Domí nguez, Luis F.; Pistikopoulos, Efstratios N.
2010-01-01
continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem
Domínguez, Luis F.
2010-12-01
This work introduces two algorithms for the solution of pure integer and mixed-integer bilevel programming problems by multiparametric programming techniques. The first algorithm addresses the integer case of the bilevel programming problem where integer variables of the outer optimization problem appear in linear or polynomial form in the inner problem. The algorithm employs global optimization techniques to convexify nonlinear terms generated by a reformulation linearization technique (RLT). A continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem appear in linear or polynomial forms in the inner problem. The algorithm relies on the use of global multiparametric mixed-integer programming techniques at the inner optimization level. In both algorithms, the multiparametric solutions obtained are embedded in the outer problem to form a set of single-level (M)(I)(N)LP problems - which are then solved to global optimality using standard fixed-point (global) optimization methods. Numerical examples drawn from the open literature are presented to illustrate the proposed algorithms. © 2010 Elsevier Ltd.
Efficient Algorithms for gcd and Cubic Residuosity in the Ring of Eisenstein Integers
Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg
2003-01-01
We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, bf Z[ ]i.e. the integers extended with , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd and deri......We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, bf Z[ ]i.e. the integers extended with , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd...
A new algorithm for benchmarking in integer data envelopment analysis
M. M. Omran
2012-08-01
Full Text Available The aim of this study is to investigate the effect of integer data in data envelopment analysis (DEA. The inputs and outputs in different types of DEA are considered to be continuous. In most application-oriented problems, some or all data are integers; and subsequently, the continuous condition of the values is omitted. For example, situations in which the inputs/outputs are representatives of the number of cars, people, etc. In fact, the benchmark unit is artificial and does not contain integer inputs/outputs after projection on the efficiency frontier. By rounding off the projection point, we may lose the feasibility or end up having inefficient DMU. In such cases, it is required to provide a benchmark unit such that the considered unit reaches the efficiency. In the present short communication, by proposing a novel algorithm, the projecting of an inefficient DMU is carried out in such a way that produced benchmarking takes values with fully integer inputs/outputs.
Towards Merging Binary Integer Programming Techniques with Genetic Algorithms
Reza Zamani
2017-01-01
Full Text Available This paper presents a framework based on merging a binary integer programming technique with a genetic algorithm. The framework uses both lower and upper bounds to make the employed mathematical formulation of a problem as tight as possible. For problems whose optimal solutions cannot be obtained, precision is traded with speed through substituting the integrality constrains in a binary integer program with a penalty. In this way, instead of constraining a variable u with binary restriction, u is considered as real number between 0 and 1, with the penalty of Mu(1-u, in which M is a large number. Values not near to the boundary extremes of 0 and 1 make the component of Mu(1-u large and are expected to be avoided implicitly. The nonbinary values are then converted to priorities, and a genetic algorithm can use these priorities to fill its initial pool for producing feasible solutions. The presented framework can be applied to many combinatorial optimization problems. Here, a procedure based on this framework has been applied to a scheduling problem, and the results of computational experiments have been discussed, emphasizing the knowledge generated and inefficiencies to be circumvented with this framework in future.
Applications and algorithms for mixed integer nonlinear programming
Leyffer, Sven; Munson, Todd; Linderoth, Jeff; Luedtke, James; Miller, Andrew
2009-01-01
The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Discrete decision variables model dichotomies, discontinuities, and general logical relationships. Nonlinear functions are required to accurately represent physical properties such as pressure, stress, temperature, and equilibrium. Problems involving both discrete variables and nonlinear constraint functions are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems faced by researchers and practitioners. In this paper, we describe relevant scientific applications that are naturally modeled as MINLPs, we provide an overview of available algorithms and software, and we describe ongoing methodological advances for solving MINLPs. These algorithmic advances are making increasingly larger instances of this important family of problems tractable.
A novel progressively swarmed mixed integer genetic algorithm for ...
MIGA) which inherits the advantages of binary and real coded Genetic Algorithm approach. The proposed algorithm is applied for the conventional generation cost minimization Optimal Power Flow (OPF) problem and for the Security ...
Chang, Weng-Long
2012-03-01
Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.
Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.
2018-03-01
Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.
Domí nguez, Luis F.; Pistikopoulos, Efstratios N.
2012-01-01
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear
BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm.
Loving, Joshua; Hernandez, Yozen; Benson, Gary
2014-11-15
Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7-25 times faster than a standard iterative algorithm. Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.
Domínguez, Luis F.
2012-06-25
An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).
Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang
2014-01-01
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)
2014-12-15
This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.
A Mixed Integer Programming Poultry Feed Ration Optimisation Problem Using the Bat Algorithm
Godfrey Chagwiza
2016-01-01
Full Text Available In this paper, a feed ration problem is presented as a mixed integer programming problem. An attempt to find the optimal quantities of Moringa oleifera inclusion into the poultry feed ration was done and the problem was solved using the Bat algorithm and the Cplex solver. The study used findings of previous research to investigate the effects of Moringa oleifera inclusion in poultry feed ration. The results show that the farmer is likely to gain US$0.89 more if Moringa oleifera is included in the feed ration. Results also show superiority of the Bat algorithm in terms of execution time and number of iterations required to find the optimum solution as compared with the results obtained by the Cplex solver. Results revealed that there is a significant economic benefit of Moringa oleifera inclusion into the poultry feed ration.
An integer optimization algorithm for robust identification of non-linear gene regulatory networks
Chemmangattuvalappil Nishanth
2012-09-01
Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters
Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian
2007-07-01
Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the
Applied Integer Programming Modeling and Solution
Chen, Der-San; Dang, Yu
2011-01-01
An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and
A wavelet-based ECG delineation algorithm for 32-bit integer online processing.
Di Marco, Luigi Y; Chiari, Lorenzo
2011-04-03
Since the first well-known electrocardiogram (ECG) delineator based on Wavelet Transform (WT) presented by Li et al. in 1995, a significant research effort has been devoted to the exploitation of this promising method. Its ability to reliably delineate the major waveform components (mono- or bi-phasic P wave, QRS, and mono- or bi-phasic T wave) would make it a suitable candidate for efficient online processing of ambulatory ECG signals. Unfortunately, previous implementations of this method adopt non-linear operators such as root mean square (RMS) or floating point algebra, which are computationally demanding. This paper presents a 32-bit integer, linear algebra advanced approach to online QRS detection and P-QRS-T waves delineation of a single lead ECG signal, based on WT. The QRS detector performance was validated on the MIT-BIH Arrhythmia Database (sensitivity Se = 99.77%, positive predictive value P+ = 99.86%, on 109010 annotated beats) and on the European ST-T Database (Se = 99.81%, P+ = 99.56%, on 788050 annotated beats). The ECG delineator was validated on the QT Database, showing a mean error between manual and automatic annotation below 1.5 samples for all fiducial points: P-onset, P-peak, P-offset, QRS-onset, QRS-offset, T-peak, T-offset, and a mean standard deviation comparable to other established methods. The proposed algorithm exhibits reliable QRS detection as well as accurate ECG delineation, in spite of a simple structure built on integer linear algebra.
Vertical partitioning of relational OLTP databases using integer programming
Amossen, Rasmus Resen
2010-01-01
A way to optimize performance of relational row store databases is to reduce the row widths by vertically partition- ing tables into table fractions in order to minimize the number of irrelevant columns/attributes read by each transaction. This pa- per considers vertical partitioning algorithms...... for relational row- store OLTP databases with an H-store-like architecture, meaning that we would like to maximize the number of single-sited transactions. We present a model for the vertical partitioning problem that, given a schema together with a vertical partitioning and a workload, estimates the costs...... applied to the TPC-C benchmark and the heuristic is shown to obtain solutions with costs close to the ones found using the quadratic program....
Chenlu Miao
2016-01-01
Full Text Available Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP, which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard problem. Consequently, using traditional methods to solve such problems is difficult. Genetic algorithms (GAs have great value in solving BLP problems, and many studies have designed GAs to solve BLP problems; however, such GAs are typically designed for special cases that do not involve MINLBLP with one or multiple followers. Therefore, we propose a bilevel GA to solve these particular MINLBLP problems, which are widely used in product family problems. We give numerical examples to demonstrate the effectiveness of the proposed algorithm. In addition, a reducer family case study is examined to demonstrate practical applications of the proposed BLGA.
Conforti, Michele; Zambelli, Giacomo
2014-01-01
This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.
Kumar, Manoranjan
2016-02-03
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.
Kumar, Manoranjan; Parvej, Aslam; Thomas, Simil; Ramasesha, S.; Soos, Z. G.
2016-01-01
An efficient density matrix renormalization group (DMRG) algorithm is presented and applied to Y junctions, systems with three arms of n sites that meet at a central site. The accuracy is comparable to DMRG of chains. As in chains, new sites are always bonded to the most recently added sites and the superblock Hamiltonian contains only new or once renormalized operators. Junctions of up to N=3n+1≈500 sites are studied with antiferromagnetic (AF) Heisenberg exchange J between nearest-neighbor spins S or electron transfer t between nearest neighbors in half-filled Hubbard models. Exchange or electron transfer is exclusively between sites in two sublattices with NA≠NB. The ground state (GS) and spin densities ρr=⟨Szr⟩ at site r are quite different for junctions with S=1/2, 1, 3/2, and 2. The GS has finite total spin SG=2S(S) for even (odd) N and for MG=SG in the SG spin manifold, ρr>0(<0) at sites of the larger (smaller) sublattice. S=1/2 junctions have delocalized states and decreasing spin densities with increasing N. S=1 junctions have four localized Sz=1/2 states at the end of each arm and centered on the junction, consistent with localized states in S=1 chains with finite Haldane gap. The GS of S=3/2 or 2 junctions of up to 500 spins is a spin density wave with increased amplitude at the ends of arms or near the junction. Quantum fluctuations completely suppress AF order in S=1/2 or 1 junctions, as well as in half-filled Hubbard junctions, but reduce rather than suppress AF order in S=3/2 or 2 junctions.
A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs
Stidsen, Thomas Riis; Andersen, Kim Allan; Dammann, Bernd
2014-01-01
there is the complicating factor that some of the variables are required to be integral. The resulting class of problems is named multiobjective mixed integer programming (MOMIP) problems. Solving these kinds of optimization problems exactly requires a method that can generate the whole set of nondominated points (the...... Pareto-optimal front). In this paper, we first give a survey of the newly developed branch and bound methods for solving MOMIP problems. After that, we propose a new branch and bound method for solving a subclass of MOMIP problems, where only two objectives are allowed, the integer variables are binary......, and one of the two objectives has only integer variables. The proposed method is able to find the full set of nondominated points. It is tested on a large number of problem instances, from six different classes of MOMIP problems. The results reveal that the developed biobjective branch and bound method...
Chenlu Miao; Gang Du; Yi Xia; Danping Wang
2016-01-01
Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP) to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP), which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard pr...
El-Qulity, Said Ali; Mohamed, Ali Wagdy
2016-01-01
This paper proposes a nonlinear integer goal programming model (NIGPM) for solving the general problem of admission capacity planning in a country as a whole. The work aims to satisfy most of the required key objectives of a country related to the enrollment problem for higher education. The system general outlines are developed along with the solution methodology for application to the time horizon in a given plan. The up-to-date data for Saudi Arabia is used as a case study and a novel evolutionary algorithm based on modified differential evolution (DE) algorithm is used to solve the complexity of the NIGPM generated for different goal priorities. The experimental results presented in this paper show their effectiveness in solving the admission capacity for higher education in terms of final solution quality and robustness.
Discrete cosine and sine transforms general properties, fast algorithms and integer approximations
Britanak, Vladimir; Rao, K R; Rao, K R
2006-01-01
The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhune
Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram
2005-01-01
The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...
Fast parallel molecular algorithms for DNA-based computation: factoring integers.
Chang, Weng-Long; Guo, Minyi; Ho, Michael Shan-Hui
2005-06-01
The RSA public-key cryptosystem is an algorithm that converts input data to an unrecognizable encryption and converts the unrecognizable data back into its original decryption form. The security of the RSA public-key cryptosystem is based on the difficulty of factoring the product of two large prime numbers. This paper demonstrates to factor the product of two large prime numbers, and is a breakthrough in basic biological operations using a molecular computer. In order to achieve this, we propose three DNA-based algorithms for parallel subtractor, parallel comparator, and parallel modular arithmetic that formally verify our designed molecular solutions for factoring the product of two large prime numbers. Furthermore, this work indicates that the cryptosystems using public-key are perhaps insecure and also presents clear evidence of the ability of molecular computing to perform complicated mathematical operations.
Algorithmic Relative Complexity
Daniele Cerra
2011-04-01
Full Text Available Information content and compression are tightly related concepts that can be addressed through both classical and algorithmic information theories, on the basis of Shannon entropy and Kolmogorov complexity, respectively. The definition of several entities in Kolmogorov’s framework relies upon ideas from classical information theory, and these two approaches share many common traits. In this work, we expand the relations between these two frameworks by introducing algorithmic cross-complexity and relative complexity, counterparts of the cross-entropy and relative entropy (or Kullback-Leibler divergence found in Shannon’s framework. We define the cross-complexity of an object x with respect to another object y as the amount of computational resources needed to specify x in terms of y, and the complexity of x related to y as the compression power which is lost when adopting such a description for x, compared to the shortest representation of x. Properties of analogous quantities in classical information theory hold for these new concepts. As these notions are incomputable, a suitable approximation based upon data compression is derived to enable the application to real data, yielding a divergence measure applicable to any pair of strings. Example applications are outlined, involving authorship attribution and satellite image classification, as well as a comparison to similar established techniques.
Khrennikov, Andrei; Klein, Moshe; Mor, Tal
2010-01-01
In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.
Yu, Xuefei; Lin, Liangzhuo; Shen, Jie; Chen, Zhi; Jian, Jun; Li, Bin; Xin, Sherman Xuegang
2018-01-01
The mean amplitude of glycemic excursions (MAGE) is an essential index for glycemic variability assessment, which is treated as a key reference for blood glucose controlling at clinic. However, the traditional "ruler and pencil" manual method for the calculation of MAGE is time-consuming and prone to error due to the huge data size, making the development of robust computer-aided program an urgent requirement. Although several software products are available instead of manual calculation, poor agreement among them is reported. Therefore, more studies are required in this field. In this paper, we developed a mathematical algorithm based on integer nonlinear programming. Following the proposed mathematical method, an open-code computer program named MAGECAA v1.0 was developed and validated. The results of the statistical analysis indicated that the developed program was robust compared to the manual method. The agreement among the developed program and currently available popular software is satisfied, indicating that the worry about the disagreement among different software products is not necessary. The open-code programmable algorithm is an extra resource for those peers who are interested in the related study on methodology in the future.
Doolittle, R. [ONR, Arlington, VA (United States)
1994-11-15
The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.
Investigating Students’ Development of Learning Integer Concept and Integer Addition
Nenden Octavarulia Shanty
2016-09-01
Full Text Available This research aimed at investigating students’ development of learning integer concept and integer addition. The investigation was based on analyzing students’ works in solving the given mathematical problems in each instructional activity designed based on Realistic Mathematics Education (RME levels. Design research was chosen to achieve and to contribute in developing a local instruction theory for teaching and learning of integer concept and integer addition. In design research, the Hypothetical Learning Trajectory (HLT plays important role as a design and research instrument. It was designed in the phase of preliminary design and tested to three students of grade six OASIS International School, Ankara – Turkey. The result of the experiments showed that temperature in the thermometer context could stimulate students’ informal knowledge of integer concept. Furthermore, strategies and tools used by the students in comparing and relating two temperatures were gradually be developed into a more formal mathematics. The representation of line inside thermometer which then called the number line could bring the students to the last activity levels, namely rules for adding integer, and became the model for more formal reasoning. Based on these findings, it can be concluded that students’ learning integer concept and integer addition developed through RME levels.Keywords: integer concept, integer addition, Realistic Mathematics Education DOI: http://dx.doi.org/10.22342/jme.7.2.3538.57-72
Kiryakova, Virginia S.
2012-11-01
The Laplace Transform (LT) serves as a basis of the Operational Calculus (OC), widely explored by engineers and applied scientists in solving mathematical models for their practical needs. This transform is closely related to the exponential and trigonometric functions (exp, cos, sin) and to the classical differentiation and integration operators, reducing them to simple algebraic operations. Thus, the classical LT and the OC give useful tool to handle differential equations and systems with constant coefficients. Several generalizations of the LT have been introduced to allow solving, in a similar way, of differential equations with variable coefficients and of higher integer orders, as well as of fractional (arbitrary non-integer) orders. Note that fractional order mathematical models are recently widely used to describe better various systems and phenomena of the real world. This paper surveys briefly some of our results on classes of such integral transforms, that can be obtained from the LT by means of "transmutations" which are operators of the generalized fractional calculus (GFC). On the list of these Laplace-type integral transforms, we consider the Borel-Dzrbashjan, Meijer, Krätzel, Obrechkoff, generalized Obrechkoff (multi-index Borel-Dzrbashjan) transforms, etc. All of them are G- and H-integral transforms of convolutional type, having as kernels Meijer's G- or Fox's H-functions. Besides, some special functions (also being G- and H-functions), among them - the generalized Bessel-type and Mittag-Leffler (M-L) type functions, are generating Gel'fond-Leontiev (G-L) operators of generalized differentiation and integration, which happen to be also operators of GFC. Our integral transforms have operational properties analogous to those of the LT - they do algebrize the G-L generalized integrations and differentiations, and thus can serve for solving wide classes of differential equations with variable coefficients of arbitrary, including non-integer order
Polynomial selection in number field sieve for integer factorization
Gireesh Pandey
2016-09-01
Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.
Tessa Vanina Soetanto
2004-01-01
Full Text Available This paper presents a study about new heuristic algorithm performance compared to Mixed Integer Programming (MIP method in solving flowshop scheduling problem to reach minimum makespan. Performance appraisal is based on Efficiency Index (EI, Relative Error (RE and Elapsed Runtime. Abstract in Bahasa Indonesia : Makalah ini menyajikan penelitian tentang performance algoritma heuristik Pour terhadap metode Mixed Integer Programming (MIP dalam menyelesaikan masalah penjadwalan flowshop dengan tujuan meminimalkan makespan. Penilaian performance dilakukan berdasarkan nilai Efficiency Index (EI, Relative Error (RE dan Elapsed Runtime. Kata kunci: flowshop, makespan, algoritma heuristik Pour, Mixed Integer Programming.
