longer than the duration of the peak detonation. However, the relatively slowly decreasing static type pressure after a peak detonation damages the wall more severely. Elastic deformations in reinforcement are recoverable and cracks in these areas will close after the pressure decrease. But there will be remarkable compression crushing and the static type slowly decreasing over pressure clearly exceeds the loading capacity of the wall. Structural integrity of a pipe outlet was considered also under detonation conditions. The effect of drag forces was taken into account. Damping and strain rate dependence of yield strength were not taken into consideration. The boundary condition at the end of the pipe line model was varied in order to find out the effect of the stiffness of the pipeline outside the calculation model. The calculation model where the lower pipe end is free to move axially, is conservative from the pipe penetration integrity point of view. Even in this conservative study, the highest peak value for the maximum plastic deformation is 3.5%. This is well below the success criteria found in literature. (au)

  3. Propulsion and airframe aerodynamic interactions of supersonic V/STOL configurations. Volume 2: Wind tunnel test force and moment data report

    Science.gov (United States)

    Zilz, D. E.

    1985-01-01

    A wind tunnel model of a supersonic V/STOL fighter configuration has been tested to measure the aerodynamic interaction effects which can result from geometrically close-coupled propulsion system/airframe components. The approach was to configure the model to represent two different test techniques. One was a conventional test technique composed of two test modes. In the Flow-Through mode, absolute configuration aerodynamics are measured, including inlet/airframe interactions. In the Jet-Effects mode, incremental nozzle/airframe interactions are measured. The other test technique is a propulsion simulator approach, where a sub-scale, externally powered engine is mounted in the model. This allows proper measurement of inlet/airframe and nozzle/airframe interactions simultaneously. This is Volume 2 of 2: Wind Tunnel Test Force and Moment Data Report.

  4. Structural integrity of LMFBRs including leak before break

    International Nuclear Information System (INIS)

    Vinzens, K.; Laue, H.; Hosemann, B.

    1990-01-01

    Th German Basis Safety Concept is an approach which allows the possibility of catastrophic failures to be excluded. It was developed in Germany to render the probabilistic approach unnecessary for safety cases relating to nuclear power plants. The process of evaluation started in 1972, and in 1979 the Basis Safety Concept was officially published and thus became a legal requirement for LWR plants. With appropriate modifications in regard of the particular features of LMFBR, this concept has also been applied to SNR 300. The 'Structural Integrity Demonstration Concept' of SNR 300 is based on five principles: Principle of quality by design and fabrication, Principle of multiple examination, Principle of worst case consideration, Principle of operating surveillance and documentation, Principle of verification and continuous development. The same principles are taken over for SNR 2. The specific requirements on the components relevant to safety have to be defined at an early stage so that the components can be designed appropriately to the feasibility of the measures required by the concept. (orig.)

  5. SIFTS: Structure Integration with Function, Taxonomy and Sequences resource

    Science.gov (United States)

    Velankar, Sameer; Dana, José M.; Jacobsen, Julius; van Ginkel, Glen; Gane, Paul J.; Luo, Jie; Oldfield, Thomas J.; O’Donovan, Claire; Martin, Maria-Jesus; Kleywegt, Gerard J.

    2013-01-01

    The Structure Integration with Function, Taxonomy and Sequences resource (SIFTS; http://pdbe.org/sifts) is a close collaboration between the Protein Data Bank in Europe (PDBe) and UniProt. The two teams have developed a semi-automated process for maintaining up-to-date cross-reference information to UniProt entries, for all protein chains in the PDB entries present in the UniProt database. This process is carried out for every weekly PDB release and the information is stored in the SIFTS database. The SIFTS process includes cross-references to other biological resources such as Pfam, SCOP, CATH, GO, InterPro and the NCBI taxonomy database. The information is exported in XML format, one file for each PDB entry, and is made available by FTP. Many bioinformatics resources use SIFTS data to obtain cross-references between the PDB and other biological databases so as to provide their users with up-to-date information. PMID:23203869

  6. Review of intense irradiation data and discussion on structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, K.; Jitsukawa, S.; Okubo, N. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Mechanical property data on austenitic stainless steels and F82H have been reviewed to discuss for developing structural integrity methodologies of intensely irradiated components such as first walls. The following have been already clarified: (1) Fracture ductility is still high even though tensile rupture elongation is reduced remarkably. (2) Strain-hardening occurs in true stress-logarithmic strain (true strain) relationship. Work-softening behavior observed in nominal stress-nominal strain curves is simply resulted from a reduction of work hardening rate accompanied by the increase of flow stress level by irradiation. The review lead to an innovative design concept for application to intensely irradiated components. A special consideration is given to unique feature of bending moment in developing design methodology for preventing ductile fracture of intensely irradiated materials. Another discussion is also made on how to simulate mechanical behavior of intensely irradiated components, because mechanical testing of component-wise specimens after intense irradiation is inevitable for the development of design concepts, although irradiation on such a large scale specimen seems to be almost impossible with current irradiation facilities. (authors)

  7. Development and Calibration of a Field-Deployable Microphone Phased Array for Propulsion and Airframe Noise Flyover Measurements

    Science.gov (United States)

    Humphreys, William M., Jr.; Lockard, David P.; Khorrami, Mehdi R.; Culliton, William G.; McSwain, Robert G.; Ravetta, Patricio A.; Johns, Zachary

    2016-01-01

    A new aeroacoustic measurement capability has been developed consisting of a large channelcount, field-deployable microphone phased array suitable for airframe noise flyover measurements for a range of aircraft types and scales. The array incorporates up to 185 hardened, weather-resistant sensors suitable for outdoor use. A custom 4-mA current loop receiver circuit with temperature compensation was developed to power the sensors over extended cable lengths with minimal degradation of the signal to noise ratio and frequency response. Extensive laboratory calibrations and environmental testing of the sensors were conducted to verify the design's performance specifications. A compact data system combining sensor power, signal conditioning, and digitization was assembled for use with the array. Complementing the data system is a robust analysis system capable of near real-time presentation of beamformed and deconvolved contour plots and integrated spectra obtained from array data acquired during flyover passes. Additional instrumentation systems needed to process the array data were also assembled. These include a commercial weather station and a video monitoring / recording system. A detailed mock-up of the instrumentation suite (phased array, weather station, and data processor) was performed in the NASA Langley Acoustic Development Laboratory to vet the system performance. The first deployment of the system occurred at Finnegan Airfield at Fort A.P. Hill where the array was utilized to measure the vehicle noise from a number of sUAS (small Unmanned Aerial System) aircraft. A unique in-situ calibration method for the array microphones using a hovering aerial sound source was attempted for the first time during the deployment.

  8. Role of innovative institutional structures in integrated governance. A case study of integrating health and nutrition programs in Chhattisgarh, India.

    Science.gov (United States)

    Kalita, Anuska; Mondal, Shinjini

    2012-01-01

    The aim of this paper is to highlight the significance of integrated governance in bringing about community participation, improved service delivery, accountability of public systems and human resource rationalisation. It discusses the strategies of innovative institutional structures in translating such integration in the areas of public health and nutrition for poor communities. The paper draws on experience of initiating integrated governance through innovations in health and nutrition programming in the resource-poor state of Chhattisgarh, India, at different levels of governance structures--hamlets, villages, clusters, blocks, districts and at the state. The study uses mixed methods--i.e. document analysis, interviews, discussions and quantitative data from facilities surveys--to present a case study analyzing the process and outcome of integration. The data indicate that integrated governance initiatives improved convergence between health and nutrition departments of the state at all levels. Also, innovative structures are important to implement the idea of integration, especially in contexts that do not have historical experience of such partnerships. Integration also contributed towards improved participation of communities in self-governance, community monitoring of government programs, and therefore, better services. As governments across the world, especially in developing countries, struggle towards achieving better governance, integration can serve as a desirable process to address this. Integration can affect the decentralisation of power, inclusion, efficiency, accountability and improved service quality in government programs. The institutional structures detailed in this paper can provide models for replication in other similar contexts for translating and sustaining the idea of integrated governance. This paper is one of the few to investigate innovative public institutions of a and community mobilisation to explore this important, and under

  9. Development of a variable stability, modular UAV airframe for local research purposes

    CSIR Research Space (South Africa)

    Monk, John S

    2008-11-01

    Full Text Available /DPSS Wind tunnel Test CAD Patterns &Moulds Future partners Manufacture XDM 1 Auto pilot spec. A/P design Univ. Stellenbosch A/P manufacture A/P update Manufacture UAVs 1&2 Integrate XM 2D Structural Design A/P integrate Iron Bird... Manufacture XDM 2 Slide 30 © CSIR 2008 www.csir.co.za UAV Systems Integration Laboratory Servos UAV Flight SimulatorIron Bird (XDM) Motors and Controllers Looms Wind Tunnel? Control algorithms Flight models Atmospheric...

  10. Structural Integrity Assessment for SSDM Hydraulic Cylinder of JRTR

    International Nuclear Information System (INIS)

    Kim, Sanghaun; Lee, Jin Haeng; Cho, Yeonggarp; Yoo, Yeonsik

    2014-01-01

    In HANARO, there are four Control Rod Drive Mechanisms (CRDMs) with an individual step motor and four Shutoff (SO) Units with an individual hydraulic system located at the top of reactor pool. The absorber rods in SO units are poised at the top of the core by the hydraulic force during normal operation. The rods of SO units drop by gravity as the first reactor showdown mechanism when a trip is commended by the reactor protection system (RPS). The CRDMs act as the first reactor shutdown mechanism and reactor regulating as well. The top-mounted SSDM driven by the hydraulic system for the JRTR is under design in KAERI. The SSDM provides an alternate and independent means of reactor shutdown. The second shutdown rods (SSRs) of the SSDM are poised at the top of the core by the hydraulic system during the normal operation and drop by gravity for the reactor trip. Based on the proven technology of the design, operation and maintenance for HANARO, the SSDM for the JRTR has been optimized by the design improvement from the experience and test. This paper aims for the structural integrity assessment for SSDM hydraulic cylinder which is designed on the basis of the SO unit of HANARO but optimized with the new core environment (i. e., geometrical, physical, etc.) of JRTR. A stress analysis of the hydraulic cylinder for the SSDM used in JRTR has been performed through the conservative approach with the uncertainties in the system design step. The crank's pinch load with no slip between the bearing (stiffener) plate of hydraulic cylinder and base plate of mount bracket during SSE has been calculated by considering the design and seismic load combination. The stress by the load combination satisfies the Class 3 criteria given Table NG-3325 of Section III of the ASME Code. The maximum stresses are at the clamp contact region in the cylinder

  11. Structure-function relationships during segregated and integrated network states of human brain functional connectivity.

    Science.gov (United States)

    Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf

    2018-04-01

    Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.

  12. Integrated Structural Biology for α-Helical Membrane Protein Structure Determination.

    Science.gov (United States)

    Xia, Yan; Fischer, Axel W; Teixeira, Pedro; Weiner, Brian; Meiler, Jens

    2018-04-03

    While great progress has been made, only 10% of the nearly 1,000 integral, α-helical, multi-span membrane protein families are represented by at least one experimentally determined structure in the PDB. Previously, we developed the algorithm BCL::MP-Fold, which samples the large conformational space of membrane proteins de novo by assembling predicted secondary structure elements guided by knowledge-based potentials. Here, we present a case study of rhodopsin fold determination by integrating sparse and/or low-resolution restraints from multiple experimental techniques including electron microscopy, electron paramagnetic resonance spectroscopy, and nuclear magnetic resonance spectroscopy. Simultaneous incorporation of orthogonal experimental restraints not only significantly improved the sampling accuracy but also allowed identification of the correct fold, which is demonstrated by a protein size-normalized transmembrane root-mean-square deviation as low as 1.2 Å. The protocol developed in this case study can be used for the determination of unknown membrane protein folds when limited experimental restraints are available. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Structural Integrity Evaluation of the KALIMER-600 Reactor Core Support Structure

    International Nuclear Information System (INIS)

    Park, Chang Gyu; Kim, Jong Bum; Lee, Jae Han

    2005-01-01

    KALIMER-600(Korea Advanced LIquid MEtal Reactor, 600MWe) is a pool type sodium-cooled liquid metal reactor. Since the normal operating temperature of KALIMER-600 is 545 .deg. C, the reactor structures in the hot pool region are designed and evaluated according to the elevated temperature design rules such as the ASME Boiler and Pressure Vessel Code Section III, Subsection NH. Since the core support structure of KALIMER-600 is in the cold pool region under 400 .deg. C, a high temperature inelastic behavior is not expected. Thus the stress and fatigue limits are the main concerns to assure the structural design integrity following the ASME Subsection NG. In this paper, the evaluations of the stress and fatigue damage for the core support structure of KALIMER-600 are carrried out in the case of a normal operation condition using the rules of ASME Subsection NG. To obtain the stress values, a heat transfer analysis and a stress analysis under a combined loading condition are performed. From the stress distribution results, the critical sections are selected and the stress and fatigue limits are evaluated for the selected regions

  14. Evaluation of time integration methods for transient response analysis of nonlinear structures

    International Nuclear Information System (INIS)

    Park, K.C.

    1975-01-01

    Recent developments in the evaluation of direct time integration methods for the transient response analysis of nonlinear structures are presented. These developments, which are based on local stability considerations of an integrator, show that the interaction between temporal step size and nonlinearities of structural systems has a pronounced effect on both accuracy and stability of a given time integration method. The resulting evaluation technique is applied to a model nonlinear problem, in order to: 1) demonstrate that it eliminates the present costly process of evaluating time integrator for nonlinear structural systems via extensive numerical experiments; 2) identify the desirable characteristics of time integration methods for nonlinear structural problems; 3) develop improved stiffly-stable methods for application to nonlinear structures. Extension of the methodology for examination of the interaction between a time integrator and the approximate treatment of nonlinearities (such as due to pseudo-force or incremental solution procedures) is also discussed. (Auth.)

  15. Structural Integrity Evaluation of an New In-Chimney Bracket Structures for HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Cho, Yeong Garp; Lee, Jung Hee; Jung, Hoan Sung; Seo, Choon Gyo; Shin, Jin Won

    2007-12-15

    In HANARO are there provided three hexagonal irradiation holes (CT, IR1 and IR2) in the central region of the core while four circular irradiation holes (OR3 {approx} OR6) in the outer core. There exist two types of irradiation facilities: uninstrumented or instrumented. The uninstrumented irradiation facility is little influenced by the coolant flow. But the dynamic behavior by the flow-induced vibration (FIV) and seismic loads is expected to largely occur in case of the instrumented test facility due to the long guide tube to protect the instrumentation cables. To suppress this dynamic behavior of the facility, the in-chimney bracket was designed. As a supplementary supporting structure for irradiation facility, this bracket will hold guide tubes whose holding position of the instrumented facility in CT or IR is the middle part of the instrumented facility between the hole spider and the robot arm already provided in the reactor pool liner. On the while, the bracket will grip the upper part of the guide tube when it is applied to hold the instrumented facility loaded in OR sites. Therefore it is believed that the irradiation test can be successfully conducted since this bracket can reduce the FIV and dynamic response to seismic load as well. In new in-chimney bracket, IR1 is reserved for IPS(In-Pile Section) so only CT/IR2 guide tubes are supported by CT/IR clamp units and the shape of In-chimney bracket is redesigned. For evaluating the structural integrity on the new in-chimney bracket and related reactor structures, ANSYS finite element analysis model is developed and the dynamic characteristics are analyzed. The seismic response analyses of new in-chimney bracket and related reactor structures of HANARO under the design earthquake response spectrum loads of OBE(0.1g) and SSE(0.2g) are performed. The response shows that the stress values for main points on the reactor structures and the new in-chimney bracket for seismic loads are within the ASME Code limits

  16. Hamiltonian structure of the integrable coupling of the Jaulent-Miodek hierarchy

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Fan, Engui

    2006-01-01

    A scheme for deducing Hamiltonian structures of the higher-dimensional hierarchies of evolution equations is presented which is devoting to obtaining the Hamiltonian structures of integrable coupling of the Jaulent-Miodek hierarchy

  17. State of the Art in Beta Titanium Alloys for Airframe Applications

    Science.gov (United States)

    Cotton, James D.; Briggs, Robert D.; Boyer, Rodney R.; Tamirisakandala, Sesh; Russo, Patrick; Shchetnikov, Nikolay; Fanning, John C.

    2015-06-01

    Beta titanium alloys were recognized as a distinct materials class in the 1950s, and following the introduction of Ti-13V-11Cr-3Al in the early 1960s, intensive research occurred for decades thereafter. By the 1980s, dozens of compositions had been explored and sufficient work had been accomplished to warrant the first major conference in 1983. Metallurgists of the time recognized beta alloys as highly versatile and capable of remarkable property development at much lower component weights than steels, coupled with excellent corrosion resistance. Although alloys such as Ti-15V-3Al-3Sn-3Cr, Ti-10V-2Fe-3Al and Ti-3AI-8V-6Cr-4Mo-4Zr (Beta C) were commercialized into well-known airframe systems by the 1980s, Ti-13V-11Cr-3Al was largely discarded following extensive employment on the SR-71 Blackbird. The 1990s saw the implementation of specialty beta alloys such as Beta 21S and Alloy C, in large part for their chemical and oxidation resistance. It was also predicted that by the 1990s, cost would be the major limitation on expansion into new applications. This turned out to be true and is part of the reason for some stagnation in commercialization of new such compositions over the past two decades, despite a good understanding of the relationships among chemistry, processing, and performance and some very attractive offerings. Since then, only a single additional metastable beta alloy, Ti-5Al-5V-5Mo-3Cr-0.5Fe, has been commercialized in aerospace, although low volumes of other chemistries have found a place in the biomedical implant market. This article examines the evolution of this important class of materials and the current status in airframe applications. It speculates on challenges for expanding their use.

  18. Formation of integrated structural units using the systematic and integrated method when implementing high-rise construction projects

    Science.gov (United States)

    Abramov, Ivan

    2018-03-01

    Development of design documentation for a future construction project gives rise to a number of issues with the main one being selection of manpower for structural units of the project's overall implementation system. Well planned and competently staffed integrated structural construction units will help achieve a high level of reliability and labor productivity and avoid negative (extraordinary) situations during the construction period eventually ensuring improved project performance. Research priorities include the development of theoretical recommendations for enhancing reliability of a structural unit staffed as an integrated construction crew. The author focuses on identification of destabilizing factors affecting formation of an integrated construction crew; assessment of these destabilizing factors; based on the developed mathematical model, highlighting the impact of these factors on the integration criterion with subsequent identification of an efficiency and reliability criterion for the structural unit in general. The purpose of this article is to develop theoretical recommendations and scientific and methodological provisions of an organizational and technological nature in order to identify a reliability criterion for a structural unit based on manpower integration and productivity criteria. With this purpose in mind, complex scientific tasks have been defined requiring special research, development of corresponding provisions and recommendations based on the system analysis findings presented herein.

  19. The Impact of Organizational Structure on Internal and External Integration: An empirical, cross-regional assessment

    Directory of Open Access Journals (Sweden)

    Xenophon Koufteros

    2014-06-01

    Full Text Available We examine the effects of organizational structure on cross-functional integration, supplier integration, and customer integration and assess whether such effects vary by geographical region. Specifically, we investigate the impact of centralization, formalization, and complexity on both internal (cross-functional and external (supplier, customer integration. Relationships are examined across Western and East Asian environments using data collected from 238 manufacturing plants in eight countries. We find that structural features have differing impacts on cross-functional, supplier, and customer integration, and these effects vary across geographical regions.

  20. Integrated Structural Health Sensors for Inflatable Space Habitats, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna proposes to continue development of integrated high-definition fiber optic sensors (HD-FOS) and carbon nanotube (CNT)-graphene piezoresistive sensors for...

  1. Integration of structural health monitoring and asset management.

    Science.gov (United States)

    2012-08-01

    This project investigated the feasibility and potential benefits of the integration of infrastructure monitoring systems into enterprise-scale transportation management systems. An infrastructure monitoring system designed for bridges was implemented...

  2. Variable Structure PID Control to Prevent Integrator Windup

    Science.gov (United States)

    Hall, C. E.; Hodel, A. S.; Hung, J. Y.

    1999-01-01

    PID controllers are frequently used to control systems requiring zero steady-state error while maintaining requirements for settling time and robustness (gain/phase margins). PID controllers suffer significant loss of performance due to short-term integrator wind-up when used in systems with actuator saturation. We examine several existing and proposed methods for the prevention of integrator wind-up in both continuous and discrete time implementations.

  3. The quality management system in leading organization of the integrated structure

    Directory of Open Access Journals (Sweden)

    Kunitsyn A. M.

    2018-02-01

    Full Text Available the article has analyzed the problem of integrated structure management. The author has noted that the implementation of recommendations outlined in the article will allow building and improving the quality management system in leading organization of integrated structure on a regular basis that meets the requirements.

  4. Structural Differentiation and Ambidexterity: The Mediating Role of Integration Mechanisms

    NARCIS (Netherlands)

    J.J.P. Jansen (Justin); M.P. Tempelaar (Michiel); F.A.J. van den Bosch (Frans); H.W. Volberda (Henk)

    2008-01-01

    textabstractPrior studies have emphasized that structural attributes are crucial to simultaneously pursuing exploration and exploitation, yet our understanding of antecedents of ambidexterity is still limited. Structural differentiation can help ambidextrous organizations to maintain multiple

  5. Structural differentiation and ambidexterity: The mediating role of integration mechanisms

    NARCIS (Netherlands)

    J.J.P. Jansen (Justin); M.P. Tempelaar (Michiel); F.A.J. van den Bosch (Frans); H.W. Volberda (Henk)

    2009-01-01

    textabstractPrior studies have emphasized that structural attributes are crucial to simultaneously pursuing exploration and exploitation, yet our understanding of antecedents of ambidexterity is still limited. Structural differentiation can help ambidextrous organizations to maintain multiple

  6. Integrative structural modeling with small angle X-ray scattering profiles

    Directory of Open Access Journals (Sweden)

    Schneidman-Duhovny Dina

    2012-07-01

    Full Text Available Abstract Recent technological advances enabled high-throughput collection of Small Angle X-ray Scattering (SAXS profiles of biological macromolecules. Thus, computational methods for integrating SAXS profiles into structural modeling are needed more than ever. Here, we review specifically the use of SAXS profiles for the structural modeling of proteins, nucleic acids, and their complexes. First, the approaches for computing theoretical SAXS profiles from structures are presented. Second, computational methods for predicting protein structures, dynamics of proteins in solution, and assembly structures are covered. Third, we discuss the use of SAXS profiles in integrative structure modeling approaches that depend simultaneously on several data types.

  7. Reduction of Flight Control System/Structural Mode Interaction, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel approach is proposed for reducing the degree of interaction of a high gain flight control system with the airframe structural vibration modes, representing a...

  8. A sub-structure method for multidimensional integral transport calculations

    International Nuclear Information System (INIS)

    Kavenoky, A.; Stankovski, Z.

    1983-03-01

    A new method has been developed for fine structure burn-up calculations of very heterogeneous large size media. It is a generalization of the well-known surface-source method, allowing coupling actual two-dimensional heterogeneous assemblies, called sub-structures. The method has been applied to a rectangular medium, divided into sub-structures, containing rectangular and/or cylindrical fuel, moderator and structure elements. The sub-structures are divided into homogeneous zones. A zone-wise flux expansion is used to formulate a direct collision probability problem within it (linear or flat flux expansion in the rectangular zones, flat flux in the others). The coupling of the sub-structures is performed by making extra assumptions on the currents entering and leaving the interfaces. The accuracies and computing times achieved are illustrated by numerical results on two benchmark problems

  9. The integrity of cracked structures under thermal loading

    International Nuclear Information System (INIS)

    Townley, C.H.A.

    1976-01-01

    Previous work by Dowling and Townley on the load-carrying capacity of a cracked structure is extended so that quantitative predictions can be made about failure under thermal loading. Residual stresses can be dealt with in the same way as thermal stresses. It is shown that the tolerance of the structure to thermal stress can be quantified in terms of a parameter which defines the state of the structure. This state parameter can be deduced from the calculated performance of the structure when subjected to an external load. (author)

  10. Mechanical Properties and Fatigue Behavior of Unitized Composite Airframe Structures at Elevated Temperature

    Science.gov (United States)

    2016-09-01

    test procedures used in this research. 4.1 Mechanical Testing Equipment The 810 MTS servo -hydraulic testing machine with a 100 kN (22 kip) model...www.asminternational.org. 6. Daniel, Isaac M. and Ori Ishai. “Engineering Mechanics of Composite Materials”. Oxford University Press , New York, NY, 2nd edition...Beaumont, C. Soutis, A. Hodzic, eds., Springer, in press . 69 REPORT DOCUMENTATION PAGE Form Approved OMB No. 074-0188 The public reporting

  11. Mesh Independent Probabilistic Residual Life Prediction of Metallic Airframe Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Engineering and Materials, Inc. (GEM) along with its team members, Clarkson University and LM Aero, propose to develop a mesh independent probabilistic...

  12. FORMATION OF ORGANIZATIONAL AND ECONOMIC INTEGRATED STRUCTURES IN THE ALUMINUM INDUSTRY

    Directory of Open Access Journals (Sweden)

    S. B. Kazbekova

    2013-01-01

    Full Text Available The paper reveals the theoretical foundations of economic efficiency of production and integrated structures formation. Their advantages are demonstrated by the example of the formation of vertically integrated structures in the aluminium industry in the framework created by smelting aluminium cluster inKazakhstan. Also examines the valuable experience gained in the organization of such structures in theRussian Federationin recent years

  13. On integrability of certain rank 2 sub-Riemannian structures

    Czech Academy of Sciences Publication Activity Database

    Kruglikov, B.S.; Vollmer, A.; Lukes-Gerakopoulos, Georgios

    2017-01-01

    Roč. 22, č. 5 (2017), s. 502-519 ISSN 1560-3547 R&D Projects: GA ČR(CZ) GJ17-06962Y Institutional support: RVO:67985815 Keywords : sub-Riemannian geodesic flow * Killing tensor * integral Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics OBOR OECD: Astronomy (including astrophysics,space science) Impact factor: 1.562, year: 2016

  14. On CAD-integrated Structural Topology and Design Optimization

    DEFF Research Database (Denmark)

    Olhoff, Niels; Bendsøe, M.P.; Rasmussen, John

    1991-01-01

    Concepts underlying an interactive CAD-based engineering design optimization system are developed, and methods of optimizing the topology, shape and sizing of mechanical components are presented. These methods are integrated in the system, and the method for determining the optimal topology is used...

  15. Numerical estimation of structural integrity of salt cavern wells.

    NARCIS (Netherlands)

    Orlic, B.; Thienen-Visser, K. van; Schreppers, G.J.

    2016-01-01

    Finite element analyses were performed to estimate axial deformation of cavern wells due to gas storage operations in solution-mined salt caverns. Caverns shrink over time due to salt creep and the cavern roof subsides potentially threatening well integrity. Cavern deformation, deformation of salt

  16. Integral Model of Eddy Currents in Nonmagnetic Structures

    Czech Academy of Sciences Publication Activity Database

    Doležel, Ivo; Karban, P.

    2004-01-01

    Roč. 4, č. 3 (2004), s. 5-12 ISSN 1335-8243 R&D Projects: GA ČR GA102/03/0047 Keywords : magnetic field * eddy currents * integral equations Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  17. Structural Integrity Evaluation of Containment Vessel under Severe Accident for PGSFR

    International Nuclear Information System (INIS)

    Lee, Seong-Hyeon; Koo, Gyeong-Hoi; Kim, Sung-Kyun

    2016-01-01

    This paper provides structural integrity evaluation results of CV of the PGSFR(Prototype Gen-IV Sodium Fast Reactor) under severe accident through transient analysis. The evaluation was carried out according to ASME B and PV Code Sec. III-Subsection NH rule. Structural integrity of CV was evaluated through transient analysis of structure in case of severe accident. Stress evaluation results for selected evaluation sections satisfy design criteria of ASME B and PV Code Sec. III Subsection NH. The transient load condition of normal operation will considered in the future work. The purpose of RVCS is to maintain the integrity of concrete structure during normal power operation. Therefore RVCS should be designed to keep the temperature of concrete surface under design limit and to minimize heat loss through CV(Containment Vessel). And in case of severe accident, the integrity of reactor structure and concrete structure should be maintained. Therefore RVCS should be designed to satisfy ASME Level D service limits. When RVCS works with breakdown of DHRS after severe accident, the temperature change of inner and outer surface of CV over time can affect structural integrity of CV. To verify the structural integrity, it is necessary to perform transient analysis of CV structure under changing temperature over time

  18. Integrated topology and shape optimization in structural design

    Science.gov (United States)

    Bremicker, M.; Chirehdast, M.; Kikuchi, N.; Papalambros, P. Y.

    1990-01-01

    Structural optimization procedures usually start from a given design topology and vary its proportions or boundary shapes to achieve optimality under various constraints. Two different categories of structural optimization are distinguished in the literature, namely sizing and shape optimization. A major restriction in both cases is that the design topology is considered fixed and given. Questions concerning the general layout of a design (such as whether a truss or a solid structure should be used) as well as more detailed topology features (e.g., the number and connectivities of bars in a truss or the number of holes in a solid) have to be resolved by design experience before formulating the structural optimization model. Design quality of an optimized structure still depends strongly on engineering intuition. This article presents a novel approach for initiating formal structural optimization at an earlier stage, where the design topology is rigorously generated in addition to selecting shape and size dimensions. A three-phase design process is discussed: an optimal initial topology is created by a homogenization method as a gray level image, which is then transformed to a realizable design using computer vision techniques; this design is then parameterized and treated in detail by sizing and shape optimization. A fully automated process is described for trusses. Optimization of two dimensional solid structures is also discussed. Several application-oriented examples illustrate the usefulness of the proposed methodology.

  19. Structural integrity of Sizewell B - the way forward

    International Nuclear Information System (INIS)

    Geraghty, J.E.

    1996-01-01

    The Incredibility of Failure (IOF) approach has been used on Sizewell B. This involves demonstrating that under all conditions, the failure of certain components is so remote as to be considered incredible. It means that the integrity of these components is such that they must remain intact assuming other plant items do fail. For example, a complete failure of the main loop pipework must be withstood by the RPV and steam generator shell. The IOF components are mainly those of the reactor coolant circuit and the purpose of this paper is to describe the approach adopted for the RPV, the steam generator shell, pressurizer and reactor coolant pump casing. The two arms of the safety case are achievement and demonstration of integrity. (author)

  20. Advanced ion trap structures with integrated tools for qubit manipulation

    Science.gov (United States)

    Sterk, J. D.; Benito, F.; Clark, C. R.; Haltli, R.; Highstrete, C.; Nordquist, C. D.; Scott, S.; Stevens, J. E.; Tabakov, B. P.; Tigges, C. P.; Moehring, D. L.; Stick, D.; Blain, M. G.

