WorldWideScience

Sample records for integrable quantum models

  1. Integrable models in classical and quantum mechanics

    International Nuclear Information System (INIS)

    Jurco, B.

    1991-01-01

    Integrable systems are investigated, especially the rational and trigonometric Gaudin models. The Gaudin models are diagonalized for the case of classical Lie algebras. Their relation to the other integrable models and to the quantum inverse scattering method is investigated. Applications in quantum optics and plasma physics are discussed. (author). 94 refs

  2. Integrable lattice models and quantum groups

    International Nuclear Information System (INIS)

    Saleur, H.; Zuber, J.B.

    1990-01-01

    These lectures aim at introducing some basic algebraic concepts on lattice integrable models, in particular quantum groups, and to discuss some connections with knot theory and conformal field theories. The list of contents is: Vertex models and Yang-Baxter equation; Quantum sl(2) algebra and the Yang-Baxter equation; U q sl(2) as a symmetry of statistical mechanical models; Face models; Face models attached to graphs; Yang-Baxter equation, braid group and link polynomials

  3. Topological quantum theories and integrable models

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Niemi, A.J.; Semenoff, G.; Tirkkonen, O.

    1991-01-01

    The path-integral generalization of the Duistermaat-Heckman integration formula is investigated for integrable models. It is shown that for models with periodic classical trajectories the path integral reduces to a form similar to the finite-dimensional Duistermaat-Heckman integration formula. This provides a relation between exactness of the stationary-phase approximation and Morse theory. It is also argued that certain integrable models can be related to topological quantum theories. Finally, it is found that in general the stationary-phase approximation presumes that the initial and final configurations are in different polarizations. This is exemplified by the quantization of the SU(2) coadjoint orbit

  4. A quantum relativistic integrable model as the continuous limit of the six-vertex model

    International Nuclear Information System (INIS)

    Zhou, Y.K.

    1992-01-01

    The six-vertex model in two-dimensional statistical mechanics is used to construct the L-matrix of a one-dimensional quantum relativistic integrable model through a continuous limit. This is the first step to extend the method used earlier by the author to construct quantum completely integrable systems from other well-known two-dimensional vertex models. (orig.)

  5. A new (in)finite-dimensional algebra for quantum integrable models

    International Nuclear Information System (INIS)

    Baseilhac, Pascal; Koizumi, Kozo

    2005-01-01

    A new (in)finite-dimensional algebra which is a fundamental dynamical symmetry of a large class of (continuum or lattice) quantum integrable models is introduced and studied in details. Finite-dimensional representations are constructed and mutually commuting quantities-which ensure the integrability of the system-are written in terms of the fundamental generators of the new algebra. Relation with the deformed Dolan-Grady integrable structure recently discovered by one of the authors and Terwilliger's tridiagonal algebras is described. Remarkably, this (in)finite-dimensional algebra is a 'q-deformed' analogue of the original Onsager's algebra arising in the planar Ising model. Consequently, it provides a new and alternative algebraic framework for studying massive, as well as conformal, quantum integrable models

  6. Non-integrable quantum field theories as perturbations of certain integrable models

    International Nuclear Information System (INIS)

    Delfino, G.; Simonetti, P.

    1996-03-01

    We approach the study of non-integrable models of two-dimensional quantum field theory as perturbations of the integrable ones. By exploiting the knowledge of the exact S-matrix and Form Factors of the integrable field theories we obtain the first order corrections to the mass ratios, the vacuum energy density and the S-matrix of the non-integrable theories. As interesting applications of the formalism, we study the scaling region of the Ising model in an external magnetic field at T ∼ T c and the scaling region around the minimal model M 2 , τ . For these models, a remarkable agreement is observed between the theoretical predictions and the data extracted by a numerical diagonalization of their Hamiltonian. (author). 41 refs, 9 figs, 1 tab

  7. Integrability of a family of quantum field theories related to sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Ridout, David [Australian National Univ., Canberra, ACT (Australia). Dept. of Theoretical Physics; DESY, Hamburg (Germany). Theory Group; Teschner, Joerg [DESY, Hamburg (Germany). Theory Group

    2011-03-15

    A method is introduced for constructing lattice discretizations of large classes of integrable quantum field theories. The method proceeds in two steps: The quantum algebraic structure underlying the integrability of the model is determined from the algebra of the interaction terms in the light-cone representation. The representation theory of the relevant quantum algebra is then used to construct the basic ingredients of the quantum inverse scattering method, the lattice Lax matrices and R-matrices. This method is illustrated with four examples: The Sinh-Gordon model, the affine sl(3) Toda model, a model called the fermionic sl(2 vertical stroke 1) Toda theory, and the N=2 supersymmetric Sine-Gordon model. These models are all related to sigma models in various ways. The N=2 supersymmetric Sine-Gordon model, in particular, describes the Pohlmeyer reduction of string theory on AdS{sub 2} x S{sup 2}, and is dual to a supersymmetric non-linear sigma model with a sausage-shaped target space. (orig.)

  8. Integrable quantum impurity models

    International Nuclear Information System (INIS)

    Eckle, H.P.

    1998-01-01

    By modifying some of the local L operators of the algebraic form of the Bethe Ansatz inhomogeneous one dimensional quantum lattice models can be constructed. This fact has recently attracted new attention, the inhomogeneities being interpreted as local impurities. The Hamiltonians of the so constructed one-dimensional quantum models have a nearest neighbour structure except in the vicinity of the local impurities which involve three-site interactions. The pertinent feature of these models is the absence of backscattering at the impurities: the impurities are transparent. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  9. The quench action approach to out-of-equilibrium quantum integrable models

    NARCIS (Netherlands)

    Wouters, B.M.

    2015-01-01

    In this PhD thesis quantum quenches to 1D quantum integrable models are studied by means of the quench action approach. Using the large-system-size scaling of overlaps between the initial state and Bethe states as basic input, this method gives an exact description in the thermodynamic limit of the

  10. Integrable models of quantum optics

    Directory of Open Access Journals (Sweden)

    Yudson Vladimir

    2017-01-01

    Full Text Available We give an overview of exactly solvable many-body models of quantum optics. Among them is a system of two-level atoms which interact with photons propagating in a one-dimensional (1D chiral waveguide; exact eigenstates of this system can be explicitly constructed. This approach is used also for a system of closely located atoms in the usual (non-chiral waveguide or in 3D space. Moreover, it is shown that for an arbitrary atomic system with a cascade spontaneous radiative decay, the fluorescence spectrum can be described by an exact analytic expression which accounts for interference of emitted photons. Open questions related with broken integrability are discussed.

  11. Quantum integrable models of field theory

    International Nuclear Information System (INIS)

    Faddeev, L.D.

    1979-01-01

    Fundamental features of the classical method of the inverse problem have been formulated in the form which is convenient for its quantum reformulation. Typical examples are studied which may help to formulate the quantum method of the inverse problem. Examples are considered for interaction with both attraction and repulsion at a final density. The sine-Gordon model and the XYZ model from the quantum theory of magnetics are examined in short. It is noted that all the achievements of the one-dimensional mathematical physics as applied to exactly solvable quantum models may be put to an extent within the framework of the quantum method of the inverse problem. Unsolved questions are enumerated and perspectives of applying the inverse problem method are shown

  12. Integrable structures in quantum field theory

    International Nuclear Information System (INIS)

    Negro, Stefano

    2016-01-01

    This review was born as notes for a lecture given at the Young Researchers Integrability School (YRIS) school on integrability in Durham, in the summer of 2015. It deals with a beautiful method, developed in the mid-nineties by Bazhanov, Lukyanov and Zamolodchikov and, as such, called BLZ. This method can be interpreted as a field theory version of the quantum inverse scattering, also known as the algebraic Bethe ansatz. Starting with the case of conformal field theories (CFTs) we show how to build the field theory analogues of commuting transfer T matrices and Baxter Q -operators of integrable lattice models. These objects contain the complete information of the integrable structure of the theory, viz. the integrals of motion, and can be used, as we will show, to derive the thermodynamic Bethe ansatz and nonlinear integral equations. This same method can be easily extended to the description of integrable structures of certain particular massive deformations of CFTs; these, in turn, can be described as quantum group reductions of the quantum sine-Gordon model and it is an easy step to include this last theory in the framework of BLZ approach. Finally we show an interesting and surprising connection of the BLZ structures with classical objects emerging from the study of classical integrable models via the inverse scattering transform method. This connection goes under the name of ODE/IM correspondence and we will present it for the specific case of quantum sine-Gordon model only. (topical review)

  13. Higher quantum conserved current in a new completely integrable model

    International Nuclear Information System (INIS)

    Nissimov, E.R.

    1980-06-01

    The first higher local quantum conserved current is the recently proposed new completely integrable (2esup(βphi)+esup(-2βphi)) 2 model is explicitly constructed thus proving absence of particle production and factorization of multiparticle scattering. (author)

  14. Fused integrable lattice models with quantum impurities and open boundaries

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2003-01-01

    The alternating integrable spin chain and the RSOS(q 1 ,q 2 ;p) model in the presence of a quantum impurity are investigated. The boundary free energy due to the impurity is derived, the ratios of the corresponding g functions at low and high temperature are specified and their relevance to boundary flows in unitary minimal and generalized coset models is discussed. Finally, the alternating spin chain with diagonal and non-diagonal integrable boundaries is studied, and the corresponding boundary free energy and g functions are derived

  15. Quantum measure and integration theory

    International Nuclear Information System (INIS)

    Gudder, Stan

    2009-01-01

    This article begins with a review of quantum measure spaces. Quantum forms and indefinite inner-product spaces are then discussed. The main part of the paper introduces a quantum integral and derives some of its properties. The quantum integral's form for simple functions is characterized and it is shown that the quantum integral generalizes the Lebesgue integral. A bounded, monotone convergence theorem for quantum integrals is obtained and it is shown that a Radon-Nikodym-type theorem does not hold for quantum measures. As an example, a quantum-Lebesgue integral on the real line is considered.

  16. Type-I integrable quantum impurities in the Heisenberg model

    Energy Technology Data Exchange (ETDEWEB)

    Doikou, Anastasia, E-mail: adoikou@upatras.gr

    2013-12-21

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  17. Type-I integrable quantum impurities in the Heisenberg model

    International Nuclear Information System (INIS)

    Doikou, Anastasia

    2013-01-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified

  18. A large class of solvable multistate Landau–Zener models and quantum integrability

    Science.gov (United States)

    Chernyak, Vladimir Y.; Sinitsyn, Nikolai A.; Sun, Chen

    2018-06-01

    The concept of quantum integrability has been introduced recently for quantum systems with explicitly time-dependent Hamiltonians (Sinitsyn et al 2018 Phys. Rev. Lett. 120 190402). Within the multistate Landau–Zener (MLZ) theory, however, there has been a successful alternative approach to identify and solve complex time-dependent models (Sinitsyn and Chernyak 2017 J. Phys. A: Math. Theor. 50 255203). Here we compare both methods by applying them to a new class of exactly solvable MLZ models. This class contains systems with an arbitrary number of interacting states and shows quick growth with N number of exact adiabatic energy crossing points, which appear at different moments of time. At each N, transition probabilities in these systems can be found analytically and exactly but complexity and variety of solutions in this class also grow with N quickly. We illustrate how common features of solvable MLZ systems appear from quantum integrability and develop an approach to further classification of solvable MLZ problems.

  19. The classical limit of non-integrable quantum systems, a route to quantum chaos

    International Nuclear Information System (INIS)

    Castagnino, Mario; Lombardi, Olimpia

    2006-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state

  20. The classical limit of non-integrable quantum systems, a route to quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)

    2006-05-15

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  1. Interpretation of quarks having fractional quantum numbers as structural quasi-particles by means of the composite model with integral quantum numbers

    International Nuclear Information System (INIS)

    Tyapkin, A.A.

    1976-01-01

    The problem is raised on the interpretation of quarks having fractional quantum numbers as structural quasi-particles. A new composite model is proposed on the basis of the fundamental triplet representation of fermions having integral quantum numbers

  2. Modelling of multidimensional quantum systems by the numerical functional integration

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Zhidkov, E.P.

    1990-01-01

    The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. 15 refs.; 2 tabs

  3. Integrability of the Rabi Model

    International Nuclear Information System (INIS)

    Braak, D.

    2011-01-01

    The Rabi model is a paradigm for interacting quantum systems. It couples a bosonic mode to the smallest possible quantum model, a two-level system. I present the analytical solution which allows us to consider the question of integrability for quantum systems that do not possess a classical limit. A criterion for quantum integrability is proposed which shows that the Rabi model is integrable due to the presence of a discrete symmetry. Moreover, I introduce a generalization with no symmetries; the generalized Rabi model is the first example of a nonintegrable but exactly solvable system.

  4. Integrable Time-Dependent Quantum Hamiltonians

    Science.gov (United States)

    Sinitsyn, Nikolai A.; Yuzbashyan, Emil A.; Chernyak, Vladimir Y.; Patra, Aniket; Sun, Chen

    2018-05-01

    We formulate a set of conditions under which the nonstationary Schrödinger equation with a time-dependent Hamiltonian is exactly solvable analytically. The main requirement is the existence of a non-Abelian gauge field with zero curvature in the space of system parameters. Known solvable multistate Landau-Zener models satisfy these conditions. Our method provides a strategy to incorporate time dependence into various quantum integrable models while maintaining their integrability. We also validate some prior conjectures, including the solution of the driven generalized Tavis-Cummings model.

  5. Integrated Quantum Optics: Experiments towards integrated quantum-light sources and quantum-enhanced sensing

    DEFF Research Database (Denmark)

    Hoff, Ulrich Busk

    The work presented in this thesis is focused on experimental application and generation of continuous variable quantum correlated states of light in integrated dielectric structures. Squeezed states are among the most exploited continuous variable optical states for free-space quantum-enhanced se...... is presented and an optimized device design is proposed. The devices have been fabricated and tested optically and preliminary interrogations of the output quantum noise have been performed....

  6. Integrated Broadband Quantum Cascade Laser

    Science.gov (United States)

    Mansour, Kamjou (Inventor); Soibel, Alexander (Inventor)

    2016-01-01

    A broadband, integrated quantum cascade laser is disclosed, comprising ridge waveguide quantum cascade lasers formed by applying standard semiconductor process techniques to a monolithic structure of alternating layers of claddings and active region layers. The resulting ridge waveguide quantum cascade lasers may be individually controlled by independent voltage potentials, resulting in control of the overall spectrum of the integrated quantum cascade laser source. Other embodiments are described and claimed.

  7. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    Angles d'Auriac, J.Ch.; Maillard, J.M.; Viallet, C.M.

    2002-01-01

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  8. A bispectral q-hypergeometric basis for a class of quantum integrable models

    Science.gov (United States)

    Baseilhac, Pascal; Martin, Xavier

    2018-01-01

    For the class of quantum integrable models generated from the q-Onsager algebra, a basis of bispectral multivariable q-orthogonal polynomials is exhibited. In the first part, it is shown that the multivariable Askey-Wilson polynomials with N variables and N + 3 parameters introduced by Gasper and Rahman [Dev. Math. 13, 209 (2005)] generate a family of infinite dimensional modules for the q-Onsager algebra, whose fundamental generators are realized in terms of the multivariable q-difference and difference operators proposed by Iliev [Trans. Am. Math. Soc. 363, 1577 (2011)]. Raising and lowering operators extending those of Sahi [SIGMA 3, 002 (2007)] are also constructed. In the second part, finite dimensional modules are constructed and studied for a certain class of parameters and if the N variables belong to a discrete support. In this case, the bispectral property finds a natural interpretation within the framework of tridiagonal pairs. In the third part, eigenfunctions of the q-Dolan-Grady hierarchy are considered in the polynomial basis. In particular, invariant subspaces are identified for certain conditions generalizing Nepomechie's relations. In the fourth part, the analysis is extended to the special case q = 1. This framework provides a q-hypergeometric formulation of quantum integrable models such as the open XXZ spin chain with generic integrable boundary conditions (q ≠ 1).

  9. The quantum double in integrable quantum field theory

    International Nuclear Information System (INIS)

    Bernard, D.; LeClair, A.

    1993-01-01

    Various aspects of recent works on affine quantum group symmetry of integrable 2D quantum field theory are reviewed and further clarified. A geometrical meaning is given to the quantum double, and other properties of quantum groups. The S-matrix is identified with the universal R-matrix. Multiplicative presentations of the yangian double are analyzed. (orig.)

  10. Acidity in DMSO from the embedded cluster integral equation quantum solvation model.

    Science.gov (United States)

    Heil, Jochen; Tomazic, Daniel; Egbers, Simon; Kast, Stefan M

    2014-04-01

    The embedded cluster reference interaction site model (EC-RISM) is applied to the prediction of acidity constants of organic molecules in dimethyl sulfoxide (DMSO) solution. EC-RISM is based on a self-consistent treatment of the solute's electronic structure and the solvent's structure by coupling quantum-chemical calculations with three-dimensional (3D) RISM integral equation theory. We compare available DMSO force fields with reference calculations obtained using the polarizable continuum model (PCM). The results are evaluated statistically using two different approaches to eliminating the proton contribution: a linear regression model and an analysis of pK(a) shifts for compound pairs. Suitable levels of theory for the integral equation methodology are benchmarked. The results are further analyzed and illustrated by visualizing solvent site distribution functions and comparing them with an aqueous environment.

  11. On quantum models of the human mind.

    Science.gov (United States)

    Wang, Hongbin; Sun, Yanlong

    2014-01-01

    Recent years have witnessed rapidly increasing interests in developing quantum theoretical models of human cognition. Quantum mechanisms have been taken seriously to describe how the mind reasons and decides. Papers in this special issue report the newest results in the field. Here we discuss why the two levels of commitment, treating the human brain as a quantum computer and merely adopting abstract quantum probability principles to model human cognition, should be integrated. We speculate that quantum cognition models gain greater modeling power due to a richer representation scheme. Copyright © 2013 Cognitive Science Society, Inc.

  12. New Spin Foam Models of Quantum Gravity

    Science.gov (United States)

    Miković, A.

    We give a brief and a critical review of the Barret-Crane spin foam models of quantum gravity. Then we describe two new spin foam models which are obtained by direct quantization of General Relativity and do not have some of the drawbacks of the Barret-Crane models. These are the model of spin foam invariants for the embedded spin networks in loop quantum gravity and the spin foam model based on the integration of the tetrads in the path integral for the Palatini action.

  13. Emergent Hydrodynamics in Integrable Quantum Systems Out of Equilibrium

    Directory of Open Access Journals (Sweden)

    Olalla A. Castro-Alvaredo

    2016-12-01

    Full Text Available Understanding the general principles underlying strongly interacting quantum states out of equilibrium is one of the most important tasks of current theoretical physics. With experiments accessing the intricate dynamics of many-body quantum systems, it is paramount to develop powerful methods that encode the emergent physics. Up to now, the strong dichotomy observed between integrable and nonintegrable evolutions made an overarching theory difficult to build, especially for transport phenomena where space-time profiles are drastically different. We present a novel framework for studying transport in integrable systems: hydrodynamics with infinitely many conservation laws. This bridges the conceptual gap between integrable and nonintegrable quantum dynamics, and gives powerful tools for accurate studies of space-time profiles. We apply it to the description of energy transport between heat baths, and provide a full description of the current-carrying nonequilibrium steady state and the transition regions in a family of models including the Lieb-Liniger model of interacting Bose gases, realized in experiments.

  14. Classification of parameter-dependent quantum integrable models, their parameterization, exact solution and other properties

    International Nuclear Information System (INIS)

    Owusu, Haile K; Yuzbashyan, Emil A

    2011-01-01

    We study general quantum integrable Hamiltonians linear in a coupling constant and represented by finite N x N real symmetric matrices. The restriction on the coupling dependence leads to a natural notion of nontrivial integrals of motion and classification of integrable families into types according to the number of such integrals. A type M family in our definition is formed by N-M nontrivial mutually commuting operators linear in the coupling. Working from this definition alone, we parameterize type M operators, i.e. resolve the commutation relations, and obtain an exact solution for their eigenvalues and eigenvectors. We show that our parameterization covers all type 1, 2 and 3 integrable models and discuss the extent to which it is complete for other types. We also present robust numerical observation on the number of energy-level crossings in type M integrable systems and analyze the taxonomy of types in the 1D Hubbard model. (paper)

  15. Generation of a quantum integrable class of discrete-time or relativistic periodic Toda chains

    International Nuclear Information System (INIS)

    Kundu, Anjan

    1994-01-01

    A new integrable class of quantum models representing a family of different discrete-time or relativistic generalisations of the periodic Toda chain (TC), including that of a recently proposed classical model close to TC [Lett. Math. Phys. 29 (1993) 165] is presented. All such models are shown to be obtainable from a single ancestor model at different realisations of the underlying quantised algebra. As a consequence the 2x2 Lax operators and the associated quantum R-matrices for these models are easily derived ensuring their quantum integrability. It is shown that the functional Bethe ansatz developed for the quantum TC is trivially generalised to achieve separation of variables also for the present models. ((orig.))

  16. Diverse methods for integrable models

    NARCIS (Netherlands)

    Fehér, G.

    2017-01-01

    This thesis is centered around three topics, sharing integrability as a common theme. This thesis explores different methods in the field of integrable models. The first two chapters are about integrable lattice models in statistical physics. The last chapter describes an integrable quantum chain.

  17. Integrated devices for quantum information and quantum simulation with polarization encoded qubits

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-06-01

    The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. The technology for handling polarization-encoded qubits, the most commonly adopted approach, was still missing in quantum optical circuits until the ultrafast laser writing (ULW) technique was adopted for the first time to realize integrated devices able to support and manipulate polarization encoded qubits.1 Thanks to this method, polarization dependent and independent devices can be realized. In particular the maintenance of polarization entanglement was demonstrated in a balanced polarization independent integrated beam splitter1 and an integrated CNOT gate for polarization qubits was realized and carachterized.2 We also exploited integrated optics for quantum simulation tasks: by adopting the ULW technique an integrated quantum walk circuit was realized3 and, for the first time, we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle discrete quantum walk. Such experiment has been realized by adopting two-photon entangled states and an array of integrated symmetric directional couplers. The polarization entanglement was exploited to simulate the bunching-antibunching feature of non interacting bosons and fermions. To this scope a novel three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization independent behaviour, maintaining a remarkable control on both phase and balancement of the directional couplers.

  18. Classical and Quantum Nonlinear Integrable Systems: Theory and Application

    International Nuclear Information System (INIS)

    Brzezinski, Tomasz

    2003-01-01

    This is a very interesting collection of introductory and review articles on the theory and applications of classical and quantum integrable systems. The book reviews several integrable systems such as the KdV equation, vertex models, RSOS and IRF models, spin chains, integrable differential equations, discrete systems, Ising, Potts and other lattice models and reaction--diffusion processes, as well as outlining major methods of solving integrable systems. These include Lax pairs, Baecklund and Miura transformations, the inverse scattering method, various types of the Bethe Ansatz, Painleve methods, the dbar method and fusion methods to mention just a few. The book is divided into two parts, each containing five chapters. The first part is devoted to classical integrable systems and introduces the subject through the KdV equation, and then proceeds through Painleve analysis, discrete systems and two-dimensional integrable partial differential equations, to culminate in the review of solvable lattice models in statistical physics, solved through the coordinate and algebraic Bethe Ansatz methods. The second part deals with quantum integrable systems, and begins with an outline of unifying approaches to quantum, statistical, ultralocal and non-ultralocal systems. The theory and methods of solving quantum integrable spin chains are then described. Recent developments in applying Bethe Ansatz methods in condensed matter physics, including superconductivity and nanoscale physics, are reviewed. The book concludes with an introduction to diffusion-reaction processes. Every chapter is devoted to a different subject and is self-contained, and thus can be read separately. A reader interesting in classical methods of solitons, such as the methods of solving the KdV equation, can start from Chapter 1, while a reader interested in the Bethe Ansatz method can immediately proceed to Chapter 5, and so on. Thus the book should appeal and be useful to a wide range of theoretical

  19. Quantum integrability and supersymmetric vacua

    International Nuclear Information System (INIS)

    Nekrasov, Nikita; Shatashvili, Samson

    2009-01-01

    Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)

  20. Quantum Mechanics, Path Integrals and Option Pricing: Reducing the Complexity of Finance

    OpenAIRE

    Baaquie, Belal E.; Coriano, Claudio; Srikant, Marakani

    2002-01-01

    Quantum Finance represents the synthesis of the techniques of quantum theory (quantum mechanics and quantum field theory) to theoretical and applied finance. After a brief overview of the connection between these fields, we illustrate some of the methods of lattice simulations of path integrals for the pricing of options. The ideas are sketched out for simple models, such as the Black-Scholes model, where analytical and numerical results are compared. Application of the method to nonlinear sy...

  1. Approximate motion integrals and the quantum chaos problem

    International Nuclear Information System (INIS)

    Bunakov, V.E.; Ivanov, I.B.

    2001-01-01

    One discusses the problem of occurrence and seek for the motion integrals in the stationary quantum mechanics and its relation to the quantum chaos. One studies decomposition of quantum numbers and derives the criterion of chaos. To seek the motion integrals one applies the convergence method. One derived the approximate integrals in the Hennone-Hales problem. One discusses the problem of compatibility of chaos and integrability [ru

  2. Recent advances in quantum integrable systems

    International Nuclear Information System (INIS)

    Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F.

    2005-01-01

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies

  3. Recent advances in quantum integrable systems

    Energy Technology Data Exchange (ETDEWEB)

    Amico, L.; Belavin, A.; Buffenoir, E.; Castro Alvaredo, A.; Caudrelier, V.; Chakrabarti, A.; Corrig, E.; Crampe, N.; Deguchi, T.; Dobrev, V.K.; Doikou, A.; Doyon, B.; Feher, L.; Fioravanti, D.; Gohmann, F.; Hallnas, M.; Jimbo, M.; Konno, N.C.H.; Korchemsky, G.; Kulish, P.; Lassalle, M.; Maillet, J.M.; McCoy, B.; Mintchev, M.; Pakuliak, S.; Quano, F.Y.Z.; Ragnisco, R.; Ravanini, F.; Rittenberg, V.; Rivasseau, V.; Rossi, M.; Satta, G.; Sedrakyan, T.; Shiraishi, J.; Suzuki, N.C.J.; Yamada, Y.; Zamolodchikov, A.; Ishimoto, Y.; Nagy, Z.; Posta, S.; Sedra, M.B.; Zuevskiy, A.; Gohmann, F

    2005-07-01

    This meeting was dedicated to different aspects of the theory of quantum integrable systems. The organizers have intended to concentrate on topics related to the study of correlation functions, to systems with boundaries and to models at roots of unity. This document gathers the abstracts of 32 contributions, most of the contributions are accompanied by the set of transparencies.

  4. Quasilocal conservation laws in the quantum Hirota model

    International Nuclear Information System (INIS)

    Zadnik, Lenart; Prosen, Tomaž

    2017-01-01

    The extensivity of the quantum Hirota model’s conservation laws on a 1  +  1 dimensional lattice is considered. This model can be interpreted in terms of an integrable many-body quantum Floquet dynamics. We establish the procedure to generate a continuous family of quasilocal conservation laws from the conserved operators proposed by Faddeev and Volkov. The Hilbert–Schmidt kernel which allows the calculation of inner products of these new conservation laws is explicitly computed. This result has potential applications in quantum quench and transport problems in integrable quantum field theories. (paper)

  5. Path Integrals in Quantum Mechanics

    International Nuclear Information System (INIS)

    Louko, J

    2005-01-01

    Jean Zinn-Justin's textbook Path Integrals in Quantum Mechanics aims to familiarize the reader with the path integral as a calculational tool in quantum mechanics and field theory. The emphasis is on quantum statistical mechanics, starting with the partition function Tr exp(-β H) and proceeding through the diffusion equation to barrier penetration problems and their semiclassical limit. The 'real time' path integral is defined via analytic continuation and used for the path-integral representation of the nonrelativistic S-matrix and its perturbative expansion. Holomorphic and Grassmannian path integrals are introduced and applied to nonrelativistic quantum field theory. There is also a brief discussion of path integrals in phase space. The introduction includes a brief historical review of path integrals, supported by a bibliography with some 40 entries. As emphasized in the introduction, mathematical rigour is not a central issue in the book. This allows the text to present the calculational techniques in a very readable manner: much of the text consists of worked-out examples, such as the quartic anharmonic oscillator in the barrier penetration chapter. At the end of each chapter there are exercises, some of which are of elementary coursework type, but the majority are more in the style of extended examples. Most of the exercises indeed include the solution or a sketch thereof. The book assumes minimal previous knowledge of quantum mechanics, and some basic quantum mechanical notation is collected in an appendix. The material has a large overlap with selected chapters in the author's thousand-page textbook Quantum Field Theory and Critical Phenomena (2002 Oxford: Clarendon). The stand-alone scope of the present work has, however, allowed a more focussed organization of this material, especially in the chapters on, respectively, holomorphic and Grassmannian path integrals. In my view the book accomplishes its aim admirably and is eminently usable as a textbook

  6. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  7. Super-quantum curves from super-eigenvalue models

    International Nuclear Information System (INIS)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  8. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  9. Photon echo quantum random access memory integration in a quantum computer

    International Nuclear Information System (INIS)

    Moiseev, Sergey A; Andrianov, Sergey N

    2012-01-01

    We have analysed an efficient integration of multi-qubit echo quantum memory (QM) into the quantum computer scheme based on squids, quantum dots or atomic resonant ensembles in a quantum electrodynamics cavity. Here, one atomic ensemble with controllable inhomogeneous broadening is used for the QM node and other nodes characterized by the homogeneously broadened resonant line are used for processing. We have found the optimal conditions for the efficient integration of the multi-qubit QM modified for the analysed scheme, and we have determined the self-temporal modes providing a perfect reversible transfer of the photon qubits between the QM node and arbitrary processing nodes. The obtained results open the way for realization of a full-scale solid state quantum computing based on the efficient multi-qubit QM. (paper)

  10. On the mass-coupling relation of multi-scale quantum integrable models

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Ito, Katsushi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan); Satoh, Yuji [Institute of Physics, University of Tsukuba,1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2016-06-13

    We determine exactly the mass-coupling relation for the simplest multi-scale quantum integrable model, the homogenous sine-Gordon model with two independent mass-scales. We first reformulate its perturbed coset CFT description in terms of the perturbation of a projected product of minimal models. This representation enables us to identify conserved tensor currents on the UV side. These UV operators are then mapped via form factor perturbation theory to operators on the IR side, which are characterized by their form factors. The relation between the UV and IR operators is given in terms of the sought-for mass-coupling relation. By generalizing the Θ sum rule Ward identity we are able to derive differential equations for the mass-coupling relation, which we solve in terms of hypergeometric functions. We check these results against the data obtained by numerically solving the thermodynamic Bethe Ansatz equations, and find a complete agreement.

  11. New integrable model of quantum field theory in the state space with indefinite metric

    International Nuclear Information System (INIS)

    Makhankov, V.G.; Pashaev, O.K.

    1981-01-01

    The system of coupled nonlinear Schroedinger eqs. (NLS) with noncompact internal symmetry group U(p, q) is considered. It describes in quasiclassical limit the system of two ''coloured'' Bose-gases with point-like interaction. The structure of tran-sition matrix is studied via the spectral transform (ST) (in-verse method). The Poisson brackets of the elements of this matrix and integrals of motion it generates are found. The theory under consideration may be put in the corresponding quantum field theory in the state vector space with indefinite metric. The so-called R matrix (Faddeev) and commutation relations for the transition matrix elements are also obtained, which implies the model to be investigated with the help of the quantum version of ST

  12. Quantum photonics hybrid integration platform

    Energy Technology Data Exchange (ETDEWEB)

    Murray, E.; Floether, F. F. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Ellis, D. J. P.; Meany, T.; Bennett, A. J., E-mail: anthony.bennet@crl.toshiba.co.uk; Shields, A. J. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Lee, J. P. [Cambridge Research Laboratory, Toshiba Research Europe Limited, 208 Science Park, Milton Road, Cambridge CB4 0GZ (United Kingdom); Engineering Department, University of Cambridge, 9 J. J. Thomson Avenue, Cambridge CB3 0FA (United Kingdom); Griffiths, J. P.; Jones, G. A. C.; Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2015-10-26

    Fundamental to integrated photonic quantum computing is an on-chip method for routing and modulating quantum light emission. We demonstrate a hybrid integration platform consisting of arbitrarily designed waveguide circuits and single-photon sources. InAs quantum dots (QD) embedded in GaAs are bonded to a SiON waveguide chip such that the QD emission is coupled to the waveguide mode. The waveguides are SiON core embedded in a SiO{sub 2} cladding. A tuneable Mach Zehnder interferometer (MZI) modulates the emission between two output ports and can act as a path-encoded qubit preparation device. The single-photon nature of the emission was verified using the on-chip MZI as a beamsplitter in a Hanbury Brown and Twiss measurement.

  13. Simulation of quantum dynamics with integrated photonics

    Science.gov (United States)

    Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto

    2012-12-01

    In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.

  14. Modeling Quantum Well Lasers

    Directory of Open Access Journals (Sweden)

    Dan Alexandru Anghel

    2012-01-01

    Full Text Available In semiconductor laser modeling, a good mathematical model gives near-reality results. Three methods of modeling solutions from the rate equations are presented and analyzed. A method based on the rate equations modeled in Simulink to describe quantum well lasers was presented. For different signal types like step function, saw tooth and sinus used as input, a good response of the used equations is obtained. Circuit model resulting from one of the rate equations models is presented and simulated in SPICE. Results show a good modeling behavior. Numerical simulation in MathCad gives satisfactory results for the study of the transitory and dynamic operation at small level of the injection current. The obtained numerical results show the specific limits of each model, according to theoretical analysis. Based on these results, software can be built that integrates circuit simulation and other modeling methods for quantum well lasers to have a tool that model and analysis these devices from all points of view.

  15. F4 quantum integrable, rational and trigonometric models: space-of-orbits view

    International Nuclear Information System (INIS)

    Turbiner, A V; Vieyra, J C Lopez

    2014-01-01

    Algebraic-rational nature of the four-dimensional, F 4 -invariant integrable quantum Hamiltonians, both rational and trigonometric, is revealed and reviewed. It was shown that being written in F 4 Weyl invariants, polynomial and exponential, respectively, both similarity-transformed Hamiltonians are in algebraic form, they are quite similar the second order differential operators with polynomial coefficients; the flat metric in the Laplace-Beltrami operator has polynomial (in invariants) matrix elements. Their potentials are calculated for the first time: they are meromorphic (rational) functions with singularities at the boundaries of the configuration space. Ground state eigenfunctions are algebraic functions in a form of polynomials in some degrees. Both Hamiltonians preserve the same infinite flag of polynomial spaces with characteristic vector (1, 2, 2, 3), it manifests exact solvability. A particular integral common for both models is derived. The first polynomial eigenfunctions are presented explicitly.

  16. Algebraic Bethe ansatz for a quantum integrable derivative nonlinear Schroedinger model

    International Nuclear Information System (INIS)

    Basu-Mallick, B.; Bhattacharyya, Tanaya

    2002-01-01

    We find that the quantum monodromy matrix associated with a derivative nonlinear Schroedinger (DNLS) model exhibits U(2) or U(1,1) symmetry depending on the sign of the related coupling constant. By using a variant of quantum inverse scattering method which is directly applicable to field theoretical models, we derive all possible commutation relations among the operator valued elements of such monodromy matrix. Thus, we obtain the commutation relation between creation and annihilation operators of quasi-particles associated with DNLS model and find out the S-matrix for two-body scattering. We also observe that, for some special values of the coupling constant, there exists an upper bound on the number of quasi-particles which can form a soliton state for the quantum DNLS model

  17. Quantum gravitation. The Feynman path integral approach

    International Nuclear Information System (INIS)

    Hamber, Herbert W.

    2009-01-01

    The book covers the theory of Quantum Gravitation from the point of view of Feynman path integrals. These provide a manifestly covariant approach in which fundamental quantum aspects of the theory such as radiative corrections and the renormalization group can be systematically and consistently addressed. The path integral method is suitable for both perturbative as well as non-perturbative studies, and is known to already provide a framework of choice for the theoretical investigation of non-abelian gauge theories, the basis for three of the four known fundamental forces in nature. The book thus provides a coherent outline of the present status of the theory gravity based on Feynman's formulation, with an emphasis on quantitative results. Topics are organized in such a way that the correspondence to similar methods and results in modern gauge theories becomes apparent. Covariant perturbation theory are developed using the full machinery of Feynman rules, gauge fixing, background methods and ghosts. The renormalization group for gravity and the existence of non-trivial ultraviolet fixed points are investigated, stressing a close correspondence with well understood statistical field theory models. Later the lattice formulation of gravity is presented as an essential tool towards an understanding of key features of the non-perturbative vacuum. The book ends with a discussion of contemporary issues in quantum cosmology such as scale dependent gravitational constants and quantum effects in the early universe. (orig.)

  18. Path Integrals in Quantum Mechanics

    International Nuclear Information System (INIS)

    Chetouani, L

    2005-01-01

    By treating path integrals the author, in this book, places at the disposal of the reader a modern tool for the comprehension of standard quantum mechanics. Thus the most important applications, such as the tunnel effect, the diffusion matrix, etc, are presented from an original point of view on the action S of classical mechanics while having it play a central role in quantum mechanics. What also emerges is that the path integral describes these applications more richly than are described traditionally by differential equations, and consequently explains them more fully. The book is certainly of high quality in all aspects: original in presentation, rigorous in the demonstrations, judicious in the choice of exercises and, finally, modern, for example in the treatment of the tunnel effect by the method of instantons. Moreover, the correspondence that exists between classical and quantum mechanics is well underlined. I thus highly recommend this book (the French version being already available) to those who wish to familiarize themselves with formulation by path integrals. They will find, in addition, interesting topics suitable for exploring further. (book review)

  19. Solution of quantum integrable systems from quiver gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Dorey, Nick [Department of Applied Mathematics and Theoretical Physics, University of Cambridge,Cambridge (United Kingdom); Zhao, Peng [Simons Center for Geometry and Physics, Stony Brook University,Stony Brook (United States)

    2017-02-23

    We construct new integrable systems describing particles with internal spin from four-dimensional N = 2 quiver gauge theories. The models can be quantized and solved exactly using the quantum inverse scattering method and also using the Bethe/Gauge correspondence.

  20. Integrability and nonintegrability of quantum systems. II. Dynamics in quantum phase space

    Science.gov (United States)

    Zhang, Wei-Min; Feng, Da Hsuan; Yuan, Jian-Min

    1990-12-01

    Based on the concepts of integrability and nonintegrability of a quantum system presented in a previous paper [Zhang, Feng, Yuan, and Wang, Phys. Rev. A 40, 438 (1989)], a realization of the dynamics in the quantum phase space is now presented. For a quantum system with dynamical group scrG and in one of its unitary irreducible-representation carrier spaces gerhΛ, the quantum phase space is a 2MΛ-dimensional topological space, where MΛ is the quantum-dynamical degrees of freedom. This quantum phase space is isomorphic to a coset space scrG/scrH via the unitary exponential mapping of the elementary excitation operator subspace of scrg (algebra of scrG), where scrH (⊂scrG) is the maximal stability subgroup of a fixed state in gerhΛ. The phase-space representation of the system is realized on scrG/scrH, and its classical analogy can be obtained naturally. It is also shown that there is consistency between quantum and classical integrability. Finally, a general algorithm for seeking the manifestation of ``quantum chaos'' via the classical analogy is provided. Illustrations of this formulation in several important quantum systems are presented.

  1. Multidimensional quantum entanglement with large-scale integrated optics

    DEFF Research Database (Denmark)

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong

    2018-01-01

    -dimensional entanglement. A programmable bipartite entangled system is realized with dimension up to 15 × 15 on a large-scale silicon-photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality......The ability to control multidimensional quantum systems is key for the investigation of fundamental science and for the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control and analyze high...

  2. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  3. Perturbed path integrals in imaginary time: Efficiently modeling nuclear quantum effects in molecules and materials

    Science.gov (United States)

    Poltavsky, Igor; DiStasio, Robert A.; Tkatchenko, Alexandre

    2018-03-01

    Nuclear quantum effects (NQE), which include both zero-point motion and tunneling, exhibit quite an impressive range of influence over the equilibrium and dynamical properties of molecules and materials. In this work, we extend our recently proposed perturbed path-integral (PPI) approach for modeling NQE in molecular systems [I. Poltavsky and A. Tkatchenko, Chem. Sci. 7, 1368 (2016)], which successfully combines the advantages of thermodynamic perturbation theory with path-integral molecular dynamics (PIMD), in a number of important directions. First, we demonstrate the accuracy, performance, and general applicability of the PPI approach to both molecules and extended (condensed-phase) materials. Second, we derive a series of estimators within the PPI approach to enable calculations of structural properties such as radial distribution functions (RDFs) that exhibit rapid convergence with respect to the number of beads in the PIMD simulation. Finally, we introduce an effective nuclear temperature formalism within the framework of the PPI approach and demonstrate that such effective temperatures can be an extremely useful tool in quantitatively estimating the "quantumness" associated with different degrees of freedom in the system as well as providing a reliable quantitative assessment of the convergence of PIMD simulations. Since the PPI approach only requires the use of standard second-order imaginary-time PIMD simulations, these developments enable one to include a treatment of NQE in equilibrium thermodynamic properties (such as energies, heat capacities, and RDFs) with the accuracy of higher-order methods but at a fraction of the computational cost, thereby enabling first-principles modeling that simultaneously accounts for the quantum mechanical nature of both electrons and nuclei in large-scale molecules and materials.

  4. How to solve path integrals in quantum mechanics

    International Nuclear Information System (INIS)

    Grosche, C.

    1994-10-01

    A systematic classification of Feynman path integrals in quantum mechanics is presented and a table of solvable path integrals is given which reflects the progress made during the last 15 years, including, of course, the main contributions since the invention of the path integral by Feynman in 1942. An outline of the general theory is given which will serve as a quick reference for solving path integrals. Explicit formulae for the so-called basic path integrals are presented on which our general scheme to classify and calculate path integrals in quantum mechanics is based. (orig.)

  5. Structure of the conversion laws in quantum integrable spin chains with short range interactions

    International Nuclear Information System (INIS)

    Grabowski, M.P.; Mathieu, P.

    1995-01-01

    The authors present a detailed analysis of the structure of the conservation laws in quantum integrable chains of the XYZ-type and in the Hubbard model. The essential tool for the former class of models is the boost operator, which provides a recursive way of calculating the integrals of motion. With its help, they establish the general form of the XYZ conserved charges in terms of simple polynomials in spin variables and derive recursion relations for the relative coefficients of these polynomials. Although these relations are difficult to solve in general, a subset of the coefficients can be determined. Moreover, for two submodels of the XYZ chain, namely the XXX and XY cases, all the charges can be calculated in closed form. Using this approach, the authors rederive the known expressions for the XY charges in a novel way. For the XXX case. a simple description of conserved charges is found in terms of a Catalan tree. This construction is generalized for the su(M) invariant integrable chain. They also investigate the circumstances permitting the existence of a recursive (ladder) operator in general quantum integrable systems. They indicate that a quantum ladder operator can be traced back to the presence of a Hamiltonian mastersymmetry of degree one in the classical continuous version of the model. In this way, quantum chains endowed with a recursive structure can be identified from the properties of their classical relatives. The authors also show that in the quantum continuous limits of the XYZ model, the ladder property of the boost operator disappears. For the Hubbard model they demonstrate the nonexistence of a ladder operator. Nevertheless, the general structure of the conserved charges is indicated, and the expression for the terms linear in the model's free parameter for all charges is derived in closed form. 62 refs., 4 figs

  6. Quantum algebra structure of certain Jackson integrals

    International Nuclear Information System (INIS)

    Matsuo, Atsushi

    1993-01-01

    The q-difference system satisfied by Jackson integrals with a configuration of A-type root system is studied. We explicitly construct some linear combination of Jackson integrals, which satisfies the quantum Knizhnik-Zamolodchikov equation for the 2-point correlation function of q-vertex operators, introduced by Frenkel and Reshetik hin, for the quantum affine algebra U q (sl 2 ). The expression of integrands for the n-point case is conjectured, and a set of linear relations for the corresponding Jackson integrals is proved. (orig.)

  7. Multidimensional quantum entanglement with large-scale integrated optics.

    Science.gov (United States)

    Wang, Jianwei; Paesani, Stefano; Ding, Yunhong; Santagati, Raffaele; Skrzypczyk, Paul; Salavrakos, Alexia; Tura, Jordi; Augusiak, Remigiusz; Mančinska, Laura; Bacco, Davide; Bonneau, Damien; Silverstone, Joshua W; Gong, Qihuang; Acín, Antonio; Rottwitt, Karsten; Oxenløwe, Leif K; O'Brien, Jeremy L; Laing, Anthony; Thompson, Mark G

    2018-04-20

    The ability to control multidimensional quantum systems is central to the development of advanced quantum technologies. We demonstrate a multidimensional integrated quantum photonic platform able to generate, control, and analyze high-dimensional entanglement. A programmable bipartite entangled system is realized with dimensions up to 15 × 15 on a large-scale silicon photonics quantum circuit. The device integrates more than 550 photonic components on a single chip, including 16 identical photon-pair sources. We verify the high precision, generality, and controllability of our multidimensional technology, and further exploit these abilities to demonstrate previously unexplored quantum applications, such as quantum randomness expansion and self-testing on multidimensional states. Our work provides an experimental platform for the development of multidimensional quantum technologies. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  8. Integrable multiparametric quantum spin chains

    CERN Document Server

    Förster, A; Roditi, I; Foerster, Angela; Links, Jon; Roditi, Itzhak

    1998-01-01

    Using Reshetikhin's construction for multiparametric quantum algebras we obtain the associated multiparametric quantum spin chains. We show that under certain restrictions these models can be mapped to quantum spin chains with twisted boundary conditions. We illustrate how this general formalism applies to construct multiparametric versions of the supersymmetric t-J and U models.

  9. Entanglement dynamics after quantum quenches in generic integrable systems

    Directory of Open Access Journals (Sweden)

    Vincenzo Alba, Pasquale Calabrese

    2018-03-01

    Full Text Available The time evolution of the entanglement entropy in non-equilibrium quantum systems provides crucial information about the structure of the time-dependent state. For quantum quench protocols, by combining a quasiparticle picture for the entanglement spreading with the exact knowledge of the stationary state provided by Bethe ansatz, it is possible to obtain an exact and analytic description of the evolution of the entanglement entropy. Here we discuss the application of these ideas to several integrable models. First we show that for non-interacting systems, both bosonic and fermionic, the exact time-dependence of the entanglement entropy can be derived by elementary techniques and without solving the dynamics. We then provide exact results for interacting spin chains that are carefully tested against numerical simulations. Finally, we apply this method to integrable one-dimensional Bose gases (Lieb-Liniger model both in the attractive and repulsive regimes. We highlight a peculiar behaviour of the entanglement entropy due to the absence of a maximum velocity of excitations.