Frahm, K M; Shepelyansky, D L; Chepelianskii, A D
2012-01-01
We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers. (paper)
Schindler, Maike; Hußmann, Stephan; Nilsson, Per; Bakker, Arthur
2017-12-01
Negative numbers are among the first formalizations students encounter in their mathematics learning that clearly differ from out-of-school experiences. What has not sufficiently been addressed in previous research is the question of how students draw on their prior experiences when reasoning on negative numbers and how they infer from these experiences. This article presents results from an empirical study investigating sixth-grade students' reasoning and inferring from school-based and out-of-school experiences. In particular, it addresses the order relation, which deals with students' very first encounters with negative numbers. Here, students can reason in different ways, depending on the experiences they draw on. We study how students reason before a lesson series and how their reasoning is influenced through this lesson series where the number line and the context debts-and-assets are predominant. For grasping the reasoning's inferential and social nature and conducting in-depth analyses of two students' reasoning, we use an epistemological framework that is based on the philosophical theory of inferentialism. The results illustrate how the students infer their reasoning from out-of-school and from school-based experiences both before and after the lesson series. They reveal interesting phenomena not previously analyzed in the research on the order relation for integers.
Synthesis of Greedy Algorithms Using Dominance Relations
Nedunuri, Srinivas; Smith, Douglas R.; Cook, William R.
2010-01-01
Greedy algorithms exploit problem structure and constraints to achieve linear-time performance. Yet there is still no completely satisfactory way of constructing greedy algorithms. For example, the Greedy Algorithm of Edmonds depends upon translating a problem into an algebraic structure called a matroid, but the existence of such a translation can be as hard to determine as the existence of a greedy algorithm itself. An alternative characterization of greedy algorithms is in terms of dominance relations, a well-known algorithmic technique used to prune search spaces. We demonstrate a process by which dominance relations can be methodically derived for a number of greedy algorithms, including activity selection, and prefix-free codes. By incorporating our approach into an existing framework for algorithm synthesis, we demonstrate that it could be the basis for an effective engineering method for greedy algorithms. We also compare our approach with other characterizations of greedy algorithms.
Positive integer solutions of certain diophantine equations
BIJAN KUMAR PATEL
2018-03-19
Mar 19, 2018 ... integer solutions. They also found all the positive integer solutions of the given equations in terms of Fibonacci and Lucas numbers. Another interesting number sequence which is closely related to the sequence of. Fibonacci numbers is the sequence of balancing numbers. In 1999, Behera et al. [1] intro-.
A General Approach for Orthogonal 4-Tap Integer Multiwavelet Transforms
Mingli Jing
2010-01-01
Full Text Available An algorithm for orthogonal 4-tap integer multiwavelet transforms is proposed. We compute the singular value decomposition (SVD of block recursive matrices of transform matrix, and then transform matrix can be rewritten in a product of two block diagonal matrices and a permutation matrix. Furthermore, we factorize the block matrix of block diagonal matrices into triangular elementary reversible matrices (TERMs, which map integers to integers by rounding arithmetic. The cost of factorizing block matrix into TERMs does not increase with the increase of the dimension of transform matrix, and the proposed algorithm is in-place calculation and without allocating auxiliary memory. Examples of integer multiwavelet transform using DGHM and CL are given, which verify that the proposed algorithm is an executable algorithm and outperforms the existing algorithm for orthogonal 4-tap integer multiwavelet transform.
Relative Pose Estimation Algorithm with Gyroscope Sensor
Shanshan Wei
2016-01-01
Full Text Available This paper proposes a novel vision and inertial fusion algorithm S2fM (Simplified Structure from Motion for camera relative pose estimation. Different from current existing algorithms, our algorithm estimates rotation parameter and translation parameter separately. S2fM employs gyroscopes to estimate camera rotation parameter, which is later fused with the image data to estimate camera translation parameter. Our contributions are in two aspects. (1 Under the circumstance that no inertial sensor can estimate accurately enough translation parameter, we propose a translation estimation algorithm by fusing gyroscope sensor and image data. (2 Our S2fM algorithm is efficient and suitable for smart devices. Experimental results validate efficiency of the proposed S2fM algorithm.
Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.
Snow, Donald R.
1989-01-01
Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)
On the Delone property of (−β-integers
Wolfgang Steiner
2011-08-01
Full Text Available The (−β-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. They can be described by infinite words which are fixed points of anti-morphisms. We show that they are not necessarily uniformly discrete and relatively dense in the real numbers.
Landman, Bruce
2014-01-01
""Integers"" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. This work presents all papers of the 2013 volume in book form.
Neutrosophic Integer Programming Problem
Mai Mohamed
2017-02-01
Full Text Available In this paper, we introduce the integer programming in neutrosophic environment, by considering coffecients of problem as a triangulare neutrosophic numbers. The degrees of acceptance, indeterminacy and rejection of objectives are simultaneously considered.
KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION
Y. Bai
2016-06-01
Full Text Available The multivariate alteration detection (MAD algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA. The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1 data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.
A quantum architecture for multiplying signed integers
Alvarez-Sanchez, J J; Alvarez-Bravo, J V; Nieto, L M
2008-01-01
A new quantum architecture for multiplying signed integers is presented based on Booth's algorithm, which is well known in classical computation. It is shown how a quantum binary chain might be encoded by its flank changes, giving the final product in 2's-complement representation.
Landman, Bruce M
2014-01-01
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and t...
Integer and combinatorial optimization
Nemhauser, George L
1999-01-01
Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION ""This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list.""-Optima ""A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such f
Flávio Lopes Rodrigues
2004-04-01
Full Text Available Os objetivos deste trabalho foram desenvolver e testar um algoritmo genético (AG para a solução de problemas de gerenciamento florestal com restrições de integridade. O AG foi testado em quatro problemas, contendo entre 93 e 423 variáveis de decisão, sujeitos às restrições de singularidade, produção mínima e produção máxima, periodicamente. Todos os problemas tiveram como objetivo a maximização do valor presente líquido. O AG foi codificado em ambiente delphi 5.0 e os testes foram realizados em um microcomputador AMD K6II 500 MHZ, com memória RAM de 64 MB e disco rígido de 15GB. O desempenho do AG foi avaliado de acordo com as medidas de eficácia e eficiência. Os valores ou categorias dos parâmetros do AG foram testados e comparados quanto aos seus efeitos na eficácia do algoritmo. A seleção da melhor configuração de parâmetros foi feita com o teste L&O, a 1% de probabilidade, e as análises foram realizadas através de estatísticas descritivas. A melhor configuração de parâmetros propiciou ao AG eficácia média de 94,28%, valor mínimo de 90,01%, valor máximo de 98,48%, com coeficiente de variação de 2,08% do ótimo matemático, obtido pelo algoritmo exato branch and bound. Para o problema de maior porte, a eficiência do AG foi cinco vezes superior à eficiência do algoritmo exato branch and bound. O AG apresentou-se como uma abordagem bastante atrativa para solução de importantes problemas de gerenciamento florestal.The objectives of this work was to develop and test a Genetic Algorithm (GA to solve problems of forest management with integer constraints. GA was tested in five problems containing 93 - 423 decision variables, periodically subject to singularity constraints, minimum and maximum production. The problems had the objective of maximizing the net present value. GA was codified into delphi 5.0 language and the tests were performed in a microcomputer AMD K6II 500 MHZ, with RAM memory of 64 MB
Hard equality constrained integer knapsacks
Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.
2002-01-01
We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve
S-parts of terms of integer linear recurrence sequences
Bugeaud, Y.; Evertse, J.H.
2017-01-01
Let S = {q1 , . . . , qs } be a finite, non-empty set of distinct prime numbers. For a non-zero integer m, write m = q1^ r1 . . . qs^rs M, where r1 , . . . , rs are non-negative integers and M is an integer relatively prime to q1 . . . qs. We define the S-part [m]_S of m by [m]_S := q1^r1 . . .
Quadratic Sieve integer factorization using Hadoop
Ghebregiorgish, Semere Tsehaye
2012-01-01
Master's thesis in Computer Science Integer factorization problem is one of the most important parts in the world of cryptography. The security of the widely-used public-key cryptographic algorithm, RSA [1], and the Blum Blum Shub cryptographic pseudorandom number generator [2] heavily depend on the presumed difficulty of factoring a number to its prime constituents. As the size of the number to be factored gets larger, the difficulty of the problem increases enormously. Thi...
Mixed integer evolution strategies for parameter optimization.
Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C
2013-01-01
Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.
New Approaches for Very Large-Scale Integer Programming
2016-06-24
DISTRIBUTION/ AVAILABILITY STATEMENT Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of this project is new computational... heuristics for integer programs in order to rapidly improve dual bounds. 2. Choosing good branching variables in branch-and-bound algorithms for MIP. 3...programming, algorithms, parallel processing, machine learning, heuristics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF
Logic integer programming models for signaling networks.
Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert
2009-05-01
We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.
Sergienko, I.V.; Golodnikov, A.N.
1984-01-01
This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints
Determining on-fault earthquake magnitude distributions from integer programming
Geist, Eric L.; Parsons, Thomas E.
2018-01-01
Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106 variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions.
Landman, Bruce M
2003-01-01
Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students something quite rare for a book at this level: a glimpse into the world of mathematical research and the opportunity to begin pondering unsolved problems themselves. In addition to being the first truly accessible book on Ramsey theory, this innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subarea of Ramsey theory. The result is a breakthrough book that will engage students, teachers, and researchers alike.
Frozen density embedding with non-integer subsystems' particle numbers.
Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio
2014-03-21
We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.
Integer-valued trawl processes
Barndorff-Nielsen, Ole E.; Lunde, Asger; Shephard, Neil
2014-01-01
the probabilistic properties of such processes in detail and, in addition, study volatility modulation and multivariate extensions within the new modelling framework. Moreover, we describe how the parameters of a trawl process can be estimated and obtain promising estimation results in our simulation study. Finally......This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl processes, which are serially correlated, stationary, infinitely divisible processes. We analyse...
Rong Duan
Full Text Available Aiming at the problems that huge amount of computation in ambiguity resolution with multiple epochs and high-order matrix inversion occurred in the GPS kinematic relative positioning, a modified algorithm for fast integer ambiguity resolution is proposed. Firstly, Singular Value Decomposition (SVD is applied to construct the left null space matrix in order to eliminate the baselines components, which is able to separate ambiguity parameters from the position parameters efficiently. Kalman filter is applied only to estimate the ambiguity parameters so that the real-time ambiguity float solution is obtained. Then, sorting and multi-time (inverse paired Cholesky decomposition are adopted for decorrelation of ambiguity. After diagonal elements preprocessing and diagonal elements sorting according to the results of Cholesky decomposition, the efficiency of decomposition and decorrelation is improved. Lastly, the integer search algorithm implemented in LAMBDA method is used for searching the integer ambiguity. To verify the validity and efficacy of the proposed algorithm, static and kinematic tests are carried out. Experimental results show that this algorithm has good performance of decorrelation and precision of float solution, with computation speed also increased effectively. The final positioning accuracy result with static baseline error less than 1 cm and kinematic error less than 2 cm, which indicates that it can be used for fast kinematic positioning of high precision carrier.
Algorithmic Procedure for Finding Semantically Related Journals.
Pudovkin, Alexander I.; Garfield, Eugene
2002-01-01
Using citations, papers and references as parameters a relatedness factor (RF) is computed for a series of journals. Sorting these journals by the RF produces a list of journals most closely related to a specified starting journal. The method appears to select a set of journals that are semantically most similar to the target journal. The…
Stochastic programming with integer recourse
van der Vlerk, Maarten Hendrikus
1995-01-01
In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic
van den Akker, R.
2007-01-01
This thesis adresses statistical problems in econometrics. The first part contributes statistical methodology for nonnegative integer-valued time series. The second part of this thesis discusses semiparametric estimation in copula models and develops semiparametric lower bounds for a large class of
Rewrite systems for integer arithmetic
H.R. Walters (Pum); H. Zantema (Hans)
1995-01-01
textabstractWe present three term rewrite systems for integer arithmetic with addition, multiplication, and, in two cases, subtraction. All systems are ground confluent and terminating; termination is proved by semantic labelling and recursive path order. The first system represents numbers by
Rewrite systems for integer arithmetic
Walters, H.R.; Zantema, H.
1994-01-01
We present three term rewrite systems for integer arithmetic with addition, multiplication, and, in two cases, subtraction. All systems are ground con uent and terminating; termination is proved by semantic labelling and recursive path order. The first system represents numbers by successor and
A few Smarandache Integer Sequences
Ibstedt, Henry
2010-01-01
This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in Properties or the Numbers, F. Smarandache, University or Craiova Archives, 1975. The first four sequences are recurrence generated sequences while the last three are concatenation sequences.
50 Years of Integer Programming 1958-2008 From the Early Years to the State-of-the-Art
Jünger, Michael; Naddef, Denis
2010-01-01
In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the
A fast algorithm for sparse matrix computations related to inversion
Li, S.; Wu, W.; Darve, E.
2013-01-01
We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G r and G for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round-off errors
An Integer Programming Formulation of the Minimum Common String Partition Problem.
S M Ferdous
Full Text Available We consider the problem of finding a minimum common string partition (MCSP of two strings, which is an NP-hard problem. The MCSP problem is closely related to genome comparison and rearrangement, an important field in Computational Biology. In this paper, we map the MCSP problem into a graph applying a prior technique and using this graph, we develop an Integer Linear Programming (ILP formulation for the problem. We implement the ILP formulation and compare the results with the state-of-the-art algorithms from the literature. The experimental results are found to be promising.
An Efficient Inductive Genetic Learning Algorithm for Fuzzy Relational Rules
Antonio
2012-04-01
Full Text Available Fuzzy modelling research has traditionally focused on certain types of fuzzy rules. However, the use of alternative rule models could improve the ability of fuzzy systems to represent a specific problem. In this proposal, an extended fuzzy rule model, that can include relations between variables in the antecedent of rules is presented. Furthermore, a learning algorithm based on the iterative genetic approach which is able to represent the knowledge using this model is proposed as well. On the other hand, potential relations among initial variables imply an exponential growth in the feasible rule search space. Consequently, two filters for detecting relevant potential relations are added to the learning algorithm. These filters allows to decrease the search space complexity and increase the algorithm efficiency. Finally, we also present an experimental study to demonstrate the benefits of using fuzzy relational rules.
Integer programming theory, applications, and computations
Taha, Hamdy A
1975-01-01
Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming.Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other
Module detection in complex networks using integer optimisation
Tsoka Sophia
2010-11-01
Full Text Available Abstract Background The detection of modules or community structure is widely used to reveal the underlying properties of complex networks in biology, as well as physical and social sciences. Since the adoption of modularity as a measure of network topological properties, several methodologies for the discovery of community structure based on modularity maximisation have been developed. However, satisfactory partitions of large graphs with modest computational resources are particularly challenging due to the NP-hard nature of the related optimisation problem. Furthermore, it has been suggested that optimising the modularity metric can reach a resolution limit whereby the algorithm fails to detect smaller communities than a specific size in large networks. Results We present a novel solution approach to identify community structure in large complex networks and address resolution limitations in module detection. The proposed algorithm employs modularity to express network community structure and it is based on mixed integer optimisation models. The solution procedure is extended through an iterative procedure to diminish effects that tend to agglomerate smaller modules (resolution limitations. Conclusions A comprehensive comparative analysis of methodologies for module detection based on modularity maximisation shows that our approach outperforms previously reported methods. Furthermore, in contrast to previous reports, we propose a strategy to handle resolution limitations in modularity maximisation. Overall, we illustrate ways to improve existing methodologies for community structure identification so as to increase its efficiency and applicability.
Yan Zhang
2015-01-01
Full Text Available This paper presents four different integer sequences to construct quasi-cyclic low-density parity-check (QC-LDPC codes with mathematical theory. The paper introduces the procedure of the coding principle and coding. Four different integer sequences constructing QC-LDPC code are compared with LDPC codes by using PEG algorithm, array codes, and the Mackey codes, respectively. Then, the integer sequence QC-LDPC codes are used in coded cooperative communication. Simulation results show that the integer sequence constructed QC-LDPC codes are effective, and overall performance is better than that of other types of LDPC codes in the coded cooperative communication. The performance of Dayan integer sequence constructed QC-LDPC is the most excellent performance.
A fast algorithm for sparse matrix computations related to inversion
Li, S., E-mail: lisong@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Wu, W. [Department of Electrical Engineering, Stanford University, 350 Serra Mall, Packard Building, Room 268, Stanford, CA 94305 (United States); Darve, E. [Institute for Computational and Mathematical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Stanford, CA 94305 (United States); Department of Mechanical Engineering, Stanford University, 496 Lomita Mall, Durand Building, Room 209, Stanford, CA 94305 (United States)
2013-06-01
We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G{sup r} and G{sup <} for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round
Mixed-Integer Conic Linear Programming: Challenges and Perspectives
2013-10-01
The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky
Web page sorting algorithm based on query keyword distance relation
Yang, Han; Cui, Hong Gang; Tang, Hao
2017-08-01
In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.
ALGORITHM FOR DYNAMIC SCALING RELATIONAL DATABASE IN CLOUDS
Alexander V. Boichenko
2014-01-01
Full Text Available This article analyzes the main methods of scalingdatabases (replication, sharding and their supportat the popular relational databases and NoSQLsolutions with different data models: document-oriented, key-value, column-oriented and graph.The article presents an algorithm for the dynamicscaling of a relational database (DB, that takesinto account the speciﬁcs of the different types of logic database model. This article was prepared with the support of RFBR (grant № 13-07-00749.
Heuristic Methods of Integer Programming and Its Applications in Economics
Dominika Crnjac Milić
2010-12-01
Full Text Available A short overview of the results related to integer programming is described in the introductory part of this paper. Furthermore, there is a list of literature related to this field. The main part of the paper analyses the Heuristic method which yields a very fast result without the use of significant mathematical tools.
Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
Demirci, Nagehan; Tönük, Ergin
2014-01-01
During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.
An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems
Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri
2018-01-01
The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.
Sharp probability estimates for Shor's order-finding algorithm
Bourdon, P. S.; Williams, H. T.
2006-01-01
Let N be a (large positive integer, let b > 1 be an integer relatively prime to N, and let r be the order of b modulo N. Finally, let QC be a quantum computer whose input register has the size specified in Shor's original description of his order-finding algorithm. We prove that when Shor's algorithm is implemented on QC, then the probability P of obtaining a (nontrivial) divisor of r exceeds 0.7 whenever N exceeds 2^{11}-1 and r exceeds 39, and we establish that 0.7736 is an asymptotic lower...
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Quantum recurrence and integer ratios in neutron resonances
Ohkubo, Makio
1998-03-01
Quantum recurrence of the compound nucleus in neutron resonance reactions are described for normal modes which are excited on the compound nucleus simultaneously. In the structure of the recurrence time, integer relations among dominant level spacings are derived. The `base modes` are assumed as stable combinations of the normal modes, preferably excited in many nuclei. (author)
Quasi-greedy systems of integer translates
Nielsen, Morten; Sikic, Hrvoje
We consider quasi-greedy systems of integer translates in a finitely generated shift invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...
Quasi-greedy systems of integer translates
Nielsen, Morten; Sikic, Hrvoje
2008-01-01
We consider quasi-greedy systems of integer translates in a finitely generated shift-invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...
Analysis misconception of integers in microteaching activities
Setyawati, R. D.; Indiati, I.
2018-05-01
This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.
COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES
A. S. Vroublevski
2015-01-01
Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.