    2012-06-01

    We survey the ion trap fabrication technologies available at Sandia National Laboratories. These include four metal layers, precision backside etching, and low profile wirebonds. We demonstrate loading of ions in a variety of ion traps that utilize these technologies. Additionally, we present progress towards integration of on-board filtering with trench capacitors, photon collection via an optical cavity, and integrated microwave electrodes for localized hyperfine qubit control and magnetic field gradient quantum gates. [4pt] This work was supported by Sandia's Laboratory Directed Research and Development (LDRD) Program and the Intelligence Advanced Research Projects Activity (IARPA). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the US Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  1. Integrated Reliability-Based Optimal Design of Structures

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1987-01-01

    In conventional optimal design of structural systems the weight or the initial cost of the structure is usually used as objective function. Further, the constraints require that the stresses and/or strains at some critical points have to be less than some given values. Finally, all variables......-based optimal design is discussed. Next, an optimal inspection and repair strategy for existing structural systems is presented. An optimization problem is formulated , where the objective is to minimize the expected total future cost of inspection and repair subject to the constraint that the reliability...... value. The reliability can be measured from an element and/or a systems point of view. A number of methods to solve reliability-based optimization problems has been suggested, see e.g. Frangopol [I]. Murotsu et al. (2], Thoft-Christensen & Sørensen (3] and Sørensen (4). For structures where...

  2. Inflatable Habitat with Integrated Primary and Secondary Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Paragon Space Development Corp (Paragon) and Thin Red Line Aerospace (TRLA) proposes to explore the utilization of inflatable structures by designing a habitation...

  3. Organizational bases of creation and functioning of the integrated structures in the investment in construction sphere

    Directory of Open Access Journals (Sweden)

    Subbotin Artem Sergeevich

    2014-04-01

    Full Text Available Integration is one of the results of the world industrial and economic processes globalization. Integration of production and commercial units and formation of modern structures of corporate level are one of current trends of development of the organization and management, both science, and practice. Formation and development of integrated structures became an important modern phenomenon in the organization of corporate level. Integration processes in organizations to large extend influence the relation of competitive strengths on the market and as a result the competitive ability of its objects. It is accepted to distinguish vertically and horizontally integrated structures. The use of the integrated structures allows providing steady development of investment and construction activity within state-private partnership, and thanks to its flexible structure it is capable to react to changes of external and internal factors quickly and adequately. Moreover, it is necessary to point out the possibility of using the cluster model in the process of describing functioning of integrated structures.

  4. Hybrid integration of carbon nanotubes in silicon photonic structures

    Science.gov (United States)

    Durán-Valdeiglesias, E.; Zhang, W.; Alonso-Ramos, C.; Le Roux, X.; Serna, S.; Hoang, H. C.; Marris-Morini, D.; Cassan, E.; Intonti, F.; Sarti, F.; Caselli, N.; La China, F.; Gurioli, M.; Balestrieri, M.; Vivien, L.; Filoramo, A.

    2017-02-01

    Silicon photonics, due to its compatibility with the CMOS platform and unprecedented integration capability, has become the preferred solution for the implementation of next generation optical interconnects to accomplish high efficiency, low energy consumption, low cost and device miniaturization in one single chip. However, it is restricted by silicon itself. Silicon does not have efficient light emission or detection in the telecommunication wavelength range (1.3 μm-1.5 μm) or any electro-optic effect (i.e. Pockels effect). Hence, silicon photonic needs to be complemented with other materials for the realization of optically-active devices, including III-V for lasing and Ge for detection. The very different requirement of these materials results in complex fabrication processes that offset the cost-effectiveness of the Si photonics approach. For this purpose, carbon nanotubes (CNTs) have recently been proposed as an attractive one-dimensional light emitting material. Interestingly, semiconducting single walled CNTs (SWNTs) exhibit room-temperature photo- and electro-luminescence in the near-IR that could be exploited for the implementation of integrated nano-sources. They can also be considered for the realization of photo-detectors and optical modulators, since they rely on intrinsically fast non-linear effects, such as Stark and Kerr effect. All these properties make SWNTs ideal candidates in order to fabricate a large variety of optoelectronic devices, including near-IR sources, modulators and photodetectors on Si photonic platforms. In addition, solution processed SWNTs can be integrated on Si using spin-coating or drop-casting techniques, obviating the need of complex epitaxial growth or chip bonding approaches. Here, we report on our recent progress in the coupling of SWNTs light emission into optical resonators implemented on the silicon-on-insulator (SOI) platform. .

  5. New integrable structures in large-N QCD

    International Nuclear Information System (INIS)

    Ferretti, Gabriele; Heise, Rainer; Zarembo, Konstantin

    2004-01-01

    We study the anomalous dimensions of single trace operators composed of field strengths F μν in large-N QCD. The matrix of anomalous dimensions is the Hamiltonian of a compact spin chain with two spin one representations at each vertex corresponding to the self-dual and anti-self-dual components of F μν . Because of the special form of the interaction it is possible to study separately renormalization of purely self-dual components. In this sector the Hamiltonian is integrable and can be exactly solved by Bethe ansatz. Its continuum limit is described by the level two SU(2) Wess-Zumino-Witten model

  6. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  7. The home hemodialysis hub: physical infrastructure and integrated governance structure.

    Science.gov (United States)

    Marshall, Mark R; Young, Bessie A; Fox, Sally J; Cleland, Calli J; Walker, Robert J; Masakane, Ikuto; Herold, Aaron M

    2015-04-01

    An effective home hemodialysis program critically depends on adequate hub facilities and support functions and on transparent and accountable organizational processes. The likelihood of optimal service delivery and patient care will be enhanced by fit-for-purpose facilities and implementation of a well-considered governance structure. In this article, we describe the required accommodation and infrastructure for a home hemodialysis program and a generic organizational structure that will support both patient-facing clinical activities and business processes. © 2015 International Society for Hemodialysis.

  8. Ames and other European networks in integrity of ageing structures

    International Nuclear Information System (INIS)

    Davies, L.M.; Von Estorff, U.; Crutzen, S.

    1996-01-01

    Several European institutions and organisations and the Joint Research Centre have developed co-operative programmes now organised into Networks for mutual benefit. They include utilities, engineering companies, Research and Development laboratories and regulatory bodies. Networks are organised and managed like the successful Programme for the Inspection of Steel Components (PISC). The JRC's Institute for Advanced Materials of the European Commission plays the role of Operating Agent and manager of these Networks: ENIQ. AMES, NESC, each of them dealing with specific aspect of fitness for purpose of materials in structural components. This paper describes the structure and the objectives of these networks. Particular emphasis is given to the network AMES

  9. Supplier integration in product development: A matter of designing the project structure

    Directory of Open Access Journals (Sweden)

    Mike Danilovic

    2007-11-01

    Full Text Available In product development close collaboration between systems integrators and suppliers is important. The purpose of this article is to investigate the impact of the work breakdown structure (WBS and work packages (WPs in product development on the possibility of carrying through the strategy of supplier involvement into collaborative practice and to investigate how supplier involvement can be improved by altering the design of collaborative WBS and WP structures. Dependence Structure Matrix (DSM is introduced in order to analyse, visualise and manage interdependencies, in terms of information exchange between the systems integrator and supplier. This article shows how DSM can support the alternative design of integrated and collaborative WBS and integrated WPs following the logic of dependencies and the flow of information in order to support a strategy focusing on integration of suppliers on project and team level.

  10. Design structure for in-system redundant array repair in integrated circuits

    Science.gov (United States)

    Bright, Arthur A.; Crumley, Paul G.; Dombrowa, Marc; Douskey, Steven M.; Haring, Rudolf A.; Oakland, Steven F.; Quellette, Michael R.; Strissel, Scott A.

    2008-11-25

    A design structure for repairing an integrated circuit during operation of the integrated circuit. The integrated circuit comprising of a multitude of memory arrays and a fuse box holding control data for controlling redundancy logic of the arrays. The design structure provides the integrated circuit with a control data selector for passing the control data from the fuse box to the memory arrays; providing a source of alternate control data, external of the integrated circuit; and connecting the source of alternate control data to the control data selector. The design structure further passes the alternate control data from the source thereof, through the control data selector and to the memory arrays to control the redundancy logic of the memory arrays.

  11. PRSEUS Structural Concept Development

    Science.gov (United States)

    Velicki, Alex; Jegley, Dawn

    2014-01-01

    A lighter, more robust airframe is one of the key technological advancements necessary for the successful launch of any large next-generation transport aircraft. Such a premise dictates that considerable improvements beyond current state-of-the-art aluminum structures is needed, and that improvements of this magnitude will require an extensive use of composite materials that are not only lightweight, but also economical to produce. To address this challenge, researchers at NASA and The Boeing Company are developing a novel structural concept called the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) under the Environmentally Responsible Aviation (ERA) Project. It is an integrally stiffened panel concept that is stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. In addition to improved structural performance, an important facet of this unique arrangement of stitched carbon fibers is its innovative manufacturing method that has the potential to lower fabrication costs by eliminating fasteners and autoclave cures. The rationale and development status for this new approach forms the basis of the work described in this paper. The test specimens described herein were fabricated, or are currently being fabricated, by The Boeing Company, while the structural analyses and testing tasks are being performed by NASA and Boeing personnel.

  12. Influence of a Cyclic Events Configuration on a Elevated Temperature Structural Integrity

    International Nuclear Information System (INIS)

    Park, Chang-Gyu; Koo, Gyeong-Hoi; Lee, Jae-Han

    2008-01-01

    A nuclear power plant generally undergoes the various types of operating events for a plant life time. The cyclic events for a life time may bring about a structural failure such as fatigue damage. The structures of the LMR(Liquid Metal Reactor) operated in a elevated temperature environment are seriously affected by a thermal deformation and strain. Therefore, the thermal transient condition is a key factor for ensuring the structural integrity for the LMR reactor structures. Since it is not easy to consider the entire operating events at the preliminary or conceptual design stage, the LMR structural integrity is evaluated with representative duty cycle events. In this study, the influence of the elevated temperature structural integrity evaluation per the combination and sequence of the duty cycle events is investigated

  13. Plant functional connectivity – integrating landscape structure and effective dispersal

    NARCIS (Netherlands)

    Auffret, Alistair G.; Rico, Yessica; Bullock, James M.; Hooftman, Danny A.P.; Pakeman, Robin J.; Soons, Merel B.; Suárez-Esteban, Alberto; Traveset, Anna; Wagner, Helene H.; Cousins, Sara A.O.

    2017-01-01

    Dispersal is essential for species to survive the threats of habitat destruction and climate change. Combining descriptions of dispersal ability with those of landscape structure, the concept of functional connectivity has been popular for understanding and predicting species’ spatial responses to

  14. The Structure and Effectiveness of Health Systems: Exploring the Impact of System Integration in Rural China

    OpenAIRE

    Wang, Xin; Birch, Stephen; Ma, Huifen; Zhu, Weiming; Meng, Qingyue

    2016-01-01

    Introduction: Facing the challenges of aging populations, increasing chronic diseases prevalence and health system fragmentation, there have been several pilots of integrated health systems in China. But little is known about their structure, mechanism and effectiveness. The aim of this paper is to analyze health system integration and develop recommendations for achieving integration. Method: Huangzhong and Hualong counties in Qinghai province were studied as study sites, with only Huangzhon...

  15. Integrating chemical footprinting data into RNA secondary structure prediction.

    Directory of Open Access Journals (Sweden)

    Kourosh Zarringhalam

    Full Text Available Chemical and enzymatic footprinting experiments, such as shape (selective 2'-hydroxyl acylation analyzed by primer extension, yield important information about RNA secondary structure. Indeed, since the [Formula: see text]-hydroxyl is reactive at flexible (loop regions, but unreactive at base-paired regions, shape yields quantitative data about which RNA nucleotides are base-paired. Recently, low error rates in secondary structure prediction have been reported for three RNAs of moderate size, by including base stacking pseudo-energy terms derived from shape data into the computation of minimum free energy secondary structure. Here, we describe a novel method, RNAsc (RNA soft constraints, which includes pseudo-energy terms for each nucleotide position, rather than only for base stacking positions. We prove that RNAsc is self-consistent, in the sense that the nucleotide-specific probabilities of being unpaired in the low energy Boltzmann ensemble always become more closely correlated with the input shape data after application of RNAsc. From this mathematical perspective, the secondary structure predicted by RNAsc should be 'correct', in as much as the shape data is 'correct'. We benchmark RNAsc against the previously mentioned method for eight RNAs, for which both shape data and native structures are known, to find the same accuracy in 7 out of 8 cases, and an improvement of 25% in one case. Furthermore, we present what appears to be the first direct comparison of shape data and in-line probing data, by comparing yeast asp-tRNA shape data from the literature with data from in-line probing experiments we have recently performed. With respect to several criteria, we find that shape data appear to be more robust than in-line probing data, at least in the case of asp-tRNA.

  16. The relevance of crack arrest phenomena for pressure vessel structural integrity assessment

    International Nuclear Information System (INIS)

    Connors, D.C.; Dowling, A.R.; Flewitt, P.E.J.

    1996-01-01

    The potential role of a crack arrest argument for the structural integrity assessments of steel pressure vessels and the relationship between crack initiation and crack arrest philosophies are described. A typical structural integrity assessment using crack initiation fracture mechanics is illustrated by means of a case study based on assessment of the steel pressure vessels for Magnox power stations. Evidence of the occurrence of crack arrest in structures is presented and reviewed, and the applications to pressure vessels which are subjected to similar conditions are considered. An outline is given of the material characterisation that would be required to undertake a crack arrest integrity assessment. It is concluded that crack arrest arguments could be significant in the structural integrity assessment of PWR reactor pressure vessels under thermal shock conditions, whereas for Magnox steel pressure vessels it would be limited in its potential to supporting existing arguments. (author)

  17. Ensuring the integrity of information resources based methods dvooznakovoho structural data encoding

    Directory of Open Access Journals (Sweden)

    О.К. Юдін

    2009-01-01

    Full Text Available  Developed methods of estimation of noise stability and correction of structural code constructions to distortion in comunication of data in informatively communication systems and networks taking into account providing of integrity of informative resource.

  18. Integral superposition of paraxial Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2015-01-01

    Roč. 25, - (2015), s. 109-155 ISSN 2336-3827 Institutional support: RVO:67985530 Keywords : integral superposition of paraxial Gaussian beams * inhomogeneous anisotropic media * S waves in weakly anisotropic media Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  19. Soil-structure interaction studies for understanding the behavior of integral abutment bridges.

    Science.gov (United States)

    2012-03-01

    Integral Abutment Bridges (IAB) are bridges without any joints within the bridge deck or between the : superstructure and the abutments. An IAB provides many advantages during construction and maintenance of : a bridge. Soil-structure interactions at...

  20. Integrable couplings of the multi-component Dirac hierarchy and its Hamiltonian structure

    International Nuclear Information System (INIS)

    Li Zhu; Dong Huanhe

    2008-01-01

    Integrable couplings of the multi-component Dirac hierarchy is obtained by use of the vector loop algebra G ∼ M , then the Hamiltonian structure of the above system is given by the quadratic-form identity

  1. Fast electromagnetic characterization of integrated circuit passive isolation structures based on interference blocking

    NARCIS (Netherlands)

    Grau Novellas, M.; Serra, R.; Rose, Matthias

    2017-01-01

    An early characterization of integrated circuit passive isolation structures is crucial to predict their performance and effectiveness in minimizing substrate coupling. In this paper, an electromagnetic (EM) modeling methodology is proposed, which can be applied to different types of isolation

  2. STYLE - A European Project on Structural Integrity: Progress of the work after 2 Years

    International Nuclear Information System (INIS)

    Heussner, Stefan; Nicak, Tomas; Keim, Elisabeth

    2012-01-01

    The overall objective of STYLE is to assess, optimise and develop the use of advanced tools for the structural integrity assessment of components relevant to ageing and life time management and to support the integration of the knowledge created in the project into main-stream nuclear industry assessment codes.

  3. New Integrable Couplings of Generalized Kaup-Newell Hierarchy and Its Hamiltonian Structures

    International Nuclear Information System (INIS)

    Xia Tiecheng; Zhang Gailian; Fan Engui

    2011-01-01

    A new isospectral problem is firstly presented, then we derive integrable system of soliton hierarchy. Also we obtain new integrable couplings of the generalized Kaup-Newell soliton equations hierarchy and its Hamiltonian structures by using Tu scheme and the quadratic-form identity. The method can be generalized to other soliton hierarchy. (general)

  4. Structural testing of the technology integration box beam

    Science.gov (United States)

    Griffin, C. F.

    1992-01-01

    A full-scale section of a transport aircraft wing box was designed, analyzed, fabricated, and tested. The wing box section, which was called the technology integration box beam, contained blade stiffened covers and T-stiffened channel spars constructed using graphite/epoxy materials. Covers, spars, and the aluminum ribs were assembled using mechanical fasteners. The box beam was statically tested for several loading conditions to verify the stiffness and strength characteristics of the composite wing design. Failure of the box beam occurred at 125 percent of design limit load during the combined upbending and torsion ultimate design load test. It appears that the failure initiated at a stiffener runout location in the upper cover which resulted in rupture of the upper cover and portions of both spars.

  5. Integrated assessment of structural materials deterioration for NUPLEX evaluations

    International Nuclear Information System (INIS)

    Lapides, M.E.; Carey, J.

    1987-01-01

    Nuclear Plant Life Extension (NUPLEX) is a management decision process that focuses on defining risks and rewards associated with extending the service life of a nuclear unit. After some preliminary screening activities, management is specifically concerned with defining the trade-offs among maintenance, repairs, and replacements that are most likely to provide economically attractive service for the desired extended period. These strategic maintenance decisions are usually dictated by what is known or not known about long-term deterioration effects. Such issues are usually not evident in our design experience base or in current codes and standards. One can choose to examine them as isolated phenomena - or in some manner that fosters an integrated perspective deriving from various specialized views. While there is much to be said for each method, the unique timing and decision requirements of NUPLEX favor the latter approach. This paper illustrates why this approach is being pursued and explains its status

  6. Integrating Structural Health Management with Contingency Control for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Kai Goebel

    2013-01-01

    Full Text Available Maximizing turbine up-time and reducing maintenance costs are key technology drivers for wind turbine operators. Components within wind turbines are subject to considerable stresses due to unpredictable environmental conditions resulting from rapidly changing local dynamics. In that context, systems health management has the aim to assess the state-of-health of components within a wind turbine, to estimate remaining life, and to aid in autonomous decision-making to minimize damage to the turbine. Advanced contingency control is one way to enable autonomous decision-making by providing the mechanism to enable safe and efficient turbine operation. The work reported herein explores the integration of condition monitoring of wind turbine blades with contingency control to balance the trade-offs between maintaining system health and energy capture. Results are demonstrated using a high fidelity simulator of a utility-scale wind turbine.

  7. Structural integrity investigations of feeder pipe ice plugging procedures

    International Nuclear Information System (INIS)

    Flaman, M.T.; Shah, N.N.

    1985-03-01

    A procedure involving the use of a liquid nitrogen cooled heat exchanger to form internal ice plugs in feeder pipes is routinely used in nuclear generating stations. The use of this procedure has caused concerns with regard to the safety of station maintenance personnel, and in regard to the integrity of the feeder pipes. This report describes the results of laboratory stress and pressure measurements which were performed on a feeder pipe section during ice plugging operations to investigate these concerns. From the results of this study, and from the results of previous studies of material behaviour at low temperatures, it has been determined that the ice plugging procedure can be performed on feeder pipes in a safe and effective manner

  8. Structural integrity and management of aging in internal components of BWR reactors

    International Nuclear Information System (INIS)

    Arganis J, C.R.

    2004-01-01

    Presently work the bases to apply structural integrity and the handling of the aging of internal components of the pressure vessel of boiling water reactors of water are revised and is carried out an example of structural integrity in the horizontal welding H4 of the encircling one of the core of a reactor, taking data reported in the literature. It is also revised what is required to carry out the handling program or conduct of the aging (AMP). (Author)

  9. Comprehensive Assessment of Integration Activity of Business Structures in Russian Regions

    Directory of Open Access Journals (Sweden)

    Mariya Gennad’evna Karelina

    2016-11-01

    Full Text Available In the context of economic sanctions and growing international isolation, the research into regional differences in integration development acquires special relevance for Russia; this fact determines the need for a comprehensive assessment of integration activity of business structures in Russian regions. The diversity of approaches to the study of problems and prospects of economic integration and the current debate about the role of integration processes in the development of regional economies determined a comprehensive approach to the concepts of “integration” and “integration activity” in order to create objective prerequisites for analyzing integration activity of business structures in the regions of Russia. The information base of the research is the data of Russian information and analytical agencies. The tools used in the research include methods for analyzing structural changes, methods for analyzing economic differentiation and concentration, nonparametric statistics methods, and econometric analysis methods. The first part of the paper shows that socio-economic development in constituent entities of Russia is closely connected with the operation of integrated business structures located on their territory. Having studied the structure and dynamics of integration activity, we reveal the growing heterogeneity of integration activity of business structures in Russian regions. The hypothesis about significant divergence of mergers and acquisitions for corporate structures in Russian regions was confirmed by high values of the Gini coefficient, the Herfindahl index and the decile differentiation coefficient. The second part of the paper contains a comparative analysis and proposes an econometric approach to the measurement of integration activity of business structures in subjects of the Russian Federation on the basis of integral synthetic categories. The approach we propose focuses on the development of a system of indicators

  10. An integrative computational modelling of music structure apprehension

    DEFF Research Database (Denmark)

    Lartillot, Olivier

    2014-01-01

    , the computational model, by virtue of its generality, extensiveness and operationality, is suggested as a blueprint for the establishment of cognitively validated model of music structure apprehension. Available as a Matlab module, it can be used for practical musicological uses.......An objectivization of music analysis requires a detailed formalization of the underlying principles and methods. The formalization of the most elementary structural processes is hindered by the complexity of music, both in terms of profusions of entities (such as notes) and of tight interactions...... between a large number of dimensions. Computational modeling would enable systematic and exhaustive tests on sizeable pieces of music, yet current researches cover particular musical dimensions with limited success. The aim of this research is to conceive a computational modeling of music analysis...

  11. Simulating Dynamic Vehicle Maneuvers Using Finite Elements For Use In Design Of Integrated Composite Structure

    OpenAIRE

    Angelini, Nicholas Alexander

    2014-01-01

    Formula SAE (FSAE) chassis systems are increasing being manufactured with integrated composite structures in an effort to increase the performance of the system while decreasing weight. The increased use of composite structures requires more details of the loading conditions and evaluation metrics than the mild steel structures they are replacing. The prototypical FSAE steel space frame chassis designs are heavily structured around the mandated safety rules that doubled as mostly satisfactory...

  12. An integrated risk sensing system for geo-structural safety

    Institute of Scientific and Technical Information of China (English)

    H.W. Huang; D.M. Zhang; B.M. Ayyub

    2017-01-01

    Over the last decades, geo-structures are experiencing a rapid development in China. The potential risks inherent in the huge amount of construction and asset operation projects in China were well managed in the major project, i.e. the project of Shanghai Yangtze tunnel in 2002. Since then, risk assessment of geo-structures has been gradually developed from a qualitative manner to a quantitative manner. However, the current practices of risk management have been paid considerable attention to the assessment, but little on risk control. As a result, the responses to risks occurrences after a comprehensive assessment are basically too late. In this paper, a smart system for risk sensing incorporating the wireless sensor network (WSN) on-site visualization techniques and the resilience-based repair strategy was proposed. The merit of this system is the real-time monitoring for geo-structural performance and dynamic pre-warning for safety of on-site workers. The sectional convergence, joint opening, and seepage of segmental lining of shield tunnel were monitored by the micro-electro-mechanical systems (MEMS) based sensors. The light emitting diode (LED) coupling with the above WSN system was used to indicate different risk levels on site. By sensing the risks and telling the risks in real time, the geo-risks could be controlled and the safety of geo-structures could be assured to a certain degree. Finally, a resilience-based analysis model was proposed for designing the repair strategy by using the measured data from the WSN system. The application and efficiency of this system have been validated by two cases including Shanghai metro tunnel and underwater road tunnel.

  13. From childhood adversity to problem behaviors: Role of psychological and structural social integration.

    Science.gov (United States)

    Chao, Lo-Hsin; Tsai, Meng-Che; Liang, Ya-Lun; Strong, Carol; Lin, Chung-Ying

    2018-01-01

    Childhood adversity (CA) is associated with problem behaviors in adolescence, but the mediators, that is, those factors that help build resilience and prevent some children who experience CA from engaging in problem behaviors, await more exploration, including social integration. The aim of this study was to identify the association between CA and adolescent problem behaviors, and to further examine the mediating role of social integration distinctly as psychological and structural integration. Data used were from the Taiwan Education Panel Survey, a core panel of 4,261 students (age 13) surveyed in 2001 and followed for three more waves until age 18. For psychological integration, an average score was calculated to represent adolescents' feelings about their school. Structural integration was constructed using several items about adolescents' school and extracurricular activities. We used structural equation modeling with the diagonally weighted least squares method to examine the effect of CA on the primary outcome: adolescent problem behaviors via social integration. The hypothesized structural equation model specifying the path from CA to adolescent problem behavior had good fit. Respondents with one CA were indirectly linked to problem behaviors via psychological but not structural integration (e.g. the level of participation in school and non-school activities). On mediation analysis, psychological integration significantly mediated the paths from one CA to all six problem behaviors (all P integration; two or more CA were not associated with significant paths to problem behaviors. The contribution of social integration is crucial to an adolescent's development from CA to problem behaviors. To form supportive social relationships to achieve better health, we suggest that those adolescents who have been exposed to CA should be helped to join more teams and take part in more activities, thereby increasing their opportunities for social interaction, and improving

  14. Delineating the Structure of Normal and Abnormal Personality: An Integrative Hierarchical Approach

    Science.gov (United States)

    Markon, Kristian E.; Krueger, Robert F.; Watson, David

    2008-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed. PMID:15631580

  15. Delineating the structure of normal and abnormal personality: an integrative hierarchical approach.

    Science.gov (United States)

    Markon, Kristian E; Krueger, Robert F; Watson, David

    2005-01-01

    Increasing evidence indicates that normal and abnormal personality can be treated within a single structural framework. However, identification of a single integrated structure of normal and abnormal personality has remained elusive. Here, a constructive replication approach was used to delineate an integrative hierarchical account of the structure of normal and abnormal personality. This hierarchical structure, which integrates many Big Trait models proposed in the literature, replicated across a meta-analysis as well as an empirical study, and across samples of participants as well as measures. The proposed structure resembles previously suggested accounts of personality hierarchy and provides insight into the nature of personality hierarchy more generally. Potential directions for future research on personality and psychopathology are discussed.

  16. WWER steam generator tube structural and leakage integrity

    International Nuclear Information System (INIS)

    Splichal, K.; Krhounek, Vl.; Otruba, J.; Ruscak, M.

    1998-01-01

    The integrity of heat exchange tubes may influence the lifetime of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirements are to assure very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evaluation and heat exchange tubes plugging. The stress corrosion cracking and pitting are the main corrosion damages of WWER heat exchange tubes and are initiated from the outer surface. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through wall cracks, oriented preferentially in the axial direction. The paper presents the leakage and plugging limits for WWER steam generators, which have been determined from leak tests and burst tests. The tubes with axial part-through and through-wall defects have been used. The permissible value of primary to secondary leak rate was evaluated with respect to permissible axial through-wall defect size of WWER 440 and 1000 steam generator tubes. Blocking of the tube cracks by corrosion product particles and other compounds reduces the primary to secondary leak rate. The plugging limits involve the following factors: permissible tube wall thickness which determine further operation of the tubes with defects and assures their integrity under operating conditions and permissible size of a through-wall crack which is sufficiently stable under normal and accident conditions in relation to the critical crack length. For the evaluation of burst test of heat exchange tubes with longitudinal through-wall defects the instability criterion has been used and the dependence of the normalised burst pressure on the normalised length of an axial through-wall defect has been determined. The validity of the criterion of instability for WWER tubes with through

  17. [Structure and functional organization of integrated cardiac intensive care].

    Science.gov (United States)

    Scherillo, Marino; Miceli, Domenico; Tubaro, Marco; Guiducci, Umberto

    2007-05-01

    The early invasive strategy for the treatment of acute coronary syndromes and the increasing number of older and sicker patients requiring prolonged and more complex intensive care have induced many changes in the function of the intensive care units. These changes include the statement that specially trained cardiologists and cardiac nurses who can manage patients with acute cardiac conditions should staff the intensive care units. This document indicates the structure of the units and specific recommendations for the number of beds, monitoring system, respirators, pacemaker/defibrillators and additional equipment.

  18. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    Science.gov (United States)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  19. Structural and leakage integrity assessment of WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K.; Otruba, J. [Nuclear Research Inst., Rez (Switzerland)

    1997-12-31

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction. 10 refs.

  20. Structural and leakage integrity assessment of WWER steam generator tubes

    International Nuclear Information System (INIS)

    Splichal, K.; Otruba, J.

    1997-01-01

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction

  1. Monolithic integration of nanoscale tensile specimens and MEMS structures

    International Nuclear Information System (INIS)

    Yilmaz, Mehmet; Kysar, Jeffrey W

    2013-01-01

    Nanoscale materials often have stochastic material properties due to a random distribution of material defects and an insufficient number of defects to ensure a consistent average mechanical response. Current methods to measure the mechanical properties employ MEMS-based actuators. The nanoscale specimens are typically mounted manually onto the load platform, so the boundary conditions have random variations, complicating the experimental measurement of the intrinsic stochasticity of the material properties. Here we show methods for monolithic integration of a nanoscale specimen co-fabricated with the loading platform. The nanoscale specimen is gold with dimensions of ∼40 nm thickness, 350 ± 50 nm width, and 7 μm length and the loading platform is an interdigitated electrode electrostatic actuator. The experiment is performed in a scanning electron microscope and digital image correlation is employed to measure displacements to determine stress and strain. The ultimate tensile strength of the nanocrystalline nanoscale specimen approaches 1 GPa, consistent with measurements made by other nanometer scale sample characterization methods on other material samples at the nanometer scale, as well as gold samples at the nanometer scale. The batch-compatible microfabrication method can be used to create nominally identical nanoscale specimens and boundary conditions for a broad range of materials. (paper)

  2. Structural and leakage integrity assessment of WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K; Otruba, J [Nuclear Research Inst., Rez (Switzerland)

    1998-12-31

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction. 10 refs.

  3. Structurally Integrated, Damage-Tolerant, Thermal Spray Coatings

    Science.gov (United States)

    Vackel, Andrew; Dwivedi, Gopal; Sampath, Sanjay

    2015-07-01

    Thermal spray coatings are used extensively for the protection and life extension of engineering components exposed to harsh wear and/or corrosion during service in aerospace, energy, and heavy machinery sectors. Cermet coatings applied via high-velocity thermal spray are used in aggressive wear situations almost always coupled with corrosive environments. In several instances (e.g., landing gear), coatings are considered as part of the structure requiring system-level considerations. Despite their widespread use, the technology has lacked generalized scientific principles for robust coating design, manufacturing, and performance analysis. Advances in process and in situ diagnostics have provided significant insights into the process-structure-property-performance correlations providing a framework-enhanced design. In this overview, critical aspects of materials, process, parametrics, and performance are discussed through exemplary studies on relevant compositions. The underlying connective theme is understanding and controlling residual stresses generation, which not only addresses process dynamics but also provides linkage for process-property relationship for both the system (e.g., fatigue) and the surface (wear and corrosion). The anisotropic microstructure also invokes the need for damage-tolerant material design to meet future goals.