  10. A model for the electrical double layer combining integral equation techniques with quantum density functional theory

    International Nuclear Information System (INIS)

    Luque, N.B.; Woelki, S.; Henderson, D.; Schmickler, W.

    2011-01-01

    Highlights: · We augment a double-layer model based on integral equations by calculating the interaction parameters with the electrode from quantum density functional theory · Explicit model calculations for Ag(1 1 1) in aqueous solutions give at least qualitatively good results for the particle profiles · Ours is the only method which allows the calculation of capacity-charge characteristics. · We obtain reasonable values for the Helmholtz (inner-layer) capacity. - Abstract: We have complemented the singlet reference interaction site model for the electric double layer by quantum chemical calculations for the interaction of ions and solvents with an electrode. Specific calculations have been performed for an aqueous solution of NaCl in contact with a Ag(1 1 1) electrode. The particle profiles near the electrode show the specific adsorption of Cl - ions, but not of Na + , and are at least in qualitative agreement with those obtained by molecular dynamics. Including the electronic response of the silver surface into the model results in reasonable capacity-charge characteristics.

  11. Bukhvostov–Lipatov model and quantum-classical duality

    Directory of Open Access Journals (Sweden)

    Vladimir V. Bazhanov

    2018-02-01

    Full Text Available The Bukhvostov–Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1+1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O(3 non-linear sigma model. In our previous work [arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov–Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  12. Bukhvostov-Lipatov model and quantum-classical duality

    Science.gov (United States)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Runov, Boris A.

    2018-02-01

    The Bukhvostov-Lipatov model is an exactly soluble model of two interacting Dirac fermions in 1 + 1 dimensions. The model describes weakly interacting instantons and anti-instantons in the O (3) non-linear sigma model. In our previous work [arxiv:arXiv:1607.04839] we have proposed an exact formula for the vacuum energy of the Bukhvostov-Lipatov model in terms of special solutions of the classical sinh-Gordon equation, which can be viewed as an example of a remarkable duality between integrable quantum field theories and integrable classical field theories in two dimensions. Here we present a complete derivation of this duality based on the classical inverse scattering transform method, traditional Bethe ansatz techniques and analytic theory of ordinary differential equations. In particular, we show that the Bethe ansatz equations defining the vacuum state of the quantum theory also define connection coefficients of an auxiliary linear problem for the classical sinh-Gordon equation. Moreover, we also present details of the derivation of the non-linear integral equations determining the vacuum energy and other spectral characteristics of the model in the case when the vacuum state is filled by 2-string solutions of the Bethe ansatz equations.

  13. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals.

    Science.gov (United States)

    Sinitskiy, Anton V; Voth, Gregory A

    2015-09-07

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman's imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments.

  14. A reductionist perspective on quantum statistical mechanics: Coarse-graining of path integrals

    International Nuclear Information System (INIS)

    Sinitskiy, Anton V.; Voth, Gregory A.

    2015-01-01

    Computational modeling of the condensed phase based on classical statistical mechanics has been rapidly developing over the last few decades and has yielded important information on various systems containing up to millions of atoms. However, if a system of interest contains important quantum effects, well-developed classical techniques cannot be used. One way of treating finite temperature quantum systems at equilibrium has been based on Feynman’s imaginary time path integral approach and the ensuing quantum-classical isomorphism. This isomorphism is exact only in the limit of infinitely many classical quasiparticles representing each physical quantum particle. In this work, we present a reductionist perspective on this problem based on the emerging methodology of coarse-graining. This perspective allows for the representations of one quantum particle with only two classical-like quasiparticles and their conjugate momenta. One of these coupled quasiparticles is the centroid particle of the quantum path integral quasiparticle distribution. Only this quasiparticle feels the potential energy function. The other quasiparticle directly provides the observable averages of quantum mechanical operators. The theory offers a simplified perspective on quantum statistical mechanics, revealing its most reductionist connection to classical statistical physics. By doing so, it can facilitate a simpler representation of certain quantum effects in complex molecular environments

  15. Dynamics of a quantum spin liquid beyond integrability: The Kitaev-Heisenberg-Γ model in an augmented parton mean-field theory

    Science.gov (United States)

    Knolle, Johannes; Bhattacharjee, Subhro; Moessner, Roderich

    2018-04-01

    We present an augmented parton mean-field theory which (i) reproduces the exact ground state, spectrum, and dynamics of the quantum spin-liquid phase of Kitaev's honeycomb model, and (ii) is amenable to the inclusion of integrability breaking terms, allowing a perturbation theory from a controlled starting point. Thus, we exemplarily study dynamical spin correlations of the honeycomb Kitaev quantum spin liquid within the K -J -Γ model, which includes Heisenberg and symmetric-anisotropic (pseudodipolar) interactions. This allows us to trace changes of the correlations in the regime of slowly moving fluxes, where the theory captures the dominant deviations when integrability is lost. These include an asymmetric shift together with a broadening of the dominant peak in the response as a function of frequency, the generation of further-neighbor correlations and their structure in real and spin space, and a resulting loss of an approximate rotational symmetry of the structure factor in reciprocal space. We discuss the limitations of this approach and also view the neutron-scattering experiments on the putative proximate quantum spin-liquid material α -RuCl3 in the light of the results from this extended parton theory.

  16. Path integrals for electronic densities, reactivity indices, and localization functions in quantum systems.

    Science.gov (United States)

    Putz, Mihai V

    2009-11-10

    The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI) development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr's quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions - all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving) many-electronic systems.

  17. Path Integrals for Electronic Densities, Reactivity Indices, and Localization Functions in Quantum Systems

    Directory of Open Access Journals (Sweden)

    Mihai V. Putz

    2009-11-01

    Full Text Available The density matrix theory, the ancestor of density functional theory, provides the immediate framework for Path Integral (PI development, allowing the canonical density be extended for the many-electronic systems through the density functional closure relationship. Yet, the use of path integral formalism for electronic density prescription presents several advantages: assures the inner quantum mechanical description of the system by parameterized paths; averages the quantum fluctuations; behaves as the propagator for time-space evolution of quantum information; resembles Schrödinger equation; allows quantum statistical description of the system through partition function computing. In this framework, four levels of path integral formalism were presented: the Feynman quantum mechanical, the semiclassical, the Feynman-Kleinert effective classical, and the Fokker-Planck non-equilibrium ones. In each case the density matrix or/and the canonical density were rigorously defined and presented. The practical specializations for quantum free and harmonic motions, for statistical high and low temperature limits, the smearing justification for the Bohr’s quantum stability postulate with the paradigmatic Hydrogen atomic excursion, along the quantum chemical calculation of semiclassical electronegativity and hardness, of chemical action and Mulliken electronegativity, as well as by the Markovian generalizations of Becke-Edgecombe electronic focalization functions – all advocate for the reliability of assuming PI formalism of quantum mechanics as a versatile one, suited for analytically and/or computationally modeling of a variety of fundamental physical and chemical reactivity concepts characterizing the (density driving many-electronic systems.

  18. Quantum spectral curves, quantum integrable systems and the geometric Langlands correspondence

    OpenAIRE

    Chervov, A.; Talalaev, D.

    2006-01-01

    The spectral curve is the key ingredient in the modern theory of classical integrable systems. We develop a construction of the ``quantum spectral curve'' and argue that it takes the analogous structural and unifying role on the quantum level also. In the simplest, but essential case the ``quantum spectral curve'' is given by the formula "det"(L(z)-dz) [Talalaev04] (hep-th/0404153). As an easy application of our constructions we obtain the following: quite a universal receipt to define quantu...

  19. Quantum random oracle model for quantum digital signature

    Science.gov (United States)

    Shang, Tao; Lei, Qi; Liu, Jianwei

    2016-10-01

    The goal of this work is to provide a general security analysis tool, namely, the quantum random oracle (QRO), for facilitating the security analysis of quantum cryptographic protocols, especially protocols based on quantum one-way function. QRO is used to model quantum one-way function and different queries to QRO are used to model quantum attacks. A typical application of quantum one-way function is the quantum digital signature, whose progress has been hampered by the slow pace of the experimental realization. Alternatively, we use the QRO model to analyze the provable security of a quantum digital signature scheme and elaborate the analysis procedure. The QRO model differs from the prior quantum-accessible random oracle in that it can output quantum states as public keys and give responses to different queries. This tool can be a test bed for the cryptanalysis of more quantum cryptographic protocols based on the quantum one-way function.

  20. The foundational origin of integrability in quantum field theory

    International Nuclear Information System (INIS)

    Schroer, Bert; FU-Berlin

    2012-02-01

    There are two foundational model-independent concepts of integrability in QFT. One is 'dynamical' and generalizes the solvability in closed analytic form of the dynamical aspects as known from the Kepler two-body problem and its quantum mechanical counterpart. The other, referred to as 'kinematical' integrability, has no classical nor even quantum mechanical counterpart; it describes the relation between so called eld algebra and its local observable subalgebras and their discrete inequivalent representation classes (the DHR theory of superselection sectors). In the standard case of QFTs with mass gaps it contains the information about the representation of the (necessary compact) internal symmetry group and statistics in form of a tracial state on a 'dual group'. In Lagrangian or functional quantization one deals with the eld algebra and the division into observable /eld algebras does presently not play a role in constructive approaches to QFT. 'Kinematical' integrability is however of particular interest in conformal theories where the observable algebra fulfils the Huygens principle (light like propagation) and lives on the compactified Minkowski spacetime whereas the eld algebra, whose spacetime symmetry group is the universal covering of the conformal group lives on the universal covering of the compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show up in the spectrum of the unitary representative of the center of this group , the kinematical structure contained in the relation fields/Huygens observables valuable information which in the usual terminology would be called 'dynamical'. The dynamical integrability is defined in terms of properties of 'wedge localization' and uses the fact that modular localization theory allows to 'emulate' interaction-free wedge-localized operators in a objective manner with the wedge localized interacting algebra. Emulation can be viewed as a generalization of the functorial relation between localized

  1. Spin foam models for quantum gravity

    Science.gov (United States)

    Perez, Alejandro

    The definition of a quantum theory of gravity is explored following Feynman's path-integral approach. The aim is to construct a well defined version of the Wheeler-Misner- Hawking ``sum over four geometries'' formulation of quantum general relativity (GR). This is done by means of exploiting the similarities between the formulation of GR in terms of tetrad-connection variables (Palatini formulation) and a simpler theory called BF theory. One can go from BF theory to GR by imposing certain constraints on the BF-theory configurations. BF theory contains only global degrees of freedom (topological theory) and it can be exactly quantized á la Feynman introducing a discretization of the manifold. Using the path integral for BF theory we define a path integration for GR imposing the BF-to-GR constraints on the BF measure. The infinite degrees of freedom of gravity are restored in the process, and the restriction to a single discretization introduces a cut- off in the summed-over configurations. In order to capture all the degrees of freedom a sum over discretization is implemented. Both the implementation of the BF-to-GR constraints and the sum over discretizations are obtained by means of the introduction of an auxiliary field theory (AFT). 4-geometries in the path integral for GR are given by the Feynman diagrams of the AFT which is in this sense dual to GR. Feynman diagrams correspond to 2-complexes labeled by unitary irreducible representations of the internal gauge group (corresponding to tetrad rotation in the connection to GR). A model for 4-dimensional Euclidean quantum gravity (QG) is defined which corresponds to a different normalization of the Barrett-Crane model. The model is perturbatively finite; divergences appearing in the Barrett-Crane model are cured by the new normalization. We extend our techniques to the Lorentzian sector, where we define two models for four-dimensional QG. The first one contains only time-like representations and is shown to be

  2. Half-integral spin from quantum gravity

    International Nuclear Information System (INIS)

    Friedman, J.L.

    1982-01-01

    For a certain class of three-manifolds, the angular momentum of an asymptotically flat quantum gravitational field can have half-integral values. In the absence of a full theory of quantum gravity, this result relies on a set of apparently natural assumptions governing the kinematics of such a theory. A key feature is that state vectors are in general invariant only under asymptotically trivial diffeomorphisms that can be continuously deformed to the identity. Angular momentum is associated with diffeomorphisms that look asymptotically like rotations; and the question of whether half-integral values occur depends on whether the diffeomorphism associated with a 2π rotation is itself deformable to the identity. (author)

  3. Yang-Baxter algebra - Integrable systems - Conformal quantum field theories

    International Nuclear Information System (INIS)

    Karowski, M.

    1989-01-01

    This series of lectures is based on investigations [1,2] of finite-size corrections for the six-vertex model by means of Bethe ansatz methods. In addition a review on applications of Yang-Baxter algebras and an introduction to the theory of integrable systems and the algebraic Bethe ansatz is presented. A Θ-vacuum like angle appearing in the RSOS-models is discussed. The continuum limit in the critical case of these statistical models is performed to obtain the minimal models of conformal quantum field theory. (author)

  4. Hybrid Integration of Solid-State Quantum Emitters on a Silicon Photonic Chip.

    Science.gov (United States)

    Kim, Je-Hyung; Aghaeimeibodi, Shahriar; Richardson, Christopher J K; Leavitt, Richard P; Englund, Dirk; Waks, Edo

    2017-12-13

    Scalable quantum photonic systems require efficient single photon sources coupled to integrated photonic devices. Solid-state quantum emitters can generate single photons with high efficiency, while silicon photonic circuits can manipulate them in an integrated device structure. Combining these two material platforms could, therefore, significantly increase the complexity of integrated quantum photonic devices. Here, we demonstrate hybrid integration of solid-state quantum emitters to a silicon photonic device. We develop a pick-and-place technique that can position epitaxially grown InAs/InP quantum dots emitting at telecom wavelengths on a silicon photonic chip deterministically with nanoscale precision. We employ an adiabatic tapering approach to transfer the emission from the quantum dots to the waveguide with high efficiency. We also incorporate an on-chip silicon-photonic beamsplitter to perform a Hanbury-Brown and Twiss measurement. Our approach could enable integration of precharacterized III-V quantum photonic devices into large-scale photonic structures to enable complex devices composed of many emitters and photons.

  5. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    Science.gov (United States)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical

  6. Reconstruction of Baxter Q-operator from Sklyanin SOV for cyclic representations of integrable quantum models

    Energy Technology Data Exchange (ETDEWEB)

    Niccoli, G.

    2009-12-15

    In an earlier paper (G. Niccoli and J. Teschner, 2009), the spectrum (eigenvalues and eigenstates) of a lattice regularizations of the Sine-Gordon model has been completely characterized in terms of polynomial solutions with certain properties of the Baxter equation. This characterization for cyclic representations has been derived by the use of the Separation of Variables (SOV) method of Sklyanin and by the direct construction of the Baxter Q-operator family. Here, we reconstruct the Baxter Q-operator and the same characterization of the spectrum by only using the SOV method. This analysis allows us to deduce the main features required for the extension to cyclic representations of other integrable quantum models of this kind of spectrum characterization. (orig.)

  7. Reconstruction of Baxter Q-operator from Sklyanin SOV for cyclic representations of integrable quantum models

    International Nuclear Information System (INIS)

    Niccoli, G.

    2009-12-01

    In an earlier paper (G. Niccoli and J. Teschner, 2009), the spectrum (eigenvalues and eigenstates) of a lattice regularizations of the Sine-Gordon model has been completely characterized in terms of polynomial solutions with certain properties of the Baxter equation. This characterization for cyclic representations has been derived by the use of the Separation of Variables (SOV) method of Sklyanin and by the direct construction of the Baxter Q-operator family. Here, we reconstruct the Baxter Q-operator and the same characterization of the spectrum by only using the SOV method. This analysis allows us to deduce the main features required for the extension to cyclic representations of other integrable quantum models of this kind of spectrum characterization. (orig.)

  8. Quantum Link Models and Quantum Simulation of Gauge Theories

    International Nuclear Information System (INIS)

    Wiese, U.J.

    2015-01-01

    This lecture is about Quantum Link Models and Quantum Simulation of Gauge Theories. The lecture consists out of 4 parts. The first part gives a brief history of Computing and Pioneers of Quantum Computing and Quantum Simulations of Quantum Spin Systems are introduced. The 2nd lecture is about High-Temperature Superconductors versus QCD, Wilson’s Lattice QCD and Abelian Quantum Link Models. The 3rd lecture deals with Quantum Simulators for Abelian Lattice Gauge Theories and Non-Abelian Quantum Link Models. The last part of the lecture discusses Quantum Simulators mimicking ‘Nuclear’ physics and the continuum limit of D-Theorie models. (nowak)

  9. Yang-Baxter algebras of monodromy matrices in integrable quantum field theories

    International Nuclear Information System (INIS)

    Vega, H.J. de; Maillet, J.M.; Eichenherr, H.

    1984-01-01

    We consider a large class of two-dimensional integrable quantum field theories with nonabelian internal symmetry and classical scale invariance. We present a general procedure to determine explicitly the conserved quantum monodromy operator generating infinitely many non-local charges. The main features of our methods are a factorization principle and the use of P, T, and internal symmetries. The monodromy operator is shown to satisfy a Yang-Baxter algebra, the structure constants (i.e. the quantum R-matrix) of which are determined by the two-particle S-matrix of the theory. We apply the method to the chiral SU(N) and the O(2N) Gross-Neveu models. (orig.)

  10. Multifrequency sources of quantum correlated photon pairs on-chip: a path toward integrated Quantum Frequency Combs

    Directory of Open Access Journals (Sweden)

    Caspani Lucia

    2016-06-01

    Full Text Available Recent developments in quantum photonics have initiated the process of bringing photonic-quantumbased systems out-of-the-lab and into real-world applications. As an example, devices to enable the exchange of a cryptographic key secured by the laws of quantum mechanics are already commercially available. In order to further boost this process, the next step is to transfer the results achieved by means of bulky and expensive setups into miniaturized and affordable devices. Integrated quantum photonics is exactly addressing this issue. In this paper, we briefly review the most recent advancements in the generation of quantum states of light on-chip. In particular, we focus on optical microcavities, as they can offer a solution to the problem of low efficiency that is characteristic of the materials typically used in integrated platforms. In addition, we show that specifically designed microcavities can also offer further advantages, such as compatibility with telecom standards (for exploiting existing fibre networks and quantum memories (necessary to extend the communication distance, as well as giving a longitudinal multimode character for larger information transfer and processing. This last property (i.e., the increased dimensionality of the photon quantum state is achieved through the ability to generate multiple photon pairs on a frequency comb, corresponding to the microcavity resonances. Further achievements include the possibility of fully exploiting the polarization degree of freedom, even for integrated devices. These results pave the way for the generation of integrated quantum frequency combs that, in turn, may find important applications toward the realization of a compact quantum-computing platform.

  11. Focus on integrated quantum optics

    International Nuclear Information System (INIS)

    O'Brien, Jeremy; Patton, Brian; Sasaki, Masahide; Vučković, Jelena

    2013-01-01

    A key goal of research into quantum information processing is the development of technologies that are scaleable in complexity while allowing the mass manufacture of devices that promise transformative effects on information science. The demonstration that integrated photonics circuits could be made to perform operations that exploit the quantum nature of the photon has turned them into leading candidates for practical quantum information processing technologies. To fully achieve their promise, however, requires research from diverse fields. This focus issue provides a snapshot of some of the areas in which key advances have been made. We are grateful for the contributions from leading teams based around the globe and hope that the degree of progress being made in a challenging and exciting field is apparent from the papers published here. (editorial)

  12. Quantum model of light transmission in array waveguide gratings.

    Science.gov (United States)

    Capmany, J; Mora, J; Fernández-Pousa, C R; Muñoz, P

    2013-06-17

    We develop, to the best of our knowledge, the first model for an array waveguide grating (AWG) device subject to quantum inputs and analyze its basic transformation functionalities for single-photon states. A commercial, cyclic AWG is experimentally characterized with weak input coherent states as a means of exploring its behaviour under realistic quantum detection. In particular it is shown the existence of a cutoff value of the average photon number below which quantum crosstalk between AWG ports is negligible with respect to dark counts. These results can be useful when considering the application of AWG devices to integrated quantum photonic systems.

  13. Short-Term Load Forecasting Model Based on Quantum Elman Neural Networks

    Directory of Open Access Journals (Sweden)

    Zhisheng Zhang

    2016-01-01

    Full Text Available Short-term load forecasting model based on quantum Elman neural networks was constructed in this paper. The quantum computation and Elman feedback mechanism were integrated into quantum Elman neural networks. Quantum computation can effectively improve the approximation capability and the information processing ability of the neural networks. Quantum Elman neural networks have not only the feedforward connection but also the feedback connection. The feedback connection between the hidden nodes and the context nodes belongs to the state feedback in the internal system, which has formed specific dynamic memory performance. Phase space reconstruction theory is the theoretical basis of constructing the forecasting model. The training samples are formed by means of K-nearest neighbor approach. Through the example simulation, the testing results show that the model based on quantum Elman neural networks is better than the model based on the quantum feedforward neural network, the model based on the conventional Elman neural network, and the model based on the conventional feedforward neural network. So the proposed model can effectively improve the prediction accuracy. The research in the paper makes a theoretical foundation for the practical engineering application of the short-term load forecasting model based on quantum Elman neural networks.

  14. A model of quantum communication device for quantum hashing

    International Nuclear Information System (INIS)

    Vasiliev, A

    2016-01-01

    In this paper we consider a model of quantum communications between classical computers aided with quantum processors, connected by a classical and a quantum channel. This type of communications implying both classical and quantum messages with moderate use of quantum processing is implicitly used in many quantum protocols, such as quantum key distribution or quantum digital signature. We show that using the model of a quantum processor on multiatomic ensembles in the common QED cavity we can speed up quantum hashing, which can be the basis of quantum digital signature and other communication protocols. (paper)

  15. Integrable models in 1+1 dimensional quantum field theory

    International Nuclear Information System (INIS)

    Faddeev, Ludvig.

    1982-09-01

    The goal of this lecture is to present a unifying view on the exactly soluble models. There exist several reasons arguing in favor of the 1+1 dimensional models: every exact solution of a field-theoretical model can teach about the ability of quantum field theory to describe spectrum and scattering; some 1+1 d models have physical applications in the solid state theory. There are several ways to become acquainted with the methods of exactly soluble models: via classical statistical mechanics, via Bethe Ansatz, via inverse scattering method. Fundamental Poisson bracket relation FPR and/or fundamental commutation relations FCR play fundamental role. General classification of FPR is given with promizing generalizations to FCR

  16. Perspective: The future of quantum dot photonic integrated circuits

    Directory of Open Access Journals (Sweden)

    Justin C. Norman

    2018-03-01

    Full Text Available Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS foundries.

  17. Perspective: The future of quantum dot photonic integrated circuits

    Science.gov (United States)

    Norman, Justin C.; Jung, Daehwan; Wan, Yating; Bowers, John E.

    2018-03-01

    Direct epitaxial integration of III-V materials on Si offers substantial manufacturing cost and scalability advantages over heterogeneous integration. The challenge is that epitaxial growth introduces high densities of crystalline defects that limit device performance and lifetime. Quantum dot lasers, amplifiers, modulators, and photodetectors epitaxially grown on Si are showing promise for achieving low-cost, scalable integration with silicon photonics. The unique electrical confinement properties of quantum dots provide reduced sensitivity to the crystalline defects that result from III-V/Si growth, while their unique gain dynamics show promise for improved performance and new functionalities relative to their quantum well counterparts in many devices. Clear advantages for using quantum dot active layers for lasers and amplifiers on and off Si have already been demonstrated, and results for quantum dot based photodetectors and modulators look promising. Laser performance on Si is improving rapidly with continuous-wave threshold currents below 1 mA, injection efficiencies of 87%, and output powers of 175 mW at 20 °C. 1500-h reliability tests at 35 °C showed an extrapolated mean-time-to-failure of more than ten million hours. This represents a significant stride toward efficient, scalable, and reliable III-V lasers on on-axis Si substrates for photonic integrate circuits that are fully compatible with complementary metal-oxide-semiconductor (CMOS) foundries.

  18. Regularized integrable version of the one-dimensional quantum sine-Gordon model

    International Nuclear Information System (INIS)

    Japaridze, G.I.; Nersesyan, A.A.; Wiegmann, P.B.

    1983-01-01

    The authors derive a regularized exactly solvable version of the one-dimensional quantum sine-Gordon model proceeding from the exact solution of the U(1)-symmetric Thirring model. The ground state and the excitation spectrum are obtained in the region ν 2 < 8π. (Auth.)

  19. Time Domain Surface Integral Equation Solvers for Quantum Corrected Electromagnetic Analysis of Plasmonic Nanostructures

    KAUST Repository

    Uysal, Ismail Enes

    2016-10-01

    Plasmonic structures are utilized in many applications ranging from bio-medicine to solar energy generation and transfer. Numerical schemes capable of solving equations of classical electrodynamics have been the method of choice for characterizing scattering properties of such structures. However, as dimensions of these plasmonic structures reduce to nanometer scale, quantum mechanical effects start to appear. These effects cannot be accurately modeled by available classical numerical methods. One of these quantum effects is the tunneling, which is observed when two structures are located within a sub-nanometer distance of each other. At these small distances electrons “jump" from one structure to another and introduce a path for electric current to flow. Classical equations of electrodynamics and the schemes used for solving them do not account for this additional current path. This limitation can be lifted by introducing an auxiliary tunnel with material properties obtained using quantum models and applying a classical solver to the structures connected by this auxiliary tunnel. Early work on this topic focused on quantum models that are generated using a simple one-dimensional wave function to find the tunneling probability and assume a simple Drude model for the permittivity of the tunnel. These tunnel models are then used together with a classical frequency domain solver. In this thesis, a time domain surface integral equation solver for quantum corrected analysis of transient plasmonic interactions is proposed. This solver has several advantages: (i) As opposed to frequency domain solvers, it provides results at a broad band of frequencies with a single simulation. (ii) As opposed to differential equation solvers, it only discretizes surfaces (reducing number of unknowns), enforces the radiation condition implicitly (increasing the accuracy), and allows for time step selection independent of spatial discretization (increasing efficiency). The quantum model

  20. Are Quantum Models for Order Effects Quantum?

    Science.gov (United States)

    Moreira, Catarina; Wichert, Andreas

    2017-12-01

    The application of principles of Quantum Mechanics in areas outside of physics has been getting increasing attention in the scientific community in an emergent disciplined called Quantum Cognition. These principles have been applied to explain paradoxical situations that cannot be easily explained through classical theory. In quantum probability, events are characterised by a superposition state, which is represented by a state vector in a N-dimensional vector space. The probability of an event is given by the squared magnitude of the projection of this superposition state into the desired subspace. This geometric approach is very useful to explain paradoxical findings that involve order effects, but do we really need quantum principles for models that only involve projections? This work has two main goals. First, it is still not clear in the literature if a quantum projection model has any advantage towards a classical projection. We compared both models and concluded that the Quantum Projection model achieves the same results as its classical counterpart, because the quantum interference effects play no role in the computation of the probabilities. Second, it intends to propose an alternative relativistic interpretation for rotation parameters that are involved in both classical and quantum models. In the end, instead of interpreting these parameters as a similarity measure between questions, we propose that they emerge due to the lack of knowledge concerned with a personal basis state and also due to uncertainties towards the state of world and towards the context of the questions.

  1. Super-Quantum Mechanics in the Integral Form Formalism

    Science.gov (United States)

    Castellani, L.; Catenacci, R.; Grassi, P. A.

    2018-05-01

    We reformulate Super Quantum Mechanics in the context of integral forms. This framework allows to interpolate between different actions for the same theory, connected by different choices of Picture Changing Operators (PCO). In this way we retrieve component and superspace actions, and prove their equivalence. The PCO are closed integral forms, and can be interpreted as super Poincar\\'e duals of bosonic submanifolds embedded into a supermanifold.. We use them to construct Lagrangians that are top integral forms, and therefore can be integrated on the whole supermanifold. The $D=1, ~N=1$ and the $D=1,~ N=2$ cases are studied, in a flat and in a curved supermanifold. In this formalism we also consider coupling with gauge fields, Hilbert space of quantum states and observables.

  2. Slow dynamics in translation-invariant quantum lattice models

    Science.gov (United States)

    Michailidis, Alexios A.; Žnidarič, Marko; Medvedyeva, Mariya; Abanin, Dmitry A.; Prosen, Tomaž; Papić, Z.

    2018-03-01

    Many-body quantum systems typically display fast dynamics and ballistic spreading of information. Here we address the open problem of how slow the dynamics can be after a generic breaking of integrability by local interactions. We develop a method based on degenerate perturbation theory that reveals slow dynamical regimes and delocalization processes in general translation invariant models, along with accurate estimates of their delocalization time scales. Our results shed light on the fundamental questions of the robustness of quantum integrable systems and the possibility of many-body localization without disorder. As an example, we construct a large class of one-dimensional lattice models where, despite the absence of asymptotic localization, the transient dynamics is exceptionally slow, i.e., the dynamics is indistinguishable from that of many-body localized systems for the system sizes and time scales accessible in experiments and numerical simulations.

  3. Quantum versus classical integrability in Calogero-Moser systems

    International Nuclear Information System (INIS)

    Corrigan, E.; Sasaki, R.

    2002-01-01

    Calogero-Moser systems are classical and quantum integrable multiparticle dynamics defined for any root system Δ. The quantum Calogero systems having 1/q 2 potential and a confining q 2 potential and the Sutherland systems with 1/sin 2 q potentials have 'integer' energy spectra characterized by the root system Δ. Various quantities of the corresponding classical systems, e.g. minimum energy, frequencies of small oscillations, the eigenvalues of the classical Lax pair matrices etc, at the equilibrium point of the potential are investigated analytically as well as numerically for all root systems. To our surprise, most of these classical data are also 'integers', or they appear to be 'quantized'. To be more precise, these quantities are polynomials of the coupling constant(s) with integer coefficients. The close relationship between quantum and classical integrability in Calogero-Moser systems deserves fuller analytical treatment, which would lead to better understanding of these systems and of integrable systems in general. (author)

  4. Quantum group and quantum symmetry

    International Nuclear Information System (INIS)

    Chang Zhe.

    1994-05-01

    This is a self-contained review on the theory of quantum group and its applications to modern physics. A brief introduction is given to the Yang-Baxter equation in integrable quantum field theory and lattice statistical physics. The quantum group is primarily introduced as a systematic method for solving the Yang-Baxter equation. Quantum group theory is presented within the framework of quantum double through quantizing Lie bi-algebra. Both the highest weight and the cyclic representations are investigated for the quantum group and emphasis is laid on the new features of representations for q being a root of unity. Quantum symmetries are explored in selected topics of modern physics. For a Hamiltonian system the quantum symmetry is an enlarged symmetry that maintains invariance of equations of motion and allows a deformation of the Hamiltonian and symplectic form. The configuration space of the integrable lattice model is analyzed in terms of the representation theory of quantum group. By means of constructing the Young operators of quantum group, the Schroedinger equation of the model is transformed to be a set of coupled linear equations that can be solved by the standard method. Quantum symmetry of the minimal model and the WZNW model in conformal field theory is a hidden symmetry expressed in terms of screened vertex operators, and has a deep interplay with the Virasoro algebra. In quantum group approach a complete description for vibrating and rotating diatomic molecules is given. The exact selection rules and wave functions are obtained. The Taylor expansion of the analytic formulas of the approach reproduces the famous Dunham expansion. (author). 133 refs, 20 figs

  5. Collective versus single-particle motion in quantum many-body systems from the perspective of an integrable model

    Energy Technology Data Exchange (ETDEWEB)

    Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas, E-mail: jens.haemmerling@uni-due.d [Universitaet Duisburg-Essen, Lotharstrasse 1, 47048 Duisburg (Germany)

    2010-07-02

    We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.

  6. Collective versus single-particle motion in quantum many-body systems from the perspective of an integrable model

    International Nuclear Information System (INIS)

    Haemmerling, Jens; Gutkin, Boris; Guhr, Thomas

    2010-01-01

    We study the emergence of collective dynamics in the integrable Hamiltonian system of two finite ensembles of coupled harmonic oscillators. After identification of a collective degree of freedom, the Hamiltonian is mapped onto a model of Caldeira-Leggett type, where the collective coordinate is coupled to an internal bath of phonons. In contrast to the usual Caldeira-Leggett model, the bath in the present case is part of the system. We derive an equation of motion for the collective coordinate which takes the form of a damped harmonic oscillator. We show that the distribution of quantum transition strengths induced by the collective mode is determined by its classical dynamics.

  7. Integration of quantum key distribution and private classical communication through continuous variable

    Science.gov (United States)

    Wang, Tianyi; Gong, Feng; Lu, Anjiang; Zhang, Damin; Zhang, Zhengping

    2017-12-01

    In this paper, we propose a scheme that integrates quantum key distribution and private classical communication via continuous variables. The integrated scheme employs both quadratures of a weak coherent state, with encrypted bits encoded on the signs and Gaussian random numbers encoded on the values of the quadratures. The integration enables quantum and classical data to share the same physical and logical channel. Simulation results based on practical system parameters demonstrate that both classical communication and quantum communication can be implemented over distance of tens of kilometers, thus providing a potential solution for simultaneous transmission of quantum communication and classical communication.

  8. Quantum quenches with integrable pre-quench dynamics

    OpenAIRE

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t=0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench.

  9. Quantum quenches with integrable pre-quench dynamics

    International Nuclear Information System (INIS)

    Delfino, Gesualdo

    2014-01-01

    We consider the unitary time evolution of a one-dimensional quantum system which is in a stationary state for negative times and then undergoes a sudden change (quench) of a parameter of its Hamiltonian at t = 0. For systems possessing a continuum limit described by a massive quantum field theory we investigate in general perturbative quenches for the case in which the theory is integrable before the quench. (fast track communication)

  10. Quadratic integrals of motion for identical particle systems in quantum case

    International Nuclear Information System (INIS)

    Brije, I.; Gonera, S.; Kosinski, P.; Maslanka, P.; Giller, S.

    2005-01-01

    One studied quantum dynamic systems of identical particles allowing for additional integral of motion being quadratic in pulses. It was found that there was an appropriate way to ensure order that enabled to convert the classical integrals of motion into their quantum analogues. One analyzed relation of the mentioned integrals with splitting of the variables in the Schroedinger equation [ru

  11. Investigation of the spinfoam path integral with quantum cuboid intertwiners

    Science.gov (United States)

    Bahr, Benjamin; Steinhaus, Sebastian

    2016-05-01

    In this work, we investigate the 4d path integral for Euclidean quantum gravity on a hypercubic lattice, as given by the spinfoam model by Engle, Pereira, Rovelli, Livine, Freidel and Krasnov. To tackle the problem, we restrict to a set of quantum geometries that reflects the large amount of lattice symmetries. In particular, the sum over intertwiners is restricted to quantum cuboids, i.e. coherent intertwiners which describe a cuboidal geometry in the large-j limit. Using asymptotic expressions for the vertex amplitude, we find several interesting properties of the state sum. First of all, the value of coupling constants in the amplitude functions determines whether geometric or nongeometric configurations dominate the path integral. Secondly, there is a critical value of the coupling constant α , which separates two phases. In both phases, the diffeomorphism symmetry appears to be broken. In one, the dominant contribution comes from highly irregular, in the other from highly regular configurations, both describing flat Euclidean space with small quantum fluctuations around them, viewed in different coordinate systems. On the critical point diffeomorphism symmetry is nearly restored, however. Thirdly, we use the state sum to compute the physical norm of kinematical states, i.e. their norm in the physical Hilbert space. We find that states which describe boundary geometry with high torsion have an exponentially suppressed physical norm. We argue that this allows one to exclude them from the state sum in calculations.

  12. Tunable quantum interference in a 3D integrated circuit.

    Science.gov (United States)

    Chaboyer, Zachary; Meany, Thomas; Helt, L G; Withford, Michael J; Steel, M J

    2015-04-27

    Integrated photonics promises solutions to questions of stability, complexity, and size in quantum optics. Advances in tunable and non-planar integrated platforms, such as laser-inscribed photonics, continue to bring the realisation of quantum advantages in computation and metrology ever closer, perhaps most easily seen in multi-path interferometry. Here we demonstrate control of two-photon interference in a chip-scale 3D multi-path interferometer, showing a reduced periodicity and enhanced visibility compared to single photon measurements. Observed non-classical visibilities are widely tunable, and explained well by theoretical predictions based on classical measurements. With these predictions we extract Fisher information approaching a theoretical maximum. Our results open a path to quantum enhanced phase measurements.

  13. Micromachined integrated quantum circuit containing a superconducting qubit

    Science.gov (United States)

    Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert

    We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.

  14. Supersymmetric quantum mechanics: another nontrivial quantum superpotential

    International Nuclear Information System (INIS)

    Cervero, J.M.

    1991-01-01

    A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)

  15. Hybrid quantum-classical modeling of quantum dot devices

    Science.gov (United States)

    Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas

    2017-11-01

    The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.

  16. Inclusive integral evaluation for mammograms using the hierarchical fuzzy integral (HFI) model

    International Nuclear Information System (INIS)

    Amano, Takashi; Yamashita, Kazuya; Arao, Shinichi; Kitayama, Akira; Hayashi, Akiko; Suemori, Shinji; Ohkura, Yasuhiko

    2000-01-01

    Physical factors (physically evaluated values) and psychological factors (fuzzy measurements) of breast x-ray images were comprehensively evaluated by applying breast x-ray images to an extended stratum-type fuzzy integrating model. In addition, x-ray images were evaluated collectively by integrating the quality (sharpness, graininess, and contrast) of x-ray images and three representative shadows (fibrosis, calcification, tumor) in the breast x-ray images. We selected the most appropriate system for radiography of the breast from three kinds of intensifying screens and film systems for evaluation by this method and investigated the relationship between the breast x-ray images and noise equivalent quantum number, which is called the overall physical evaluation method, and between the breast x-ray images and psychological evaluation by a visual system with a stratum-type fuzzy integrating model. We obtained a linear relationship between the breast x-ray image and noise-equivalent quantum number, and linearity between the breast x-ray image and psychological evaluation by the visual system. Therefore, the determination of fuzzy measurement, which is a scale for fuzzy evaluation of psychological factors of the observer, and physically evaluated values with a stratum-type fuzzy integrating model enabled us to make a comprehensive evaluation of x-ray images that included both psychological and physical aspects. (author)

  17. Quantum integrals from coalgebra structure

    International Nuclear Information System (INIS)

    Post, S; Riglioni, D

    2015-01-01

    Quantum versions of the hydrogen atom and the harmonic oscillator are studied on non Euclidean spaces of dimension N. 2N−1 integrals, of arbitrary order, are constructed via a multi-dimensional version of the factorization method, thus confirming the conjecture of Riglioni (2013 J. Phys. A: Math. Theor. 46 265207). The systems are extended via coalgebra extension of sl(2) representations, although not all integrals are expressible in these generators. As an example, dimensional reduction is applied to four-dimensional systems to obtain extension and new proofs of the superintegrability of known families of Hamiltonians. (paper)

  18. Functional integral in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Ktitarev, D.V.

    1990-01-01

    The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs

  19. Integrability and chaos in quantum systems (as viewed from geometry and dynamical symmetry)

    International Nuclear Information System (INIS)

    Zhang, Wei-Min.

    1989-01-01

    It is known that the development and deep understanding of modern interaction theory and classical mechanics are made through geometry and symmetry. Yet, quantum mechanics which was regarded to be the microscopic theory of classical mechanics and achieved the crowning success in interpreting the entire microscopic world was developed purely from algebraic methods. In this thesis, the author will study the geometry and dynamical symmetry in quantum systems, from which the question of integrability and chaos are explicitly addressed. First of all, the quantum dynamical degrees of freedom and quantum integrability are precisely defined and the inherent geometrical structure of quantum systems is explored from the fundamental structure of quantum theory. Such a geometrical structure can provide a framework to simultaneously build quantum and classical mechanics. The quantum-classical correspondence is then explicitly deduced. The dynamics of quantum system before it reaches the classical limit is formulated. Thus, the classical chaos is proven to be a special limiting phenomena of quantum systems and the dynamics before the system reaches its classical chaos is explored. The latter is the first step to seek the quantum manifestation of chaos. The relationship between integrability and dynamical symmetry are studied and some universal properties are discovered: a dynamical system (both quantum and classical) in integrable if it possesses a dynamical symmetry. Chaos will occur if the system undergoes a dynamical symmetry breaking and is accompanied by a structural phase transition. Thus, the concept of dynamical symmetry can be used to predict the general behaviors of a system. The theoretical underpinnings developed in this thesis are verified by many basic quantum mechanical examples

  20. An introduction to integrable techniques in one-dimensional quantum systems

    CERN Document Server

    Franchini, Fabio

    2017-01-01

    This book introduces the reader to basic notions of integrable techniques for one-dimensional quantum systems. In a pedagogical way, a few examples of exactly solvable models are worked out to go from the coordinate approach to the Algebraic Bethe Ansatz, with some discussion on the finite temperature thermodynamics. The aim is to provide the instruments to approach more advanced books or to allow for a critical reading of research articles and the extraction of useful information from them. We describe the solution of the anisotropic XY spin chain; of the Lieb-Liniger model of bosons with contact interaction at zero and finite temperature; and of the XXZ spin chain, first in the coordinate and then in the algebraic approach. To establish the connection between the latter and the solution of two dimensional classical models, we also introduce and solve the 6-vertex model. Finally, the low energy physics of these integrable models is mapped into the corresponding conformal field theory. Through its style and t...

  1. Deformed Calogero-Sutherland model and fractional quantum Hall effect

    Science.gov (United States)

    Atai, Farrokh; Langmann, Edwin

    2017-01-01

    The deformed Calogero-Sutherland (CS) model is a quantum integrable system with arbitrary numbers of two types of particles and reducing to the standard CS model in special cases. We show that a known collective field description of the CS model, which is based on conformal field theory (CFT), is actually a collective field description of the deformed CS model. This provides a natural application of the deformed CS model in Wen's effective field theory of the fractional quantum Hall effect (FQHE), with the two kinds of particles corresponding to electrons and quasi-hole excitations. In particular, we use known mathematical results about super-Jack polynomials to obtain simple explicit formulas for the orthonormal CFT basis proposed by van Elburg and Schoutens in the context of the FQHE.

  2. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Directory of Open Access Journals (Sweden)

    D.X. Horváth

    2016-01-01

    Full Text Available We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  3. Initial states in integrable quantum field theory quenches from an integral equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Horváth, D.X., E-mail: esoxluciuslinne@gmail.com [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary); Sotiriadis, S., E-mail: sotiriad@sissa.it [SISSA and INFN, Via Bonomea 265, 34136 Trieste (Italy); Takács, G., E-mail: takacsg@eik.bme.hu [MTA-BME “Momentum” Statistical Field Theory Research Group, Budafoki út 8, 1111 Budapest (Hungary); Department of Theoretical Physics, Budapest University of Technology and Economics, Budafoki út 8, 1111 Budapest (Hungary)

    2016-01-15

    We consider the problem of determining the initial state of integrable quantum field theory quenches in terms of the post-quench eigenstates. The corresponding overlaps are a fundamental input to most exact methods to treat integrable quantum quenches. We construct and examine an infinite integral equation hierarchy based on the form factor bootstrap, proposed earlier as a set of conditions determining the overlaps. Using quenches of the mass and interaction in Sinh-Gordon theory as a concrete example, we present theoretical arguments that the state has the squeezed coherent form expected for integrable quenches, and supporting an Ansatz for the solution of the hierarchy. Moreover we also develop an iterative method to solve numerically the lowest equation of the hierarchy. The iterative solution along with extensive numerical checks performed using the next equation of the hierarchy provides a strong numerical evidence that the proposed Ansatz gives a very good approximation for the solution.

  4. On the quantum inverse scattering problem

    International Nuclear Information System (INIS)

    Maillet, J.M.; Terras, V.

    2000-01-01

    A general method for solving the so-called quantum inverse scattering problem (namely the reconstruction of local quantum (field) operators in term of the quantum monodromy matrix satisfying a Yang-Baxter quadratic algebra governed by an R-matrix) for a large class of lattice quantum integrable models is given. The principal requirement being the initial condition (R(0)=P, the permutation operator) for the quantum R-matrix solving the Yang-Baxter equation, it applies not only to most known integrable fundamental lattice models (such as Heisenberg spin chains) but also to lattice models with arbitrary number of impurities and to the so-called fused lattice models (including integrable higher spin generalizations of Heisenberg chains). Our method is then applied to several important examples like the sl n XXZ model, the XYZ spin-((1)/(2)) chain and also to the spin-s Heisenberg chains

  5. The formal path integral and quantum mechanics

    International Nuclear Information System (INIS)

    Johnson-Freyd, Theo

    2010-01-01

    Given an arbitrary Lagrangian function on R d and a choice of classical path, one can try to define Feynman's path integral supported near the classical path as a formal power series parameterized by 'Feynman diagrams', although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a 'Fubini theorem' expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by 'cutting and pasting' and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic 'formal path integral' for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.

  6. Classification of the quantum two dimensional superintegrable systems with quadratic integrals and the Stackel transforms

    International Nuclear Information System (INIS)

    Dakaloyannis, C.