Relatively Inexact Proximal Point Algorithm and Linear Convergence Analysis
Ram U. Verma
2009-01-01
Full Text Available Based on a notion of relatively maximal (m-relaxed monotonicity, the approximation solvability of a general class of inclusion problems is discussed, while generalizing Rockafellar's theorem (1976 on linear convergence using the proximal point algorithm in a real Hilbert space setting. Convergence analysis, based on this new model, is simpler and compact than that of the celebrated technique of Rockafellar in which the Lipschitz continuity at 0 of the inverse of the set-valued mapping is applied. Furthermore, it can be used to generalize the Yosida approximation, which, in turn, can be applied to first-order evolution equations as well as evolution inclusions.
Presolving and regularization in mixed-integer second-order cone optimization
Friberg, Henrik Alsing
Mixed-integer second-order cone optimization is a powerful mathematical framework capable of representing both logical conditions and nonlinear relationships in mathematical models of industrial optimization problems. What is more, solution methods are already part of many major commercial solvers...... both continuous and mixed-integer conic optimization in general, is discovered and treated. This part of the thesis continues the studies of facial reduction preceding the work of Borwein and Wolkowicz [17] in 1981, when the first algorithmic cure for these kinds of reliability issues were formulated....... An important distinction to make between continuous and mixed-integer optimization, however, is that the reliability issues occurring in mixed-integer optimization cannot be blamed on the practitioner’s formulation of the problem. Specifically, as shown, the causes for these issues may well lie within...
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Parallel Integer Factorization Using Quadratic Forms
McMath, Stephen S
2005-01-01
Factorization is important for both practical and theoretical reasons. In secure digital communication, security of the commonly used RSA public key cryptosystem depends on the difficulty of factoring large integers...
VLSI Architectures for the Multiplication of Integers Modulo a Fermat Number
Chang, J. J.; Truong, T. K.; Reed, I. S.; Hsu, I. S.
1984-01-01
Multiplication is central in the implementation of Fermat number transforms and other residue number algorithms. There is need for a good multiplication algorithm that can be realized easily on a very large scale integration (VLSI) chip. The Leibowitz multiplier is modified to realize multiplication in the ring of integers modulo a Fermat number. This new algorithm requires only a sequence of cyclic shifts and additions. The designs developed for this new multiplier are regular, simple, expandable, and, therefore, suitable for VLSI implementation.
Divasón, Jose; Joosten, Sebastiaan; Thiemann, René; Yamada, Akihisa
2018-01-01
The Lenstra-Lenstra-Lovász basis reduction algorithm, also known as LLL algorithm, is an algorithm to find a basis with short, nearly orthogonal vectors of an integer lattice. Thereby, it can also be seen as an approximation to solve the shortest vector problem (SVP), which is an NP-hard problem,
Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers
Donnell, William A.
2012-01-01
In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
Parallel integer sorting with medium and fine-scale parallelism
Dagum, Leonardo
1993-01-01
Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.
Linear and integer programming made easy
Hu, T C
2016-01-01
Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short cours...
A statistical mechanical approach to restricted integer partition functions
Zhou, Chi-Chun; Dai, Wu-Sheng
2018-05-01
The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.
Integer programming techniques for educational timetabling
Fonseca, George H.G.; Santos, Haroldo G.; Carrano, Eduardo G.
2017-01-01
in recent studies in the field. This work presents new cuts and reformulations for the existing integer programming model for XHSTT. The proposed cuts improved hugely the linear relaxation of the formulation, leading to an average gap reduction of 32%. Applied to XHSTT-2014 instance set, the alternative...... formulation provided four new best known lower bounds and, used in a matheuristic framework, improved eleven best known solutions. The computational experiments also show that the resulting integer programming models from the proposed formulation are more effectively solved for most of the instances....
Hierarchical Hidden Markov Models for Multivariate Integer-Valued Time-Series
Catania, Leopoldo; Di Mari, Roberto
2018-01-01
We propose a new flexible dynamic model for multivariate nonnegative integer-valued time-series. Observations are assumed to depend on the realization of two additional unobserved integer-valued stochastic variables which control for the time-and cross-dependence of the data. An Expectation......-Maximization algorithm for maximum likelihood estimation of the model's parameters is derived. We provide conditional and unconditional (cross)-moments implied by the model, as well as the limiting distribution of the series. A Monte Carlo experiment investigates the finite sample properties of our estimation...
Efficient algorithms for flow simulation related to nuclear reactor safety
Gornak, Tatiana
2013-01-01
Safety analysis is of ultimate importance for operating Nuclear Power Plants (NPP). The overall modeling and simulation of physical and chemical processes occuring in the course of an accident is an interdisciplinary problem and has origins in fluid dynamics, numerical analysis, reactor technology and computer programming. The aim of the study is therefore to create the foundations of a multi-dimensional non-isothermal fluid model for a NPP containment and software tool based on it. The numerical simulations allow to analyze and predict the behavior of NPP systems under different working and accident conditions, and to develop proper action plans for minimizing the risks of accidents, and/or minimizing the consequences of possible accidents. A very large number of scenarios have to be simulated, and at the same time acceptable accuracy for the critical parameters, such as radioactive pollution, temperature, etc., have to be achieved. The existing software tools are either too slow, or not accurate enough. This thesis deals with developing customized algorithm and software tools for simulation of isothermal and non-isothermal flows in a containment pool of NPP. Requirements to such a software are formulated, and proper algorithms are presented. The goal of the work is to achieve a balance between accuracy and speed of calculation, and to develop customized algorithm for this special case. Different discretization and solution approaches are studied and those which correspond best to the formulated goal are selected, adjusted, and when possible, analysed. Fast directional splitting algorithm for Navier-Stokes equations in complicated geometries, in presence of solid and porous obstacles, is in the core of the algorithm. Developing suitable pre-processor and customized domain decomposition algorithms are essential part of the overall algorithm amd software. Results from numerical simulations in test geometries and in real geometries are presented and discussed.
Expansion around half-integer values, binomial sums, and inverse binomial sums
Weinzierl, Stefan
2004-01-01
I consider the expansion of transcendental functions in a small parameter around rational numbers. This includes in particular the expansion around half-integer values. I present algorithms which are suitable for an implementation within a symbolic computer algebra system. The method is an extension of the technique of nested sums. The algorithms allow in addition the evaluation of binomial sums, inverse binomial sums and generalizations thereof
Winding numbers in homotopy theory from integers to reals
Mekhfi, M.
1993-07-01
In Homotopy Theory (HT) we define paths on a given topological space. Closed paths prove to be construction elements of a group (the fundamental group) Π 1 and carry charges, the winding numbers. The charges are integers as they indicate how many times closed paths encircle a given hole (or set of holes). Open paths as they are defined in (HT) do not possess any groups structure and as such they are less useful in topology. In the present paper we enlarge the concept of a path in such a way that both types of paths do possess a group structure. In this broad sense we have two fundamental groups the Π i = Z group and the SO(2) group of rotations but the latter has the global property that there is no periodicity in the rotation angle. There is also two charge operators W and W λ whose eigenvalues are either integers or reals depending respectively on the paths being closed or open. Also the SO(2) group and the real charge operator W λ are not independently defined but directly related respectively to the Π i group and to the integer charge operator W. Thus well defined links can be established between seemingly different groups and charges. (author). 3 refs, 1 fig
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Stochastic integer programming by dynamic programming
Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.
1988-01-01
Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to
Optimization of Product Instantiation using Integer Programming
van den Broek, P.M.; Botterweck, Goetz; Jarzabek, Stan; Kishi, Tomoji
2010-01-01
We show that Integer Programming (IP) can be used as an optimization technique for the instantiation of products of feature models. This is done by showing that the constraints of feature models can be written in linear form. As particular IP technique, we use Gomory cutting planes. We have applied
Predecessor queries in dynamic integer sets
Brodal, Gerth Stølting
1997-01-01
We consider the problem of maintaining a set of n integers in the range 0.2w–1 under the operations of insertion, deletion, predecessor queries, minimum queries and maximum queries on a unit cost RAM with word size w bits. Let f (n) be an arbitrary nondecreasing smooth function satisfying n...
Bivium as a Mixed Integer Programming Problem
Borghoff, Julia; Knudsen, Lars Ramkilde; Stolpe, Mathias
2009-01-01
over $GF(2)$ into a combinatorial optimization problem. We convert the Boolean equation system into an equation system over $\\mathbb{R}$ and formulate the problem of finding a $0$-$1$-valued solution for the system as a mixed-integer programming problem. This enables us to make use of several...
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
Integer Flows and Circuit Covers of Graphs and Signed Graphs
Cheng, Jian
The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it
Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol
Huang, Xiaowan; Singh, Anu; Smolka, Scott A.
2010-01-01
We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution
Binary GCD like Algorithms for Some Complex Quadratic Rings
Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg
2004-01-01
On the lines of the binary gcd algorithm for rational integers, algorithms for computing the gcd are presented for the ring of integers in where . Thus a binary gcd like algorithm is presented for a unique factorization domain which is not Euclidean (case d=-19). Together with the earlier known b...
A formalization of the Berlekamp-Zassenhaus factorization algorithm
Divasón, Jose; Joosten, Sebastiaan; Thiemann, René; Yamada, Akihisa
2017-01-01
We formalize the Berlekamp–Zassenhaus algorithm for factoring square-free integer polynomials in Isabelle/HOL. We further adapt an existing formalization of Yun’s square-free factorization algorithm to integer polynomials, and thus provide an efficient and certified factorization algorithm for
Efficient parallel algorithms for string editing and related problems
Apostolico, Alberto; Atallah, Mikhail J.; Larmore, Lawrence; Mcfaddin, H. S.
1988-01-01
The string editing problem for input strings x and y consists of transforming x into y by performing a series of weighted edit operations on x of overall minimum cost. An edit operation on x can be the deletion of a symbol from x, the insertion of a symbol in x or the substitution of a symbol x with another symbol. This problem has a well known O((absolute value of x)(absolute value of y)) time sequential solution (25). The efficient Program Requirements Analysis Methods (PRAM) parallel algorithms for the string editing problem are given. If m = ((absolute value of x),(absolute value of y)) and n = max((absolute value of x),(absolute value of y)), then the CREW bound is O (log m log n) time with O (mn/log m) processors. In all algorithms, space is O (mn).
Algorithms and Data Structures for Strings, Points and Integers
Vind, Søren Juhl
a string under a compression scheme that can achieve better than entropy compression. We also give improved results for the substring concatenation problem, and an extension of our structure can be used as a black box to get an improved solution to the previously studied dynamic text static pattern problem....... Compressed Pattern Matching. In the streaming model, input data flows past a client one item at a time, but is far too large for the client to store. The annotated streaming model extends the model by introducing a powerful but untrusted annotator (representing “the cloud”) that can annotate input elements...... with additional information, sent as one-way communication to the client. We generalize the annotated streaming model to be able to solve problems on strings and present a data structure that allows us to trade off client space and annotation size. This lets us exploit the power of the annotator. In compressed...
What Else Is Decidable about Integer Arrays?
Habermehl, Peter; Iosif, Radu; Vojnar, Tomáš
2008-01-01
International audience; We introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the ∃ * ∀ * first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular, using our logic, one can express constraints on consecutive elements of arrays (e.g. ∀i. 0 ≤ i < n → a[i + 1]...
Fractional and integer charges from Levinson's theorem
Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.
2001-01-01
We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson's theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a (1+1)-dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions
Integer factoring and modular square roots
Jeřábek, Emil
2016-01-01
Roč. 82, č. 2 (2016), s. 380-394 ISSN 0022-0000 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : integer factoring * quadratic residue * PPA Subject RIV: BA - General Mathematics Impact factor: 1.678, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022000015000768
On the price of integer charge quarks
Okun, L.B.; Voloshin, M.B.; Zakharov, V.I.
1979-01-01
Implication of the integer charge quark (ICQ) model with a broken SU(3)xU(1) gauge symmetry for interactions in the leptonic sector were discussed. In this model there should be very large deviations of e + e - →μ + μ - annihilation processes in the GeV region from the standard QED behaviour. Such deviations seem to be completely excluded by existing data. Therefore it is concluded that the ICQ model is ruled out
Qualitative Reasoning about Relative Directions : Computational Complexity and Practical Algorithm
Lee, Jae Hee
2013-01-01
Qualitative spatial reasoning (QSR) enables cognitive agents to reason about space using abstract symbols. Among several aspects of space (e.g., topology, direction, distance) directional information is useful for agents navigating in space. Observers typically describe their environment by specifying the relative directions in which they see other objects or other people from their point of view. As such, qualitative reasoning about relative directions, i.e., determining whether a given stat...
An implementation of the relational k-means algorithm
Szalkai, Balázs
2013-01-01
A C# implementation of a generalized k-means variant called relational k-means is described here. Relational k-means is a generalization of the well-known k-means clustering method which works for non-Euclidean scenarios as well. The input is an arbitrary distance matrix, as opposed to the traditional k-means method, where the clustered objects need to be identified with vectors.
Lee, Jung Uk; Sun, Ju Young; Won, Mooncheol
2013-01-01
In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ∼ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner
Lee, Jung Uk [Samsung Electroics, Suwon (Korea, Republic of); Sun, Ju Young; Won, Mooncheol [Chungnam Nat' l Univ., Daejeon (Korea, Republic of)
2013-12-15
In this paper, we propose a real-time algorithm for estimating the relative position of a person with respect to a robot (camera) using a monocular camera. The algorithm detects the head and shoulder regions of a person using HOG (Histogram of Oriented Gradient) feature vectors and an SVM (Support Vector Machine) classifier. The size and location of the detected area are used for calculating the relative distance and angle between the person and the camera on a robot. To increase the speed of the algorithm, we use a GPU and NVIDIA's CUDA library; the resulting algorithm speed is ∼ 15 Hz. The accuracy of the algorithm is compared with the output of a SICK laser scanner.
Integer Set Compression and Statistical Modeling
Larsson, N. Jesper
2014-01-01
enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...
Integer programming of cement distribution by train
Indarsih
2018-01-01
Cement industry in Central Java distributes cement by train to meet daily demand in Yogyakarta and Central Java area. There are five destination stations. For each destination station, there is a warehouse to load cements. Decision maker of cement industry have a plan to redesign the infrastructure and transportation system. The aim is to determine how many locomotives, train wagons, and containers and how to arrange train schedules with subject to the delivery time. For this purposes, we consider an integer programming to minimize the total of operational cost. Further, we will discuss a case study and the solution the problem can be calculated by LINGO software.
A relation between irreversibility and unlinkability for biometric template protection algorithms
井沼, 学
2014-01-01
For biometric recognition systems, privacy protection of enrolled users’ biometric information, which are called biometric templates, is a critical problem. Recently, various template protection algorithms have been proposed and many related previous works have discussed security notions to evaluate the protection performance of these protection algorithms. Irreversibility and unlinkability are important security notions discussed in many related previous works. In this paper, we prove that u...
Split diversity in constrained conservation prioritization using integer linear programming.
Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt
2015-01-01
Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.
Learning oncogenetic networks by reducing to mixed integer linear programming.
Shahrabi Farahani, Hossein; Lagergren, Jens
2013-01-01
Cancer can be a result of accumulation of different types of genetic mutations such as copy number aberrations. The data from tumors are cross-sectional and do not contain the temporal order of the genetic events. Finding the order in which the genetic events have occurred and progression pathways are of vital importance in understanding the disease. In order to model cancer progression, we propose Progression Networks, a special case of Bayesian networks, that are tailored to model disease progression. Progression networks have similarities with Conjunctive Bayesian Networks (CBNs) [1],a variation of Bayesian networks also proposed for modeling disease progression. We also describe a learning algorithm for learning Bayesian networks in general and progression networks in particular. We reduce the hard problem of learning the Bayesian and progression networks to Mixed Integer Linear Programming (MILP). MILP is a Non-deterministic Polynomial-time complete (NP-complete) problem for which very good heuristics exists. We tested our algorithm on synthetic and real cytogenetic data from renal cell carcinoma. We also compared our learned progression networks with the networks proposed in earlier publications. The software is available on the website https://bitbucket.org/farahani/diprog.
Network interdiction and stochastic integer programming
2003-01-01
On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesús De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part....
Metamorphic Testing Integer Overflow Faults of Mission Critical Program: A Case Study
Zhanwei Hui
2013-01-01
Full Text Available For mission critical programs, integer overflow is one of the most dangerous faults. Different testing methods provide several effective ways to detect the defect. However, it is hard to validate the testing outputs, because the oracle of testing is not always available or too expensive to get, unless the program throws an exception obviously. In the present study, the authors conduct a case study, where the authors apply a metamorphic testing (MT method to detect the integer overflow defect and alleviate the oracle problem in testing critical program of Traffic Collision Avoidance System (TCAS. Experimental results show that, in revealing typical integer mutations, compared with traditional safety property testing method, MT with a novel symbolic metamorphic relation is more effective than the traditional method in some cases.
Bresolin, Davide; Goranko, Valentin; Montanari, Angelo
2009-01-01
Interval temporal logics are based on interval structures over linearly (or partially) ordered domains, where time intervals, rather than time instants, are the primitive ontological entities. In this paper we introduce and study Right Propositional Neighborhood Logic over natural numbers...... with integer constraints for interval lengths, which is a propositional interval temporal logic featuring a modality for the 'right neighborhood' relation between intervals and explicit integer constraints for interval lengths. We prove that it has the bounded model property with respect to ultimately periodic...
THE PHENOMENON OF HALF-INTEGER SPIN, QUATERNIONS, AND PAULI MATRICES
FERNANDO R. GONZÁLEZ DÍAZ
2017-01-01
Full Text Available In this paper the phenomenon of half-integer spin exemplification Paul AM Dirac made with a pair of scissors, an elastic cord and chair play. Four examples in which the same phenomenon appears and the algebraic structure of quaternions is related to one of the examples are described. Mathematical proof of the phenomenon using known topological and algebraic results are explained. The basic results of algebraic structures are described quaternions H , and an intrinsic relationship with the phenomenon half-integer spin and the Pauli matrices is established.
Tyszka Apoloniusz
2017-03-01
Full Text Available Let Bn = {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}} denote the system of equations in the variables x1, . . . , xn. For a positive integer n, let _(n denote the smallest positive integer b such that for each system of equations S ⊆ Bn with a unique solution in positive integers x1, . . . , xn, this solution belongs to [1, b]n. Let g(1 = 1, and let g(n + 1 = 22g(n for every positive integer n. We conjecture that ξ (n 6 g(2n for every positive integer n. We prove: (1 the function ξ : N \\ {0} → N \\ {0} is computable in the limit; (2 if a function f : N \\ {0} → N \\ {0} has a single-fold Diophantine representation, then there exists a positive integer m such that f (n m; (3 the conjecture implies that there exists an algorithm which takes as input a Diophantine equation D(x1, . . . , xp = 0 and returns a positive integer d with the following property: for every positive integers a1, . . . , ap, if the tuple (a1, . . . , ap solely solves the equation D(x1, . . . , xp = 0 in positive integers, then a1, . . . , ap 6 d; (4 the conjecture implies that if a set M ⊆ N has a single-fold Diophantine representation, then M is computable; (5 for every integer n > 9, the inequality ξ (n < (22n−5 − 12n−5 + 1 implies that 22n−5 + 1 is composite.