  4. Substantiating the Conceptual Model of Branding of the Integrated Business Structures

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-11-01

    Full Text Available The article is aimed at researching the theoretical foundations of the concept of branding and forming a conceptual model of branding of the integrated business structures. The concept of branding of IBS is systematized and synthesized by three directions: overview of theories of management of integrated business structures, based on the principle of economic integration; overview of the brand management models based on the principle of brand-oriented management; overview of management approaches, the essence of which is synthesized in the aspect of application to the management of brands of the integrated business structures. Special attention is paid to the factors influencing the efficiency of the process of integration of business structures. Further development of modelling the process of integration branding in the IBS system is of great importance, as the brands of two unifying companies usually have their own identities, unique features within the terms of formation of the brand’s style and philosophy. In such a fundamental issue it is necessary to define the strategy of brand integration, i.e. whether it will be a single brand, a joint brand, a flexible brand or a completely new one.

  5. The prospect of modern thermomechanics in structural integrity calculations of large-scale pressure vessels

    Science.gov (United States)

    Fekete, Tamás

    2018-05-01

    Structural integrity calculations play a crucial role in designing large-scale pressure vessels. Used in the electric power generation industry, these kinds of vessels undergo extensive safety analyses and certification procedures before deemed feasible for future long-term operation. The calculations are nowadays directed and supported by international standards and guides based on state-of-the-art results of applied research and technical development. However, their ability to predict a vessel's behavior under accidental circumstances after long-term operation is largely limited by the strong dependence of the analysis methodology on empirical models that are correlated to the behavior of structural materials and their changes during material aging. Recently a new scientific engineering paradigm, structural integrity has been developing that is essentially a synergistic collaboration between a number of scientific and engineering disciplines, modeling, experiments and numerics. Although the application of the structural integrity paradigm highly contributed to improving the accuracy of safety evaluations of large-scale pressure vessels, the predictive power of the analysis methodology has not yet improved significantly. This is due to the fact that already existing structural integrity calculation methodologies are based on the widespread and commonly accepted 'traditional' engineering thermal stress approach, which is essentially based on the weakly coupled model of thermomechanics and fracture mechanics. Recently, a research has been initiated in MTA EK with the aim to review and evaluate current methodologies and models applied in structural integrity calculations, including their scope of validity. The research intends to come to a better understanding of the physical problems that are inherently present in the pool of structural integrity problems of reactor pressure vessels, and to ultimately find a theoretical framework that could serve as a well

  6. Design integration of favorable geometry, structural support and containment

    International Nuclear Information System (INIS)

    Purcell, J.A.; McGehee, G.A.

    1991-07-01

    In designs for fissile processes at Savannah River site, different approaches have been used to provide engineered margins of safety for criticality with containment and seismic resistance as additional requirements. These requirements are frequently at odds in engineered systems. This paper proposes a plan to take advantage of vessels with favorable geometry to provide seismic resistance and to support a glovebox for containment. Thin slab tanks, small diameter pencil tanks, annular tanks, and other novel designs have been used for criticality safety. The requirement for DBE seismic resistance and rigid control of dimensions leads the designer to consider annular tanks for meeting these requirements. The high strength of annular tanks may logically be used to support secondary containment. Hands-on access to all instruments, piping etc. within containment can be provided through gloveports, thus a specialized glovebox. This paper examines the advantages of using an annular tank design to provide favorable geometry, structural support and containment

  7. Functional, Structural, and Neurotoxicity Biomarkers in Integrative Assessment of Concussions

    Directory of Open Access Journals (Sweden)

    Svetlana A Dambinova

    2016-10-01

    Full Text Available Concussion is a complex, heterogenous process affecting the brain. Accurate assessment and diagnosis and appropriate management of concussion are essential to ensure athletes do not prematurely return to play or others to work or active military duty, risking re-injury. To date, clinical diagnosis relies primarily on evaluating subjects for functional impairment using instruments that include neurocognitive testing, subjective symptom report, and neurobehavioral assessments, such as balance and vestibular-ocular reflex testing. Structural biomarkers, defined as advanced neuroimaging techniques and biomarkers assessing neurotoxicity and immunoexcitotoxicity may complement the use of functional biomarkers. We hypothesize that neurotoxicity AMPA, NMDA, and kainite receptor biomarkers might be utilized as a part of comprehensive approach to concussion evaluations, with the goal of increasing diagnostic accuracy and facilitating treatment planning and prognostic assessment.

  8. Modulation of chromatin structure by the FACT histone chaperone complex regulates HIV-1 integration.

    Science.gov (United States)

    Matysiak, Julien; Lesbats, Paul; Mauro, Eric; Lapaillerie, Delphine; Dupuy, Jean-William; Lopez, Angelica P; Benleulmi, Mohamed Salah; Calmels, Christina; Andreola, Marie-Line; Ruff, Marc; Llano, Manuel; Delelis, Olivier; Lavigne, Marc; Parissi, Vincent

    2017-07-28

    Insertion of retroviral genome DNA occurs in the chromatin of the host cell. This step is modulated by chromatin structure as nucleosomes compaction was shown to prevent HIV-1 integration and chromatin remodeling has been reported to affect integration efficiency. LEDGF/p75-mediated targeting of the integration complex toward RNA polymerase II (polII) transcribed regions ensures optimal access to dynamic regions that are suitable for integration. Consequently, we have investigated the involvement of polII-associated factors in the regulation of HIV-1 integration. Using a pull down approach coupled with mass spectrometry, we have selected the FACT (FAcilitates Chromatin Transcription) complex as a new potential cofactor of HIV-1 integration. FACT is a histone chaperone complex associated with the polII transcription machinery and recently shown to bind LEDGF/p75. We report here that a tripartite complex can be formed between HIV-1 integrase, LEDGF/p75 and FACT in vitro and in cells. Biochemical analyzes show that FACT-dependent nucleosome disassembly promotes HIV-1 integration into chromatinized templates, and generates highly favored nucleosomal structures in vitro. This effect was found to be amplified by LEDGF/p75. Promotion of this FACT-mediated chromatin remodeling in cells both increases chromatin accessibility and stimulates HIV-1 infectivity and integration. Altogether, our data indicate that FACT regulates HIV-1 integration by inducing local nucleosomes dissociation that modulates the functional association between the incoming intasome and the targeted nucleosome.

  9. Surface plasmon polariton band gap structures: implications to integrated plasmonic circuits

    DEFF Research Database (Denmark)

    Bozhevolnyi, S. I.; Volkov, V. S.; Østergaard, John Erland

    2001-01-01

    phenomenon related to strong multiple scattering of light in periodic media. The interest to the PBG structures has dramatically risen since the possibility of efficient waveguiding around a sharp corner of a line defect in the PBG structure has been pointed out. Given the perspective of integrating various...

  10. Irradiation effects on the mechanical properties of aluminium and the structural integrity of aluminium reactor components

    International Nuclear Information System (INIS)

    Harrison, R.P.; McDonald, N.R.; Mitchell, D.R.G.; Hellier, A.K.; Stathers, P.A.; Carr, D.G.; Ripley, M.I.

    2000-01-01

    The results of micro-structural and mechanical property studies on aluminum after being exposed to large fluences of neutrons are presented. These property changes are of importance in determining the structural integrity of the Australian HIFAR reactor aluminium tank, which in turn determines the lifetime of the reactor. (author)

  11. Development of a Sensor-Based Structural Integrity Measurement Technique for Potential Application to Missile Casings

    National Research Council Canada - National Science Library

    Triplett, M; Kess, H. R; Sundararaman, S; Shah, C. D; Adams, D. E; Walsh, S. M; Pergantis, C. G

    2006-01-01

    .... It is one of the first known efforts to integrate sensor data with structural analytic and numerical models to provide not only a location and history of adverse loading events, but also an estimate of stiffness degradation in the structural casing. S2 glass/epoxy composite cylinders were chosen because they provide an observable means of witnessing damage for correlation purposes.

  12. Improved structural integrity through advances in reliable residual stress measurement: the impact of ENGIN-X

    Science.gov (United States)

    Edwards, L.; Santisteban, J. R.

    The determination of accurate reliable residual stresses is critical to many fields of structural integrity. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within engineering components and structures. As such, it has become an increasingly important tool within engineering, leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise lifing procedures. This paper describes the likely impact of the next generation of dedicated engineering stress diffractometers currently being constructed and the utility of the technique using examples of residual stresses both beneficial and detrimental to structural integrity.

  13. Embedded sensing: integrating sensors in 3-D printed structures

    Directory of Open Access Journals (Sweden)

    A. Dijkshoorn

    2018-03-01

    Full Text Available Current additive manufacturing allows for the implementation of electrically interrogated 3-D printed sensors. In this contribution various technologies, sensing principles and applications are discussed. We will give both an overview of some of the sensors presented in literature as well as some of our own recent work on 3-D printed sensors. The 3-D printing methods discussed include fused deposition modelling (FDM, using multi-material printing and poly-jetting. Materials discussed are mainly thermoplastics and include thermoplastic polyurethane (TPU, both un-doped as well as doped with carbon black, polylactic acid (PLA and conductive inks. The sensors discussed are based on biopotential sensing, capacitive sensing and resistive sensing with applications in surface electromyography (sEMG and mechanical and tactile sensing. As these sensors are based on plastics they are in general flexible and therefore open new possibilities for sensing in soft structures, e.g. as used in soft robotics. At the same time they show many of the characteristics of plastics like hysteresis, drift and non-linearity. We will argue that 3-D printing of embedded sensors opens up exciting new possibilities but also that these sensors require us to rethink how to exploit non-ideal sensors.

  14. Proceedings of a NEA workshop on probabilistic structure integrity analysis and its relationship to deterministic analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This workshop was hosted jointly by the Swedish Nuclear Power Inspectorate (SKi) and the Swedish Royal Institute of Technology (KTH). It was sponsored by the Principal Working Group 3 (PWG-3) of the NEA CSNI. PWG-3 deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The sub-group dealing with metal components has three mains areas of activity: non-destructive examination; fracture mechanics; and material degradation. The topic of this workshop is primarily probabilistic fracture mechanics, but probabilistic integrity analysis includes NDE and materials degradation also. Session 1 (5 papers) was devoted to the development of probabilistic models; Session 2 (5 papers) to the random modelling of defects and material properties; Session 3 (8 papers) to the applications of probabilistic modelling to nuclear components; Sessions 4 is a concluding panel discussion

  15. Ensuring Structural Integrity through Reliable Residual Stress Measurement: From Crystals to Crankshafts

    International Nuclear Information System (INIS)

    Edwards, Lyndon

    2005-01-01

    Full text: The determination of accurate, reliable stresses is critical to many fields of engineering and, in particular, the structural integrity and hence, safety, of many systems. Neutron stress measurement is a non-destructive technique that uniquely provides insights into stress fields deep within components and structures. As such, it has become an increasingly important tool within the engineering community leading to improved manufacturing processes to reduce stress and distortion as well as to the definition of more precise structural integrity lifting procedures. This talk describes the current state of the art and identifies the key opportunities for improved structural integrity provided by the 2nd generation dedicated engineering stress diffractometers currently being designed and commissioned world-wide. Examples are provided covering a range of industrially relevant problems from the fields. (author)

  16. Proceedings of a NEA workshop on probabilistic structure integrity analysis and its relationship to deterministic analysis

    International Nuclear Information System (INIS)

    1996-01-01

    This workshop was hosted jointly by the Swedish Nuclear Power Inspectorate (SKi) and the Swedish Royal Institute of Technology (KTH). It was sponsored by the Principal Working Group 3 (PWG-3) of the NEA CSNI. PWG-3 deals with the integrity of structures and components, and has three sub-groups, dealing with the integrity of metal components and structures, ageing of concrete structures, and the seismic behaviour of structures. The sub-group dealing with metal components has three mains areas of activity: non-destructive examination; fracture mechanics; and material degradation. The topic of this workshop is primarily probabilistic fracture mechanics, but probabilistic integrity analysis includes NDE and materials degradation also. Session 1 (5 papers) was devoted to the development of probabilistic models; Session 2 (5 papers) to the random modelling of defects and material properties; Session 3 (8 papers) to the applications of probabilistic modelling to nuclear components; Sessions 4 is a concluding panel discussion

  17. Integrability and Poisson Structures of Three Dimensional Dynamical Systems and Equations of Hydrodynamic Type

    Science.gov (United States)

    Gumral, Hasan

    Poisson structure of completely integrable 3 dimensional dynamical systems can be defined in terms of an integrable 1-form. We take advantage of this fact and use the theory of foliations in discussing the geometrical structure underlying complete and partial integrability. We show that the Halphen system can be formulated in terms of a flat SL(2,R)-valued connection and belongs to a non-trivial Godbillon-Vey class. On the other hand, for the Euler top and a special case of 3-species Lotka-Volterra equations which are contained in the Halphen system as limiting cases, this structure degenerates into the form of globally integrable bi-Hamiltonian structures. The globally integrable bi-Hamiltonian case is a linear and the sl_2 structure is a quadratic unfolding of an integrable 1-form in 3 + 1 dimensions. We complete the discussion of the Hamiltonian structure of 2-component equations of hydrodynamic type by presenting the Hamiltonian operators for Euler's equation and a continuum limit of Toda lattice. We present further infinite sequences of conserved quantities for shallow water equations and show that their generalizations by Kodama admit bi-Hamiltonian structure. We present a simple way of constructing the second Hamiltonian operators for N-component equations admitting some scaling properties. The Kodama reduction of the dispersionless-Boussinesq equations and the Lax reduction of the Benney moment equations are shown to be equivalent by a symmetry transformation. They can be cast into the form of a triplet of conservation laws which enable us to recognize a non-trivial scaling symmetry. The resulting bi-Hamiltonian structure generates three infinite sequences of conserved densities.

  18. The Contradictions and Compartmentalizing the Interactions between Integrated Business Structures: Aspect of Branding

    Directory of Open Access Journals (Sweden)

    Nifatova Olena M.

    2017-04-01

    Full Text Available The article is aimed at identifying contradictions and developing a compartmentalizing as to the interaction between integrated business structures, taking into consideration the branding approach to management. The main specific features and contradictions that arise in the process of integration in the domestic market of mergers and acquisitions have been allocated. The contradictions identified were systematized and substantiated at three economic levels: macro-, meso-, and microeconomic. A compartmentalizing of the business units interaction in a merge or an acquisition process has been proposed. This compartmentalizing takes account of the branding aspect through the introduction of «brands interaction» – cluster interaction, circular interaction, holding interaction, linear interaction, which enhances the scientific view of exploring the problem of business units interaction in the process of the formations becoming integrated. The development of a compartmentalizing as to the interaction between integrated business structures, taking into consideration the branding approach to management, would provide a more effective use of the fundamental nature of branding as synergistic force in terms of the system of integration of business structures at the current stage of development of the national economy. Further development of branding issues in this sphere will have a significant impact on the functioning of the integrated business structures with the participation of Ukrainian companies.

  19. The Structure and Effectiveness of Health Systems: Exploring the Impact of System Integration in Rural China

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-08-01

    Full Text Available Introduction: Facing the challenges of aging populations, increasing chronic diseases prevalence and health system fragmentation, there have been several pilots of integrated health systems in China. But little is known about their structure, mechanism and effectiveness. The aim of this paper is to analyze health system integration and develop recommendations for achieving integration. Method: Huangzhong and Hualong counties in Qinghai province were studied as study sites, with only Huangzhong having implemented health system integration. Questionnaires, interviews, and health ­insurance records were sources of data. Social network analysis was employed to analyze integration, through structure measurement and effectiveness evaluation. Results: Health system integration in Huangzhong is higher than in Hualong, so is system ­effectiveness. The patient referral network in Hualong has more “leapfrog” referrals. The information sharing ­networks in both counties are larger than the other types of networks. The average distance in the joint ­training network of Huangzhong is less than in Hualong. Meanwhile, there are deficiencies common to both systems. Conclusion: Both county health systems have strengths and limitations regarding system integration. The use of medical consortia in Huangzhong has contributed to system effectiveness. Future research might consider alternative more context specific models of health system integration.

  20. The Structure and Effectiveness of Health Systems: Exploring the Impact of System Integration in Rural China.

    Science.gov (United States)

    Wang, Xin; Birch, Stephen; Ma, Huifen; Zhu, Weiming; Meng, Qingyue

    2016-08-12

    Facing the challenges of aging populations, increasing chronic diseases prevalence and health system fragmentation, there have been several pilots of integrated health systems in China. But little is known about their structure, mechanism and effectiveness. The aim of this paper is to analyze health system integration and develop recommendations for achieving integration. Huangzhong and Hualong counties in Qinghai province were studied as study sites, with only Huangzhong having implemented health system integration. Questionnaires, interviews, and health insurance records were sources of data. Social network analysis was employed to analyze integration, through structure measurement and effectiveness evaluation. Health system integration in Huangzhong is higher than in Hualong, so is system effectiveness. The patient referral network in Hualong has more "leapfrog" referrals. The information sharing networks in both counties are larger than the other types of networks. The average distance in the joint training network of Huangzhong is less than in Hualong. Meanwhile, there are deficiencies common to both systems. Both county health systems have strengths and limitations regarding system integration. The use of medical consortia in Huangzhong has contributed to system effectiveness. Future research might consider alternative more context specific models of health system integration.

  1. Generating a New Higher-Dimensional Coupled Integrable Dispersionless System: Algebraic Structures, Bäcklund Transformation and Hidden Structural Symmetries

    International Nuclear Information System (INIS)

    Abbagari, Souleymanou; Bouetou, Thomas B.; Kofane, Timoleon C.

    2013-01-01

    The prolongation structure methodologies of Wahlquist—Estabrook [H.D. Wahlquist and F.B. Estabrook, J. Math. Phys. 16 (1975) 1] for nonlinear differential equations are applied to a more general set of coupled integrable dispersionless system. Based on the obtained prolongation structure, a Lie-Algebra valued connection of a closed ideal of exterior differential forms related to the above system is constructed. A Lie-Algebra representation of some hidden structural symmetries of the previous system, its Bäcklund transformation using the Riccati form of the linear eigenvalue problem and their general corresponding Lax-representation are derived. In the wake of the previous results, we extend the above prolongation scheme to higher-dimensional systems from which a new (2 + 1)-dimensional coupled integrable dispersionless system is unveiled along with its inverse scattering formulation, which applications are straightforward in nonlinear optics where additional propagating dimension deserves some attention. (general)

  2. Integrated aerodynamic-structural design of a forward-swept transport wing

    Science.gov (United States)

    Haftka, Raphael T.; Grossman, Bernard; Kao, Pi-Jen; Polen, David M.; Sobieszczanski-Sobieski, Jaroslaw

    1989-01-01

    The introduction of composite materials is having a profound effect on aircraft design. Since these materials permit the designer to tailor material properties to improve structural, aerodynamic and acoustic performance, they require an integrated multidisciplinary design process. Futhermore, because of the complexity of the design process, numerical optimization methods are required. The utilization of integrated multidisciplinary design procedures for improving aircraft design is not currently feasible because of software coordination problems and the enormous computational burden. Even with the expected rapid growth of supercomputers and parallel architectures, these tasks will not be practical without the development of efficient methods for cross-disciplinary sensitivities and efficient optimization procedures. The present research is part of an on-going effort which is focused on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration. A sequence of integrated wing design procedures has been developed in order to investigate various aspects of the design process.

  3. Multilayered photonic integration on SOI platform using waveguide-based bridge structure

    Science.gov (United States)

    Majumder, Saikat; Chakraborty, Rajib

    2018-06-01

    A waveguide based structure on silicon on insulator platform is proposed for vertical integration in photonic integrated circuits. The structure consists of two multimode interference couplers connected by a single mode (SM) section which can act as a bridge over any other underlying device. Two more SM sections acts as input and output of the first and second multimode couplers respectively. Potential application of this structure is in multilayered photonic links. It is shown that the efficiency of the structure can be improved by making some design modifications. The entire simulation is done using effective-index based matrix method. The feature size chosen are comparable to waveguides fabricated previously so as to fabricate the proposed structure easily.

  4. Integrating Substrateless Electrospinning with Textile Technology for Creating Biodegradable Three-Dimensional Structures.

    Science.gov (United States)

    Joseph, John; Nair, Shantikumar V; Menon, Deepthy

    2015-08-12

    The present study describes a unique way of integrating substrateless electrospinning process with textile technology. We developed a new collector design that provided a pressure-driven, localized cotton-wool structure in free space from which continuous high strength yarns were drawn. An advantage of this integration was that the textile could be drug/dye loaded and be developed into a core-sheath architecture with greater functionality. This method could produce potential nanotextiles for various biomedical applications.

  5. An overview of the DOE high-level waste storage tank structural integrity assessment guidelines

    International Nuclear Information System (INIS)

    Bandyopadhyay, K.; Bush, S.; Kassir, M.; Mather, B.; Shewmon, P.; Streicher, M.; Thompson, B.; van Rooyen, D.; Weeks, J.

    1995-01-01

    The basic elements of a structural integrity program for high-level waste storage tanks include identifying significant aging degradation mechanisms, developing programs to monitor and control these degradation processes, and developing management options and procedures to minimize impact on the environment should tank leakage develop. A Waste Tank Structural Integrity Panel (TSIP) was established by Brookhaven National Laboratory at the request of the DOE Office of Environmental Restoration and Waste Management to review these elements and prepare a set of guidelines that could be used by DOE and its contractors to manage the structural integrity of these tanks. These guidelines emphasize the identification of significant degradation mechanisms for both the steel and concrete components of the tanks, the recommended monitoring and inspection programs, and the indicated management options

  6. Integration Policies of European Cities in Comparative Perspective: Structural Convergence and Substantial Differentiation

    Directory of Open Access Journals (Sweden)

    Rinus Penninx

    2016-08-01

    Full Text Available This article aims to review the comparative study of integration policies of European cities. The first two sections present an analytical framework for the study of immigrants’ integration processes and the policies that intend to steer such processes. The third section outlines how local integration policies have developed in relation to national policies and EU integration policies, particularly after 2003. The fourth and main section analyses the framing and content of integration policies of European cities, looking at their diversity in the legal/political dimension, the socio-economic dimension – including the domains of work, housing, education and health – and the cultural, religious and ethnic dimension. It is concluded that there is a structural convergence, in the sense that in the complex structure of multilevel governance of migration and integration, cities do take a similar position, developing horizontal relations of cooperation and exchange. Cities that develop explicit integration policies tend to do this from a more inclusive and pragmatic framing than national and EU-policies. At the same time, there is great variation in what cities actually do: in the legal/political and in the cultural/religious dimensions, framing, intentions and measures do vary greatly; in the socio-economic dimension this variation is less when it comes to the domains of activity, but more in the intensity of policy intervention.

  7. Empirical Analysis of the Integration Activity of Business Structures in the Regions of Russia

    Directory of Open Access Journals (Sweden)

    Maria Gennadyevna Karelina

    2015-12-01

    Full Text Available The article investigates the integration activity of business structures in the regions of Russia. A wide variety of approaches to the study of the problems and prospects of economic integration and the current dispute on the role of integration processes in the regional economic development have determined the complexity of the concepts “integration” and “integration activities” in order to develop the objective conditions to analyse the integration activity of business structures in the Russian regions. The monitoring of the current legal system of the Russian Federation carried out in the area of statistics and compiling statistical databases on mergers and acquisitions has showed the absence of the formal executive authority dealing with the compiling and collections of information on the integration activity at the regional level. In this connection, the data of Russian information and analytical agencies are made from the information and analytical base. As the research tools, the methods of analysis of structural changes, methods of analysis of economic differentiation and concentration, methods of non-parametric statistics are used. The article shows the close relationship between the social and economic development of the subjects of Russia and the integrated business structures functioning on its territory. An investigation of the integration activity structure and dynamics in the subjects of the Russian Federation based on the statistical data for the period from 2003 to 2012 has revealed the increasing heterogeneity of the integration activity of business structures in the regions of Russia. The hypothesis of a substantial divergence of mergers and acquisitions of corporate structures in the Russian regions was confirmed by the high values of the Gini coefficient, the Herfindahl index, and the decile coefficient of differentiation. The research results are of practical importance since they can be used to improve the existing

  8. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2009-10-02

    Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.

  9. Automatic capability to store and retrieve component data and to calculate structural integrity of these components

    International Nuclear Information System (INIS)

    McKinnis, C.J.; Toor, P.M.

    1985-01-01

    In structural analysis, assimilation of material, geometry, and service history input parameters is very cumbersome. Quite often with changing service history and revised material properties and geometry, an analysis has to be repeated. To overcome the above mentioned difficulties, a computer program was developed to provide the capability to establish a computerized library of all material, geometry, and service history parameters for components. The program also has the capability to calculate the structural integrity based on the Arrhenius type equations, including the probability calculations. This unique combination of computerized input information storage and automated analysis procedure assures consistency, efficiency, and accuracy when the hardware integrity has to be reassessed

  10. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    International Nuclear Information System (INIS)

    Yu Fajun

    2008-01-01

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity

  11. Integrative computational models of cardiac arrhythmias -- simulating the structurally realistic heart

    Science.gov (United States)

    Trayanova, Natalia A; Tice, Brock M

    2009-01-01

    Simulation of cardiac electrical function, and specifically, simulation aimed at understanding the mechanisms of cardiac rhythm disorders, represents an example of a successful integrative multiscale modeling approach, uncovering emergent behavior at the successive scales in the hierarchy of structural complexity. The goal of this article is to present a review of the integrative multiscale models of realistic ventricular structure used in the quest to understand and treat ventricular arrhythmias. It concludes with the new advances in image-based modeling of the heart and the promise it holds for the development of individualized models of ventricular function in health and disease. PMID:20628585

  12. New block matrix spectral problem and Hamiltonian structure of the discrete integrable coupling system

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)], E-mail: yufajun888@163.com

    2008-06-09

    In [W.X. Ma, J. Phys. A: Math. Theor. 40 (2007) 15055], Prof. Ma gave a beautiful result (a discrete variational identity). In this Letter, based on a discrete block matrix spectral problem, a new hierarchy of Lax integrable lattice equations with four potentials is derived. By using of the discrete variational identity, we obtain Hamiltonian structure of the discrete soliton equation hierarchy. Finally, an integrable coupling system of the soliton equation hierarchy and its Hamiltonian structure are obtained through the discrete variational identity.

  13. Design Formulae for Hydraulic Stability and Structural Integrity of Dolos Breakwater Round-Heads

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Jensen, Jacob Birk; Liu, Z.

    1995-01-01

    A rational design of Dolos armour unit should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) resulted in design formulae for the trunk of a 1:1.5 slope Dolos breakwater without superstructure including both...... the hydraulic stability and the structural integrity. The objective of the round-head tests is to produce similar design formulae for Dolos armour in around-head. The tests will also include examinations of the hydraulic stability and run-up for a trunk section adjacent to the round-head. A run-up formula...

  14. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    Science.gov (United States)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  15. The role of organizational structure in readiness for change: A conceptual integration.

    Science.gov (United States)

    Benzer, Justin K; Charns, Martin P; Hamdan, Sami; Afable, Melissa

    2017-02-01

    The purpose of this review is to extend extant conceptualizations of readiness for change as an individual-level phenomenon. This review-of-reviews focuses on existing conceptual frameworks from the dissemination, implementation, quality improvement, and organizational transformation literatures in order to integrate theoretical rationales for how organization structure, a key dimension of the organizational context, may impact readiness for change. We propose that the organization structure dimensions of differentiation and integration impact readiness for change at the individual level of analysis by influencing four key concepts of relevance, legitimacy, perceived need for change, and resource allocation. We identify future research directions that focus on these four key concepts.

  16. Fast large-scale clustering of protein structures using Gauss integrals

    DEFF Research Database (Denmark)

    Harder, Tim; Borg, Mikael; Boomsma, Wouter

    2011-01-01

    trajectories. Results: We present Pleiades, a novel approach to clustering protein structures with a rigorous mathematical underpinning. The method approximates clustering based on the root mean square deviation by rst mapping structures to Gauss integral vectors – which were introduced by Røgen and co......-workers – and subsequently performing K-means clustering. Conclusions: Compared to current methods, Pleiades dramatically improves on the time needed to perform clustering, and can cluster a signicantly larger number of structures, while providing state-ofthe- art results. The number of low energy structures generated...

  17. Structure factors for tunneling ionization rates of molecules: General Hartree-Fock-based integral representation

    Science.gov (United States)

    Madsen, Lars Bojer; Jensen, Frank; Dnestryan, Andrey I.; Tolstikhin, Oleg I.

    2017-07-01

    In the leading-order approximation of the weak-field asymptotic theory (WFAT), the dependence of the tunneling ionization rate of a molecule in an electric field on its orientation with respect to the field is determined by the structure factor of the ionizing molecular orbital. The WFAT yields an expression for the structure factor in terms of a local property of the orbital in the asymptotic region. However, in general quantum chemistry approaches molecular orbitals are expanded in a Gaussian basis which does not reproduce their asymptotic behavior correctly. This hinders the application of the WFAT to polyatomic molecules, which are attracting increasing interest in strong-field physics. Recently, an integral-equation approach to the WFAT for tunneling ionization of one electron from an arbitrary potential has been developed. The structure factor is expressed in an integral form as a matrix element involving the ionizing orbital. The integral is not sensitive to the asymptotic behavior of the orbital, which resolves the difficulty mentioned above. Here, we extend the integral representation for the structure factor to many-electron systems treated within the Hartree-Fock method and show how it can be implemented on the basis of standard quantum chemistry software packages. We validate the methodology by considering noble-gas atoms and the CO molecule, for which accurate structure factors exist in the literature. We also present benchmark results for CO2 and for NH3 in the pyramidal and planar geometries.

  18. Acoustic Emission of Large PRSEUS Structures (Pultruded Rod Stitched Efficient Unitized Structure)

    Science.gov (United States)

    Horne, Michael R.; Juarez, Peter D.

    2016-01-01

    In the role of structural health monitoring (SHM), Acoustic Emission (AE) analysis is being investigated as an effective method for tracking damage development in large composite structures under load. Structures made using Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) for damage tolerant, light, and economical airframe construction are being pursued by The Boeing Company and NASA under the Environmentally Responsible Aircraft initiative (ERA). The failure tests of two PRSEUS substructures based on the Boeing Hybrid Wing Body fuselage concept were conducted during third quarter 2011 and second quarter 2015. One fundamental concern of these tests was determining the effectiveness of the stitched integral stiffeners to inhibit damage progression. By design, severe degradation of load carrying capability should not occur prior to Design Ultimate Load (DUL). While minor damage prior to DUL was anticipated, the integral stitching should not fail since this would allow a stiffener-skin delamination to progress rapidly and alter the transfer of load into the stiffeners. In addition, the stiffeners should not fracture because they are fundamental to structural integrity. Getting the best information from each AE sensor is a primary consideration because a sparse network of sensors is implemented. Sensitivity to stiffener-contiguous degradation is supported by sensors near the stiffeners, which increases the coverage per sensor via AE waveguide actions. Some sensors are located near potentially critical areas or "critical zones" as identified by numerical analyses. The approach is compared with the damage progression monitored by other techniques (e.g. ultrasonic C-scan).