    2006-01-01

    Full text: (author)The two dimensional quantum superintegrable systems with quadratic integrals of motion on a manifold are classified by using the quadratic associative algebra of the integrals of motion. There are six general fundamental classes of quantum superintegrable systems corresponding to the classical ones. Analytic formulas for the involved integrals are calculated in all the cases. All the known quantum superintegrable systems with quadratic integrals are classified as special cases of these six general classes. The coefficients of the quadratic associative algebra of integrals are calculated and they are compared to the coefficients of the corresponding coefficients of the Poisson quadratic algebra of the classical systems. The quantum coefficients are similar as the classical ones multiplied by a quantum coefficient -n 2 plus a quantum deformation of order n 4 and n 6 . The systems inside the classes are transformed using Stackel transforms in the quantum case as in the classical case and general form is discussed. The idea of the Jacobi Hamiltonian corresponding to the Jacobi metric in the classical case is discussed

  7. Polymer quantum mechanics some examples using path integrals

    International Nuclear Information System (INIS)

    Parra, Lorena; Vergara, J. David

    2014-01-01

    In this work we analyze several physical systems in the context of polymer quantum mechanics using path integrals. First we introduce the group averaging method to quantize constrained systems with path integrals and later we use this procedure to compute the effective actions for the polymer non-relativistic particle and the polymer harmonic oscillator. We analyze the measure of the path integral and we describe the semiclassical dynamics of the systems

  8. An integrated processor for photonic quantum states using a broadband light–matter interface

    International Nuclear Information System (INIS)

    Saglamyurek, E; Sinclair, N; Slater, J A; Heshami, K; Oblak, D; Tittel, W

    2014-01-01

    Faithful storage and coherent manipulation of quantum optical pulses are key for long distance quantum communications and quantum computing. Combining these functions in a light–matter interface that can be integrated on-chip with other photonic quantum technologies, e.g. sources of entangled photons, is an important step towards these applications. To date there have only been a few demonstrations of coherent pulse manipulation utilizing optical storage devices compatible with quantum states, and that only in atomic gas media (making integration difficult) and with limited capabilities. Here we describe how a broadband waveguide quantum memory based on the atomic frequency comb (AFC) protocol can be used as a programmable processor for essentially arbitrary spectral and temporal manipulations of individual quantum optical pulses. Using weak coherent optical pulses at the few photon level, we experimentally demonstrate sequencing, time-to-frequency multiplexing and demultiplexing, splitting, interfering, temporal and spectral filtering, compressing and stretching as well as selective delaying. Our integrated light–matter interface offers high-rate, robust and easily configurable manipulation of quantum optical pulses and brings fully practical optical quantum devices one step closer to reality. Furthermore, as the AFC protocol is suitable for storage of intense light pulses, our processor may also find applications in classical communications. (paper)

  9. Single-server blind quantum computation with quantum circuit model

    Science.gov (United States)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  10. Fractional quantum integral operator with general kernels and applications

    Science.gov (United States)

    Babakhani, Azizollah; Neamaty, Abdolali; Yadollahzadeh, Milad; Agahi, Hamzeh

    In this paper, we first introduce the concept of fractional quantum integral with general kernels, which generalizes several types of fractional integrals known from the literature. Then we give more general versions of some integral inequalities for this operator, thus generalizing some previous results obtained by many researchers.2,8,25,29,30,36

  11. CP1 model with Hopf interaction: the quantum theory

    International Nuclear Information System (INIS)

    Chakraborty, B.; Ghosh, Subir; Malik, R.P.

    2001-01-01

    The CP 1 model with Hopf interaction is quantised following the Batalin-Tyutin (BT) prescription. In this scheme, extra BT fields are introduced which allow for the existence of only commuting first-class constraints. Explicit expression for the quantum correction to the expectation value of the energy density and angular momentum in the physical sector of this model is derived. The result shows, in the particular operator ordering prescription we have chosen to work with, that the quantum effect has the usual divergent contribution of O(ℎ 2 ) in the energy expectation value. But, interestingly the Hopf term, though topological in nature, can have a finite O(ℎ) contribution to energy density in the homotopically nontrivial topological sector. The angular momentum operator, however, is found to have no quantum correction at O(ℎ), indicating the absence of any fractional spin even at this quantum level. Finally, the extended Lagrangian incorporating the BT auxiliary fields is computed in the conventional framework of BRST formalism exploiting Faddeev-Popov technique of path integral method

  12. Integration of classical and quantum physics

    International Nuclear Information System (INIS)

    Tisza, L.

    1989-01-01

    The perennial aspect of the Newtonian foundation of mathematical physics is that the concept of ''motion,'' that is, ''kinematics,'' is to serve as the interface between mathematics and physics. Kinematics subdivides into the theory of orbital translation and that of undulation and spinning. Newtonian mechanics is based on giving to translational kinematics a priority over the other modes, since planetary revolution can be represented as translation modified by gravitation. The so-called breakdown of classical physics stems from giving the translational priority a canonical status and extending it to the constituents of matter. We claim that in this case the priority is to be reversed. The main content of this paper is to establish the algebraic model for an indivisible, undulating entity that we call a ''wave simplex.'' It is used as the point of departure for a non-Newtonian quantum dynamics in which physical and algebraic concepts are in close correspondence. The postulates of the classical phenomenological theories and those of the canonical theories based on translational priority are established as theorems under the proper limiting conditions, and forces are constructed rather than postulated. While the formal structure of two-level quantum mechanics is established as well, exception is taken to treating spin as a property of a point particle. It is considered self-evident that a spinning object is orientable, a property accounted for in terms of a unitary triplet. This is the point of departure for an intrinsic particle dynamics. A main result is the integration of classical and quantum physics, thus closing the gap created by the heuristic method of canonical quantization

  13. Irreducible integrable theories form tensor products of conformal models

    International Nuclear Information System (INIS)

    Mathur, S.D.; Warner, N.P.

    1991-01-01

    By using Toda field theories we show that there are perturbations of direct products of conformal theories that lead to irreducible integrable field theories. The same affine Toda theory can be truncated to different quantum integrable models for different choices of the charge at infinity and the coupling. The classification of integrable models that can be obtained in this fashion follows the classification of symmetric spaces of type G/H with rank H = rank G. (orig.)

  14. Integrated Visible Photonics for Trapped-Ion Quantum Computing

    Science.gov (United States)

    2017-06-10

    etch to provide a smooth oxide facet, and clearance for fiber positioning for edge input coupling. Integrated Visible Photonics for Trapped-Ion...capability to optically address individual ions at several wavelengths. We demonstrate a dual-layered silicon nitride photonic platform for integration...coherence times, strong coulomb interactions, and optical addressability, hold great promise for implementation of practical quantum information

  15. Supersymmetric quantum spin chains and classical integrable systems

    International Nuclear Information System (INIS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-01-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  16. Quantum biological information theory

    CERN Document Server

    Djordjevic, Ivan B

    2016-01-01

    This book is a self-contained, tutorial-based introduction to quantum information theory and quantum biology. It serves as a single-source reference to the topic for researchers in bioengineering, communications engineering, electrical engineering, applied mathematics, biology, computer science, and physics. The book provides all the essential principles of the quantum biological information theory required to describe the quantum information transfer from DNA to proteins, the sources of genetic noise and genetic errors as well as their effects. Integrates quantum information and quantum biology concepts; Assumes only knowledge of basic concepts of vector algebra at undergraduate level; Provides a thorough introduction to basic concepts of quantum information processing, quantum information theory, and quantum biology; Includes in-depth discussion of the quantum biological channel modelling, quantum biological channel capacity calculation, quantum models of aging, quantum models of evolution, quantum models o...

  17. Asymptotic behavior of observables in the asymmetric quantum Rabi model

    Science.gov (United States)

    Semple, J.; Kollar, M.

    2018-01-01

    The asymmetric quantum Rabi model with broken parity invariance shows spectral degeneracies in the integer case, that is when the asymmetry parameter equals an integer multiple of half the oscillator frequency, thus hinting at a hidden symmetry and accompanying integrability of the model. We study the expectation values of spin observables for each eigenstate and observe characteristic differences between the integer and noninteger cases for the asymptotics in the deep strong coupling regime, which can be understood from a perturbative expansion in the qubit splitting. We also construct a parent Hamiltonian whose exact eigenstates possess the same symmetries as the perturbative eigenstates of the asymmetric quantum Rabi model in the integer case.

  18. Integral transforms of the quantum mechanical path integral: Hit function and path-averaged potential

    Science.gov (United States)

    Edwards, James P.; Gerber, Urs; Schubert, Christian; Trejo, Maria Anabel; Weber, Axel

    2018-04-01

    We introduce two integral transforms of the quantum mechanical transition kernel that represent physical information about the path integral. These transforms can be interpreted as probability distributions on particle trajectories measuring respectively the relative contribution to the path integral from paths crossing a given spatial point (the hit function) and the likelihood of values of the line integral of the potential along a path in the ensemble (the path-averaged potential).

  19. Exact results for quantum chaotic systems and one-dimensional fermions from matrix models

    International Nuclear Information System (INIS)

    Simons, B.D.; Lee, P.A.; Altshuler, B.L.

    1993-01-01

    We demonstrate a striking connection between the universal parametric correlations of the spectra of quantum chaotic systems and a class of integrable quantum hamiltonians. We begin by deriving a non-perturbative expression for the universal m-point correlation function of the spectra of random matrix ensembles in terms of a non-linear supermatrix σ-model. These results are shown to coincide with those from previous studies of weakly disordered metallic systems. We then introduce a continuous matrix model which describes the quantum mechanics of the Sutherland hamiltonian describing particles interacting through an inverse-square pairwise potential. We demonstrate that a field theoretic approach can be employed to determine exact analytical expressions for correlations of the quantum hamiltonian. The results, which are expressed in terms of a non-linear σ-model, are shown to coincide with those for analogous correlation functions of random matrix ensembles after an appropriate change of variables. We also discuss possible generalizations of the matrix model to higher dimensions. These results reveal a common mathematical structure which underlies branches of theoretical physics ranging from continuous matrix models to strongly interacting quantum hamiltonians, and universalities in the spectra of quantum chaotic systems. (orig.)

  20. Quantum aspects of the noncommutative Sine-Gordon model

    International Nuclear Information System (INIS)

    Kuerkcueoglu

    2007-01-01

    In this talk, I will first present some of the quantum field theoretical aspects of the integrable noncommutative sine-Gordon model proposed in [hep-th/0406065] using standard semi-classical methods. In particular, I will discuss the fluctuations at quadratic order around the static kink solution using the background field method. I will argue that at 0(θ 2 ) the spectrum of fluctuations remains essentially the same as that of the corresponding commutative theory. A brief analysis of one-loop two-point functions will also be presented and it will be followed by some remarks on the obstacles in determining the noncommutativity corrections to the quantum mass of the kink. (author)

  1. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    Science.gov (United States)

    Lv, Dingshun; An, Shuoming; Liu, Zhenyu; Zhang, Jing-Ning; Pedernales, Julen S.; Lamata, Lucas; Solano, Enrique; Kim, Kihwan

    2018-04-01

    The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  2. Quantum Simulation of the Quantum Rabi Model in a Trapped Ion

    Directory of Open Access Journals (Sweden)

    Dingshun Lv

    2018-04-01

    Full Text Available The quantum Rabi model, involving a two-level system and a bosonic field mode, is arguably the simplest and most fundamental model describing quantum light-matter interactions. Historically, due to the restricted parameter regimes of natural light-matter processes, the richness of this model has been elusive in the lab. Here, we experimentally realize a quantum simulation of the quantum Rabi model in a single trapped ion, where the coupling strength between the simulated light mode and atom can be tuned at will. The versatility of the demonstrated quantum simulator enables us to experimentally explore the quantum Rabi model in detail, including a wide range of otherwise unaccessible phenomena, as those happening in the ultrastrong and deep strong-coupling regimes. In this sense, we are able to adiabatically generate the ground state of the quantum Rabi model in the deep strong-coupling regime, where we are able to detect the nontrivial entanglement between the bosonic field mode and the two-level system. Moreover, we observe the breakdown of the rotating-wave approximation when the coupling strength is increased, and the generation of phonon wave packets that bounce back and forth when the coupling reaches the deep strong-coupling regime. Finally, we also measure the energy spectrum of the quantum Rabi model in the ultrastrong-coupling regime.

  3. Strings as multi-particle states of quantum sigma-models

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Sakai, Kazuhiro; Vieira, Pedro

    2007-01-01

    We study the quantum Bethe ansatz equations in the O(2n) sigma-model for physical particles on a circle, with the interaction given by the Zamolodchikovs'S-matrix, in view of its application to quantization of the string on the S 2n-1 xR t space. For a finite number of particles, the system looks like an inhomogeneous integrable O(2n) spin chain. Similarly to OSp(2m+n|2m) conformal sigma-model considered by Mann and Polchinski, we reproduce in the limit of large density of particles the finite gap Kazakov-Marshakov-Minahan-Zarembo solution for the classical string and its generalization to the S 5 xR t sector of the Green-Schwarz-Metsaev-Tseytlin superstring. We also reproduce some quantum effects: the BMN limit and the quantum homogeneous spin chain similar to the one describing the bosonic sector of the one-loop N=4 super-Yang-Mills theory. We discuss the prospects of generalization of these Bethe equations to the full superstring sigma-model

  4. Quantum mechanical path integrals in curved spaces and the type-A trace anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bastianelli, Fiorenzo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Corradini, Olindo [Dipartimento di Scienze Fisiche, Informatiche e Matematiche,Università di Modena e Reggio Emilia,Via Campi 213/A, I-41125 Modena (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy); Vassura, Edoardo [Dipartimento di Fisica ed Astronomia, Università di Bologna,via Irnerio 46, I-40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, I-40126 Bologna (Italy)

    2017-04-10

    Path integrals for particles in curved spaces can be used to compute trace anomalies in quantum field theories, and more generally to study properties of quantum fields coupled to gravity in first quantization. While their construction in arbitrary coordinates is well understood, and known to require the use of a regularization scheme, in this article we take up an old proposal of constructing the path integral by using Riemann normal coordinates. The method assumes that curvature effects are taken care of by a scalar effective potential, so that the particle lagrangian is reduced to that of a linear sigma model interacting with the effective potential. After fixing the correct effective potential, we test the construction on spaces of maximal symmetry and use it to compute heat kernel coefficients and type-A trace anomalies for a scalar field in arbitrary dimensions up to d=12. The results agree with expected ones, which are reproduced with great efficiency and extended to higher orders. We prove explicitly the validity of the simplified path integral on maximally symmetric spaces. This simplified path integral might be of further use in worldline applications, though its application on spaces of arbitrary geometry remains unclear.

  5. Path-integral isomorphic Hamiltonian for including nuclear quantum effects in non-adiabatic dynamics

    Science.gov (United States)

    Tao, Xuecheng; Shushkov, Philip; Miller, Thomas F.

    2018-03-01

    We describe a path-integral approach for including nuclear quantum effects in non-adiabatic chemical dynamics simulations. For a general physical system with multiple electronic energy levels, a corresponding isomorphic Hamiltonian is introduced such that Boltzmann sampling of the isomorphic Hamiltonian with classical nuclear degrees of freedom yields the exact quantum Boltzmann distribution for the original physical system. In the limit of a single electronic energy level, the isomorphic Hamiltonian reduces to the familiar cases of either ring polymer molecular dynamics (RPMD) or centroid molecular dynamics Hamiltonians, depending on the implementation. An advantage of the isomorphic Hamiltonian is that it can easily be combined with existing mixed quantum-classical dynamics methods, such as surface hopping or Ehrenfest dynamics, to enable the simulation of electronically non-adiabatic processes with nuclear quantum effects. We present numerical applications of the isomorphic Hamiltonian to model two- and three-level systems, with encouraging results that include improvement upon a previously reported combination of RPMD with surface hopping in the deep-tunneling regime.

  6. The quantum nonlinear Schroedinger model with point-like defect

    International Nuclear Information System (INIS)

    Caudrelier, V; Mintchev, M; Ragoucy, E

    2004-01-01

    We establish a family of point-like impurities which preserve the quantum integrability of the nonlinear Schroedinger model in 1+1 spacetime dimensions. We briefly describe the construction of the exact second quantized solution of this model in terms of an appropriate reflection-transmission algebra. The basic physical properties of the solution, including the spacetime symmetry of the bulk scattering matrix, are also discussed. (letter to the editor)

  7. Ising critical behaviour in the one-dimensional frustrated quantum XY model

    International Nuclear Information System (INIS)

    Granato, E.

    1993-06-01

    A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs

  8. Quantum secure communication models comparison

    Directory of Open Access Journals (Sweden)

    Georgi Petrov Bebrov

    2017-12-01

    Full Text Available The paper concerns the quantum cryptography, more specifically, the quantum secure communication type of schemes. The main focus here is on making a comparison between the distinct secure quantum communication modelsquantum secure direct communication and deterministic secure quantum communication, in terms of three parameters: resource efficiency, eavesdropping check efficiency, and security (degree of preserving the confidentiality.

  9. A quantum-implementable neural network model

    Science.gov (United States)

    Chen, Jialin; Wang, Lingli; Charbon, Edoardo

    2017-10-01

    A quantum-implementable neural network, namely quantum probability neural network (QPNN) model, is proposed in this paper. QPNN can use quantum parallelism to trace all possible network states to improve the result. Due to its unique quantum nature, this model is robust to several quantum noises under certain conditions, which can be efficiently implemented by the qubus quantum computer. Another advantage is that QPNN can be used as memory to retrieve the most relevant data and even to generate new data. The MATLAB experimental results of Iris data classification and MNIST handwriting recognition show that much less neuron resources are required in QPNN to obtain a good result than the classical feedforward neural network. The proposed QPNN model indicates that quantum effects are useful for real-life classification tasks.

  10. Stokes phenomena and quantum integrability in non-critical string/M theory

    International Nuclear Information System (INIS)

    Chan, Chuan-Tsung; Irie, Hirotaka; Yeh, Chi-Hsien

    2012-01-01

    We study Stokes phenomena of the k×k isomonodromy systems with an arbitrary Poincaré index r, especially which correspond to the fractional-superstring (or parafermionic-string) multi-critical points (p-hat,q-hat)=(1,r-1) in the k-cut two-matrix models. Investigation of this system is important for the purpose of figuring out the non-critical version of M theory which was proposed to be the strong-coupling dual of fractional superstring theory as a two-matrix model with an infinite number of cuts. Surprisingly the multi-cut boundary-condition recursion equations have a universal form among the various multi-cut critical points, and this enables us to show explicit solutions of Stokes multipliers in quite wide classes of (k,r). Although these critical points almost break the intrinsic Z k symmetry of the multi-cut two-matrix models, this feature makes manifest a connection between the multi-cut boundary-condition recursion equations and the structures of quantum integrable systems. In particular, it is uncovered that the Stokes multipliers satisfy multiple Hirota equations (i.e. multiple T-systems). Therefore our result provides a large extension of the ODE/IM correspondence to the general isomonodromy ODE systems endowed with the multi-cut boundary conditions. We also comment about a possibility that N=2 QFT of Cecotti-Vafa would be “topological series” in non-critical M theory equipped with a single quantum integrability.

  11. Optimization using quantum mechanics: quantum annealing through adiabatic evolution

    International Nuclear Information System (INIS)

    Santoro, Giuseppe E; Tosatti, Erio

    2006-01-01

    We review here some recent work in the field of quantum annealing, alias adiabatic quantum computation. The idea of quantum annealing is to perform optimization by a quantum adiabatic evolution which tracks the ground state of a suitable time-dependent Hamiltonian, where 'ℎ' is slowly switched off. We illustrate several applications of quantum annealing strategies, starting from textbook toy-models-double-well potentials and other one-dimensional examples, with and without disorder. These examples display in a clear way the crucial differences between classical and quantum annealing. We then discuss applications of quantum annealing to challenging hard optimization problems, such as the random Ising model, the travelling salesman problem and Boolean satisfiability problems. The techniques used to implement quantum annealing are either deterministic Schroedinger's evolutions, for the toy models, or path-integral Monte Carlo and Green's function Monte Carlo approaches, for the hard optimization problems. The crucial role played by disorder and the associated non-trivial Landau-Zener tunnelling phenomena is discussed and emphasized. (topical review)

  12. Classical and quantum analysis of a hetero-triatomic molecular Bose-Einstein condensate model

    International Nuclear Information System (INIS)

    Tonel, A.P.; Kuhn, C.C.N.; Foerster, A.; Santos, G.; Roditi, I.; Santos, Z.V.T.

    2014-11-01

    We investigate an integrable Hamiltonian modelling a hetero-triatomic-molecular Bose-Einstein condensate. This model describes a mixture of two species of atoms in different proportions, which can combine to form a triatomic molecule. Beginning with a classical analysis, we determine the fixed points of the system. Bifurcations of these points separate the parameter space into different regions. Three distinct scenarios are found, varying with the atomic population imbalance. This result suggests the ground state properties of the quantum model exhibits a sensitivity on the atomic population imbalance, which is confirmed by a quantum analysis using different approaches, such as the ground-state expectation values, the behaviour of the quantum dynamics, the energy gap and the ground state fidelity. (author)

  13. A volume integral equation solver for quantum-corrected transient analysis of scattering from plasmonic nanostructures

    KAUST Repository

    Sayed, Sadeed Bin; Uysal, Ismail Enes; Bagci, Hakan; Ulku, H. Arda

    2018-01-01

    Quantum tunneling is observed between two nanostructures that are separated by a sub-nanometer gap. Electrons “jumping” from one structure to another create an additional current path. An auxiliary tunnel is introduced between the two structures as a support for this so that a classical electromagnetic solver can account for the effects of quantum tunneling. The dispersive permittivity of the tunnel is represented by a Drude model, whose parameters are obtained from the electron tunneling probability. The transient scattering from the connected nanostructures (i.e., nanostructures plus auxiliary tunnel) is analyzed using a time domain volume integral equation solver. Numerical results demonstrating the effect of quantum tunneling on the scattered fields are provided.

  14. Quantum ergodicity in the SYK model

    Science.gov (United States)

    Altland, Alexander; Bagrets, Dmitry

    2018-05-01

    We present a replica path integral approach describing the quantum chaotic dynamics of the SYK model at large time scales. The theory leads to the identification of non-ergodic collective modes which relax and eventually give way to an ergodic long time regime (describable by random matrix theory). These modes, which play a role conceptually similar to the diffusion modes of dirty metals, carry quantum numbers which we identify as the generators of the Clifford algebra: each of the 2N different products that can be formed from N Majorana operators defines one effective mode. The competition between a decay rate quickly growing in the order of the product and a density of modes exponentially growing in the same parameter explains the characteristics of the system's approach to the ergodic long time regime. We probe this dynamics through various spectral correlation functions and obtain favorable agreement with existing numerical data.

  15. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    OpenAIRE

    Salathé, Y.; Mondal, M.; Oppliger, M.; Heinsoo, J.; Kurpiers, P.; Potočnik, A.; Mezzacapo, Antonio; Las Heras García, Urtzi; Lamata Manuel, Lucas; Solano Villanueva, Enrique Leónidas; Filipp, S.; Wallraff, A.

    2015-01-01

    Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit...

  16. Modeling classical and quantum radiation from laser-plasma accelerators

    Directory of Open Access Journals (Sweden)

    M. Chen

    2013-03-01

    Full Text Available The development of models and the “Virtual Detector for Synchrotron Radiation” (vdsr code that accurately describe the production of synchrotron radiation are described. These models and code are valid in the classical and linear (single-scattering quantum regimes and are capable of describing radiation produced from laser-plasma accelerators (LPAs through a variety of mechanisms including betatron radiation, undulator radiation, and Thomson/Compton scattering. Previous models of classical synchrotron radiation, such as those typically used for undulator radiation, are inadequate in describing the radiation spectra from electrons undergoing small numbers of oscillations. This is due to an improper treatment of a mathematical evaluation at the end points of an integration that leads to an unphysical plateau in the radiation spectrum at high frequencies, the magnitude of which increases as the number of oscillation periods decreases. This is important for betatron radiation from LPAs, in which the betatron strength parameter is large but the number of betatron periods is small. The code vdsr allows the radiation to be calculated in this regime by full integration over each electron trajectory, including end-point effects, and this code is used to calculate betatron radiation for cases of experimental interest. Radiation from Thomson scattering and Compton scattering is also studied with vdsr. For Thomson scattering, radiation reaction is included by using the Sokolov method for the calculation of the electron dynamics. For Compton scattering, quantum recoil effects are considered in vdsr by using Monte Carlo methods. The quantum calculation has been benchmarked with the classical calculation in a classical regime.

  17. Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Y. Salathé

    2015-06-01

    Full Text Available Systems of interacting quantum spins show a rich spectrum of quantum phases and display interesting many-body dynamics. Computing characteristics of even small systems on conventional computers poses significant challenges. A quantum simulator has the potential to outperform standard computers in calculating the evolution of complex quantum systems. Here, we perform a digital quantum simulation of the paradigmatic Heisenberg and Ising interacting spin models using a two transmon-qubit circuit quantum electrodynamics setup. We make use of the exchange interaction naturally present in the simulator to construct a digital decomposition of the model-specific evolution and extract its full dynamics. This approach is universal and efficient, employing only resources that are polynomial in the number of spins, and indicates a path towards the controlled simulation of general spin dynamics in superconducting qubit platforms.

  18. Canonical Drude Weight for Non-integrable Quantum Spin Chains

    Science.gov (United States)

    Mastropietro, Vieri; Porta, Marcello

    2018-03-01

    The Drude weight is a central quantity for the transport properties of quantum spin chains. The canonical definition of Drude weight is directly related to Kubo formula of conductivity. However, the difficulty in the evaluation of such expression has led to several alternative formulations, accessible to different methods. In particular, the Euclidean, or imaginary-time, Drude weight can be studied via rigorous renormalization group. As a result, in the past years several universality results have been proven for such quantity at zero temperature; remarkably, the proofs work for both integrable and non-integrable quantum spin chains. Here we establish the equivalence of Euclidean and canonical Drude weights at zero temperature. Our proof is based on rigorous renormalization group methods, Ward identities, and complex analytic ideas.

  19. Unified Drain Current Model of Armchair Graphene Nanoribbons with Uniaxial Strain and Quantum Effect

    Directory of Open Access Journals (Sweden)

    EngSiew Kang

    2014-01-01

    Full Text Available A unified current-voltage I-V model of uniaxial strained armchair graphene nanoribbons (AGNRs incorporating quantum confinement effects is presented in this paper. The I-V model is enhanced by integrating both linear and saturation regions into a unified and precise model of AGNRs. The derivation originates from energy dispersion throughout the entire Brillouin zone of uniaxial strained AGNRs based on the tight-binding approximation. Our results reveal the modification of the energy band gap, carrier density, and drain current upon strain. The effects of quantum confinement were investigated in terms of the quantum capacitance calculated from the broadening density of states. The results show that quantum effect is greatly dependent on the magnitude of applied strain, gate voltage, channel length, and oxide thickness. The discrepancies between the classical calculation and quantum calculation were also measured and it has been found to be as high as 19% drive current loss due to the quantum confinement. Our finding which is in good agreement with the published data provides significant insight into the device performance of uniaxial strained AGNRs in nanoelectronic applications.

  20. 2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits.

    Science.gov (United States)

    Wang, Ruijun; Sprengel, Stephan; Muneeb, Muhammad; Boehm, Gerhard; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2015-10-05

    The heterogeneous integration of InP-based type-II quantum well photodiodes on silicon photonic integrated circuits for the 2 µm wavelength range is presented. A responsivity of 1.2 A/W at a wavelength of 2.32 µm and 0.6 A/W at 2.4 µm wavelength is demonstrated. The photodiodes have a dark current of 12 nA at -0.5 V at room temperature. The absorbing active region of the integrated photodiodes consists of six periods of a "W"-shaped quantum well, also allowing for laser integration on the same platform.

  1. Quantum models of classical systems

    International Nuclear Information System (INIS)

    Hájíček, P

    2015-01-01

    Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)

  2. Models of optical quantum computing

    Directory of Open Access Journals (Sweden)

    Krovi Hari

    2017-03-01

    Full Text Available I review some work on models of quantum computing, optical implementations of these models, as well as the associated computational power. In particular, we discuss the circuit model and cluster state implementations using quantum optics with various encodings such as dual rail encoding, Gottesman-Kitaev-Preskill encoding, and coherent state encoding. Then we discuss intermediate models of optical computing such as boson sampling and its variants. Finally, we review some recent work in optical implementations of adiabatic quantum computing and analog optical computing. We also provide a brief description of the relevant aspects from complexity theory needed to understand the results surveyed.

  3. Quantum decoration transformation for spin models

    Energy Technology Data Exchange (ETDEWEB)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre, E-mail: ors@dfi.ufla.br

    2016-09-15

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  4. Quantum decoration transformation for spin models

    International Nuclear Information System (INIS)

    Braz, F.F.; Rodrigues, F.C.; Souza, S.M. de; Rojas, Onofre

    2016-01-01

    It is quite relevant the extension of decoration transformation for quantum spin models since most of the real materials could be well described by Heisenberg type models. Here we propose an exact quantum decoration transformation and also showing interesting properties such as the persistence of symmetry and the symmetry breaking during this transformation. Although the proposed transformation, in principle, cannot be used to map exactly a quantum spin lattice model into another quantum spin lattice model, since the operators are non-commutative. However, it is possible the mapping in the “classical” limit, establishing an equivalence between both quantum spin lattice models. To study the validity of this approach for quantum spin lattice model, we use the Zassenhaus formula, and we verify how the correction could influence the decoration transformation. But this correction could be useless to improve the quantum decoration transformation because it involves the second-nearest-neighbor and further nearest neighbor couplings, which leads into a cumbersome task to establish the equivalence between both lattice models. This correction also gives us valuable information about its contribution, for most of the Heisenberg type models, this correction could be irrelevant at least up to the third order term of Zassenhaus formula. This transformation is applied to a finite size Heisenberg chain, comparing with the exact numerical results, our result is consistent for weak xy-anisotropy coupling. We also apply to bond-alternating Ising–Heisenberg chain model, obtaining an accurate result in the limit of the quasi-Ising chain.

  5. Error modelling of quantum Hall array resistance standards

    Science.gov (United States)

    Marzano, Martina; Oe, Takehiko; Ortolano, Massimo; Callegaro, Luca; Kaneko, Nobu-Hisa

    2018-04-01

    Quantum Hall array resistance standards (QHARSs) are integrated circuits composed of interconnected quantum Hall effect elements that allow the realization of virtually arbitrary resistance values. In recent years, techniques were presented to efficiently design QHARS networks. An open problem is that of the evaluation of the accuracy of a QHARS, which is affected by contact and wire resistances. In this work, we present a general and systematic procedure for the error modelling of QHARSs, which is based on modern circuit analysis techniques and Monte Carlo evaluation of the uncertainty. As a practical example, this method of analysis is applied to the characterization of a 1 MΩ QHARS developed by the National Metrology Institute of Japan. Software tools are provided to apply the procedure to other arrays.

  6. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits

    DEFF Research Database (Denmark)

    Ding, Yunhong; Bacco, Davide; Dalgaard, Kjeld

    2017-01-01

    is intrinsically limited to 1 bit/photon. Here we propose and experimentally demonstrate, for the first time, a high-dimensional quantum key distribution protocol based on space division multiplexing in multicore fiber using silicon photonic integrated lightwave circuits. We successfully realized three mutually......-dimensional quantum states, and enables breaking the information efficiency limit of traditional quantum key distribution protocols. In addition, the silicon photonic circuits used in our work integrate variable optical attenuators, highly efficient multicore fiber couplers, and Mach-Zehnder interferometers, enabling...

  7. Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics

    Science.gov (United States)

    Shalaginov, Mikhail Y.

    Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.

  8. Integrated digital superconducting logic circuits for the quantum synthesizer. Report

    International Nuclear Information System (INIS)

    Buchholz, F.I.; Kohlmann, J.; Khabipov, M.; Brandt, C.M.; Hagedorn, D.; Balashov, D.; Maibaum, F.; Tolkacheva, E.; Niemeyer, J.

    2006-11-01

    This report presents the results, which were reached in the framework of the BMBF cooperative plan ''Quantum Synthesizer'' in the partial plan ''Integrated Digital Superconducting Logic Circuits''. As essential goal of the plan a novel instrument on the base of quantum-coherent superconducting circuits should be developed. which allows to generate praxis-relevant wave forms with quantum accuracy, the quantum synthesizer. The main topics of development of the reported partial plan lied at the one hand in the development of integrated, digital, superconducting circuit in rapid-single-flux (RSFQ) quantum logics for the pattern generator of the quantum synthesizer, at the other hand in the further development of the fabrication technology for the aiming of high circuit complexity. In order to fulfil these requirements at the PTB a new design system was implemented, based on the software of Cadence. Together with the required RSFQ extensions for the design of digital superconducting circuits was a platform generated, on which the reachable circuit complexity is exclusively limited by the technology parameters of the available fabrication technology: Physical simulations are with PSCAN up to a complexity of more than 1000 circuit elements possible; furthermore VHDL allows the verification of arbitrarily large circuit architectures. In accordance for this the production line at the PTB was brought to a level, which allows in Nb/Al-Al x O y /Nb SIS technology implementation the fabrication of highly integrable RSFQ circuit architectures. The developed and fabricated basic circuits of the pattern generator have proved correct functionality and reliability in the measuring operation. Thereby for the circular RSFQ shift registers a key role as local memories in the construction of the pattern generator is devolved upon. The registers were realized with the aimed bit lengths up to 128 bit and with reachable signal-processing speeds of above 10 GHz. At the interface RSFQ

  9. Cavity quantum electrodynamics studies with site-controlled InGaAs quantum dots integrated into high quality microcavities

    DEFF Research Database (Denmark)

    Reitzenstein, S.; Schneider, C.; Albert, F.

    2011-01-01

    Semiconductor quantum dots (QDs) are fascinating nanoscopic structures for photonics and future quantum information technology. However, the random position of self-organized QDs inhibits a deterministic coupling in devices relying on cavity quantum electrodynamics (cQED) effects which complicates......, e.g., the large scale fabrication of quantum light sources. As a result, large efforts focus on the growth and the device integration of site-controlled QDs. We present the growth of low density arrays of site-controlled In(Ga)As QDs where shallow etched nanoholes act as nucleation sites...... linewidth, the oscillator strength and the quantum efficiency. A stacked growth of strain coupled SCQDs forming on wet chemically etched nanoholes provide the smallest linewidth with an average value of 210 μeV. Using time resolved photoluminescence studies on samples with a varying thickness of the capping...

  10. Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots

    Directory of Open Access Journals (Sweden)

    Altaisky Mikhail V.

    2016-01-01

    Full Text Available We present the results of the simulation of a quantum neural network based on quantum dots using numerical method of path integral calculation. In the proposed implementation of the quantum neural network using an array of single-electron quantum dots with dipole-dipole interaction, the coherence is shown to survive up to 0.1 nanosecond in time and up to the liquid nitrogen temperature of 77K.We study the quantum correlations between the quantum dots by means of calculation of the entanglement of formation in a pair of quantum dots on the GaAs based substrate with dot size of 100 ÷ 101 nanometer and interdot distance of 101 ÷ 102 nanometers order.

  11. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    International Nuclear Information System (INIS)

    Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert

    2013-01-01

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies

  12. Supersymmetric quantum mechanics: Engineered hierarchies of integrable potentials and related orthogonal polynomials

    Energy Technology Data Exchange (ETDEWEB)

    Balondo Iyela, Daddy [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Département de Physique, Université de Kinshasa (UNIKIN), B.P. 190 Kinshasa XI, Democratic Republic of Congo (Congo, The Democratic Republic of the); Govaerts, Jan [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hounkonnou, M. Norbert [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin)

    2013-09-15

    Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.

  13. Integrable systems and quantum field theory. Works in progress Nr 75

    International Nuclear Information System (INIS)

    Baird, Paul; Helein, Frederic; Kouneiher, Joseph; Roubtsov, Volodya; Antunes, Paulo; Banos, Bertrand; Barbachoux, Cecile; Desideri, Laura; Kahouadji, Nabil; Gerding, Aaron; Heller, Sebastian; Schmitt, Nicholas; Harrivel, Dikanaina; Hoevenaars, Luuk K.; Iftime, Mihaela; Levy, Thierry; Lisovyy, Oleg; Masson, Thierry; Skrypnyk, Taras; Pedit, Franz; Egeileh, Michel

    2009-01-01

    The contributions of this collective book address the quantum field theory (integrable systems and quantum field theory, introduction to supermanifolds and supersymmetry, beyond geometric quantification, Gaussian measurements and Fock spaces), differential geometry and physics (gravitation and geometry, physical events and the superspace about the hole argument, the Cartan-Kaehler theory and applications to local isometric and conformal embedding, calibrations, Cabal-Yau structures and Monge-Ampere structures, Hamiltonian multi-symplectic formalism and Monge-Ampere equations, big bracket, derivations and derivative multi-brackets), integrable system, geometry and physics (finite-volume correlation functions of monodromy fields on the lattice with the Toeplitz representation, Frobenius manifolds and algebraic integrability, an introduction to twistors, Hamiltonian systems on the 'coupled' curves, Nambu-Poisson mechanics and Fairlie-type integrable systems, minimal surfaces with polygonal boundary and Fuchsian equations, global aspects of integrable surface geometry), and non commutative geometry (an informal introduction to the ideas and concepts of non commutative geometry)

  14. Deterministic Integration of Quantum Dots into on-Chip Multimode Interference Beamsplitters Using in Situ Electron Beam Lithography.

    Science.gov (United States)

    Schnauber, Peter; Schall, Johannes; Bounouar, Samir; Höhne, Theresa; Park, Suk-In; Ryu, Geun-Hwan; Heindel, Tobias; Burger, Sven; Song, Jin-Dong; Rodt, Sven; Reitzenstein, Stephan

    2018-04-11

    The development of multinode quantum optical circuits has attracted great attention in recent years. In particular, interfacing quantum-light sources, gates, and detectors on a single chip is highly desirable for the realization of large networks. In this context, fabrication techniques that enable the deterministic integration of preselected quantum-light emitters into nanophotonic elements play a key role when moving forward to circuits containing multiple emitters. Here, we present the deterministic integration of an InAs quantum dot into a 50/50 multimode interference beamsplitter via in situ electron beam lithography. We demonstrate the combined emitter-gate interface functionality by measuring triggered single-photon emission on-chip with g (2) (0) = 0.13 ± 0.02. Due to its high patterning resolution as well as spectral and spatial control, in situ electron beam lithography allows for integration of preselected quantum emitters into complex photonic systems. Being a scalable single-step approach, it paves the way toward multinode, fully integrated quantum photonic chips.

  15. Modeling techniques for quantum cascade lasers

    Energy Technology Data Exchange (ETDEWEB)

    Jirauschek, Christian [Institute for Nanoelectronics, Technische Universität München, D-80333 Munich (Germany); Kubis, Tillmann [Network for Computational Nanotechnology, Purdue University, 207 S Martin Jischke Drive, West Lafayette, Indiana 47907 (United States)

    2014-03-15

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  16. Modeling techniques for quantum cascade lasers

    Science.gov (United States)

    Jirauschek, Christian; Kubis, Tillmann

    2014-03-01

    Quantum cascade lasers are unipolar semiconductor lasers covering a wide range of the infrared and terahertz spectrum. Lasing action is achieved by using optical intersubband transitions between quantized states in specifically designed multiple-quantum-well heterostructures. A systematic improvement of quantum cascade lasers with respect to operating temperature, efficiency, and spectral range requires detailed modeling of the underlying physical processes in these structures. Moreover, the quantum cascade laser constitutes a versatile model device for the development and improvement of simulation techniques in nano- and optoelectronics. This review provides a comprehensive survey and discussion of the modeling techniques used for the simulation of quantum cascade lasers. The main focus is on the modeling of carrier transport in the nanostructured gain medium, while the simulation of the optical cavity is covered at a more basic level. Specifically, the transfer matrix and finite difference methods for solving the one-dimensional Schrödinger equation and Schrödinger-Poisson system are discussed, providing the quantized states in the multiple-quantum-well active region. The modeling of the optical cavity is covered with a focus on basic waveguide resonator structures. Furthermore, various carrier transport simulation methods are discussed, ranging from basic empirical approaches to advanced self-consistent techniques. The methods include empirical rate equation and related Maxwell-Bloch equation approaches, self-consistent rate equation and ensemble Monte Carlo methods, as well as quantum transport approaches, in particular the density matrix and non-equilibrium Green's function formalism. The derived scattering rates and self-energies are generally valid for n-type devices based on one-dimensional quantum confinement, such as quantum well structures.

  17. Quantum-like model of unconscious–conscious dynamics

    Science.gov (United States)

    Khrennikov, Andrei

    2015-01-01

    We present a quantum-like model of sensation–perception dynamics (originated in Helmholtz theory of unconscious inference) based on the theory of quantum apparatuses and instruments. We illustrate our approach with the model of bistable perception of a particular ambiguous figure, the Schröder stair. This is a concrete model for unconscious and conscious processing of information and their interaction. The starting point of our quantum-like journey was the observation that perception dynamics is essentially contextual which implies impossibility of (straightforward) embedding of experimental statistical data in the classical (Kolmogorov, 1933) framework of probability theory. This motivates application of nonclassical probabilistic schemes. And the quantum formalism provides a variety of the well-approved and mathematically elegant probabilistic schemes to handle results of measurements. The theory of quantum apparatuses and instruments is the most general quantum scheme describing measurements and it is natural to explore it to model the sensation–perception dynamics. In particular, this theory provides the scheme of indirect quantum measurements which we apply to model unconscious inference leading to transition from sensations to perceptions. PMID:26283979

  18. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  19. Quantum transport model for zigzag molybdenum disulfide nanoribbon structures : A full quantum framework

    International Nuclear Information System (INIS)

    Chen, Chun-Nan; Shyu, Feng-Lin; Chung, Hsien-Ching; Lin, Chiun-Yan; Wu, Jhao-Ying

    2016-01-01

    Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

  20. Quantum transport model for zigzag molybdenum disulfide nanoribbon structures : A full quantum framework

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chun-Nan, E-mail: quantum@mail.tku.edu.tw, E-mail: ccn1114@kimo.com [Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, New Taipei 25137, Taiwan (China); Shyu, Feng-Lin [Department of Physics, R.O.C. Military Academy, Kaohsiung 830, Taiwan (China); Chung, Hsien-Ching; Lin, Chiun-Yan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Wu, Jhao-Ying [Center of General Studies, National Kaohsiung Marine University, Kaohsiung 811, Taiwan (China)

    2016-08-15

    Mainly based on non-equilibrium Green’s function technique in combination with the three-band model, a full atomistic-scale and full quantum method for solving quantum transport problems of a zigzag-edge molybdenum disulfide nanoribbon (zMoSNR) structure is proposed here. For transport calculations, the relational expressions of a zMoSNR crystalline solid and its whole device structure are derived in detail and in its integrity. By adopting the complex-band structure method, the boundary treatment of this open boundary system within the non-equilibrium Green’s function framework is so straightforward and quite sophisticated. The transmission function, conductance, and density of states of zMoSNR devices are calculated using the proposed method. The important findings in zMoSNR devices such as conductance quantization, van Hove singularities in the density of states, and contact interaction on channel are presented and explored in detail.

  1. Critical current in the Integral Quantum Hall Effect

    International Nuclear Information System (INIS)

    Kostadinov, I.Z.

    1985-11-01

    A multiparticle theory of the Integral Quantum Hall Effect (IQHE) was constructed operating with pairs wave function as an order parameter. The IQHE is described with bosonic macroscopic states while the fractional QHE with fermionic ones. The calculation of the critical current and Hall conductivity temperature dependence is presented. (author)

  2. The quantum Rabi model: solution and dynamics

    International Nuclear Information System (INIS)

    Xie, Qiongtao; Zhong, Honghua; Lee, Chaohong; Batchelor, Murray T

    2017-01-01

    This article presents a review of recent developments on various aspects of the quantum Rabi model. Particular emphasis is given on the exact analytic solution obtained in terms of confluent Heun functions. The analytic solutions for various generalisations of the quantum Rabi model are also discussed. Results are also reviewed on the level statistics and the dynamics of the quantum Rabi model. The article concludes with an introductory overview of several experimental realisations of the quantum Rabi model. An outlook towards future developments is also given. (topical review)

  3. Quantum kinematics of spacetime. II. A model quantum cosmology with real clocks

    International Nuclear Information System (INIS)

    Hartle, J.B.

    1988-01-01

    Nonrelativistic model quantum cosmologies are studied in which the basic time variable is the position of a clock indicator and the time parameter of the Schroedinger equation is an unobservable label. Familiar Schroedinger-Heisenberg quantum mechanics emerges if the clock is ideal: arbitrarily accurate for arbitrarily long times. More realistically, however, the usual formulation emerges only as an approximation appropriate to states of this model universe in which part of the system functions approximately as an ideal clock. It is suggested that the quantum kinematics of spacetime theories such as general relativity may be analogous to those of this model. In particular it is suggested that our familiar notion of time in quantum mechanics is not an inevitable property of a general quantum framework but an approximate feature of specific initial conditions

  4. Quantum lattice model solver HΦ

    Science.gov (United States)

    Kawamura, Mitsuaki; Yoshimi, Kazuyoshi; Misawa, Takahiro; Yamaji, Youhei; Todo, Synge; Kawashima, Naoki

    2017-08-01

    HΦ [aitch-phi ] is a program package based on the Lanczos-type eigenvalue solution applicable to a broad range of quantum lattice models, i.e., arbitrary quantum lattice models with two-body interactions, including the Heisenberg model, the Kitaev model, the Hubbard model and the Kondo-lattice model. While it works well on PCs and PC-clusters, HΦ also runs efficiently on massively parallel computers, which considerably extends the tractable range of the system size. In addition, unlike most existing packages, HΦ supports finite-temperature calculations through the method of thermal pure quantum (TPQ) states. In this paper, we explain theoretical background and user-interface of HΦ. We also show the benchmark results of HΦ on supercomputers such as the K computer at RIKEN Advanced Institute for Computational Science (AICS) and SGI ICE XA (Sekirei) at the Institute for the Solid State Physics (ISSP).

  5. From classical to quantum models: the regularising role of integrals, symmetry and probabilities

    OpenAIRE

    Gazeau, Jean-Pierre

    2018-01-01

    In physics, one is often misled in thinking that the mathematical model of a system is part of or is that system itself. Think of expressions commonly used in physics like "point" particle, motion "on the line", "smooth" observables, wave function, and even "going to infinity", without forgetting perplexing phrases like "classical world" versus "quantum world".... On the other hand, when a mathematical model becomes really inoperative with regard to correct predictions, one is forced to repla...

  6. An alternative path integral for quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Chethan; Kumar, K.V. Pavan; Raju, Avinash [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)

    2016-10-10

    We define a (semi-classical) path integral for gravity with Neumann boundary conditions in D dimensions, and show how to relate this new partition function to the usual picture of Euclidean quantum gravity. We also write down the action in ADM Hamiltonian formulation and use it to reproduce the entropy of black holes and cosmological horizons. A comparison between the (background-subtracted) covariant and Hamiltonian ways of semi-classically evaluating this path integral in flat space reproduces the generalized Smarr formula and the first law. This “Neumann ensemble” perspective on gravitational thermodynamics is parallel to the canonical (Dirichlet) ensemble of Gibbons-Hawking and the microcanonical approach of Brown-York.

  7. Absolute determination of photoluminescence quantum efficiency using an integrating sphere setup

    International Nuclear Information System (INIS)

    Leyre, S.; Coutino-Gonzalez, E.; Hofkens, J.; Joos, J. J.; Poelman, D.; Smet, P. F.; Ryckaert, J.; Meuret, Y.; Durinck, G.; Hanselaer, P.; Deconinck, G.