Network Model for The Problem of Integer Balancing of a Fourdimensional Matrix
A. V. Smirnov
2016-01-01
Full Text Available The problem of integer balancing of a four-dimensional matrix is studied. The elements of the inner part (all four indices are greater than zero of the given real matrix are summed in each direction and each two- and three-dimensional section of the matrix; the total sum is also found. These sums are placed into the elements where one or more indices are equal to zero (according to the summing directions. The problem is to find an integer matrix of the same structure, which can be produced from the initial one by replacing the elements with the largest previous or the smallest following integer. At the same time, the element with four zero indices should be produced with standard rules of rounding - off. In the article the problem of finding the maximum multiple flow in the network of any natural multiplicity is also studied. There are arcs of three types: ordinary arcs, multiple arcs and multi-arcs. Each multiple and multi-arc is a union of linked arcs, which are adjusted with each other. The network constructing rules are described. The definitions of a divisible network and some associated subjects are stated. There are defined the basic principles for reducing the integer balancing problem of an -dimensional matrix ( to the problem of finding the maximum flow in a divisible multiple network of multiplicity . There are stated the rules for reducing the four-dimensional balancing problem to the maximum flow problem in the network of multiplicity 5. The algorithm of finding the maximum flow, which meets the solvability conditions for the integer balancing problem, is formulated for such a network.
Kae Y. Foo
2010-01-01
Full Text Available The task of localizing underwater assets involves the relative localization of each unit using only pairwise distance measurements, usually obtained from time-of-arrival or time-delay-of-arrival measurements. In the fluctuating underwater environment, a complete set of pair-wise distance measurements can often be difficult to acquire, thus hindering a straightforward closed-form solution in deriving the assets' relative coordinates. An iterative multidimensional scaling approach is presented based upon a weighted-majorization algorithm that tolerates missing or inaccurate distance measurements. Substantial modifications are proposed to optimize the algorithm, while the effects of refractive propagation paths are considered. A parametric study of the algorithm based upon simulation results is shown. An acoustic field-trial was then carried out, presenting field measurements to highlight the practical implementation of this algorithm.
Mandell, Jacob C; Khurana, Bharti; Folio, Les R; Hyun, Hyewon; Smith, Stacy E; Dunne, Ruth M; Andriole, Katherine P
2017-06-01
A methodology is described using Adobe Photoshop and Adobe Extendscript to process DICOM images with a Relative Attenuation-Dependent Image Overlay (RADIO) algorithm to visualize the full dynamic range of CT in one view, without requiring a change in window and level settings. The potential clinical uses for such an algorithm are described in a pictorial overview, including applications in emergency radiology, oncologic imaging, and nuclear medicine and molecular imaging.
Parallel Integer Factorization Using Quadratic Forms
McMath, Stephen S
2005-01-01
.... In 1975, Daniel Shanks used class group infrastructure to modify the Morrison-Brillhart algorithm and develop Square Forms Factorization, but he never published his work on this algorithm or provided...
Improved multivariate polynomial factoring algorithm
Wang, P.S.
1978-01-01
A new algorithm for factoring multivariate polynomials over the integers based on an algorithm by Wang and Rothschild is described. The new algorithm has improved strategies for dealing with the known problems of the original algorithm, namely, the leading coefficient problem, the bad-zero problem and the occurrence of extraneous factors. It has an algorithm for correctly predetermining leading coefficients of the factors. A new and efficient p-adic algorithm named EEZ is described. Bascially it is a linearly convergent variable-by-variable parallel construction. The improved algorithm is generally faster and requires less store then the original algorithm. Machine examples with comparative timing are included
Cause and effect analysis by fuzzy relational equations and a genetic algorithm
Rotshtein, Alexander P.; Posner, Morton; Rakytyanska, Hanna B.
2006-01-01
This paper proposes using a genetic algorithm as a tool to solve the fault diagnosis problem. The fault diagnosis problem is based on a cause and effect analysis which is formally described by fuzzy relations. Fuzzy relations are formed on the basis of expert assessments. Application of expert fuzzy relations to restore and identify the causes through the observed effects requires the solution to a system of fuzzy relational equations. In this study this search for a solution amounts to solving a corresponding optimization problem. An optimization algorithm is based on the application of genetic operations of crossover, mutation and selection. The genetic algorithm suggested here represents an application in expert systems of fault diagnosis and quality control
On the convex hull of the simple integer recourse objective function
Klein Haneveld, Willem K.; Stougie, L.; van der Vlerk, Maarten H.
1995-01-01
We consider the objective function of a simple integer recourse problem with fixed technology matrix. Using properties of the expected value function, we prove a relation between the convex hull of this function and the expected value function of a continuous simple recourse program. We present an
On Secure Two-Party Integer Division
Dahl, Morten; Ning, Chao; Toft, Tomas
2012-01-01
{\\mathcal{O}}(\\ell)$ arithmetic operations on encrypted values (secure addition and multiplication) in $\\ensuremath{\\mathcal{O}}(1)$ rounds. This is the most efficient constant-rounds solution to date. The second protocol requires only $\\ensuremath{\\mathcal{O}} \\left( (\\log^2 \\ell)(\\kappa + \\operatorname{loglog} \\ell) \\right......We consider the problem of secure integer division: given two Paillier encryptions of ℓ-bit values n and d, determine an encryption of $\\lfloor \\frac{n}{d}\\rfloor$ without leaking any information about n or d. We propose two new protocols solving this problem. The first requires $\\ensuremath......)$ arithmetic operations in $\\ensuremath{\\mathcal{O}}(\\log^2 \\ell)$ rounds, where κ is a correctness parameter. Theoretically, this is the most efficient solution to date as all previous solutions have required Ω(ℓ) operations. Indeed, the fact that an o(ℓ) solution is possible at all is highly surprising....
Multi-task feature selection in microarray data by binary integer programming.
Lan, Liang; Vucetic, Slobodan
2013-12-20
A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.
Binary Positive Semidefinite Matrices and Associated Integer Polytopes
Letchford, Adam N.; Sørensen, Michael Malmros
2012-01-01
We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...
Garbage-free reversible constant multipliers for arbitrary integers
Mogensen, Torben Ægidius
2013-01-01
We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants...
A fixed recourse integer programming approach towards a ...
Regardless of the success that linear programming and integer linear programming has had in applications in engineering, business and economics, one has to challenge the assumed reality that these optimization models represent. In this paper the certainty assumptions of an integer linear program application is ...
Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum
Carlos Fernando Díaz Meza
2016-01-01
Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.
Harmonic oscillator states with integer and non-integer orbital angular momentum
Land, Martin
2011-01-01
We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non
Control Algorithms Along Relative Equilibria of Underactuated Lagrangian Systems on Lie Groups
Nordkvist, Nikolaj; Bullo, F.
2008-01-01
We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...
Control algorithms along relative equilibria of underactuated Lagrangian systems on Lie groups
Nordkvist, Nikolaj; Bullo, Francesco
2007-01-01
We present novel algorithms to control underactuated mechanical systems. For a class of invariant systems on Lie groups, we design iterative small-amplitude control forces to accelerate along, decelerate along, and stabilize relative equilibria. The technical approach is based upon a perturbation...
The integer quantum hall effect revisited
Michalakis, Spyridon [Los Alamos National Laboratory; Hastings, Matthew [Q STATION, CALIFORNIA
2009-01-01
For T - L x L a finite subset of Z{sup 2}, let H{sub o} denote a Hamiltonian on T with periodic boundary conditions and finite range, finite strength intetactions and a unique ground state with a nonvanishing spectral gap. For S {element_of} T, let q{sub s} denote the charge at site s and assume that the total charge Q = {Sigma}{sub s {element_of} T} q{sub s} is conserved. Using the local charge operators q{sub s}, we introduce a boundary magnetic flux in the horizontal and vertical direction and allow the ground state to evolve quasiadiabatically around a square of size one magnetic flux, in flux space. At the end of the evolution we obtain a trivial Berry phase, which we compare, via a method reminiscent of Stokes Theorem. to the Berry phase obtained from an evolution around an exponentially small loop near the origin. As a result, we show, without any averaging assumption, that the Hall conductance is quantized in integer multiples of e{sup 2}/h up to exponentially small corrections of order e{sup -L/{zeta}}, where {zeta}, is a correlation length that depends only on the gap and the range and strength of the interactions.
Diversity and non-integer differentiation for system dynamics
Oustaloup, Alain
2014-01-01
Based on a structured approach to diversity, notably inspired by various forms of diversity of natural origins, Diversity and Non-integer Derivation Applied to System Dynamics provides a study framework to the introduction of the non-integer derivative as a modeling tool. Modeling tools that highlight unsuspected dynamical performances (notably damping performances) in an ""integer"" approach of mechanics and automation are also included. Written to enable a two-tier reading, this is an essential resource for scientists, researchers, and industrial engineers interested in this subject area. Ta
Schultz, Christopher J.; Carey, Lawrence D.; Cecil, Daniel J.; Bateman, Monte
2012-01-01
The lightning jump algorithm has a robust history in correlating upward trends in lightning to severe and hazardous weather occurrence. The algorithm uses the correlation between the physical principles that govern an updraft's ability to produce microphysical and kinematic conditions conducive for electrification and its role in the development of severe weather conditions. Recent work has demonstrated that the lightning jump algorithm concept holds significant promise in the operational realm, aiding in the identification of thunderstorms that have potential to produce severe or hazardous weather. However, a large amount of work still needs to be completed in spite of these positive results. The total lightning jump algorithm is not a stand-alone concept that can be used independent of other meteorological measurements, parameters, and techniques. For example, the algorithm is highly dependent upon thunderstorm tracking to build lightning histories on convective cells. Current tracking methods show that thunderstorm cell tracking is most reliable and cell histories are most accurate when radar information is incorporated with lightning data. In the absence of radar data, the cell tracking is a bit less reliable but the value added by the lightning information is much greater. For optimal application, the algorithm should be integrated with other measurements that assess storm scale properties (e.g., satellite, radar). Therefore, the recent focus of this research effort has been assessing the lightning jump's relation to thunderstorm tracking, meteorological parameters, and its potential uses in operational meteorology. Furthermore, the algorithm must be tailored for the optically-based GOES-R Geostationary Lightning Mapper (GLM), as what has been observed using Very High Frequency Lightning Mapping Array (VHF LMA) measurements will not exactly translate to what will be observed by GLM due to resolution and other instrument differences. Herein, we present some of
An n -material thresholding method for improving integerness of solutions in topology optimization
Watts, Seth; Engineering); Tortorelli, Daniel A.; Engineering)
2016-01-01
It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, the canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.
Nakamura, Yoshimasa; Sekido, Hiroto
2018-04-01
The finite or the semi-infinite discrete-time Toda lattice has many applications to various areas in applied mathematics. The purpose of this paper is to review how the Toda lattice appears in the Lanczos algorithm through the quotient-difference algorithm and its progressive form (pqd). Then a multistep progressive algorithm (MPA) for solving linear systems is presented. The extended Lanczos parameters can be given not by computing inner products of the extended Lanczos vectors but by using the pqd algorithm with highly relative accuracy in a lower cost. The asymptotic behavior of the pqd algorithm brings us some applications of MPA related to eigenvectors.
An Improved Algorithm for Generating Database Transactions from Relational Algebra Specifications
Daniel J. Dougherty
2010-03-01
Full Text Available Alloy is a lightweight modeling formalism based on relational algebra. In prior work with Fisler, Giannakopoulos, Krishnamurthi, and Yoo, we have presented a tool, Alchemy, that compiles Alloy specifications into implementations that execute against persistent databases. The foundation of Alchemy is an algorithm for rewriting relational algebra formulas into code for database transactions. In this paper we report on recent progress in improving the robustness and efficiency of this transformation.
Maximum likelihood pedigree reconstruction using integer linear programming.
Cussens, James; Bartlett, Mark; Jones, Elinor M; Sheehan, Nuala A
2013-01-01
Large population biobanks of unrelated individuals have been highly successful in detecting common genetic variants affecting diseases of public health concern. However, they lack the statistical power to detect more modest gene-gene and gene-environment interaction effects or the effects of rare variants for which related individuals are ideally required. In reality, most large population studies will undoubtedly contain sets of undeclared relatives, or pedigrees. Although a crude measure of relatedness might sometimes suffice, having a good estimate of the true pedigree would be much more informative if this could be obtained efficiently. Relatives are more likely to share longer haplotypes around disease susceptibility loci and are hence biologically more informative for rare variants than unrelated cases and controls. Distant relatives are arguably more useful for detecting variants with small effects because they are less likely to share masking environmental effects. Moreover, the identification of relatives enables appropriate adjustments of statistical analyses that typically assume unrelatedness. We propose to exploit an integer linear programming optimisation approach to pedigree learning, which is adapted to find valid pedigrees by imposing appropriate constraints. Our method is not restricted to small pedigrees and is guaranteed to return a maximum likelihood pedigree. With additional constraints, we can also search for multiple high-probability pedigrees and thus account for the inherent uncertainty in any particular pedigree reconstruction. The true pedigree is found very quickly by comparison with other methods when all individuals are observed. Extensions to more complex problems seem feasible. © 2012 Wiley Periodicals, Inc.
Fixed-point image orthorectification algorithms for reduced computational cost
French, Joseph Clinton
Imaging systems have been applied to many new applications in recent years. With the advent of low-cost, low-power focal planes and more powerful, lower cost computers, remote sensing applications have become more wide spread. Many of these applications require some form of geolocation, especially when relative distances are desired. However, when greater global positional accuracy is needed, orthorectification becomes necessary. Orthorectification is the process of projecting an image onto a Digital Elevation Map (DEM), which removes terrain distortions and corrects the perspective distortion by changing the viewing angle to be perpendicular to the projection plane. Orthorectification is used in disaster tracking, landscape management, wildlife monitoring and many other applications. However, orthorectification is a computationally expensive process due to floating point operations and divisions in the algorithm. To reduce the computational cost of on-board processing, two novel algorithm modifications are proposed. One modification is projection utilizing fixed-point arithmetic. Fixed point arithmetic removes the floating point operations and reduces the processing time by operating only on integers. The second modification is replacement of the division inherent in projection with a multiplication of the inverse. The inverse must operate iteratively. Therefore, the inverse is replaced with a linear approximation. As a result of these modifications, the processing time of projection is reduced by a factor of 1.3x with an average pixel position error of 0.2% of a pixel size for 128-bit integer processing and over 4x with an average pixel position error of less than 13% of a pixel size for a 64-bit integer processing. A secondary inverse function approximation is also developed that replaces the linear approximation with a quadratic. The quadratic approximation produces a more accurate approximation of the inverse, allowing for an integer multiplication calculation
Bilevel programming problems theory, algorithms and applications to energy networks
Dempe, Stephan; Pérez-Valdés, Gerardo A; Kalashnykova, Nataliya; Kalashnikova, Nataliya
2015-01-01
This book describes recent theoretical findings relevant to bilevel programming in general, and in mixed-integer bilevel programming in particular. It describes recent applications in energy problems, such as the stochastic bilevel optimization approaches used in the natural gas industry. New algorithms for solving linear and mixed-integer bilevel programming problems are presented and explained.
Fractal electrodynamics via non-integer dimensional space approach
Tarasov, Vasily E.
2015-09-01
Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.
Denny Nurkertamanda
2012-02-01
Full Text Available In paper cutting industry, cutting stock problem (CSP is a problem about how to cutting paper depends on quantity and specify of the demand. CSP related with dimension of pieces and rectangle which is use. In this research, we use one type dimension of rectangle and six type dimension of pieces and cutting all paper by two stage guillotine pattern. The major focus of this research is to formulate the paper cutting problem using integer linear programming. Cutting large objects into small pieces can be found in many industries. Inevitably, the cutting processes produce trim loss. On the rectangle we can put some different dimension of pieces then we can make certain pattern. The modification pattern have to produce minimum trim loss. Thus to develop optimal cutting pattern to reduce trim loss is the main purpose of this research. To reach that, we use branch and bound algorithm then continued with sensitivity analysis. From the research, we get optimum patten of paper cutting and quantity production for that pattern. Decision for quantity production depends on average demand every day. Beside that, we also give some alternative rules of production system which can take by the company. Keywords : Cutting stock problem, two stage guillotine pattern, branch and bound algorithm
Trial latencies estimation of event-related potentials in EEG by means of genetic algorithms
Da Pelo, P.; De Tommaso, M.; Monaco, A.; Stramaglia, S.; Bellotti, R.; Tangaro, S.
2018-04-01
Objective. Event-related potentials (ERPs) are usually obtained by averaging thus neglecting the trial-to-trial latency variability in cognitive electroencephalography (EEG) responses. As a consequence the shape and the peak amplitude of the averaged ERP are smeared and reduced, respectively, when the single-trial latencies show a relevant variability. To date, the majority of the methodologies for single-trial latencies inference are iterative schemes providing suboptimal solutions, the most commonly used being the Woody’s algorithm. Approach. In this study, a global approach is developed by introducing a fitness function whose global maximum corresponds to the set of latencies which renders the trial signals most aligned as possible. A suitable genetic algorithm has been implemented to solve the optimization problem, characterized by new genetic operators tailored to the present problem. Main results. The results, on simulated trials, showed that the proposed algorithm performs better than Woody’s algorithm in all conditions, at the cost of an increased computational complexity (justified by the improved quality of the solution). Application of the proposed approach on real data trials, resulted in an increased correlation between latencies and reaction times w.r.t. the output from RIDE method. Significance. The above mentioned results on simulated and real data indicate that the proposed method, providing a better estimate of single-trial latencies, will open the way to more accurate study of neural responses as well as to the issue of relating the variability of latencies to the proper cognitive and behavioural correlates.
Identifying and Analyzing Novel Epilepsy-Related Genes Using Random Walk with Restart Algorithm
Wei Guo
2017-01-01
Full Text Available As a pathological condition, epilepsy is caused by abnormal neuronal discharge in brain which will temporarily disrupt the cerebral functions. Epilepsy is a chronic disease which occurs in all ages and would seriously affect patients’ personal lives. Thus, it is highly required to develop effective medicines or instruments to treat the disease. Identifying epilepsy-related genes is essential in order to understand and treat the disease because the corresponding proteins encoded by the epilepsy-related genes are candidates of the potential drug targets. In this study, a pioneering computational workflow was proposed to predict novel epilepsy-related genes using the random walk with restart (RWR algorithm. As reported in the literature RWR algorithm often produces a number of false positive genes, and in this study a permutation test and functional association tests were implemented to filter the genes identified by RWR algorithm, which greatly reduce the number of suspected genes and result in only thirty-three novel epilepsy genes. Finally, these novel genes were analyzed based upon some recently published literatures. Our findings implicate that all novel genes were closely related to epilepsy. It is believed that the proposed workflow can also be applied to identify genes related to other diseases and deepen our understanding of the mechanisms of these diseases.