  19. Summary of Structural Concept Development and High Temperature Structural Integrity Evaluation Technology for a Gen-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon (and others)

    2008-04-15

    The economic improvement is a hot issue as one of Gen IV nuclear plant goals. It requires many researches and development works to meet the goal by securing the same level of plant safety. One of the key research items is the increase of the plant capacity with the minimum number of components and loops. Through the successful conceptual design experience for the KALIMER-600, the structural design study for a 1200MWe large capacity of sodium-cooled fast reactor has been performed to achieve the above plant size effects. The component number and reactor structural sizing were determined based on the core and fluid system design information. Several researches were performed to reduce the construction cost of NSSS in structural point of view, for example, a simplified component arrangement, concept proposals of integrated components, a high temperature LBB application technology, and an innovative in-service inspection (ISI) tool, and a computer program development of the ASME-NH design procedure of the class 1 structure and component under high temperature over 500 .deg. C. The IHTS piping arrangement was also proposed to minimize the length through the properly locating the SG and pump by 126m. Further studies of these concepts are required to confirm on the fabricability and the structural integrity for the operating and design loads. The proposed concepts will be optimized to a unified conceptual design through several trade-off studies.

  20. Integrating protein structures and precomputed genealogies in the Magnum database: Examples with cellular retinoid binding proteins

    Directory of Open Access Journals (Sweden)

    Bradley Michael E

    2006-02-01

    Full Text Available Abstract Background When accurate models for the divergent evolution of protein sequences are integrated with complementary biological information, such as folded protein structures, analyses of the combined data often lead to new hypotheses about molecular physiology. This represents an excellent example of how bioinformatics can be used to guide experimental research. However, progress in this direction has been slowed by the lack of a publicly available resource suitable for general use. Results The precomputed Magnum database offers a solution to this problem for ca. 1,800 full-length protein families with at least one crystal structure. The Magnum deliverables include 1 multiple sequence alignments, 2 mapping of alignment sites to crystal structure sites, 3 phylogenetic trees, 4 inferred ancestral sequences at internal tree nodes, and 5 amino acid replacements along tree branches. Comprehensive evaluations revealed that the automated procedures used to construct Magnum produced accurate models of how proteins divergently evolve, or genealogies, and correctly integrated these with the structural data. To demonstrate Magnum's capabilities, we asked for amino acid replacements requiring three nucleotide substitutions, located at internal protein structure sites, and occurring on short phylogenetic tree branches. In the cellular retinoid binding protein family a site that potentially modulates ligand binding affinity was discovered. Recruitment of cellular retinol binding protein to function as a lens crystallin in the diurnal gecko afforded another opportunity to showcase the predictive value of a browsable database containing branch replacement patterns integrated with protein structures. Conclusion We integrated two areas of protein science, evolution and structure, on a large scale and created a precomputed database, known as Magnum, which is the first freely available resource of its kind. Magnum provides evolutionary and structural

  1. Recent development in low-constraint fracture toughness testing for structural integrity assessment of pipelines

    Science.gov (United States)

    Kang, Jidong; Gianetto, James A.; Tyson, William R.

    2018-03-01

    Fracture toughness measurement is an integral part of structural integrity assessment of pipelines. Traditionally, a single-edge-notched bend (SE(B)) specimen with a deep crack is recommended in many existing pipeline structural integrity assessment procedures. Such a test provides high constraint and therefore conservative fracture toughness results. However, for girth welds in service, defects are usually subjected to primarily tensile loading where the constraint is usually much lower than in the three-point bend case. Moreover, there is increasing use of strain-based design of pipelines that allows applied strains above yield. Low-constraint toughness tests represent more realistic loading conditions for girth weld defects, and the corresponding increased toughness can minimize unnecessary conservatism in assessments. In this review, we present recent developments in low-constraint fracture toughness testing, specifically using single-edgenotched tension specimens, SENT or SE(T). We focus our review on the test procedure development and automation, round-robin test results and some common concerns such as the effect of crack tip, crack size monitoring techniques, and testing at low temperatures. Examples are also given of the integration of fracture toughness data from SE(T) tests into structural integrity assessment.

  2. Integrating normal and abnormal personality structure: a proposal for DSM-V.

    Science.gov (United States)

    Widiger, Thomas A

    2011-06-01

    The personality disorders section of the American Psychiatric Association's fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V) is currently being developed. The purpose of the current paper is to encourage the authors of DSM-V to integrate normal and abnormal personality structure within a common, integrative model, and to suggest that the optimal choice for such an integration would be the five-factor model (FFM) of general personality structure. A proposal for the classification of personality disorder from the perspective of the FFM is provided. Discussed as well are implications and issues associated with an FFM of personality disorder, including validity, coverage, feasibility, clinical utility, and treatment implications.

  3. Thermodynamically self-consistent integral equations and the structure of liquid metals

    International Nuclear Information System (INIS)

    Pastore, G.; Kahl, G.

    1987-01-01

    We discuss the application of the new thermodynamically self-consistent integral equations for the determination of the structural properties of liquid metals. We present a detailed comparison of the structure (S(q) and g(r)) for models of liquid alkali metals as obtained from two thermodynamically self-consistent integral equations and some published exact computer simulation results; the range of states extends from the triple point to the expanded metal. The theories which only impose thermodynamic self-consistency without any fitting of external data show an excellent agreement with the simulation results, thus demonstrating that this new type of integral equation is definitely superior to the conventional ones (hypernetted chain, Percus-Yevick, mean spherical approximation, etc). (author)

  4. Integrating Algorithm Visualization Video into a First-Year Algorithm and Data Structure Course

    Science.gov (United States)

    Crescenzi, Pilu; Malizia, Alessio; Verri, M. Cecilia; Diaz, Paloma; Aedo, Ignacio

    2012-01-01

    In this paper we describe the results that we have obtained while integrating algorithm visualization (AV) movies (strongly tightened with the other teaching material), within a first-year undergraduate course on algorithms and data structures. Our experimental results seem to support the hypothesis that making these movies available significantly…

  5. ATLAS, an integrated structural analysis and design system. Volume 4: Random access file catalog

    Science.gov (United States)

    Gray, F. P., Jr. (Editor)

    1979-01-01

    A complete catalog is presented for the random access files used by the ATLAS integrated structural analysis and design system. ATLAS consists of several technical computation modules which output data matrices to corresponding random access file. A description of the matrices written on these files is contained herein.

  6. Strategic disruption of nuclear pores structure, integrity and barrier for nuclear apoptosis.

    Science.gov (United States)

    Shahin, Victor

    2017-08-01

    Apoptosis is a programmed cell death playing key roles in physiology and pathophysiology of multi cellular organisms. Its nuclear manifestation requires transmission of the death signals across the nuclear pore complexes (NPCs). In strategic sequential steps apoptotic factors disrupt NPCs structure, integrity and barrier ultimately leading to nuclear breakdown. The present review reflects on these steps. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. On-chip photonic integrated circuit structures for millimeter and terahertz wave signal generation

    NARCIS (Netherlands)

    Gordón, C.; Guzmán, R. C.; Corral, V.; Carpintero, G.; Leijtens, X.

    2015-01-01

    We present two different on-chip photonic integrated circuit (PIC) structures for continuous-wave generation of millimeter and terahertz waves, each one using a different approach. One approach is the optical heterodyne method, using an on-chip arrayed waveguide grating laser (OC-AWGL) which is

  8. IMPROVING STRUCTURAL INTEGRITY MONITORING CAPABILITY FOR WATER MAINS: COLLABORATION EFFORTS AND OPPORTUNITIES

    Science.gov (United States)

    The structural integrity of the approximately 1,000,000 miles of U.S. water mains is important to both immediate and long-term drinking water quality and availability. As pipes wear out, leaks and main breaks increase, as well as the associated occurrences of water loss and low-...

  9. Direct evaluation of free energy for large system through structure integration approach.

    Science.gov (United States)

    Takeuchi, Kazuhito; Tanaka, Ryohei; Yuge, Koretaka

    2015-09-30

    We propose a new approach, 'structure integration', enabling direct evaluation of configurational free energy for large systems. The present approach is based on the statistical information of lattice. Through first-principles-based simulation, we find that the present method evaluates configurational free energy accurately in disorder states above critical temperature.

  10. ANALYSIS OF INFLUENCE FACTORS OF ECONOMIC EFFICIENCY ON THE ECONOMY OF THE INTEGRATED STRUCTURES

    Directory of Open Access Journals (Sweden)

    I. P. Bogomolova

    2014-01-01

    Full Text Available Currently in Russia, special attention is paid to the food industry, providing a key influence on the state's economy and food security of the country. The food industry not only creates substantial part of the gross domestic product, which is one of the main sources of fillings budgets of all levels, and contributes to the strengthening of the state in world markets. These circum-stances make it necessary to increase the efficiency of industrial structures by mobilizing factors affecting the economy of enterprises, including by shifting emphasis on the integration of food industry enterprises in General competitiveness of the goods produced, the stability of the entire industry, its leading industries and organizations. The article substantiates the expediency of application of integrated structures, discusses the methods and tools of analysis of influence factors of economic efficiency on the economy of inte-grated structures. Evaluation is recommended in two key areas: assessment of the financial condition and evaluation of training and development of staff, taking into account the strategic objectives of integrated structures. The analysis makes it possible to correctly allocate financial resources and to achieve balanced economic performance management through more effective use of credit re-sources, the rational management of economic parameters optimization of the number of employees and production capacity.

  11. USING MATRIX METHODS OF PORTFOLIO ANALYSIS IN DESIGNING VERTICAL-INTEGRATED BUILDING STRUCTURE

    Directory of Open Access Journals (Sweden)

    Rakytska S.

    2018-01-01

    Full Text Available Introduction. Ensuring productive functioning of corporations requires assessment and management decisions in terms of choosing effective areas of its activities. Purpose. Investigation of the possibilities of using matrix methods in the formation of a business portfolio in order to create a vertically-integrated structure in the construction complex. Results. Portfolio analysis is an effective tool, first of all, for functionally flexible, “many grocery” companies, who have the opportunity to quickly make changes to their business portfolio. For the production of the final construction product, you need the entire technological chain – from the supplier of primary raw materials, to the implementation and further maintenance of finished products. The strategy of the integrated structure is designed to: coordinate the objectives of the merged enterprises, determine the degree of their interaction, maximize the effect of the integration of business entities, develop ways to react newly formed corporation to changes taking place in the external environment, determine the most effective way of its development time, to ensure the competitive advantages of an integrated structure. The construction of a complex multi-level corporation in a building complex requires the development of a certain algorithm of action, which will ensure the optimality of the newly created structure and effective functioning.

  12. French Contribution to the Specialists' Meeting on Demonstration of Structural Integrity under Normal and Fault Conditions

    International Nuclear Information System (INIS)

    Soulat, P.; Tavassoli, A.

    1981-01-01

    The following is a summary of a few selected programmes in France on the structural integrity of fast reactor components under normal and faulted conditions. The scope of the programmes selected is limited to that suggested by the specialists Meeting organisers

  13. A Structural Model Proposal for Turkish Faculties of Education Regarding ICT Integration Indicators

    Science.gov (United States)

    Akbulut, Yavuz

    2010-01-01

    A recent survey study with 2515 pre-service teachers suggested an underlying structure to shelter ICT integration indicators. Eleven indicators were extracted, which were Teaching-Learning Methods, E-learning, E-interaction, Learning Communities, Infrastructure, Access, Ease of Use, Technical Assistance, Policy, Special Education and Health. In…

  14. Integration

    DEFF Research Database (Denmark)

    Emerek, Ruth

    2004-01-01

    Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration......Bidraget diskuterer de forskellige intergrationsopfattelse i Danmark - og hvad der kan forstås ved vellykket integration...

  15. Regulatory Experience on Structural Integrity Issues of The Oldest Reactor Pressure Vessel in Korea

    International Nuclear Information System (INIS)

    Lee, Sang-Min; Cho, Doo-Ho; Kim, Jin-Su; Kim, Yong-Beum; Chung, Hae-Dong; Kim, Se-Chang; Choi, Jae-Boong

    2015-01-01

    A reactor pressure vessel plays a crucial role of retaining reactor coolant and core assemblies. The RPV integrity should be evaluated in consideration with the design transient condition and the material deterioration of RPV belt-line region. Especially, the pressurized thermal shock has been considered as one of the most important issues regarding the RPV integrity since Rancho Seco nuclear power plant accident in 1978. In this paper, the structural integrity evaluation of the oldest RPV in Korea was performed by using finite element analysis. PTS conditions like small break loss of coolant accident and Turkey Point steam line break were applied as loading conditions. Neutron fluence data equivalent to 40 years was used to determine the fracture toughness of RPV material. The 3-dimensional finite element model including a circumferential surface flaw was considered for fracture mechanics analysis. The RPV integrity was evaluated according to Japan Electric Association Code. (authors)

  16. Integrated structural design of nuclear power plants for high seismic areas

    International Nuclear Information System (INIS)

    Rieck, P.J.

    1979-01-01

    A design approach which structurally interconnects NPP buildings to be located in high seismic areas is described. The design evolution of a typical 600 MWe steel cylindrical containment PWR is described as the plant is structurally upgraded for higher seismic requirements, while maintaining the original plant layout. The plant design is presented as having separate reactor building and auxiliary structures for a low seismic area (0.20 g) and is structurally combined at the foundation for location in a higher seismic area (0.30 g). The evolution is completed by a fully integrated design which structurally connects the reactor building and auxiliary structures at superstructure elevations as well as foundation levels for location in very severe seismic risk areas (0.50 g). (orig.)

  17. Consistent Structural Integrity and Efficient Certification with Analysis. Volume 2: Detailed Report on Innovative Research Developed, Applied, and Commercially Available

    National Research Council Canada - National Science Library

    Collier, Craig

    2005-01-01

    This SBIR report maintains that reliable pretest predictions and efficient certification are suffering from inconsistent structural integrity that is prevalent throughout a project's design maturity...

  18. Insert Design and Manufacturing for Foam-Core Composite Sandwich Structures

    Science.gov (United States)

    Lares, Alan

    Sandwich structures have been used in the aerospace industry for many years. The high strength to weight ratios that are possible with sandwich constructions makes them desirable for airframe applications. While sandwich structures are effective at handling distributed loads such as aerodynamic forces, they are prone to damage from concentrated loads at joints or due to impact. This is due to the relatively thin face-sheets and soft core materials typically found in sandwich structures. Carleton University's Uninhabited Aerial Vehicle (UAV) Project Team has designed and manufactured a UAV (GeoSury II Prototype) which features an all composite sandwich structure fuselage structure. The purpose of the aircraft is to conduct geomagnetic surveys. The GeoSury II Prototype serves as the test bed for many areas of research in advancing UAV technologies. Those areas of research include: low cost composite materials manufacturing, geomagnetic data acquisition, obstacle detection, autonomous operations and magnetic signature control. In this thesis work a methodology for designing and manufacturing inserts for foam-core sandwich structures was developed. The results of this research work enables a designer wishing to design a foam-core sandwich airframe structure, a means of quickly manufacturing optimized inserts for the safe introduction of discrete loads into the airframe. The previous GeoSury II Prototype insert designs (v.1 & v.2) were performance tested to establish a benchmark with which to compare future insert designs. Several designs and materials were considered for the new v.3 inserts. A plug and sleeve design was selected, due to its ability to effectively transfer the required loads to the sandwich structure. The insert material was chosen to be epoxy, reinforced with chopped carbon fibre. This material was chosen for its combination of strength, low mass and also compatibility with the face-sheet material. The v.3 insert assembly is 60% lighter than the

  19. A generic data structure for integrated modelling of tokamak physics and subsystems

    International Nuclear Information System (INIS)

    Imbeaux, F.; Huysmans, G.T.A.; Airaj, M.; Guillerminet, B.; Ottaviani, M.; Peysson, Y.; Signoret, J.; Basiuk, V.; Lister, J.B.; Sauter, O.; Zwingmann, W.; Eriksson, L.G.; Appel, L.; Coster, D.; Konz, C.; Pereverzev, G.; Kalupin, D.; Manduchi, G.; Strand, P.

    2010-01-01

    The European Integrated Tokamak Modelling Task Force (ITM-TF) is developing a new type of fully modular and flexible integrated tokamak simulator, which will allow a large variety of simulation types This ambitious goal requires new concepts of data structure and work-flow organisation, which are described for the first time in this paper The backbone of the system is a physics- and work-flow-oriented data structure which allows for the deployment of a fully modular and flexible work-flow organisation. The data structure is designed to be generic for any tokamak device and can be used to address physics simulation results, experimental data (including description of subsystem hardware) and engineering issues. (authors)

  20. Micro-structural integrity of dental enamel subjected to two tooth whitening regimes.

    Science.gov (United States)

    Tanaka, Reina; Shibata, Yo; Manabe, Atsufumi; Miyazaki, Takashi

    2010-04-01

    Colour modification of tooth enamel has proven successful, but it is unclear how various bleaching applications affect micro-structural integrity of the whitened enamel. To investigate the internal structural integrity of human intact tooth enamel with the application of two commonly used whitening regimes (in-office power bleaching with 35% hydrogen peroxide and home bleaching with 10% carbamide peroxide), evaluations were performed on teeth of identical colour classification. After the bleaching applications, the enamel mineral density was quantified and visualised with micro-computed tomography. The micro-structural differences between the whitened tooth enamel samples were distinctive, though the colour parameter changes within the samples were equivalent. Home bleaching achieved colour modification by demineralisation, whereas in-office bleaching depended on redistribution of the minerals after treatment and subsequent enhanced mineralisation.

  1. A multi-structural and multi-functional integrated fog collection system in cactus.

    Science.gov (United States)

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure-function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies.

  2. Lagrangian and Hamiltonian structures in an integrable hierarchy and space–time duality

    International Nuclear Information System (INIS)

    Avan, Jean; Caudrelier, Vincent; Doikou, Anastasia; Kundu, Anjan

    2016-01-01

    We define and illustrate the novel notion of dual integrable hierarchies, on the example of the nonlinear Schrödinger (NLS) hierarchy. For each integrable nonlinear evolution equation (NLEE) in the hierarchy, dual integrable structures are characterized by the fact that the zero-curvature representation of the NLEE can be realized by two Hamiltonian formulations stemming from two distinct choices of the configuration space, yielding two inequivalent Poisson structures on the corresponding phase space and two distinct Hamiltonians. This is fundamentally different from the standard bi-Hamiltonian or generally multitime structure. The first formulation chooses purely space-dependent fields as configuration space; it yields the standard Poisson structure for NLS. The other one is new: it chooses purely time-dependent fields as configuration space and yields a different Poisson structure at each level of the hierarchy. The corresponding NLEE becomes a space evolution equation. We emphasize the role of the Lagrangian formulation as a unifying framework for deriving both Poisson structures, using ideas from covariant field theory. One of our main results is to show that the two matrices of the Lax pair satisfy the same form of ultralocal Poisson algebra (up to a sign) characterized by an r-matrix structure, whereas traditionally only one of them is involved in the classical r-matrix method. We construct explicit dual hierarchies of Hamiltonians, and Lax representations of the triggered dynamics, from the monodromy matrices of either Lax matrix. An appealing procedure to build a multi-dimensional lattice of Lax pair, through successive uses of the dual Poisson structures, is briefly introduced.

  3. Lagrangian and Hamiltonian structures in an integrable hierarchy and space–time duality

    Energy Technology Data Exchange (ETDEWEB)

    Avan, Jean, E-mail: Jean.Avan@u-cergy.fr [Laboratoire de Physique Théorique et Modélisation (CNRS UMR 8089), Université de Cergy-Pontoise, F-95302 Cergy-Pontoise (France); Caudrelier, Vincent, E-mail: v.caudrelier@city.ac.uk [Department of Mathematics, City University London, Northampton Square, EC1V 0HB London (United Kingdom); Doikou, Anastasia, E-mail: A.Doikou@hw.ac.uk [Department of Mathematics, Heriot-Watt University, EH14 4AS, Edinburgh (United Kingdom); Kundu, Anjan, E-mail: Anjan.Kundu@saha.ac.in [Saha Institute of Nuclear Physics, Theory Division, Kolkata (India)

    2016-01-15

    We define and illustrate the novel notion of dual integrable hierarchies, on the example of the nonlinear Schrödinger (NLS) hierarchy. For each integrable nonlinear evolution equation (NLEE) in the hierarchy, dual integrable structures are characterized by the fact that the zero-curvature representation of the NLEE can be realized by two Hamiltonian formulations stemming from two distinct choices of the configuration space, yielding two inequivalent Poisson structures on the corresponding phase space and two distinct Hamiltonians. This is fundamentally different from the standard bi-Hamiltonian or generally multitime structure. The first formulation chooses purely space-dependent fields as configuration space; it yields the standard Poisson structure for NLS. The other one is new: it chooses purely time-dependent fields as configuration space and yields a different Poisson structure at each level of the hierarchy. The corresponding NLEE becomes a space evolution equation. We emphasize the role of the Lagrangian formulation as a unifying framework for deriving both Poisson structures, using ideas from covariant field theory. One of our main results is to show that the two matrices of the Lax pair satisfy the same form of ultralocal Poisson algebra (up to a sign) characterized by an r-matrix structure, whereas traditionally only one of them is involved in the classical r-matrix method. We construct explicit dual hierarchies of Hamiltonians, and Lax representations of the triggered dynamics, from the monodromy matrices of either Lax matrix. An appealing procedure to build a multi-dimensional lattice of Lax pair, through successive uses of the dual Poisson structures, is briefly introduced.

  4. The lie-algebraic structures and integrability of differential and differential-difference nonlinear dynamical systems

    International Nuclear Information System (INIS)

    Prykarpatsky, A.K.; Blackmore, D.L.; Bogolubov, N.N. Jr.

    2007-05-01

    The infinite-dimensional operator Lie algebras of the related integrable nonlocal differential-difference dynamical systems are treated as their hidden symmetries. As a result of their dimerization the Lax type representations for both local differential-difference equations and nonlocal ones are obtained. An alternative approach to the Lie-algebraic interpretation of the integrable local differential-difference systems is also proposed. The Hamiltonian representation for a hierarchy of Lax type equations on a dual space to the centrally extended Lie algebra of integro-differential operators with matrix-valued coefficients coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of associated spectral problems is obtained by means of a specially constructed Baecklund transformation. The Hamiltonian description for the corresponding set of additional symmetry hierarchies is represented. The relation of these hierarchies with Lax type integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax type linearizations is analyzed. The Lie-algebraic structures, related with centrally extended current operator Lie algebras are discussed with respect to constructing new nonlinear integrable dynamical systems on functional manifolds and super-manifolds. Special Poisson structures and related with them factorized integrable operator dynamical systems having interesting applications in modern mathematical physics, quantum computing mathematics and other fields are constructed. The previous purely computational results are explained within the approach developed. (author)

  5. Structural reliability calculation method based on the dual neural network and direct integration method.

    Science.gov (United States)

    Li, Haibin; He, Yun; Nie, Xiaobo

    2018-01-01

    Structural reliability analysis under uncertainty is paid wide attention by engineers and scholars due to reflecting the structural characteristics and the bearing actual situation. The direct integration method, started from the definition of reliability theory, is easy to be understood, but there are still mathematics difficulties in the calculation of multiple integrals. Therefore, a dual neural network method is proposed for calculating multiple integrals in this paper. Dual neural network consists of two neural networks. The neural network A is used to learn the integrand function, and the neural network B is used to simulate the original function. According to the derivative relationships between the network output and the network input, the neural network B is derived from the neural network A. On this basis, the performance function of normalization is employed in the proposed method to overcome the difficulty of multiple integrations and to improve the accuracy for reliability calculations. The comparisons between the proposed method and Monte Carlo simulation method, Hasofer-Lind method, the mean value first-order second moment method have demonstrated that the proposed method is an efficient and accurate reliability method for structural reliability problems.

  6. Compressive failure modes and parameter optimization of the trabecular structure of biomimetic fully integrated honeycomb plates.

    Science.gov (United States)

    Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang

    2016-12-01

    To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. MODexplorer: an integrated tool for exploring protein sequence, structure and function relationships.

    KAUST Repository

    Kosinski, Jan

    2013-02-08

    SUMMARY: MODexplorer is an integrated tool aimed at exploring the sequence, structural and functional diversity in protein families useful in homology modeling and in analyzing protein families in general. It takes as input either the sequence or the structure of a protein and provides alignments with its homologs along with a variety of structural and functional annotations through an interactive interface. The annotations include sequence conservation, similarity scores, ligand-, DNA- and RNA-binding sites, secondary structure, disorder, crystallographic structure resolution and quality scores of models implied by the alignments to the homologs of known structure. MODexplorer can be used to analyze sequence and structural conservation among the structures of similar proteins, to find structures of homologs solved in different conformational state or with different ligands and to transfer functional annotations. Furthermore, if the structure of the query is not known, MODexplorer can be used to select the modeling templates taking all this information into account and to build a comparative model. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modexplorer. Website implemented in HTML and JavaScript with all major browsers supported. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  8. MODexplorer: an integrated tool for exploring protein sequence, structure and function relationships.

    KAUST Repository

    Kosinski, Jan; Barbato, Alessandro; Tramontano, Anna

    2013-01-01

    SUMMARY: MODexplorer is an integrated tool aimed at exploring the sequence, structural and functional diversity in protein families useful in homology modeling and in analyzing protein families in general. It takes as input either the sequence or the structure of a protein and provides alignments with its homologs along with a variety of structural and functional annotations through an interactive interface. The annotations include sequence conservation, similarity scores, ligand-, DNA- and RNA-binding sites, secondary structure, disorder, crystallographic structure resolution and quality scores of models implied by the alignments to the homologs of known structure. MODexplorer can be used to analyze sequence and structural conservation among the structures of similar proteins, to find structures of homologs solved in different conformational state or with different ligands and to transfer functional annotations. Furthermore, if the structure of the query is not known, MODexplorer can be used to select the modeling templates taking all this information into account and to build a comparative model. AVAILABILITY AND IMPLEMENTATION: Freely available on the web at http://modorama.biocomputing.it/modexplorer. Website implemented in HTML and JavaScript with all major browsers supported. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

  9. [Integrity].

    Science.gov (United States)

    Gómez Rodríguez, Rafael Ángel

    2014-01-01

    To say that someone possesses integrity is to claim that that person is almost predictable about responses to specific situations, that he or she can prudentially judge and to act correctly. There is a closed interrelationship between integrity and autonomy, and the autonomy rests on the deeper moral claim of all humans to integrity of the person. Integrity has two senses of significance for medical ethic: one sense refers to the integrity of the person in the bodily, psychosocial and intellectual elements; and in the second sense, the integrity is the virtue. Another facet of integrity of the person is la integrity of values we cherish and espouse. The physician must be a person of integrity if the integrity of the patient is to be safeguarded. The autonomy has reduced the violations in the past, but the character and virtues of the physician are the ultimate safeguard of autonomy of patient. A field very important in medicine is the scientific research. It is the character of the investigator that determines the moral quality of research. The problem arises when legitimate self-interests are replaced by selfish, particularly when human subjects are involved. The final safeguard of moral quality of research is the character and conscience of the investigator. Teaching must be relevant in the scientific field, but the most effective way to teach virtue ethics is through the example of the a respected scientist.

  10. An Integrated Structural Strength Analysis Method for Spar Type Floating Wind Turbine

    Institute of Scientific and Technical Information of China (English)

    胡志强; 刘毅; 王晋

    2016-01-01

    An integrated structural strength analysis method for a Spar type floating wind turbine is proposed in this paper, and technical issues related to turbine structure modeling and stress combination are also addressed. The NREL-5MW “Hywind” Spar type wind turbine is adopted as study object. Time-domain dynamic coupled simulations are performed by a fully-coupled aero-hydro-servo-elastic tool, FAST, on the purpose of obtaining the dynamic characteristics of the floating wind turbine, and determining parameters for design load cases of finite element calculation. Then design load cases are identified, and finite element analyses are performed for these design load cases. The structural stresses due to wave-induced loads and wind-induced loads are calculated, and then combined to assess the structural strength of the floating wind turbine. The feasibility of the proposed structural strength analysis method for floating wind turbines is then validated.

  11. Hypersingular integral equations, waveguiding effects in Cantorian Universe and genesis of large scale structures

    International Nuclear Information System (INIS)

    Iovane, G.; Giordano, P.

    2005-01-01

    In this work we introduce the hypersingular integral equations and analyze a realistic model of gravitational waveguides on a cantorian space-time. A waveguiding effect is considered with respect to the large scale structure of the Universe, where the structure formation appears as if it were a classically self-similar random process at all astrophysical scales. The result is that it seems we live in an El Naschie's o (∞) Cantorian space-time, where gravitational lensing and waveguiding effects can explain the appearing Universe. In particular, we consider filamentary and planar large scale structures as possible refraction channels for electromagnetic radiation coming from cosmological structures. From this vision the Universe appears like a large self-similar adaptive mirrors set, thanks to three numerical simulations. Consequently, an infinite Universe is just an optical illusion that is produced by mirroring effects connected with the large scale structure of a finite and not a large Universe

  12. Proof of Concept of Integrated Load Measurement in 3D Printed Structures

    Directory of Open Access Journals (Sweden)

    Michaël Hinderdael

    2017-02-01

    Full Text Available Currently, research on structural health monitoring systems is focused on direct integration of the system into a component or structure. The latter results in a so-called smart structure. One example of a smart structure is a component with integrated strain sensing for continuous load monitoring. Additive manufacturing, or 3D printing, now also enables such integration of functions inside components. As a proof-of-concept, the Fused Deposition Modeling (FDM technique was used to integrate a strain sensing element inside polymer (ABS tensile test samples. The strain sensing element consisted of a closed capillary filled with a fluid and connected to an externally mounted pressure sensor. The volumetric deformation of the integrated capillary resulted in pressure changes in the fluid. The obtained pressure measurements during tensile testing are reported in this paper and compared to state-of-the-art extensometer measurements. The sensitivity of the 3D printed pressure-based strain sensor is primarily a function of the compressibility of the capillary fluid. Air- and watertightness are of critical importance for the proper functioning of the 3D printed pressure-based strain sensor. Therefore, the best after-treatment procedure was selected on basis of a comparative analysis. The obtained pressure measurements are linear with respect to the extensometer readings, and the uncertainty on the strain measurement of a capillary filled with water (incompressible fluid is ±3.1 µstrain, which is approximately three times less sensitive than conventional strain gauges (±1 µstrain, but 32 times more sensitive than the same sensor based on air (compressible fluid (±101 µstrain.