    2014-01-01

    An integrating sphere-based setup to obtain a quick and reliable determination of the internal quantum efficiency of strongly scattering luminescent materials is presented. In literature, two distinct but similar measurement procedures are frequently mentioned: a “two measurement” and a “three measurement” approach. Both methods are evaluated by applying the rigorous integrating sphere theory. It was found that both measurement procedures are valid. Additionally, the two methods are compared with respect to the uncertainty budget of the obtained values of the quantum efficiency. An inter-laboratory validation using the two distinct procedures was performed. The conclusions from the theoretical study were confirmed by the experimental data

  8. Toolbox for the design of LiNbO3-based passive and active integrated quantum circuits

    Science.gov (United States)

    Sharapova, P. R.; Luo, K. H.; Herrmann, H.; Reichelt, M.; Meier, T.; Silberhorn, C.

    2017-12-01

    We present and discuss perspectives of current developments on advanced quantum optical circuits monolithically integrated in the lithium niobate platform. A set of basic components comprising photon pair sources based on parametric down conversion (PDC), passive routing elements and active electro-optically controllable switches and polarisation converters are building blocks of a toolbox which is the basis for a broad range of diverse quantum circuits. We review the state-of-the-art of these components and provide models that properly describe their performance in quantum circuits. As an example for applications of these models we discuss design issues for a circuit providing on-chip two-photon interference. The circuit comprises a PDC section for photon pair generation followed by an actively controllable modified mach-Zehnder structure for observing Hong-Ou-Mandel interference. The performance of such a chip is simulated theoretically by taking even imperfections of the properties of the individual components into account.

  9. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  10. Integrated System Technologies for Modular Trapped Ion Quantum Information Processing

    Science.gov (United States)

    Crain, Stephen G.

    Although trapped ion technology is well-suited for quantum information science, scalability of the system remains one of the main challenges. One of the challenges associated with scaling the ion trap quantum computer is the ability to individually manipulate the increasing number of qubits. Using micro-mirrors fabricated with micro-electromechanical systems (MEMS) technology, laser beams are focused on individual ions in a linear chain and steer the focal point in two dimensions. Multiple single qubit gates are demonstrated on trapped 171Yb+ qubits and the gate performance is characterized using quantum state tomography. The system features negligible crosstalk to neighboring ions (technologies demonstrated in this thesis can be integrated to form a single quantum register with all of the necessary resources to perform local gates as well as high fidelity readout and provide a photon link to other systems.

  11. A representation basis for the quantum integrable spin chain associated with the su(3) algebra

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Kun [Institute of Modern Physics, Northwest University, Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, Guang-Liang [Department of Applied Physics, Xian Jiaotong University, Xian 710049 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-05-20

    An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N=2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.

  12. Deformations of N=4 SYM and integrable spin chain models

    International Nuclear Information System (INIS)

    Berenstein, David; Cherkis, Sergey A.

    2004-01-01

    Beginning with the planar limit of N=4 SYM theory, we study planar diagrams for field theory deformations of N=4 which are marginal at the free field theory level. We show that the requirement of integrability of the full one-loop dilatation operator in the scalar sector, places very strong constraints on the field theory, so that the only soluble models correspond essentially to orbifolds of N=4 SYM. For these, the associated spin chain model gets twisted boundary conditions that depend on the length of the chain, but which are still integrable. We also show that theories with integrable subsectors appear quite generically, and it is possible to engineer integrable subsectors to have some specific symmetry, however these do not generally lead to full integrability. We also try to construct a theory whose spin chain has quantum group symmetry SOq(6) as a deformation of the SO(6) R-symmetry structure of N=4 SYM. We show that it is not possible to obtain a spin chain with that symmetry from deformations of the scalar potential of N=4 SYM.We also show that the natural context for these questions can be better phrased in terms of multi-matrix quantum mechanics rather than in four-dimensional field theories

  13. Quantum protocols within Spekkens' toy model

    Science.gov (United States)

    Disilvestro, Leonardo; Markham, Damian

    2017-05-01

    Quantum mechanics is known to provide significant improvements in information processing tasks when compared to classical models. These advantages range from computational speedups to security improvements. A key question is where these advantages come from. The toy model developed by Spekkens [R. W. Spekkens, Phys. Rev. A 75, 032110 (2007), 10.1103/PhysRevA.75.032110] mimics many of the features of quantum mechanics, such as entanglement and no cloning, regarded as being important in this regard, despite being a local hidden variable theory. In this work, we study several protocols within Spekkens' toy model where we see it can also mimic the advantages and limitations shown in the quantum case. We first provide explicit proofs for the impossibility of toy bit commitment and the existence of a toy error correction protocol and consequent k -threshold secret sharing. Then, defining a toy computational model based on the quantum one-way computer, we prove the existence of blind and verified protocols. Importantly, these two last quantum protocols are known to achieve a better-than-classical security. Our results suggest that such quantum improvements need not arise from any Bell-type nonlocality or contextuality, but rather as a consequence of steering correlations.

  14. Quiver gauge theories and integrable lattice models

    International Nuclear Information System (INIS)

    Yagi, Junya

    2015-01-01

    We discuss connections between certain classes of supersymmetric quiver gauge theories and integrable lattice models from the point of view of topological quantum field theories (TQFTs). The relevant classes include 4d N=1 theories known as brane box and brane tilling models, 3d N=2 and 2d N=(2,2) theories obtained from them by compactification, and 2d N=(0,2) theories closely related to these theories. We argue that their supersymmetric indices carry structures of TQFTs equipped with line operators, and as a consequence, are equal to the partition functions of lattice models. The integrability of these models follows from the existence of extra dimension in the TQFTs, which emerges after the theories are embedded in M-theory. The Yang-Baxter equation expresses the invariance of supersymmetric indices under Seiberg duality and its lower-dimensional analogs.

  15. Quantum integrable systems related to lie algebras

    International Nuclear Information System (INIS)

    Olshanetsky, M.A.; Perelomov, A.M.

    1983-01-01

    Some quantum integrable finite-dimensional systems related to Lie algebras are considered. This review continues the previous review of the same authors (1981) devoted to the classical aspects of these systems. The dynamics of some of these systems is closely related to free motion in symmetric spaces. Using this connection with the theory of symmetric spaces some results such as the forms of spectra, wave functions, S-matrices, quantum integrals of motion are derived. In specific cases the considered systems describe the one-dimensional n-body systems interacting pairwise via potentials g 2 v(q) of the following 5 types: vsub(I)(q)=q - 2 , vsub(II)(q)=sinh - 2 q, vsub(III)(q)=sin - 2 q, vsub(IV)(q)=P(q), vsub(V)(q)=q - 2 +#betta# 2 q 2 . Here P(q) is the Weierstrass function, so that the first three cases are merely subcases on the fourth. The system characterized by the Toda nearest-neighbour potential exp(qsub(j)-qsub(j+1)) is moreover considered. This review presents from a general and universal point of view results obtained mainly over the past fifteen years. Besides, it contains some new results both of physical and mathematical interest. (orig.)

  16. Nonperturbative time-convolutionless quantum master equation from the path integral approach

    International Nuclear Information System (INIS)

    Nan Guangjun; Shi Qiang; Shuai Zhigang

    2009-01-01

    The time-convolutionless quantum master equation is widely used to simulate reduced dynamics of a quantum system coupled to a bath. However, except for several special cases, applications of this equation are based on perturbative calculation of the dissipative tensor, and are limited to the weak system-bath coupling regime. In this paper, we derive an exact time-convolutionless quantum master equation from the path integral approach, which provides a new way to calculate the dissipative tensor nonperturbatively. Application of the new method is demonstrated in the case of an asymmetrical two-level system linearly coupled to a harmonic bath.

  17. Integration of quantum cascade lasers and passive waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Montoya, Juan, E-mail: juan.montoya@ll.mit.edu; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William [MIT Lincoln Laboratory, 244 Wood St, Lexington, Massachusetts 02420 (United States)

    2015-07-20

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm{sup −1} in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  18. Integration of quantum cascade lasers and passive waveguides

    International Nuclear Information System (INIS)

    Montoya, Juan; Wang, Christine; Goyal, Anish; Creedon, Kevin; Connors, Michael; Daulton, Jeffrey; Donnelly, Joseph; Missaggia, Leo; Aleshire, Chris; Sanchez-Rubio, Antonio; Herzog, William

    2015-01-01

    We report on monolithic integration of active quantum cascade laser (QCL) materials with passive waveguides formed by using proton implantation. Proton implantation reduces the electron concentration in the QCL layers by creating deep levels that trap carriers. This strongly reduces the intersubband absorption and the free-carrier absorption in the gain region and surrounding layers, thus significantly reducing optical loss. We have measured loss as low as α = 0.33 cm −1 in λ = 9.6 μm wavelength proton-implanted QCL material. We have also demonstrated lasing in active-passive integrated waveguides. This simple integration technique is anticipated to enable low-cost fabrication in infrared photonic integrated circuits in the mid-infrared (λ ∼ 3–16 μm)

  19. Are quantum-mechanical-like models possible, or necessary, outside quantum physics?

    International Nuclear Information System (INIS)

    Plotnitsky, Arkady

    2014-01-01

    This article examines some experimental conditions that invite and possibly require recourse to quantum-mechanical-like mathematical models (QMLMs), models based on the key mathematical features of quantum mechanics, in scientific fields outside physics, such as biology, cognitive psychology, or economics. In particular, I consider whether the following two correlative features of quantum phenomena that were decisive for establishing the mathematical formalism of quantum mechanics play similarly important roles in QMLMs elsewhere. The first is the individuality and discreteness of quantum phenomena, and the second is the irreducibly probabilistic nature of our predictions concerning them, coupled to the particular character of the probabilities involved, as different from the character of probabilities found in classical physics. I also argue that these features could be interpreted in terms of a particular form of epistemology that suspends and even precludes a causal and, in the first place, realist description of quantum objects and processes. This epistemology limits the descriptive capacity of quantum theory to the description, classical in nature, of the observed quantum phenomena manifested in measuring instruments. Quantum mechanics itself only provides descriptions, probabilistic in nature, concerning numerical data pertaining to such phenomena, without offering a physical description of quantum objects and processes. While QMLMs share their use of the quantum-mechanical or analogous mathematical formalism, they may differ by the roles, if any, the two features in question play in them and by different ways of interpreting the phenomena they considered and this formalism itself. This article will address those differences as well. (paper)

  20. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems

    International Nuclear Information System (INIS)

    Batchelor, M T

    2005-01-01

    A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with δ-function potentials, the Heisenberg spin chain, the Hubbard model, exchange models, the Calogero

  1. Beautiful Models: 70 Years of Exactly Solved Quantum Many-Body Problems

    Energy Technology Data Exchange (ETDEWEB)

    Batchelor, M T [Department of Theoretical Physics, RSPSE and Department of Mathematics, MSI, Australian National University, Canberra ACT 0200 (Australia)

    2005-04-08

    A key element of theoretical physics is the conceptualisation of physical phenomena in terms of models, which are then investigated by the tools at hand. For quantum many-body systems, some models can be exactly solved, i.e., their physical properties can be calculated in an exact fashion. There is often a deep underlying reason why this can be done-the theory of integrability-which manifests itself in many guises. In Beautiful models, Bill Sutherland looks at exactly solved models in quantum many-body systems, a well established field dating back to Bethe's 1931 exact solution of the spin-1/2 Heisenberg chain. This field is enjoying a renaissance due to the ongoing and striking experimental advances in low-dimensional quantum physics, which includes the manufacture of quasi one-dimensional quantum gases. Apart from the intrinsic beauty of the subject material, Beautiful Models is written by a pioneering master of the field. Sutherland has aimed to provide a broad textbook style introduction to the subject for graduate students and interested non-experts. An important point here is the 'language' of the book. In Sutherland's words, the subject of exactly solved models 'belongs to the realm of mathematical physics-too mathematical to be 'respectable' physics, yet not rigorous enough to be 'real' mathematics. ...there are perennial attempts to translate this body of work into either respectable physics or real mathematics; this is not that sort of book.' Rather, Sutherland discusses the models and their solutions in terms of their 'intrinisic' language, which is largely as found in the physics literature. The book begins with a helpful overview of the contents and then moves on to the foundation material, which is the chapter on integrability and non-diffraction. As is shown, these two concepts go hand in hand. The topics covered in later chapters include models with {delta}-function potentials, the

  2. Quantum kinetic Ising models

    International Nuclear Information System (INIS)

    Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F

    2010-01-01

    In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.

  3. Quantum-Like Bayesian Networks for Modeling Decision Making

    Directory of Open Access Journals (Sweden)

    Catarina eMoreira

    2016-01-01

    Full Text Available In this work, we explore an alternative quantum structure to perform quantum probabilistic inferences to accommodate the paradoxical findings of the Sure Thing Principle. We propose a Quantum-Like Bayesian Network, which consists in replacing classical probabilities by quantum probability amplitudes. However, since this approach suffers from the problem of exponential growth of quantum parameters, we also propose a similarity heuristic that automatically fits quantum parameters through vector similarities. This makes the proposed model general and predictive in contrast to the current state of the art models, which cannot be generalized for more complex decision scenarios and that only provide an explanatory nature for the observed paradoxes. In the end, the model that we propose consists in a nonparametric method for estimating inference effects from a statistical point of view. It is a statistical model that is simpler than the previous quantum dynamic and quantum-like models proposed in the literature. We tested the proposed network with several empirical data from the literature, mainly from the Prisoner's Dilemma game and the Two Stage Gambling game. The results obtained show that the proposed quantum Bayesian Network is a general method that can accommodate violations of the laws of classical probability theory and make accurate predictions regarding human decision-making in these scenarios.

  4. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2016-01-01

    Graduate students who want to become familiar with advanced computational strategies in classical and quantum dynamics will find here both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name a few. Well-chosen and detailed examples illustrate the perturbation theory, canonical transformations, the action principle and demonstrate the usage of path integrals. This new edition has been revised and enlarged with chapters on quantum electrodynamics, high energy physics, Green’s functions and strong interaction.

  5. Superconducting quantum circuits theory and application

    OpenAIRE

    Deng, Xiuhao

    2015-01-01

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification.The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to a...

  6. Path integral molecular dynamics for exact quantum statistics of multi-electronic-state systems.

    Science.gov (United States)

    Liu, Xinzijian; Liu, Jian

    2018-03-14

    An exact approach to compute physical properties for general multi-electronic-state (MES) systems in thermal equilibrium is presented. The approach is extended from our recent progress on path integral molecular dynamics (PIMD), Liu et al. [J. Chem. Phys. 145, 024103 (2016)] and Zhang et al. [J. Chem. Phys. 147, 034109 (2017)], for quantum statistical mechanics when a single potential energy surface is involved. We first define an effective potential function that is numerically favorable for MES-PIMD and then derive corresponding estimators in MES-PIMD for evaluating various physical properties. Its application to several representative one-dimensional and multi-dimensional models demonstrates that MES-PIMD in principle offers a practical tool in either of the diabatic and adiabatic representations for studying exact quantum statistics of complex/large MES systems when the Born-Oppenheimer approximation, Condon approximation, and harmonic bath approximation are broken.

  7. Quantum Instantons and Quantum Chaos

    OpenAIRE

    Jirari, H.; Kröger, H.; Luo, X. Q.; Moriarty, K. J. M.; Rubin, S. G.

    1999-01-01

    Based on a closed form expression for the path integral of quantum transition amplitudes, we suggest rigorous definitions of both, quantum instantons and quantum chaos. As an example we compute the quantum instanton of the double well potential.

  8. Model of a programmable quantum processing unit based on a quantum transistor effect

    Science.gov (United States)

    Ablayev, Farid; Andrianov, Sergey; Fetisov, Danila; Moiseev, Sergey; Terentyev, Alexandr; Urmanchev, Andrey; Vasiliev, Alexander

    2018-02-01

    In this paper we propose a model of a programmable quantum processing device realizable with existing nano-photonic technologies. It can be viewed as a basis for new high performance hardware architectures. Protocols for physical implementation of device on the controlled photon transfer and atomic transitions are presented. These protocols are designed for executing basic single-qubit and multi-qubit gates forming a universal set. We analyze the possible operation of this quantum computer scheme. Then we formalize the physical architecture by a mathematical model of a Quantum Processing Unit (QPU), which we use as a basis for the Quantum Programming Framework. This framework makes it possible to perform universal quantum computations in a multitasking environment.

  9. Opinion dynamics model based on quantum formalism

    Energy Technology Data Exchange (ETDEWEB)

    Artawan, I. Nengah, E-mail: nengahartawan@gmail.com [Theoretical Physics Division, Department of Physics, Udayana University (Indonesia); Trisnawati, N. L. P., E-mail: nlptrisnawati@gmail.com [Biophysics, Department of Physics, Udayana University (Indonesia)

    2016-03-11

    Opinion dynamics model based on quantum formalism is proposed. The core of the quantum formalism is on the half spin dynamics system. In this research the implicit time evolution operators are derived. The analogy between the model with Deffuant dan Sznajd models is discussed.

  10. Quantum Accelerators for High-performance Computing Systems

    Energy Technology Data Exchange (ETDEWEB)

    Humble, Travis S. [ORNL; Britt, Keith A. [ORNL; Mohiyaddin, Fahd A. [ORNL

    2017-11-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantum-accelerator framework that uses specialized kernels to offload select workloads while integrating with existing computing infrastructure. We elaborate on the role of the host operating system to manage these unique accelerator resources, the prospects for deploying quantum modules, and the requirements placed on the language hierarchy connecting these different system components. We draw on recent advances in the modeling and simulation of quantum computing systems with the development of architectures for hybrid high-performance computing systems and the realization of software stacks for controlling quantum devices. Finally, we present simulation results that describe the expected system-level behavior of high-performance computing systems composed from compute nodes with quantum processing units. We describe performance for these hybrid systems in terms of time-to-solution, accuracy, and energy consumption, and we use simple application examples to estimate the performance advantage of quantum acceleration.

  11. Quantum cosmology and stationary states

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1983-01-01

    A model for quantum gravity, in which the conformal part of the metric is quantized using the path integral formalism, is presented. Einstein's equations can be suitably modified to take into account the effects of quantum conformal fluctuations. A closed Friedman model can be described in terms of well-defined stationary states. The ''ground state'' sets a lower bound (at Planck length) to the scale factor preventing the collapse. A possible explanation for matter creation and quantum nature of matter is suggested. (author)

  12. Engineering integrated photonics for heralded quantum gates

    Science.gov (United States)

    Meany, Thomas; Biggerstaff, Devon N.; Broome, Matthew A.; Fedrizzi, Alessandro; Delanty, Michael; Steel, M. J.; Gilchrist, Alexei; Marshall, Graham D.; White, Andrew G.; Withford, Michael J.

    2016-06-01

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  13. Engineering integrated photonics for heralded quantum gates.

    Science.gov (United States)

    Meany, Thomas; Biggerstaff, Devon N; Broome, Matthew A; Fedrizzi, Alessandro; Delanty, Michael; Steel, M J; Gilchrist, Alexei; Marshall, Graham D; White, Andrew G; Withford, Michael J

    2016-06-10

    Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method. The mode fidelity is also shown to be less sensitive to reflectivity and phase errors than the process fidelity. Our best device achieves a fidelity of 0.931 ± 0.001 with the ideal 4 × 4 unitary circuit and a process fidelity of 0.680 ± 0.005 with the ideal computational-basis process.

  14. Certain integrable system on a space associated with a quantum search algorithm

    International Nuclear Information System (INIS)

    Uwano, Y.; Hino, H.; Ishiwatari, Y.

    2007-01-01

    On thinking up a Grover-type quantum search algorithm for an ordered tuple of multiqubit states, a gradient system associated with the negative von Neumann entropy is studied on the space of regular relative configurations of multiqubit states (SR 2 CMQ). The SR 2 CMQ emerges, through a geometric procedure, from the space of ordered tuples of multiqubit states for the quantum search. The aim of this paper is to give a brief report on the integrability of the gradient dynamical system together with quantum information geometry of the underlying space, SR 2 CMQ, of that system

  15. Quantum cosmological models

    International Nuclear Information System (INIS)

    Coule, D H

    2005-01-01

    We contrast the initial condition requirements of various contemporary cosmological models including inflationary and bouncing cosmologies. Canonical quantization of general relativity is used, as a first approximation to full quantum gravity, to determine whether suitable initial conditions are present. Various proposals such as Hartle-Hawking's 'no boundary' or tunnelling boundary conditions are assessed on grounds of naturalness and fine tuning. Alternatively, a quiescent initial state or an initial closed timelike curve 'time machine' is considered. Possible extensions to brane models are also addressed. Further ideas about universe creation from a meta-universe are outlined. Semiclassical and time asymmetry requirements of cosmology are briefly discussed and contrasted with the black-hole final-state proposal. We compare the recent loop quantum cosmology of Bojowald and co-workers with these earlier schemes. A number of possible difficulties and limitations are outlined. (topical review)

  16. Universe before Planck time: A quantum gravity model

    International Nuclear Information System (INIS)

    Padmanabhan, T.

    1983-01-01

    A model for quantum gravity can be constructed by treating the conformal degree of freedom of spacetime as a quantum variable. An isotropic, homogeneous cosmological solution in this quantum gravity model is presented. The spacetime is nonsingular for all the three possible values of three-space curvature, and agrees with the classical solution for time scales larger than the Planck time scale. A possibility of quantum fluctuations creating the matter in the universe is suggested

  17. Quantum chaos for nonstandard symmetry classes in the Feingold-Peres model of coupled tops.

    Science.gov (United States)

    Fan, Yiyun; Gnutzmann, Sven; Liang, Yuqi

    2017-12-01

    We consider two coupled quantum tops with angular momentum vectors L and M. The coupling Hamiltonian defines the Feingold-Peres model, which is a known paradigm of quantum chaos. We show that this model has a nonstandard symmetry with respect to the Altland-Zirnbauer tenfold symmetry classification of quantum systems, which extends the well-known threefold way of Wigner and Dyson (referred to as "standard" symmetry classes here). We identify the nonstandard symmetry classes BDI_{0} (chiral orthogonal class with no zero modes), BDI_{1} (chiral orthogonal class with one zero mode), and CI (antichiral orthogonal class) as well as the standard symmetry class AI (orthogonal class). We numerically analyze the specific spectral quantum signatures of chaos related to the nonstandard symmetries. In the microscopic density of states and in the distribution of the lowest positive energy eigenvalue, we show that the Feingold-Peres model follows the predictions of the Gaussian ensembles of random-matrix theory in the appropriate symmetry class if the corresponding classical dynamics is chaotic. In a crossover to mixed and near-integrable classical dynamics, we show that these signatures disappear or strongly change.

  18. Temperature dependent transport of two dimensional electrons in the integral quantum Hall regime

    International Nuclear Information System (INIS)

    Wi, H.P.

    1986-01-01

    This thesis is concerned with the temperature dependent electronic transport properties of a two dimensional electron gas subject to background potential fluctuations and a perpendicular magnetic field. The author carried out an extensive temperature dependent study of the transport coefficients, in the region of an integral quantum plateau, in an In/sub x/Ga/sub 1-x/As/InP heterostructure for 4.2K 10 cm -2 meV -1 ) even at the middle between two Landau levels, which is unexpected from model calculations based on short ranged randomness. In addition, the different T dependent behavior of rho/sub xx/ between the states in the tails and those near the center of a Landau level, indicates the existence of different electron states in a Landau level. Additionally, the author reports T-dependent transport measurements in the transition region between two quantum plateaus in several different materials

  19. Quantum-like Modeling of Cognition

    Science.gov (United States)

    Khrennikov, Andrei

    2015-09-01

    This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James), besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology. In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists) to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making. In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes (solution of the ``inverse Born's problem'') based on a quantum-like representation algorithm (QLRA).

  20. Quantum-like Modeling of Cognition

    Directory of Open Access Journals (Sweden)

    Andrei eKhrennikov

    2015-09-01

    Full Text Available This paper begins with a historical review of the mutual influence of physics and psychology, from Freud's invention of psychic energy inspired by von Boltzmann' thermodynamics to the enrichment quantum physics gained from the side of psychology by the notion of complementarity (the invention of Niels Bohr who was inspired by William James, besides we consider the resonance of the correspondence between Wolfgang Pauli and Carl Jung in both physics and psychology. Then we turn to the problem of development of mathematical models for laws of thought starting with Boolean logic and progressing towards foundations of classical probability theory. Interestingly, the laws of classical logic and probability are routinely violated not only by quantum statistical phenomena but by cognitive phenomena as well. This is yet another common feature between quantum physics and psychology.In particular, cognitive data can exhibit a kind of the probabilistic interference effect. This similarity with quantum physics convinced a multi-disciplinary group of scientists (physicists, psychologists, economists, sociologists to apply the mathematical apparatus of quantum mechanics to modeling of cognition. We illustrate this activity by considering a few concrete phenomena: the order and disjunction effects, recognition of ambiguous figures, categorization-decision making.In Appendix 1 we briefly present essentials of theory of contextual probability and a method of representations of contextual probabilities by complex probability amplitudes(solution of the ``inverse Born's problem'' based on a quantum-like representation algorithm (QLRA.

  1. Toy Models of a Nonassociative Quantum Mechanics

    International Nuclear Information System (INIS)

    Dzhunushaliev, V.

    2007-01-01

    Toy models of a nonassociative quantum mechanics are presented. The Heisenberg equation of motion is modified using a nonassociative commutator. Possible physical applications of a nonassociative quantum mechanics are considered. The idea is discussed that a nonassociative algebra could be the operator language for the nonperturbative quantum theory. In such approach the nonperturbative quantum theory has observables and un observables quantities.

  2. Introduction to functional and path integral methods in quantum field theory

    International Nuclear Information System (INIS)

    Strathdee, J.

    1991-11-01

    The following aspects concerning the use of functional and path integral methods in quantum field theory are discussed: generating functionals and the effective action, perturbation series, Yang-Mills theory and BRST symmetry. 10 refs, 3 figs

  3. A quantum generalization of intrinsic reaction coordinate using path integral centroid coordinates

    International Nuclear Information System (INIS)

    Shiga, Motoyuki; Fujisaki, Hiroshi

    2012-01-01

    We propose a generalization of the intrinsic reaction coordinate (IRC) for quantum many-body systems described in terms of the mass-weighted ring polymer centroids in the imaginary-time path integral theory. This novel kind of reaction coordinate, which may be called the ''centroid IRC,'' corresponds to the minimum free energy path connecting reactant and product states with a least amount of reversible work applied to the center of masses of the quantum nuclei, i.e., the centroids. We provide a numerical procedure to obtain the centroid IRC based on first principles by combining ab initio path integral simulation with the string method. This approach is applied to NH 3 molecule and N 2 H 5 - ion as well as their deuterated isotopomers to study the importance of nuclear quantum effects in the intramolecular and intermolecular proton transfer reactions. We find that, in the intramolecular proton transfer (inversion) of NH 3 , the free energy barrier for the centroid variables decreases with an amount of about 20% compared to the classical one at the room temperature. In the intermolecular proton transfer of N 2 H 5 - , the centroid IRC is largely deviated from the ''classical'' IRC, and the free energy barrier is reduced by the quantum effects even more drastically.

  4. Quantum billiards in multidimensional models with branes

    Energy Technology Data Exchange (ETDEWEB)

    Ivashchuk, V.D.; Melnikov, V.N. [VNIIMS, Center for Gravitation and Fundamental Metrology, Moscow (Russian Federation); Peoples' Friendship University of Russia, Institute of Gravitation and Cosmology, Moscow (Russian Federation)

    2014-03-15

    gravitational D-dimensional model with l scalar fields and several forms is considered. When a cosmological-type diagonal metric is chosen, an electromagnetic composite brane ansatz is adopted and certain restrictions on the branes are imposed; the conformally covariant Wheeler-DeWitt (WDW) equation for the model is studied. Under certain restrictions asymptotic solutions to WDW equation are found in the limit of the formation of the billiard walls which reduce the problem to the so-called quantum billiard on the (D+l-2)-dimensional Lobachevsky space. Two examples of quantum billiards are considered. The first one deals with 9-dimensional quantum billiard for D = 11 model with 330 four-forms which mimic space-like M2- and M5-branes of D = 11 supergravity. The second one deals with the 9-dimensional quantum billiard for D = 10 gravitational model with one scalar field, 210 four-forms and 120 three-forms which mimic space-like D2-, D4-, FS1- and NS5-branes in D = 10 IIA supergravity. It is shown that in both examples wave functions vanish in the limit of the formation of the billiard walls (i.e. we get a quantum resolution of the singularity for 11D model) but magnetic branes could not be neglected in calculations of quantum asymptotic solutions while they are irrelevant for classical oscillating behavior when all 120 electric branes are present. (orig.)

  5. Asymptotic series and functional integrals in quantum field theory

    International Nuclear Information System (INIS)

    Shirkov, D.V.

    1979-01-01

    Investigations of the methods for analyzing ultra-violet and infrared asymptotics in the quantum field theory (QFT) have been reviewed. A powerful method of the QFT analysis connected with the group property of renormalized transformations has been created at the first stage. The result of the studies of the second period is the constructive solution of the problem of outgoing the framework of weak coupling. At the third stage of studies essential are the asymptotic series and functional integrals in the QFT, which are used for obtaining the asymptotic type of the power expansion coefficients in the coupling constant at high values of the exponents for a number of simple models. Further advance to higher values of the coupling constant requires surmounting the difficulties resulting from the asymptotic character of expansions and a constructive application in the region of strong coupling (g >> 1)

  6. Quantum simulation of transverse Ising models with Rydberg atoms

    Science.gov (United States)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  7. Glimmers of a Quantum KAM Theorem: Insights from Quantum Quenches in One-Dimensional Bose Gases

    International Nuclear Information System (INIS)

    Brandino, G. P.; Caux, J.-S.; Konik, R. M.

    2015-01-01

    Real-time dynamics in a quantum many-body system are inherently complicated and hence difficult to predict. There are, however, a special set of systems where these dynamics are theoretically tractable: integrable models. Such models possess non-trivial conserved quantities beyond energy and momentum. These quantities are believed to control dynamics and thermalization in low dimensional atomic gases as well as in quantum spin chains. But what happens when the special symmetries leading to the existence of the extra conserved quantities are broken? Is there any memory of the quantities if the breaking is weak? Here, in the presence of weak integrability breaking, we show that it is possible to construct residual quasi-conserved quantities, so providing a quantum analog to the KAM theorem and its attendant Nekhoreshev estimates. We demonstrate this construction explicitly in the context of quantum quenches in one-dimensional Bose gases and argue that these quasi-conserved quantities can be probed experimentally.

  8. Quantum dissipation from power-law memory

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2012-01-01

    A new quantum dissipation model based on memory mechanism is suggested. Dynamics of open and closed quantum systems with power-law memory is considered. The processes with power-law memory are described by using integration and differentiation of non-integer orders, by methods of fractional calculus. An example of quantum oscillator with linear friction and power-law memory is considered. - Highlights: ► A new quantum dissipation model based on memory mechanism is suggested. ► The generalization of Lindblad equation is considered. ► An exact solution of generalized Lindblad equation for quantum oscillator with linear friction and power-law memory is derived.

  9. One-Way Deficit and Quantum Phase Transitions in XX Model

    Science.gov (United States)

    Wang, Yao-Kun; Zhang, Yu-Ran

    2018-02-01

    Quantum correlations including entanglement and quantum discord have drawn much attention in characterizing quantum phase transitions. Quantum deficit originates in questions regarding work extraction from quantum systems coupled to a heat bath (Oppenheim et al. Phys. Rev. Lett. 89, 180402, 2002). It links quantum thermodynamics with quantum correlations and provides a new standpoint for understanding quantum non-locality. In this paper, we evaluate the one-way deficit of two adjacent spins in the bulk for the XX model. In the thermodynamic limit, the XX model undergoes a first order transition from fully polarized to a critical phase with quasi-long-range order with decrease of quantum parameter. We find that the one-way deficit becomes nonzero after the critical point. Therefore, the one-way deficit characterizes the quantum phase transition in the XX model.

  10. Quantum Accelerators for High-Performance Computing Systems

    OpenAIRE

    Britt, Keith A.; Mohiyaddin, Fahd A.; Humble, Travis S.

    2017-01-01

    We define some of the programming and system-level challenges facing the application of quantum processing to high-performance computing. Alongside barriers to physical integration, prominent differences in the execution of quantum and conventional programs challenges the intersection of these computational models. Following a brief overview of the state of the art, we discuss recent advances in programming and execution models for hybrid quantum-classical computing. We discuss a novel quantu...

  11. Fisher information and quantum potential well model for finance

    Energy Technology Data Exchange (ETDEWEB)

    Nastasiuk, V.A., E-mail: nasa@i.ua

    2015-09-25

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market.

  12. Fisher information and quantum potential well model for finance

    International Nuclear Information System (INIS)

    Nastasiuk, V.A.

    2015-01-01

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones. - Highlights: • The financial Schrödinger equation is derived using the principle of minimum Fisher information. • Statistical models for price variation are mapped by the quantum models of coupled particle. • The model of quantum particle in parabolic potential well corresponds to Efficient market

  13. Rabi model as a quantum coherent heat engine: From quantum biology to superconducting circuits

    Science.gov (United States)

    Altintas, Ferdi; Hardal, Ali Ü. C.; Müstecaplıoǧlu, Özgür E.

    2015-02-01

    We propose a multilevel quantum heat engine with a working medium described by a generalized Rabi model which consists of a two-level system coupled to a single-mode bosonic field. The model is constructed to be a continuum limit of a quantum biological description of light-harvesting complexes so that it can amplify quantum coherence by a mechanism which is a quantum analog of classical Huygens clocks. The engine operates in a quantum Otto cycle where the working medium is coupled to classical heat baths in the isochoric processes of the four-stroke cycle, while either the coupling strength or the resonance frequency is changed in the adiabatic stages. We found that such an engine can produce work with an efficiency close to the Carnot bound when it operates at low temperatures and in the ultrastrong-coupling regime. The interplay of the effects of quantum coherence and quantum correlations on the engine performance is discussed in terms of second-order coherence, quantum mutual information, and the logarithmic negativity of entanglement. We point out that the proposed quantum Otto engine can be implemented experimentally with modern circuit quantum electrodynamic systems where flux qubits can be coupled ultrastrongly to superconducting transmission-line resonators.

  14. Quantum mechanics model on a Kaehler conifold

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen

    2004-01-01

    We propose an exactly solvable model of the quantum oscillator on the class of Kaehler spaces (with conic singularities), connected with two-dimensional complex projective spaces. Its energy spectrum is nondegenerate in the orbital quantum number, when the space has nonconstant curvature. We reduce the model to a three-dimensional system interacting with the Dirac monopole. Owing to noncommutativity of the reduction and quantization procedures, the Hamiltonian of the reduced system gets nontrivial quantum corrections. We transform the reduced system into a MIC-Kepler-like one and find that quantum corrections arise only in its energy and coupling constant. We present the exact spectrum of the generalized MIC-Kepler system. The one-(complex) dimensional analog of the suggested model is formulated on the Riemann surface over the complex projective plane and could be interpreted as a system with fractional spin

  15. Feynman propagator for spin foam quantum gravity.

    Science.gov (United States)

    Oriti, Daniele

    2005-03-25

    We link the notion causality with the orientation of the spin foam 2-complex. We show that all current spin foam models are orientation independent. Using the technology of evolution kernels for quantum fields on Lie groups, we construct a generalized version of spin foam models, introducing an extra proper time variable. We prove that different ranges of integration for this variable lead to different classes of spin foam models: the usual ones, interpreted as the quantum gravity analogue of the Hadamard function of quantum field theory (QFT) or as inner products between quantum gravity states; and a new class of causal models, the quantum gravity analogue of the Feynman propagator in QFT, nontrivial function of the orientation data, and implying a notion of "timeless ordering".

  16. Quantum cosmology

    International Nuclear Information System (INIS)

    Hawking, S.W.

    1984-01-01

    The subject of these lectures is quantum effects in cosmology. The author deals first with situations in which the gravitational field can be treated as a classical, unquantized background on which the quantum matter fields propagate. This is the case with inflation at the GUT era. Nevertheless the curvature of spacetime can have important effects on the behaviour of the quantum fields and on the development of long-range correlations. He then turns to the question of the quantization of the gravitational field itself. The plan of these lectures is as follows: Euclidean approach to quantum field theory in flat space; the extension of techniques to quantum fields on a curved background with the four-sphere, the Euclidean version of De Sitter space as a particular example; the GUT era; quantization of the gravitational field by Euclidean path integrals; mini superspace model. (Auth.)

  17. Quantum Graphical Models and Belief Propagation

    International Nuclear Information System (INIS)

    Leifer, M.S.; Poulin, D.

    2008-01-01

    Belief Propagation algorithms acting on Graphical Models of classical probability distributions, such as Markov Networks, Factor Graphs and Bayesian Networks, are amongst the most powerful known methods for deriving probabilistic inferences amongst large numbers of random variables. This paper presents a generalization of these concepts and methods to the quantum case, based on the idea that quantum theory can be thought of as a noncommutative, operator-valued, generalization of classical probability theory. Some novel characterizations of quantum conditional independence are derived, and definitions of Quantum n-Bifactor Networks, Markov Networks, Factor Graphs and Bayesian Networks are proposed. The structure of Quantum Markov Networks is investigated and some partial characterization results are obtained, along the lines of the Hammersley-Clifford theorem. A Quantum Belief Propagation algorithm is presented and is shown to converge on 1-Bifactor Networks and Markov Networks when the underlying graph is a tree. The use of Quantum Belief Propagation as a heuristic algorithm in cases where it is not known to converge is discussed. Applications to decoding quantum error correcting codes and to the simulation of many-body quantum systems are described

  18. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Science.gov (United States)

    Benedetti, Marcello; Realpe-Gómez, John; Biswas, Rupak; Perdomo-Ortiz, Alejandro

    2017-10-01

    Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  19. Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models

    Directory of Open Access Journals (Sweden)

    Marcello Benedetti

    2017-11-01

    Full Text Available Mainstream machine-learning techniques such as deep learning and probabilistic programming rely heavily on sampling from generally intractable probability distributions. There is increasing interest in the potential advantages of using quantum computing technologies as sampling engines to speed up these tasks or to make them more effective. However, some pressing challenges in state-of-the-art quantum annealers have to be overcome before we can assess their actual performance. The sparse connectivity, resulting from the local interaction between quantum bits in physical hardware implementations, is considered the most severe limitation to the quality of constructing powerful generative unsupervised machine-learning models. Here, we use embedding techniques to add redundancy to data sets, allowing us to increase the modeling capacity of quantum annealers. We illustrate our findings by training hardware-embedded graphical models on a binarized data set of handwritten digits and two synthetic data sets in experiments with up to 940 quantum bits. Our model can be trained in quantum hardware without full knowledge of the effective parameters specifying the corresponding quantum Gibbs-like distribution; therefore, this approach avoids the need to infer the effective temperature at each iteration, speeding up learning; it also mitigates the effect of noise in the control parameters, making it robust to deviations from the reference Gibbs distribution. Our approach demonstrates the feasibility of using quantum annealers for implementing generative models, and it provides a suitable framework for benchmarking these quantum technologies on machine-learning-related tasks.

  20. Quantum Cosmology

    OpenAIRE

    Page, Don N.

    2006-01-01

    A complete model of the universe needs at least three parts: (1) a complete set of physical variables and dynamical laws for them, (2) the correct solution of the dynamical laws, and (3) the connection with conscious experience. In quantum cosmology, item (2) is the quantum state of the cosmos. Hartle and Hawking have made the `no-boundary' proposal, that the wavefunction of the universe is given by a path integral over all compact Euclidean 4-dimensional geometries and matter fields that hav...

  1. Schwinger's quantum action principle from Dirac’s formulation through Feynman’s path integrals, the Schwinger-Keldysh method, quantum field theory, to source theory

    CERN Document Server

    Milton, Kimball A

    2015-01-01

    Starting from the earlier notions of stationary action principles, these tutorial notes shows how Schwinger’s Quantum Action Principle descended from Dirac’s formulation, which independently led Feynman to his path-integral formulation of quantum mechanics. Part I brings out in more detail the connection between the two formulations, and applications are discussed. Then, the Keldysh-Schwinger time-cycle method of extracting matrix elements is described. Part II will discuss the variational formulation of quantum electrodynamics and the development of source theory.

  2. Optimal evolution models for quantum tomography

    International Nuclear Information System (INIS)

    Czerwiński, Artur

    2016-01-01

    The research presented in this article concerns the stroboscopic approach to quantum tomography, which is an area of science where quantum physics and linear algebra overlap. In this article we introduce the algebraic structure of the parametric-dependent quantum channels for 2-level and 3-level systems such that the generator of evolution corresponding with the Kraus operators has no degenerate eigenvalues. In such cases the index of cyclicity of the generator is equal to 1, which physically means that there exists one observable the measurement of which performed a sufficient number of times at distinct instants provides enough data to reconstruct the initial density matrix and, consequently, the trajectory of the state. The necessary conditions for the parameters and relations between them are introduced. The results presented in this paper seem to have considerable potential applications in experiments due to the fact that one can perform quantum tomography by conducting only one kind of measurement. Therefore, the analyzed evolution models can be considered optimal in the context of quantum tomography. Finally, we introduce some remarks concerning optimal evolution models in the case of n-dimensional Hilbert space. (paper)

  3. Solvable model of quantum microcanonical states

    International Nuclear Information System (INIS)

    Bender, Carl M; Brody, Dorje C; Hook, Daniel W

    2005-01-01

    This letter examines the consequences of a recently proposed modification of the postulate of equal a priori probability in quantum statistical mechanics. This modification, called the quantum microcanonical postulate (QMP), asserts that for a system in microcanonical equilibrium all pure quantum states having the same energy expectation value are realized with equal probability. A simple model of a quantum system that obeys the QMP and that has a nondegenerate spectrum with equally spaced energy eigenvalues is studied. This model admits a closed-form expression for the density of states in terms of the energy eigenvalues. It is shown that in the limit as the number of energy levels approaches infinity, the expression for the density of states converges to a δ function centred at the intermediate value (E max + E min )/2 of the energy. Determining this limit requires an elaborate asymptotic study of an infinite sum whose terms alternate in sign. (letter to the editor)

  4. Functional techniques in quantum field theory and two-dimensional models

    International Nuclear Information System (INIS)

    Souza, C. Farina de.

    1985-03-01

    Functional methods applied to Quantum Field Theory are studied. It is shown how to construct the Generating Functional using three of the most important methods existent in the literature, due to Feynman, Symanzik and Schwinger. The Axial Anomaly is discussed in the usual way, and a non perturbative method due to Fujikawa to obtain this anomaly in the path integral formalism is presented. The ''Roskies-Shaposnik-Fujikawa's method'', which makes use of Fujikawa's original idea to solve bidimensional models, is introduced in the Schwinger's model, which, in turn, is applied to obtain the exact solution of the axial model. It is discussed briefly how different regularization procedures can affect the theory in question. (author)

  5. On the structure of the quantum-mechanical probability models

    International Nuclear Information System (INIS)

    Cufaro-Petroni, N.

    1992-01-01

    In this paper the role of the mathematical probability models in the classical and quantum physics in shortly analyzed. In particular the formal structure of the quantum probability spaces (QPS) is contrasted with the usual Kolmogorovian models of probability by putting in evidence the connections between this structure and the fundamental principles of the quantum mechanics. The fact that there is no unique Kolmogorovian model reproducing a QPS is recognized as one of the main reasons of the paradoxical behaviors pointed out in the quantum theory from its early days. 8 refs

  6. On Mathematical Modeling Of Quantum Systems

    International Nuclear Information System (INIS)

    Achuthan, P.; Narayanankutty, Karuppath

    2009-01-01

    The world of physical systems at the most fundamental levels is replete with efficient, interesting models possessing sufficient ability to represent the reality to a considerable extent. So far, quantum mechanics (QM) forming the basis of almost all natural phenomena, has found beyond doubt its intrinsic ingenuity, capacity and robustness to stand the rigorous tests of validity from and through appropriate calculations and experiments. No serious failures of quantum mechanical predictions have been reported, yet. However, Albert Einstein, the greatest theoretical physicist of the twentieth century and some other eminent men of science have stated firmly and categorically that QM, though successful by and large, is incomplete. There are classical and quantum reality models including those based on consciousness. Relativistic quantum theoretical approaches to clearly understand the ultimate nature of matter as well as radiation have still much to accomplish in order to qualify for a final theory of everything (TOE). Mathematical models of better, suitable character as also strength are needed to achieve satisfactory explanation of natural processes and phenomena. We, in this paper, discuss some of these matters with certain apt illustrations as well.

  7. Nucleic acid reactivity : challenges for next-generation semiempirical quantum models

    OpenAIRE

    Huang, Ming; Giese, Timothy J.; York, Darrin M.

    2015-01-01

    Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity in order to quantify their limitations and guide the development of next-generation quantum models with improved accuracy. Neglect of diatomic diffierential overlap (...

  8. Quantum Brownian motion model for the stock market

    Science.gov (United States)

    Meng, Xiangyi; Zhang, Jian-Wei; Guo, Hong

    2016-06-01

    It is believed by the majority today that the efficient market hypothesis is imperfect because of market irrationality. Using the physical concepts and mathematical structures of quantum mechanics, we construct an econophysical framework for the stock market, based on which we analogously map massive numbers of single stocks into a reservoir consisting of many quantum harmonic oscillators and their stock index into a typical quantum open system-a quantum Brownian particle. In particular, the irrationality of stock transactions is quantitatively considered as the Planck constant within Heisenberg's uncertainty relationship of quantum mechanics in an analogous manner. We analyze real stock data of Shanghai Stock Exchange of China and investigate fat-tail phenomena and non-Markovian behaviors of the stock index with the assistance of the quantum Brownian motion model, thereby interpreting and studying the limitations of the classical Brownian motion model for the efficient market hypothesis from a new perspective of quantum open system dynamics.

  9. A quantum hydrodynamic model for multicomponent quantum magnetoplasma with Jeans term

    International Nuclear Information System (INIS)

    Masood, W.; Salimullah, M.; Shah, H.A.