Fockedey, N.
2005-01-01
The present chapter aims to be a literature review on the brackish water mysid Neomysis integer, with focus on its feeding ecology, life history aspects, behaviour, physiology, biochemical composition, bioenergetics and ecotoxico10gy. All records on the species, available from literature, are listed as an appendix. The review aims to identify the state-of-the-art and the gaps in our knowledge on the species. Abundant information is available on the distribution patterns of Neomysis integer in...
Integers without large prime factors in short intervals: Conditional ...
α > 0 the interval (X, X +. √. X(log X)1/2+o(1)] contains an integer having no prime factor exceeding Xα for all X sufficiently large. Keywords. Smooth numbers; Riemann zeta function. 1. Introduction. Suppose P (n) denotes the largest prime factor of an integer n > 1 and let us declare. P(1) = 1. Given a positive real number y, ...
Fast parallel algorithms that compute transitive closure of a fuzzy relation
Kreinovich, Vladik YA.
1993-01-01
The notion of a transitive closure of a fuzzy relation is very useful for clustering in pattern recognition, for fuzzy databases, etc. The original algorithm proposed by L. Zadeh (1971) requires the computation time O(n(sup 4)), where n is the number of elements in the relation. In 1974, J. C. Dunn proposed a O(n(sup 2)) algorithm. Since we must compute n(n-1)/2 different values s(a, b) (a not equal to b) that represent the fuzzy relation, and we need at least one computational step to compute each of these values, we cannot compute all of them in less than O(n(sup 2)) steps. So, Dunn's algorithm is in this sense optimal. For small n, it is ok. However, for big n (e.g., for big databases), it is still a lot, so it would be desirable to decrease the computation time (this problem was formulated by J. Bezdek). Since this decrease cannot be done on a sequential computer, the only way to do it is to use a computer with several processors working in parallel. We show that on a parallel computer, transitive closure can be computed in time O((log(sub 2)(n))2).
Rinto Yusriski
2015-09-01
Full Text Available This research discusses an integer batch scheduling problems for a single-machine with position-dependent batch processing time due to the simultaneous effect of learning and forgetting. The decision variables are the number of batches, batch sizes, and the sequence of the resulting batches. The objective is to minimize total actual flow time, defined as total interval time between the arrival times of parts in all respective batches and their common due date. There are two proposed algorithms to solve the problems. The first is developed by using the Integer Composition method, and it produces an optimal solution. Since the problems can be solved by the first algorithm in a worst-case time complexity O(n2n-1, this research proposes the second algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical experiments show that the heuristic algorithm gives outstanding results.
Discovering workflow nets using integer linear programming
van Zelst, S.J.; van Dongen, B.F.; van der Aalst, W.M.P.; Verbeek, H.M.W.
Process mining is concerned with the analysis, understanding and improvement of business processes. Process discovery, i.e. discovering a process model based on an event log, is considered the most challenging process mining task. State-of-the-art process discovery algorithms only discover local
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-03-27
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.
Blackwell, William C., Jr.
2004-01-01
In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.
The use of genetic algorithms with niching methods in nuclear reactor related problems
Sacco, Wagner Figueiredo
2000-03-01
Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to test existing niching techniques and two methods introduced herein, bearing in mind their eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. Tests are performed using widely known test functions and their results show that the new methods are quite promising, specially in real world problems like the nuclear reactor core reload. (author)
An improved exploratory search technique for pure integer linear programming problems
Fogle, F. R.
1990-01-01
The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.
Optimization in engineering models and algorithms
Sioshansi, Ramteen
2017-01-01
This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...
A hardware-oriented concurrent TZ search algorithm for High-Efficiency Video Coding
Doan, Nghia; Kim, Tae Sung; Rhee, Chae Eun; Lee, Hyuk-Jae
2017-12-01
High-Efficiency Video Coding (HEVC) is the latest video coding standard, in which the compression performance is double that of its predecessor, the H.264/AVC standard, while the video quality remains unchanged. In HEVC, the test zone (TZ) search algorithm is widely used for integer motion estimation because it effectively searches the good-quality motion vector with a relatively small amount of computation. However, the complex computation structure of the TZ search algorithm makes it difficult to implement it in the hardware. This paper proposes a new integer motion estimation algorithm which is designed for hardware execution by modifying the conventional TZ search to allow parallel motion estimations of all prediction unit (PU) partitions. The algorithm consists of the three phases of zonal, raster, and refinement searches. At the beginning of each phase, the algorithm obtains the search points required by the original TZ search for all PU partitions in a coding unit (CU). Then, all redundant search points are removed prior to the estimation of the motion costs, and the best search points are then selected for all PUs. Compared to the conventional TZ search algorithm, experimental results show that the proposed algorithm significantly decreases the Bjøntegaard Delta bitrate (BD-BR) by 0.84%, and it also reduces the computational complexity by 54.54%.
Spreading Sequences Generated Using Asymmetrical Integer-Number Maps
V. Sebesta
2007-09-01
Full Text Available Chaotic sequences produced by piecewise linear maps can be transformed to binary sequences. The binary sequences are optimal for the asynchronous DS/CDMA systems in case of certain shapes of the maps. This paper is devoted to the one-to-one integer-number maps derived from the suitable asymmetrical piecewise linear maps. Such maps give periodic integer-number sequences, which can be transformed to the binary sequences. The binary sequences produced via proposed modified integer-number maps are perfectly balanced and embody good autocorrelation and crosscorrelation properties. The number of different binary sequences is sizable. The sequences are suitable as spreading sequences in DS/CDMA systems.
Optimal Diet Planning for Eczema Patient Using Integer Programming
Zhen Sheng, Low; Sufahani, Suliadi
2018-04-01
Human diet planning is conducted by choosing appropriate food items that fulfill the nutritional requirements into the diet formulation. This paper discusses the application of integer programming to build the mathematical model of diet planning for eczema patients. The model developed is used to solve the diet problem of eczema patients from young age group. The integer programming is a scientific approach to select suitable food items, which seeks to minimize the costs, under conditions of meeting desired nutrient quantities, avoiding food allergens and getting certain foods into the diet that brings relief to the eczema conditions. This paper illustrates that the integer programming approach able to produce the optimal and feasible solution to deal with the diet problem of eczema patient.
A parallel line sieve for the GNFS Algorithm
Sameh Daoud; Ibrahim Gad
2014-01-01
RSA is one of the most important public key cryptosystems for information security. The security of RSA depends on Integer factorization problem, it relies on the difficulty of factoring large integers. Much research has gone into problem of factoring a large number. Due to advances in factoring algorithms and advances in computing hardware the size of the number that can be factorized increases exponentially year by year. The General Number Field Sieve algorithm (GNFS) is currently the best ...
XU Benzhu; ZHU Jiman; LIU Xiaoping
2012-01-01
Identifying each process and their constraint relations from the complex wiring harness drawings quickly and accurately is the basis for formulating process routes. According to the knowledge of automotive wiring harness and the characteristics of wiring harness components, we established the model of wiring harness graph. Then we research the algorithm of identifying technology processes automatically, finally we describe the relationships between processes by introducing the constraint matrix, which is in or- der to lay a good foundation for harness process planning and production scheduling.
Deng, Zhiwei; Li, Xicai; Shi, Junsheng; Huang, Xiaoqiao; Li, Feiyan
2018-01-01
Depth measurement is the most basic measurement in various machine vision, such as automatic driving, unmanned aerial vehicle (UAV), robot and so on. And it has a wide range of use. With the development of image processing technology and the improvement of hardware miniaturization and processing speed, real-time depth measurement using dual cameras has become a reality. In this paper, an embedded AM5728 and the ordinary low-cost dual camera is used as the hardware platform. The related algorithms of dual camera calibration, image matching and depth calculation have been studied and implemented on the hardware platform, and hardware design and the rationality of the related algorithms of the system are tested. The experimental results show that the system can realize simultaneous acquisition of binocular images, switching of left and right video sources, display of depth image and depth range. For images with a resolution of 640 × 480, the processing speed of the system can be up to 25 fps. The experimental results show that the optimal measurement range of the system is from 0.5 to 1.5 meter, and the relative error of the distance measurement is less than 5%. Compared with the PC, ARM11 and DMCU hardware platforms, the embedded AM5728 hardware is good at meeting real-time depth measurement requirements in ensuring the image resolution.
An algorithm for intelligent sorting of CT-related dose parameters
Cook, Tessa S.; Zimmerman, Stefan L.; Steingal, Scott; Boonn, William W.; Kim, Woojin
2011-03-01
Imaging centers nationwide are seeking innovative means to record and monitor CT-related radiation dose in light of multiple instances of patient over-exposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose-length product (DLP)-an indirect estimate of radiation dose-requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, Arterial could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired, and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.
An algorithm for intelligent sorting of CT-related dose parameters.
Cook, Tessa S; Zimmerman, Stefan L; Steingall, Scott R; Boonn, William W; Kim, Woojin
2012-02-01
Imaging centers nationwide are seeking innovative means to record and monitor computed tomography (CT)-related radiation dose in light of multiple instances of patient overexposure to medical radiation. As a solution, we have developed RADIANCE, an automated pipeline for extraction, archival, and reporting of CT-related dose parameters. Estimation of whole-body effective dose from CT dose length product (DLP)--an indirect estimate of radiation dose--requires anatomy-specific conversion factors that cannot be applied to total DLP, but instead necessitate individual anatomy-based DLPs. A challenge exists because the total DLP reported on a dose sheet often includes multiple separate examinations (e.g., chest CT followed by abdominopelvic CT). Furthermore, the individual reported series DLPs may not be clearly or consistently labeled. For example, "arterial" could refer to the arterial phase of the triple liver CT or the arterial phase of a CT angiogram. To address this problem, we have designed an intelligent algorithm to parse dose sheets for multi-series CT examinations and correctly separate the total DLP into its anatomic components. The algorithm uses information from the departmental PACS to determine how many distinct CT examinations were concurrently performed. Then, it matches the number of distinct accession numbers to the series that were acquired and anatomically matches individual series DLPs to their appropriate CT examinations. This algorithm allows for more accurate dose analytics, but there remain instances where automatic sorting is not feasible. To ultimately improve radiology patient care, we must standardize series names and exam names to unequivocally sort exams by anatomy and correctly estimate whole-body effective dose.
R. Krishnamoorthy
2012-05-01
Full Text Available In this paper, a new lossy to lossless image coding scheme combined with Orthogonal Polynomials Transform and Integer Wavelet Transform is proposed. The Lifting Scheme based Integer Wavelet Transform (LS-IWT is first applied on the image in order to reduce the blocking artifact and memory demand. The Embedded Zero tree Wavelet (EZW subband coding algorithm is used in this proposed work for progressive image coding which achieves efficient bit rate reduction. The computational complexity of lower subband coding of EZW algorithm is reduced in this proposed work with a new integer based Orthogonal Polynomials transform coding. The normalization and mapping are done on the subband of the image for exploiting the subjective redundancy and the zero tree structure is obtained for EZW coding and so the computation complexity is greatly reduced in this proposed work. The experimental results of the proposed technique also show that the efficient bit rate reduction is achieved for both lossy and lossless compression when compared with existing techniques.
Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin
2017-12-06
Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these
Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping
2010-09-01
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.
A mixed integer linear program for an integrated fishery | Hasan ...
... and labour allocation of quota based integrated fisheries. We demonstrate the workability of our model with a numerical example and sensitivity analysis based on data obtained from one of the major fisheries in New Zealand. Keywords: mixed integer linear program, fishing, trawler scheduling, processing, quotas ORiON: ...
Triangular Numbers, Gaussian Integers, and KenKen
Watkins, John J.
2012-01-01
Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…
Rigorous solution to Bargmann-Wigner equation for integer spin
Huang Shi Zhong; Wu Ning; Zheng Zhi Peng
2002-01-01
A rigorous method is developed to solve the Bargamann-Wigner equation for arbitrary integer spin in coordinate representation in a step by step way. The Bargmann-Wigner equation is first transformed to a form easier to solve, the new equations are then solved rigorously in coordinate representation, and the wave functions in a closed form are thus derived
Selecting Tools to Model Integer and Binomial Multiplication
Pratt, Sarah Smitherman; Eddy, Colleen M.
2017-01-01
Mathematics teachers frequently provide concrete manipulatives to students during instruction; however, the rationale for using certain manipulatives in conjunction with concepts may not be explored. This article focuses on area models that are currently used in classrooms to provide concrete examples of integer and binomial multiplication. The…
A property of assignment type mixed integer linear programming problems
Benders, J.F.; van Nunen, J.A.E.E.
1982-01-01
In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is
Integer programming for the generalized high school timetabling problem
Kristiansen, Simon; Sørensen, Matias; Stidsen, Thomas Riis
2015-01-01
, the XHSTT format serves as a common ground for researchers within this area. This paper describes the first exact method capable of handling an arbitrary instance of the XHSTT format. The method is based on a mixed-integer linear programming (MIP) model, which is solved in two steps with a commercial...
Designing fractional factorial split-plot experiments using integer programming
Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat
2011-01-01
factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...
Solving the Water Jugs Problem by an Integer Sequence Approach
Man, Yiu-Kwong
2012-01-01
In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…
Integers without Large Prime Factors in Short Intervals: Conditional ...
... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 5. Integers without Large Prime Factors in Short Intervals: Conditional Results. Goutam Pal Satadal Ganguly. Volume 120 Issue 5 November 2010 pp 515-524 ...
Sheaves in Elementary Mathematics: The case of positive integer numbers
Luna-Torres, Joaquin
2015-01-01
We aim to use the concept of sheaf to establish a link between certain aspects of the set of positive integers numbers, a topic corresponding to the elementary mathematics, and some fundamental ideas of contemporary mathematics. We hope that this type of approach helps the school students to restate some problems of elementary mathematics in an environment deeper and suitable for its study.
Note on Integer-Valued Bilinear Time Series Models
Drost, F.C.; van den Akker, R.; Werker, B.J.M.
2007-01-01
Summary. This note reconsiders the nonnegative integer-valued bilinear processes introduced by Doukhan, Latour, and Oraichi (2006). Using a hidden Markov argument, we extend their result of the existence of a stationary solution for the INBL(1,0,1,1) process to the class of superdiagonal INBL(p; q;
Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.
Legendre, Audrey; Angel, Eric; Tahi, Fariza
2018-01-15
RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .
A Separation Algorithm for Sources with Temporal Structure Only Using Second-order Statistics
J.G. Wang
2013-09-01
Full Text Available Unlike conventional blind source separation (BSS deals with independent identically distributed (i.i.d. sources, this paper addresses the separation from mixtures of sources with temporal structure, such as linear autocorrelations. Many sequential extraction algorithms have been reported, resulting in inevitable cumulated errors introduced by the deflation scheme. We propose a robust separation algorithm to recover original sources simultaneously, through a joint diagonalizer of several average delayed covariance matrices at positions of the optimal time delay and its integers. The proposed algorithm is computationally simple and efficient, since it is based on the second-order statistics only. Extensive simulation results confirm the validity and high performance of the algorithm. Compared with related extraction algorithms, its separation signal-to-noise rate for a desired source can reach 20dB higher, and it seems rather insensitive to the estimation error of the time delay.
An algorithm to construct Groebner bases for solving integration by parts relations
Smirnov, Alexander V.
2006-01-01
This paper is a detailed description of an algorithm based on a generalized Buchberger algorithm for constructing Groebner-type bases associated with polynomials of shift operators. The algorithm is used to calculate Feynman integrals and has proved to be efficient in several complicated cases
Some improvements on adaptive genetic algorithms for reliability-related applications
Ye Zhisheng; Li Zhizhong; Xie Min
2010-01-01
Adaptive genetic algorithms (GAs) have been shown to be able to improve GA performance in reliability-related optimization studies. However, there are different ways to implement adaptive GAs, some of which are even in conflict with each other. In this study, a simple parameter-adjusting method using mean and variance of each generation is introduced. This method is used to compare two of such conflicting adaptive GA methods: GAs with increasing mutation rate and decreasing crossover rate and GAs with decreasing mutation rate and increasing crossover rate. The illustrative examples indicate that adaptive GAs with decreasing mutation rate and increasing crossover rate finally yield better results. Furthermore, a population disturbance method is proposed to avoid local optimum solutions. This idea is similar to exotic migration to a tribal society. To solve the problem of large solution space, a variable roughening method is also embedded into GA. Two case studies are presented to demonstrate the effectiveness of the proposed method.
Some improvements on adaptive genetic algorithms for reliability-related applications
Ye Zhisheng, E-mail: yez@nus.edu.s [Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119 260 (Singapore); Li Zhizhong [Department of Industrial Engineering, Tsinghua University, beijing 100084 (China); Xie Min [Department of Industrial and Systems Engineering, National University of Singapore, Singapore 119 260 (Singapore)
2010-02-15
Adaptive genetic algorithms (GAs) have been shown to be able to improve GA performance in reliability-related optimization studies. However, there are different ways to implement adaptive GAs, some of which are even in conflict with each other. In this study, a simple parameter-adjusting method using mean and variance of each generation is introduced. This method is used to compare two of such conflicting adaptive GA methods: GAs with increasing mutation rate and decreasing crossover rate and GAs with decreasing mutation rate and increasing crossover rate. The illustrative examples indicate that adaptive GAs with decreasing mutation rate and increasing crossover rate finally yield better results. Furthermore, a population disturbance method is proposed to avoid local optimum solutions. This idea is similar to exotic migration to a tribal society. To solve the problem of large solution space, a variable roughening method is also embedded into GA. Two case studies are presented to demonstrate the effectiveness of the proposed method.
Positive Integer Solutions of Certain Diophantine Equations
29
International Institute of Information Technology. Bhubaneswar-751003, India ... the recurrence relation Bn+1 = 6Bn −Bn-1 with B0 = 0 and B1 = 1, where Bn is the nth balancing number. For each ...... bonacci Quarterly, 29 (1) (1991), 24-29.
Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.
2014-01-01
We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…
Load Frequency Control in Microgrids Based on a Stochastic Non-Integer Controller
Khooban, Mohammad-Hassan; Niknam, Taher; Shasadeghi, Mokhtar
2018-01-01
of battery energy storage systems (BESS) can solve the unbalance effects between the load and supply of an isolated MG, their high cost and tendency toward degradation are restrictive factors, which call for the use of alternative power balancing options. In recent years, the concept of utilizing the BESSs...... of EVs, also known as vehicle-to-grid (V2G) concept, for frequency support of MGs has attracted a lot of attention. In order to allow the V2G controller operate optimally under a wide range of operation conditions caused by the intermittent behavior of renewable energy resources (RESs), a new multi...... hole optimization algorithm (MBHA) is utilized for the adaptive tuning of the non-integer fuzzy PID controller coefficients. The performance of the proposed LFC is evaluated by using real world wind and solar radiation data. Finally, the extensive studies and hardware-in-the-loop (HIL) simulations...
Advances in mixed-integer programming methods for chemical production scheduling.