  13. Static and dynamic pile testing of reinforced concrete piles with structure integrated fibre optic strain sensors

    Science.gov (United States)

    Schilder, Constanze; Kohlhoff, Harald; Hofmann, Detlef; Basedau, Frank; Habel, Wolfgang R.; Baeßler, Matthias; Niederleithinger, Ernst; Georgi, Steven; Herten, Markus

    2013-05-01

    Static and dynamic pile tests are carried out to determine the load bearing capacity and the quality of reinforced concrete piles. As part of a round robin test to evaluate dynamic load tests, structure integrated fibre optic strain sensors were used to receive more detailed information about the strains along the pile length compared to conventional measurements at the pile head. This paper shows the instrumentation of the pile with extrinsic Fabry-Perot interferometers sensors and fibre Bragg gratings sensors together with the results of the conducted static load test as well as the dynamic load tests and pile integrity tests.

  14. The quadratic-form identity for constructing the Hamiltonian structure of integrable systems

    International Nuclear Information System (INIS)

    Guo Fukui; Zhang Yufeng

    2005-01-01

    A usual loop algebra, not necessarily the matrix form of the loop algebra A-tilde n-1 , is also made use of for constructing linear isospectral problems, whose compatibility conditions exhibit a zero-curvature equation from which integrable systems are derived. In order to look for the Hamiltonian structure of such integrable systems, a quadratic-form identity is created in the present paper whose special case is just the trace identity; that is, when taking the loop algebra A-tilde 1 , the quadratic-form identity presented in this paper is completely consistent with the trace identity

  15. A computational method for direct integration of motion equations of structural systems

    International Nuclear Information System (INIS)

    Brusa, L.; Ciacci, R.; Creco, A.; Rossi, F.

    1975-01-01

    The dynamic analysis of structural systems requires the solution of the matrix equations: Md 2 delta/dt(t) + Cddelta/dt(t) + Kdelta(t) = F(t). Many numerical methods are available for direct integration of this equation and their efficiency is due to the fulfillment of the following requirements: A reasonable order of accuracy must be obtained for the approximation of the response relevant to the first modes: the model contributions relevant to the eigenvalues with large real part must be essentially neglected. This paper presents a step-by-step numerical scheme for the integration of this equation which satisfies the requirements previously mentioned. (Auth.)

  16. Building integrated PV for commercial and institutional structures, a sourcebook for architects

    Energy Technology Data Exchange (ETDEWEB)

    Eiffert, P.; Kiss, G.

    2000-02-14

    This sourcebook on building-integrated photovoltaics (BIPV) is intended for architects and designers interested in learning more about today's sustainable solar buildings. The booklet includes 16 design briefs describing actual structures; they illustrate how electricity-generating BIPV products (such as special roofing systems, vertical-wall systems, skylights, and awnings, all of which contain PV cells, modules, and films) can be integrated successfully into many different kinds of buildings. It also contains basic information about BIPV technologies, an overview of US product development activities and development programs, descriptions of major software design tools, and a bibliography.

  17. Improved Fabrication of Ceramic Matrix Composite/Foam Core Integrated Structures

    Science.gov (United States)

    Hurwitz, Frances I.

    2009-01-01

    The use of hybridized carbon/silicon carbide (C/SiC) fabric to reinforce ceramic matrix composite face sheets and the integration of such face sheets with a foam core creates a sandwich structure capable of withstanding high-heatflux environments (150 W/cm2) in which the core provides a temperature drop of 1,000 C between the surface and the back face without cracking or delamination of the structure. The composite face sheet exhibits a bilinear response, which results from the SiC matrix not being cracked on fabrication. In addition, the structure exhibits damage tolerance under impact with projectiles, showing no penetration to the back face sheet. These attributes make the composite ideal for leading edge structures and control surfaces in aerospace vehicles, as well as for acreage thermal protection systems and in high-temperature, lightweight stiffened structures. By tailoring the coefficient of thermal expansion (CTE) of a carbon fiber containing ceramic matrix composite (CMC) face sheet to match that of a ceramic foam core, the face sheet and the core can be integrally fabricated without any delamination. Carbon and SiC are woven together in the reinforcing fabric. Integral densification of the CMC and the foam core is accomplished with chemical vapor deposition, eliminating the need for bond-line adhesive. This means there is no need to separately fabricate the core and the face sheet, or to bond the two elements together, risking edge delamination during use. Fibers of two or more types are woven together on a loom. The carbon and ceramic fibers are pulled into the same pick location during the weaving process. Tow spacing may be varied to accommodate the increased volume of the combined fiber tows while maintaining a target fiber volume fraction in the composite. Foam pore size, strut thickness, and ratio of face sheet to core thickness can be used to tailor thermal and mechanical properties. The anticipated CTE for the hybridized composite is managed by

  18. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    International Nuclear Information System (INIS)

    Dundulis, Gintautas; Kulak, Ronald F.; Marchertas, Algirdas; Uspuras, Eugenijus

    2007-01-01

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied

  19. Roll-to-roll embedded conductive structures integrated into organic photovoltaic devices

    International Nuclear Information System (INIS)

    Van de Wiel, H J; Galagan, Y; Van Lammeren, T J; De Riet, J F J; Gilot, J; Nagelkerke, M G M; Lelieveld, R H C A T; Shanmugam, S; Pagudala, A; Groen, W A; Hui, D

    2013-01-01

    Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom. (paper)

  20. Specialists’ Meeting on Demonstration of Structural Integrity under Normal and Faulted Conditions. Summary Report

    International Nuclear Information System (INIS)

    1981-03-01

    The Specialists' Meeting on ''Demonstration of Structural Integrity under Normal and Faulted Conditions'' was held at Chester, United Kingdom on 3-5 June 1980. The meeting was sponsored by the International Atomic Energy Agency (IAEA) on the recommendation of the International Working Group on Past Reactors (IWGFR). Twenty-one participants from France, the Federal Republic of Germany, Italy, Japan, the Netherlands, the United Kingdom, the United States of America and two international organizations, CEC and IAEA, attended. The purpose of the meeting was to review and discuss methods for assessing the integrity of the LMFBR safety-related structures during normal and abnormal operation, especially in the presence of defects, and to recommend future development. The technical sessions were divided into four topical sessions as follows: 1. National Review Presentations on Demonstration of Structural Integrity; 2. Material Properties; 3. Structural Analysis; 4. Design Approaches and Assessment Experience. During the meeting papers were presented by the participants on behalf of their countries or organizations. Each presentation was followed by an open discussion in the subject covered by the paper and subsequently, session summaries were drafted. After the formal sessions were completed, a final discussion session was held and general conclusions and recommendations were reached by consensus. Session summaries, general conclusions and recommendations, national review papers presented during the first session as well as the agenda of the meeting and the list of participants are given

  1. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    International Nuclear Information System (INIS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A

    2015-01-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d 33 and d 31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d 33 coefficient of the composite to the achieved d 33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d 33 of 3.2 pC N −1 . Moreover, the Young’s modulus of the composite structure has been characterized. (paper)

  2. Structural integrity analysis of an Ignalina nuclear power plant building subjected to an airplane crash

    Energy Technology Data Exchange (ETDEWEB)

    Dundulis, Gintautas [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)]. E-mail: gintas@isag.lei.lt; Kulak, Ronald F. [RFK Engineering Mechanics Consultants (United States); Marchertas, Algirdas [Northern Illinois University (United States); Uspuras, Eugenijus [Laboratory of Nuclear Installation Safety, Lithuanian Energy Institute, 3 Breslaujos, 44403 Kaunas-35 (Lithuania)

    2007-08-15

    Recent terrorist attacks using commandeered commercial airliners on civil structures have raised the issue of the ability of nuclear power plants to survive the consequences of an airliner crash. The structural integrity analysis due to the effects of an aircraft crash on an Ignalina nuclear power plant (INPP) accident localization system (ALS) building is the subject of this paper. A combination of the finite element method and empirical relationships were used for the analysis. A global structural integrity analysis was performed for a portion of the ALS building using the dynamic loading from an aircraft crash impact model. The local effects caused by impact of the aircraft's engine on the building wall were evaluated independently by using an empirical formula. The results from the crash analysis of a twin engine commercial aircraft show that the impacted reinforced concrete wall of the ALS building will not have through-the-wall concrete failure, and the reinforcement will not fail. Strain-rate effects were found to delay the onset of cracking. Therefore, the structural integrity of the impacted wall of the INPP ALS building will be maintained during the crash event studied.

  3. Structural Integrity Assessment of VVER-1000 RPV under Accidental Cool down Transients

    International Nuclear Information System (INIS)

    Shrivastav, V.; Sen, R.N.; Yadav, R.S.

    2012-01-01

    Corrosion, Fatigue and Irradiation embrittlement are the major degradation mechanisms responsible for ageing of RPV (and its internals) of a Pressurized Water Reactor. While corrosion and fatigue can generate cracks, irradiation damage can lead to brittle fracture initiating from these cracks. Ageing in nuclear power plants needs to be managed so as to ensure that design functions remain available throughout the life of the plant. From safety perspective, this implies that ageing degradation of systems, structures and components important to safety remain within acceptable limits. Reactor Pressure Vessel has been identified as the highest priority key component in plant life management for Pressurized Water Reactors. Therefore special attention is required to ensure its structural integrity during its lifetime. In this paper, structural integrity assessment for typical VVER-1000 RPV is carried out under severe accidental cool down transients using the Finite Element Method. Three different accidental scenarios are postulated and safety of the vessel is conservatively assessed under these transients using the Linear Elastic Fracture Mechanics approach. Transient thermo mechanical stress analysis of the core belt region of the RPV is carried out in presence of postulated cracks and stress intensity factors are calculated and compared with the material fracture toughness to assess the structural integrity of the vessel. The paper also include some parametric analyses to justify the methodology. (author)

  4. Study on integrity evaluation of structures associated with nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  5. Study on integrity evaluation of structures associated with nuclear power plants

    International Nuclear Information System (INIS)

    2013-01-01

    The 3.11 Tohoku District -off the Pacific Ocean Earthquake and tsunami made us observations of tsunami height in large exceedance of the design, and besides it gave the most damages to several nuclear power plants facing the Pacific Ocean at source area of the earthquake. Particularly, at Fukushima-Daiichi Nuclear Power Plant, the great tsunami caused the simultaneous failure on several plant's equipment and components, which escalated into the core damage. Considering these background, the objective of this research is to enhance fundamental technology relative to integrity evaluation of SSC's (System, Structure, components) targeting external events such as earthquakes and tsunamis. Specifically, it is performed to develop structure evaluation methods against tsunami, to develop seismic isolation system, and to enhance non-liner analysis methods for building and so on. In viewpoint of the other external events except earthquake and tsunami, it was performed to develop impact analysis methods on building and outdoor structure against swept things caused by tornadoes. After that on the basis of these developments, it is performed to draw up guidelines such as the base isolation structure review guide, and the structure design and risk evaluation guide against tsunami, which are to be used in cross-check analysis targeting integrity evaluation of nuclear power plant's structures against external events such as earthquakes and tsunamis. (author)

  6. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring

    Directory of Open Access Journals (Sweden)

    Shu-Wei Chang

    2017-12-01

    Full Text Available This paper presents a novel experimental design for complex structural health monitoring (SHM studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  7. Integration of High-Resolution Laser Displacement Sensors and 3D Printing for Structural Health Monitoring.

    Science.gov (United States)

    Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan

    2017-12-22

    This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.

  8. Integrated structural analysis tool using the linear matching method part 1 – Software development

    International Nuclear Information System (INIS)

    Ure, James; Chen, Haofeng; Tipping, David

    2014-01-01

    A number of direct methods based upon the Linear Matching Method (LMM) framework have been developed to address structural integrity issues for components subjected to cyclic thermal and mechanical load conditions. This paper presents a new integrated structural analysis tool using the LMM framework for the assessment of load carrying capacity, shakedown limit, ratchet limit and steady state cyclic response of structures. First, the development of the LMM for the evaluation of design limits in plasticity is introduced. Second, preliminary considerations for the development of the LMM into a tool which can be used on a regular basis by engineers are discussed. After the re-structuring of the LMM subroutines for multiple central processing unit (CPU) solution, the LMM software tool for the assessment of design limits in plasticity is implemented by developing an Abaqus CAE plug-in with graphical user interfaces. Further demonstration of this new LMM analysis tool including practical application and verification is presented in an accompanying paper. - Highlights: • A new structural analysis tool using the Linear Matching Method (LMM) is developed. • The software tool is able to evaluate the design limits in plasticity. • Able to assess limit load, shakedown, ratchet limit and steady state cyclic response. • Re-structuring of the LMM subroutines for multiple CPU solution is conducted. • The software tool is implemented by developing an Abaqus CAE plug-in with GUI

  9. Structural characterisation of medically relevant protein assemblies by integrating mass spectrometry with computational modelling.

    Science.gov (United States)

    Politis, Argyris; Schmidt, Carla

    2018-03-20

    Structural mass spectrometry with its various techniques is a powerful tool for the structural elucidation of medically relevant protein assemblies. It delivers information on the composition, stoichiometries, interactions and topologies of these assemblies. Most importantly it can deal with heterogeneous mixtures and assemblies which makes it universal among the conventional structural techniques. In this review we summarise recent advances and challenges in structural mass spectrometric techniques. We describe how the combination of the different mass spectrometry-based methods with computational strategies enable structural models at molecular levels of resolution. These models hold significant potential for helping us in characterizing the function of protein assemblies related to human health and disease. In this review we summarise the techniques of structural mass spectrometry often applied when studying protein-ligand complexes. We exemplify these techniques through recent examples from literature that helped in the understanding of medically relevant protein assemblies. We further provide a detailed introduction into various computational approaches that can be integrated with these mass spectrometric techniques. Last but not least we discuss case studies that integrated mass spectrometry and computational modelling approaches and yielded models of medically important protein assembly states such as fibrils and amyloids. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Integrated software system for seismic evaluation of nuclear power plant structures

    International Nuclear Information System (INIS)

    Xu, J.; Graves, H.L.

    1993-01-01

    The computer software CARES (Computer Analysis for Rapid Evaluation of Structures) was developed by the Brookhaven National Laboratory for the U.S. Nuclear Regulatory Commission. It represents an effort to utilize established numerical methodologies commonly employed by industry for structural safety evaluations of nuclear power plant facilities and incorporates them into an integrated computer software package operated on personal computers. CARES was developed with the objective of including all aspects of seismic performance evaluation of nuclear power structures. It can be used to evaluate the validity and accuracy of analysis methodologies used for structural safety evaluations of nuclear power plants by various utilities. CARES has a modular format, each module performing a specific type of analysis. The seismic module integrates all the steps of a complete seismic analysis into a single package with many user-friendly features such as interactiveness and quick turnaround. Linear structural theory and pseudo-linear convolution theory are utilized as the bases for the development with a special emphasis on the nuclear regulatory requirements for structural safety of nuclear plants. The organization of the seismic module is arranged in eight options, each performing a specific step of the analysis with most of input/output interfacing processed by the general manager. Finally, CARES provides comprehensive post-processing capability for displaying results graphically or in tabular form so that direct comparisons can be easily made. (author)

  11. Support structure concept for integration of ITER diagnostics in the port cell

    Energy Technology Data Exchange (ETDEWEB)

    Udintsev, V.S., E-mail: victor.udintsev@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Portalès, M.; Giacomin, T.; Darcourt, O.; Direz, M.-F.; Martins, J.P.; Penot, C.; Arumugam, A.P.; Drevon, J.-M.; Friconneau, J.P.; Levesy, B.; Maquet, P.; Patel, K.M.; Pitcher, C.S. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Popova, E. [Russian Federation Domestic Agency, Moscow (Russian Federation); Proust, M. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France); Ronden, D.M.S. [DIFFER, Nieuwegein (Netherlands); Walker, C.I.; Walsh, M.J.; Watts, C. [ITER Organization, Route de Vinon sur Verdon, 13115 St. Paul-Lez-Durance (France)

    2013-10-15

    Highlights: ► An interspace support structure to support the diagnostic systems from the back of the upper and equatorial port plugs to the biological shield plug. ► Port cell support structures are foreseen to handle the equipment in the port cell. ► Both ISS and PCSS will be supported by means of RH rail system. ► The structures will be positioned with a certain tolerance. ► The proposed concepts are found to fulfil the needs for support of the diagnostics in ITER. -- Abstract: Development of the diagnostics for ITER tokamak, which is presently under construction by several international partners at Cadarache in France, is a major challenge because of severe environment, strict engineering requirements, and the need for high reliability in the measurements. The diagnostic systems in the upper, equatorial and lower port cells on ITER are designed to be integrated within the interspace and port cell support structures. These structures are interfacing with remote handling rail system for the cask operations, thus facilitating the removal and installation of the diagnostics in the port and hence minimizing time for working close to the tokamak. In this paper, the challenges associated with the integration of the diagnostics in the port interspace and port cell, as well as their solutions will be addressed and presented. The interspace and the port cell support structures, as well as their interfaces with the biological shield, will be discussed.

  12. Structural integrity of power generating speed bumps made of concrete foam composite

    Science.gov (United States)

    Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.

    2018-02-01

    In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.

  13. Development of efficient finite elements for structural integrity analysis of solid rocket motor propellant grains

    International Nuclear Information System (INIS)

    Marimuthu, R.; Nageswara Rao, B.

    2013-01-01

    Solid propellant rocket motors (SRM) are regularly used in the satellite launch vehicles which consist of mainly three different structural materials viz., solid propellant, liner, and casing materials. It is essential to assess the structural integrity of solid propellant grains under the specified gravity, thermal and pressure loading conditions. For this purpose finite elements developed following the Herrmann formulation are: twenty node brick element (BH20), eight node quadrilateral plane strain element (PH8) and, eight node axi-symmetric solid of revolution element (AH8). The time-dependent nature of the solid propellant grains is taken into account utilizing the direct inverse method of Schepary to specify the effective Young's modulus and Poisson's ratio. The developed elements are tested considering various problems prior to implementation in the in-house software package (viz., Finite Element Analysis of STructures, FEAST). Several SRM configurations are analyzed to assess the structural integrity under different loading conditions. Finite element analysis results are found to be in good agreement with those obtained earlier from MARC software. -- Highlights: • Developed efficient Herrmann elements. • Accuracy of finite elements demonstrated solving several known solution problems. • Time dependent structural response obtained using the direct inverse method of Schepary. • Performed structural analysis of grains under gravity, thermal and pressure loads

  14. Cavity structural integrity evaluation of steam explosion using LS-DYNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae-Young; Park, Chang-Hwan [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Kim, Kap-sun [KHNP Central Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    For investigating the mechanical response of the newly-designed NPP against an steam explosion, the cavity structural integrity evaluation was performed, in which the mechanical load resulted from a steam explosion in the reactor cavity was calculated. In the evaluation, two kinds of approach were considered, one of which is a deterministic manner and the other is a probabilistic one. In this report, the procedure and the results of the deterministic analysis are presented When entering the severe accident, the core is relocated to the lower head. In this case, an Ex-Vessel Steam Explosion(EVSE) can occur. It can threaten the structural integrity of the cavity due to the load applied to the walls or slabs of the cavity. The large amount of the energy transmitted from interaction between the molten corium and the water causes a dynamic loading onto the concrete walls resulting not only to affect the survivability of the various equipment but also to threaten the integrity of the containment. In this report, the response of the cavity wall structure is analyzed using the nonlinear finite element analysis (FEA) code. The resulting stress and strain of the structure were evaluated by the criteria in NEI07-13. Until now, deterministic analysis was performed via finite element analysis for the dynamic load generated by the steam explosion to investigate the effect on the cavity structure. A deterministic method was used in this study using the specific values of material properties and clearly defined steam explosion pressure curve. The results showed that the rebar and the liner are kept intact even at the high pressure pulse given by the steam explosion. The liner integrity is more critical to judge the preservation of the lean-tightness. In the meantime, there were found cracks in concrete media.

  15. Evaluation of integration methods for hybrid simulation of complex structural systems through collapse

    Science.gov (United States)

    Del Carpio R., Maikol; Hashemi, M. Javad; Mosqueda, Gilberto

    2017-10-01

    This study examines the performance of integration methods for hybrid simulation of large and complex structural systems in the context of structural collapse due to seismic excitations. The target application is not necessarily for real-time testing, but rather for models that involve large-scale physical sub-structures and highly nonlinear numerical models. Four case studies are presented and discussed. In the first case study, the accuracy of integration schemes including two widely used methods, namely, modified version of the implicit Newmark with fixed-number of iteration (iterative) and the operator-splitting (non-iterative) is examined through pure numerical simulations. The second case study presents the results of 10 hybrid simulations repeated with the two aforementioned integration methods considering various time steps and fixed-number of iterations for the iterative integration method. The physical sub-structure in these tests consists of a single-degree-of-freedom (SDOF) cantilever column with replaceable steel coupons that provides repeatable highlynonlinear behavior including fracture-type strength and stiffness degradations. In case study three, the implicit Newmark with fixed-number of iterations is applied for hybrid simulations of a 1:2 scale steel moment frame that includes a relatively complex nonlinear numerical substructure. Lastly, a more complex numerical substructure is considered by constructing a nonlinear computational model of a moment frame coupled to a hybrid model of a 1:2 scale steel gravity frame. The last two case studies are conducted on the same porotype structure and the selection of time steps and fixed number of iterations are closely examined in pre-test simulations. The generated unbalance forces is used as an index to track the equilibrium error and predict the accuracy and stability of the simulations.

  16. An artificial neural network approach for aerodynamic performance retention in airframe noise reduction design of a 3D swept wing model

    Directory of Open Access Journals (Sweden)

    Tao Jun

    2016-10-01

    Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.

  17. Local chromatin structure of heterochromatin regulates repeated DNA stability, nucleolus structure, and genome integrity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jamy C. [Univ. of California, Berkeley, CA (United States)

    2007-01-01

    Heterochromatin constitutes a significant portion of the genome in higher eukaryotes; approximately 30% in Drosophila and human. Heterochromatin contains a high repeat DNA content and a low density of protein-encoding genes. In contrast, euchromatin is composed mostly of unique sequences and contains the majority of single-copy genes. Genetic and cytological studies demonstrated that heterochromatin exhibits regulatory roles in chromosome organization, centromere function and telomere protection. As an epigenetically regulated structure, heterochromatin formation is not defined by any DNA sequence consensus. Heterochromatin is characterized by its association with nucleosomes containing methylated-lysine 9 of histone H3 (H3K9me), heterochromatin protein 1 (HP1) that binds H3K9me, and Su(var)3-9, which methylates H3K9 and binds HP1. Heterochromatin formation and functions are influenced by HP1, Su(var)3-9, and the RNA interference (RNAi) pathway. My thesis project investigates how heterochromatin formation and function impact nuclear architecture, repeated DNA organization, and genome stability in Drosophila melanogaster. H3K9me-based chromatin reduces extrachromosomal DNA formation; most likely by restricting the access of repair machineries to repeated DNAs. Reducing extrachromosomal ribosomal DNA stabilizes rDNA repeats and the nucleolus structure. H3K9me-based chromatin also inhibits DNA damage in heterochromatin. Cells with compromised heterochromatin structure, due to Su(var)3-9 or dcr-2 (a component of the RNAi pathway) mutations, display severe DNA damage in heterochromatin compared to wild type. In these mutant cells, accumulated DNA damage leads to chromosomal defects such as translocations, defective DNA repair response, and activation of the G2-M DNA repair and mitotic checkpoints that ensure cellular and animal viability. My thesis research suggests that DNA replication, repair, and recombination mechanisms in heterochromatin differ from those in

  18. Integrated analysis of multiple data sources reveals modular structure of biological networks

    International Nuclear Information System (INIS)

    Lu Hongchao; Shi Baochen; Wu Gaowei; Zhang Yong; Zhu Xiaopeng; Zhang Zhihua; Liu Changning; Zhao, Yi; Wu Tao; Wang Jie; Chen Runsheng

    2006-01-01

    It has been a challenging task to integrate high-throughput data into investigations of the systematic and dynamic organization of biological networks. Here, we presented a simple hierarchical clustering algorithm that goes a long way to achieve this aim. Our method effectively reveals the modular structure of the yeast protein-protein interaction network and distinguishes protein complexes from functional modules by integrating high-throughput protein-protein interaction data with the added subcellular localization and expression profile data. Furthermore, we take advantage of the detected modules to provide a reliably functional context for the uncharacterized components within modules. On the other hand, the integration of various protein-protein association information makes our method robust to false-positives, especially for derived protein complexes. More importantly, this simple method can be extended naturally to other types of data fusion and provides a framework for the study of more comprehensive properties of the biological network and other forms of complex networks

  19. Impact of the antimicrobial peptide Novicidin on membrane structure and integrity

    DEFF Research Database (Denmark)

    Nielsen, Søren B; Otzen, Daniel Erik

    2010-01-01

    We have studied the impact of an 18-residue cationic antimicrobial peptide Novicidin (Nc) on the structure and integrity of partially anionic lipid membranes using oriented circular dichroism (OCD), quartz crystal microbalance with dissipation (QCM-D), dual polarization interferometry (DPI......), calcein dye leakage and fluorescence spectroscopy. OCD consistently showed that Nc is bound in an alpha-helical, surface bound state over a range of peptide to lipid (P/L) ratios up to approximately 1:15. Realignment of Nc at higher P/L ratios correlates to loss of membrane integrity as shown by Laurdan...... concentration, probably through formation of transient pores or transient disruption of the membrane integrity, followed by more extensive membrane disintegration at higher P/L ratios....

  20. On integration of plug-in hybrid electric vehicles into existing power system structures

    International Nuclear Information System (INIS)

    Galus, Matthias D.; Zima, Marek; Andersson, Goeran

    2010-01-01

    Plug-in hybrid electric vehicles (PHEVs) represent one option for the electrification of private mobility. In order to efficiently integrate PHEVs into power systems, existing organizational structures need to be considered. Based on procedures of power systems planning and operation, actors are identified whose operational activities will be affected by PHEV integration. Potential changes and challenges in the actors' long- and short term planning activities are discussed. Further, a PHEV operation state description is developed which defines vehicle operation states from the power system point of view integrating uncontrolled, controlled recharging and vehicle to grid (V2G) utilization in one single framework. Future PHEV managing entities, such as aggregators, can use this framework for planning and operation activities including load management and V2G. This operational state description could provide a solution for future short term planning challenges of PHEVs and an aegis for various routes of current research, which to date have been weakly linked to each other.

  1. Smart patch integration development of compression connector structural health monitoring in overhead transmission lines

    Science.gov (United States)

    Wang, Hong; Wang, Jy-An J.; Ren, Fei; Chan, John

    2016-04-01

    Integration of smart patches into full-tension splice connectors in overhead power transmission lines was investigated. Lead zirconate titanate (PZT) -5A was used as a smart material and an aluminum beam was used as a host structure. Negative electrode termination was examined by using copper adhesive tape and direct bonding methods. Various commercial adhesives were studied for PZT integration onto the host structure. Aluminum beam specimens with integrated PZT smart patches were tested under thermal cycling at a temperature of 125°C, which is the higher-end temperature experienced by in-service aluminum conductor steel-reinforced cables. Electromechanical impedance (EMI) measurements were conducted at room temperature, and the root mean square deviation (RMSD) of the conductance signals was used to analyze the EMI data. It has been shown that the negative electrode method has an important effect on the performance of the integrated PZT. The PZT displayed more susceptibility to cracking when copper tape was used than when direct bonding was used. The reliability of PZT in direct bonding depended on the adhesives used in bonding layers. Although a hard alumina-based adhesive can lead to cracking of the PZT, a high-temperature epoxy with adequate flexibility, such as Duralco 4538D, can provide the desired performance under target thermal cycling conditions. The RMSD parameter can characterize conductance signatures effectively. It also was demonstrated that RMSD can be used to quantify the fatigue of the PZT integration system, although RMSD is used primarily as a damage index in monitoring structural health.

  2. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    International Nuclear Information System (INIS)

    Sesé, Luis M.

    2016-01-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  3. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    Energy Technology Data Exchange (ETDEWEB)

    Sesé, Luis M., E-mail: msese@ccia.uned.es [Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid (Spain)

    2016-03-07

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  4. Drop analysis for structural integrity evaluation of KJRR fuel transport container

    International Nuclear Information System (INIS)

    Yang, Yun Young; Lim, Jong Min; Choi, Woo Seok; Lee, Ju Chan

    2016-01-01

    A fuel transport container for KiJang Research Reactor(KJRR) has been developed to transport fresh fuel assemblies and fission molly targets which are used for a research reactor built in Kijang. The KJRR fuel transport container is a type-A(F) container, which is defined in domestic and foreign regulations of a radioactive substance container. According to Nuclear Safety and Security Commission's notification, the container should meet the accident conditions defined in IAEA safety Standard Series, US NRC and etc. In this study, a structural integrity of the KJRR fuel transport container is evaluated by conducting computational analyses of 9-meter free drop and 1 meter puncture. It is confirmed that structural integrity of the KJRR fuel transport container can be maintained in the transportation accident condition. Hereafter, when the test model is produced, a safety test will be conducted and its result will be compared with the result of drop and puncture analyses.

  5. Layout Capacitive Coupling and Structure Impacts on Integrated High Voltage Power MOSFETs

    DEFF Research Database (Denmark)

    Fan, Lin; Knott, Arnold; Jørgensen, Ivan Harald Holger

    2016-01-01

    The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer-to-layer......The switching performances of the integrated high voltage power MOSFETs that have prevailing interconnection matrices are being heavily influenced by the parasitic capacitive coupling of on-chip metal wires. The mechanism of the side-byside coupling is generally known, however, the layer...... extraction tool shows that the side-by-side coupling dominated structure can perform better than the layer-to-layer coupling dominated structure, in terms of on-resistance times input or output capacitance, by 9.2% and 4.9%, respectively....

  6. The Lie-Poisson structure of integrable classical non-linear sigma models

    International Nuclear Information System (INIS)

    Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.

    1993-01-01

    The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)

  7. Advanced image based methods for structural integrity monitoring: Review and prospects

    Science.gov (United States)

    Farahani, Behzad V.; Sousa, Pedro José; Barros, Francisco; Tavares, Paulo J.; Moreira, Pedro M. G. P.

    2018-02-01

    There is a growing trend in engineering to develop methods for structural integrity monitoring and characterization of in-service mechanical behaviour of components. The fast growth in recent years of image processing techniques and image-based sensing for experimental mechanics, brought about a paradigm change in phenomena sensing. Hence, several widely applicable optical approaches are playing a significant role in support of experiment. The current review manuscript describes advanced image based methods for structural integrity monitoring, and focuses on methods such as Digital Image Correlation (DIC), Thermoelastic Stress Analysis (TSA), Electronic Speckle Pattern Interferometry (ESPI) and Speckle Pattern Shearing Interferometry (Shearography). These non-contact full-field techniques rely on intensive image processing methods to measure mechanical behaviour, and evolve even as reviews such as this are being written, which justifies a special effort to keep abreast of this progress.