    2008-01-01

    The effect of Jeans term in a multicomponent self-gravitating quantum magnetoplasma is investigated employing the quantum hydrodynamic (QHD) model. The effects of quantum Bohm potential and statistical terms as well as the ambient magnetic field are also investigated on both dust and ion dynamics driven waves in this Letter. We state the conditions that can drive the system unstable in the presence of Jeans term. The limiting cases are also presented. The present work may have relevance in the dense astrophysical environments where the self-gravitating effects are expected to play a pivotal role

  10. Toward quantum-like modeling of financial processes

    International Nuclear Information System (INIS)

    Choustova, Olga

    2007-01-01

    We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. We propose to describe behavioral financial factors (e.g., expectations of traders) by using the pilot wave (Bohmian) model of quantum mechanics. Trajectories of prices are determined by two financial potentials: classical-like V(q) ('hard' market conditions, e.g., natural resources) and quantum-like U(q) (behavioral market conditions). On the one hand, our Bohmian model is a quantum-like model for the financial market, cf. with works of W. Segal, I. E. Segal, E. Haven, E. W. Piotrowski, J. Sladkowski. On the other hand (since Bohmian mechanics provides the possibility to describe individual price trajectories) it belongs to the domain of extended research on deterministic dynamics for financial assets (C.W.J. Granger, W.A. Barnett, A. J. Benhabib, W.A. Brock, C. Sayers, J. Y. Campbell, A. W. Lo, A. C. MacKinlay, A. Serletis, S. Kuchta, M. Frank, R. Gencay, T. Stengos, M. J. Hinich, D. Patterson, D. A. Hsieh, D. T. Caplan, J.A. Scheinkman, B. LeBaron and many others)

  11. Fractional quantum mechanics

    CERN Document Server

    Laskin, Nick

    2018-01-01

    Fractional quantum mechanics is a recently emerged and rapidly developing field of quantum physics. This is the first monograph on fundamentals and physical applications of fractional quantum mechanics, written by its founder. The fractional Schrödinger equation and the fractional path integral are new fundamental physical concepts introduced and elaborated in the book. The fractional Schrödinger equation is a manifestation of fractional quantum mechanics. The fractional path integral is a new mathematical tool based on integration over Lévy flights. The fractional path integral method enhances the well-known Feynman path integral framework. Related topics covered in the text include time fractional quantum mechanics, fractional statistical mechanics, fractional classical mechanics and the α-stable Lévy random process. The book is well-suited for theorists, pure and applied mathematicians, solid-state physicists, chemists, and others working with the Schrödinger equation, the path integral technique...

  12. The Real and the Mathematical in Quantum Modeling: From Principles to Models and from Models to Principles

    Science.gov (United States)

    Plotnitsky, Arkady

    2017-06-01

    The history of mathematical modeling outside physics has been dominated by the use of classical mathematical models, C-models, primarily those of a probabilistic or statistical nature. More recently, however, quantum mathematical models, Q-models, based in the mathematical formalism of quantum theory have become more prominent in psychology, economics, and decision science. The use of Q-models in these fields remains controversial, in part because it is not entirely clear whether Q-models are necessary for dealing with the phenomena in question or whether C-models would still suffice. My aim, however, is not to assess the necessity of Q-models in these fields, but instead to reflect on what the possible applicability of Q-models may tell us about the corresponding phenomena there, vis-à-vis quantum phenomena in physics. In order to do so, I shall first discuss the key reasons for the use of Q-models in physics. In particular, I shall examine the fundamental principles that led to the development of quantum mechanics. Then I shall consider a possible role of similar principles in using Q-models outside physics. Psychology, economics, and decision science borrow already available Q-models from quantum theory, rather than derive them from their own internal principles, while quantum mechanics was derived from such principles, because there was no readily available mathematical model to handle quantum phenomena, although the mathematics ultimately used in quantum did in fact exist then. I shall argue, however, that the principle perspective on mathematical modeling outside physics might help us to understand better the role of Q-models in these fields and possibly to envision new models, conceptually analogous to but mathematically different from those of quantum theory, helpful or even necessary there or in physics itself. I shall suggest one possible type of such models, singularized probabilistic, SP, models, some of which are time-dependent, TDSP-models. The

  13. Generalized thermalization for integrable system under quantum quench.

    Science.gov (United States)

    Muralidharan, Sushruth; Lochan, Kinjalk; Shankaranarayanan, S

    2018-01-01

    We investigate equilibration and generalized thermalization of the quantum Harmonic chain under local quantum quench. The quench action we consider is connecting two disjoint harmonic chains of different sizes and the system jumps between two integrable settings. We verify the validity of the generalized Gibbs ensemble description for this infinite-dimensional Hilbert space system and also identify equilibration between the subsystems as in classical systems. Using Bogoliubov transformations, we show that the eigenstates of the system prior to the quench evolve toward the Gibbs Generalized Ensemble description. Eigenstates that are more delocalized (in the sense of inverse participation ratio) prior to the quench, tend to equilibrate more rapidly. Further, through the phase space properties of a generalized Gibbs ensemble and the strength of stimulated emission, we identify the necessary criterion on the initial states for such relaxation at late times and also find out the states that would potentially not be described by the generalized Gibbs ensemble description.

  14. Quantum entanglement and quantum phase transitions in frustrated Majumdar-Ghosh model

    International Nuclear Information System (INIS)

    Liu Guanghua; Wang Chunhai; Deng Xiaoyan

    2011-01-01

    By using the density matrix renormalization group technique, the quantum phase transitions in the frustrated Majumdar-Ghosh model are investigated. The behaviors of the conventional order parameter and the quantum entanglement entropy are analyzed in detail. The order parameter is found to peak at J 2 ∼0.58, but not at the Majumdar-Ghosh point (J 2 =0.5). Although, the quantum entanglements calculated with different subsystems display dissimilarly, the extremes of their first derivatives approach to the same critical point. By finite size scaling, this quantum critical point J C 2 converges to around 0.301 in the thermodynamic limit, which is consistent with those predicted previously by some authors (Tonegawa and Harada, 1987 ; Kuboki and Fukuyama, 1987 ; Chitra et al., 1995 ). Across the J C 2 , the system undergoes a quantum phase transition from a gapless spin-fluid phase to a gapped dimerized phase.

  15. A quantum group structure in integrable conformal field theories

    International Nuclear Information System (INIS)

    Smit, D.J.

    1990-01-01

    We discuss a quantization prescription of the conformal algebras of a class of d=2 conformal field theories which are integrable. We first give a geometrical construction of certain extensions of the classical Virasoro algebra, known as classical W algebras, in which these algebras arise as the Lie algebra of the second Hamiltonian structure of a generalized Korteweg-de Vries hierarchy. This fact implies that the W algebras, obtained as a reduction with respect to the nilpotent subalgebras of the Kac-Moody algebra, describe the intergrability of a Toda field theory. Subsequently we determine the coadjoint operators of the W algebras, and relate these to classical Yang-Baxter matrices. The quantization of these algebras can be carried out using the concept of a so-called quantum group. We derive the condition under which the representations of these quantum groups admit a Hilbert space completion by exploring the relation with the braid group. Then we consider a modification of the Miura transformation which we use to define a quantum W algebra. This leads to an alternative interpretation of the coset construction for Kac-Moody algebras in terms of nonlinear integrable hierarchies. Subsequently we use the connection between the induced braid group representations and the representations of the mapping class group of Riemann surfaces to identify an action of the W algebras on the moduli space of stable curves, and we give the invariants of this action. This provides a generalization of the situation for the Virasoro algebra, where such an invariant is given by the so-called Mumford form which describes the partition function of the bosonic string. (orig.)

  16. Quantum ratchet effect in a time non-uniform double-kicked model

    Science.gov (United States)

    Chen, Lei; Wang, Zhen-Yu; Hui, Wu; Chu, Cheng-Yu; Chai, Ji-Min; Xiao, Jin; Zhao, Yu; Ma, Jin-Xiang

    2017-07-01

    The quantum ratchet effect means that the directed transport emerges in a quantum system without a net force. The delta-kicked model is a quantum Hamiltonian model for the quantum ratchet effect. This paper investigates the quantum ratchet effect based on a time non-uniform double-kicked model, in which two flashing potentials alternately act on a particle with a homogeneous initial state of zero momentum, while the intervals between adjacent actions are not equal. The evolution equation of the state of the particle is derived from its Schrödinger equation, and the numerical method to solve the evolution equation is pointed out. The results show that quantum resonances can induce the ratchet effect in this time non-uniform double-kicked model under certain conditions; some quantum resonances, which cannot induce the ratchet effect in previous models, can induce the ratchet effect in this model, and the strengths of the ratchet effect in this model are stronger than those in previous models under certain conditions. These results enrich people’s understanding of the delta-kicked model, and provides a new optional scheme to control the quantum transport of cold atoms in experiment.

  17. Calculation of quantum-mechanical system energy spectra using path integrals

    International Nuclear Information System (INIS)

    Evseev, A.M.; Dmitriev, V.P.

    1977-01-01

    A solution of the Feynman quantum-mechanical integral connecting a wave function (psi (x, t)) at a moment t+tau (tau → 0) with the wave function at the moment t is provided by complex variable substitution and subsequent path integration. Time dependence of the wave function is calculated by the Monte Carlo method. The Fourier inverse transformation of the wave function by path integration calculated has been applied to determine the energy spectra. Energy spectra are presented of a hydrogen atom derived from wave function psi (x, t) at different x, as well as boson energy spectra of He, Li, and Be atoms obtained from psi (x, t) at X = O

  18. Classical and quantum integrability for a class of potentials in two dimensions

    International Nuclear Information System (INIS)

    Hiranwal, Roshan; Mishra, S.C.; Mishra, Veena

    2004-01-01

    A method for the construction of the second constant of motion in fourth order is carried out. Correspondingly the fourth order potential equation is obtained whose solutions directly provide the classical integrable systems. Second constant of motion is obtained for a large class of potentials. Quantum invariants are also obtained with second order quantum corrections of the order O(ℎ 2 ) to the corresponding classical invariants. The phase space diagrams for these cases are drawn using a mathematical computer software package in two dimensions

  19. Quantum theory of multiscale coarse-graining.

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W; Voth, Gregory A

    2018-03-14

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  20. Quantum theory of multiscale coarse-graining

    Science.gov (United States)

    Han, Yining; Jin, Jaehyeok; Wagner, Jacob W.; Voth, Gregory A.

    2018-03-01

    Coarse-grained (CG) models serve as a powerful tool to simulate molecular systems at much longer temporal and spatial scales. Previously, CG models and methods have been built upon classical statistical mechanics. The present paper develops a theory and numerical methodology for coarse-graining in quantum statistical mechanics, by generalizing the multiscale coarse-graining (MS-CG) method to quantum Boltzmann statistics. A rigorous derivation of the sufficient thermodynamic consistency condition is first presented via imaginary time Feynman path integrals. It identifies the optimal choice of CG action functional and effective quantum CG (qCG) force field to generate a quantum MS-CG (qMS-CG) description of the equilibrium system that is consistent with the quantum fine-grained model projected onto the CG variables. A variational principle then provides a class of algorithms for optimally approximating the qMS-CG force fields. Specifically, a variational method based on force matching, which was also adopted in the classical MS-CG theory, is generalized to quantum Boltzmann statistics. The qMS-CG numerical algorithms and practical issues in implementing this variational minimization procedure are also discussed. Then, two numerical examples are presented to demonstrate the method. Finally, as an alternative strategy, a quasi-classical approximation for the thermal density matrix expressed in the CG variables is derived. This approach provides an interesting physical picture for coarse-graining in quantum Boltzmann statistical mechanics in which the consistency with the quantum particle delocalization is obviously manifest, and it opens up an avenue for using path integral centroid-based effective classical force fields in a coarse-graining methodology.

  1. Path integrals in quantum mechanics, statistics, polymer physics, and financial markets

    CERN Document Server

    Kleinert, Hagen

    2009-01-01

    This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman's time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying p

  2. Spectral and scattering theory for translation invariant models in quantum field theory

    DEFF Research Database (Denmark)

    Rasmussen, Morten Grud

    This thesis is concerned with a large class of massive translation invariant models in quantum field theory, including the Nelson model and the Fröhlich polaron. The models in the class describe a matter particle, e.g. a nucleon or an electron, linearly coupled to a second quantised massive scalar...... by the physically relevant choices. The translation invariance implies that the Hamiltonian may be decomposed into a direct integral over the space of total momentum where the fixed momentum fiber Hamiltonians are given by , where denotes total momentum and is the Segal field operator. The fiber Hamiltonians...

  3. Circuit models and SPICE macro-models for quantum Hall effect devices

    International Nuclear Information System (INIS)

    Ortolano, Massimo; Callegaro, Luca

    2015-01-01

    Precise electrical measurement technology based on the quantum Hall effect is one of the pillars of modern quantum electrical metrology. Electrical networks including one or more QHE elements can be used as quantum resistance and impedance standards. The analysis of these networks allows metrologists to evaluate the effect of the inevitable parasitic parameters on their performance as standards. This paper presents a concise review of the various circuit models for QHE elements proposed in the literature, and the development of a new model. This last model is particularly suited to be employed with the analogue electronic circuit simulator SPICE. The SPICE macro-model and examples of SPICE simulations, validated by comparison with the corresponding analytical solution and/or experimental data, are provided. (paper)

  4. A quantum mechanical model of "dark matter"

    OpenAIRE

    Belokurov, V. V.; Shavgulidze, E. T.

    2014-01-01

    The role of singular solutions in some simple quantum mechanical models is studied. The space of the states of two-dimensional quantum harmonic oscillator is shown to be separated into sets of states with different properties.

  5. Classification of quantum phases and topology of logical operators in an exactly solved model of quantum codes

    International Nuclear Information System (INIS)

    Yoshida, Beni

    2011-01-01

    Searches for possible new quantum phases and classifications of quantum phases have been central problems in physics. Yet, they are indeed challenging problems due to the computational difficulties in analyzing quantum many-body systems and the lack of a general framework for classifications. While frustration-free Hamiltonians, which appear as fixed point Hamiltonians of renormalization group transformations, may serve as representatives of quantum phases, it is still difficult to analyze and classify quantum phases of arbitrary frustration-free Hamiltonians exhaustively. Here, we address these problems by sharpening our considerations to a certain subclass of frustration-free Hamiltonians, called stabilizer Hamiltonians, which have been actively studied in quantum information science. We propose a model of frustration-free Hamiltonians which covers a large class of physically realistic stabilizer Hamiltonians, constrained to only three physical conditions; the locality of interaction terms, translation symmetries and scale symmetries, meaning that the number of ground states does not grow with the system size. We show that quantum phases arising in two-dimensional models can be classified exactly through certain quantum coding theoretical operators, called logical operators, by proving that two models with topologically distinct shapes of logical operators are always separated by quantum phase transitions.

  6. Modeling of the quantum dot filling and the dark current of quantum dot infrared photodetectors

    International Nuclear Information System (INIS)

    Ameen, Tarek A.; El-Batawy, Yasser M.; Abouelsaood, A. A.

    2014-01-01

    A generalized drift-diffusion model for the calculation of both the quantum dot filling profile and the dark current of quantum dot infrared photodetectors is proposed. The confined electrons inside the quantum dots produce a space-charge potential barrier between the two contacts, which controls the quantum dot filling and limits the dark current in the device. The results of the model reasonably agree with a published experimental work. It is found that increasing either the doping level or the temperature results in an exponential increase of the dark current. The quantum dot filling turns out to be nonuniform, with a dot near the contacts containing more electrons than one in the middle of the device where the dot occupation approximately equals the number of doping atoms per dot, which means that quantum dots away from contacts will be nearly unoccupied if the active region is undoped

  7. Scrambling in the quantum Lifshitz model

    Science.gov (United States)

    Plamadeala, Eugeniu; Fradkin, Eduardo

    2018-06-01

    We study signatures of chaos in the quantum Lifshitz model through out-of-time ordered correlators (OTOC) of current operators. This model is a free scalar field theory with dynamical critical exponent z  =  2. It describes the quantum phase transition in 2D systems, such as quantum dimer models, between a phase with a uniform ground state to another one with spontaneously broken translation invariance. At the lowest temperatures the chaotic dynamics are dominated by a marginally irrelevant operator which induces a temperature dependent stiffness term. The numerical computations of OTOC exhibit a non-zero Lyapunov exponent (LE) in a wide range of temperatures and interaction strengths. The LE (in units of temperature) is a weakly temperature-dependent function; it vanishes at weak interaction and saturates for strong interaction. The Butterfly velocity increases monotonically with interaction strength in the studied region while remaining smaller than the interaction-induced velocity/stiffness.

  8. Carrier Statistics and Quantum Capacitance Models of Graphene Nanoscroll

    Directory of Open Access Journals (Sweden)

    M. Khaledian

    2014-01-01

    schematic perfect scroll-like Archimedes spiral. The DOS model was derived at first, while it was later applied to compute the carrier concentration and quantum capacitance model. Furthermore, the carrier concentration and quantum capacitance were modeled for both degenerate and nondegenerate regimes, along with examining the effect of structural parameters and chirality number on the density of state and carrier concentration. Latterly, the temperature effect on the quantum capacitance was studied too.

  9. Dynamic structure factor for liquid He4 and quantum lattice model

    International Nuclear Information System (INIS)

    Lee, M.H.

    1975-01-01

    It has been realized for some time now that the quantum lattice model (or the anisotropic Heisenberg antiferromagnetic model) is a useful model for studying the properties of quantum liquids especially near the lambda transition. The static critical values calculated from the quantum lattice model are in good agreement with the observed values. Furthermore, it was shown recently that there are collective modes in the quantum lattice model which are equivalent to the plasmons. Hence, it would seem to be interesting to study the dynamic structure factor for the quantum lattice model and to make a comparison with experiment. Work on the dynamic structure factor is reported here. (Auth.)

  10. Toward quantum-like modeling of financial processes

    Energy Technology Data Exchange (ETDEWEB)

    Choustova, Olga [International Center for Mathematical Modeling in Physics and Cognitive Sciences, University of Vaexjoe, S-35195 (Sweden)

    2007-05-15

    We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. We propose to describe behavioral financial factors (e.g., expectations of traders) by using the pilot wave (Bohmian) model of quantum mechanics. Trajectories of prices are determined by two financial potentials: classical-like V(q) ('hard' market conditions, e.g., natural resources) and quantum-like U(q) (behavioral market conditions). On the one hand, our Bohmian model is a quantum-like model for the financial market, cf. with works of W. Segal, I. E. Segal, E. Haven, E. W. Piotrowski, J. Sladkowski. On the other hand (since Bohmian mechanics provides the possibility to describe individual price trajectories) it belongs to the domain of extended research on deterministic dynamics for financial assets (C.W.J. Granger, W.A. Barnett, A. J. Benhabib, W.A. Brock, C. Sayers, J. Y. Campbell, A. W. Lo, A. C. MacKinlay, A. Serletis, S. Kuchta, M. Frank, R. Gencay, T. Stengos, M. J. Hinich, D. Patterson, D. A. Hsieh, D. T. Caplan, J.A. Scheinkman, B. LeBaron and many others)

  11. Entanglement entropy of non-unitary integrable quantum field theory

    Directory of Open Access Journals (Sweden)

    Davide Bianchini

    2015-07-01

    Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3log⁡ℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.

  12. Electro-optic routing of photons from a single quantum dot in photonic integrated circuits

    Science.gov (United States)

    Midolo, Leonardo; Hansen, Sofie L.; Zhang, Weili; Papon, Camille; Schott, Rüdiger; Ludwig, Arne; Wieck, Andreas D.; Lodahl, Peter; Stobbe, Søren

    2017-12-01

    Recent breakthroughs in solid-state photonic quantum technologies enable generating and detecting single photons with near-unity efficiency as required for a range of photonic quantum technologies. The lack of methods to simultaneously generate and control photons within the same chip, however, has formed a main obstacle to achieving efficient multi-qubit gates and to harness the advantages of chip-scale quantum photonics. Here we propose and demonstrate an integrated voltage-controlled phase shifter based on the electro-optic effect in suspended photonic waveguides with embedded quantum emitters. The phase control allows building a compact Mach-Zehnder interferometer with two orthogonal arms, taking advantage of the anisotropic electro-optic response in gallium arsenide. Photons emitted by single self-assembled quantum dots can be actively routed into the two outputs of the interferometer. These results, together with the observed sub-microsecond response time, constitute a significant step towards chip-scale single-photon-source de-multiplexing, fiber-loop boson sampling, and linear optical quantum computing.

  13. Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

    Energy Technology Data Exchange (ETDEWEB)

    Muender, Wolfgang

    2011-09-28

    This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption

  14. Matrix product state calculations for one-dimensional quantum chains and quantum impurity models

    International Nuclear Information System (INIS)

    Muender, Wolfgang

    2011-01-01

    This thesis contributes to the field of strongly correlated electron systems with studies in two distinct fields thereof: the specific nature of correlations between electrons in one dimension and quantum quenches in quantum impurity problems. In general, strongly correlated systems are characterized in that their physical behaviour needs to be described in terms of a many-body description, i.e. interactions correlate all particles in a complex way. The challenge is that the Hilbert space in a many-body theory is exponentially large in the number of particles. Thus, when no analytic solution is available - which is typically the case - it is necessary to find a way to somehow circumvent the problem of such huge Hilbert spaces. Therefore, the connection between the two studies comes from our numerical treatment: they are tackled by the density matrix renormalization group (DMRG) and the numerical renormalization group (NRG), respectively, both based on matrix product states. The first project presented in this thesis addresses the problem of numerically finding the dominant correlations in quantum lattice models in an unbiased way, i.e. without using prior knowledge of the model at hand. A useful concept for this task is the correlation density matrix (CDM) which contains all correlations between two clusters of lattice sites. We show how to extract from the CDM, a survey of the relative strengths of the system's correlations in different symmetry sectors as well as detailed information on the operators carrying long-range correlations and the spatial dependence of their correlation functions. We demonstrate this by a DMRG study of a one-dimensional spinless extended Hubbard model, while emphasizing that the proposed analysis of the CDM is not restricted to one dimension. The second project presented in this thesis is motivated by two phenomena under ongoing experimental and theoretical investigation in the context of quantum impurity models: optical absorption

  15. Quantum-classical correspondence in steady states of nonadiabatic systems

    International Nuclear Information System (INIS)

    Fujii, Mikiya; Yamashita, Koichi

    2015-01-01

    We first present nonadiabatic path integral which is exact formulation of quantum dynamics in nonadiabatic systems. Then, by applying the stationary phase approximations to the nonadiabatic path integral, a semiclassical quantization condition, i.e., quantum-classical correspondence, for steady states of nonadiabatic systems is presented as a nonadiabatic trace formula. The present quantum-classical correspondence indicates that a set of primitive hopping periodic orbits, which are invariant under time evolution in the phase space of the slow degree of freedom, should be quantized. The semiclassical quantization is then applied to a simple nonadiabatic model and accurately reproduces exact quantum energy levels

  16. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    International Nuclear Information System (INIS)

    Contreras-Astorga, A.; Negro, J.; Tristao, S.

    2016-01-01

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  17. Confinement of an electron in a non-homogeneous magnetic field: Integrable vs superintegrable quantum systems

    Energy Technology Data Exchange (ETDEWEB)

    Contreras-Astorga, A., E-mail: alonso.contreras.astorga@gmail.com [Department of Mathematics and Actuarial Science, Indiana University Northwest, 3400 Broadway, Gary, IN 46408 (United States); Departamento de Física, Cinvestav, A.P. 14-740, 07000 México D.F. (Mexico); Negro, J., E-mail: jnegro@fta.uva.es [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain); Tristao, S., E-mail: hetsudoyaguiu@gmail.com [Departamento de Física Teórica, Atómica y Óptica and IMUVA, Universidad de Valladolid, E-47011 Valladolid (Spain)

    2016-01-08

    This paper deals with the problem of an electron in a non-homogeneous magnetic field perpendicular to a plane. From the classical point of view this is an integrable, but not superintegrable, solvable system. In the quantum framework of the Dirac equation this integrable system is solvable too; the energy levels and wavefunctions of bound states, for its reduction to the plane, are computed. The effective one-dimensional matrix Hamiltonian is shown to belong to a shape-invariant hierarchy. Through this example we will shed some light on the specific properties of a quantum integrable system with respect to those characteristic of superintegrable systems. - Highlights: • The system: an electron in a non-homogeneous magnetic field. • This is a solvable integrable but not superintegrable system. • Solutions to the discrete Dirac spectrum are found. • The shape-invariance of Dirac matrix Hamiltonians is characterized. • Specific properties of integrable, not superintegrable, systems are analyzed.

  18. Real-time functional integral approach to the quantum disordered spin systems

    International Nuclear Information System (INIS)

    Kopec, T.K.

    1989-01-01

    In this paper the effect of randomness and frustration in the quantum Ising spin glass in a transverse field is studied by using the thermofield dynamics (TFD), the real time, finite temperature quantum field theory. It is shown that the method can be conveniently used for the averaging of the free energy of the system by completely avoiding the use of the n-replica trick. The effective dynamic Lagrangian for the disorder averaged causal, correlations and response Green functions is derived by functional integral approach. Furthermore, the properties of this Lagrangian are analyzed by the saddle point method which leads to the self-consistent equation for the spin glass order parameter

  19. Quantum-critical scaling of fidelity in 2D pairing models

    Energy Technology Data Exchange (ETDEWEB)

    Adamski, Mariusz, E-mail: mariusz.adamski@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Jȩdrzejewski, Janusz [Institute of Theoretical Physics, University of Wrocław, pl. Maksa Borna 9, 50–204, Wrocław (Poland); Krokhmalskii, Taras [Institute for Condensed Matter Physics, 1 Svientsitski Street, 79011, Lviv (Ukraine)

    2017-01-15

    The laws of quantum-critical scaling theory of quantum fidelity, dependent on the underlying system dimensionality D, have so far been verified in exactly solvable 1D models, belonging to or equivalent to interacting, quadratic (quasifree), spinless or spinfull, lattice-fermion models. The obtained results are so appealing that in quest for correlation lengths and associated universal critical indices ν, which characterize the divergence of correlation lengths on approaching critical points, one might be inclined to substitute the hard task of determining an asymptotic behavior at large distances of a two-point correlation function by an easier one, of determining the quantum-critical scaling of the quantum fidelity. However, the role of system's dimensionality has been left as an open problem. Our aim in this paper is to fill up this gap, at least partially, by verifying the laws of quantum-critical scaling theory of quantum fidelity in a 2D case. To this end, we study correlation functions and quantum fidelity of 2D exactly solvable models, which are interacting, quasifree, spinfull, lattice-fermion models. The considered 2D models exhibit new, as compared with 1D ones, features: at a given quantum-critical point there exists a multitude of correlation lengths and multiple universal critical indices ν, since these quantities depend on spatial directions, moreover, the indices ν may assume larger values. These facts follow from the obtained by us analytical asymptotic formulae for two-point correlation functions. In such new circumstances we discuss the behavior of quantum fidelity from the perspective of quantum-critical scaling theory. In particular, we are interested in finding out to what extent the quantum fidelity approach may be an alternative to the correlation-function approach in studies of quantum-critical points beyond 1D.

  20. Generalized Tavis-Cummings models and quantum networks

    Science.gov (United States)

    Gorokhov, A. V.

    2018-04-01

    The properties of quantum networks based on generalized Tavis-Cummings models are theoretically investigated. We have calculated the information transfer success rate from one node to another in a simple model of a quantum network realized with two-level atoms placed in the cavities and interacting with an external laser field and cavity photons. The method of dynamical group of the Hamiltonian and technique of corresponding coherent states were used for investigation of the temporal dynamics of the two nodes model.

  1. Markov Chain-Like Quantum Biological Modeling of Mutations, Aging, and Evolution

    Directory of Open Access Journals (Sweden)

    Ivan B. Djordjevic

    2015-08-01

    Full Text Available Recent evidence suggests that quantum mechanics is relevant in photosynthesis, magnetoreception, enzymatic catalytic reactions, olfactory reception, photoreception, genetics, electron-transfer in proteins, and evolution; to mention few. In our recent paper published in Life, we have derived the operator-sum representation of a biological channel based on codon basekets, and determined the quantum channel model suitable for study of the quantum biological channel capacity. However, this model is essentially memoryless and it is not able to properly model the propagation of mutation errors in time, the process of aging, and evolution of genetic information through generations. To solve for these problems, we propose novel quantum mechanical models to accurately describe the process of creation spontaneous, induced, and adaptive mutations and their propagation in time. Different biological channel models with memory, proposed in this paper, include: (i Markovian classical model, (ii Markovian-like quantum model, and (iii hybrid quantum-classical model. We then apply these models in a study of aging and evolution of quantum biological channel capacity through generations. We also discuss key differences of these models with respect to a multilevel symmetric channel-based Markovian model and a Kimura model-based Markovian process. These models are quite general and applicable to many open problems in biology, not only biological channel capacity, which is the main focus of the paper. We will show that the famous quantum Master equation approach, commonly used to describe different biological processes, is just the first-order approximation of the proposed quantum Markov chain-like model, when the observation interval tends to zero. One of the important implications of this model is that the aging phenotype becomes determined by different underlying transition probabilities in both programmed and random (damage Markov chain-like models of aging, which

  2. Instruction Set Architectures for Quantum Processing Units

    OpenAIRE

    Britt, Keith A.; Humble, Travis S.

    2017-01-01

    Progress in quantum computing hardware raises questions about how these devices can be controlled, programmed, and integrated with existing computational workflows. We briefly describe several prominent quantum computational models, their associated quantum processing units (QPUs), and the adoption of these devices as accelerators within high-performance computing systems. Emphasizing the interface to the QPU, we analyze instruction set architectures based on reduced and complex instruction s...

  3. Computer algebra in quantum field theory integration, summation and special functions

    CERN Document Server

    Schneider, Carsten

    2013-01-01

    The book focuses on advanced computer algebra methods and special functions that have striking applications in the context of quantum field theory. It presents the state of the art and new methods for (infinite) multiple sums, multiple integrals, in particular Feynman integrals, difference and differential equations in the format of survey articles. The presented techniques emerge from interdisciplinary fields: mathematics, computer science and theoretical physics; the articles are written by mathematicians and physicists with the goal that both groups can learn from the other field, including

  4. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    International Nuclear Information System (INIS)

    Sesé, Luis M.

    2016-01-01

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  5. Path-integral and Ornstein-Zernike study of quantum fluid structures on the crystallization line

    Energy Technology Data Exchange (ETDEWEB)

    Sesé, Luis M., E-mail: msese@ccia.uned.es [Departamento de Ciencias y Técnicas Fisicoquímicas, Universidad Nacional de Educación a Distancia, Paseo Senda del Rey 9, 28040 Madrid (Spain)

    2016-03-07

    Liquid neon, liquid para-hydrogen, and the quantum hard-sphere fluid are studied with path integral Monte Carlo simulations and the Ornstein-Zernike pair equation on their respective crystallization lines. The results cover the whole sets of structures in the r-space and the k-space and, for completeness, the internal energies, pressures and isothermal compressibilities. Comparison with experiment is made wherever possible, and the possibilities of establishing k-space criteria for quantum crystallization based on the path-integral centroids are discussed. In this regard, the results show that the centroid structure factor contains two significant parameters related to its main peak features (amplitude and shape) that can be useful to characterize freezing.

  6. Composite quantum collision models

    Science.gov (United States)

    Lorenzo, Salvatore; Ciccarello, Francesco; Palma, G. Massimo

    2017-09-01

    A collision model (CM) is a framework to describe open quantum dynamics. In its memoryless version, it models the reservoir R as consisting of a large collection of elementary ancillas: the dynamics of the open system S results from successive collisions of S with the ancillas of R . Here, we present a general formulation of memoryless composite CMs, where S is partitioned into the very open system under study S coupled to one or more auxiliary systems {Si} . Their composite dynamics occurs through internal S -{Si} collisions interspersed with external ones involving {Si} and the reservoir R . We show that important known instances of quantum non-Markovian dynamics of S —such as the emission of an atom into a reservoir featuring a Lorentzian, or multi-Lorentzian, spectral density or a qubit subject to random telegraph noise—can be mapped on to such memoryless composite CMs.

  7. Conformal constraint in canonical quantum gravity

    NARCIS (Netherlands)

    t Hooft, G.

    2010-01-01

    Perturbative canonical quantum gravity is considered, when coupled to a renormalizable model for matter fields. It is proposed that the functional integral over the dilaton field should be disentangled from the other integrations over the metric fields. This should generate a conformally invariant

  8. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.

    Science.gov (United States)

    Yi, Hangmo

    2015-01-01

    I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.

  9. Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits

    International Nuclear Information System (INIS)

    Bonneau, D; Engin, E; O'Brien, J L; Thompson, M G; Ohira, K; Suzuki, N; Yoshida, H; Iizuka, N; Ezaki, M; Natarajan, C M; Tanner, M G; Hadfield, R H; Dorenbos, S N; Zwiller, V

    2012-01-01

    Integrated quantum photonic waveguide circuits are a promising approach to realizing future photonic quantum technologies. Here, we present an integrated photonic quantum technology platform utilizing the silicon-on-insulator material system, where quantum interference and the manipulation of quantum states of light are demonstrated in components orders of magnitude smaller than previous implementations. Two-photon quantum interference is presented in a multi-mode interference coupler, and the manipulation of entanglement is demonstrated in a Mach-Zehnder interferometer, opening the way to an all-silicon photonic quantum technology platform. (paper)

  10. Cryptography In The Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Salvail, Louis; Schaffner, Christian

    2005-01-01

    We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  11. Cryptography in the Bounded Quantum-Storage Model

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Serge, Fehr; Schaffner, Christian

    2008-01-01

    We initiate the study of two-party cryptographic primitives with unconditional security, assuming that the adversary's quantum memory is of bounded size. We show that oblivious transfer and bit commitment can be implemented in this model using protocols where honest parties need no quantum memory...

  12. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1986-01-01

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  13. Projected Dipole Model for Quantum Plasmonics

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2015-01-01

    of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects......Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...

  14. Quantum Dynamics in the HMF Model

    Science.gov (United States)

    Plestid, Ryan; O'Dell, Duncan

    2017-04-01

    The Hamiltonian Mean Field (HMF) model represents a paradigm in the study of long-range interactions but has never been realized in a lab. Recently Shutz and Morigi (PRL 113) have come close but ultimately fallen short. Their proposal relied on cavity-induced interactions between atoms. If a design using cold atoms is to be successful, an understanding of quantum effects is essential. I will outline the natural quantum generalization of the HMF assuming a BEC by using a generalized Gross-Pitaevskii equation (gGPE). I will show how quantum effects modify features which are well understood in the classical model. More specifically, by working in the semi-classical regime (strong interparticle interactions) we can identify the universal features predicted by catastrophe theory dressed with quantum interference effects. The stationary states of gGPE can be solved exactly and are found to be described by self-consistent Mathieu functions. Finally, I will discuss the connection between the classical description of the dynamics in terms of the Vlassov equation, and the gGPE. We would like to thank the Government of Ontario's OGS program, NSERC, and the Perimeter Institute of Theoretical Physics.

  15. Advanced capabilities for materials modelling with Quantum ESPRESSO

    Science.gov (United States)

    Giannozzi, P.; Andreussi, O.; Brumme, T.; Bunau, O.; Buongiorno Nardelli, M.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Cococcioni, M.; Colonna, N.; Carnimeo, I.; Dal Corso, A.; de Gironcoli, S.; Delugas, P.; DiStasio, R. A., Jr.; Ferretti, A.; Floris, A.; Fratesi, G.; Fugallo, G.; Gebauer, R.; Gerstmann, U.; Giustino, F.; Gorni, T.; Jia, J.; Kawamura, M.; Ko, H.-Y.; Kokalj, A.; Küçükbenli, E.; Lazzeri, M.; Marsili, M.; Marzari, N.; Mauri, F.; Nguyen, N. L.; Nguyen, H.-V.; Otero-de-la-Roza, A.; Paulatto, L.; Poncé, S.; Rocca, D.; Sabatini, R.; Santra, B.; Schlipf, M.; Seitsonen, A. P.; Smogunov, A.; Timrov, I.; Thonhauser, T.; Umari, P.; Vast, N.; Wu, X.; Baroni, S.

    2017-11-01

    Quantum EXPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the-art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudopotential and projector-augmented-wave approaches. Quantum EXPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement their ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software.

  16. Advanced capabilities for materials modelling with Quantum ESPRESSO.

    Science.gov (United States)

    Andreussi, Oliviero; Brumme, Thomas; Bunau, Oana; Buongiorno Nardelli, Marco; Calandra, Matteo; Car, Roberto; Cavazzoni, Carlo; Ceresoli, Davide; Cococcioni, Matteo; Colonna, Nicola; Carnimeo, Ivan; Dal Corso, Andrea; de Gironcoli, Stefano; Delugas, Pietro; DiStasio, Robert; Ferretti, Andrea; Floris, Andrea; Fratesi, Guido; Fugallo, Giorgia; Gebauer, Ralph; Gerstmann, Uwe; Giustino, Feliciano; Gorni, Tommaso; Jia, Junteng; Kawamura, Mitsuaki; Ko, Hsin-Yu; Kokalj, Anton; Küçükbenli, Emine; Lazzeri, Michele; Marsili, Margherita; Marzari, Nicola; Mauri, Francesco; Nguyen, Ngoc Linh; Nguyen, Huy-Viet; Otero-de-la-Roza, Alberto; Paulatto, Lorenzo; Poncé, Samuel; Giannozzi, Paolo; Rocca, Dario; Sabatini, Riccardo; Santra, Biswajit; Schlipf, Martin; Seitsonen, Ari Paavo; Smogunov, Alexander; Timrov, Iurii; Thonhauser, Timo; Umari, Paolo; Vast, Nathalie; Wu, Xifan; Baroni, Stefano

    2017-09-27

    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software. © 2017 IOP Publishing Ltd.

  17. Quantum cosmological relational model of shape and scale in 1D

    International Nuclear Information System (INIS)

    Anderson, Edward

    2011-01-01

    Relational particle models are useful toy models for quantum cosmology and the problem of time in quantum general relativity. This paper shows how to extend existing work on concrete examples of relational particle models in 1D to include a notion of scale. This is useful as regards forming a tight analogy with quantum cosmology and the emergent semiclassical time and hidden time approaches to the problem of time. This paper shows furthermore that the correspondence between relational particle models and classical and quantum cosmology can be strengthened using judicious choices of the mechanical potential. This gives relational particle mechanics models with analogues of spatial curvature, cosmological constant, dust and radiation terms. A number of these models are then tractable at the quantum level. These models can be used to study important issues (1) in canonical quantum gravity: the problem of time, the semiclassical approach to it and timeless approaches to it (such as the naive Schroedinger interpretation and records theory) and (2) in quantum cosmology, such as in the investigation of uniform states, robustness and the qualitative understanding of the origin of structure formation.

  18. Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy*

    Directory of Open Access Journals (Sweden)

    Kostyantyn Kechedzhi

    2016-05-01

    Full Text Available Real-life quantum computers are inevitably affected by intrinsic noise resulting in dissipative nonunitary dynamics realized by these devices. We consider an open-system quantum annealing algorithm optimized for such a realistic analog quantum device which takes advantage of noise-induced thermalization and relies on incoherent quantum tunneling at finite temperature. We theoretically analyze the performance of this algorithm considering a p-spin model that allows for a mean-field quasiclassical solution and, at the same time, demonstrates the first-order phase transition and exponential degeneracy of states, typical characteristics of spin glasses. We demonstrate that finite-temperature effects introduced by the noise are particularly important for the dynamics in the presence of the exponential degeneracy of metastable states. We determine the optimal regime of the open-system quantum annealing algorithm for this model and find that it can outperform simulated annealing in a range of parameters. Large-scale multiqubit quantum tunneling is instrumental for the quantum speedup in this model, which is possible because of the unusual nonmonotonous temperature dependence of the quantum-tunneling action in this model, where the most efficient transition rate corresponds to zero temperature. This model calculation is the first analytically tractable example where open-system quantum annealing algorithm outperforms simulated annealing, which can, in principle, be realized using an analog quantum computer.

  19. Quantum walks in brain microtubules--a biomolecular basis for quantum cognition?

    Science.gov (United States)

    Hameroff, Stuart

    2014-01-01

    Cognitive decisions are best described by quantum mathematics. Do quantum information devices operate in the brain? What would they look like? Fuss and Navarro () describe quantum lattice registers in which quantum superpositioned pathways interact (compute/integrate) as 'quantum walks' akin to Feynman's path integral in a lattice (e.g. the 'Feynman quantum chessboard'). Simultaneous alternate pathways eventually reduce (collapse), selecting one particular pathway in a cognitive decision, or choice. This paper describes how quantum walks in a Feynman chessboard are conceptually identical to 'topological qubits' in brain neuronal microtubules, as described in the Penrose-Hameroff 'Orch OR' theory of consciousness. Copyright © 2013 Cognitive Science Society, Inc.

  20. Quantum gravity and Standard-Model-like fermions

    International Nuclear Information System (INIS)

    Eichhorn, Astrid; Lippoldt, Stefan

    2017-01-01

    We discover that chiral symmetry does not act as an infrared attractor of the renormalization group flow under the impact of quantum gravity fluctuations. Thus, observationally viable quantum gravity models must respect chiral symmetry. In our truncation, asymptotically safe gravity does, as a chiral fixed point exists. A second non-chiral fixed point with massive fermions provides a template for models with dark matter. This fixed point disappears for more than 10 fermions, suggesting that an asymptotically safe ultraviolet completion for the standard model plus gravity enforces chiral symmetry.

  1. Quantum model for electro-optical amplitude modulation.

    Science.gov (United States)

    Capmany, José; Fernández-Pousa, Carlos R

    2010-11-22

    We present a quantum model for electro-optic amplitude modulation, which is built upon quantum models of the main photonic components that constitute the modulator, that is, the guided-wave beamsplitter and the electro-optic phase modulator and accounts for all the different available modulator structures. General models are developed both for single and dual drive configurations and specific results are obtained for the most common configurations currently employed. Finally, the operation with two-photon input for the control of phase-modulated photons and the important topic of multicarrier modulation are also addressed.

  2. Quantum phase diagram of the integrable px+ipy fermionic superfluid

    DEFF Research Database (Denmark)

    Rombouts, Stefan; Dukelsky, Jorge; Ortiz, Gerardo

    2010-01-01

    transition, separating a strong-pairing from a weak-pairing phase. The mean-field solution allows to connect these results to other models with px+ipy pairing order. We define an experimentally accessible characteristic length scale, associated with the size of the Cooper pairs, that diverges......We determine the zero-temperature quantum phase diagram of a px+ipy pairing model based on the exactly solvable hyperbolic Richardson-Gaudin model. We present analytical and large-scale numerical results for this model. In the continuum limit, the exact solution exhibits a third-order quantum phase...... at the transition point, indicating that the phase transition is of a confinement-deconfinement type without local order parameter. We propose an experimental measurement to detect the transition. We show that this phase transition is not limited to the px+ipy pairing model but can be found in any representation...

  3. Quantum phase transitions in effective spin-ladder models for graphene zigzag nanoribbons

    Science.gov (United States)

    Koop, Cornelie; Wessel, Stefan

    2017-10-01

    We examine the magnetic correlations in quantum spin models that were derived recently as effective low-energy theories for electronic correlation effects on the edge states of graphene nanoribbons. For this purpose, we employ quantum Monte Carlo simulations to access the large-distance properties, accounting for quantum fluctuations beyond mean-field-theory approaches to edge magnetism. For certain chiral nanoribbons, antiferromagnetic interedge couplings were previously found to induce a gapped quantum disordered ground state of the effective spin model. We find that the extended nature of the intraedge couplings in the effective spin model for zigzag nanoribbons leads to a quantum phase transition at a large, finite value of the interedge coupling. This quantum critical point separates the quantum disordered region from a gapless phase of stable edge magnetism at weak intraedge coupling, which includes the ground states of spin-ladder models for wide zigzag nanoribbons. To study the quantum critical behavior, the effective spin model can be related to a model of two antiferromagnetically coupled Haldane-Shastry spin-half chains with long-ranged ferromagnetic intrachain couplings. The results for the critical exponents are compared also to several recent renormalization-group calculations for related long-ranged interacting quantum systems.

  4. Spin chain model for correlated quantum channels

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Davide [International School for Advanced Studies SISSA/ISAS, via Beirut 2-4, I-34014 Trieste (Italy); Giovannetti, Vittorio; Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)], E-mail: monta@sns.it

    2008-11-15

    We analyze the quality of the quantum information transmission along a correlated quantum channel by studying the average fidelity between input and output states and the average output purity, giving bounds for the entropy of the channel. Noise correlations in the channel are modeled by the coupling of each channel use with an element of a one-dimensional interacting quantum spin chain. Criticality of the environment chain is seen to emerge in the changes of the fidelity and of the purity.

  5. Numerical calculations in elementary quantum mechanics using Feynman path integrals

    International Nuclear Information System (INIS)

    Scher, G.; Smith, M.; Baranger, M.

    1980-01-01

    We show that it is possible to do numerical calculations in elementary quantum mechanics using Feynman path integrals. Our method involves discretizing both time and space, and summing paths through matrix multiplication. We give numerical results for various one-dimensional potentials. The calculations of energy levels and wavefunctions take approximately 100 times longer than with standard methods, but there are other problems for which such an approach should be more efficient

  6. Statistical transmutation in doped quantum dimer models.

    Science.gov (United States)

    Lamas, C A; Ralko, A; Cabra, D C; Poilblanc, D; Pujol, P

    2012-07-06

    We prove a "statistical transmutation" symmetry of doped quantum dimer models on the square, triangular, and kagome lattices: the energy spectrum is invariant under a simultaneous change of statistics (i.e., bosonic into fermionic or vice versa) of the holes and of the signs of all the dimer resonance loops. This exact transformation enables us to define the duality equivalence between doped quantum dimer Hamiltonians and provides the analytic framework to analyze dynamical statistical transmutations. We investigate numerically the doping of the triangular quantum dimer model with special focus on the topological Z(2) dimer liquid. Doping leads to four (instead of two for the square lattice) inequivalent families of Hamiltonians. Competition between phase separation, superfluidity, supersolidity, and fermionic phases is investigated in the four families.

  7. Ab initio path-integral molecular dynamics and the quantum nature of hydrogen bonds

    International Nuclear Information System (INIS)

    Feng Yexin; Chen Ji; Wang Enge; Li Xin-Zheng

    2016-01-01

    The hydrogen bond (HB) is an important type of intermolecular interaction, which is generally weak, ubiquitous, and essential to life on earth. The small mass of hydrogen means that many properties of HBs are quantum mechanical in nature. In recent years, because of the development of computer simulation methods and computational power, the influence of nuclear quantum effects (NQEs) on the structural and energetic properties of some hydrogen bonded systems has been intensively studied. Here, we present a review of these studies by focussing on the explanation of the principles underlying the simulation methods, i.e., the ab initio path-integral molecular dynamics. Its extension in combination with the thermodynamic integration method for the calculation of free energies will also be introduced. We use two examples to show how this influence of NQEs in realistic systems is simulated in practice. (topical review)

  8. Cobalt micro-magnet integration on silicon MOS quantum dots

    Science.gov (United States)

    Camirand Lemyre, Julien; Rochette, Sophie; Anderson, John; Manginell, Ronald P.; Pluym, Tammy; Ward, Dan; Carroll, Malcom S.; Pioro-Ladrière, Michel

    Integration of cobalt micro-magnets on silicon metal-oxide-semiconductor (MOS) quantum dot devices has been investigated. The micro-magnets are fabricated in a lift-off process with e-beam lithography and deposited directly on top of an etched poly-silicon gate stack. Among the five resist stacks tested, one is found to be compatible with our MOS specific materials (Si and SiO2) . Moreover, devices with and without additional Al2O3 insulating layer show no additional gate leakage after processing. Preliminary transport data indicates electrostatic stability of our devices with integrated magnets. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000.