Velez, Sara; Maravelias, Christos T
2014-01-01
The goal of this paper is to critically review advances in the area of chemical production scheduling over the past three decades and then present two recently proposed solution methods that have led to dramatic computational enhancements. First, we present a general framework and problem classification and discuss modeling and solution methods with an emphasis on mixed-integer programming (MIP) techniques. Second, we present two solution methods: (a) a constraint propagation algorithm that allows us to compute parameters that are then used to tighten MIP scheduling models and (b) a reformulation that introduces new variables, thus leading to effective branching. We also present computational results and an example illustrating how these methods are implemented, as well as the resulting enhancements. We close with a discussion of open research challenges and future research directions.
Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software
Jeff Linderoth
2011-11-06
the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.
A fuzzy mixed integer programming for marketing planning
Abolfazl Danaei
2014-03-01
Full Text Available One of the primary concerns to market a product is to find appropriate channel to target customers. The recent advances on information technology have created new products with tremendous opportunities. This paper presents a mixed integer programming technique based on McCarthy's 4PS to locate suitable billboards for marketing newly introduced IPHONE product. The paper considers two types of information including age and income and tries to find the best places such that potential consumers aged 25-35 with high income visit the billboards and the cost of advertisement is minimized. The model is formulated in terms of mixed integer programming and it has been applied for potential customers who live in city of Tabriz, Iran. Using a typical software package, the model detects appropriate places in various parts of the city.
Linear Independence of -Logarithms over the Eisenstein Integers
Peter Bundschuh
2010-01-01
Full Text Available For fixed complex with ||>1, the -logarithm is the meromorphic continuation of the series ∑>0/(−1,||1,≠,2,3,…. In 2004, Tachiya showed that this is true in the Subcase =ℚ, ∈ℤ, =−1, and the present authors extended this result to arbitrary integer from an imaginary quadratic number field , and provided a quantitative version. In this paper, the earlier method, in particular its arithmetical part, is further developed to answer the above question in the affirmative if is the Eisenstein number field √ℚ(−3, an integer from , and a primitive third root of unity. Under these conditions, the linear independence holds also for 1,(,(−1, and both results are quantitative.
McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David
2018-07-01
A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Application of Integer and Fractional Models in Electrochemical Systems
Isabel S. Jesus
2012-01-01
Full Text Available This paper describes the use of integer and fractional electrical elements, for modelling two electrochemical systems. A first type of system consists of botanical elements and a second type is implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in the frequency domain, and the pros and cons of adopting fractional-order electrical components for modelling these systems are compared.
A Mixed Integer Programming for Port Anzali Development Plan
Mahdieh Allahviranloo
2009-01-01
This paper introduces a mixed integer programming model to find the optimum development plan for port Anzali. The model minimizes total system costs taking into account both port infrastructure costs and shipping costs. Due to the multipurpose function of the port, the model consists of 1020 decision variables and 2490 constraints. Results of the model determine the optimum number of berths that should be constructed in each period and for each type of cargo. In addition to, the results of se...
Applications exponential approximation by integer shifts of Gaussian functions
S. M. Sitnik
2013-01-01
Full Text Available In this paper we consider approximations of functions using integer shifts of Gaussians – quadratic exponentials. A method is proposed to find coefficients of node functions by solving linear systems of equations. The explicit formula for the determinant of the system is found, based on it solvability of linear system under consideration is proved and uniqueness of its solution. We compare results with known ones and briefly indicate applications to signal theory.
Penempatan Optimal Phasor Measurement Unit (PMU) Dengan Integer Programming
Amrulloh, Yunan Helmy
2013-01-01
Phasor Measurement Unit (PMU) merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP) yang akan memberikan variabel dengan pilihan nilai (0,1) yang menu...
Relaxation and decomposition methods for mixed integer nonlinear programming
Nowak, Ivo; Bank, RE
2005-01-01
This book presents a comprehensive description of efficient methods for solving nonconvex mixed integer nonlinear programs, including several numerical and theoretical results, which are presented here for the first time. It contains many illustrations and an up-to-date bibliography. Because on the emphasis on practical methods, as well as the introduction into the basic theory, the book is accessible to a wide audience. It can be used both as a research and as a graduate text.
Multiplicity of summands in the random partitions of an integer
We prove that the probability that there is a summand of multiplicity j in any randomly chosen partition or composition of an integer n goes to zero asymptotically with n provided j is larger than a critical value. As a corollary, we strengthen a result due to Erdös and Lehner (Duke. Math. J. 8 (1941) 335–345) that concerns the ...
Population transfer HMQC for half-integer quadrupolar nuclei
Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul
2015-01-01
This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., 27 Al- 17 O). In this case, the build-up is strongly affected by relaxation for small T 2 ′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO 4 -14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the 31 P-( 27 Al) experiments
Pinning mode of integer quantum Hall Wigner crystal of skyrmions
Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.
2009-03-01
Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).
Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami
2017-08-01
Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.
Two related algorithms for root-to-frontier tree pattern matching
Cleophas, L.G.W.A.; Hemerik, C.; Zwaan, G.
2006-01-01
Tree pattern matching (TPM) algorithms on ordered, ranked trees play an important role in applications such as compilers and term rewriting systems. Many TPM algorithms appearing in the literature are based on tree automata. For efficiency, these automata should be deterministic, yet deterministic
Screening synteny blocks in pairwise genome comparisons through integer programming.
Tang, Haibao; Lyons, Eric; Pedersen, Brent; Schnable, James C; Paterson, Andrew H; Freeling, Michael
2011-04-18
It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events. We have formulated the synteny block screening as an optimization problem known as "Binary Integer Programming" (BIP), which is solved using existing linear programming solvers. The computer program QUOTA-ALIGN performs this task by creating a clear objective function that maximizes the compatible set of synteny blocks under given constraints on overlaps and depths (corresponding to the duplication history in respective genomes). Such a procedure is useful for any pairwise synteny alignments, but is most useful in lineages affected by multiple WGDs, like plants or fish lineages. For example, there should be a 1:2 ploidy relationship between genome A and B if genome B had an independent WGD subsequent to the divergence of the two genomes. We show through simulations and real examples using plant genomes in the rosid superorder that the quota
Friedman, Lee; Rigas, Ioannis; Abdulin, Evgeny; Komogortsev, Oleg V
2018-05-15
Nystrӧm and Holmqvist have published a method for the classification of eye movements during reading (ONH) (Nyström & Holmqvist, 2010). When we applied this algorithm to our data, the results were not satisfactory, so we modified the algorithm (now the MNH) to better classify our data. The changes included: (1) reducing the amount of signal filtering, (2) excluding a new type of noise, (3) removing several adaptive thresholds and replacing them with fixed thresholds, (4) changing the way that the start and end of each saccade was determined, (5) employing a new algorithm for detecting PSOs, and (6) allowing a fixation period to either begin or end with noise. A new method for the evaluation of classification algorithms is presented. It was designed to provide comprehensive feedback to an algorithm developer, in a time-efficient manner, about the types and numbers of classification errors that an algorithm produces. This evaluation was conducted by three expert raters independently, across 20 randomly chosen recordings, each classified by both algorithms. The MNH made many fewer errors in determining when saccades start and end, and it also detected some fixations and saccades that the ONH did not. The MNH fails to detect very small saccades. We also evaluated two additional algorithms: the EyeLink Parser and a more current, machine-learning-based algorithm. The EyeLink Parser tended to find more saccades that ended too early than did the other methods, and we found numerous problems with the output of the machine-learning-based algorithm.
RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION
Viterna, L. A.
1994-01-01
RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm
Luo, Ai-Jing; Chang, Wei-Fu; Xin, Zi-Rui; Ling, Hao; Li, Jun-Jie; Dai, Ping-Ping; Deng, Xuan-Tong; Zhang, Lei; Li, Shao-Gang
2018-01-01
AIM To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. METHODS The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. RESULTS The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. CONCLUSION The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund. PMID:29487824
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm.
Luo, Ai-Jing; Chang, Wei-Fu; Xin, Zi-Rui; Ling, Hao; Li, Jun-Jie; Dai, Ping-Ping; Deng, Xuan-Tong; Zhang, Lei; Li, Shao-Gang
2018-01-01
To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP) and build up an area-specified senile cataract diagnosis related group (DRG) of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID) model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund.
Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm
Ai-Jing Luo
2018-02-01
Full Text Available AIM: To figure out the contributed factors of the hospitalization expenses of senile cataract patients (HECP and build up an area-specified senile cataract diagnosis related group (DRG of Shanghai thereby formulating the reference range of HECP and providing scientific basis for the fair use and supervision of the health care insurance fund. METHODS: The data was collected from the first page of the medical records of 22 097 hospitalized patients from tertiary hospitals in Shanghai from 2010 to 2012 whose major diagnosis were senile cataract. Firstly, we analyzed the influence factors of HECP using univariate and multivariate analysis. DRG grouping was conducted according to the exhaustive Chi-squared automatic interaction detector (E-CHAID model, using HECP as target variable. Finally we evaluated the grouping results using non-parametric test such as Kruskal-Wallis H test, RIV, CV, etc. RESULTS: The 6 DRGs were established as well as criterion of HECP, using age, sex, type of surgery and whether complications/comorbidities occurred as the key variables of classification node of senile cataract cases. CONCLUSION: The grouping of senile cataract cases based on E-CHAID algorithm is reasonable. And the criterion of HECP based on DRG can provide a feasible way of management in the fair use and supervision of medical insurance fund.
Introducing difference recurrence relations for faster semi-global alignment of long sequences.
Suzuki, Hajime; Kasahara, Masahiro
2018-02-19
The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .
Origin and diversity of an underutilized fruit tree crop, cempedak (Artocarpus integer, Moraceae).
Wang, Maria M H; Gardner, Elliot M; Chung, Richard C K; Chew, Ming Yee; Milan, Abd Rahman; Pereira, Joan T; Zerega, Nyree J C
2018-06-06
Underutilized crops and their wild relatives are important resources for crop improvement and food security. Cempedak [Artocarpus integer (Thunb). Merr.] is a significant crop in Malaysia but underutilized elsewhere. Here we performed molecular characterization of cempedak and its putative wild relative bangkong (Artocarpus integer (Thunb). Merr. var. silvestris Corner) to address questions regarding the origin and diversity of cempedak. Using data from 12 microsatellite loci, we assessed the genetic diversity and genetic/geographic structure for 353 cempedak and 175 bangkong accessions from Malaysia and neighboring countries and employed clonal analysis to characterize cempedak cultivars. We conducted haplotype network analyses on the trnH-psbA region in a subset of these samples. We also analyzed key vegetative characters that reportedly differentiate cempedak and bangkong. We show that cempedak and bangkong are sister taxa and distinct genetically and morphologically, but the directionality of domestication origin is unclear. Genetic diversity was generally higher in bangkong than in cempedak. We found a distinct genetic cluster for cempedak from Borneo as compared to cempedak from Peninsular Malaysia. Finally, cempedak cultivars with the same names did not always share the same genetic fingerprint. Cempedak origins are complex, with likely admixture and hybridization with bangkong, warranting further investigation. We provide a baseline of genetic diversity of cempedak and bangkong in Malaysia and found that germplasm collections in Malaysia represent diverse coverage of the four cempedak genetic clusters detected. © 2018 Botanical Society of America.
Algorithms for Scheduling and Network Problems
1991-09-01
time. We already know, by Lemma 2.2.1, that WOPT = O(log( mpU )), so if we could solve this integer program optimally we would be done. However, the...Folydirat, 15:177-191, 1982. [6] I.S. Belov and Ya. N. Stolin. An algorithm in a single path operations scheduling problem. In Mathematical Economics and
Complex dynamics of the integer quantum Hall effect
Trugman, S.A.; Nicopoulos, V.N.; Florida Univ., Gainesville, FL
1991-01-01
We investigate both classical and quantum potential scattering in two dimensions in a magnetic field, with applications to the integer quantum Hall effect. Classical scattering is complex, due in one case to the approach of scattering states to an infinite number of bound states. We show that bound states are generic, and occur for all but extremely smooth scattering potentials (|rvec ∇| → 0). Quantum scattering follows the classical behavior rather closely, exhibiting sharp resonances rather than classical bound states. Extended scatterers provide an explanation for the breakdown of the QHE at a comparatively small Hall voltage. 16 refs., 14 figs
Equitably Distributing Quality of Marine Security Guards Using Integer Programming
2013-03-01
ARB BALMOD COM DoD DoS E HAF HQ 10 IP IQ LP MOS MCESG MSG MSGAT NLP NMC OSAB PCS PP&O Q RSO SAl SD SE SNCO T-ODP LIST OF...and Eurasia 2 Abu Dhabi, United Arab Emirates India and the Middle East 3 Bangkok, Thailand East Asia and Pacific 4 Fort Lauderdale, Florida South...integer, goal, and quadratic programming. LP models and nonlinear programming ( NLP ) models are very similar in model development for both maximizing
Gaussian free fields at the integer quantum Hall plateau transition
Bondesan, R., E-mail: roberto.bondesan@phys.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP (United Kingdom); Wieczorek, D.; Zirnbauer, M.R. [Institut für Theoretische Physik, Universität zu Köln, Zülpicher Straße 77, 50937 Köln (Germany)
2017-05-15
In this work we put forward an effective Gaussian free field description of critical wavefunctions at the transition between plateaus of the integer quantum Hall effect. To this end, we expound our earlier proposal that powers of critical wave intensities prepared via point contacts behave as pure scaling fields obeying an Abelian operator product expansion. Our arguments employ the framework of conformal field theory and, in particular, lead to a multifractality spectrum which is parabolic. We also derive a number of old and new identities that hold exactly at the lattice level and hinge on the correspondence between the Chalker–Coddington network model and a supersymmetric vertex model.
Binary integer programming solution for troubleshooting with dependent actions
Lín, Václav
2017-01-01
Roč. 53, č. 3 (2017), s. 493-512 ISSN 0023-5954 R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : binary integer programming * decision-theoretic troubleshooting Subject RIV: JD - Computer Applications, Robotics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.379, year: 2016 http://library.utia.cas.cz/separaty/2017/MTR/lin-0476547.pdf
Integer channels in nonuniform non-equilibrium 2D systems
Shikin, V.
2018-01-01
We discuss the non-equilibrium properties of integer channels in nonuniform 2D electron (hole) systems in the presence of a strong magnetic field. The results are applied to a qualitative explanation of the Corbino disk current-voltage characteristics (IVC) in the quantum Hall effect (QHE) regime. Special consideration is paid to the so-called "QHE breakdown" effect, which is readily observed in both the Hall bar and Corbino geometries of the tested cells. The QHE breakdown is especially evident in the Corbino samples, allowing for a more in-depth study of these effects.
Gys Albertus Marthinus Meiring
2015-12-01
Full Text Available In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.
Meiring, Gys Albertus Marthinus; Myburgh, Hermanus Carel
2015-12-04
In this paper the various driving style analysis solutions are investigated. An in-depth investigation is performed to identify the relevant machine learning and artificial intelligence algorithms utilised in current driver behaviour and driving style analysis systems. This review therefore serves as a trove of information, and will inform the specialist and the student regarding the current state of the art in driver style analysis systems, the application of these systems and the underlying artificial intelligence algorithms applied to these applications. The aim of the investigation is to evaluate the possibilities for unique driver identification utilizing the approaches identified in other driver behaviour studies. It was found that Fuzzy Logic inference systems, Hidden Markov Models and Support Vector Machines consist of promising capabilities to address unique driver identification algorithms if model complexity can be reduced.
Yamada, Takashi
2017-12-01
This study computationally examines (1) how the behaviors of subjects are represented, (2) whether the classification of subjects is related to the scale of the game, and (3) what kind of behavioral models are successful in small-sized lowest unique integer games (LUIGs). In a LUIG, N (>= 3) players submit a positive integer up to M(> 1) and the player choosing the smallest number not chosen by anyone else wins. For this purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses the behavioral data obtained in the laboratory experiment by Yamada and Hanaki (Physica A 463, pp. 88–102, 2016). For computational experiments, the author calibrates the parameters of typical learning models for each subject and then pursues round robin competitions. The main findings are in the following: First, the subjects who played not differently from the mixed-strategy Nash equilibrium (MSE) prediction tended to made use of not only their choices but also the game outcomes. Meanwhile those who deviated from the MSE prediction took care of only their choices as the complexity of the game increased. Second, the heterogeneity of player strategies depends on both the number of players (N) and the upper limit (M). Third, when groups consist of different agents like in the earlier laboratory experiment, sticking behavior is quite effective to win.
Takashi Yamada
2017-12-01
Full Text Available This study computationally examines (1 how the behaviors of subjects are represented, (2 whether the classification of subjects is related to the scale of the game, and (3 what kind of behavioral models are successful in small-sized lowest unique integer games (LUIGs. In a LUIG, N (≥ 3 players submit a positive integer up to M(> 1 and the player choosing the smallest number not chosen by anyone else wins. For this purpose, the author considers four LUIGs with N = {3, 4} and M = {3, 4} and uses the behavioral data obtained in the laboratory experiment by Yamada and Hanaki [1]. For computational experiments, the author calibrates the parameters of typical learning models for each subject and then pursues round robin competitions. The main findings are in the following: First, the subjects who played not differently from the mixed-strategy Nash equilibrium (MSE prediction tended to made use of not only their choices but also the game outcomes. Meanwhile those who deviated from the MSE prediction took care of only their choices as the complexity of the game increased. Second, the heterogeneity of player strategies depends on both the number of players (N and the upper limit (M. Third, when groups consist of different agents like in the earlier laboratory experiment, sticking behavior is quite effective to win.
Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment
Karimzadehgan, Maryam; Zhai, ChengXiang
2011-01-01
Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970
Alvarado, Michelle; Ntaimo, Lewis
2018-03-01
Oncology clinics are often burdened with scheduling large volumes of cancer patients for chemotherapy treatments under limited resources such as the number of nurses and chairs. These cancer patients require a series of appointments over several weeks or months and the timing of these appointments is critical to the treatment's effectiveness. Additionally, the appointment duration, the acuity levels of each appointment, and the availability of clinic nurses are uncertain. The timing constraints, stochastic parameters, rising treatment costs, and increased demand of outpatient oncology clinic services motivate the need for efficient appointment schedules and clinic operations. In this paper, we develop three mean-risk stochastic integer programming (SIP) models, referred to as SIP-CHEMO, for the problem of scheduling individual chemotherapy patient appointments and resources. These mean-risk models are presented and an algorithm is devised to improve computational speed. Computational results were conducted using a simulation model and results indicate that the risk-averse SIP-CHEMO model with the expected excess mean-risk measure can decrease patient waiting times and nurse overtime when compared to deterministic scheduling algorithms by 42 % and 27 %, respectively.
Searching for optimal integer solutions to set partitioning problems using column generation
Bredström, David; Jörnsten, Kurt; Rönnqvist, Mikael
2007-01-01
We describe a new approach to produce integer feasible columns to a set partitioning problem directly in solving the linear programming (LP) relaxation using column generation. Traditionally, column generation is aimed to solve the LP relaxation as quick as possible without any concern of the integer properties of the columns formed. In our approach we aim to generate the columns forming the optimal integer solution while simultaneously solving the LP relaxation. By this we can re...