  8. A multi-structural and multi-functional integrated fog collection system in cactus

    Science.gov (United States)

    Ju, Jie; Bai, Hao; Zheng, Yongmei; Zhao, Tianyi; Fang, Ruochen; Jiang, Lei

    2012-01-01

    Multiple biological structures have demonstrated fog collection abilities, such as beetle backs with bumps and spider silks with periodic spindle-knots and joints. Many Cactaceae species live in arid environments and are extremely drought-tolerant. Here we report that one of the survival systems of the cactus Opuntia microdasys lies in its efficient fog collection system. This unique system is composed of well-distributed clusters of conical spines and trichomes on the cactus stem; each spine contains three integrated parts that have different roles in the fog collection process according to their surface structural features. The gradient of the Laplace pressure, the gradient of the surface-free energy and multi-function integration endow the cactus with an efficient fog collection system. Investigations of the structure–function relationship in this system may help us to design novel materials and devices to collect water from fog with high efficiencies. PMID:23212376

  9. Expression of recombinant glycoproteins in mammalian cells: towards an integrative approach to structural biology.

    Science.gov (United States)

    Aricescu, A Radu; Owens, Raymond J

    2013-06-01

    Mammalian cells are rapidly becoming the system of choice for the production of recombinant glycoproteins for structural biology applications. Their use has enabled the structural investigation of a whole new set of targets including large, multi-domain and highly glycosylated eukaryotic cell surface receptors and their supra-molecular assemblies. We summarize the technical advances that have been made in mammalian expression technology and highlight some of the structural insights that have been obtained using these methods. Looking forward, it is clear that mammalian cell expression will provide exciting and unique opportunities for an integrative approach to the structural study of proteins, especially of human origin and medically relevant, by bridging the gap between the purified state and the cellular context. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Rolled-up inductor structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen; Ferreira, Placid M.; Yu, Xin

    2015-12-29

    A rolled-up inductor structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis. The multilayer sheet comprises a conductive pattern layer on a strain-relieved layer, and the conductive pattern layer comprises at least one conductive strip having a length extending in a rolling direction. The at least one conductive strip thereby wraps around the longitudinal axis in the rolled configuration. The conductive pattern layer may also comprise two conductive feed lines connected to the conductive strip for passage of electrical current therethrough. The conductive strip serves as an inductor cell of the rolled-up inductor structure.

  11. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Directory of Open Access Journals (Sweden)

    Stefan Stein

    Full Text Available The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]. Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6] due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et

  12. Modeling of Electromagnetic Fields in Parallel-Plane Structures: A Unified Contour-Integral Approach

    Directory of Open Access Journals (Sweden)

    M. Stumpf

    2017-04-01

    Full Text Available A unified reciprocity-based modeling approach for analyzing electromagnetic fields in dispersive parallel-plane structures of arbitrary shape is described. It is shown that the use of the reciprocity theorem of the time-convolution type leads to a global contour-integral interaction quantity from which novel both time- and frequency-domain numerical schemes can be arrived at. Applications of the numerical method concerning the time-domain radiated interference and susceptibility of parallel-plane structures are discussed and illustrated on numerical examples.

  13. Computational Modelling of the Structural Integrity following Mass-Loss in Polymeric Charred Cellular Solids

    OpenAIRE

    J. P. M. Whitty; J. Francis; J. Howe; B. Henderson

    2014-01-01

    A novel computational technique is presented for embedding mass-loss due to burning into the ANSYS finite element modelling code. The approaches employ a range of computational modelling methods in order to provide more complete theoretical treatment of thermoelasticity absent from the literature for over six decades. Techniques are employed to evaluate structural integrity (namely, elastic moduli, Poisson’s ratios, and compressive brittle strength) of honeycomb systems known to approximate t...

  14. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    International Nuclear Information System (INIS)

    Tahmassebi, H.

    1991-01-01

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future

  15. A novel hierarchy of differential—integral equations and their generalized bi-Hamiltonian structures

    International Nuclear Information System (INIS)

    Zhai Yun-Yun; Geng Xian-Guo; He Guo-Liang

    2014-01-01

    With the aid of the zero-curvature equation, a novel integrable hierarchy of nonlinear evolution equations associated with a 3 × 3 matrix spectral problem is proposed. By using the trace identity, the bi-Hamiltonian structures of the hierarchy are established with two skew-symmetric operators. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first member in the hierarchy

  16. Structural changes, market concentration and vertical integration: would they lead to more stable markets

    Energy Technology Data Exchange (ETDEWEB)

    Tahmassebi, H.

    This communication is concerned with three major developments that are likely to have significant impact on the future structure of world oil markets: oil company mergers and acquisitions, shift of exploration and production activity from the United States to overseas, and joint venture agreements between producing countries and oil companies aimed at further downstream integration by OPEC. The last two developments are likely to contribute substantially to price and market stability in the future.

  17. Study on the Chinese Goods Market Structure and Related Integrated Marketing Strategy

    OpenAIRE

    Qishen Zhou; Mingxing Yang

    2013-01-01

    This study aims to investigate the Chinese goods market structure and related integrated marketing strategy. In recent years, it is becoming more and more popular for Chinese consumers to go on luxury consuming in a variety of large cities in China, showing the increasing demand of luxury for Chinese people possessed relatively high fortune. Further, dozens of international famous luxury brands are pouring into the Chinese market such as LVMH and Gucci, recognizing the huge consumption demand...

  18. Drug Repositioning by Kernel-Based Integration of Molecular Structure, Molecular Activity, and Phenotype Data

    Science.gov (United States)

    Wang, Yongcui; Chen, Shilong; Deng, Naiyang; Wang, Yong

    2013-01-01

    Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single data source is important in its own way and data integration holds the great promise to reposition drug more accurately. Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems. PMID:24244318

  19. Structure determination of an integral membrane protein at room temperature from crystals in situ

    International Nuclear Information System (INIS)

    Axford, Danny; Foadi, James; Hu, Nien-Jen; Choudhury, Hassanul Ghani; Iwata, So; Beis, Konstantinos; Evans, Gwyndaf; Alguel, Yilmaz

    2015-01-01

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines

  20. Technology development on the assessment of structural integrity of nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong Moon; Choun, Y. S.; Choi, I. K. and others

    1999-04-01

    Nuclear power plants in Korea show drop off in their performance and safety margin as the age of plants increase. The reevaluation of Kori-1 Unit on its performance and safety for life extension is expected in the near future. However, technologies and information related are insufficient to quantitatively estimate them. The final goal of this study is to develop the basic testing and evaluation techniques related with structural integrity of important nuclear equipment and structures. A part of the study includes development of equipment qualification technique. To ensure the structural integrity of structures, systems, and equipment in nuclear power plants, the following 5 research tasks were performed in the first year. - Analysis of dynamic characteristics of reactor internals - Analysis of engineering characteristics of instrumental earthquakes recorded in Korea - Analysis of ultimate pressure capacity and failure mode of containments building - Development of advanced NDE techniques using ultrasonic resonance scattering - Development of equipment qualification technique against vibration aging. These technologies developed in this study can be used to ensure the structural safety of operational nuclear power plants, and for the long-term life management. (author)

  1. Gauging a Firm's Innovative Performance Using an Integrated Structural Index for Patents

    Directory of Open Access Journals (Sweden)

    Xiaojun Hu

    2016-03-01

    Full Text Available Purpose: In this contribution we try to find new indicators to measure characteristics of a firm's patents and their influence on a company's profits. Design/methodology/approach: We realize that patent evaluation and influence on a company's profits is a complicated issue requiring different perspectives. For this reason we design two types of structural h-indices, derived from the International Patent Classification (IPC. In a case study we apply not only basic statistics but also a nested case-control methodology. Findings: The resulting indicator values based on a large dataset (19,080 patents in total from the pharmaceutical industry show that the new structural indices are significantly correlated with a firm's profits. Research limitations: The new structural index and the synthetic structural index have just been applied in one case study in the pharmaceutical industry. Practical implications: Our study suggests useful implications for patentometric studies and leads to suggestions for different sized firms to include a healthy research and development (R&D policy management. The structural h-index can be used to gauge the profits resulting from the innovative performance of a firm's patent portfolio. Originality/value: Traditionally, the breadth and depth of patents of a firm and their citations are considered separately. This approach, however, does not provide an integrated insight in the major characteristics of a firm's patents. The Sh(Y index, proposed in our investigation, can reflect a firm's innovation activities, its technological breadth, and its influence in an integrated way.

  2. Structure determination of an integral membrane protein at room temperature from crystals in situ

    Energy Technology Data Exchange (ETDEWEB)

    Axford, Danny [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Foadi, James [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Hu, Nien-Jen; Choudhury, Hassanul Ghani [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Iwata, So [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Kyoto University, Kyoto 606-8501 (Japan); Beis, Konstantinos [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom); Evans, Gwyndaf, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Alguel, Yilmaz, E-mail: gwyndaf.evans@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE (United Kingdom); Imperial College London, London SW7 2AZ (United Kingdom); Rutherford Appleton Laboratory, Oxfordshire OX11 0FA (United Kingdom)

    2015-05-14

    The X-ray structure determination of an integral membrane protein using synchrotron diffraction data measured in situ at room temperature is demonstrated. The structure determination of an integral membrane protein using synchrotron X-ray diffraction data collected at room temperature directly in vapour-diffusion crystallization plates (in situ) is demonstrated. Exposing the crystals in situ eliminates manual sample handling and, since it is performed at room temperature, removes the complication of cryoprotection and potential structural anomalies induced by sample cryocooling. Essential to the method is the ability to limit radiation damage by recording a small amount of data per sample from many samples and subsequently assembling the resulting data sets using specialized software. The validity of this procedure is established by the structure determination of Haemophilus influenza TehA at 2.3 Å resolution. The method presented offers an effective protocol for the fast and efficient determination of membrane-protein structures at room temperature using third-generation synchrotron beamlines.

  3. Structural integrity for DEMO: An opportunity to close the gap from materials science to engineering needs

    Energy Technology Data Exchange (ETDEWEB)

    Porton, M., E-mail: michael.porton@ccfe.ac.uk [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Wynne, B.P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); University of Sheffield, Sheffield, South Yorkshire S10 2TN (United Kingdom); Bamber, R.; Hardie, C.D.; Kalsey, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2016-11-01

    Highlights: • Key shortfalls in the current approaches to verification of structural integrity are outlined. • Case studies for high integrity applications in other demanding environments are examined. • Relevant lessons are drawn from fission and space for the design stage and through service life. • Future efforts are suggested to align materials and engineering for DEMO structural integrity. - Abstract: It is clear that fusion demonstration devices offer unique challenges due to the myriad, interacting material degradation effects and the numerous, conflicting requirements that must be addressed in order for in-vessel components to deliver satisfactory performance over the required lifetime. The link between mechanical engineering and materials science is pivotal to assure the timely realisation and exploitation of successful fusion power. A key aspect of this link is the verification of structural integrity, achieved at the design stage via structural design criteria against which designs are judged to be sufficiently resilient (or not) to failure, for a given set of loading conditions and desired lifetime. As various demonstration power plant designs progress through their current conceptual design phases, this paper seeks to highlight key shortfalls in this vital link between engineering needs and materials science, offering a perspective on where future attention can be prioritised to maximise impact. Firstly, issues in applying existing structural design criteria to demonstration power plant designs are identified. Whilst fusion offers particular challenges, there are significant insights to be gained from attempts to address such issues for high performance, high integrity applications in other demanding environments. Therefore case studies from beyond fusion are discussed. These offer examples where similar shortfalls have been successfully addressed, via approaches at the design stage and through service lifetime in order to deliver significant

  4. Topic structure affects semantic integration: evidence from event-related potentials.

    Science.gov (United States)

    Yang, Xiaohong; Chen, Xuhai; Chen, Shuang; Xu, Xiaoying; Yang, Yufang

    2013-01-01

    This study investigated whether semantic integration in discourse context could be influenced by topic structure using event-related brain potentials. Participants read discourses in which the last sentence contained a critical word that was either congruent or incongruent with the topic established in the first sentence. The intervening sentences between the first and the last sentence of the discourse either maintained or shifted the original topic. Results showed that incongruent words in topic-maintained discourses elicited an N400 effect that was broadly distributed over the scalp while those in topic-shifted discourses elicited an N400 effect that was lateralized to the right hemisphere and localized over central and posterior areas. Moreover, a late positivity effect was only elicited by incongruent words in topic-shifted discourses, but not in topic-maintained discourses. This suggests an important role for discourse structure in semantic integration, such that compared with topic-maintained discourses, the complexity of discourse structure in topic-shifted condition reduces the initial stage of semantic integration and enhances the later stage in which a mental representation is updated.

  5. Implementation of a variable-step integration technique for nonlinear structural dynamic analysis

    International Nuclear Information System (INIS)

    Underwood, P.; Park, K.C.

    1977-01-01

    The paper presents the implementation of a recently developed unconditionally stable implicit time integration method into a production computer code for the transient response analysis of nonlinear structural dynamic systems. The time integrator is packaged with two significant features; a variable step size that is automatically determined and this is accomplished without additional matrix refactorizations. The equations of motion solved by the time integrator must be cast in the pseudo-force form, and this provides the mechanism for controlling the step size. Step size control is accomplished by extrapolating the pseudo-force to the next time (the predicted pseudo-force), then performing the integration step and then recomputing the pseudo-force based on the current solution (the correct pseudo-force); from this data an error norm is constructed, the value of which determines the step size for the next step. To avoid refactoring the required matrix with each step size change a matrix scaling technique is employed, which allows step sizes to change by a factor of 100 without refactoring. If during a computer run the integrator determines it can run with a step size larger than 100 times the original minimum step size, the matrix is refactored to take advantage of the larger step size. The strategy for effecting these features are discussed in detail. (Auth.)

  6. The Formation of Competitive Advantages for Corporate Structures Based on the Cluster Integration

    Directory of Open Access Journals (Sweden)

    Ekaterina Vasilyevna Pustynnikova

    2017-06-01

    Full Text Available The article studies the cluster forms of integration as well as the development of corporate and cluster connections. At present, economic knowledge is rather focused on the development of integrated regional systems recognized as one of the most effective forms of integration. In turn, the processes, based on the interdependence and cooperation of economic entities located on the same territory, determine the possibility of stable economic relations, synergetic effect and growth of the competitive advantages of these territories. Such development tendencies reflect corporate interests and define trends for the integration of corporations in the context of regional and industrial limitations. Thus, one of the main aspects of integration is focused on the establishment of sustainable cost-beneficial relationships between corporate entities. The dialectical unity of the coordination and cooperation of corporate structures in economic clusters expands the traditional boundaries of economic benefits. Considering the government of corporate structure on the basis of internal approach, we can see that the benefits from the fragmented leadership may be neutralized due to unevenness of expenses. The corporate-cluster approach of corporate structure government allows not only to coordinate actions at the micro-level but also to generate more sustainable economic relations at the industrial, market and regional levels. It is reflected in the synergistic effect. The coordination of economic processes and geographic concentration contribute to system flexibility and adaptability in the market conditions as well as stimulate economic processes. Therefore, all cluster participants benefit from mutually beneficial cooperation. This, in turn, contributes to the decrease of total expenses and hastens the responses of entities on different market changes. The authors’ hypothesis assumes the coordination of interests in the economic cluster that allows to create

  7. A process chain for integrating piezoelectric transducers into aluminum die castings to generate smart lightweight structures

    Science.gov (United States)

    Stein, Stefan; Wedler, Jonathan; Rhein, Sebastian; Schmidt, Michael; Körner, Carolin; Michaelis, Alexander; Gebhardt, Sylvia

    The application of piezoelectric transducers to structural body parts of machines or vehicles enables the combination of passive mechanical components with sensor and actuator functions in one single structure. According to Herold et al. [1] and Staeves [2] this approach indicates significant potential regarding smart lightweight construction. To obtain the highest yield, the piezoelectric transducers need to be integrated into the flux of forces (load path) of load bearing structures. Application in a downstream process reduces yield and process efficiency during manufacturing and operation, due to the necessity of a subsequent process step of sensor/actuator application. The die casting process offers the possibility for integration of piezoelectric transducers into metal structures. Aluminum castings are particularly favorable due to their high quality and feasibility for high unit production at low cost (Brunhuber [3], Nogowizin [4]). Such molded aluminum parts with integrated piezoelectric transducers enable functions like active vibration damping, structural health monitoring or energy harvesting resulting in significant possibilities of weight reduction, which is an increasingly important driving force of automotive and aerospace industry (Klein [5], Siebenpfeiffer [6]) due to increasingly stringent environmental protection laws. In the scope of those developments, this paper focuses on the entire process chain enabling the generation of lightweight metal structures with sensor and actuator function, starting from the manufacturing of piezoelectric modules over electrical and mechanical bonding to the integration of such modules into aluminum (Al) matrices by die casting. To achieve this challenging goal, piezoceramic sensors/actuator modules, so-called LTCC/PZT modules (LPM) were developed, since ceramic based piezoelectric modules are more likely to withstand the thermal stress of about 700 °C introduced by the casting process (Flössel et al., [7]). The

  8. A periodic piezoelectric smart structure with the integrated passive/active vibration-reduction performances

    Science.gov (United States)

    Wang, Yuxi; Niu, Shengkai; Hu, Yuantai

    2017-06-01

    The paper proposes a new piezoelectric smart structure with the integrated passive/active vibration-reduction performances, which is made of a series of periodic structural units. Every structural unit is made of two layers, one is an array of piezoelectric bimorphs (PBs) and one is an array of metal beams (MBs), both are connected as a whole by a metal plate. Analyses show that such a periodic smart structure possesses two aspects of vibration-reduction performance: one comes from its phonon crystal characteristics which can isolate those vibrations with the driving frequency inside the band gap(s). The other one comes from the electromechanical conversion of bent PBs, which is actively aimed at those vibrations with the driving frequency outside the band gap(s). By adjusting external inductance, the equivalent circuit of the proposed structure can be forced into parallel resonance such that most of the vibration energy is converted into electrical energy for dissipation by a resistance. Thus, an external circuit under the parallel resonance state is equivalent to a strong damping to the interrelated vibrating structure, which is just the action mechanism of the active vibration reduction performance of the proposed smart structure.

  9. GIS Data Modeling of a Regional Geological Structure by Integrating Geometric and Semantic Expressions

    Directory of Open Access Journals (Sweden)

    HE Handong

    2017-08-01

    Full Text Available Using GIS, data models of geology via geometric descriptions and expressions are being developed. However, the role played by these data models in terms of the description and expression of geological structure phenomenon is limited. To improve the semantic information in geological GIS data models, this study adopts an object-oriented method that describes and expresses the geometric and semantic features of the geological structure phenomenon using geological objects and designs a data model of regional geological structures by integrating geometry and semantics. Moreover, the study designs a semantic "vocabulary-explanation-graph" method for describing the geological phenomenon of structures. Based on the semantic features of regional geological structures and a linear classification method, it divides the regional geological structure phenomenon into 3 divisions, 10 groups, 33 classes and defines the element set and element class. Moreover, it builds the basic geometric network for geological elements based on the geometric and semantic relations among geological objects. Using the ArcGIS Diagrammer Geodatabase, it considers the regional geological structure of the Ning-Zhen Mountains to verify the data model, and the results indicate a high practicability.

  10. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    International Nuclear Information System (INIS)

    Grabowski, M.P.; Mathieu, P.

    1995-01-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, for two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form. 62 refs., 4 figs

  11. Development of a Prototype System for Archiving Integrative/Hybrid Structure Models of Biological Macromolecules.

    Science.gov (United States)

    Vallat, Brinda; Webb, Benjamin; Westbrook, John D; Sali, Andrej; Berman, Helen M

    2018-04-09

    Essential processes in biology are carried out by large macromolecular assemblies, whose structures are often difficult to determine by traditional methods. Increasingly, researchers combine measured data and computed information from several complementary methods to obtain "hybrid" or "integrative" structural models of macromolecules and their assemblies. These integrative/hybrid (I/H) models are not archived in the PDB because of the absence of standard data representations and processing mechanisms. Here we present the development of data standards and a prototype system for archiving I/H models. The data standards provide the definitions required for representing I/H models that span multiple spatiotemporal scales and conformational states, as well as spatial restraints derived from different experimental techniques. Based on these data definitions, we have built a prototype system called PDB-Dev, which provides the infrastructure necessary to archive I/H structural models. PDB-Dev is now accepting structures and is open to the community for new submissions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Integration of computer imaging and sensor data for structural health monitoring of bridges

    International Nuclear Information System (INIS)

    Zaurin, R; Catbas, F N

    2010-01-01

    The condition of civil infrastructure systems (CIS) changes over their life cycle for different reasons such as damage, overloading, severe environmental inputs, and ageing due normal continued use. The structural performance often decreases as a result of the change in condition. Objective condition assessment and performance evaluation are challenging activities since they require some type of monitoring to track the response over a period of time. In this paper, integrated use of video images and sensor data in the context of structural health monitoring is demonstrated as promising technologies for the safety of civil structures in general and bridges in particular. First, the challenges and possible solutions to using video images and computer vision techniques for structural health monitoring are presented. Then, the synchronized image and sensing data are analyzed to obtain unit influence line (UIL) as an index for monitoring bridge behavior under identified loading conditions. Subsequently, the UCF 4-span bridge model is used to demonstrate the integration and implementation of imaging devices and traditional sensing technology with UIL for evaluating and tracking the bridge behavior. It is shown that video images and computer vision techniques can be used to detect, classify and track different vehicles with synchronized sensor measurements to establish an input–output relationship to determine the normalized response of the bridge

  13. Integrated system of structural health monitoring and intelligent management for a cable-stayed bridge.

    Science.gov (United States)

    Chen, Bin; Wang, Xu; Sun, Dezhang; Xie, Xu

    2014-01-01

    It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province). The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  14. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures.

    Science.gov (United States)

    Huang, Liang-Chin; Wu, Xiaogang; Chen, Jake Y

    2013-01-01

    The prediction of adverse drug reactions (ADRs) has become increasingly important, due to the rising concern on serious ADRs that can cause drugs to fail to reach or stay in the market. We proposed a framework for predicting ADR profiles by integrating protein-protein interaction (PPI) networks with drug structures. We compared ADR prediction performances over 18 ADR categories through four feature groups-only drug targets, drug targets with PPI networks, drug structures, and drug targets with PPI networks plus drug structures. The results showed that the integration of PPI networks and drug structures can significantly improve the ADR prediction performance. The median AUC values for the four groups were 0.59, 0.61, 0.65, and 0.70. We used the protein features in the best two models, "Cardiac disorders" (median-AUC: 0.82) and "Psychiatric disorders" (median-AUC: 0.76), to build ADR-specific PPI networks with literature supports. For validation, we examined 30 drugs withdrawn from the U.S. market to see if our approach can predict their ADR profiles and explain why they were withdrawn. Except for three drugs having ADRs in the categories we did not predict, 25 out of 27 withdrawn drugs (92.6%) having severe ADRs were successfully predicted by our approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Integrated System of Structural Health Monitoring and Intelligent Management for a Cable-Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2014-01-01

    Full Text Available It is essential to construct structural health monitoring systems for large important bridges. Zhijiang Bridge is a cable-stayed bridge that was built recently over the Hangzhou Qiantang River (the largest river in Zhejiang Province. The length of Zhijiang Bridge is 478 m, which comprises an arched twin-tower space and a twin-cable plane structure. As an example, the present study describes the integrated system of structural health monitoring and intelligent management for Zhijiang Bridge, which comprises an information acquisition system, data management system, evaluation and decision-making system, and application service system. The monitoring components include the working environment of the bridge and various factors that affect bridge safety, such as the stress and strain of the main bridge structure, vibration, cable force, temperature, and wind speed. In addition, the integrated system includes a forecasting and decision-making module for real-time online evaluation, which provides warnings and makes decisions based on the monitoring information. From this, the monitoring information, evaluation results, maintenance decisions, and warning information can be input simultaneously into the bridge monitoring center and traffic emergency center to share the monitoring data, thereby facilitating evaluations and decision making using the system.

  16. Physical masking process for integrating micro metallic structures on polymer substrate

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard

    2009-01-01

    plasmon devices need micro metallic structures on a polymer substrate with an uniform metal layer thickness in the nanometer range. A well known fabrication process to achieve such metallic surface pattern on polymer substrate is photolithography which involves an expensive mask and toxic chemicals......Integration of micro metallic structures in polymer devices is a broad multi-disciplinary research field, consisting of various combinations of mechanical, chemical and physical fabrication methods. Each of the methods has its specific advantages and disadvantages. Some applications like surface....... The current study shows a novel approach for fabricating thin micro metallic structures on polymer substrates using a simple physical mask and a PVD equipment. The new process involves fewer process steps, it is cost effective and suitable for high volume industrial production. Current study suggests...

  17. Integrated structural biology and molecular ecology of N-cycling enzymes from ammonia-oxidizing archaea.

    Science.gov (United States)

    Tolar, Bradley B; Herrmann, Jonathan; Bargar, John R; van den Bedem, Henry; Wakatsuki, Soichi; Francis, Christopher A

    2017-10-01

    Knowledge of the molecular ecology and environmental determinants of ammonia-oxidizing organisms is critical to understanding and predicting the global nitrogen (N) and carbon cycles, but an incomplete biochemical picture hinders in vitro studies of N-cycling enzymes. Although an integrative structural and dynamic characterization at the atomic scale would advance our understanding of function tremendously, structural knowledge of key N-cycling enzymes from ecologically relevant ammonia oxidizers is unfortunately extremely limited. Here, we discuss the challenges and opportunities for examining the ecology of ammonia-oxidizing organisms, particularly uncultivated Thaumarchaeota, through (meta)genome-driven structural biology of the enzymes ammonia monooxygenase (AMO) and nitrite reductase (NirK). © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  18. On the Value of Monitoring Information for the Structural Integrity and Risk Management

    DEFF Research Database (Denmark)

    Thöns, Sebastian

    2018-01-01

    facilitates the assessment of the value of information associated with SHM. The principal approach for the quantification of the value of SHM is formulated by modeling the fundamental decision of performing SHM or not in conjunction with their expected utilities. The expected utilities are calculated....... The calculation of the expected utilities necessitates a comprehensive and rigorous modeling, which is introduced close to the original formulations and for which analysis characteristics and simplifications are described and derived. The framework provides the basis for the optimization of the structural risk......This article introduces an approach and framework for the quantification of the value of structural health monitoring (SHM) in the context of the structural risk and integrity management for systems.The quantification of the value of SHM builds upon the Bayesian decision and utility theory, which...

  19. Evaluation of seismic characteristics and structural integrity for the cabinet of HANARO seismic monitoring analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jeong Soo; Yoon, Doo Byung

    2003-06-01

    The HANARO SMAS(Seismic Monitoring Analysis System) is classified as Non-Nuclear Safety(NNS), seismic category I, and quality class T. It is required that this system can perform required functions, which are to preserve its structural integrity during and after an OBE or SSE. In this work, the structural integrity and seismic characteristics of the cabinet of the newly developed SMAS have been estimated. The most parts of the cabinet are identically designed with those of Yonggwhang and Gori Nuclear Power Plants(NPPs), unit 1 that successfully completed the required seismic qualification tests. The structure of the cabinet of the SMAS is manufactured by the manufacturer of the cabinet of Yonggwhang and Gori NPPs. To evaluate the seismic characteristics of the SMAS, the RRS(Required Response Spectra) of the newly developed cabinet are compared with those of Yonggwhang and Gori NPPs, unit 1. In addition, natural frequencies of the cabinet of HANARO, Yonggwhang, and Gori NPPs were measured for the comparison of the seismic characteristics of the installed cabinets. In case of HANARO, the bottom of the cabinet is welded to the base plate. The base plate is fixed to the concrete foundation by using anchor bolts. For the evaluation of the structural integrity of the welding parts and the anchor bolts, the maximum stresses and forces of the welding parts and the anchor bolts due to seismic loading are estimated. The analysis results show that maximum stresses and forces are less than the allowable limits. This new SMAS is operating at HANARO instrument room to acquire and analyze the signal of earthquake.

  20. Structure of modes of smoothly irregular three-dimensional integrated optical four-layer waveguide

    International Nuclear Information System (INIS)

    Egorov, A.A.; Ajryan, Eh.A.; Sevast'yanov, A.L.; Sevast'yanov, L.A.

    2009-01-01

    As a method of research of an integrated optical multilayer waveguide, satisfying the condition of smooth modification of the shape of the studied three-dimensional structure, an asymptotic method is used. Three-dimensional fields of smoothly deforming modes of the integrated optical waveguide are circumscribed analytically. An evident dependence of the contributions of the first order of smallness in the amplitudes of the electrical and magnetic fields of the quasi-waveguide modes is obtained. The canonical type of the equations circumscribing propagation of quasi-TE and quasi-TM modes in the smoothly irregular part of a four-layer integrated optical waveguide is represented for an asymptotic method. With the help of the method of coupled waves and perturbation theory method, the shifts of complex propagation constants for quasi-TE and quasi-TM modes are obtained in an explicit form. The elaborated theory is applicable for the analysis of similar structures of dielectric, magnetic and metamaterials in a sufficiently broad band of electromagnetic wavelengths

  1. Using structural equation modelling to integrate human resources with internal practices for lean manufacturing implementation

    Directory of Open Access Journals (Sweden)

    Protik Basu

    2018-01-01

    Full Text Available The purpose of this paper is to explore and integrate the role of human resources with the internal practices of the Indian manufacturing industries towards successful implementation of lean manu-facturing (LM. An extensive literature survey is carried out. An attempt is made to build an ex-haustive list of all the input manifests related to human resources and internal practices necessary for LM implementation, coupled with a similar exhaustive list of the benefits accrued from its suc-cessful implementation. A structural model is thus conceptualized, which is empirically validated based on the data from the Indian manufacturing sector. Hardly any survey based empirical study in India has been found to integrate human resources with the internal processes towards success-ful LM implementation. This empirical research is thus carried out in the Indian manufacturing in-dustries. The analysis reveals six key input constructs and three output constructs, indicating that these constructs should act in unison to maximize the benefits of implementing lean. The structural model presented in this paper may be treated as a guide to integrate human resources with internal practices to successfully implement lean, leading to an optimum utilization of resources. This work is one of the very first researches to have a survey-based empirical analysis of the role of human resources and internal practices of the Indian manufacturing sector towards an effective lean im-plementation.

  2. Design of a New Integrated Structure of the Active Suspension System and Emergency Lane Change Test

    Science.gov (United States)

    Zhao, Jing-bo; Liu, Hai-mei; Zhang, Lan-chun; Bei, Shao-yi

    2017-09-01

    An integrated structure of the active suspension system was proposed in order to solve the problem of the individual control of the height of the body or the adjustable damping of the active suspension system of the electric vehicle, which improve the vibration reduction performance of the vehicle. The air bag was used to replace the traditional spiral spring, and the traditional shock absorber was replaced by the damping adjustable shock absorber, and the control module received the body acceleration sensor and the horizontal height sensor signal. The system controlled adjustable damping coefficient of shock absorber through the height of the car body the output of the air pump relay and the height control valve and the output of the electromagnetic valve of the adjustable damping shock absorber, and the emergency lane change test was carried out under different modes of speed of 60km/h. The experimental results indicated that the damping value was greater, average roll angle, yaw angle and average vehicle lateral acceleration were small when vehicle body was in the state of emergency lane change, which verified the feasibility of the integrated control strategy and structure design of the active suspension system. The research has important theoretical research value and engineering application prospect for designing and controlling strategy of vehicle chassis integrated control system.