  9. Proposal for an Experimental Test of the Role of Confining Potentials in the Integral Quantum Hall Effect

    OpenAIRE

    Brueckner, Reinhold

    2000-01-01

    We propose an experiment using a three-gate quantum Hall device to probe the dependence of the integral quantum Hall effect (IQHE) on the shape of the lateral confining potential in edge regions. This shape can, in a certain configuration determine whether or not the IQHE occurs.

  10. Non-uniqueness of quantum transition state theory and general dividing surfaces in the path integral space.

    Science.gov (United States)

    Jang, Seogjoo; Voth, Gregory A

    2017-05-07

    Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.

  11. Structural aspects of quantum field theory and noncommutative geometry

    CERN Document Server

    Grensing, Gerhard

    2013-01-01

    This book is devoted to the subject of quantum field theory. It is divided into two volumes. The first can serve as a textbook on the main techniques and results of quantum field theory, while the second treats more recent developments, in particular the subject of quantum groups and noncommutative geometry, and their interrelation. The first volume is directed at graduate students who want to learn the basic facts about quantum field theory. It begins with a gentle introduction to classical field theory, including the standard model of particle physics, general relativity, and also supergravity. The transition to quantized fields is performed with path integral techniques, by means of which the one-loop renormalization of a self-interacting scalar quantum field, of quantum electrodynamics, and the asymptotic freedom of quantum chromodynamics is treated. In the last part of the first volume, the application of path integral methods to systems of quantum statistical mechanics is covered. The book ends with a r...

  12. Quantum Bohmian model for financial market

    Science.gov (United States)

    Choustova, Olga Al.

    2007-01-01

    We apply methods of quantum mechanics for mathematical modeling of price dynamics at the financial market. The Hamiltonian formalism on the price/price-change phase space describes the classical-like evolution of prices. This classical dynamics of prices is determined by “hard” conditions (natural resources, industrial production, services and so on). These conditions are mathematically described by the classical financial potential V(q), where q=(q1,…,qn) is the vector of prices of various shares. But the information exchange and market psychology play important (and sometimes determining) role in price dynamics. We propose to describe such behavioral financial factors by using the pilot wave (Bohmian) model of quantum mechanics. The theory of financial behavioral waves takes into account the market psychology. The real trajectories of prices are determined (through the financial analogue of the second Newton law) by two financial potentials: classical-like V(q) (“hard” market conditions) and quantum-like U(q) (behavioral market conditions).

  13. The integrable quantum group invariant A2n-1(2) and Dn+1(2) open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Pimenta, Rodrigo A.; Retore, Ana L.

    2017-11-01

    A family of A2n(2) integrable open spin chains with Uq (Cn) symmetry was recently identified in arxiv:arXiv:1702.01482. We identify here in a similar way a family of A2n-1(2) integrable open spin chains with Uq (Dn) symmetry, and two families of Dn+1(2) integrable open spin chains with Uq (Bn) symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2) chains with other integrable boundary conditions, which do not have quantum group symmetry.

  14. The integrable quantum group invariant A2n−1(2 and Dn+1(2 open spin chains

    Directory of Open Access Journals (Sweden)

    Rafael I. Nepomechie

    2017-11-01

    Full Text Available A family of A2n(2 integrable open spin chains with Uq(Cn symmetry was recently identified in arXiv:1702.01482. We identify here in a similar way a family of A2n−1(2 integrable open spin chains with Uq(Dn symmetry, and two families of Dn+1(2 integrable open spin chains with Uq(Bn symmetry. We discuss the consequences of these symmetries for the degeneracies and multiplicities of the spectrum. We propose Bethe ansatz solutions for two of these models, whose completeness we check numerically for small values of n and chain length N. We find formulas for the Dynkin labels in terms of the numbers of Bethe roots of each type, which are useful for determining the corresponding degeneracies. In an appendix, we briefly consider Dn+1(2 chains with other integrable boundary conditions, which do not have quantum group symmetry.

  15. Dissipation and decoherence in quantum systems

    International Nuclear Information System (INIS)

    Menskii, Mikhail B

    2003-01-01

    The theory of dissipative quantum systems and its relation to the quantum theory of continuous measurements are reviewed. Constructing a correct theory of a dissipative quantum system requires that the system's interaction with its environment (reservoir) be taken into account. Since information about the system is 'recorded' in the state of the reservoir, the quantum theory of continuous measurements can be used to account for the influence of the reservoir. If based on the use of restricted path integrals, this theory does not require an explicit reservoir model and is therefore much simpler technically. (reviews of topical problems)

  16. Quantum redundancies and local realism

    International Nuclear Information System (INIS)

    Horodecki, R.; Horodecki, P.

    1994-01-01

    The basic properties of quantum redundancies are presented. The previous definitions of the informationally coherent quantum (ICQ) system are generalized in terms of the redundancies. The ICQ systems are also considered in the context of local realism in terms of the information integrity factor η. The classical region η≤qslant[1]/[2] for the two classes of mixed, nonfactorizable states admitting the local hidden variable model is found. ((orig.))

  17. The Generalized Quantum Episodic Memory Model.

    Science.gov (United States)

    Trueblood, Jennifer S; Hemmer, Pernille

    2017-11-01

    Recent evidence suggests that experienced events are often mapped to too many episodic states, including those that are logically or experimentally incompatible with one another. For example, episodic over-distribution patterns show that the probability of accepting an item under different mutually exclusive conditions violates the disjunction rule. A related example, called subadditivity, occurs when the probability of accepting an item under mutually exclusive and exhaustive instruction conditions sums to a number >1. Both the over-distribution effect and subadditivity have been widely observed in item and source-memory paradigms. These phenomena are difficult to explain using standard memory frameworks, such as signal-detection theory. A dual-trace model called the over-distribution (OD) model (Brainerd & Reyna, 2008) can explain the episodic over-distribution effect, but not subadditivity. Our goal is to develop a model that can explain both effects. In this paper, we propose the Generalized Quantum Episodic Memory (GQEM) model, which extends the Quantum Episodic Memory (QEM) model developed by Brainerd, Wang, and Reyna (2013). We test GQEM by comparing it to the OD model using data from a novel item-memory experiment and a previously published source-memory experiment (Kellen, Singmann, & Klauer, 2014) examining the over-distribution effect. Using the best-fit parameters from the over-distribution experiments, we conclude by showing that the GQEM model can also account for subadditivity. Overall these results add to a growing body of evidence suggesting that quantum probability theory is a valuable tool in modeling recognition memory. Copyright © 2016 Cognitive Science Society, Inc.

  18. Quantum synchronization of the Schrödinger–Lohe model

    International Nuclear Information System (INIS)

    Choi, Sun-Ho; Ha, Seung-Yeal

    2014-01-01

    We present a quantum synchronization estimate of the Schrödinger–Lohe (S–L) model introduced by Lohe (2010 J. Phys. A: Math. Theor. 43 465301). The S–L model describes the dynamics of quantum oscillators on the nodes of a quantum network. When the coupling strength is positive and the maximal L 2 distances between normalized initial wave functions are smaller than (1/2), we show that the L 2 distances between wave functions converge to zero exponentially fast. Our result generalizes earlier work by Chi et al (2014 J. Math. Phys. 55 052703) for the Lohe model. (paper)

  19. A Dirac sea pilot-wave model for quantum field theory

    International Nuclear Information System (INIS)

    Colin, S; Struyve, W

    2007-01-01

    We present a pilot-wave model for quantum field theory in which the Dirac sea is taken seriously. The model ascribes particle trajectories to all the fermions, including the fermions filling the Dirac sea. The model is deterministic and applies to the regime in which fermion number is superselected. This work is a further elaboration of work by Colin, in which a Dirac sea pilot-wave model is presented for quantum electrodynamics. We extend his work to non-electromagnetic interactions, we discuss a cut-off regularization of the pilot-wave model and study how it reproduces the standard quantum predictions. The Dirac sea pilot-wave model can be seen as a possible continuum generalization of a lattice model by Bell. It can also be seen as a development and generalization of the ideas by Bohm, Hiley and Kaloyerou, who also suggested the use of the Dirac sea for the development of a pilot-wave model for quantum electrodynamics

  20. Neural network approach to modelling the behaviour of quantum tunnelling composites as multifunctional sensors

    International Nuclear Information System (INIS)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont; Otero, Javier Echavarri; Munoz-Guijosa, Juan Manuel; Sanz, José Luis Muñoz

    2010-01-01

    Quantum tunnelling composites, or 'QTCs', are composites with an elastomeric polymer matrix and a metal particle filling (usually nickel). At rest, these metal particles do not touch each other and the polymer acts as an insulator. When the material is suitably deformed, however, the particles come together (without actually touching) and the quantum tunnelling effect is promoted, which causes the electrical resistance to fall drastically. This paper contains a detailed description of neural networks for a faster, simpler and more accurate modelling and simulation of QTC behaviour that is based on properly training these neural models with the help of data from characterization tests. Instead of using analytical equations that integrate different quantum and thermomechanical effects, neural networks are used here due to the notable nonlinearity of the aforementioned effects, which involve developing analytical models that are too complex to be of practical use. By conducting tests under different pressures and temperatures that encompass a wide range of operating conditions for these materials, different neural networks are trained and compared as the number of neurons is increased. The results of these tests have also enabled certain previously described phenomena to be simulated with more accuracy, especially those involving the response of QTCs to changes in pressure and temperature

  1. Quantum mechanical path integrals with Wiener measures for all polynomial Hamiltonians

    International Nuclear Information System (INIS)

    Klauder, J.R.; Daubechies, I.

    We construct arbitrary matrix elements of the quantum evolution operator for a wide class of self-adjoint canonical Hamiltonians, including those which are polynomial in the Heisenberg operators, as the limit of well-defined path integrals involving Wiener measure on phase space, as a diffusion constant diverges. A related construction achieves a similar result for an arbitrary spin Hamiltonian. (orig.)

  2. Group field theory and simplicial quantum gravity

    International Nuclear Information System (INIS)

    Oriti, D

    2010-01-01

    We present a new group field theory for 4D quantum gravity. It incorporates the constraints that give gravity from BF theory and has quantum amplitudes with the explicit form of simplicial path integrals for first-order gravity. The geometric interpretation of the variables and of the contributions to the quantum amplitudes is manifest. This allows a direct link with other simplicial gravity approaches, like quantum Regge calculus, in the form of the amplitudes of the model, and dynamical triangulations, which we show to correspond to a simple restriction of the same.

  3. Al transmon qubits on silicon-on-insulator for quantum device integration

    Science.gov (United States)

    Keller, Andrew J.; Dieterle, Paul B.; Fang, Michael; Berger, Brett; Fink, Johannes M.; Painter, Oskar

    2017-07-01

    We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate. Key to the qubit fabrication is the use of an anhydrous hydrofluoric vapor process which selectively removes the lossy silicon oxide buried underneath the silicon device layer. For a 5.6 GHz qubit measured dispersively by a 7.1 GHz resonator, we find T1 = 3.5 μs and T2* = 2.2 μs. This process in principle permits the co-fabrication of silicon photonic and mechanical elements, providing a route towards chip-scale integration of electro-opto-mechanical transducers for quantum networking of superconducting microwave quantum circuits. The additional processing steps are compatible with established fabrication techniques for aluminum transmon qubits on silicon.

  4. A quantum probability model of causal reasoning

    Directory of Open Access Journals (Sweden)

    Jennifer S Trueblood

    2012-05-01

    Full Text Available People can often outperform statistical methods and machine learning algorithms in situations that involve making inferences about the relationship between causes and effects. While people are remarkably good at causal reasoning in many situations, there are several instances where they deviate from expected responses. This paper examines three situations where judgments related to causal inference problems produce unexpected results and describes a quantum inference model based on the axiomatic principles of quantum probability theory that can explain these effects. Two of the three phenomena arise from the comparison of predictive judgments (i.e., the conditional probability of an effect given a cause with diagnostic judgments (i.e., the conditional probability of a cause given an effect. The third phenomenon is a new finding examining order effects in predictive causal judgments. The quantum inference model uses the notion of incompatibility among different causes to account for all three phenomena. Psychologically, the model assumes that individuals adopt different points of view when thinking about different causes. The model provides good fits to the data and offers a coherent account for all three causal reasoning effects thus proving to be a viable new candidate for modeling human judgment.

  5. Reversibility in Quantum Models of Stochastic Processes

    Science.gov (United States)

    Gier, David; Crutchfield, James; Mahoney, John; James, Ryan

    Natural phenomena such as time series of neural firing, orientation of layers in crystal stacking and successive measurements in spin-systems are inherently probabilistic. The provably minimal classical models of such stochastic processes are ɛ-machines, which consist of internal states, transition probabilities between states and output values. The topological properties of the ɛ-machine for a given process characterize the structure, memory and patterns of that process. However ɛ-machines are often not ideal because their statistical complexity (Cμ) is demonstrably greater than the excess entropy (E) of the processes they represent. Quantum models (q-machines) of the same processes can do better in that their statistical complexity (Cq) obeys the relation Cμ >= Cq >= E. q-machines can be constructed to consider longer lengths of strings, resulting in greater compression. With code-words of sufficiently long length, the statistical complexity becomes time-symmetric - a feature apparently novel to this quantum representation. This result has ramifications for compression of classical information in quantum computing and quantum communication technology.

  6. Off-diagonal series expansion for quantum partition functions

    Science.gov (United States)

    Hen, Itay

    2018-05-01

    We derive an integral-free thermodynamic perturbation series expansion for quantum partition functions which enables an analytical term-by-term calculation of the series. The expansion is carried out around the partition function of the classical component of the Hamiltonian with the expansion parameter being the strength of the off-diagonal, or quantum, portion. To demonstrate the usefulness of the technique we analytically compute to third order the partition functions of the 1D Ising model with longitudinal and transverse fields, and the quantum 1D Heisenberg model.

  7. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Luiz C.L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Matematica Aplicada]. E-mail: botelho.luiz@superig.com.br

    2008-07-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R{sup {infinity}}, we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  8. Some comments on rigorous quantum field path integrals in the analytical regularization scheme

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    Through the systematic use of the Minlos theorem on the support of cylindrical measures on R ∞ , we produce several mathematically rigorous path integrals in interacting euclidean quantum fields with Gaussian free measures defined by generalized powers of the Laplacian operator. (author)

  9. A new class of ensemble conserving algorithms for approximate quantum dynamics: Theoretical formulation and model problems

    International Nuclear Information System (INIS)

    Smith, Kyle K. G.; Poulsen, Jens Aage; Nyman, Gunnar; Rossky, Peter J.

    2015-01-01

    We develop two classes of quasi-classical dynamics that are shown to conserve the initial quantum ensemble when used in combination with the Feynman-Kleinert approximation of the density operator. These dynamics are used to improve the Feynman-Kleinert implementation of the classical Wigner approximation for the evaluation of quantum time correlation functions known as Feynman-Kleinert linearized path-integral. As shown, both classes of dynamics are able to recover the exact classical and high temperature limits of the quantum time correlation function, while a subset is able to recover the exact harmonic limit. A comparison of the approximate quantum time correlation functions obtained from both classes of dynamics is made with the exact results for the challenging model problems of the quartic and double-well potentials. It is found that these dynamics provide a great improvement over the classical Wigner approximation, in which purely classical dynamics are used. In a special case, our first method becomes identical to centroid molecular dynamics

  10. Quantum relativity theory and quantum space-time

    International Nuclear Information System (INIS)

    Banai, M.

    1984-01-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is shown that the quantum space-time models of Banai introduced in another paper is formulated in terms of Davis's quantum relativity. The recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce, in a consistent way, the quantum space-time model (the quantum substitute of Minkowski space) of Banai proposed in the paper mentioned. The goal of quantum mechanics of quantum relativistic particles living in this model of space-time is to predict the rest mass system properties of classically relativistic (massive) quantum particles (''elementary particles''). The main new aspect of this quantum mechanics is that it provides a true mass eigenvalue problem, and that the excited mass states of quantum relativistic particles can be interpreted as elementary particles. The question of field theory over quantum relativistic model of space-time is also discussed. Finally it is suggested that ''quarks'' should be considered as quantum relativistic particles. (author)

  11. Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics.

    Science.gov (United States)

    Nottale, Laurent; Auffray, Charles

    2008-05-01

    In these two companion papers, we provide an overview and a brief history of the multiple roots, current developments and recent advances of integrative systems biology and identify multiscale integration as its grand challenge. Then we introduce the fundamental principles and the successive steps that have been followed in the construction of the scale relativity theory, which aims at describing the effects of a non-differentiable and fractal (i.e., explicitly scale dependent) geometry of space-time. The first paper of this series was devoted, in this new framework, to the construction from first principles of scale laws of increasing complexity, and to the discussion of some tentative applications of these laws to biological systems. In this second review and perspective paper, we describe the effects induced by the internal fractal structures of trajectories on motion in standard space. Their main consequence is the transformation of classical dynamics into a generalized, quantum-like self-organized dynamics. A Schrödinger-type equation is derived as an integral of the geodesic equation in a fractal space. We then indicate how gauge fields can be constructed from a geometric re-interpretation of gauge transformations as scale transformations in fractal space-time. Finally, we introduce a new tentative development of the theory, in which quantum laws would hold also in scale space, introducing complexergy as a measure of organizational complexity. Initial possible applications of this extended framework to the processes of morphogenesis and the emergence of prokaryotic and eukaryotic cellular structures are discussed. Having founded elements of the evolutionary, developmental, biochemical and cellular theories on the first principles of scale relativity theory, we introduce proposals for the construction of an integrative theory of life and for the design and implementation of novel macroscopic quantum-type experiments and devices, and discuss their potential

  12. A quantum anharmonic oscillator model for the stock market

    Science.gov (United States)

    Gao, Tingting; Chen, Yu

    2017-02-01

    A financially interpretable quantum model is proposed to study the probability distributions of the stock price return. The dynamics of a quantum particle is considered an analog of the motion of stock price. Then the probability distributions of price return can be computed from the wave functions that evolve according to Schrodinger equation. Instead of a harmonic oscillator in previous studies, a quantum anharmonic oscillator is applied to the stock in liquid market. The leptokurtic distributions of price return can be reproduced by our quantum model with the introduction of mixed-state and multi-potential. The trend following dominant market, in which the price return follows a bimodal distribution, is discussed as a specific case of the illiquid market.

  13. Contribution to the study of conformal theories and integrable models

    International Nuclear Information System (INIS)

    Sochen, N.

    1992-05-01

    The purpose of this thesis is the 2-D physics study. The main tool is the conformal field theory with Kac-Moody and W algebra. This theory describes the 2-D models that have translation, rotation and dilatation symmetries, at their critical point. The expanded conformal theories describe models that have a larger symmetry than conformal symmetry. After a review of conformal theory methods, the author effects a detailed study of singular vector form in sl(2) affine algebra. With this important form, correlation functions can be calculated. The classical W algebra is studied and the relations between classical W algebra and quantum W algebra are specified. Bosonization method is presented and sl(2)/sl(2) topological model, studied. Partition function bosonization of different models is described. A program of rational theory classification is described linking rational conformal theories and spin integrable models, and interesting relations between Boltzmann weights of different models have been found. With these relations, the integrability of models by a direct calculation of their Boltzmann weights is proved

  14. Two point function for a simple general relativistic quantum model

    OpenAIRE

    Colosi, Daniele

    2007-01-01

    We study the quantum theory of a simple general relativistic quantum model of two coupled harmonic oscillators and compute the two-point function following a proposal first introduced in the context of loop quantum gravity.

  15. Quantum critical behavior in three-dimensional one-band Hubbard model at half-filling

    International Nuclear Information System (INIS)

    Karchev, Naoum

    2013-01-01

    A one-band Hubbard model with hopping parameter t and Coulomb repulsion U is considered at half-filling. By means of the Schwinger bosons and slave fermions representation of the electron operators and integrating out the spin–singlet Fermi fields an effective Heisenberg model with antiferromagnetic exchange constant is obtained for vectors which identifies the local orientation of the spin of the itinerant electrons. The amplitude of the spin vectors is an effective spin of the itinerant electrons accounting for the fact that some sites, in the ground state, are doubly occupied or empty. Accounting adequately for the magnon–magnon interaction the Néel temperature is calculated. When the ratio t/U is small enough (t/U ≤0.09) the effective model describes a system of localized electrons. Increasing the ratio increases the density of doubly occupied states which in turn decreases the effective spin and Néel temperature. The phase diagram in the plane of temperature (T N )/U and parameter t/U is presented. The quantum critical point (T N =0) is reached at t/U =0.9. The magnons in the paramagnetic phase are studied and the contribution of the magnons’ fluctuations to the heat capacity is calculated. At the Néel temperature the heat capacity has a peak which is suppressed when the system approaches a quantum critical point. It is important to stress that, at half-filling, the ground state, determined by fermions, is antiferromagnetic. The magnon fluctuations drive the system to quantum criticality and when the effective spin is critically small these fluctuations suppress the magnetic order. -- Highlights: •Technique of calculation is introduced which permits us to study the magnons’ fluctuations. •Quantum critical point is obtained in the one-band 3D Hubbard model at half-filling. •The present analytical results supplement the numerical ones (see Fig. 7)

  16. Dissipative quantum dynamics and nonlinear sigma-model

    International Nuclear Information System (INIS)

    Tarasov, V.E.

    1992-01-01

    Sedov variational principle which is the generalization of the least action principle for the dissipative and irreversible processes and the classical dissipative mechanics in the phase space is considered. Quantum dynamics for the dissipative and irreversible processes is constructed. As an example of the dissipative quantum theory the nonlinear two-dimensional sigma-model is considered. The conformal anomaly of the energy momentum tensor trace for closed bosonic string on the affine-metric manifold is investigated. The two-loop metric beta-function for nonlinear dissipative sigma-model was calculated. The results are compared with the ultraviolet two-loop conterterms for affine-metric sigma model. 71 refs

  17. Fisher information and quantum mechanical models for finance

    OpenAIRE

    Nastasiuk, Vadim

    2015-01-01

    The probability distribution function (PDF) for prices on financial markets is derived by extremization of Fisher information. It is shown how on that basis the quantum-like description for financial markets arises and different financial market models are mapped by quantum mechanical ones.

  18. Quantum chaos and holographic tensor models

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, Chethan [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India); Sanyal, Sambuddha [International Center for Theoretical Sciences, Tata Institute of Fundamental Research,Bangalore 560089 (India); Subramanian, P.N. Bala [Center for High Energy Physics, Indian Institute of Science,Bangalore 560012 (India)

    2017-03-10

    A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.

  19. Quantum chaos and holographic tensor models

    International Nuclear Information System (INIS)

    Krishnan, Chethan; Sanyal, Sambuddha; Subramanian, P.N. Bala

    2017-01-01

    A class of tensor models were recently outlined as potentially calculable examples of holography: their perturbative large-N behavior is similar to the Sachdev-Ye-Kitaev (SYK) model, but they are fully quantum mechanical (in the sense that there is no quenched disorder averaging). These facts make them intriguing tentative models for quantum black holes. In this note, we explicitly diagonalize the simplest non-trivial Gurau-Witten tensor model and study its spectral and late-time properties. We find parallels to (a single sample of) SYK where some of these features were recently attributed to random matrix behavior and quantum chaos. In particular, the spectral form factor exhibits a dip-ramp-plateau structure after a running time average, in qualitative agreement with SYK. But we also observe that even though the spectrum has a unique ground state, it has a huge (quasi-?)degeneracy of intermediate energy states, not seen in SYK. If one ignores the delta function due to the degeneracies however, there is level repulsion in the unfolded spacing distribution hinting chaos. Furthermore, there are gaps in the spectrum. The system also has a spectral mirror symmetry which we trace back to the presence of a unitary operator with which the Hamiltonian anticommutes. We use it to argue that to the extent that the model exhibits random matrix behavior, it is controlled not by the Dyson ensembles, but by the BDI (chiral orthogonal) class in the Altland-Zirnbauer classification.

  20. COVARIANT INTEGRAL QUANTIZATIONS AND THEIR APPLICATIONS TO QUANTUM COSMOLOGY

    Directory of Open Access Journals (Sweden)

    Jean-Pierre Gazeau

    2016-06-01

    Full Text Available We present a general formalism for giving a measure space paired with a separable Hilbert space a quantum version based on a normalized positive operator-valued measure. The latter are built from families of density operators labeled by points of the measure space. We especially focus on group representation and probabilistic aspects of these constructions. Simple phase space examples illustrate the procedure: plane (Weyl-Heisenberg symmetry, half-plane (affine symmetry. Interesting applications to quantum cosmology (“smooth bouncing” for Friedmann-Robertson-Walker metric are presented and those for Bianchi I and IX models are mentioned.

  1. Philosophical perspectives on quantum chaos: Models and interpretations

    Science.gov (United States)

    Bokulich, Alisa Nicole

    2001-09-01

    theoretical pluralism, are inadequate. The fruitful ways in which models have been used in quantum chaos research point to the need for a new framework for addressing intertheoretic relations that focuses on models rather than laws.

  2. Quantum stochastic walks on networks for decision-making.

    Science.gov (United States)

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-03-31

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce's response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process' degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.

  3. Quantum stochastic walks on networks for decision-making

    Science.gov (United States)

    Martínez-Martínez, Ismael; Sánchez-Burillo, Eduardo

    2016-03-01

    Recent experiments report violations of the classical law of total probability and incompatibility of certain mental representations when humans process and react to information. Evidence shows promise of a more general quantum theory providing a better explanation of the dynamics and structure of real decision-making processes than classical probability theory. Inspired by this, we show how the behavioral choice-probabilities can arise as the unique stationary distribution of quantum stochastic walkers on the classical network defined from Luce’s response probabilities. This work is relevant because (i) we provide a very general framework integrating the positive characteristics of both quantum and classical approaches previously in confrontation, and (ii) we define a cognitive network which can be used to bring other connectivist approaches to decision-making into the quantum stochastic realm. We model the decision-maker as an open system in contact with her surrounding environment, and the time-length of the decision-making process reveals to be also a measure of the process’ degree of interplay between the unitary and irreversible dynamics. Implementing quantum coherence on classical networks may be a door to better integrate human-like reasoning biases in stochastic models for decision-making.

  4. 25 Years of Quantum Groups: from Definition to Classification

    Directory of Open Access Journals (Sweden)

    A. Stolin

    2008-01-01

    Full Text Available In mathematics and theoretical physics, quantum groups are certain non-commutative, non-cocommutative Hopf algebras, which first appeared in the theory of quantum integrable models and later they were formalized by Drinfeld and Jimbo. In this paper we present a classification scheme for quantum groups, whose classical limit is a polynomial Lie algebra. As a consequence we obtain deformed XXX and XXZ Hamiltonians. 

  5. Modeling experiments using quantum and Kolmogorov probability

    International Nuclear Information System (INIS)

    Hess, Karl

    2008-01-01

    Criteria are presented that permit a straightforward partition of experiments into sets that can be modeled using both quantum probability and the classical probability framework of Kolmogorov. These new criteria concentrate on the operational aspects of the experiments and lead beyond the commonly appreciated partition by relating experiments to commuting and non-commuting quantum operators as well as non-entangled and entangled wavefunctions. In other words the space of experiments that can be understood using classical probability is larger than usually assumed. This knowledge provides advantages for areas such as nanoscience and engineering or quantum computation.

  6. Can chaos be observed in quantum gravity?

    International Nuclear Information System (INIS)

    Dittrich, Bianca; Höhn, Philipp A.; Koslowski, Tim A.; Nelson, Mike I.

    2017-01-01

    Full general relativity is almost certainly ‘chaotic’. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  7. Can chaos be observed in quantum gravity?

    Energy Technology Data Exchange (ETDEWEB)

    Dittrich, Bianca, E-mail: bdittrich@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada); Höhn, Philipp A., E-mail: p.hoehn@univie.ac.at [Vienna Center for Quantum Science and Technology, and Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna (Austria); Koslowski, Tim A., E-mail: koslowski@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, México D.F. 04510 (Mexico); Nelson, Mike I., E-mail: mike@aims.edu.gh [African Institute for Mathematical Sciences, P.O Box LG 197, Legon, Accra (Ghana)

    2017-06-10

    Full general relativity is almost certainly ‘chaotic’. We argue that this entails a notion of non-integrability: a generic general relativistic model, at least when coupled to cosmologically interesting matter, likely possesses neither differentiable Dirac observables nor a reduced phase space. It follows that the standard notion of observable has to be extended to include non-differentiable or even discontinuous generalized observables. These cannot carry Poisson-algebraic structures and do not admit a standard quantization; one thus faces a quantum representation problem of gravitational observables. This has deep consequences for a quantum theory of gravity, which we investigate in a simple model for a system with Hamiltonian constraint that fails to be completely integrable. We show that basing the quantization on standard topology precludes a semiclassical limit and can even prohibit any solutions to the quantum constraints. Our proposed solution to this problem is to refine topology such that a complete set of Dirac observables becomes continuous. In the toy model, it turns out that a refinement to a polymer-type topology, as e.g. used in loop gravity, is sufficient. Basing quantization of the toy model on this finer topology, we find a complete set of quantum Dirac observables and a suitable semiclassical limit. This strategy is applicable to realistic candidate theories of quantum gravity and thereby suggests a solution to a long-standing problem which implies ramifications for the very concept of quantization. Our work reveals a qualitatively novel facet of chaos in physics and opens up a new avenue of research on chaos in gravity which hints at deep insights into the structure of quantum gravity.

  8. Models of Quantum Space Time: Quantum Field Planes

    OpenAIRE

    Mack, G.; Schomerus, V.

    1994-01-01

    Quantum field planes furnish a noncommutative differential algebra $\\Omega$ which substitutes for the commutative algebra of functions and forms on a contractible manifold. The data required in their construction come from a quantum field theory. The basic idea is to replace the ground field ${\\bf C}$ of quantum planes by the noncommutative algebra ${\\cal A}$ of observables of the quantum field theory.

  9. A fluctuating quantum model of the CO vibration in carboxyhemoglobin.

    Science.gov (United States)

    Falvo, Cyril; Meier, Christoph

    2011-06-07

    In this paper, we present a theoretical approach to construct a fluctuating quantum model of the CO vibration in heme-CO proteins and its interaction with external laser fields. The methodology consists of mixed quantum-classical calculations for a restricted number of snapshots, which are then used to construct a parametrized quantum model. As an example, we calculate the infrared absorption spectrum of carboxy-hemoglobin, based on a simplified protein model, and found the absorption linewidth in good agreement with the experimental results. © 2011 American Institute of Physics

  10. Integrated tunable quantum-dot laser for optical coherence tomography in the 1.7 μm wavelength region

    NARCIS (Netherlands)

    Tilma, B.W.; Jiao, Y.; Kotani, J.; Smalbrugge, B.; Ambrosius, H.P.M.M.; Thijs, P.J.A.; Leijtens, X.J.M.; Nötzel, R.; Smit, M.K.; Bente, E.A.J.M.

    2012-01-01

    In this paper we present the design and characterization of a monolithically integrated tunable laser for optical coherence tomography in medicine. This laser is the first monolithic photonic integrated circuit containing quantum-dot amplifiers, phase modulators and passive components. We

  11. Integrative structure modeling with the Integrative Modeling Platform.

    Science.gov (United States)

    Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano; Pellarin, Riccardo; Greenberg, Charles H; Saltzberg, Daniel; Sali, Andrej

    2018-01-01

    Building models of a biological system that are consistent with the myriad data available is one of the key challenges in biology. Modeling the structure and dynamics of macromolecular assemblies, for example, can give insights into how biological systems work, evolved, might be controlled, and even designed. Integrative structure modeling casts the building of structural models as a computational optimization problem, for which information about the assembly is encoded into a scoring function that evaluates candidate models. Here, we describe our open source software suite for integrative structure modeling, Integrative Modeling Platform (https://integrativemodeling.org), and demonstrate its use. © 2017 The Protein Society.

  12. Effects of dynamical paths on the energy gap and the corrections to the free energy in path integrals of mean-field quantum spin systems

    Science.gov (United States)

    Koh, Yang Wei

    2018-03-01

    In current studies of mean-field quantum spin systems, much attention is placed on the calculation of the ground-state energy and the excitation gap, especially the latter, which plays an important role in quantum annealing. In pure systems, the finite gap can be obtained by various existing methods such as the Holstein-Primakoff transform, while the tunneling splitting at first-order phase transitions has also been studied in detail using instantons in many previous works. In disordered systems, however, it remains challenging to compute the gap of large-size systems with specific realization of disorder. Hitherto, only quantum Monte Carlo techniques are practical for such studies. Recently, Knysh [Nature Comm. 7, 12370 (2016), 10.1038/ncomms12370] proposed a method where the exponentially large dimensionality of such systems is condensed onto a random potential of much lower dimension, enabling efficient study of such systems. Here we propose a slightly different approach, building upon the method of static approximation of the partition function widely used for analyzing mean-field models. Quantum effects giving rise to the excitation gap and nonextensive corrections to the free energy are accounted for by incorporating dynamical paths into the path integral. The time-dependence of the trace of the time-ordered exponential of the effective Hamiltonian is calculated by solving a differential equation perturbatively, yielding a finite-size series expansion of the path integral. Formulae for the first excited-state energy are proposed to aid in computing the gap. We illustrate our approach using the infinite-range ferromagnetic Ising model and the Hopfield model, both in the presence of a transverse field.

  13. Test of quantum thermalization in the two-dimensional transverse-field Ising model.

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  14. Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments

    International Nuclear Information System (INIS)

    Barz, Stefanie

    2015-01-01

    Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization. (tutorial)

  15. Highly coalesced quantum beam science (1)

    International Nuclear Information System (INIS)

    Ishiyama, Shintaro

    2014-01-01

    The construction of the large-scale facilities of quantum beam is under way in our country, and these are the facilities to use specific quantum beam individually. For this reason, only limited information brought about from the specific intrinsic performance that the beam has can be obtained. To understand the function and structure of a target substance, it is required to integrate various types of complementary information obtainable from each quantum beam. In FY2009, a leading research and development committee on 'quantum beam integration research' was established in Japan Study for the Promotion of Science, and the establishment of a new technology to integrate quantum beams and the creation of a new research region developed from this integration were examined. This committee defined the new academic research region as 'quantum beam integration science' and examined various fields of the new research region. This paper takes out a material science field among them, and tries the systematization of the new academic research region related to the scientific research on quantum beam integration advanced materials by promoting the following: (1) search for the needs for material science research, (2) examination of integration facilities capable of corresponding to the research needs, and (3) basic integration research for the above. (A.O.)

  16. Quantum stochastic calculus associated with quadratic quantum noises

    International Nuclear Information System (INIS)

    Ji, Un Cig; Sinha, Kalyan B.

    2016-01-01

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus

  17. Quantum stochastic calculus associated with quadratic quantum noises

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Un Cig, E-mail: uncigji@chungbuk.ac.kr [Department of Mathematics, Research Institute of Mathematical Finance, Chungbuk National University, Cheongju, Chungbuk 28644 (Korea, Republic of); Sinha, Kalyan B., E-mail: kbs-jaya@yahoo.co.in [Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore-64, India and Department of Mathematics, Indian Institute of Science, Bangalore-12 (India)

    2016-02-15

    We first study a class of fundamental quantum stochastic processes induced by the generators of a six dimensional non-solvable Lie †-algebra consisting of all linear combinations of the generalized Gross Laplacian and its adjoint, annihilation operator, creation operator, conservation, and time, and then we study the quantum stochastic integrals associated with the class of fundamental quantum stochastic processes, and the quantum Itô formula is revisited. The existence and uniqueness of solution of a quantum stochastic differential equation is proved. The unitarity conditions of solutions of quantum stochastic differential equations associated with the fundamental processes are examined. The quantum stochastic calculus extends the Hudson-Parthasarathy quantum stochastic calculus.

  18. Path integral approach to multidimensional quantum tunnelling

    International Nuclear Information System (INIS)

    Balantekin, A.B.; Takigawa, N.

    1985-01-01

    Path integral formulation of the coupled channel problem in the case of multidimensional quantum tunneling is presented and two-time influence functionals are introduced. The two-time influence functionals are calculated explicitly for the three simplest cases: Harmonic oscillators linearly or quadratically coupled to the translational motion and a system with finite number of equidistant energy levels linearly coupled to the translational motion. The effects of these couplings on the transmission probability are studied for two limiting cases, adiabatic case and when the internal system has a degenerate energy spectrum. The condition for the transmission probability to show a resonant structure is discussed and exemplified. Finally, the properties of the dissipation factor in the adiabatic limit and its correlation with the friction coefficient in the classically accessible region are studied

  19. Thue-Morse quantum Ising model

    International Nuclear Information System (INIS)

    Doria, M.M.; Nori, F.; Satija, I.I.

    1989-01-01

    We study the one-dimensional quantum Ising model in a transverse magnetic field where the exchange couplings are ordered according to the Thue-Morse (TM) sequence. At zero temperature, this model is equivalent to a two-dimensional classical Ising model in a magnetic field with TM aperiodicity along one direction. We compute the order parameter (magnetization) of the chain and the scaling behavior of the energy spectrum when the system undergoes a phase transition. Analogous to the quasiperiodic (QP) quantum Ising chain, the onset of long-range order is signaled by a nonanaliticity in the exponent δ which describes the scaling of the total bandwidth with the size of the chain. The critical spin-coupling can be computed analytically and it is found to be lower than the QP case. Furthermore, the energy bands are found to be narrower than the corresponding QP chain. The former and latter results are consistent with the fact that the present structure has a degree of ordering intermediate between QP and random

  20. Loop quantum cosmology of k=1 FRW models

    International Nuclear Information System (INIS)

    Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet; Vandersloot, Kevin

    2007-01-01

    The closed, k=1, FRW model coupled to a massless scalar field is investigated in the framework of loop quantum cosmology using analytical and numerical methods. As in the k=0 case, the scalar field can be again used as emergent time to construct the physical Hilbert space and introduce Dirac observables. The resulting framework is then used to address a major challenge of quantum cosmology: resolving the big-bang singularity while retaining agreement with general relativity at large scales. It is shown that the framework fulfills this task. In particular, for states which are semiclassical at some late time, the big bang is replaced by a quantum bounce and a recollapse occurs at the value of the scale factor predicted by classical general relativity. Thus, the ''difficulties'' pointed out by Green and Unruh in the k=1 case do not arise in a more systematic treatment. As in k=0 models, quantum dynamics is deterministic across the deep Planck regime. However, because it also retains the classical recollapse, in contrast to the k=0 case one is now led to a cyclic model. Finally, we clarify some issues raised by Laguna's recent work addressed to computational physicists

  1. Density-functional theory simulation of large quantum dots

    Science.gov (United States)

    Jiang, Hong; Baranger, Harold U.; Yang, Weitao

    2003-10-01

    Kohn-Sham spin-density functional theory provides an efficient and accurate model to study electron-electron interaction effects in quantum dots, but its application to large systems is a challenge. Here an efficient method for the simulation of quantum dots using density-function theory is developed; it includes the particle-in-the-box representation of the Kohn-Sham orbitals, an efficient conjugate-gradient method to directly minimize the total energy, a Fourier convolution approach for the calculation of the Hartree potential, and a simplified multigrid technique to accelerate the convergence. We test the methodology in a two-dimensional model system and show that numerical studies of large quantum dots with several hundred electrons become computationally affordable. In the noninteracting limit, the classical dynamics of the system we study can be continuously varied from integrable to fully chaotic. The qualitative difference in the noninteracting classical dynamics has an effect on the quantum properties of the interacting system: integrable classical dynamics leads to higher-spin states and a broader distribution of spacing between Coulomb blockade peaks.

  2. Quantum mechanics of hyperbolic metamaterials: Modeling of quantum time and Everett's “universal wavefunction”

    Energy Technology Data Exchange (ETDEWEB)

    Smolyaninov, Igor I., E-mail: smoly@umd.edu

    2014-11-15

    Modern advances in transformation optics and electromagnetic metamaterials made possible experimental demonstrations of highly unusual curvilinear “optical spaces”, such as various geometries necessary for electromagnetic cloaking. Recently we demonstrated that mapping light intensity in a hyperbolic metamaterial may also model the flow of time in an effective (2+1) dimensional Minkowski spacetime. Curving such an effective spacetime creates experimental model of a toy “big bang”. Here we demonstrate that at low light levels this model may be used to emulate a fully covariant version of quantum mechanics in a (2+1) dimensional Minkowski spacetime. When quantum mechanical description is applied near the toy “big bang”, the Everett's “universal wave function” formalism arises naturally, in which the wave function of the model “universe” appears to be a quantum superposition of mutually orthogonal “parallel universe” states.

  3. Quantum Oscillator in the Thermostat as a Model in the Thermodynamics of Open Quantum Systems

    OpenAIRE

    Sukhanov, Aleksander

    2005-01-01

    The quantum oscillator in the thermostat is considered as the model of an open quantum system. Our analysis will be heavily founded on the use of the Schroedinger generalized uncertainties relations (SUR). Our first aim is to demonstrate that for the quantum oscillator the state of thermal equilibrium belongs to the correlated coherent states (CCS), which imply the saturation of SUR at any temperature. The obtained results open the perspective for the search of some statistical theory, which ...

  4. High extinction ratio integrated optical modulator for quantum telecommunication systems

    Science.gov (United States)

    Tronev, A.; Parfenov, M.; Agruzov, P.; Ilichev, I.; Shamray, A.

    2018-01-01

    A method for increasing the extinction ratio of integrated optical Mach-Zehnder modulators based on LiNbO3 via the photorefractive effect is proposed. The influence of the photorefractive effect on the X- and Y-splitters of intensity modulators is experimentally studied. An increase in the modulator extinction ratio by 17 dB (from 30 to 47 dB) is obtained. It is shown that fabricated modulators with a high extinction ratio are important for quantum key distribution systems.

  5. Probing models of quantum decoherence in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatos, Nikolaos E; Sarkar, Sarben [King' s College London, Department of Physics, Theoretical Physics, Strand London WC2R 2LS (United Kingdom)

    2007-05-15

    In this review we discuss the string theoretical motivations for induced decoherence and deviations from ordinary quantum-mechanical behaviour; this leads to intrinsic CPT violation in the context of an extended class of quantum-gravity models. We proceed to a description of precision tests of CPT symmetry and quantum mechanics using mainly neutral kaons and neutrinos. We emphasize the possibly unique role of neutral meson factories in providing tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we discuss experimental probes of decoherence in cosmology, including studies of dissipative relaxation models of dark energy in non-critical (non-equilibrium) string theory and the associated modifications of the Boltzmann equation for the evolution of species abundances.

  6. Effect of quantum learning model in improving creativity and memory

    Science.gov (United States)

    Sujatmika, S.; Hasanah, D.; Hakim, L. L.

    2018-04-01

    Quantum learning is a combination of many interactions that exist during learning. This model can be applied by current interesting topic, contextual, repetitive, and give opportunities to students to demonstrate their abilities. The basis of the quantum learning model are left brain theory, right brain theory, triune, visual, auditorial, kinesthetic, game, symbol, holistic, and experiential learning theory. Creativity plays an important role to be success in the working world. Creativity shows alternatives way to problem-solving or creates something. Good memory plays a role in the success of learning. Through quantum learning, students will use all of their abilities, interested in learning and create their own ways of memorizing concepts of the material being studied. From this idea, researchers assume that quantum learning models can improve creativity and memory of the students.

  7. Systematic classical continuum limits of integrable spin chains and emerging novel dualities

    International Nuclear Information System (INIS)

    Avan, Jean; Doikou, Anastasia; Sfetsos, Konstadinos

    2010-01-01

    We examine certain classical continuum long wave-length limits of prototype integrable quantum spin chains. We define the corresponding construction of classical continuum Lax operators. Our discussion starts with the XXX chain, the anisotropic Heisenberg model and their generalizations and extends to the generic isotropic and anisotropic gl n magnets. Certain classical and quantum integrable models emerging from special 'dualities' of quantum spin chains, parametrized by c-number matrices, are also presented.

  8. Entanglement and thermodynamics after a quantum quench in integrable systems.

    Science.gov (United States)

    Alba, Vincenzo; Calabrese, Pasquale

    2017-07-25

    Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.

  9. Surveying the quantum group symmetries of integrable open spin chains

    Science.gov (United States)

    Nepomechie, Rafael I.; Retore, Ana L.

    2018-05-01

    Using anisotropic R-matrices associated with affine Lie algebras g ˆ (specifically, A2n(2), A2n-1 (2) , Bn(1), Cn(1), Dn(1)) and suitable corresponding K-matrices, we construct families of integrable open quantum spin chains of finite length, whose transfer matrices are invariant under the quantum group corresponding to removing one node from the Dynkin diagram of g ˆ . We show that these transfer matrices also have a duality symmetry (for the cases Cn(1) and Dn(1)) and additional Z2 symmetries that map complex representations to their conjugates (for the cases A2n-1 (2) , Bn(1) and Dn(1)). A key simplification is achieved by working in a certain "unitary" gauge, in which only the unbroken symmetry generators appear. The proofs of these symmetries rely on some new properties of the R-matrices. We use these symmetries to explain the degeneracies of the transfer matrices.

  10. Iterative quantum-classical path integral with dynamically consistent state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Peter L.; Makri, Nancy [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-01-28

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

  11. Supersymmetric quantum mechanics, spinors and the standard model

    International Nuclear Information System (INIS)

    Woit, P.

    1988-01-01

    The quantization of the simplest supersymmetric quantum mechanical theory of a free fermion on a riemannian manifold requires the introduction of a complex structure on the tangent space. In 4 dimensions, the subgroup of the group of frame rotations that preserves the complex structure is SU(2) x U(1), and it is argued that this symmetry can be consistently interpreted to be an internal gauge symmetry for the analytically continued theory in Minkowski space. The states of the theory carry the quantum numbers of a generation of leptons in the Weinberg-Salam model. Examination of the geometry of spinors in four dimensions also provides a natural SU(3) symmetry and very simple construction of a multiplet with the standard model quantum numbers. (orig.)