A new Tevatron Collider working point near the integer
Johnson, R.P.; Zhang, P.
1989-12-01
It is well established that in hadron colliders the beam-beam interaction is more harmful in the presence of machine resonances of the form mν x + nν y = p, where |m| + |n| is the order of the resonance. Since the closest a resonance line can be to the integer stopband is 1/order, the closer the working point is to the integer, the fewer lower order resonances there are to enhance the beam-beam effects. A shift of the working point of the Tevatron from 19.4 to values near 19 and 20 has been studied. Problems with closed orbit control, dispersion matching, and matched low β insertions were considered. An excellent solution for the B0 insertion was found which has an improved β*. A new injection optics allows a transition to the low β optics which is much easier than the one now used. Results from the first machine studies demonstrate the ability to control the orbit with tunes of 19.03 horizontal and 20.03 vertical. Further studies require the activation of additional quadrupole compensation circuits. 4 refs. , 2 figs
Using Integer Programming for Airport Service Planning in Staff Scheduling
W.H. Ip
2010-09-01
Full Text Available Reliability and safety in flight is extremely necessary and that depend on the adoption of proper maintenance system. Therefore, it is essential for aircraft maintenance companies to perform the manpower scheduling efficiently. One of the objectives of this paper is to provide an Integer Programming approach to determine the optimal solutions to aircraft maintenance planning and scheduling and hence the planning and scheduling processes can become more efficient and effective. Another objective is to develop a set of computational schedules for maintenance manpower to cover all scheduled flights. In this paper, a sequential methodology consisting of 3 stages is proposed. They are initial maintenance demand schedule, the maintenance pairing and the maintenance group(s assignment. Since scheduling would split up into different stages, different mathematical techniques have been adopted to cater for their own problem characteristics. Microsoft Excel would be used. Results from the first stage and second stage would be inputted into integer programming model using Microsoft Excel Solver to find the optimal solution. Also, Microsoft Excel VBA is used for devising a scheduling system in order to reduce the manual process and provide a user friendly interface. For the results, all can be obtained optimal solution and the computation time is reasonable and acceptable. Besides, the comparison of the peak time and non-peak time is discussed.
Direct comparison of fractional and integer quantized Hall resistance
Ahlers, Franz J.; Götz, Martin; Pierz, Klaus
2017-08-01
We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3 ± 6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.
Serpolla, A.; Bonafoni, S.; Basili, P.; Biondi, R.; Arino, O.
2009-01-01
This paper presents the validation results of ENVISAT MERIS and TERRA MODIS retrieval algorithms for atmospheric Water Vapour Content (WVC) estimation in clear sky condition on land. The MERIS algorithms exploits the radiance ratio of the absorbing channel at 900 nm with the almost absorption-free reference at 890 nm, while the MODIS one is based on the ratio of measurements centred at near 0.905, 0.936, and 0.94 μm with atmospheric window reflectance at 0.865 and 1.24 μm. The first test was performed in the Mediterranean area using WVC provided from both ECMWF and AERONET. As a second step, the performances of the algorithms were tested exploiting WVC computed from radio sounding (RAOBs)in the North East Australia. The different comparisons with respect to reference WVC values showed an overestimation of WVC by MODIS (root mean square error percentage greater than 20%) and an acceptable performance of MERIS algorithms (root mean square error percentage around 10%) [it
Spinor Field Realizations of the half-integer $W_{2,s}$ Strings
Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong
2008-01-01
The grading Becchi-Rouet-Stora-Tyutin (BRST) method gives a way to construct the integer $W_{2,s}$ strings, where the BRST charge is written as $Q_B=Q_0+Q_1$. Using this method, we reconstruct the nilpotent BRST charges $Q_{0}$ for the integer $W_{2,s}$ strings and the half-integer $W_{2,s}$ strings. Then we construct the exact grading BRST charge with spinor fields and give the new realizations of the half-integer $W_{2,s}$ strings for the cases of $s=3/2$, 5/2, and 7/2.
H Kazemipoor
2012-04-01
Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.
Low Cost Design of a Hybrid Architecture of Integer Inverse DCT for H.264, VC-1, AVS, and HEVC
Muhammad Martuza
2012-01-01
Full Text Available The paper presents a unified hybrid architecture to compute the 8×8 integer inverse discrete cosine transform (IDCT of multiple modern video codecs—AVS, H.264/AVC, VC-1, and HEVC (under development. Based on the symmetric structure of the matrices and the similarity in matrix operation, we develop a generalized “decompose and share” algorithm to compute the 8×8 IDCT. The algorithm is later applied to four video standards. The hardware-share approach ensures the maximum circuit reuse during the computation. The architecture is designed with only adders and shifters to reduce the hardware cost significantly. The design is implemented on FPGA and later synthesized in CMOS 0.18 um technology. The results meet the requirements of advanced video coding applications.
A novel Random Walk algorithm with Compulsive Evolution for heat exchanger network synthesis
Xiao, Yuan; Cui, Guomin
2017-01-01
Highlights: • A novel Random Walk Algorithm with Compulsive Evolution is proposed for HENS. • A simple and feasible evolution strategy is presented in RWCE algorithm. • The integer and continuous variables of HEN are optimized simultaneously in RWCE. • RWCE is demonstrated a relatively strong global search ability in HEN optimization. - Abstract: The heat exchanger network (HEN) synthesis can be characterized as highly combinatorial, nonlinear and nonconvex, contributing to unmanageable computational time and a challenge in identifying the global optimal network design. Stochastic methods are robust and show a powerful global optimizing ability. Based on the common characteristic of different stochastic methods, namely randomness, a novel Random Walk algorithm with Compulsive Evolution (RWCE) is proposed to achieve the best possible total annual cost of heat exchanger network with the relatively simple and feasible evolution strategy. A population of heat exchanger networks is first randomly initialized. Next, the heat load of heat exchanger for each individual is randomly expanded or contracted in order to optimize both the integer and continuous variables simultaneously and to obtain the lowest total annual cost. Besides, when individuals approach to local optima, there is a certain probability for them to compulsively accept the imperfect networks in order to keep the population diversity and ability of global optimization. The presented method is then applied to heat exchanger network synthesis cases from the literature to compare the best results published. RWCE consistently has a lower computed total annual cost compared to previously published results.
Ebenlendr, Tomáš; Sgall, J.
2015-01-01
Roč. 56, č. 1 (2015), s. 73-81 ISSN 1432-4350 R&D Projects: GA ČR GBP202/12/G061; GA AV ČR IAA100190902 Institutional support: RVO:67985840 Keywords : online algorithms * scheduling * makespan Subject RIV: IN - Informatics, Computer Science Impact factor: 0.719, year: 2015 http://link.springer.com/article/10.1007%2Fs00224-013-9451-6
Multiple Object Tracking Using the Shortest Path Faster Association Algorithm
Zhenghao Xi
2014-01-01
Full Text Available To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.
Fuadiah, N. F.; Suryadi, D.; Turmudi
2018-05-01
This study focuses on the design of a didactical situation in addition and subtraction involving negative integers at the pilot experiment phase. As we know, negative numbers become an obstacle for students in solving problems related to them. This study aims to create a didactical design that can assist students in understanding the addition and subtraction. Another expected result in this way is that students are introduced to the characteristics of addition and subtraction of integers. The design was implemented on 32 seventh grade students in one of the classes in a junior secondary school as the pilot experiment. Learning activities were observed thoroughly including the students’ responses that emerged during the learning activities. The written documentation of the students was also used to support the analysis in the learning activities. The results of the analysis showed that this method could help the students perform a large number of integer operations that could not be done with a number line. The teacher’s support as a didactical potential contract was still needed to encourage institutionalization processes. The results of the design analysis used as the basis of the revision are expected to be implemented by the teacher in the teaching experiment.
Kramer, T.
2006-01-01
I review some aspects of an alternative model of the quantum Hall effect, which is not based on the presence of disorder potentials. Instead, a quantization of the electronic drift current in the presence of crossed electric and magnetic fields is employed to construct a non-linear transport theory. Another important ingredient of the alternative theory is the coupling of the two-dimensional electron gas to the leads and the applied voltages. By working in a picture where the external voltages fix the chemical potential in the 2D subsystem, the experimentally observed linear relation between the voltage and the location of the quantum Hall plateaus finds an natural explanation. Also, the classical Hall effect emerges as a natural limit of the quantum Hall effect. For low temperatures (or high currents), a non-integer substructure splits higher Landau levels into sublevels. The appearance of substructure and non-integer plateaus in the resistivity is not linked to electron-electron interactions, but caused by the presence of a (linear) electric field. Some of the resulting fractions correspond exactly to half-integer plateaus. (Author)
He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei
2009-01-01
The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level.
Half-integer ghost states and simple BRST quantization
Marnelius, R.
1987-01-01
Quantum mechanical BRST systems are considered. As is well known an odd number of ghost operators has a representation with respect to the ghost number operator consisting of states with half-integer ghost numbers. Here it is shown that an eigenstate representation of the ghost operators requires a particular mixed Grassmann character of the states. It is also shown that such states always may be avoided provided only one starts from a lagrangian where the fundamental constraints are generated by Lagrange multipliers. In the latter case there also exists an anti-BRST charge. Some relevant properties of the different BRST approaches are displayed. The existence of inequivalent physical representations is demonstrated. (orig.)
An Integer Programming Approach to Solving Tantrix on Fixed Boards
Yushi Uno
2012-03-01
Full Text Available Tantrix (Tantrix R ⃝ is a registered trademark of Colour of Strategy Ltd. in New Zealand, and of TANTRIX JAPAN in Japan, respectively, under the license of M. McManaway, the inventor. is a puzzle to make a loop by connecting lines drawn on hexagonal tiles, and the objective of this research is to solve it by a computer. For this purpose, we first give a problem setting of solving Tantrix as making a loop on a given fixed board. We then formulate it as an integer program by describing the rules of Tantrix as its constraints, and solve it by a mathematical programming solver to have a solution. As a result, we establish a formulation that can solve Tantrix of moderate size, and even when the solutions are invalid only by elementary constraints, we achieved it by introducing additional constraints and re-solve it. By this approach we succeeded to solve Tantrix of size up to 60.
Penempatan Optimal Phasor Measurement Unit (PMU dengan Integer Programming
Yunan Helmy Amrulloh
2013-09-01
Full Text Available Phasor Measurement Unit (PMU merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP yang akan memberikan variabel dengan pilihan nilai (0,1 yang menunjukkan tempat yang harus dipasang PMU. Dalam tugas akhir ini, BIP diterapkan untuk menyelesaikan masalah penempatan PMU secara optimal pada sistem tenaga listrik Jawa-Bali 500 KV yang selanjutnya diterapkan dengan penambahan konsep incomplete observability. Hasil simulasi menunjukkan bahwa penerapan BIP pada sistem dengan incomplete observability memberikan jumlah PMU yang lebih sedikit dibandingkan dengan sistem tanpa konsep incomplete observability.
Developing optimal nurses work schedule using integer programming
Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena
2017-08-01
Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.
Mixed-integer programming methods for transportation and power generation problems
Damci Kurt, Pelin
This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.
Mixed Integer Programming and Heuristic Scheduling for Space Communication
Lee, Charles H.; Cheung, Kar-Ming
2013-01-01
Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.
A New GCD Algorithm for Quadratic Number Rings with Unique Factorization
Agarwal, Saurabh; Frandsen, Gudmund Skovbjerg
2006-01-01
We present an algorithm to compute a greatest common divisor of two integers in a quadratic number ring that is a unique factorization domain. The algorithm uses bit operations in a ring of discriminant Δ. This appears to be the first gcd algorithm of complexity o(n 2) for any fixed non-Euclidean...
Suppression of tunneling by interference in half-integer--spin particles
Loss, Daniel; DiVincenzo, David P.; Grinstein, G.
1992-01-01
Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.
Sabrewing: A lightweight architecture for combined floating-point and integer arithmetic
Bruintjes, Tom; Walters, K.H.G.; Gerez, Sabih H.; Molenkamp, Egbert; Smit, Gerardus Johannes Maria
In spite of the fact that floating-point arithmetic is costly in terms of silicon area, the joint design of hardware for floating-point and integer arithmetic is seldom considered. While components like multipliers and adders can potentially be shared, floating-point and integer units in
A note on number fields having reciprocal integer generators | Zaïmi ...
We prove that a totally complex algebraic number field K; having a conjugate which is not closed under complex conjugation, can be generated by a reciprocal integer, when the Galois group of its normal closure is contained in the hyperoctahedral group Bdeg(K)/2. Keywords: Reciprocal integers, unit primitive elements, ...
Mixed integer (0-1) fractional programming for decision support in paper production industry
Claassen, G.D.H.
2014-01-01
This paper presents an effective and efficient method for solving a special class of mixed integer fractional programming (FP) problems. We take a classical reformulation approach for continuous FP as a starting point and extend it for solving a more general class of mixed integer (0–1) fractional
Jia Li-Xin; Dai Hao; Hui Meng
2010-01-01
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method
Random crystal field effects on the integer and half-integer mixed-spin system
Yigit, Ali; Albayrak, Erhan
2018-05-01
In this work, we have focused on the random crystal field effects on the phase diagrams of the mixed spin-1 and spin-5/2 Ising system obtained by utilizing the exact recursion relations (ERR) on the Bethe lattice (BL). The distribution function P(Di) = pδ [Di - D(1 + α) ] +(1 - p) δ [Di - D(1 - α) ] is used to randomize the crystal field.The phase diagrams are found to exhibit second- and first-order phase transitions depending on the values of α, D and p. It is also observed that the model displays tricritical point, isolated point, critical end point and three compensation temperatures for suitable values of the system parameters.
6th Conference on Non-integer Order Calculus and Its Applications
Łukaniszyn, Marian; Stanisławski, Rafał
2015-01-01
This volume presents selected aspects of non-integer, or fractional order systems, whose analysis, synthesis and applications have increasingly become a real challenge for various research communities, ranging from science to engineering. The spectrum of applications of the fractional order calculus has incredibly expanded, in fact it would be hard to find a science/engineering-related subject area where the fractional calculus had not been incorporated. The content of the fractional calculus is ranged from pure mathematics to engineering implementations and so is the content of this volume. The volume is subdivided into six parts, reflecting particular aspects of the fractional order calculus. The first part contains a single invited paper on a new formulation of fractional-order descriptor observers for fractional-order descriptor continous LTI systems. The second part provides new elements to the mathematical theory of fractional-order systems. In the third part of this volume, a bunch of new results in ap...
An integer programming model for gate assignment problem at airline terminals
Chun, Chong Kok; Nordin, Syarifah Zyurina
2015-05-01
In this paper, we concentrate on a gate assignment problem (GAP) at the airlines terminal. Our problem is to assign an arrival plane to a suitable gate. There are two considerations needed to take. One of its is passenger walking distance from arrival gate to departure gate while another consideration is the transport baggage distance from one gate to another. Our objective is to minimize the total distance between the gates that related to assign the arrival plane to the suitable gates. An integer linear programming (ILP) model is proposed to solve this gate assignment problem. We also conduct a computational experiment using CPLEX 12.1 solver in AIMMS 3.10 software to analyze the performance of the model. Results of the computational experiments are presented. The efficiency of flights assignment is depends on the ratio of the weight for both total passenger traveling distances and total baggage transport distances.
Lee, Byungjin; Lee, Young Jae; Sung, Sangkyung
2018-05-01
A novel attitude determination method is investigated that is computationally efficient and implementable in low cost sensor and embedded platform. Recent result on attitude reference system design is adapted to further develop a three-dimensional attitude determination algorithm through the relative velocity incremental measurements. For this, velocity incremental vectors, computed respectively from INS and GPS with different update rate, are compared to generate filter measurement for attitude estimation. In the quaternion-based Kalman filter configuration, an Euler-like attitude perturbation angle is uniquely introduced for reducing filter states and simplifying propagation processes. Furthermore, assuming a small angle approximation between attitude update periods, it is shown that the reduced order filter greatly simplifies the propagation processes. For performance verification, both simulation and experimental studies are completed. A low cost MEMS IMU and GPS receiver are employed for system integration, and comparison with the true trajectory or a high-grade navigation system demonstrates the performance of the proposed algorithm.
Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.
2013-01-01
In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is added
Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri
2013-01-01
In this paper thermo-chemical simulation of the pultrusion process of a composite rod is first used as a validation case to ensure that the utilized numerical scheme is stable and converges to results given in literature. Following this validation case, a cylindrical die block with heaters is add...
The use of mixed-integer programming for inverse treatment planning with pre-defined field segments
Bednarz, Greg; Michalski, Darek; Houser, Chris; Huq, M. Saiful; Xiao Ying; Rani, Pramila Anne; Galvin, James M.
2002-01-01
Complex intensity patterns generated by traditional beamlet-based inverse treatment plans are often very difficult to deliver. In the approach presented in this work the intensity maps are controlled by pre-defining field segments to be used for dose optimization. A set of simple rules was used to define a pool of allowable delivery segments and the mixed-integer programming (MIP) method was used to optimize segment weights. The optimization problem was formulated by combining real variables describing segment weights with a set of binary variables, used to enumerate voxels in targets and critical structures. The MIP method was compared to the previously used Cimmino projection algorithm. The field segmentation approach was compared to an inverse planning system with a traditional beamlet-based beam intensity optimization. In four complex cases of oropharyngeal cancer the segmental inverse planning produced treatment plans, which competed with traditional beamlet-based IMRT plans. The mixed-integer programming provided mechanism for imposition of dose-volume constraints and allowed for identification of the optimal solution for feasible problems. Additional advantages of the segmental technique presented here are: simplified dosimetry, quality assurance and treatment delivery. (author)
Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei
2017-03-01
Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.
A new algorithm for the integration of exponential and logarithmic functions
Rothstein, M.
1977-01-01
An algorithm for symbolic integration of functions built up from the rational functions by repeatedly applying either the exponential or logarithm functions is discussed. This algorithm does not require polynomial factorization nor partial fraction decomposition and requires solutions of linear systems with only a small number of unknowns. It is proven that if this algorithm is applied to rational functions over the integers, a computing time bound for the algorithm can be obtained which is a polynomial in a bound on the integer length of the coefficients, and in the degrees of the numerator and denominator of the rational function involved.
TESTING BAYESIAN ALGORITHMS TO DETECT GENETIC STRUCTURE IN TWO CLOSELY RELATED OAK TAXA
Cristian Mihai Enescu
2013-12-01
Full Text Available The aim of this study was to test the Bayesian algorithm implemented in the software STRUCTURE in order to detect the number of clusters, by using microsatellite data from four oak species. Several assignment models, with or without a priori grouping of individuals to species, were proposed. Better results were obtained by using the sampling location information and when only two taxa were analyzed. Particularly, pedunculate oak and sessile oak formed distinct clusters whatever the assignment model we use. By contrast, no separation between the two oaks from series Lanuginosae was observed. This can be explained, on one hand, by the small sampling size for Italian oak, or by the genetic similarities of the two pubescent oaks, namely Quercus pubescens and Q. virgiliana, on the other hand. Our findings support the hypothesis according which Italian oak is an intraspecific taxonomic unit of pubescent oak.