  3. New faces of porous Prussian blue: interfacial assembly of integrated hetero-structures for sensing applications.

    Science.gov (United States)

    Kong, Biao; Selomulya, Cordelia; Zheng, Gengfeng; Zhao, Dongyuan

    2015-11-21

    Prussian blue (PB), the oldest synthetic coordination compound, is a classic and fascinating transition metal coordination material. Prussian blue is based on a three-dimensional (3-D) cubic polymeric porous network consisting of alternating ferric and ferrous ions, which provides facile assembly as well as precise interaction with active sites at functional interfaces. A fundamental understanding of the assembly mechanism of PB hetero-interfaces is essential to enable the full potential applications of PB crystals, including chemical sensing, catalysis, gas storage, drug delivery and electronic displays. Developing controlled assembly methods towards functionally integrated hetero-interfaces with adjustable sizes and morphology of PB crystals is necessary. A key point in the functional interface and device integration of PB nanocrystals is the fabrication of hetero-interfaces in a well-defined and oriented fashion on given substrates. This review will bring together these key aspects of the hetero-interfaces of PB nanocrystals, ranging from structure and properties, interfacial assembly strategies, to integrated hetero-structures for diverse sensing.

  4. Network access charges, vertical integration, and property rights structure - experiences from the German electricity markets

    International Nuclear Information System (INIS)

    Growitsch, C.; Wein, T.

    2005-01-01

    After the deregulation of the German electricity markets in 1998, the German government opted for a regulatory regime called negotiated third party access, which would be subject to ex-post control by the federal cartel office. Network access charges for new competitors are based on contractual arrangements between energy producers and industrial consumers. As the electricity networks are incontestable natural monopolies, the local and regional network operators are able to set (monopolistic) charges at their own discretion, restricted only by the possible interference of the federal cartel office (Bundeskartellamt). In this paper we analyze if there is evidence for varying charging behaviour depending on the supplier's economic independence (structure of property rights) or its level of vertical integration. For this purpose, we hypothesise that incorporated and vertically integrated suppliers set different charges than independent utility companies. Multivariate estimations show a relation between network access charges and the network operator's economic independence as well as level of vertical integration: on the low voltage level for an estimated annual consumption of 1700 kW/h, vertically integrated firms set-in accordance with our hypothesis-significantly lower access charges than vertically separated suppliers, whereas incorporated network operators charge significantly higher charges compared to independent suppliers. These results could not have been confirmed for other consumptions or voltage levels. (author)

  5. Simulation and Measurement of Neuroelectrodes' Characteristics with Integrated High Aspect Ratio Nano Structures

    Directory of Open Access Journals (Sweden)

    Christoph Nick

    2015-07-01

    Full Text Available Improving the interface between electrodes and neurons has been the focus of research for the last decade. Neuroelectrodes should show small geometrical surface area and low impedance for measuring and high charge injection capacities for stimulation. Increasing the electrochemically active surface area by using nanoporous electrode material or by integrating nanostructures onto planar electrodes is a common approach to improve this interface. In this paper a simulation approach for neuro electrodes' characteristics with integrated high aspect ratio nano structures based on a point-contact-model is presented. The results are compared with experimental findings conducted with real nanostructured microelectrodes. In particular, effects of carbon nanotubes and gold nanowires integrated onto microelectrodes are described. Simulated and measured impedance properties are presented and its effects onto the transfer function between the neural membrane potential and the amplifier output signal are studied based on the point-contact-model. Simulations show, in good agreement with experimental results, that electrode impedances can be dramatically reduced by the integration of high aspect ratio nanostructures such as gold nanowires and carbon nanotubes. This lowers thermal noise and improves the signal-to-noise ratio for measuring electrodes. It also may increase the adhesion of cells to the substrate and thus increase measurable signal amplitudes.

  6. Research and development on materials, structural strength and seismic integrity of FBR components

    International Nuclear Information System (INIS)

    Sumikawa, Masaharu; Kirihara, Seishin; Shigeta, Masayuki; Shimoyashiki, Shigehiro; Nishioka, Akio.

    1982-01-01

    For designing high temperature structures of FBRs, highly reliable design is required on the basis of safety requirement. At the same time, it is necessary to guarantee the soundness of structures over the total design life of plants. Since the high temperature equipments are operated in a creep temperature region and show nonlinear behaviour, nonlinear structural analysis is required. Hitachi Ltd., based on the concept of verifying the latest technology to reflect it to the design along with its adoption, has progressed various research and development by organizing a project team collecting specialists in the company, independently developing and modifying the nonlinear structural analysis and evaluation program, and establishing the organization through the introduction of a general purpose large scale computer. The research and development for materials include the development of the strength standards for high temperature structural materials and the improvement of the high temperature characteristics of JIS stainless steel SUS 321. In the R and D for high temperature strength, the test on the deforming behaviour of plates due to bending creep, the thermal shock test for steam generator tube plates and others were performed. In the R and D for seismic integrity, the vibration test of piping support structure and the development of detailed seismic property evaluation program are mentioned. (Wakatsuki, Y.)

  7. Improved method to demonstrate the structural integrity of high density fuel storage racks

    International Nuclear Information System (INIS)

    Hinderks, M.; Ungoreit, H.; Kremer, G.

    2001-01-01

    Reracking of existing fuel pools to the maximum extent is desirable from an economical point of view. This goal can be achieved by minimizing the gaps between the spent fuel storage racks. Since the rack design is aimed at enabling consolidated fuel rod storage, additional requirements arise with respect to the design and the structural analysis. The loads resulting from seismic events are decisive for the structural analysis and require a specially detailed and in-depth analysis for high seismic loads. The verification of structural integrity and functionality is performed in two phases. In the first phase the motional behavior of single racks, rows of racks and, where required, of all racks in the pool is simulated by excitation with displacement time histories under consideration of the fluid-structure interaction (FSI). The displacements from these simulations are evaluated, while the loads are utilized as input data for the structural analysis of the racks and the pool floor. The structural analyses for the racks comprise substantially stress analyses for base material and welds as well as stability analyses for the support channels and the rack outside walls. The analyses are performed in accordance with the specified codes and standards

  8. Soil Structure Interaction for Integral Abutment Bridge Using Spring Analogy Approach

    International Nuclear Information System (INIS)

    Thanoon, W A; Abdulrazeg, A A; Jaafar, M S; Kohnehpooshi, O; Noorzaei, J

    2011-01-01

    The reaction of the backfill behind the abutments and adjacent to the piles plays a significant role in the behavior of the Integral bridge. The handling of soil-structure interaction in the analysis and design of integral abutment bridges has always been problematic due to its complexity. This study describes the implementation of a 2-D finite element model of IAB system which explicitly incorporates the soil response. The superstructure members and the pile have been represented by means of three-node isoperimetric beam elements with three degree of freedom per node. The Eight node isoperimetric quadrilateral element has been used to model the abutment. The backfill was idealized by uncoupled 'Winkler' spring. The applic1ability of this model is demonstrated by analyzing a single span IA bridge. The results have shown that the shear forces at the tops of the supported piles were only 12% to 16% of the load which at the top of abutment.

  9. Soil Structure Interaction for Integral Abutment Bridge Using Spring Analogy Approach

    Energy Technology Data Exchange (ETDEWEB)

    Thanoon, W A [Faculty Engineering, Nizwa University (Oman); Abdulrazeg, A A; Jaafar, M S; Kohnehpooshi, O [Department of Civil Engineering, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Noorzaei, J, E-mail: jamal@eng.upm.edu.my [Institute of Advance Technology, University Putra Malaysia, 43400 Serdang, Selangor (Malaysia)

    2011-02-15

    The reaction of the backfill behind the abutments and adjacent to the piles plays a significant role in the behavior of the Integral bridge. The handling of soil-structure interaction in the analysis and design of integral abutment bridges has always been problematic due to its complexity. This study describes the implementation of a 2-D finite element model of IAB system which explicitly incorporates the soil response. The superstructure members and the pile have been represented by means of three-node isoperimetric beam elements with three degree of freedom per node. The Eight node isoperimetric quadrilateral element has been used to model the abutment. The backfill was idealized by uncoupled 'Winkler' spring. The applic1ability of this model is demonstrated by analyzing a single span IA bridge. The results have shown that the shear forces at the tops of the supported piles were only 12% to 16% of the load which at the top of abutment.

  10. Effect of biocompatible polymers on the structural integrity of lipid bilayers under external stimuli

    Science.gov (United States)

    Wang, Jia-Yu; Kausik, Ravinath; Chen, Chi-Yuan; Han, Song-I.; Marks, Jeremy; Lee, Ka Yee

    2010-03-01

    Cell membrane dysfunction due to loss of structural integrity is the pathology of tissue death in trauma and common diseases. It is now established that certain biocompatible polymers, such as Poloxamer 188, Poloxamine 1107 and polyethylene glycol (PEG), are effective in sealing of injured cell membranes, and able to prevent acute necrosis. Despite these broad applications of these polymers for human health, the fundamental mechanisms by which these polymers interact with cell membranes are still under debate. Here, the effects of a group of biocompatible polymers on phospholipid membrane integrity under osmotic and oxidative stress were explored using giant unilamellar vesicles as model cell membranes. Our results suggest that the adsorption of the polymers on the membrane surface is responsible for the cell membrane resealing process due to its capability of slowing down the surface hydration dynamics.

  11. Development of probabilistic evaluation methodology for structural integrity of nuclear components

    International Nuclear Information System (INIS)

    Lee, Gang Yong; Yang, Jee Hyeok; Shin, Jeong Woo; Hong, Soon Won; Lee, Won Gyu; Kim, Goo Yeong

    1999-03-01

    Since integrity is very important in Nuclear Power Plants, there have been a lot of researches and several rules are provided. But these are mostly based on the concept of the deterministic fracture mechanics and in many cases, those rules are unrealistic or conservative. Therefore, the concept of the probabilistic fracture mechanics considering the realistic failure of the structure and the quantitative failure probability is introduced in many fields. There have been many researches on the probabilistic fracture mechanics in world, but a few in Korea. The final object of our research os to develop the code years. In the first year study, we obtained the concept of the probabilistic fracture mechanics by reviewing the papers about the integrity evaluation of the nuclear pressure vessel on the base of the probabilistic fracture mechanics and selected the important random variables by comparing the effects of random variables on the failure probability using the existing code

  12. INTEGRATION OF THE SYSTEM OF TAX MANAGEMENT IN THE ORGANIZATIONAL STRUCTURE OF INDUSTRIAL ENTERPRISES (ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    L. A. Tchaikovskaya

    2010-01-01

    Full Text Available The article describes the basic elements, principles, procedures and methods of tax management, which must be integrated into the organizational structure of enterprises. Consideration of ways to optimize the taxation proposed in the context with the ability to self-identify tax risk businessesand evaluation of different directions simulations, to avoid such risks. Discusses how to optimize tax obligations in recognition of the rights of each enterprise to use all legal means, techniques and methods (including gaps in the legislation in order to minimize their tax liabilities. Management methods used by the tax impact on taxation will be used to harmonize the interests of the state and the taxpayer as an integral part of financial management company.

  13. Structural integrity test of prestressed concrete containment vessel for Tsuruga Unit No. 2 Nuclear Power Station

    International Nuclear Information System (INIS)

    Tamura, S.; Nagata, K.; Takeda, T.; Yamaguchi, T.; Nakayama, T.

    1987-01-01

    In introducing the PCCV to Japan, various verification tests were carried out to understand the structural performance of the PCCV and confirm the reliability of its design. In addition to those tests, a Structural Integrity Test (SIT) was conducted in Feb. 1986 as a final acceptance test. This report discusses the results of the SIT on the PCCV. The test was carried out simultaneously with an Integrated Leak Rate Test (ILRT) under the same pressure sequence. 1) Pressure-displacement relationships and pressure-strain relationships were more or less linear. 2) The measured displacement values at the maximum pressure (4.5 kgf/cm 2 G) corresponded well with calculated values. Correspondence with converted displacement obtained from strain and measured displacement was also good. 3) The residual displacement when 24 hours had elapsed after completion of depressurization was not more than 10% of the displacement at the maximum pressure. 4) The variation in tendon force at the maximum pressure is smaller than the calculated value in proportion to the elongation of the PCCV. 5) Although fine surface cracks due to shrinkage of concrete were seen, new structural cracks due to pressure were not observed. The leakage rate was evaluated at 0.016% of volume per day. It is much smaller than the design value of 0.1% of volume per day. (orig./HP)

  14. Integrated experimental test program on waterhammer pressure pulses and associated structural responses within a feedwater sparger

    International Nuclear Information System (INIS)

    Nurkkala, P.; Hoikkanen, J.

    1997-01-01

    This paper describes the methods and systems as utilized in an integrated experimental thermohydraulic/mechanics analysis test program on waterhammer pressure pulses within a revised feedwater sparger of a Loviisa generation VVER-440-type reactor. This program was carried out in two stages: (1) measurements with a strictly limited set of operating parameters at Loviisa NPP, and (2) measurements with the full set of operating parameters on a test article simulating the revised feedwater sparger. The experiments at Loviisa NPS served as an invaluable source of information on the nature of waterhammer pressure pulses and structural responses. These tests thus helped to set the objectives and formulate the concept for series of tests on a test article to study the water hammer phenomena. The heavily instrumented full size test article of a steam generator feedwater sparger was placed within a pressure vessel simulating the steam generator. The feedwater sparger was subjected to the full range of operating parameters which were to result in waterhammer pressure pulse trains of various magnitudes and duration. Two different designs of revised feedwater sparger were investigated (i.e. 'grounded' and 'with goose neck'). The following objects were to be met within this program: (1) establish the thermohydraulic parameters that facilitate the occurrence of water hammer pressure pulses, (2) provide a database for further analysis of the pressure pulse phenomena, (3) establish location and severity of these water hammer pressure pulses, (4) establish the structural response due to these pressure pulses, (5) provide input data for structural integrity analysis. (orig.)

  15. An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    International Nuclear Information System (INIS)

    Pfiffner, Susan M.; Brandt, Craig C.; Kostka, Joel E.; Palumbo, Anthony V.

    2005-01-01

    Our current research represents a joint effort between Oak Ridge National Laboratory (ORNL), Florida State University (FSU), and the University of Tennessee. ORNL will serve as the lead institution with Dr. A.V. Palumbo responsible for project coordination, integration, and deliverables. This project was initiated in November, 2004, in the Integrative Studies Element of the NABIR program. The overall goal of our project is to provide an improved understanding of the relationships between microbial community structure, geochemistry, and metal reduction rates. The research seeks to address the following questions: Is the metabolic diversity of the in situ microbial community sufficiently large and redundant that bioimmobilization of uranium will occur regardless of the type of electron donor added to the system? Are their donor specific effects that lead to enrichment of specific community members that then impose limits on the functional capabilities of the system? Will addition of humics change rates of uranium reduction without changing community structure? Can resource-ratio theory be used to understand changes in uranium reduction rates and community structure with respect to changing C:P ratios?

  16. A new model for the structure function of integrated water vapor in turbulence

    International Nuclear Information System (INIS)

    Bobak, Justin P.; Ruf, Christopher S.

    1999-01-01

    Turbulent fluctuation of integrated water vapor in the troposphere is one of the major noise sources in radio interferometry. Processed integrated water vapor estimates from microwave radiometers colocated with interferometers have been used to set bounds on this uncertainty. The bound has been in the form of a calculated structure function, which is a measure of temporal or spatial decorrelation of fluctuations. In this paper a new model is presented for the estimation of the structure function in the absence of radiometer measurements. Using this model, the structure function can be estimated using measurements or estimates of a limited number of meteorological parameters. These parameters include boundary layer depth, surface heat and humidity fluxes, entrainment humidity flux, average virtual potential temperature in the boundary layer, and geostrophic wind speed. These parameters can be found or estimated from radiosonde and surface eddy correlation system data. The model is based on a framework of turbulence meteorology and provides excellent agreement when compared with state-of-the-art atmospheric turbulence simulations. Results of preliminary comparisons with ground truth show some excellent agreement, as well as some problems. The performance of the new model exceeds that of one current model. (c) 1999 American Geophysical Union

  17. STYLE - A European project on structural integrity: Progress of the work after 2 Years

    International Nuclear Information System (INIS)

    Heussner, Stefan; Nicak, Tomas; Keim, Elisabeth

    2012-01-01

    The purpose of this paper is to present the progress of the work on the EURATOM project STYLE (Structural integrity for lifetime management - non-RPV components). The project focuses on the structural integrity assessment of reactor coolant pressure boundary components (RCPB) relevant to ageing and life time management. The 4-years project started in January 2010 and is now in its third year. Within STYLE realistic failure models for some of the key components will be identified. The range of assessment tools considered will include those for assessment of component failure by advanced fracture mechanics analyses validated on small and large scale experiments, quantification of weld residual stresses by numerical analysis and by measurements, stress corrosion crack initiation and growth effects and assessment of RCPB components (excluding the reactor pressure vessel) under dynamic and seismic loading. Based on theoretical and experimental results, performance assessment and further development of simplified engineering assessment methods (EAM) will be carried out considering both deterministic and probabilistic approaches. Integrity assessment case studies and large scale demonstration experiments will be performed on Mock-ups of safety relevant components. These will include a repair weld in an aged butt-welded austenitic pipe, a dissimilar narrow gap TIG weld (following the EPR design) and a cladded ferritic pipe. Moreover, experiments on specimens and feature test pieces will be carried out to support the large scale Mock-up analyses. The end product of the project ('STYLE TOOLS') will comprise best practice guidelines on the use of advanced tools, on improvement and qualification of EAM as a part of European Leak-before-break (LBB) procedures and on life time management of the integrity of RCPB components in European nuclear power plants. The project is interacting with the European Network of Excellence NUGENIA (former NULIFE). (author)

  18. Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis.

    Science.gov (United States)

    Douaud, Gwenaëlle; Filippini, Nicola; Knight, Steven; Talbot, Kevin; Turner, Martin R

    2011-12-01

    Amyotrophic lateral sclerosis as a system failure is a concept supported by the finding of consistent extramotor as well as motor cerebral pathology. The functional correlates of the structural changes detected using advanced magnetic resonance imaging techniques such as diffusion tensor imaging and voxel-based morphometry have not been extensively studied. A group of 25 patients with amyotrophic lateral sclerosis was compared to healthy control subjects using a multi-modal neuroimaging approach comprising T(1)-weighted, diffusion-weighted and resting-state functional magnetic resonance imaging. Using probabilistic tractography, a grey matter connection network was defined based upon the prominent corticospinal tract and corpus callosum involvement demonstrated by white matter tract-based spatial statistics. This 'amyotrophic lateral sclerosis-specific' network included motor, premotor and supplementary motor cortices, pars opercularis and motor-related thalamic nuclei. A novel analysis protocol, using this disease-specific grey matter network as an input for a dual-regression analysis, was then used to assess changes in functional connectivity directly associated with this network. A spatial pattern of increased functional connectivity spanning sensorimotor, premotor, prefrontal and thalamic regions was found. A composite of structural and functional magnetic resonance imaging measures also allowed the qualitative discrimination of patients from controls. An integrated structural and functional connectivity approach therefore identified apparently dichotomous processes characterizing the amyotrophic lateral sclerosis cerebral network failure, in which there was increased functional connectivity within regions of decreased structural connectivity. Patients with slower rates of disease progression showed connectivity measures with values closer to healthy controls, raising the possibility that functional connectivity increases might not simply represent a

  19. Ontology based integration of heterogeneous structures in the energy industry; Ontologiebasierte Integration heterogener Standards in der Energiewirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Uslar, Mathias

    2010-07-01

    Today, utilities face a constant change to their business which is mainly driven by two factors. On the one hand, resources like oil and charcoal which deliver most of the energy for producing electricity become more and more scarce and, therefore, more expensive. This forces utilities to look for alternatives to those resources in order to avoid the price pressure. New renewable energy resources like wind turbines, photovoltaic, bio mass or geothermals become more and more popular. On the other hand, the regulation done by the European Commission has a strong impact on the utilities because of the liberalization of the energy markets. The market was opened by the so called unbundling which is, in fact, the separation of the distribution grid from the capability of producing energy which was common before leading to the fact, that the producers of energy also were the only ones which could sell and distribute the energy which lead to monopolistic structures on the market. Nowadays, we have a market where the customers can choose between the offers from different utilities. Those changes to the utility domain have a direct impact on the IT-landscape of the utility who has to deal with new processes which have to be supported by changes like new systems or services and new interfaces between the existing systems in order to support the new requirements. In general, the utility has to deal with standards and norms for the domain in this described setting in order to exchange data with other market participants or in order to integrate their own systems in an appropriate manner. In the electric utility domain, the Common Information Model CIM has spread for the scope of SCADA (supervisory Control and Data Acquisition) and market communications. It is standardized by the IEC (International Electrotechnical Commission) as the IEC 61970 family of standards. The second important family is the IEC 61850 family which deals with communication networks and systems in

  20. Gigascale Silicon Photonic Transmitters Integrating HBT-based Carrier-injection Electroabsorption Modulator Structures

    Science.gov (United States)

    Fu, Enjin

    Demand for more bandwidth is rapidly increasing, which is driven by data intensive applications such as high-definition (HD) video streaming, cloud storage, and terascale computing applications. Next-generation high-performance computing systems require power efficient chip-to-chip and intra-chip interconnect yielding densities on the order of 1Tbps/cm2. The performance requirements of such system are the driving force behind the development of silicon integrated optical interconnect, providing a cost-effective solution for fully integrated optical interconnect systems on a single substrate. Compared to conventional electrical interconnect, optical interconnects have several advantages, including frequency independent insertion loss resulting in ultra wide bandwidth and link latency reduction. For high-speed optical transmitter modules, the optical modulator is a key component of the optical I/O channel. This thesis presents a silicon integrated optical transmitter module design based on a novel silicon HBT-based carrier injection electroabsorption modulator (EAM), which has the merits of wide optical bandwidth, high speed, low power, low drive voltage, small footprint, and high modulation efficiency. The structure, mechanism, and fabrication of the modulator structure will be discussed which is followed by the electrical modeling of the post-processed modulator device. The design and realization of a 10Gbps monolithic optical transmitter module integrating the driver circuit architecture and the HBT-based EAM device in a 130nm BiCMOS process is discussed. For high power efficiency, a 6Gbps ultra-low power driver IC implemented in a 130nm BiCMOS process is presented. The driver IC incorporates an integrated 27-1 pseudo-random bit sequence (PRBS) generator for reliable high-speed testing, and a driver circuit featuring digitally-tuned pre-emphasis signal strength. With outstanding drive capability, the driver module can be applied to a wide range of carrier

  1. Methodology of structural integrity assesment of CANDU-6 NPP fuel channels

    International Nuclear Information System (INIS)

    Radu, Vasile

    2004-01-01

    The paper describes the methodology of assessing the structural integrity in the CANDU-6 fuel channels making use of alternative methods of evaluation. An evaluation of the structural integrity of a CANDU-6 pressure tube made of Zr-2,5%Nb presenting both sharp and blunted defects is done. These analyses are made in compliance with the Canadian guide 'Pressure Tubes Fitness-for-service', and other two Recognizing procedures internationally adopted: the British procedure R6/Rev.4 and the American procedure API 579. Previously, the data base containing the data on materials property as well as the heat and dynamical loads in normal operation in CANDU-6 pressure tubes was established. Obtaining complete diagrams for structural integrity of pressure tubes with sharp and blunted defects in conditions of normal operation and long-term irradiation is the next step of the methodology to be developed. Modelling sharp and blunted defects on the inner side of pressure tubes, which can occur in normal reactor operating conditions is achieved by means of capabilities of pre-processing of two finite element analysis codes namely FEA-Crack and FEA-Flaw. The second part of the work deals with the analyses by finite element method of the fracture mechanics by means of the FEA-Crack code and with the evaluation of sharp and blunted defects by FAD diagrams in compliance with the British procedure R6/Rev.4. For typical models of blunted defects and thermo-mechanical loads specific to normal operation finite element analyses by FEA-Flaw codes were performed. Then FAD-iDHC diagrams were constructed to evaluate the initiation of the slow cracking under hydrogen/deuterium absorption, the known phenomenon of delayed hydride cracking (DHC)

  2. Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.

    Science.gov (United States)

    de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J

    2017-01-01

    In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2  = 0.070) and p = 0.001 (β = - 0.264, η p 2  = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.

  3. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  4. Determination of ASTM 1016 structural welded joints fracture toughness through J integral

    International Nuclear Information System (INIS)

    Martins, Geraldo de Paula; Villela, Jefferson Jose; Terra, Jose Lucio; Rabello, Emerson Giovani; Martins, Geraldo Antonio Scoralick; Carneiro, Jose Rubens Goncalves

    2009-01-01

    Fracture toughness is an important parameter for studies of materials behavior in nuclear and conventional industry. Crack propagation resistance is, in general, evaluate using one of the fracture mechanics parameters K IC , for the case of the materials that exhibits a linear elastic behavior, the CTOD (crack tip opening displacement) and J IC , the critical value of J Integral, for the case of materials with elastic-plastic behavior. On this work the fracture mechanics parameters of the ASTM 1016 structural steel welded joints were obtained, using the J Integral. Charpy V tests at several temperatures were also obtained, with the purpose to obtain the curves of ductile-brittle of the regions of the welded joints: Base Metal, (MB), and Melted Zone (MZ). The joints were welded by Gas Metal Arc Welding (GMAW) with V bevel for evaluation the MZ toughness properties. The tests were accomplished at temperatures varying from -100 deg C to 100 deg C using the technical of compliance variation for J IC determination, the critical value that defines the initial stable crack growth, that applies to brittle and ductile materials. The J Integral alternative specimens has square cross section 10mmX10mm, according ASTM E 1820, with notch localized respectively at the BM and MZ. After the tests, the specimens fractured were analyzed in a scanning microscopic electronic (SME) for verification of the fracture surface. The fractography of the specimens at elevated temperatures presented dimples at the region of stable crack growth, characteristic of ductile fracture. The results of J Integral and Charpy V presented a good correlation between these two parameters. From these correlations it can be concluded that in some applications, the use Charpy V energy to infer fracture toughness can be substitute the Integral J tests. (author)

  5. The Influence of Transverse CSR Structure on Headquarters/Subsidiary Integration

    Directory of Open Access Journals (Sweden)

    Luciano Barin Cruz

    2010-07-01

    Full Text Available Some studies have already highlighted the effects of the introduction of Corporate Social Responsibility [CSR] projects into Multinational Corporations’ [MNC] strategies. However, little attention has been paid to the influence of transverse CSR structure on headquarters/subsidiary integration. In this article, we begin with the following question: What is the influence of the introduction of a centralized/decentralized structure on conducting a CSR strategy in a MNC? Our main objective is to identify conditions through which the structure of the CSR department influences the CSR strategy of the MNC. We define transverse CSR structure as: (1 the existence of a CSR directory at the headquarters level and a CSR representative at the subsidiary level, and (2 the existence of representatives from different areas who participate in meetings or committees to make decisions about CSR strategy. We argue that a transverse CSR structure favors consideration of global and local CSR demands by headquarters and subsidiaries. This process takes place through the mediation of three main elements: information exchange, awareness activities and definition of objectives.

  6. The RCSB protein data bank: integrative view of protein, gene and 3D structural information.

    Science.gov (United States)

    Rose, Peter W; Prlić, Andreas; Altunkaya, Ali; Bi, Chunxiao; Bradley, Anthony R; Christie, Cole H; Costanzo, Luigi Di; Duarte, Jose M; Dutta, Shuchismita; Feng, Zukang; Green, Rachel Kramer; Goodsell, David S; Hudson, Brian; Kalro, Tara; Lowe, Robert; Peisach, Ezra; Randle, Christopher; Rose, Alexander S; Shao, Chenghua; Tao, Yi-Ping; Valasatava, Yana; Voigt, Maria; Westbrook, John D; Woo, Jesse; Yang, Huangwang; Young, Jasmine Y; Zardecki, Christine; Berman, Helen M; Burley, Stephen K

    2017-01-04

    The Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB, http://rcsb.org), the US data center for the global PDB archive, makes PDB data freely available to all users, from structural biologists to computational biologists and beyond. New tools and resources have been added to the RCSB PDB web portal in support of a 'Structural View of Biology.' Recent developments have improved the User experience, including the high-speed NGL Viewer that provides 3D molecular visualization in any web browser, improved support for data file download and enhanced organization of website pages for query, reporting and individual structure exploration. Structure validation information is now visible for all archival entries. PDB data have been integrated with external biological resources, including chromosomal position within the human genome; protein modifications; and metabolic pathways. PDB-101 educational materials have been reorganized into a searchable website and expanded to include new features such as the Geis Digital Archive. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. An integrative in silico approach to the structure of Omp33-36 in Acinetobacter baumannii.

    Science.gov (United States)

    Jahangiri, Abolfazl; Rasooli, Iraj; Owlia, Parviz; Fooladi, Abbas Ali Imani; Salimian, Jafar

    2018-02-01

    Omp33-36 in A. baumannii, a bacterium causing serious nosocomial infections, is a virulence factor associated with the pathogen metabolic fitness as well as its adherence and invasion to human epithelial cells. This protein is also involved in interaction of the bacteria with host cells by binding to fibronectin. Moreover, Omp33-36 renders cytotoxicity to A. baumannii in addition to inducing apoptosis and modulation of autophagy. In the present study, an integrated strategy is launched to pierce into the 3D structure of Omp33-36 protein. The signal peptide within the sequence was determined, then, topology as well as secondary and tertiary structures of the protein were predicted. The mature protein assigned as a 14-stranded barrel in which residues 1-19 is removed as signal peptide. The obtained 3D models were evaluated in terms of quality; and then, served as queries to find similar protein structures. The hits were analyzed regarding topology among which 14-stranded were considered. The most qualified model was refined and then its sequence aligned to its counterpart similar structure protein (CymA from Klebsiella oxytoca). The determined structure of Omp33-36 could justify its porin function and carbapenem-resistance associated with the loss of this protein. Copyright © 2018. Published by Elsevier Ltd.