  12. Supersymmetric Quantum Mechanics and Topology

    International Nuclear Information System (INIS)

    Wasay, Muhammad Abdul

    2016-01-01

    Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.

  13. A Quantum Implementation Model for Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Ammar Daskin

    2018-02-01

    Full Text Available The learning process for multilayered neural networks with many nodes makes heavy demands on computational resources. In some neural network models, the learning formulas, such as the Widrow–Hoff formula, do not change the eigenvectors of the weight matrix while flatting the eigenvalues. In infinity, these iterative formulas result in terms formed by the principal components of the weight matrix, namely, the eigenvectors corresponding to the non-zero eigenvalues. In quantum computing, the phase estimation algorithm is known to provide speedups over the conventional algorithms for the eigenvalue-related problems. Combining the quantum amplitude amplification with the phase estimation algorithm, a quantum implementation model for artificial neural networks using the Widrow–Hoff learning rule is presented. The complexity of the model is found to be linear in the size of the weight matrix. This provides a quadratic improvement over the classical algorithms. Quanta 2018; 7: 7–18.

  14. Quantum­holographic framework for psychosomatics and spirituality: Complete healing and spiritual integration without a mask

    OpenAIRE

    Raković, Dejan

    2017-01-01

    The subject of this paper is quantum­holographic framework for holistic psychosomatics (including integrative medicine and transpersonal psychology). Such a framework could have significant implications for understanding the mechanisms of quantum­holographic feedback control in the morphogenesis and bio­resonant application of the healing boundary conditions in psychosomatics, based on acupuncture and consciousness. It sheds new light on the long standing open problems of the holistic role an...

  15. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array

    Science.gov (United States)

    Hensgens, T.; Fujita, T.; Janssen, L.; Li, Xiao; van Diepen, C. J.; Reichl, C.; Wegscheider, W.; Das Sarma, S.; Vandersypen, L. M. K.

    2017-08-01

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  16. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    Science.gov (United States)

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  17. Relationship between quantum-mechanical systems with and without monopoles

    International Nuclear Information System (INIS)

    Mardoyan, Levon; Nersessian, Armen; Yeranyan, Armen

    2007-01-01

    It is shown that the inclusion of the monopole field in the three- and five-dimensional spherically symmetric quantum-mechanical systems, with the addition of the special centrifugal term, leads to the lift of the range of the total and azimuth quantum numbers only. Meanwhile the functional dependence of the energy spectra on quantum numbers does not undergo any changes. We also present a new integrable model of the spherical oscillator

  18. Quantum information processing : science & technology.

    Energy Technology Data Exchange (ETDEWEB)

    Horton, Rebecca; Carroll, Malcolm S.; Tarman, Thomas David

    2010-09-01

    Qubits demonstrated using GaAs double quantum dots (DQD). The qubit basis states are the (1) singlet and (2) triplet stationary states. Long spin decoherence times in silicon spurs translation of GaAs qubit in to silicon. In the near term the goals are: (1) Develop surface gate enhancement mode double quantum dots (MOS & strained-Si/SiGe) to demonstrate few electrons and spin read-out and to examine impurity doped quantum-dots as an alternative architecture; (2) Use mobility, C-V, ESR, quantum dot performance & modeling to feedback and improve upon processing, this includes development of atomic precision fabrication at SNL; (3) Examine integrated electronics approaches to RF-SET; (4) Use combinations of numerical packages for multi-scale simulation of quantum dot systems (NEMO3D, EMT, TCAD, SPICE); and (5) Continue micro-architecture evaluation for different device and transport architectures.

  19. Quantum dash based single section mode locked lasers for photonic integrated circuits.

    Science.gov (United States)

    Joshi, Siddharth; Calò, Cosimo; Chimot, Nicolas; Radziunas, Mindaugas; Arkhipov, Rostislav; Barbet, Sophie; Accard, Alain; Ramdane, Abderrahim; Lelarge, Francois

    2014-05-05

    We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators. We also investigate the relations between cavity modes in such a device and demonstrate how the dispersion of the complex mode frequencies induced by the Bragg grating implies a violation of the equi-distance between the adjacent mode frequencies and, therefore, forbids the locking of the modes in a classical Bragg Device. Finally we integrate such a Bragg Mirror based laser with Semiconductor Optical Amplifier (SOA) to demonstrate the monolithic integration of QDash based low phase noise sources in PICs.

  20. FTL Quantum Models of the Photon and the Electron

    International Nuclear Information System (INIS)

    Gauthier, Richard F.

    2007-01-01

    A photon is modeled by an uncharged superluminal quantum moving at 1.414c along an open 45-degree helical trajectory with radius R = λ/2π (where λ is the helical pitch or wavelength). A mostly superluminal spatial model of an electron is composed of a charged pointlike quantum circulating at an extremely high frequency ( 2.5 x 1020 hz) in a closed, double-looped hehcal trajectory whose helical pitch is one Compton wavelength h/mc. The quantum has energy and momentum but not rest mass, so its speed is not limited by c. sThe quantum's speed is superluminal 57% of the time and subluminal 43% of the time, passing through c twice in each trajectory cycle. The quantum's maximum speed in the electron's rest frame is 2.515c and its minimum speed is .707c. The electron model's helical trajectory parameters are selected to produce the electron's spin (ℎ/2π)/2 and approximate (without small QED corrections) magnetic moment e(ℎ/2π)/2m (the Bohr magneton μB) as well as its Dirac equation-related 'jittery motion' angular frequency 2mc2/(ℎ/2π), amplitude (ℎ/2π)/2mc and internal speed c. The two possible helicities of the electron model correspond to the electron and the positron. With these models, an electron is like a closed circulating photon. The electron's inertia is proposed to be related to the electron model's circulating internal Compton momentum mc. The internal superluminalily of the photon model, the internal superluminahty/subluminality of the electron model, and the proposed approach to the electron's inertia as ''momentum at rest'' within the electron, could be relevant to possible mechanisms of superluminal communication and transportation

  1. Derivation of the Schrodinger Equation from the Hamilton-Jacobi Equation in Feynman's Path Integral Formulation of Quantum Mechanics

    Science.gov (United States)

    Field, J. H.

    2011-01-01

    It is shown how the time-dependent Schrodinger equation may be simply derived from the dynamical postulate of Feynman's path integral formulation of quantum mechanics and the Hamilton-Jacobi equation of classical mechanics. Schrodinger's own published derivations of quantum wave equations, the first of which was also based on the Hamilton-Jacobi…

  2. Teaching Basic Quantum Mechanics in Secondary School Using Concepts of Feynman Path Integrals Method

    Science.gov (United States)

    Fanaro, Maria de los Angeles; Otero, Maria Rita; Arlego, Marcelo

    2012-01-01

    This paper discusses the teaching of basic quantum mechanics in high school. Rather than following the usual formalism, our approach is based on Feynman's path integral method. Our presentation makes use of simulation software and avoids sophisticated mathematical formalism. (Contains 3 figures.)

  3. Understanding quantum tunneling using diffusion Monte Carlo simulations

    Science.gov (United States)

    Inack, E. M.; Giudici, G.; Parolini, T.; Santoro, G.; Pilati, S.

    2018-03-01

    In simple ferromagnetic quantum Ising models characterized by an effective double-well energy landscape the characteristic tunneling time of path-integral Monte Carlo (PIMC) simulations has been shown to scale as the incoherent quantum-tunneling time, i.e., as 1 /Δ2 , where Δ is the tunneling gap. Since incoherent quantum tunneling is employed by quantum annealers (QAs) to solve optimization problems, this result suggests that there is no quantum advantage in using QAs with respect to quantum Monte Carlo (QMC) simulations. A counterexample is the recently introduced shamrock model (Andriyash and Amin, arXiv:1703.09277), where topological obstructions cause an exponential slowdown of the PIMC tunneling dynamics with respect to incoherent quantum tunneling, leaving open the possibility for potential quantum speedup, even for stoquastic models. In this work we investigate the tunneling time of projective QMC simulations based on the diffusion Monte Carlo (DMC) algorithm without guiding functions, showing that it scales as 1 /Δ , i.e., even more favorably than the incoherent quantum-tunneling time, both in a simple ferromagnetic system and in the more challenging shamrock model. However, a careful comparison between the DMC ground-state energies and the exact solution available for the transverse-field Ising chain indicates an exponential scaling of the computational cost required to keep a fixed relative error as the system size increases.

  4. Categories of relations as models of quantum theory

    Directory of Open Access Journals (Sweden)

    Chris Heunen

    2015-11-01

    Full Text Available Categories of relations over a regular category form a family of models of quantum theory. Using regular logic, many properties of relations over sets lift to these models, including the correspondence between Frobenius structures and internal groupoids. Over compact Hausdorff spaces, this lifting gives continuous symmetric encryption. Over a regular Mal'cev category, this correspondence gives a characterization of categories of completely positive maps, enabling the formulation of quantum features. These models are closer to Hilbert spaces than relations over sets in several respects: Heisenberg uncertainty, impossibility of broadcasting, and behavedness of rank one morphisms.

  5. Aspects of a representation of quantum theory in terms of classical probability theory by means of integration in Hilbert space

    International Nuclear Information System (INIS)

    Bach, A.

    1981-01-01

    A representation of quantum mechanics in terms of classical probability theory by means of integration in Hilbert space is discussed. This formal hidden-variables representation is analysed in the context of impossibility proofs concerning hidden-variables theories. The structural analogy of this formulation of quantum theory with classical statistical mechanics is used to elucidate the difference between classical mechanics and quantum mechanics. (author)

  6. Quantum signatures of chaos or quantum chaos?

    International Nuclear Information System (INIS)

    Bunakov, V. E.

    2016-01-01

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  7. Quantum signatures of chaos or quantum chaos?

    Energy Technology Data Exchange (ETDEWEB)

    Bunakov, V. E., E-mail: bunakov@VB13190.spb.edu [St. Petersburg State University (Russian Federation)

    2016-11-15

    A critical analysis of the present-day concept of chaos in quantum systems as nothing but a “quantum signature” of chaos in classical mechanics is given. In contrast to the existing semi-intuitive guesses, a definition of classical and quantum chaos is proposed on the basis of the Liouville–Arnold theorem: a quantum chaotic system featuring N degrees of freedom should have M < N independent first integrals of motion (good quantum numbers) specified by the symmetry of the Hamiltonian of the system. Quantitative measures of quantum chaos that, in the classical limit, go over to the Lyapunov exponent and the classical stability parameter are proposed. The proposed criteria of quantum chaos are applied to solving standard problems of modern dynamical chaos theory.

  8. Form factors in quantum integrable models with GL(3)-invariant R-matrix

    Energy Technology Data Exchange (ETDEWEB)

    Pakuliak, S., E-mail: pakuliak@theor.jinr.ru [Laboratory of Theoretical Physics, JINR, 141980 Dubna, Moscow Reg. (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Moscow Reg. (Russian Federation); Institute of Theoretical and Experimental Physics, 117259 Moscow (Russian Federation); Ragoucy, E., E-mail: eric.ragoucy@lapth.cnrs.fr [Laboratoire de Physique Théorique LAPTH, CNRS and Université de Savoie, BP 110, 74941 Annecy-le-Vieux Cedex (France); Slavnov, N.A., E-mail: nslavnov@mi.ras.ru [Steklov Mathematical Institute, Moscow (Russian Federation)

    2014-04-15

    We study integrable models solvable by the nested algebraic Bethe ansatz and possessing GL(3)-invariant R-matrix. We obtain determinant representations for form factors of off-diagonal entries of the monodromy matrix. These representations can be used for the calculation of form factors and correlation functions of the XXX SU(3)-invariant Heisenberg chain.

  9. Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics

    International Nuclear Information System (INIS)

    Everett, Allen

    2004-01-01

    We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves. In a model similar to Politzer's, assuming pure states and using path integrals, we show that the problems of paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time evolution so that improbable events become certain. Deutsch has argued, using the density matrix, that paradoxes do not occur in the 'many worlds interpretation'. We find that in this approach account must be taken of the resolution time of the device that detects objects emerging from a wormhole or other time machine. When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole interact with it so strongly that they are broken into microscopic fragments

  10. Particle production and Boltzmann integral form of relativistic quantum transport theory

    International Nuclear Information System (INIS)

    Rafelski, J.; Davis, E.D.; Bialynicki-Birula, I.

    1993-01-01

    The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately

  11. Representation of the Kolmogorov model having all distinguishing features of quantum probabilistic model

    International Nuclear Information System (INIS)

    Khrennikov, Andrei

    2003-01-01

    The contextual approach to the Kolmogorov probability model gives the possibility to represent this conventional model as a quantum structure, i.e., by using complex amplitudes of probabilities (or in the abstract approach - in a Hilbert space). Classical (Kolmogorovian) random variables are represented by in general noncommutative operators in the Hilbert space. The existence of such a contextual representation of the Kolmogorovian model looks very surprising in the view of the orthodox quantum tradition. However, our model can peacefully coexist with various 'no-go' theorems (e.g., von Neumann, Kochen and Specker, Bell, ...)

  12. Differential equations and integrable models: the SU(3) case

    International Nuclear Information System (INIS)

    Dorey, Patrick; Tateo, Roberto

    2000-01-01

    We exhibit a relationship between the massless a 2 (2) integrable quantum field theory and a certain third-order ordinary differential equation, thereby extending a recent result connecting the massless sine-Gordon model to the Schroedinger equation. This forms part of a more general correspondence involving A 2 -related Bethe ansatz systems and third-order differential equations. A non-linear integral equation for the generalised spectral problem is derived, and some numerical checks are performed. Duality properties are discussed, and a simple variant of the non-linear equation is suggested as a candidate to describe the finite volume ground state energies of minimal conformal field theories perturbed by the operators phi 12 , phi 21 and phi 15 . This is checked against previous results obtained using the thermodynamic Bethe ansatz

  13. Models for universal reduction of macroscopic quantum fluctuations

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-10-01

    If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs

  14. Open quantum system model of the one-dimensional Burgers equation with tunable shear viscosity

    International Nuclear Information System (INIS)

    Yepez, Jeffrey

    2006-01-01

    Presented is an analysis of an open quantum model of the time-dependent evolution of a flow field governed by the nonlinear Burgers equation in one spatial dimension. The quantum model is a system of qubits where there exists a minimum time interval in the time-dependent dynamics. Each temporally discrete unitary quantum-mechanical evolution is followed by state reduction of the quantum state. The mesoscopic behavior of this quantum model is described by a quantum Boltzmann equation with a naturally emergent entropy function and H theorem and the model obeys the detailed balance principle. The macroscopic-scale effective field theory for the quantum model is derived using a perturbative Chapman-Enskog expansion applied to the linearized quantum Boltzmann equation. The entropy function is consistent with the quantum-mechanical collision process and a Fermi-Dirac single-particle distribution function for the occupation probabilities of the qubit's energy eigenstates. Comparisons are presented between analytical predictions and numerical predictions and the agreement is excellent, indicating that the nonlinear Burgers equation with a tunable shear viscosity is the operative macroscopic scale effective field theory

  15. Dilaton gravity, Poisson sigma models and loop quantum gravity

    International Nuclear Information System (INIS)

    Bojowald, Martin; Reyes, Juan D

    2009-01-01

    Spherically symmetric gravity in Ashtekar variables coupled to Yang-Mills theory in two dimensions and its relation to dilaton gravity and Poisson sigma models are discussed. After introducing its loop quantization, quantum corrections for inverse triad components are shown to provide a consistent deformation without anomalies. The relation to Poisson sigma models provides a covariant action principle of the quantum-corrected theory with effective couplings. Results are also used to provide loop quantizations of spherically symmetric models in arbitrary D spacetime dimensions.

  16. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    Science.gov (United States)

    Adame, J.; Warzel, S.

    2015-11-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM.

  17. Exponential vanishing of the ground-state gap of the quantum random energy model via adiabatic quantum computing

    International Nuclear Information System (INIS)

    Adame, J.; Warzel, S.

    2015-01-01

    In this note, we use ideas of Farhi et al. [Int. J. Quantum. Inf. 6, 503 (2008) and Quantum Inf. Comput. 11, 840 (2011)] who link a lower bound on the run time of their quantum adiabatic search algorithm to an upper bound on the energy gap above the ground-state of the generators of this algorithm. We apply these ideas to the quantum random energy model (QREM). Our main result is a simple proof of the conjectured exponential vanishing of the energy gap of the QREM

  18. A Transfer Hamiltonian Model for Devices Based on Quantum Dot Arrays

    Directory of Open Access Journals (Sweden)

    S. Illera

    2015-01-01

    Full Text Available We present a model of electron transport through a random distribution of interacting quantum dots embedded in a dielectric matrix to simulate realistic devices. The method underlying the model depends only on fundamental parameters of the system and it is based on the Transfer Hamiltonian approach. A set of noncoherent rate equations can be written and the interaction between the quantum dots and between the quantum dots and the electrodes is introduced by transition rates and capacitive couplings. A realistic modelization of the capacitive couplings, the transmission coefficients, the electron/hole tunneling currents, and the density of states of each quantum dot have been taken into account. The effects of the local potential are computed within the self-consistent field regime. While the description of the theoretical framework is kept as general as possible, two specific prototypical devices, an arbitrary array of quantum dots embedded in a matrix insulator and a transistor device based on quantum dots, are used to illustrate the kind of unique insight that numerical simulations based on the theory are able to provide.

  19. A classical-quantum coupling strategy for a hierarchy of one dimensional models for semiconductors

    OpenAIRE

    Jourdana, Clément; Pietra, Paola; Vauchelet, Nicolas

    2014-01-01

    We consider one dimensional coupled classical-quantum models for quantum semiconductor device simulations. The coupling occurs in the space variable : the domain of the device is divided into a region with strong quantum effects (quantum zone) and a region where quantum effects are negligible (classical zone). In the classical zone, transport in diffusive approximation is modeled through diffusive limits of the Boltzmann transport equation. This leads to a hierarchy of classical model. The qu...

  20. Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

    Science.gov (United States)

    Mazzola, Guglielmo; Smelyanskiy, Vadim N.; Troyer, Matthias

    2017-10-01

    Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016), 10.1103/PhysRevLett.117.180402], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.

  1. Quantum signature scheme for known quantum messages

    International Nuclear Information System (INIS)

    Kim, Taewan; Lee, Hyang-Sook

    2015-01-01

    When we want to sign a quantum message that we create, we can use arbitrated quantum signature schemes which are possible to sign for not only known quantum messages but also unknown quantum messages. However, since the arbitrated quantum signature schemes need the help of a trusted arbitrator in each verification of the signature, it is known that the schemes are not convenient in practical use. If we consider only known quantum messages such as the above situation, there can exist a quantum signature scheme with more efficient structure. In this paper, we present a new quantum signature scheme for known quantum messages without the help of an arbitrator. Differing from arbitrated quantum signature schemes based on the quantum one-time pad with the symmetric key, since our scheme is based on quantum public-key cryptosystems, the validity of the signature can be verified by a receiver without the help of an arbitrator. Moreover, we show that our scheme provides the functions of quantum message integrity, user authentication and non-repudiation of the origin as in digital signature schemes. (paper)

  2. Quantum-like model of brain's functioning: decision making from decoherence.

    Science.gov (United States)

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions

    Science.gov (United States)

    Cendagorta, Joseph R.; Bačić, Zlatko; Tuckerman, Mark E.

    2018-03-01

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  4. An open-chain imaginary-time path-integral sampling approach to the calculation of approximate symmetrized quantum time correlation functions.

    Science.gov (United States)

    Cendagorta, Joseph R; Bačić, Zlatko; Tuckerman, Mark E

    2018-03-14

    We introduce a scheme for approximating quantum time correlation functions numerically within the Feynman path integral formulation. Starting with the symmetrized version of the correlation function expressed as a discretized path integral, we introduce a change of integration variables often used in the derivation of trajectory-based semiclassical methods. In particular, we transform to sum and difference variables between forward and backward complex-time propagation paths. Once the transformation is performed, the potential energy is expanded in powers of the difference variables, which allows us to perform the integrals over these variables analytically. The manner in which this procedure is carried out results in an open-chain path integral (in the remaining sum variables) with a modified potential that is evaluated using imaginary-time path-integral sampling rather than requiring the generation of a large ensemble of trajectories. Consequently, any number of path integral sampling schemes can be employed to compute the remaining path integral, including Monte Carlo, path-integral molecular dynamics, or enhanced path-integral molecular dynamics. We believe that this approach constitutes a different perspective in semiclassical-type approximations to quantum time correlation functions. Importantly, we argue that our approximation can be systematically improved within a cumulant expansion formalism. We test this approximation on a set of one-dimensional problems that are commonly used to benchmark approximate quantum dynamical schemes. We show that the method is at least as accurate as the popular ring-polymer molecular dynamics technique and linearized semiclassical initial value representation for correlation functions of linear operators in most of these examples and improves the accuracy of correlation functions of nonlinear operators.

  5. Lecture notes in topics in path integrals and string representations

    CERN Document Server

    Botelho, Luiz C L

    2017-01-01

    Functional Integrals is a well-established method in mathematical physics, especially those mathematical methods used in modern non-perturbative quantum field theory and string theory. This book presents a unique, original and modern treatment of strings representations on Bosonic Quantum Chromodynamics and Bosonization theory on 2d Gauge Field Models, besides of rigorous mathematical studies on the analytical regularization scheme on Euclidean quantum field path integrals and stochastic quantum field theory. It follows an analytic approach based on Loop space techniques, functional determinant exact evaluations and exactly solubility of four dimensional QCD loop wave equations through Elfin Botelho fermionic extrinsic self avoiding string path integrals.

  6. Scaling gross ecosystem production at Harvard Forest with remote sensing: a comparison of estimates from a constrained quantum-use efficiency model and eddy correlation

    International Nuclear Information System (INIS)

    Waring, R.H.; Law, B.E.; Goulden, M.L.; Bassow, S.L.; McCreight, R.W.; Wofsy, S.C.; Bazzaz, F.A.

    1995-01-01

    Two independent methods of estimating gross ecosystem production (GEP) were compared over a period of 2 years at monthly integrals for a mixed forest of conifers and deciduous hardwoods at Harvard Forest in central Massachusetts. Continuous eddy flux measurements of net ecosystem exchange (NEE) provided one estimate of GEP by taking day to night temperature differences into account to estimate autotrophic and heterotrophic respiration. GEP was also estimated with a quantum efficiency model based on measurements of maximum quantum efficiency (Qmax), seasonal variation in canopy phenology and chlorophyll content, incident PAR, and the constraints of freezing temperatures and vapour pressure deficits on stomatal conductance. Quantum efficiency model estimates of GEP and those derived from eddy flux measurements compared well at monthly integrals over two consecutive years (R 2 = 0–98). Remotely sensed data were acquired seasonally with an ultralight aircraft to provide a means of scaling the leaf area and leaf pigmentation changes that affected the light absorption of photosynthetically active radiation to larger areas. A linear correlation between chlorophyll concentrations in the upper canopy leaves of four hardwood species and their quantum efficiencies (R 2 = 0–99) suggested that seasonal changes in quantum efficiency for the entire canopy can be quantified with remotely sensed indices of chlorophyll. Analysis of video data collected from the ultralight aircraft indicated that the fraction of conifer cover varied from < 7% near the instrument tower to about 25% for a larger sized area. At 25% conifer cover, the quantum efficiency model predicted an increase in the estimate of annual GEP of < 5% because unfavourable environmental conditions limited conifer photosynthesis in much of the non-growing season when hardwoods lacked leaves

  7. Modern integral equation techniques for quantum reactive scattering theory

    International Nuclear Information System (INIS)

    Auerbach, S.M.

    1993-11-01

    Rigorous calculations of cross sections and rate constants for elementary gas phase chemical reactions are performed for comparison with experiment, to ensure that our picture of the chemical reaction is complete. We focus on the H/D+H 2 → H 2 /DH + H reaction, and use the time independent integral equation technique in quantum reactive scattering theory. We examine the sensitivity of H+H 2 state resolved integral cross sections σ v'j',vj (E) for the transitions (v = 0,j = 0) to (v' = 1,j' = 1,3), to the difference between the Liu-Siegbahn-Truhlar-Horowitz (LSTH) and double many body expansion (DMBE) ab initio potential energy surfaces (PES). This sensitivity analysis is performed to determine the origin of a large discrepancy between experimental cross sections with sharply peaked energy dependence and theoretical ones with smooth energy dependence. We find that the LSTH and DMBE PESs give virtually identical cross sections, which lends credence to the theoretical energy dependence

  8. Connes' embedding problem and winning strategies for quantum XOR games

    Science.gov (United States)

    Harris, Samuel J.

    2017-12-01

    We consider quantum XOR games, defined in the work of Regev and Vidick [ACM Trans. Comput. Theory 7, 43 (2015)], from the perspective of unitary correlations defined in the work of Harris and Paulsen [Integr. Equations Oper. Theory 89, 125 (2017)]. We show that the winning bias of a quantum XOR game in the tensor product model (respectively, the commuting model) is equal to the norm of its associated linear functional on the unitary correlation set from the appropriate model. We show that Connes' embedding problem has a positive answer if and only if every quantum XOR game has entanglement bias equal to the commuting bias. In particular, the embedding problem is equivalent to determining whether every quantum XOR game G with a winning strategy in the commuting model also has a winning strategy in the approximate finite-dimensional model.

  9. Integral relations for invariants constructed from three Riemann tensors and their applications in quantum gravity

    International Nuclear Information System (INIS)

    van Nieuwenhuizen, P.; Wu, C.C.

    1977-01-01

    The lowest order quantum corrections to pure gravitation are finite because there exists an integral relation between products of two Riemann tensors (the Gauss--Bonnet theorem). In this article several algebraic and integral relations are determined between products of three Riemann tensors in four- and six-dimensional spacetime. In both cases, one is left with only one invariant when R/sub μ//sub ν/=0, viz., ∫ (-g) 1 / 2 (R/sub b//sub β//sub μ//sub ν/R/sup μ//sup ν//sup rho//sup sigma/R/sub rho//sub sigma/ /sup α//sup β/).It is explicitly shown that this invariant does not vanish, even when R/sub μ//sub ν/=0. Consequently, the two-loop quantum corrections to pure gravitation will only be finite if, due to miraculous cancellation, the coefficient of this invariant vanishes

  10. Quantum-corrected drift-diffusion models for transport in semiconductor devices

    International Nuclear Information System (INIS)

    De Falco, Carlo; Gatti, Emilio; Lacaita, Andrea L.; Sacco, Riccardo

    2005-01-01

    In this paper, we propose a unified framework for Quantum-corrected drift-diffusion (QCDD) models in nanoscale semiconductor device simulation. QCDD models are presented as a suitable generalization of the classical drift-diffusion (DD) system, each particular model being identified by the constitutive relation for the quantum-correction to the electric potential. We examine two special, and relevant, examples of QCDD models; the first one is the modified DD model named Schroedinger-Poisson-drift-diffusion, and the second one is the quantum-drift-diffusion (QDD) model. For the decoupled solution of the two models, we introduce a functional iteration technique that extends the classical Gummel algorithm widely used in the iterative solution of the DD system. We discuss the finite element discretization of the various differential subsystems, with special emphasis on their stability properties, and illustrate the performance of the proposed algorithms and models on the numerical simulation of nanoscale devices in two spatial dimensions

  11. Evolution operator equation: Integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Dattoli, Giuseppe; Torre, Amalia [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Ottaviani, Pier Luigi [ENEA, Centro Ricerche Bologna (Italy); Vasquez, Luis [Madris, Univ. Complutense (Spain). Dept. de Matemateca Aplicado

    1997-10-01

    The finite-difference based integration method for evolution-line equations is discussed in detail and framed within the general context of the evolution operator picture. Exact analytical methods are described to solve evolution-like equations in a quite general physical context. The numerical technique based on the factorization formulae of exponential operator is then illustrated and applied to the evolution-operator in both classical and quantum framework. Finally, the general view to the finite differencing schemes is provided, displaying the wide range of applications from the classical Newton equation of motion to the quantum field theory.

  12. Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent

    International Nuclear Information System (INIS)

    Gilmore, Joel; McKenzie, Ross H

    2005-01-01

    We give a theoretical treatment of the interaction of electronic excitations (excitons) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Foerster resonant energy transfer

  13. Quantum density fluctuations in liquid neon from linearized path-integral calculations

    International Nuclear Information System (INIS)

    Poulsen, Jens Aage; Scheers, Johan; Nyman, Gunnar; Rossky, Peter J.

    2007-01-01

    The Feynman-Kleinert linearized path-integral [J. A. Poulsen et al., J. Chem. Phys. 119, 12179 (2003)] representation of quantum correlation functions is applied to compute the spectrum of density fluctuations for liquid neon at T=27.6 K, p=1.4 bar, and Q vector 1.55 Aa -1 . The calculated spectrum as well as the kinetic energy of the liquid are in excellent agreement with the experiment of Cunsolo et al. [Phys. Rev. B 67, 024507 (2003)

  14. A deformation of quantum affine algebra in squashed Wess-Zumino-Novikov-Witten models

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Io; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2014-06-01

    We proceed to study infinite-dimensional symmetries in two-dimensional squashed Wess-Zumino-Novikov-Witten models at the classical level. The target space is given by squashed S³ and the isometry is SU(2){sub L}×U(1){sub R}. It is known that SU(2){sub L} is enhanced to a couple of Yangians. We reveal here that an infinite-dimensional extension of U(1){sub R} is a deformation of quantum affine algebra, where a new deformation parameter is provided with the coefficient of the Wess-Zumino term. Then we consider the relation between the deformed quantum affine algebra and the pair of Yangians from the viewpoint of the left-right duality of monodromy matrices. The integrable structure is also discussed by computing the r/s-matrices that satisfy the extended classical Yang-Baxter equation. Finally, two degenerate limits are discussed.

  15. Quantum mechanical Hamiltonian models of discrete processes

    International Nuclear Information System (INIS)

    Benioff, P.

    1981-01-01

    Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement

  16. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  17. Quantum field theory and the standard model

    CERN Document Server

    Schwartz, Matthew D

    2014-01-01

    Providing a comprehensive introduction to quantum field theory, this textbook covers the development of particle physics from its foundations to the discovery of the Higgs boson. Its combination of clear physical explanations, with direct connections to experimental data, and mathematical rigor make the subject accessible to students with a wide variety of backgrounds and interests. Assuming only an undergraduate-level understanding of quantum mechanics, the book steadily develops the Standard Model and state-of-the-art calculation techniques. It includes multiple derivations of many important results, with modern methods such as effective field theory and the renormalization group playing a prominent role. Numerous worked examples and end-of-chapter problems enable students to reproduce classic results and to master quantum field theory as it is used today. Based on a course taught by the author over many years, this book is ideal for an introductory to advanced quantum field theory sequence or for independe...

  18. Equivalent circuit-level model of quantum cascade lasers with integrated hot-electron and hot-phonon effects

    Science.gov (United States)

    Yousefvand, H. R.

    2017-12-01

    We report a study of the effects of hot-electron and hot-phonon dynamics on the output characteristics of quantum cascade lasers (QCLs) using an equivalent circuit-level model. The model is developed from the energy balance equation to adopt the electron temperature in the active region levels, the heat transfer equation to include the lattice temperature, the nonequilibrium phonon rate to account for the hot phonon dynamics and simplified two-level rate equations to incorporate the carrier and photon dynamics in the active region. This technique simplifies the description of the electron-phonon interaction in QCLs far from the equilibrium condition. Using the presented model, the steady and transient responses of the QCLs for a wide range of sink temperatures (80 to 320 K) are investigated and analysed. The model enables us to explain the operating characteristics found in QCLs. This predictive model is expected to be applicable to all QCL material systems operating in pulsed and cw regimes.

  19. Analog quantum simulation of the Rabi model in the ultra-strong coupling regime.

    Science.gov (United States)

    Braumüller, Jochen; Marthaler, Michael; Schneider, Andre; Stehli, Alexander; Rotzinger, Hannes; Weides, Martin; Ustinov, Alexey V

    2017-10-03

    The quantum Rabi model describes the fundamental mechanism of light-matter interaction. It consists of a two-level atom or qubit coupled to a quantized harmonic mode via a transversal interaction. In the weak coupling regime, it reduces to the well-known Jaynes-Cummings model by applying a rotating wave approximation. The rotating wave approximation breaks down in the ultra-strong coupling regime, where the effective coupling strength g is comparable to the energy ω of the bosonic mode, and remarkable features in the system dynamics are revealed. Here we demonstrate an analog quantum simulation of an effective quantum Rabi model in the ultra-strong coupling regime, achieving a relative coupling ratio of g/ω ~ 0.6. The quantum hardware of the simulator is a superconducting circuit embedded in a cQED setup. We observe fast and periodic quantum state collapses and revivals of the initial qubit state, being the most distinct signature of the synthesized model.An analog quantum simulation scheme has been explored with a quantum hardware based on a superconducting circuit. Here the authors investigate the time evolution of the quantum Rabi model at ultra-strong coupling conditions, which is synthesized by slowing down the system dynamics in an effective frame.

  20. Classical Logic and Quantum Logic with Multiple and Common Lattice Models

    Directory of Open Access Journals (Sweden)

    Mladen Pavičić

    2016-01-01

    Full Text Available We consider a proper propositional quantum logic and show that it has multiple disjoint lattice models, only one of which is an orthomodular lattice (algebra underlying Hilbert (quantum space. We give an equivalent proof for the classical logic which turns out to have disjoint distributive and nondistributive ortholattices. In particular, we prove that both classical logic and quantum logic are sound and complete with respect to each of these lattices. We also show that there is one common nonorthomodular lattice that is a model of both quantum and classical logic. In technical terms, that enables us to run the same classical logic on both a digital (standard, two-subset, 0-1-bit computer and a nondigital (say, a six-subset computer (with appropriate chips and circuits. With quantum logic, the same six-element common lattice can serve us as a benchmark for an efficient evaluation of equations of bigger lattice models or theorems of the logic.

  1. Integration of optically active Neodymium ions in Niobium devices (Nd:Nb): quantum memory for hybrid quantum entangled systems

    Science.gov (United States)

    Nayfeh, O. M.; Chao, D.; Djapic, N.; Sims, P.; Liu, B.; Sharma, S.; Lerum, L.; Fahem, M.; Dinh, V.; Zlatanovic, S.; Lynn, B.; Torres, C.; Higa, B.; Moore, J.; Upchurch, A.; Cothern, J.; Tukeman, M.; Barua, R.; Davidson, B.; Ramirez, A. D.; Rees, C. D.; Anant, V.; Kanter, G. S.

    2017-08-01

    Optically active rare-earth Neodymium (Nd) ions are integrated in Niobium (Nb) thin films forming a new quantum memory device (Nd:Nb) targeting long-lived coherence times and multi-functionality enabled by both spin and photon storage properties. Nb is implanted with Nd spanning 10-60 keV energy and 1013-1014 cm-2 dose producing a 1- 3% Nd:Nb concentration as confirmed by energy-dispersive X-ray spectroscopy. Scanning confocal photoluminescence (PL) at 785 nm excitation are made and sharp emission peaks from the 4F3/2 -red shift and increased broadening to a 4.8 nm linewidth. Nd:Nb is photoconductive and responds strongly to applied fields. Furthermore, optically detected magnetic resonance (ODMR) measurements are presented spanning near-infrared telecom band. The modulation of the emission intensity with magnetic field and microwave power by integration of these magnetic Kramer type Nd ions is quantified along with spin echoes under pulsed microwave π-π/2 excitation. A hybrid system architecture is proposed using spin and photon quantum information storage with the nuclear and electron states of the Nd3+ and neighboring Nb atoms that can couple qubit states to hyperfine 7/2 spin states of Nd:Nb and onto NIR optical levels excitable with entangled single photons, thus enabling implementation of computing and networking/internet protocols in a single platform.

  2. Quantum Simulation of the Hubbard Model Using Ultra-Cold Atoms

    Science.gov (United States)

    2008-11-01

    Hubbard model. The SU(3) Hubbard model has been proposed as a model system for studying different phases of matter expected to occur in quantum...chromodynamics (QCD): the color superconducting phase and the formation of baryons . Our initial investigations have focused on understanding three-body...density quark matter described by quantum chromodynamics . We have been investigating the stability of the 3-state Fermi gas with respect to decay due

  3. An analog model for quantum lightcone fluctuations in nonlinear optics

    International Nuclear Information System (INIS)

    Ford, L.H.; De Lorenci, V.A.; Menezes, G.; Svaiter, N.F.

    2013-01-01

    We propose an analog model for quantum gravity effects using nonlinear dielectrics. Fluctuations of the spacetime lightcone are expected in quantum gravity, leading to variations in the flight times of pulses. This effect can also arise in a nonlinear material. We propose a model in which fluctuations of a background electric field, such as that produced by a squeezed photon state, can cause fluctuations in the effective lightcone for probe pulses. This leads to a variation in flight times analogous to that in quantum gravity. We make some numerical estimates which suggest that the effect might be large enough to be observable. - Highlights: ► Lightcone fluctuations, quantum fluctuations of the effective speed of light, are a feature of quantum gravity. ► Nonlinear dielectrics have a variable speed of light, analogous to the effects of gravity. ► Fluctuating electric fields create the effect of lightcone fluctuations in a nonlinear material. ► We propose to use squeezed light in a nonlinear material as an analog model of lightcone fluctuations. ► Variation in the speed of propagation of pulses is the observational signature of lightcone fluctuations.

  4. Evolution of quantum-like modeling in decision making processes

    Energy Technology Data Exchange (ETDEWEB)

    Khrennikova, Polina [School of Management, University of Leicester, University Road Leicester LE1 7RH (United Kingdom)

    2012-12-18

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schroedinger equation to describe the evolution of people's mental states. A shortcoming of Schroedinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  5. Completeness of classical spin models and universal quantum computation

    International Nuclear Information System (INIS)

    De las Cuevas, Gemma; Dür, Wolfgang; Briegel, Hans J; Van den Nest, Maarten

    2009-01-01

    We study mappings between different classical spin systems that leave the partition function invariant. As recently shown in Van den Nest et al (2008 Phys. Rev. Lett. 100 110501), the partition function of the 2D square lattice Ising model in the presence of an inhomogeneous magnetic field can specialize to the partition function of any Ising system on an arbitrary graph. In this sense the 2D Ising model is said to be 'complete'. However, in order to obtain the above result, the coupling strengths on the 2D lattice must assume complex values, and thus do not allow for a physical interpretation. Here we show how a complete model with real—and, hence, 'physical'—couplings can be obtained if the 3D Ising model is considered. We furthermore show how to map general q-state systems with possibly many-body interactions to the 2D Ising model with complex parameters, and give completeness results for these models with real parameters. We also demonstrate that the computational overhead in these constructions is in all relevant cases polynomial. These results are proved by invoking a recently found cross-connection between statistical mechanics and quantum information theory, where partition functions are expressed as quantum mechanical amplitudes. Within this framework, there exists a natural correspondence between many-body quantum states that allow for universal quantum computation via local measurements only, and complete classical spin systems

  6. Evolution of quantum-like modeling in decision making processes

    Science.gov (United States)

    Khrennikova, Polina

    2012-12-01

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  7. Evolution of quantum-like modeling in decision making processes

    International Nuclear Information System (INIS)

    Khrennikova, Polina

    2012-01-01

    The application of the mathematical formalism of quantum mechanics to model behavioral patterns in social science and economics is a novel and constantly emerging field. The aim of the so called 'quantum like' models is to model the decision making processes in a macroscopic setting, capturing the particular 'context' in which the decisions are taken. Several subsequent empirical findings proved that when making a decision people tend to violate the axioms of expected utility theory and Savage's Sure Thing principle, thus violating the law of total probability. A quantum probability formula was devised to describe more accurately the decision making processes. A next step in the development of QL-modeling in decision making was the application of Schrödinger equation to describe the evolution of people's mental states. A shortcoming of Schrödinger equation is its inability to capture dynamics of an open system; the brain of the decision maker can be regarded as such, actively interacting with the external environment. Recently the master equation, by which quantum physics describes the process of decoherence as the result of interaction of the mental state with the environmental 'bath', was introduced for modeling the human decision making. The external environment and memory can be referred to as a complex 'context' influencing the final decision outcomes. The master equation can be considered as a pioneering and promising apparatus for modeling the dynamics of decision making in different contexts.

  8. PARADIGMA, PRINSIP, DAN APLIKASI QUANTUM LEARNING DAN QUANTUM TEACHING DALAM PEMBELAJARAN

    Directory of Open Access Journals (Sweden)

    M Bisri Djalil

    2015-09-01

    Full Text Available ABSTRACT   Based on lecture experience in College there are many basic mistake about interpretion of knowledge, studying and lecturing concepts about lecturer, lecture list and students.This problem trigger on lecturing methods contradictions, academic athmosphere setting  and evaluating methods that done. This condition perhaps caused of influenced by Pavlov’s behaviorism with classical conditioning theory. Or caused of influenced by Thorndike’s  teori the law of effect, and operant conditioningfrom Skinner. In order to need consider other ways alike quantum learning & teaching methods. This method based on constructivism principle. In SuperChamp, first place that this methods elaborated,  constructed by integration both selfconfidence, studying skill and communication skill. This method have objective for change lecturing models in Indonesia and the last to upgrading learning result quality. Keywords: Quantum Learning, QuantumTeaching, Orkestrasi Proses Belajar

  9. Analog quantum simulation of generalized Dicke models in trapped ions

    Science.gov (United States)

    Aedo, Ibai; Lamata, Lucas

    2018-04-01

    We propose the analog quantum simulation of generalized Dicke models in trapped ions. By combining bicromatic laser interactions on multiple ions we can generate all regimes of light-matter coupling in these models, where here the light mode is mimicked by a motional mode. We present numerical simulations of the three-qubit Dicke model both in the weak field (WF) regime, where the Jaynes-Cummings behavior arises, and the ultrastrong coupling (USC) regime, where a rotating-wave approximation cannot be considered. We also simulate the two-qubit biased Dicke model in the WF and USC regimes and the two-qubit anisotropic Dicke model in the USC regime and the deep-strong coupling regime. The agreement between the mathematical models and the ion system convinces us that these quantum simulations can be implemented in the laboratory with current or near-future technology. This formalism establishes an avenue for the quantum simulation of many-spin Dicke models in trapped ions.

  10. Solution to the sign problem in a frustrated quantum impurity model

    Energy Technology Data Exchange (ETDEWEB)

    Hann, Connor T., E-mail: connor.hann@yale.edu [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Huffman, Emilie [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Chandrasekharan, Shailesh [Department of Physics, Box 90305, Duke University, Durham, NC 27708 (United States); Center for High Energy Physics, Indian Institute of Science, Bangalore, 560 012 (India)

    2017-01-15

    In this work we solve the sign problem of a frustrated quantum impurity model consisting of three quantum spin-half chains interacting through an anti-ferromagnetic Heisenberg interaction at one end. We first map the model into a repulsive Hubbard model of spin-half fermions hopping on three independent one dimensional chains that interact through a triangular hopping at one end. We then convert the fermion model into an inhomogeneous one dimensional model and express the partition function as a weighted sum over fermion worldline configurations. By imposing a pairing of fermion worldlines in half the space we show that all negative weight configurations can be eliminated. This pairing naturally leads to the original frustrated quantum spin model at half filling and thus solves its sign problem.

  11. Chaos in the Dicke model: quantum and semiclassical analysis

    International Nuclear Information System (INIS)

    Bastarrachea-Magnani, Miguel Angel; Hirsch, Jorge G; López-del-Carpio, Baldemar; Lerma-Hernández, Sergio

    2015-01-01

    The emergence of chaos in an atom-field system is studied employing both semiclassical and numerical quantum techniques, taking advantage of the algebraic character of the Hamiltonian. A semiclassical Hamiltonian is obtained by considering the expectation value of the quantum Hamiltonian in Glauber (for the field) and Bloch (for the atoms) coherent states. Regular and chaotic regions are identified by looking at the Poincaré sections for different energies and parameter values. An analytical expression for the semiclassical energy density of states is obtained by integrating the available phase space, which provides an exact unfolding to extract the fluctuations in the level statistics. Quantum chaos is recognized in these fluctuations, as a function of the coupling strength, for different regions in the energy spectrum, evaluating the Anderson–Darling (A–D) parameter, which distinguishes the Wigner- or Poisson-like distributions. Peres lattices play a role similar to the Poincaré section for quantum states. They are calculated employing efficient numerical solutions and are a powerful visual tool to identify individual states belonging to a regular or chaotic region, classified by utilizing the Poincaré sections and the A–D parameter. Finally, the quantum Husimi function for selected excited states is shown to have a noticeable similitude with the Poincaré sections at the same energy. (invited comment)

  12. Entropy in the classical and quantum polymer black hole models

    International Nuclear Information System (INIS)

    Livine, Etera R; Terno, Daniel R

    2012-01-01

    We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3D closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work (Bianchi 2011 Class. Quantum Grav. 28 114006) we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of ‘almost-closed polyhedra’. (paper)

  13. Quantum decay model with exact explicit analytical solution

    Science.gov (United States)

    Marchewka, Avi; Granot, Er'El

    2009-01-01

    A simple decay model is introduced. The model comprises a point potential well, which experiences an abrupt change. Due to the temporal variation, the initial quantum state can either escape from the well or stay localized as a new bound state. The model allows for an exact analytical solution while having the necessary features of a decay process. The results show that the decay is never exponential, as classical dynamics predicts. Moreover, at short times the decay has a fractional power law, which differs from perturbation quantum method predictions. At long times the decay includes oscillations with an envelope that decays algebraically. This is a model where the final state can be either continuous or localized, and that has an exact analytical solution.

  14. From quantum cosmology to quantum gravity

    International Nuclear Information System (INIS)

    Englert, F.

    1983-01-01

    A theory is proposed which solves the problem of the acausal character of the hot big bang cosmology in general relativity. The initial thermal state is stabilized by constructing a semi-classical solution to the coupled graviation and matter system with zero cosmological constant. This solution is an expanding deSitter in which black holes are created by a quantum process out of the expansion energy. It is argued that the initial nucleation process originates from a quantum metric fluctuation. Universe-like configurations must be added over the path integral metrics. This stabilizes the path integral and saturates it with a ''foam of universes'' where the nonrenormalizability of gravity can be seen as the manifestation of long range interactions within a universe. This description introduces indeterminacy into quantum field theory and suggests that 4-D space-time should be explained by new concepts

  15. Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school

    Directory of Open Access Journals (Sweden)

    Massimiliano Malgieri

    2017-01-01

    Full Text Available In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman’s sum over paths approach in the Italian high school. Our study focuses on students’ understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students’ mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n=14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii more research should be focused not only on the correctness of students’ mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.