  8. Characterization of Ti6Al4V for integral transition structures in FRP-aluminum compounds

    Energy Technology Data Exchange (ETDEWEB)

    Schimanski, Kai; Schumacher, Jens; Von Hehl, Axel; Zoch, Hans-Werner [Stiftung Institut fuer Werkstofftechnik, Bremen (Germany); Wottschel, Vitalij; Vollertsen, Frank [Bremer Institut fuer Angewandte Strahltechnik, Bremen (Germany)

    2012-08-15

    Components in hybrid design become more and more important in terms of their lightweight potential. In this context, the demand for weight saving in aerospace industry leads to increase numbers of applications of fiber reinforced composites for primary structural components. In consequence, the use of FRP-metal compounds is necessary. In the context of the investigations of the researcher group named ''Black-Silver'' (''Schwarz Silber'', FOR 1224) founded by the DFG (German Research Foundation) material optimized interface structures for advanced carbon fiber reinforced plastic (CFRP)-aluminum compounds are currently being studied. Within their work the researcher group focussed on three concepts realizing the transition structures: the usage of wires (titanium), foils (titanium), and fibers (glass fiber) as transition elements between CFRP and aluminum. For the connection of the aluminum sheet and the transition element die-casting and laser beam welding are basically used. The paper concentrates on the characterization of suitable materials for transition structures. Due to their high strength and low density (in comparison to steel) and the resulting potential in view on light-weight design Ti-alloys were investigated. Because of the increased availability of Ti-wires compared to Ti-foils in suitable thickness the former were used for the basic investigations on Ti-alloys which are suitable for integral transition structures. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. A study of non destructive integrity assessment method for structural materials of nuclear reactor. Part 2

    International Nuclear Information System (INIS)

    Totsuka, Nobuo; Matsuzaki, Akihiro

    2011-01-01

    The hardness measurement is one of the most effective way for non destructive integrity assessment evaluating structural materials of nuclear power plants before and after suffering an earthquake. Then an actual evaluation method and effectiveness of the method using portable hardness tester has been reported in the previous Journal. In this study, the developing method which can evaluate more accurately the amount of plastic deformation of the material caused by an earthquake has been reported, based on the experimental results about the hardness change of the material considering the thermal aging due to the plant operation and the cyclic deformation suffered by an earthquake. (author)

  10. Hamiltonian structures and integrability for a discrete coupled KdV-type equation hierarchy

    International Nuclear Information System (INIS)

    Zhao Haiqiong; Zhu Zuonong; Zhang Jingli

    2011-01-01

    Coupled Korteweg-de Vries (KdV) systems have many important physical applications. By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy. Our hierarchy includes the coupled Volterra system proposed by Lou et al. (e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation. We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. (authors)

  11. Ultrasonic Structural Health Monitoring to Assess the Integrity of Spinal Growing Rods In Vitro.

    Science.gov (United States)

    Oetgen, Matthew E; Goodley, Addison; Yoo, Byungseok; Pines, Darryll J; Hsieh, Adam H

    2016-01-01

    Rod fracture is a common complication of growing rods and can result in loss of correction, patient discomfort, and unplanned revision surgery. The ability to quantitate rod integrity at each lengthening would be advantageous to avoid this complication. We investigate the feasibility of applying structural health monitoring to evaluate the integrity of growing rods in vitro. Single-rod titanium 4.5-mm growing rod constructs (n = 9), one screw proximally and one distally connected by in-line connectors, were assembled with pedicle screws fixed in polyethylene blocks. Proximal and distal ends were loaded and constructs subjected to cyclic axial compression (0-100 N at 1 Hz), with incrementally increasing maximum compressive loads of 10 N every 9k cycles until failure. Four piezoceramic transducers (PZTs) were mounted along the length the constructs to interrogate the integrity of the rods with an ultrasonic, guided lamb wave approach. Every 9k cycles, an 80 V excitatory voltage was applied to a PZT to generate high-frequency vibrations, which, after propagating through the construct, was detected by the remaining PZTs. Amplitude differences between pre- and postload waveform signals were calculated until rod failure. Average construct lifetime was 88,991 ± 13,398 cycles. All constructs failed due to rod fracture within 21 mm (mean = 15 ± 4.5 mm) of a screw or connector. Amplitude differences between pre- and postload increased in a stepwise fashion as constructs were cycled. Compared to baseline, we found a 1.8 ± 0.6-fold increase in amplitude 18k cycles before failure, a 2.2 ± 1.0-fold increase in amplitude 9k cycles before failure, and a 2.75 ± 1.5-fold increase in amplitude immediately before rod fracture. We describe a potential method for assessing the structural integrity of growing rods using ultrasonic structural health monitoring. These preliminary data demonstrate the ability of periodic rod assessment to detect structural changes in cycled growing

  12. European R and D co-ordinate programme on structural integrity of fast breeder reactors

    International Nuclear Information System (INIS)

    Hoffmann, A.; Combescure, A.; Acker, D.; Corsi, F.; Martelli, A.; Vinzens, K.; Angerbauer, A.

    1989-01-01

    After a period of development of medium size prototype plants, PFR in United Kingdom, Phenix in France and SNR 300 in West Germany, and the build up of the large size prototype plant Super Phenix in France by the European Consortium, NERSA, Belgium, France, Italy, United Kingdom and West Germany decided to join their efforts in order to pursue the development of LMFBR nuclear power plants. This paper presents the European Research and Development coordinated program in the field of structural integrity of fast breeder reactors with its organization, its objectives, its programs and the resources allocated for development. (author)

  13. Recent developments in transient magneto-structural integrated analysis for fusion applications

    International Nuclear Information System (INIS)

    Crutzen, Y.; Papadopoulos, S.; Richard, N.; Siakavellas, N.; Wu, J.

    1992-01-01

    In this paper three different numerical approaches modelling the mutual field-structure interactions during transient electromagnetic events are presented. The application of these approaches to simple plate models, simulating flexible conducting components of fusion devices, show that a magnetic damping is encountered when coupling effects between eddy currents and plate motion are taken into account. This damping increases with the applied magnetic field, modifying the mechanical behavior. An Integrated Design/Analysis System is also proposed, in order to combine different computer codes, obtaining performing computational schemes, in the field of 3D electromagneto-mechanical analyses

  14. New Structure for a Six-Port Reflectometer in Monolithic Microwave Integrated-Circuit Technology

    OpenAIRE

    Wiedmann , Frank; Huyart , Bernard; Bergeault , Eric; Jallet , Louis

    1997-01-01

    International audience; This paper presents a new structure for a six-port reflectometer which due to its simplicity can be implemented very easily in monolithic microwave integrated-circuit (MMIC) technology. It uses nonmatched diode detectors with a high input impedance which are placed around a phase shifter in conjunction with a power divider for the reference detector. The circuit has been fabricated using the F20 GaAs process of the GEC–Marconi foundry and operates between 1.3 GHz and 3...

  15. Assessment of Material Solutions of Multi-level Garage Structure Within Integrated Life Cycle Design Process

    Science.gov (United States)

    Wałach, Daniel; Sagan, Joanna; Gicala, Magdalena

    2017-10-01

    The paper presents an environmental and economic analysis of the material solutions of multi-level garage. The construction project approach considered reinforced concrete structure under conditions of use of ordinary concrete and high-performance concrete (HPC). Using of HPC allowed to significant reduction of reinforcement steel, mainly in compression elements (columns) in the construction of the object. The analysis includes elements of the methodology of integrated lice cycle design (ILCD). By making multi-criteria analysis based on established weight of the economic and environmental parameters, three solutions have been evaluated and compared within phase of material production (information modules A1-A3).

  16. RNA is an integral component of chromatin that contributes to its structural organization.

    Directory of Open Access Journals (Sweden)

    Antonio Rodríguez-Campos

    Full Text Available Chromatin structure is influenced by multiples factors, such as pH, temperature, nature and concentration of counterions, post-translational modifications of histones and binding of structural non-histone proteins. RNA is also known to contribute to the regulation of chromatin structure as chromatin-induced gene silencing was shown to depend on the RNAi machinery in S. pombe, plants and Drosophila. Moreover, both in Drosophila and mammals, dosage compensation requires the contribution of specific non-coding RNAs. However, whether RNA itself plays a direct structural role in chromatin is not known. Here, we report results that indicate a general structural role for RNA in eukaryotic chromatin. RNA is found associated to purified chromatin prepared from chicken liver, or cultured Drosophila S2 cells, and treatment with RNase A alters the structural properties of chromatin. Our results indicate that chromatin-associated RNAs, which account for 2%-5% of total chromatin-associated nucleic acids, are polyA(- and show a size similar to that of the DNA contained in the corresponding chromatin fragments. Chromatin-associated RNA(s are not likely to correspond to nascent transcripts as they are also found bound to chromatin when cells are treated with alpha-amanitin. After treatment with RNase A, chromatin fragments of molecular weight >3.000 bp of DNA showed reduced sedimentation through sucrose gradients and increased sensitivity to micrococcal nuclease digestion. This structural transition, which is observed both at euchromatic and heterochromatic regions, proceeds without loss of histone H1 or any significant change in core-histone composition and integrity.

  17. Rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC)

    Science.gov (United States)

    Li, Xiuling; Huang, Wen

    2015-04-28

    A rolled-up transmission line structure for a radiofrequency integrated circuit (RFIC) comprises a multilayer sheet in a rolled configuration comprising multiple turns about a longitudinal axis, where the multilayer sheet comprises a conductive pattern layer on a strain-relieved layer. The conductive pattern layer comprises a first conductive film and a second conductive film separated from the first conductive film in a rolling direction. In the rolled configuration, the first conductive film surrounds the longitudinal axis, and the second conductive film surrounds the first conductive film. The first conductive film serves as a signal line and the second conductive film serves as a conductive shield for the rolled-up transmission line structure.

  18. Structural Integration of Sensors/Actuators by Laser Beam Melting for Tailored Smart Components

    Science.gov (United States)

    Töppel, Thomas; Lausch, Holger; Brand, Michael; Hensel, Eric; Arnold, Michael; Rotsch, Christian

    2018-03-01

    Laser beam melting (LBM), an additive laser powder bed fusion technology, enables the structural integration of temperature-sensitive sensors and actuators in complex monolithic metallic structures. The objective is to embed a functional component inside a metal part without losing its functionality by overheating. The first part of this paper addresses the development of a new process chain for bonded embedding of temperature-sensitive sensor/actuator systems by LBM. These systems are modularly built and coated by a multi-material/multi-layer thermal protection system of ceramic and metallic compounds. The characteristic of low global heat input in LBM is utilized for the functional embedding. In the second part, the specific functional design and optimization for tailored smart components with embedded functionalities are addressed. Numerical and experimental validated results are demonstrated on a smart femoral hip stem.

  19. Development of stress corrosion techniques for structural integrity evaluation and life extension of PWR facilities

    International Nuclear Information System (INIS)

    Moreira, Pedro A.L.D.L. Pinheiro; Vilela, Jeferson J.; Lorenzo, Roberto F. Di; Lopes, Jadir A.M.

    2000-01-01

    The stress corrosion is a mechanism of degradation present in the nuclear plants. To extend the life of the plants components, this corrosion type it should be known. An evaluation for the implantation of methodologies of stress corrosion study in CDTN/CNEN, shows that the technique of slow deformation can be used in the evaluation of integrity structural nuclear power stations. This technique consists of straining a sample slowly, usually, in strain rate between 10 -4 and 10- 8 s -1 and in conditions that simulate the reactivity of the metal in environment (pressure, temperature, chemical composition of the water and etc) similar to the found at the nuclear power power stations. This simulation allows evaluating susceptibility the stress corrosion of components mechanical and structure that operate in central nuclear. (author)

  20. Recommendations for the application of fracture toughness data for structural integrity assessments

    International Nuclear Information System (INIS)

    Wallin, K.

    1993-01-01

    Large scale testing for the purpose of fracture mechanics verification is essentially directed towards the validation of the transferability of material data obtained with small specimens. Unfortunately the results are sometimes controversial, insinuating that the transferability is imprecise at the very least. However, it seems that in many cases the controversy is due to an improper application of the small specimen data. Present testing standards do not give any recommendations for the correct application of fracture toughness data and yet this is a crucial point for successful structural integrity assessment and fracture mechanics verification. In this presentation the topic concerning recommendations is addressed, focusing on the application of brittle (cleavage type) fracture data. Simple guidelines for obtaining optimum open-quotes best-close quotes and open-quotes safe-close quotes estimates of the behavior of the actual structure based on small specimen data are presented. 51 refs., 16 figs., 1 tab

  1. Structural integrity assessment based on the HFR Petten neutron beam facilities

    CERN Document Server

    Ohms, C; Idsert, P V D

    2002-01-01

    Neutrons are becoming recognized as a valuable tool for structural-integrity assessment of industrial components and advanced materials development. Microstructure, texture and residual stress analyses are commonly performed by neutron diffraction and a joint CEN/ISO Pre-Standard for residual stress analysis is under development. Furthermore neutrons provide for defects analyses, i.e. precipitations, voids, pores and cracks, through small-angle neutron scattering (SANS) or radiography. At the High Flux Reactor, 12 beam tubes have been installed for the extraction of thermal neutrons for such applications. Two of them are equipped with neutron diffractometers for residual stress and structure determination and have been extensively used in the past. Several other facilities are currently being reactivated and upgraded. These include the SANS and radiography facilities as well as a powder diffractometer. This paper summarizes the main characteristics and current status of these facilities as well as recently in...

  2. Hierarchically structured photonic crystals for integrated chemical separation and colorimetric detection.

    Science.gov (United States)

    Fu, Qianqian; Zhu, Biting; Ge, Jianping

    2017-02-16

    A SiO 2 colloidal photonic crystal film with a hierarchical porous structure is fabricated to demonstrate an integrated separation and colorimetric detection of chemical species for the first time. This new photonic crystal based thin layer chromatography process requires no dyeing, developing and UV irradiation compared to the traditional TLC. The assembling of mesoporous SiO 2 particles via a supersaturation-induced-precipitation process forms uniform and hierarchical photonic crystals with micron-scale cracks and mesopores, which accelerate the diffusion of developers and intensify the adsorption/desorption between the analytes and silica for efficient separation. Meanwhile, the chemical substances infiltrated to the voids of photonic crystals cause an increase of the refractive index and a large contrast of structural colors towards the unloaded part, so that the sample spots can be directly recognized with the naked eye before and after separation.

  3. Test results of smart aircraft fastener for KC-135 structural integrity

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg

    1998-07-01

    Hidden and inaccessible corrosion in aircraft structures is the number one logistics problem for the US Air Force, with an estimated maintenance cost in excess of $LR 1.0B per year in 1990-equivalent dollars. The Smart Aircraft Fastener Evaluation (SAFE) system was developed to provide early warning detection of corrosion-related symptoms in hidden locations of aircraft structures. The SAFE system incorporates an in situ measurement approach that measures and autonomously records several environmental conditions within a Hi-Lok aircraft fastener that could cause corrosion. The SAFE system integrates a miniature electrochemical microsensor array and a time-of-wetness sensor with an ultra low power 8-bit microcontroller and 4- Mbyte solid-state FLASH archival memory to measure evidence of active corrosion. A summary of the technical approach and a detailed analysis of the KC-135 lap joint test coupon results are presented.

  4. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    Science.gov (United States)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  5. Electromagnetic analysis, structural integrity and progress on mechanical design of the ITER ferromagnetic insert

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, M. [Mitsubishi Heavy Industries, Ltd., 1-1 Wadasaki-cho 1-chome, Hyogo-ku, Kobe 652-8585 (Japan)], E-mail: masaaki_morimoto@maia.eonet.ne.jp; Ioki, K.; Terasawa, A.; Utin, Yu.; Barabash, V.; Gribov, Y. [ITER Organization, 13108 St. Paul lez Durance (France)

    2009-12-15

    Ferromagnetic material is used to reduce the toroidal field ripple in JFT-2M and JT-60U . In ITER, since the ferromagnetic material is inserted in the space between the double walls of ITER Vacuum Vessel (VV), it is called 'ferromagnetic inserts'. Suitable material is selected to satisfy the design requirements of ITER. The proper location and amount of the ferromagnetic inserts are optimized with the goal of reduction of the toroidal field ripple. The ferromagnetic inserts are designed to minimize electromagnetic forces acting on them. The electromagnetic forces have been calculated with the latest disruption scenarios. Magnetization forces due to magnetic fields have also been calculated. Structural integrity has been validated by a structural analysis.

  6. Vertically integrated ZnO-Based 1D1R structure for resistive switching

    International Nuclear Information System (INIS)

    Zhang Yang; Duan Ziqing; Li Rui; Ku, Chieh-Jen; Reyes, Pavel I; Ashrafi, Almamun; Zhong Jian; Lu Yicheng

    2013-01-01

    We report a ZnO-based 1D1R structure, which is formed by a vertical integration of a FeZnO/MgO switching resistor (1R) and an Ag/MgZnO Schottky diode (1D). The multifunctional ZnO and its compounds are grown through MOCVD with in situ doping. For the R element, the current ratio of the high-resistance state (HRS) over the low-resistance state (LRS) at 1 V is 2.4 × 10 6 . The conduction mechanisms of the HRS and LRS are Poole–Frenkel emission and resistive conduction, respectively. The D element shows the forward/reverse current ratio at ±1 V to be 2.4 × 10 7 . This 1D1R structure exhibits high R HRS /R LRS ratio, excellent rectifying characteristics and robust retention. (paper)

  7. A Blog-Integrated Grammar Instruction Approach: Structure-Andragogy-Blog (SAB

    Directory of Open Access Journals (Sweden)

    Yonca ÖZKAN

    2016-12-01

    Full Text Available Although history of grammar instruction dates back far in time, it is only since the sixties that we see various methods through which this subject is taught. What was done took place as an in-class activity with almost no tasks performed out of class except for assignments. Thus, this descriptive case study aims to add one new dimension to the already existing methodology introducing a blog-integrated approach emphasizing individual-generated learning. Unlike its predecessors, the approach requires individuals to select texts, analyze targeted structural points in authentic texts, and produce similar structures through modelling, all performed on weblogs, with full participation and collaboration of learners embracing the notion of “self-directed” learning. Although the designed approach aims to teach and reinforce English grammar to English learners, it does not limit itself to this field. All subjects, requiring activation of latent knowledge can certainly benefit from it, notably the L2 domain

  8. Integration of Composite Structures in Modern Day Architecture: Case Study of City Business Centre, Timisoara, Romania

    Science.gov (United States)

    Vataman, Adina; Gaivoronschi, Vlad; Mosoarca, Marius

    2017-10-01

    In current day structural design the use of composite steel-concrete structures has become the norm; because of the advantages that each of these materials has to offer. Composite structures also have the benefit of a faster execution at a lower cost, compared to traditional structures. While the arguments in favour of designing composite structures are well-known and appreciated by civil engineers; there remains a question of integrating these structures in modern-day urban landscapes. Eastern European countries are welcoming a blossoming of culture, arts, economy and industry, which unavoidably and necessarily will lead to a change in urban landscapes. With an increasing amount of foreign companies opening offices in these areas, the need for modern office solutions has arisen. The current paper presents a case study of an office building complex situated in the western part of Romania, in the city of Timişoara. The complex consists of 5 office buildings; all designed in composite steel-concrete structure, an underground parking lot, multiple terraces and adjacent promenade areas. Within the context of rapid growth and development of the city, the City Business Centre has offered high quality office spaces in the heart of the city, while considering the needs of the community. A very important aspect in the successful completion of the project was the efficient and professional collaboration between the separate project teams, between the owner, represented by the project management team, the architect, the structural designer and the building company. The successful joining of seismic structural solutions with modern architectural aesthetics has led to a dynamic, vibrant environment, making the City Business Centre the core of the region’s business life, at the same time redefining Timisoara’s architectural landscape. A testimony to the success of the project was the Civil Engineering Structural Designers Associations’ (AICPS) 3rd Prize awarded for great

  9. Structural integration and performance of inter-sectoral public health-related policy networks: An analysis across policy phases

    NARCIS (Netherlands)

    Peters, D. T. J. M.; Raab, J.; Grêaux, K. M.; Stronks, K.; Harting, J.

    2017-01-01

    Background: Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structural network characteristics (i.e., composition and integration) and network performance, such as

  10. Structural integration and performance of inter-sectoral public health-related policy networks : An analysis across policy phases

    NARCIS (Netherlands)

    Peters, Dorothee; Raab, J.; Grêaux, Kimberley M.; Stronks, Karien; Harting, Janneke

    2017-01-01

    Background: Inter-sectoral policy networks may be effective in addressing environmental determinants of health with interventions. However, contradictory results are reported on relations between structure and network characteristics (i.e., composition and integration) and network performance, such

  11. Characterization of Functional and Structural Integrity in Experimental Focal Epilepsy: Reduced Network Efficiency Coincides with White Matter Changes

    NARCIS (Netherlands)

    Otte, W.M.; Dijkhuizen, R.M.; van Meer, M.P.A.; Van der Hel, W.S.; Verlinde, S.A.M.W.; van Nieuwenhuizen, O.; Viergever, M.A.; Stam, C.J.; Braun, K.P.J.

    2012-01-01

    Background: Although focal epilepsies are increasingly recognized to affect multiple and remote neural systems, the underlying spatiotemporal pattern and the relationships between recurrent spontaneous seizures, global functional connectivity, and structural integrity remain largely unknown.

  12. Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project

    International Nuclear Information System (INIS)

    Wu, Wei-Shing; Yang, Chen-Feng; Chang, Jung-Chuan; Château, Pierre-Alexandre; Chang, Yang-Chi

    2015-01-01

    The sound development of marine resource usage relies on a strong maritime engineering industry. The perilous marine environment poses the highest risk to all maritime work. It is therefore imperative to reduce the risk associated with maritime work by using some analytical methods other than engineering techniques. This study addresses this issue by using an integrated interpretive structure modeling (ISM) and Bayesian network (BN) approach in a risk assessment context. Mitigating or managing maritime risk relies primarily on domain expert experience and knowledge. ISM can be used to incorporate expert knowledge in a systematic manner and helps to impose order and direction on complex relationships that exist among system elements. Working with experts, this research used ISM to clearly specify an engineering risk factor relationship represented by a cause–effect diagram, which forms the structure of the BN. The expert subjective judgments were further transformed into a prior and conditional probability set to be embedded in the BN. We used the BN to evaluate the risks of two offshore pipeline projects in Taiwan. The results indicated that the BN can provide explicit risk information to support better project management. - Highlights: • We adopt an integrated method for risk assessment of offshore pipeline projects. • We conduct semi-structural interview with the experts for risk factor identification. • Interpretive structural modeling helps to form the digraph of Bayesian network (BN) • We perform the risk analysis with the experts by building a BN. • Risk evaluations of two case studies using the BN show effectiveness of the methods

  13. Assessment of structure integrity of top-guide on Chinshan plant

    International Nuclear Information System (INIS)

    Lin, Shin-Way; Wang, Li-Hua; Wang, M.T.; Huang, S.M.

    1991-01-01

    The BWR top-guide structure is considered potentially susceptible to irradiation assisted stress corrosion cracking (IASCC). If the crack initiated and propagated, this would raise a concern for the integrity and function of the guide structure. To understand the possible impact and to establish a guideline for in-service inspection and subsequent repair, an attempt to determine the critical locations and length of cracks is made in this paper. A finite element beam model of the top-guide of Chinshan BWR-4 design is developed based on the as-built design drawing. In order to simulate the clamping effect of the peripheral ring, the model structure is further modified with frame to approach a C-like beam as opposed to the single-ring modeling used by the previous researcher. The results show that the most critical cracks propagated downward from the slot in a top-slotted beam and were mainly located at a beam intersection near the periphery of the top-guide. Although the fluence in the periphery region is lower than the central region, the IASCC can still occur since its fluence exceed the threshold IASSC level. Due to critical importance in the structure integrity of the top-guide, special attention should be paid when examining defects in these locations. Finally in this study, the tearing mode (mode III) is found to be the dominant fracture mode, instead of the normally expected tensile mode (mode I). Both the map of critical crack location and the discussion of dominant fracture mode will be presented in this paper. (author)

  14. Measuring Integrated Socioemotional Guidance at School: Factor Structure and Reliability of the Socioemotional Guidance Questionnaire (SEG-Q)

    Science.gov (United States)

    Jacobs, Karen; Struyf, Elke

    2013-01-01

    Socioemotional guidance of students has recently become an integral part of education, however no instrument exists to measure integrated socioemotional guidance. This study therefore examines the factor structure and reliability of the Socioemotional Guidance Questionnaire. Psychometric properties of the Socioemotional Guidance Questionnaire and…

  15. Clustering and inertia: structural integration of home care in Swedish elderly care

    Directory of Open Access Journals (Sweden)

    Nils Olof Hedman

    2007-09-01

    Full Text Available Purpose: To study the design and distribution of different organizational solutions regarding the responsibility for and provision of home care for elderly in Swedish municipalities. Method: Directors of the social welfare services in all Swedish municipalities received a questionnaire about old-age care organization, especially home care services and related activities. Rate of response was 73% (211/289. Results: Three different organizational models of home care were identified. The models represented different degrees of integration of home care, i.e. health and social aspects of home care were to varying degrees integrated in the same organization. The county councils (i.e. large sub-national political-administrative units tended to contain clusters of municipalities (smaller sub-national units with the same organizational characteristics. Thus, municipalities' home care organization followed a county council pattern. In spite of a general tendency for Swedish municipalities to reorganize their activities, only 1% of them had changed their home care services organization in relation to the county council since the reform. Conclusion: The decentralist intention of the reform—to give actors at the sub-national levels freedom to integrate home care according to varying local circumstances—has resulted in a sub-national inter-organizational network structure at the county council, rather than municipal, level, which is highly inert and difficult to change.

  16. Structural integrity assessment of the reactor pressure vessel under the pressurized thermal shock loading

    International Nuclear Information System (INIS)

    Chen, Mingya; Lu, Feng; Wang, Rongshan; Ren, Ai

    2014-01-01

    Highlights: • The regulation and the code are proved to be conservative in the integrity assessment. • This study is helpful to understand the complex influence of the parameters. • The most dangerous case is given for the reference transient. - Abstract: Fracture mechanics analysis of pressurized thermal shock (PTS) is the key element of the integrity evaluation of the nuclear reactor pressure vessel (RPV). While the regulation of 10 CFR 50.61 and the ASME Code provide the guidance for the structural integrity, the guidance has been prepared under conservative assumptions. In this paper, the effects of conservative assumptions involved in the PTS analysis were investigated. The influence of different parameters, such as crack size, cladding effect and neutron fluence, were reviewed based on 3-D finite element analyses. Also, the sensitivity study of elastic–plastic approach, crack type and cladding thickness were reviewed. It was shown that crack depth, crack type, plastic effect and cladding thickness change the safety margin (SM) significantly, and the SM at the deepest point of the crack is not always smaller than that of the surface point, indicating that both the deepest and surface points of the crack front should be considered. For the reference transient, deeper cracks always give more conservative prediction. So compared to the prescribed analyses of a set of postulated defects with varying depths in the ASME code, it only needs to assess the crack with maximum depth in the code for the reference transient according to the conclusions

  17. Measurements and calculations of integral capture cross-sections of structural materials in fast reactor spectra

    International Nuclear Information System (INIS)

    Seth, S.; Brunson, G.; Gmuer, K.; Jermann, M.; McCombie, C.; Richmond, R.; Schmocker, U.

    1979-01-01

    This paper relates the checking of integral data of steel and iron in fast reactor lattices. The fully-rodded GCFR benchmark lattice of the zero-energy reactor PROTEUS was successively modified by replacing the PuO 2 -UO 2 fuel rods by steel-18/8 or steel-37 (iron) rods. The neutron spectra of the modified lattices in fact have median energies close to that of a typical LMFBR. The replacement of fuel by the structural material of interest was such that in each case the value of k(infinity) was reduced to near-unity. This allowed the measurement of the lattice-k(infinity) by the null-reactivity technique. In addition, the principal reaction rates (namely U238 capture and fission, relative to Pu239 fission) and the neutron spectrum were measured. These directly measured integral data which are particularly sensitive to the steel cross-sections can be used for the checking and systematic adjustment of data sets. The results may also be analysed so as to derive specific values for the integral capture cross-sections of steel and iron. Neutron balance equations were set-up for each of the lattices using the measured k(infinity) and reaction rates

  18. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity.

    Science.gov (United States)

    Kang, Hyun-Wook; Lee, Sang Jin; Ko, In Kap; Kengla, Carlos; Yoo, James J; Atala, Anthony

    2016-03-01

    A challenge for tissue engineering is producing three-dimensional (3D), vascularized cellular constructs of clinically relevant size, shape and structural integrity. We present an integrated tissue-organ printer (ITOP) that can fabricate stable, human-scale tissue constructs of any shape. Mechanical stability is achieved by printing cell-laden hydrogels together with biodegradable polymers in integrated patterns and anchored on sacrificial hydrogels. The correct shape of the tissue construct is achieved by representing clinical imaging data as a computer model of the anatomical defect and translating the model into a program that controls the motions of the printer nozzles, which dispense cells to discrete locations. The incorporation of microchannels into the tissue constructs facilitates diffusion of nutrients to printed cells, thereby overcoming the diffusion limit of 100-200 μm for cell survival in engineered tissues. We demonstrate capabilities of the ITOP by fabricating mandible and calvarial bone, cartilage and skeletal muscle. Future development of the ITOP is being directed to the production of tissues for human applications and to the building of more complex tissues and solid organs.

  19. Localization of fluorescently labeled structures in frozen-hydrated samples using integrated light electron microscopy.

    Science.gov (United States)

    Faas, F G A; Bárcena, M; Agronskaia, A V; Gerritsen, H C; Moscicka, K B; Diebolder, C A; van Driel, L F; Limpens, R W A L; Bos, E; Ravelli, R B G; Koning, R I; Koster, A J

    2013-03-01

    Correlative light and electron microscopy is an increasingly popular technique to study complex biological systems at various levels of resolution. Fluorescence microscopy can be employed to scan large areas to localize regions of interest which are then analyzed by electron microscopy to obtain morphological and structural information from a selected field of view at nm-scale resolution. Previously, an integrated approach to room temperature correlative microscopy was described. Combined use of light and electron microscopy within one instrument greatly simplifies sample handling, avoids cumbersome experimental overheads, simplifies navigation between the two modalities, and improves the success rate of image correlation. Here, an integrated approach for correlative microscopy under cryogenic conditions is presented. Its advantages over the room temperature approach include safeguarding the native hydrated state of the biological specimen, preservation of the fluorescence signal without risk of quenching due to heavy atom stains, and reduced photo bleaching. The potential of cryo integrated light and electron microscopy is demonstrated for the detection of viable bacteria, the study of in vitro polymerized microtubules, the localization of mitochondria in mouse embryonic fibroblasts, and for a search into virus-induced intracellular membrane modifications within mammalian cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Exemplary design of a DICOM structured report template for CBIR integration into radiological routine

    Science.gov (United States)

    Welter, Petra; Deserno, Thomas M.; Gülpers, Ralph; Wein, Berthold B.; Grouls, Christoph; Günther, Rolf W.

    2010-03-01

    The large and continuously growing amount of medical image data demands access methods with regards to content rather than simple text-based queries. The potential benefits of content-based image retrieval (CBIR) systems for computer-aided diagnosis (CAD) are evident and have been approved. Still, CBIR is not a well-established part of daily routine of radiologists. We have already presented a concept of CBIR integration for the radiology workflow in accordance with the Integrating the Healthcare Enterprise (IHE) framework. The retrieval result is composed as a Digital Imaging and Communication in Medicine (DICOM) Structured Reporting (SR) document. The use of DICOM SR provides interchange with PACS archive and image viewer. It offers the possibility of further data mining and automatic interpretation of CBIR results. However, existing standard templates do not address the domain of CBIR. We present a design of a SR template customized for CBIR. Our approach is based on the DICOM standard templates and makes use of the mammography and chest CAD SR templates. Reuse of approved SR sub-trees promises a reliable design which is further adopted to the CBIR domain. We analyze the special CBIR requirements and integrate the new concept of similar images into our template. Our approach also includes the new concept of a set of selected images for defining the processed images for CBIR. A commonly accepted pre-defined template for the presentation and exchange of results in a standardized format promotes the widespread application of CBIR in radiological routine.