  16. Coherent states and classical limit of algebraic quantum models

    International Nuclear Information System (INIS)

    Scutaru, H.

    1983-01-01

    The algebraic models for collective motion in nuclear physics belong to a class of theories the basic observables of which generate selfadjoint representations of finite dimensional, real Lie algebras, or of the enveloping algebras of these Lie algebras. The simplest and most used for illustrations model of this kind is the Lipkin model, which is associated with the Lie algebra of the three dimensional rotations group, and which presents all characteristic features of an algebraic model. The Lipkin Hamiltonian is the image, of an element of the enveloping algebra of the algebra SO under a representation. In order to understand the structure of the algebraic models the author remarks that in both classical and quantum mechanics the dynamics is associated to a typical algebraic structure which we shall call a dynamical algebra. In this paper he shows how the constructions can be made in the case of the algebraic quantum systems. The construction of the symplectic manifold M can be made in this case using a quantum analog of the momentum map which he defines

  17. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A. Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna (Italy) and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation); Manti, S. [Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2013-02-21

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  18. Classical and quantum Big Brake cosmology for scalar field and tachyonic models

    International Nuclear Information System (INIS)

    Kamenshchik, A. Yu.; Manti, S.

    2013-01-01

    We study a relation between the cosmological singularities in classical and quantum theory, comparing the classical and quantum dynamics in some models possessing the Big Brake singularity - the model based on a scalar field and two models based on a tachyon-pseudo-tachyon field . It is shown that the effect of quantum avoidance is absent for the soft singularities of the Big Brake type while it is present for the Big Bang and Big Crunch singularities. Thus, there is some kind of a classical - quantum correspondence, because soft singularities are traversable in classical cosmology, while the strong Big Bang and Big Crunch singularities are not traversable.

  19. Simplicity constraints: A 3D toy model for loop quantum gravity

    Science.gov (United States)

    Charles, Christoph

    2018-05-01

    In loop quantum gravity, tremendous progress has been made using the Ashtekar-Barbero variables. These variables, defined in a gauge fixing of the theory, correspond to a parametrization of the solutions of the so-called simplicity constraints. Their geometrical interpretation is however unsatisfactory as they do not constitute a space-time connection. It would be possible to resolve this point by using a full Lorentz connection or, equivalently, by using the self-dual Ashtekar variables. This leads however to simplicity constraints or reality conditions which are notoriously difficult to implement in the quantum theory. We explore in this paper the possibility of using completely degenerate actions to impose such constraints at the quantum level in the context of canonical quantization. To do so, we define a simpler model, in 3D, with similar constraints by extending the phase space to include an independent vielbein. We define the classical model and show that a precise quantum theory by gauge unfixing can be defined out of it, completely equivalent to the standard 3D Euclidean quantum gravity. We discuss possible future explorations around this model as it could help as a stepping stone to define full-fledged covariant loop quantum gravity.

  20. The Second Law of Thermodynamics in a Quantum Heat Engine Model

    International Nuclear Information System (INIS)

    Zhang Ting; Cai Lifeng; Chen Pingxing; Li Chengzu

    2006-01-01

    The second law of thermodynamics has been proven by many facts in classical world. Is there any new property of it in quantum world? In this paper, we calculate the change of entropy in T.D. Kieu's model for quantum heat engine (QHE) and prove the broad validity of the second law of thermodynamics. It is shown that the entropy of the quantum heat engine neither decreases in a whole cycle, nor decreases in either stage of the cycle. The second law of thermodynamics still holds in this QHE model. Moreover, although the modified quantum heat engine is capable of extracting more work, its efficiency does not improve at all. It is neither beyond the efficiency of T.D. Kieu's initial model, nor greater than the reversible Carnot efficiency.

  1. A note on the roles of quantum and mechanical models in social biophysics.

    Science.gov (United States)

    Takahashi, Taiki; Kim, Song-Ju; Naruse, Makoto

    2017-11-01

    Recent advances in the applications of quantum models into various disciplines such as cognitive science, social sciences, economics, and biology witnessed enormous achievements and possible future progress. In this paper, we propose one of the most promising directions in the applications of quantum models: the combination of quantum and mechanical models in social biophysics. The possible resulting discipline may be called as experimental quantum social biophysics and could foster our understandings of the relationships between the society and individuals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Quantum dots for quantum information technologies

    CERN Document Server

    2017-01-01

    This book highlights the most recent developments in quantum dot spin physics and the generation of deterministic superior non-classical light states with quantum dots. In particular, it addresses single quantum dot spin manipulation, spin-photon entanglement and the generation of single-photon and entangled photon pair states with nearly ideal properties. The role of semiconductor microcavities, nanophotonic interfaces as well as quantum photonic integrated circuits is emphasized. The latest theoretical and experimental studies of phonon-dressed light matter interaction, single-dot lasing and resonance fluorescence in QD cavity systems are also provided. The book is written by the leading experts in the field.

  3. Quantum phase transition of light in the Rabi–Hubbard model

    International Nuclear Information System (INIS)

    Schiró, M; Bordyuh, M; Öztop, B; Türeci, H E

    2013-01-01

    We discuss the physics of the Rabi–Hubbard model describing large arrays of coupled cavities interacting with two level atoms via a Rabi nonlinearity. We show that the inclusion of counter-rotating terms in the light–matter interaction, often neglected in theoretical descriptions based on Jaynes–Cumming models, is crucial to stabilize finite-density quantum phases of correlated photons with no need for an artificially engineered chemical potential. We show that the physical properties of these phases and the quantum phase transition occurring between them is remarkably different from those of interacting bosonic massive quantum particles. The competition between photon delocalization and Rabi nonlinearity drives the system across a novel Z 2 parity symmetry-breaking quantum phase transition between two gapped phases, a Rabi insulator and a delocalized super-radiant phase. (paper)

  4. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  5. Supersymmetric quantum mechanics on n-dimensional manifolds

    International Nuclear Information System (INIS)

    O'Connor, M.

    1990-01-01

    In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics

  6. Self-organized quantum rings : Physical characterization and theoretical modeling

    NARCIS (Netherlands)

    Fomin, V.M.; Gladilin, V.N.; Devreese, J.T.; Koenraad, P.M.; Fomin, V.M.

    2014-01-01

    An adequate modeling of the self-organized quantum rings is possible only on the basis of the modern characterization of those nanostructures.We discuss an atomic-scale analysis of the indium distribution of self-organized InGaAs quantum rings (QRs). The analysis of the shape, size and composition

  7. Quantum Theory for the Binomial Model in Finance Thoery

    OpenAIRE

    Chen, Zeqian

    2001-01-01

    In this paper, a quantum model for the binomial market in finance is proposed. We show that its risk-neutral world exhibits an intriguing structure as a disk in the unit ball of ${\\bf R}^3,$ whose radius is a function of the risk-free interest rate with two thresholds which prevent arbitrage opportunities from this quantum market. Furthermore, from the quantum mechanical point of view we re-deduce the Cox-Ross-Rubinstein binomial option pricing formula by considering Maxwell-Boltzmann statist...

  8. Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor

    International Nuclear Information System (INIS)

    Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.; Schaefer, H.F. III

    1987-01-01

    For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. The usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation

  9. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics

    Science.gov (United States)

    Catani, Lorenzo; E Browne, Dan

    2017-07-01

    Spekkens’ toy model is a non-contextual hidden variable model with an epistemic restriction, a constraint on what an observer can know about reality. The aim of the model, developed for continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. Many aspects of quantum mechanics and protocols from quantum information can be reproduced in the model. In spite of its significance, a number of aspects of Spekkens’ model remained incomplete. Formal rules for the update of states after measurement had not been written down, and the theory had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we remedy this, by deriving measurement update rules and extending the framework to derive models in all dimensions, both prime and non-prime. Stabiliser quantum mechanics (SQM) is a sub-theory of quantum mechanics with restricted states, transformations and measurements. First derived for the purpose of constructing error correcting codes, it now plays a role in many areas of quantum information theory. Previously, it had been shown that Spekkens’ model was operationally equivalent to SQM in the case of odd prime dimensions. Here, exploiting known results on Wigner functions, we extend this to show that Spekkens’ model is equivalent to SQM in all odd dimensions, prime and non-prime. This equivalence provides new technical tools for the study of technically difficult compound-dimensional SQM.

  10. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics

    International Nuclear Information System (INIS)

    Catani, Lorenzo; Browne, Dan E

    2017-01-01

    Spekkens’ toy model is a non-contextual hidden variable model with an epistemic restriction, a constraint on what an observer can know about reality. The aim of the model, developed for continuous and discrete prime degrees of freedom, is to advocate the epistemic view of quantum theory, where quantum states are states of incomplete knowledge about a deeper underlying reality. Many aspects of quantum mechanics and protocols from quantum information can be reproduced in the model. In spite of its significance, a number of aspects of Spekkens’ model remained incomplete. Formal rules for the update of states after measurement had not been written down, and the theory had only been constructed for prime-dimensional and infinite dimensional systems. In this work, we remedy this, by deriving measurement update rules and extending the framework to derive models in all dimensions, both prime and non-prime. Stabiliser quantum mechanics (SQM) is a sub-theory of quantum mechanics with restricted states, transformations and measurements. First derived for the purpose of constructing error correcting codes, it now plays a role in many areas of quantum information theory. Previously, it had been shown that Spekkens’ model was operationally equivalent to SQM in the case of odd prime dimensions. Here, exploiting known results on Wigner functions, we extend this to show that Spekkens’ model is equivalent to SQM in all odd dimensions, prime and non-prime. This equivalence provides new technical tools for the study of technically difficult compound-dimensional SQM. (paper)

  11. A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers

    Science.gov (United States)

    Raffaelli, Francesco; Ferranti, Giacomo; Mahler, Dylan H.; Sibson, Philip; Kennard, Jake E.; Santamato, Alberto; Sinclair, Gary; Bonneau, Damien; Thompson, Mark G.; Matthews, Jonathan C. F.

    2018-04-01

    Optical homodyne detection has found use as a characterisation tool in a range of quantum technologies. So far implementations have been limited to bulk optics. Here we present the optical integration of a homodyne detector onto a silicon photonics chip. The resulting device operates at high speed, up 150 MHz, it is compact and it operates with low noise, quantified with 11 dB clearance between shot noise and electronic noise. We perform on-chip quantum tomography of coherent states with the detector and show that it meets the requirements for characterising more general quantum states of light. We also show that the detector is able to produce quantum random numbers at a rate of 1.2 Gbps, by measuring the vacuum state of the electromagnetic field and applying off-line post processing. The produced random numbers pass all the statistical tests provided by the NIST test suite.

  12. Quantum games as quantum types

    Science.gov (United States)

    Delbecque, Yannick

    In this thesis, we present a new model for higher-order quantum programming languages. The proposed model is an adaptation of the probabilistic game semantics developed by Danos and Harmer [DH02]: we expand it with quantum strategies which enable one to represent quantum states and quantum operations. Some of the basic properties of these strategies are established and then used to construct denotational semantics for three quantum programming languages. The first of these languages is a formalisation of the measurement calculus proposed by Danos et al. [DKP07]. The other two are new: they are higher-order quantum programming languages. Previous attempts to define a denotational semantics for higher-order quantum programming languages have failed. We identify some of the key reasons for this and base the design of our higher-order languages on these observations. The game semantics proposed in this thesis is the first denotational semantics for a lambda-calculus equipped with quantum types and with extra operations which allow one to program quantum algorithms. The results presented validate the two different approaches used in the design of these two new higher-order languages: a first one where quantum states are used through references and a second one where they are introduced as constants in the language. The quantum strategies presented in this thesis allow one to understand the constraints that must be imposed on quantum type systems with higher-order types. The most significant constraint is the fact that abstraction over part of the tensor product of many unknown quantum states must not be allowed. Quantum strategies are a new mathematical model which describes the interaction between classical and quantum data using system-environment dialogues. The interactions between the different parts of a quantum system are described using the rich structure generated by composition of strategies. This approach has enough generality to be put in relation with other

  13. Design and test of component circuits of an integrated quantum voltage noise source for Johnson noise thermometry

    Science.gov (United States)

    Yamada, Takahiro; Maezawa, Masaaki; Urano, Chiharu

    2015-11-01

    We present design and testing of a pseudo-random number generator (PRNG) and a variable pulse number multiplier (VPNM) which are digital circuit subsystems in an integrated quantum voltage noise source for Jonson noise thermometry. Well-defined, calculable pseudo-random patterns of single flux quantum pulses are synthesized with the PRNG and multiplied digitally with the VPNM. The circuit implementation on rapid single flux quantum technology required practical circuit scales and bias currents, 279 junctions and 33 mA for the PRNG, and 1677 junctions and 218 mA for the VPNM. We confirmed the circuit operation with sufficiently wide margins, 80-120%, with respect to the designed bias currents.

  14. The Bianchi IX model in loop quantum cosmology

    International Nuclear Information System (INIS)

    Bojowald, Martin; Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The Bianchi IX model has been used often to investigate the structure close to singularities of general relativity. Its classical chaos is expected to have, via the BKL scenario, implications even for the approach to general inhomogeneous singularities. Thus, it is a popular model to test consequences of modifications to general relativity suggested by quantum theories of gravity. This paper presents a detailed proof that modifications coming from loop quantum gravity lead to a non-chaotic effective behaviour. The way this is realized, independently of quantization ambiguities, suggests a new look at initial and final singularities

  15. Monolithic integration of a resonant tunneling diode and a quantum well semiconductor laser

    Science.gov (United States)

    Grave, I.; Kan, S. C.; Griffel, G.; Wu, S. W.; Sa'Ar, A.

    1991-01-01

    A monolithic integration of a double barrier AlAs/GaAs resonant tunneling diode and a GaAs/AlGaAs quantum well laser is reported. Negative differential resistance and negative differential optical response are observed at room temperature. The device displays bistable electrical and optical characteristics which are voltage controlled. Operation as a two-state optical memory is demonstrated.

  16. Quantum coherence in the time-resolved Auger measurement

    Energy Technology Data Exchange (ETDEWEB)

    Smirnova, Olga; Yakovlev, Vladislav S; Scrinzi, Armin

    2003-12-19

    We present a quantum mechanical model of the attosecond-XUV (extreme ultraviolet) pump and laser probe measurement of an Auger decay [Drescher et al., Nature (London) 419, 803 (2002)10.1038/nature01143] and investigate effects of quantum coherence. The time-dependent Schroedinger equation is solved by numerical integration and in analytic form. We explain the transition from a quasiclassical energy shift of the spectrum to the formation of sidebands and the enhancement of high- and low-energy tails of the Auger spectrum due to quantum coherence between photoionization and Auger decay.

  17. Quantum Computation and Quantum Spin Dynamics

    NARCIS (Netherlands)

    Raedt, Hans De; Michielsen, Kristel; Hams, Anthony; Miyashita, Seiji; Saito, Keiji

    2001-01-01

    We analyze the stability of quantum computations on physically realizable quantum computers by simulating quantum spin models representing quantum computer hardware. Examples of logically identical implementations of the controlled-NOT operation are used to demonstrate that the results of a quantum

  18. Causality and matter propagation in 3D spin foam quantum gravity

    International Nuclear Information System (INIS)

    Oriti, Daniele; Tlas, Tamer

    2006-01-01

    In this paper we tackle the issue of causality in quantum gravity, in the context of 3d spin foam models. We identify the correct procedure for implementing the causality/orientation dependence restriction that reduces the path integral for BF theory to that of quantum gravity in first order form. We construct explicitly the resulting causal spin foam model. We then add matter degrees of freedom to it and construct a causal spin foam model for 3d quantum gravity coupled to matter fields. Finally, we show that the corresponding spin foam amplitudes admit a natural approximation as the Feynman amplitudes of a noncommutative quantum field theory, with the appropriate Feynman propagators weighting the lines of propagation, and that this effective field theory reduces to the usual quantum field theory in flat space in the no-gravity limit

  19. Nonlinear unitary quantum collapse model with self-generated noise

    Science.gov (United States)

    Geszti, Tamás

    2018-04-01

    Collapse models including some external noise of unknown origin are routinely used to describe phenomena on the quantum-classical border; in particular, quantum measurement. Although containing nonlinear dynamics and thereby exposed to the possibility of superluminal signaling in individual events, such models are widely accepted on the basis of fully reproducing the non-signaling statistical predictions of quantum mechanics. Here we present a deterministic nonlinear model without any external noise, in which randomness—instead of being universally present—emerges in the measurement process, from deterministic irregular dynamics of the detectors. The treatment is based on a minimally nonlinear von Neumann equation for a Stern–Gerlach or Bell-type measuring setup, containing coordinate and momentum operators in a self-adjoint skew-symmetric, split scalar product structure over the configuration space. The microscopic states of the detectors act as a nonlocal set of hidden parameters, controlling individual outcomes. The model is shown to display pumping of weights between setup-defined basis states, with a single winner randomly selected and the rest collapsing to zero. Environmental decoherence has no role in the scenario. Through stochastic modelling, based on Pearle’s ‘gambler’s ruin’ scheme, outcome probabilities are shown to obey Born’s rule under a no-drift or ‘fair-game’ condition. This fully reproduces quantum statistical predictions, implying that the proposed non-linear deterministic model satisfies the non-signaling requirement. Our treatment is still vulnerable to hidden signaling in individual events, which remains to be handled by future research.

  20. Proceedings of the conference on frontiers of Quantum Monte Carlo

    International Nuclear Information System (INIS)

    Gubernatis, J.E.

    1986-01-01

    This journal of conference proceedings includes papers on topics such as: computers and science; Quantum Monte Carlo; condensed matter physics (with papers including the statistical error of Green's Function Monte Carlo, a study of Trotter-like approximations, simulations of the Hubbard model, and stochastic simulation of fermions); chemistry (including papers on quantum simulations of aqueous systems, fourier path integral methods, and a study of electron solvation in polar solvents using path integral calculations); atomic molecular and nuclear physics; high-energy physics, and advanced computer designs

  1. Beyond the Standard Model with noncommutative geometry, strolling towards quantum gravity

    International Nuclear Information System (INIS)

    Martinetti, Pierre

    2015-01-01

    Noncommutative geometry in its many incarnations appears at the crossroad of many researches in theoretical and mathematical physics: from models of quantum spacetime(with or without breaking of Lorentz symmetry) to loop gravity and string theory, from early considerations on UV-divergenciesin quantum field theory to recent models of gauge theories on noncommutatives pacetime, from Connes description of the standard model of elementary particles to recent Pati-Salam like extensions. We list several of these applications, emphasizing also the original point of view brought by noncommutative geometry on the nature of time. This text serves as an introduction to the volume of proceedings of the parallel session “Noncommutative geometry and quantum gravity”, as a part of the conference “Conceptual and technical challenges in quantum gravity” organized at the University of Rome La Sapienza sin September 2014. (paper)

  2. Impedance model for quantum-mechanical barrier problems

    International Nuclear Information System (INIS)

    Nelin, Evgenii A

    2007-01-01

    Application of the impedance model to typical quantum-mechanical barrier problems, including those for structures with resonant electron tunneling, is discussed. The efficiency of the approach is illustrated. The physical transparency and compactness of the model and its potential as a teaching and learning tool are discussed. (methodological notes)

  3. PENGARUH MODEL PEMBELAJARAN QUANTUM TEACHING BERBANTUAN MODUL QT-BILINGUAL TERHADAP HASIL BELAJAR SISWA

    Directory of Open Access Journals (Sweden)

    Husna Amalana

    2015-11-01

    Full Text Available Quantum teaching learning model supported by QT(Quantum Teaching-bilingual module emphasize optimization all multiple intelligences and learning style of students in learning activities with TANDUR frame. This research aimed to find out the effect of quantum teaching learning model supported by QT-bilingual module to the achievement of X grade students of SMA in Kedungwuni, how much the effect magnitude, and how student response. This research uses true experimental design with X.1 and X.8 classes as reasearch samples which determined by cluster random sampling technique. Data were collected through documentation, test, observation and questionnaire method. The results of hypothesis test analysis showed correlation and determination coefficient are 0.54 and 29.16%. The results of questionnaire stated that the students’ response is very good to quantum teaching learning model assisted by QT-bilingual module. Based on the analysis, it can be concluded that quantum teaching learning model assisted by QT-bilingual module effects on student learning outcomes by achieving the medium level of effect with contribution is 29.16%. Students’ response is very good actually to quantum teaching learning model supported by QT-bilingual module.Keywords: Quantum Teaching, QT-Bilingual Module 

  4. Surface state decoherence in loop quantum gravity, a first toy model

    International Nuclear Information System (INIS)

    Feller, Alexandre; Livine, Etera R

    2017-01-01

    The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers. (paper)

  5. Quantum symmetry in quantum theory

    International Nuclear Information System (INIS)

    Schomerus, V.

    1993-02-01

    Symmetry concepts have always been of great importance for physical problems like explicit calculations, classification or model building. More recently, new 'quantum symmetries' ((quasi) quantum groups) attracted much interest in quantum theory. It is shown that all these quantum symmetries permit a conventional formulation as symmetry in quantum mechanics. Symmetry transformations can act on the Hilbert space H of physical states such that the ground state is invariant and field operators transform covariantly. Models show that one must allow for 'truncation' in the tensor product of representations of a quantum symmetry. This means that the dimension of the tensor product of two representations of dimension σ 1 and σ 2 may be strictly smaller than σ 1 σ 2 . Consistency of the transformation law of field operators local braid relations leads us to expect, that (weak) quasi quantum groups are the most general symmetries in local quantum theory. The elements of the R-matrix which appears in these local braid relations turn out to be operators on H in general. It will be explained in detail how examples of field algebras with weak quasi quantum group symmetry can be obtained. Given a set of observable field with a finite number of superselection sectors, a quantum symmetry together with a complete set of covariant field operators which obey local braid relations are constructed. A covariant transformation law for adjoint fields is not automatic but will follow when the existence of an appropriate antipode is assumed. At the example of the chiral critical Ising model, non-uniqueness of the quantum symmetry will be demonstrated. Generalized quantum symmetries yield examples of gauge symmetries in non-commutative geometry. Quasi-quantum planes are introduced as the simplest examples of quasi-associative differential geometry. (Weak) quasi quantum groups can act on them by generalized derivations much as quantum groups do in non-commutative (differential-) geometry

  6. Quantum chromodynamics, chiral symmetry and bag models

    International Nuclear Information System (INIS)

    Soyeur, M.

    1983-08-01

    This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models

  7. A 'general boundary' formulation for quantum mechanics and quantum gravity

    International Nuclear Information System (INIS)

    Oeckl, Robert

    2003-01-01

    I propose to formalize quantum theories as topological quantum field theories in a generalized sense, associating state spaces with boundaries of arbitrary (and possibly finite) regions of space-time. I further propose to obtain such 'general boundary' quantum theories through a generalized path integral quantization. I show how both, non-relativistic quantum mechanics and quantum field theory can be given a 'general boundary' formulation. Surprisingly, even in the non-relativistic case, features normally associated with quantum field theory emerge from consistency conditions. This includes states with arbitrary particle number and pair creation. I also note how three-dimensional quantum gravity is an example for a realization of both proposals and suggest to apply them to four-dimensional quantum gravity

  8. The density of states for the Bi-dimensional Anderson model in the presence of a magnetic field with quantum plaque flux

    International Nuclear Information System (INIS)

    Kuehl, N.M.

    1987-01-01

    The regularity properties of the integrated density of states and the state density of the Anderson bidimensional tight-binding model, in the presence of a uniform magnetic field, perpendicular to the plane of the system by means of quantum flux with plaques, are studied. (A.C.A.S.) [pt

  9. Generalized Jaynes-Cummings model as a quantum search algorithm

    International Nuclear Information System (INIS)

    Romanelli, A.

    2009-01-01

    We propose a continuous time quantum search algorithm using a generalization of the Jaynes-Cummings model. In this model the states of the atom are the elements among which the algorithm realizes the search, exciting resonances between the initial and the searched states. This algorithm behaves like Grover's algorithm; the optimal search time is proportional to the square root of the size of the search set and the probability to find the searched state oscillates periodically in time. In this frame, it is possible to reinterpret the usual Jaynes-Cummings model as a trivial case of the quantum search algorithm.

  10. Model integration and a theory of models

    OpenAIRE

    Dolk, Daniel R.; Kottemann, Jeffrey E.

    1993-01-01

    Model integration extends the scope of model management to include the dimension of manipulation as well. This invariably leads to comparisons with database theory. Model integration is viewed from four perspectives: Organizational, definitional, procedural, and implementational. Strategic modeling is discussed as the organizational motivation for model integration. Schema and process integration are examined as the logical and manipulation counterparts of model integr...

  11. Quantum probability for probabilists

    CERN Document Server

    Meyer, Paul-André

    1993-01-01

    In recent years, the classical theory of stochastic integration and stochastic differential equations has been extended to a non-commutative set-up to develop models for quantum noises. The author, a specialist of classical stochastic calculus and martingale theory, tries to provide anintroduction to this rapidly expanding field in a way which should be accessible to probabilists familiar with the Ito integral. It can also, on the other hand, provide a means of access to the methods of stochastic calculus for physicists familiar with Fock space analysis.

  12. Universal quantum computation by scattering in the Fermi–Hubbard model

    International Nuclear Information System (INIS)

    Bao, Ning; Hayden, Patrick; Salton, Grant; Thomas, Nathaniel

    2015-01-01

    The Hubbard model may be the simplest model of particles interacting on a lattice, but simulation of its dynamics remains beyond the reach of current numerical methods. In this article, we show that general quantum computations can be encoded into the physics of wave packets propagating through a planar graph, with scattering interactions governed by the fermionic Hubbard model. Therefore, simulating the model on planar graphs is as hard as simulating quantum computation. We give two different arguments, demonstrating that the simulation is difficult both for wave packets prepared as excitations of the fermionic vacuum, and for hole wave packets at filling fraction one-half in the limit of strong coupling. In the latter case, which is described by the t-J model, there is only reflection and no transmission in the scattering events, as would be the case for classical hard spheres. In that sense, the construction provides a quantum mechanical analog of the Fredkin–Toffoli billiard ball computer. (paper)

  13. From Quantum Mechanics to Quantum Field Theory: The Hopf route

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A I [Physics and Astronomy Department, Open University, Milton Keynes MK7 6AA (United Kingdom); Duchamp, G H E [Institut Galilee, LIPN, CNRS UMR 7030 99 Av. J.-B. Clement, F-93430 Villetaneuse (France); Blasiak, P; Horzela, A [H. Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Division of Theoretical Physics, ul. Eliasza-Radzikowskiego 152, PL 31-342 Krakow (Poland); Penson, K A, E-mail: a.i.solomon@open.ac.uk, E-mail: gduchamp2@free.fr, E-mail: pawel.blasiak@ifj.edu.pl, E-mail: andrzej.horzela@ifj.edu.pl, E-mail: penson@lptl.jussieu.fr [Lab.de Phys.Theor. de la Matiere Condensee, University of Paris VI (France)

    2011-03-01

    We show that the combinatorial numbers known as Bell numbers are generic in quantum physics. This is because they arise in the procedure known as Normal ordering of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, inter alia. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the exponential generating function of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function. We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function. Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems.

  14. Multiple-event probability in general-relativistic quantum mechanics. II. A discrete model

    International Nuclear Information System (INIS)

    Mondragon, Mauricio; Perez, Alejandro; Rovelli, Carlo

    2007-01-01

    We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper [Phys. Rev. D 75, 084033 (2007)]. We consider a version of the model with unitary time evolution and a version without unitary time evolution

  15. Computational comparison of quantum-mechanical models for multistep direct reactions

    International Nuclear Information System (INIS)

    Koning, A.J.; Akkermans, J.M.

    1993-01-01

    We have carried out a computational comparison of all existing quantum-mechanical models for multistep direct (MSD) reactions. The various MSD models, including the so-called Feshbach-Kerman-Koonin, Tamura-Udagawa-Lenske and Nishioka-Yoshida-Weidenmueller models, have been implemented in a single computer system. All model calculations thus use the same set of parameters and the same numerical techniques; only one adjustable parameter is employed. The computational results have been compared with experimental energy spectra and angular distributions for several nuclear reactions, namely, 90 Zr(p,p') at 80 MeV, 209 Bi(p,p') at 62 MeV, and 93 Nb(n,n') at 25.7 MeV. In addition, the results have been compared with the Kalbach systematics and with semiclassical exciton model calculations. All quantum MSD models provide a good fit to the experimental data. In addition, they reproduce the systematics very well and are clearly better than semiclassical model calculations. We furthermore show that the calculated predictions do not differ very strongly between the various quantum MSD models, leading to the conclusion that the simplest MSD model (the Feshbach-Kerman-Koonin model) is adequate for the analysis of experimental data

  16. A holographic model for the fractional quantum Hall effect

    Energy Technology Data Exchange (ETDEWEB)

    Lippert, Matthew [Institute for Theoretical Physics, University of Amsterdam,Science Park 904, 1090GL Amsterdam (Netherlands); Meyer, René [Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo,Kashiwa, Chiba 277-8568 (Japan); Taliotis, Anastasios [Theoretische Natuurkunde, Vrije Universiteit Brussel andThe International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-01-08

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ{sub 0}(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an SL(2,ℤ)-invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the SL(2,ℤ) action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  17. A holographic model for the fractional quantum Hall effect

    Science.gov (United States)

    Lippert, Matthew; Meyer, René; Taliotis, Anastasios

    2015-01-01

    Experimental data for fractional quantum Hall systems can to a large extent be explained by assuming the existence of a Γ0(2) modular symmetry group commuting with the renormalization group flow and hence mapping different phases of two-dimensional electron gases into each other. Based on this insight, we construct a phenomenological holographic model which captures many features of the fractional quantum Hall effect. Using an -invariant Einstein-Maxwell-axio-dilaton theory capturing the important modular transformation properties of quantum Hall physics, we find dyonic diatonic black hole solutions which are gapped and have a Hall conductivity equal to the filling fraction, as expected for quantum Hall states. We also provide several technical results on the general behavior of the gauge field fluctuations around these dyonic dilatonic black hole solutions: we specify a sufficient criterion for IR normalizability of the fluctuations, demonstrate the preservation of the gap under the action, and prove that the singularity of the fluctuation problem in the presence of a magnetic field is an accessory singularity. We finish with a preliminary investigation of the possible IR scaling solutions of our model and some speculations on how they could be important for the observed universality of quantum Hall transitions.

  18. Holomorphic anomaly and quantum mechanics

    Science.gov (United States)

    Codesido, Santiago; Mariño, Marcos

    2018-02-01

    We show that the all-orders WKB periods of one-dimensional quantum mechanical oscillators are governed by the refined holomorphic anomaly equations of topological string theory. We analyze in detail the double-well potential and the cubic and quartic oscillators, and we calculate the WKB expansion of their quantum free energies by using the direct integration of the anomaly equations. We reproduce in this way all known results about the quantum periods of these models, which we express in terms of modular forms on the WKB curve. As an application of our results, we study the large order behavior of the WKB expansion in the case of the double well, which displays the double factorial growth typical of string theory.

  19. Quantum reality filters

    International Nuclear Information System (INIS)

    Gudder, Stan

    2010-01-01

    An anhomomorphic logic A* is the set of all possible realities for a quantum system. Our main goal is to find the 'actual reality' Φ a element of A* for the system. Reality filters are employed to eliminate unwanted potential realities until only φ a remains. In this paper, we consider three reality filters that are constructed by means of quantum integrals. A quantum measure μ can generate or actualize a Φ element of A* if μ(A) is a quantum integral with respect to φ for a density function f over events A. In this sense, μ is an 'average' of the truth values of φ with weights given by f. We mainly discuss relations between these filters and their existence and uniqueness properties. For example, we show that a quadratic reality generated by a quantum measure is unique. In this case we obtain the unique actual quadratic reality.

  20. Evaluation of quantum mechanics path integrals by the approximations exact on a class of polynomial functionals

    International Nuclear Information System (INIS)

    Lobanov, Yu.Yu.; Shidkov, E.P.

    1987-01-01

    The method for numerical evaluation of path integrals in Eucledean quantum mechanics without lattice discretization is elaborated. The method is based on the representation of these integrals in the form of functional integrals with respect to the conditional Wiener measure and on the use of the derived approximate exact on a class of polynomial functionals of a given degree. By the computations of non-perturbative characteristics, concerned the topological structure of vacuum, the advantages of this method versus lattice Monte-Carlo calculations are demonstrated

  1. On quantum approach to modeling of plasmon photovoltaic effect

    DEFF Research Database (Denmark)

    Kluczyk, Katarzyna; David, Christin; Jacak, Witold Aleksander

    2017-01-01

    Surface plasmons in metallic nanostructures including metallically nanomodified solar cells are conventionally studied and modeled by application of the Mie approach to plasmons or by the finite element solution of differential Maxwell equations with imposed boundary and material constraints (e...... to the semiconductor solar cell mediated by surface plasmons in metallic nanoparticles deposited on the top of the battery. In addition, short-ranged electron-electron interaction in metals is discussed in the framework of the semiclassical hydrodynamic model. The significance of the related quantum corrections......-aided photovoltaic phenomena. Quantum corrections considerably improve both the Mie and COMSOL approaches in this case. We present the semiclassical random phase approximation description of plasmons in metallic nanoparticles and apply the quantumFermi golden rule scheme to assess the sunlight energy transfer...

  2. The quantum mechanics of the supersymmetric nonlinear sigma-model

    International Nuclear Information System (INIS)

    Davis, A.C.; Macfarlane, A.J.; Popat, P.C.; Holten, J.W. van

    1984-01-01

    The classical and quantum mechanical formalisms of the models are developed. The quantisation is done in such a way that the quantum theory can be represented explicitly in as simple a form as possible, and the problem of ordering of operators is resolved so as to maintain the supersymmetry algebra of the classical theory. (author)

  3. Fragments of reminiscences and exactly solvable nonrelativistic quantum models

    International Nuclear Information System (INIS)

    Zakhariev, B.N.

    1994-01-01

    Some exactly solvable nonrelativistic quantum models are discussed. Special attention is paid to the quantum inverse problem. It is pointed out that by analyzing the inverse problem pictures one can get a deeper insight into the laws of the microworld and acquire the ability to make the qualitative predictions without computers and formulae. 5 refs

  4. Risky forward interest rates and swaptions: Quantum finance model and empirical results

    Science.gov (United States)

    Baaquie, Belal Ehsan; Yu, Miao; Bhanap, Jitendra

    2018-02-01

    Risk free forward interest rates (Diebold and Li, 2006 [1]; Jamshidian, 1991 [2 ]) - and their realization by US Treasury bonds as the leading exemplar - have been studied extensively. In Baaquie (2010), models of risk free bonds and their forward interest rates based on the quantum field theoretic formulation of the risk free forward interest rates have been discussed, including the empirical evidence supporting these models. The quantum finance formulation of risk free forward interest rates is extended to the case of risky forward interest rates. The examples of the Singapore and Malaysian forward interest rates are used as specific cases. The main feature of the quantum finance model is that the risky forward interest rates are modeled both a) as a stand-alone case as well as b) being driven by the US forward interest rates plus a spread - having its own term structure -above the US forward interest rates. Both the US forward interest rates and the term structure for the spread are modeled by a two dimensional Euclidean quantum field. As a precursor to the evaluation of put option of the Singapore coupon bond, the quantum finance model for swaptions is tested using empirical study of swaptions for the US Dollar -showing that the model is quite accurate. A prediction for the market price of the put option for the Singapore coupon bonds is obtained. The quantum finance model is generalized to study the Malaysian case and the Malaysian forward interest rates are shown to have anomalies absent for the US and Singapore case. The model's prediction for a Malaysian interest rate swap is obtained.

  5. From Monte Carlo to Quantum Computation

    OpenAIRE

    Heinrich, Stefan

    2001-01-01

    Quantum computing was so far mainly concerned with discrete problems. Recently, E. Novak and the author studied quantum algorithms for high dimensional integration and dealt with the question, which advantages quantum computing can bring over classical deterministic or randomized methods for this type of problem. In this paper we give a short introduction to the basic ideas of quantum computing and survey recent results on high dimensional integration. We discuss connections to the Monte Carl...

  6. Quantum Mechanics/Molecular Mechanics Method Combined with Hybrid All-Atom and Coarse-Grained Model: Theory and Application on Redox Potential Calculations.

    Science.gov (United States)

    Shen, Lin; Yang, Weitao

    2016-04-12

    We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer.

  7. Analysis of transient electromagnetic interactions on nanodevices using a quantum corrected integral equation approach

    KAUST Repository

    Uysal, Ismail Enes

    2015-10-26

    Analysis of electromagnetic interactions on nanodevices can oftentimes be carried out accurately using “traditional” electromagnetic solvers. However, if a gap of sub-nanometer scale exists between any two surfaces of the device, quantum-mechanical effects including tunneling should be taken into account for an accurate characterization of the device\\'s response. Since the first-principle quantum simulators can not be used efficiently to fully characterize a typical-size nanodevice, a quantum corrected electromagnetic model has been proposed as an efficient and accurate alternative (R. Esteban et al., Nat. Commun., 3(825), 2012). The quantum correction is achieved through an effective layered medium introduced into the gap between the surfaces. The dielectric constant of each layer is obtained using a first-principle quantum characterization of the gap with a different dimension.

  8. Workshop on quantum stochastic differential equations for the quantum simulation of physical systems

    Science.gov (United States)

    2016-09-22

    that would be complimentary to the efforts at ARL. One the other hand, topological quantum field theories have a dual application to topological...Witten provided a path-integral definition of the Jones polynomial using a three-dimensional Chern-Simons quantum field theory (QFT) based on a non...topology, quantum field theory , quantum stochastic differential equations, quantum computing REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT

  9. A probability space for quantum models

    Science.gov (United States)

    Lemmens, L. F.

    2017-06-01

    A probability space contains a set of outcomes, a collection of events formed by subsets of the set of outcomes and probabilities defined for all events. A reformulation in terms of propositions allows to use the maximum entropy method to assign the probabilities taking some constraints into account. The construction of a probability space for quantum models is determined by the choice of propositions, choosing the constraints and making the probability assignment by the maximum entropy method. This approach shows, how typical quantum distributions such as Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein are partly related with well-known classical distributions. The relation between the conditional probability density, given some averages as constraints and the appropriate ensemble is elucidated.

  10. Perfect discretization of reparametrization invariant path integrals

    International Nuclear Information System (INIS)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-01-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  11. Perfect discretization of reparametrization invariant path integrals

    Science.gov (United States)

    Bahr, Benjamin; Dittrich, Bianca; Steinhaus, Sebastian

    2011-05-01

    To obtain a well-defined path integral one often employs discretizations. In the case of gravity and reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations generically break diffeomorphism and reparametrization symmetry, respectively. This has severe implications, as these symmetries determine the dynamics of the corresponding system. Indeed we will show that a discretized path integral with reparametrization-invariance is necessarily also discretization independent and therefore uniquely determined by the corresponding continuum quantum mechanical propagator. We use this insight to develop an iterative method for constructing such a discretized path integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will comment on implications for discrete quantum gravity models, such as spin foams.

  12. Diagrammatical methods within the path integral representation for quantum systems

    International Nuclear Information System (INIS)

    Alastuey, A

    2014-01-01

    The path integral representation has been successfully applied to the study of equilibrium properties of quantum systems for a long time. In particular, such a representation allowed Ginibre to prove the convergence of the low-fugacity expansions for systems with short-range interactions. First, I will show that the crucial trick underlying Ginibre's proof is the introduction of an equivalent classical system made with loops. Within the Feynman-Kac formula for the density matrix, such loops naturally emerge by collecting together the paths followed by particles exchanged in a given cyclic permutation. Two loops interact via an average of two- body genuine interactions between particles belonging to different loops, while the interactions between particles inside a given loop are accounted for in a loop fugacity. It turns out that the grand-partition function of the genuine quantum system exactly reduces to its classical counterpart for the gas of loops. The corresponding so-called magic formula can be combined with standard Mayer diagrammatics for the classical gas of loops. This provides low-density representations for the quantum correlations or thermodynamical functions, which are quite useful when collective effects must be taken into account properly. Indeed, resummations and or reorganizations of Mayer graphs can be performed by exploiting their remarkable topological and combinatorial properties, while statistical weights and bonds are purely c-numbers. The interest of that method will be illustrated through a brief description of its application to two long-standing problems, namely recombination in Coulomb systems and condensation in the interacting Bose gas.

  13. Path integral approach for quantum motion on spaces of non-constant curvature according to Koenigs - Three dimensions

    International Nuclear Information System (INIS)

    Grosche, C.

    2007-08-01

    In this contribution a path integral approach for the quantum motion on three-dimensional spaces according to Koenigs, for short''Koenigs-Spaces'', is discussed. Their construction is simple: One takes a Hamiltonian from three-dimensional flat space and divides it by a three-dimensional superintegrable potential. Such superintegrable potentials will be the isotropic singular oscillator, the Holt-potential, the Coulomb potential, or two centrifugal potentials, respectively. In all cases a non-trivial space of non-constant curvature is generated. In order to obtain a proper quantum theory a curvature term has to be incorporated into the quantum Hamiltonian. For possible bound-state solutions we find equations up to twelfth order in the energy E. (orig.)

  14. Disciplines, models, and computers: the path to computational quantum chemistry.

    Science.gov (United States)

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  15. Quantum chaos in the Heisenberg spin chain: The effect of Dzyaloshinskii-Moriya interaction.

    Science.gov (United States)

    Vahedi, J; Ashouri, A; Mahdavifar, S

    2016-10-01

    Using one-dimensional spin-1/2 systems as prototypes of quantum many-body systems, we study the emergence of quantum chaos. The main purpose of this work is to answer the following question: how the spin-orbit interaction, as a pure quantum interaction, may lead to the onset of quantum chaos? We consider the three integrable spin-1/2 systems: the Ising, the XX, and the XXZ limits and analyze whether quantum chaos develops or not after the addition of the Dzyaloshinskii-Moriya interaction. We find that depending on the strength of the anisotropy parameter, the answer is positive for the XXZ and Ising models, whereas no such evidence is observed for the XX model. We also discuss the relationship between quantum chaos and thermalization.

  16. Quantum relativity theory

    International Nuclear Information System (INIS)

    Banai, M.

    1983-11-01

    A quantum relativity theory formulated in terms of Davis' quantum relativity principle is outlined. The first task in this theory as in classical relativity theory is to model space-time, the arena of natural processes. It is argued that the quantum space-time models of Banai introduced in an earlier paper is formulated in terms of Davis' quantum relativity. Then it is shown that the recently proposed classical relativistic quantum theory of Prugovecki and his corresponding classical relativistic quantum model of space-time open the way to introduce in a consistent way the quantum space-time model (the 'canonically quantized Minkowski space') proposed by Banai earlier. The main new aspect of the quantum mechanics of the quantum relativistic particles is, in this model of space-time, that it provides a true mass eigenvalue problem and, that the excited mass states of such particles can be interpreted as classifically relativistic (massive) quantum particles ('elementary particles'). The question of field theory over quantum relativistic models of space-time is also discussed. Finally, it is suggested that 'quarks' should be considered as quantum relativistic particles. (author)

  17. Quantum tunneling in the adiabatic Dicke model

    International Nuclear Information System (INIS)

    Chen Gang; Chen Zidong; Liang Jiuqing

    2007-01-01

    The Dicke model describes N two-level atoms interacting with a single-mode bosonic field and exhibits a second-order phase transition from the normal to the superradiant phase. The energy levels are not degenerate in the normal phase but have degeneracy in the superradiant phase, where quantum tunneling occurs. By means of the Born-Oppenheimer approximation and the instanton method in quantum field theory, the tunneling splitting, inversely proportional to the tunneling rate for the adiabatic Dicke model, in the superradiant phase can be evaluated explicitly. It is shown that the tunneling splitting vanishes as exp(-N) for large N, whereas for small N it disappears as √(N)/exp(N). The dependence of the tunneling splitting on the relevant parameters, especially on the atom-field coupling strength, is also discussed

  18. A Specific N=2 Supersymmetric Quantum Mechanical Model: Supervariable Approach

    Directory of Open Access Journals (Sweden)

    Aradhya Shukla

    2017-01-01

    Full Text Available By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1-dimensional N=2 supersymmetric quantum mechanical model which is considered on a (1, 2-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (θ,θ¯. We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N=2 SUSY quantum mechanical model is a model for Hodge theory.

  19. Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing

    Science.gov (United States)

    Mukherjee, Sudip; Rajak, Atanu; Chakrabarti, Bikas K.

    2018-02-01

    We explore the behavior of the order parameter distribution of the quantum Sherrington-Kirkpatrick model in the spin glass phase using Monte Carlo technique for the effective Suzuki-Trotter Hamiltonian at finite temperatures and that at zero temperature obtained using the exact diagonalization method. Our numerical results indicate the existence of a low- but finite-temperature quantum-fluctuation-dominated ergodic region along with the classical fluctuation-dominated high-temperature nonergodic region in the spin glass phase of the model. In the ergodic region, the order parameter distribution gets narrower around the most probable value of the order parameter as the system size increases. In the other region, the Parisi order distribution function has nonvanishing value everywhere in the thermodynamic limit, indicating nonergodicity. We also show that the average annealing time for convergence (to a low-energy level of the model, within a small error range) becomes system size independent for annealing down through the (quantum-fluctuation-dominated) ergodic region. It becomes strongly system size dependent for annealing through the nonergodic region. Possible finite-size scaling-type behavior for the extent of the ergodic region is also addressed.

  20. Theoretical modelling of quantum circuit systems

    International Nuclear Information System (INIS)

    Stiffell, Peter Barry

    2002-01-01

    The work in this thesis concentrates on the interactions between circuit systems operating in the quantum regime. The main thrust of this work involves the use of a new model for investigating the way in which different components in such systems behave when coupled together. This is achieved by utilising the matrix representation of quantum mechanics, in conjunction with a number of other theoretical techniques (such as Wigner functions and entanglement entropies). With these tools in place it then becomes possible to investigate and review different quantum circuit systems. These investigations cover systems ranging from simple electromagnetic (cm) field oscillators in isolation to coupled SQUID rings in more sophisticated multi-component arrangements. Primarily, we look at the way SQUID rings couple to em fields, and how the ring-field interaction can be mediated by the choice of external flux, Φ x , applied to the SQUID ring. A lot of interest is focused on the transfer of energy between the system modes. However, we also investigate the statistical properties of the system, including squeezing, entropy and entanglement. Among the phenomena uncovered in this research we note the ability to control coupling in SQUID rings via the external flux, the capacity for entanglement between quantum circuit modes, frequency conversions of photons, flux squeezing and the existence of Schroedinger Cat states. (author)