Santos Coelho, Leandro dos
2009-01-01
The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature
A mixed-integer linear programming approach to the reduction of genome-scale metabolic networks.
Röhl, Annika; Bockmayr, Alexander
2017-01-03
Constraint-based analysis has become a widely used method to study metabolic networks. While some of the associated algorithms can be applied to genome-scale network reconstructions with several thousands of reactions, others are limited to small or medium-sized models. In 2015, Erdrich et al. introduced a method called NetworkReducer, which reduces large metabolic networks to smaller subnetworks, while preserving a set of biological requirements that can be specified by the user. Already in 2001, Burgard et al. developed a mixed-integer linear programming (MILP) approach for computing minimal reaction sets under a given growth requirement. Here we present an MILP approach for computing minimum subnetworks with the given properties. The minimality (with respect to the number of active reactions) is not guaranteed by NetworkReducer, while the method by Burgard et al. does not allow specifying the different biological requirements. Our procedure is about 5-10 times faster than NetworkReducer and can enumerate all minimum subnetworks in case there exist several ones. This allows identifying common reactions that are present in all subnetworks, and reactions appearing in alternative pathways. Applying complex analysis methods to genome-scale metabolic networks is often not possible in practice. Thus it may become necessary to reduce the size of the network while keeping important functionalities. We propose a MILP solution to this problem. Compared to previous work, our approach is more efficient and allows computing not only one, but even all minimum subnetworks satisfying the required properties.
Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br
2009-04-15
The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.
Sahasrabudhe, Harshad; Fallahi, Saeed; Nakamura, James; Povolotskyi, Michael; Novakovic, Bozidar; Rahman, Rajib; Manfra, Michael; Klimeck, Gerhard
Quantum Point Contacts (QPCs) are extensively used in semiconductor devices for charge sensing, tunneling and interference experiments. Fabry-Pérot interferometers containing 2 QPCs have applications in quantum computing, in which electrons/quasi-particles undergo interference due to back-scattering from the QPCs. Such experiments have turned out to be difficult because of the complex structure of edge states near the QPC boundary. We present realistic simulations of the edge states in QPCs based on GaAs/AlGaAs heterostructures, which can be used to predict conductance and edge state velocities. Conduction band profile is obtained by solving decoupled effective mass Schrödinger and Poisson equations self-consistently on a finite element mesh of a realistic geometry. In the integer quantum Hall regime, we obtain compressible and in-compressible regions near the edges. We then use the recursive Green`s function algorithm to solve Schrödinger equation with open boundary conditions for calculating transmission and local current density in the QPCs. Impurities are treated by inserting bumps in the potential with a Gaussian distribution. We compare observables with experiments for fitting some adjustable parameters. The authors would like to thank Purdue Research Foundation and Purdue Center for Topological Materials for their support.
Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming
Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias
2012-01-01
Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398
A bi-objective integer programming model for partly-restricted flight departure scheduling.
Zhong, Han; Guan, Wei; Zhang, Wenyi; Jiang, Shixiong; Fan, Lingling
2018-01-01
The normal studies on air traffic departure scheduling problem (DSP) mainly deal with an independent airport in which the departure traffic is not affected by surrounded airports, which, however, is not a consistent case. In reality, there still exist cases where several commercial airports are closely located and one of them possesses a higher priority. During the peak hours, the departure activities of the lower-priority airports are usually required to give way to those of higher-priority airport. These giving-way requirements can inflict a set of changes on the modeling of departure scheduling problem with respect to the lower-priority airports. To the best of our knowledge, studies on DSP under this condition are scarce. Accordingly, this paper develops a bi-objective integer programming model to address the flight departure scheduling of the partly-restricted (e.g., lower-priority) one among several adjacent airports. An adapted tabu search algorithm is designed to solve the current problem. It is demonstrated from the case study of Tianjin Binhai International Airport in China that the proposed method can obviously improve the operation efficiency, while still realizing superior equity and regularity among restricted flows.
Renata Melo e Silva de Oliveira
2015-03-01
Full Text Available Scheduling is a key factor for operations management as well as for business success. From industrial Job-shop Scheduling problems (JSSP, many optimization challenges have emerged since de 1960s when improvements have been continuously required such as bottlenecks allocation, lead-time reductions and reducing response time to requests. With this in perspective, this work aims to discuss 3 different optimization models for minimizing Makespan. Those 3 models were applied on 17 classical problems of examples JSSP and produced different outputs. The first model resorts on Mixed and Integer Programming (MIP and it resulted on optimizing 60% of the studied problems. The other models were based on Constraint Programming (CP and approached the problem in two different ways: a model CP1 is a standard IBM algorithm whereof restrictions have an interval structure that fail to solve 53% of the proposed instances, b Model CP-2 approaches the problem with disjunctive constraints and optimized 88% of the instances. In this work, each model is individually analyzed and then compared considering: i Optimization success performance, ii Computational processing time, iii Greatest Resource Utilization and, iv Minimum Work-in-process Inventory. Results demonstrated that CP-2 presented best results on criteria i and ii, but MIP was superior on criteria iii and iv and those findings are discussed at the final section of this work.
An Algorithm to Solve the Equal-Sum-Product Problem
Nyblom, M. A.; Evans, C. D.
2013-01-01
A recursive algorithm is constructed which finds all solutions to a class of Diophantine equations connected to the problem of determining ordered n-tuples of positive integers satisfying the property that their sum is equal to their product. An examination of the use of Binary Search Trees in implementing the algorithm into a working program is given. In addition an application of the algorithm for searching possible extra exceptional values of the equal-sum-product problem is explored after...
Ju-Chi Liu
2016-01-01
Full Text Available A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI. The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN, and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM and accuracy-recognition mode (AM, were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR. When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.
Liu, Ju-Chi; Chou, Hung-Chyun; Chen, Chien-Hsiu; Lin, Yi-Tseng; Kuo, Chung-Hsien
2016-01-01
A high efficient time-shift correlation algorithm was proposed to deal with the peak time uncertainty of P300 evoked potential for a P300-based brain-computer interface (BCI). The time-shift correlation series data were collected as the input nodes of an artificial neural network (ANN), and the classification of four LED visual stimuli was selected as the output node. Two operating modes, including fast-recognition mode (FM) and accuracy-recognition mode (AM), were realized. The proposed BCI system was implemented on an embedded system for commanding an adult-size humanoid robot to evaluate the performance from investigating the ground truth trajectories of the humanoid robot. When the humanoid robot walked in a spacious area, the FM was used to control the robot with a higher information transfer rate (ITR). When the robot walked in a crowded area, the AM was used for high accuracy of recognition to reduce the risk of collision. The experimental results showed that, in 100 trials, the accuracy rate of FM was 87.8% and the average ITR was 52.73 bits/min. In addition, the accuracy rate was improved to 92% for the AM, and the average ITR decreased to 31.27 bits/min. due to strict recognition constraints.
Kuswari Hernawati
2016-05-01
Full Text Available In the university management, in addition to resources infrastructure, facilities and people, information systems is one of the resources that can be utilized to enhance the competitive advantage and provide accurate data for the benefit of policy makers, for example, information about the test scores SNMPTN, region of origin students, GPA student, students study duration. Yogyakarta State University to accept new students with an average of approximately 6,000 people annually, through the National Selection of State Universities Student (SNMPTN, SBMPTN (Joint Student Selection State University and the Independent Selection exam (SM. With the increasing number of prospective students through SBMPTN, then increasingly also the basic data in a database of prospective students annually. By utilizing basic data on SBMPTN students and grade point average (GPA, the study aims to apply data mining techniques using the association rule Apriori algorithm to look for patterns of association between baseline SBMPTN and UNY students GPA. Basic data to be processed SBMPTN mining student data origin include school, home school district data, earnings data parent, parental education level data, the average value data UAN, and data values academic potential test (TPA. The results obtained are no data in the data base SNMPTN that significantly affect the acquisition of GPA. This is evident from the association rules derived from the 50 best asosoasi rules not seen the emergence of itemset GPA accompanied by the emergence of other itemset. Keywords: Data Mining, Association Rule, Algoritma Apriori, SNMPTN
Charfeddine, S.; Maaloul, M.; Kallel, F.; Chtourou, K.; Guermazi, F. [EPS Habib Bourguiba, Service de Medecine Nucleaire, Sfax (Tunisia)
2006-06-15
The aim of our study is to estimate the reproducibility and the exactitude of three algorithms to determine with {sup 99m}Tc-DTPA the relative function of each kidney. Methods: a prospective study was carried out in voluntary patients. Reproducibility was studied in 11 patients who underwent had two examinations with {sup 99m}Tc-DTPA. Exactitude was evaluated in 35 patients who had an additional scintigraphy with {sup 99m}Tc-DMSA taken as a reference. To determine the relative renal function with {sup 99m}Tc-DTPA, three algorithms using various background subtraction methods and time intervals were applied. Results and conclusion: the method of the integral was the most reproducible and exact. It was little influenced by the choice of the interval of time. The reproducibility and the exactitude of the Patlak method were worse, especially in case of renal insufficiency or hydronephrosis. A high background and poor counting statistics explain why Patlak was less powerful with {sup 99m}Tc-DTPA than with {sup 99m}Tc-MAG3. The method of the slopes should not be recommended any more. (author)
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-01-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS
Fogle, F. R.
1994-01-01
IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.
Integer Representations towards Efficient Counting in the Bit Probe Model
Brodal, Gerth Stølting; Greve, Mark; Pandey, Vineet
2011-01-01
Abstract We consider the problem of representing numbers in close to optimal space and supporting increment, decrement, addition and subtraction operations efficiently. We study the problem in the bit probe model and analyse the number of bits read and written to perform the operations, both...... in the worst-case and in the average-case. A counter is space-optimal if it represents any number in the range [0,...,2 n − 1] using exactly n bits. We provide a space-optimal counter which supports increment and decrement operations by reading at most n − 1 bits and writing at most 3 bits in the worst......-case. To the best of our knowledge, this is the first such representation which supports these operations by always reading strictly less than n bits. For redundant counters where we only need to represent numbers in the range [0,...,L] for some integer L bits, we define the efficiency...
Discovery of Boolean metabolic networks: integer linear programming based approach.
Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing
2018-04-11
Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".
Mixed integer linear programming for maximum-parsimony phylogeny inference.
Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell
2008-01-01
Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.
A Comparison of SLAM Algorithms Based on a Graph of Relations
Burgard, W.; Stachniss, C.; Grisetti, G.; Steder, B.; Kümmerle, R.; Dornhege, C.; Ruhnke, M.; Kleiner, Alexander; Tardós, Juan D.
2009-01-01
In this paper, we address the problem of creating an objective benchmark for comparing SLAM approaches. We propose a framework for analyzing the results of SLAM approaches based on a metric for measuring the error of the corrected trajectory. The metric uses only relative relations between poses and does not rely on a global reference frame. The idea is related to graph-based SLAM approaches, namely to consider the energy that is needed to deform the trajectory estimated by a SLAM approach in...
An introduction to quantum computing algorithms
Pittenger, Arthur O
2000-01-01
In 1994 Peter Shor [65] published a factoring algorithm for a quantum computer that finds the prime factors of a composite integer N more efficiently than is possible with the known algorithms for a classical com puter. Since the difficulty of the factoring problem is crucial for the se curity of a public key encryption system, interest (and funding) in quan tum computing and quantum computation suddenly blossomed. Quan tum computing had arrived. The study of the role of quantum mechanics in the theory of computa tion seems to have begun in the early 1980s with the publications of Paul Benioff [6]' [7] who considered a quantum mechanical model of computers and the computation process. A related question was discussed shortly thereafter by Richard Feynman [35] who began from a different perspec tive by asking what kind of computer should be used to simulate physics. His analysis led him to the belief that with a suitable class of "quantum machines" one could imitate any quantum system.
Elasticity of fractal materials using the continuum model with non-integer dimensional space
Tarasov, Vasily E.
2015-01-01
Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.
An overview of solution methods for multi-objective mixed integer linear programming programs
Andersen, Kim Allan; Stidsen, Thomas Riis
Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...
Grassmann, Felix; Mengelkamp, Judith; Brandl, Caroline; Harsch, Sebastian; Zimmermann, Martina E; Linkohr, Birgit; Peters, Annette; Heid, Iris M; Palm, Christoph; Weber, Bernhard H F
2018-04-10
Age-related macular degeneration (AMD) is a common threat to vision. While classification of disease stages is critical to understanding disease risk and progression, several systems based on color fundus photographs are known. Most of these require in-depth and time-consuming analysis of fundus images. Herein, we present an automated computer-based classification algorithm. Algorithm development for AMD classification based on a large collection of color fundus images. Validation is performed on a cross-sectional, population-based study. We included 120 656 manually graded color fundus images from 3654 Age-Related Eye Disease Study (AREDS) participants. AREDS participants were >55 years of age, and non-AMD sight-threatening diseases were excluded at recruitment. In addition, performance of our algorithm was evaluated in 5555 fundus images from the population-based Kooperative Gesundheitsforschung in der Region Augsburg (KORA; Cooperative Health Research in the Region of Augsburg) study. We defined 13 classes (9 AREDS steps, 3 late AMD stages, and 1 for ungradable images) and trained several convolution deep learning architectures. An ensemble of network architectures improved prediction accuracy. An independent dataset was used to evaluate the performance of our algorithm in a population-based study. κ Statistics and accuracy to evaluate the concordance between predicted and expert human grader classification. A network ensemble of 6 different neural net architectures predicted the 13 classes in the AREDS test set with a quadratic weighted κ of 92% (95% confidence interval, 89%-92%) and an overall accuracy of 63.3%. In the independent KORA dataset, images wrongly classified as AMD were mainly the result of a macular reflex observed in young individuals. By restricting the KORA analysis to individuals >55 years of age and prior exclusion of other retinopathies, the weighted and unweighted κ increased to 50% and 63%, respectively. Importantly, the algorithm
Improved Sorting-Based Procedure for Integer Programming
Dantchev, Stefan
2002-01-01
Recently, Cornuéjols and Dawande have considered a special class of 0-1 programs that turns out to be hard for existing IP solvers. One of them is a sorting-based algorithm, based on an idea of Wolsey. In this paper, we show how to improve both the running time and the space requirements...... of this algorithm. The drastic reduction of space needed allows us to solve much larger instances than was possible before using this technique....
Extension and Prerequisite: An Algorithm to Enable Relations Between Responses in Chatbot Technology
Abbas S. Lokman; Jasni M. Zain
2010-01-01
Problem statement: Artificial intelligence chatbot is a technology that makes interactions between man and machines using natural language possible. From literature, we found out that in general, chatbot are functions like a typical search engine. Although chatbot just produced only one output instead of multiple outputs/results, the basic process flow is the same where each time an input is entered, the new search will be done. Nothing related to previous output. This research is focused on ...
Deterministic integer multiple firing depending on initial state in Wang model
Xie Yong [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: yxie@mail.xjtu.edu.cn; Xu Jianxue [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang Jun [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)
2006-12-15
We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables.
Deterministic integer multiple firing depending on initial state in Wang model
Xie Yong; Xu Jianxue; Jiang Jun
2006-01-01
We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables
5th Conference on Non-integer Order Calculus and Its Applications
Kacprzyk, Janusz; Baranowski, Jerzy
2013-01-01
This volume presents various aspects of non-integer order systems, also known as fractional systems, which have recently attracted an increasing attention in the scientific community of systems science, applied mathematics, control theory. Non-integer systems have become relevant for many fields of science and technology exemplified by the modeling of signal transmission, electric noise, dielectric polarization, heat transfer, electrochemical reactions, thermal processes, acoustics, etc. The content is divided into six parts, every of which considers one of the currently relevant problems. In the first part the Realization problem is discussed, with a special focus on positive systems. The second part considers stability of certain classes of non-integer order systems with and without delays. The third part is focused on such important aspects as controllability, observability and optimization especially in discrete time. The fourth part is focused on distributed systems where non-integer calculus leads to ...
Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers
Abdukhalikov, Kanat; Scharlau, Rudolf
2009-03-01
All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in mathbb{Q}(sqrt{-3}) are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3.
Reversible Integer Wavelet Transform for the Joint of Image Encryption and Watermarking
Bin Wang
2015-01-01
Full Text Available In recent years, signal processing in the encrypted domain has attracted considerable research interest, especially embedding watermarking in encrypted image. In this work, a novel joint of image encryption and watermarking based on reversible integer wavelet transform is proposed. Firstly, the plain-image is encrypted by chaotic maps and reversible integer wavelet transform. Then the lossless watermarking is embedded in the encrypted image by reversible integer wavelet transform and histogram modification. Finally an encrypted image containing watermarking is obtained by the inverse integer wavelet transform. What is more, the original image and watermarking can be completely recovered by inverse process. Numerical experimental results and comparing with previous works show that the proposed scheme possesses higher security and embedding capacity than previous works. It is suitable for protecting the image information.
Vector calculus in non-integer dimensional space and its applications to fractal media
Tarasov, Vasily E.
2015-02-01
We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.
FATCOP: A Fault Tolerant Condor-PVM Mixed Integer Program Solver
Chen, Qun
1999-01-01
We describe FATCOP, a new parallel mixed integer program solver written in PVM. The implementation uses the Condor resource management system to provide a virtual machine composed of otherwise idle computers...
7th Conference on Non-Integer Order Calculus and Its Applications
Dworak, Paweł
2016-01-01
This volume is devoted to presentation of new results of research on systems of non-integer order, called also fractional systems. Their analysis and practical implementation have been the object of spontaneous development for a few last decades. The fractional order models can depict a physical plant better than the classical integer order ones. This covers different research fields such as insulator properties, visco-elastic materials, electrodynamic, electrothermal, electrochemical, economic processes modelling etc. On the other hand fractional controllers often outperform their integer order counterparts. This volume contains new ideas and examples of implementation, theoretical and pure practical aspects of using a non-integer order calculus. It is divided into four parts covering: mathematical fundamentals, modeling and approximations, controllability, observability and stability problems and practical applications of fractional control systems. The first part expands the base of tools and methods of th...
Edge states and integer quantum Hall effect in topological insulator thin films.
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
2015-08-25
The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.
Positive integer solutions of the diophantine equation x2 −Lnxy +(−1 ...
ny2 = ±5r when the equation has positive integer solutions. Keywords. Fibonacci numbers; Lucas numbers; diophantine equations. Mathematics Subject Classification. 11B37, 11B39. 1. Introduction. The Fibonacci sequence {Fn} is defined by F0 ...
Extraction and characterization of artocarpus integer gum as pharmaceutical excipient.
Farooq, Uzma; Malviya, Rishabha; Sharma, Pramod Kumar
2014-01-01
Natural polymers are widely used as excipients in pharmaceutical formulations. They are easily available, cheap and less toxic as compared to synthetic polymers. This study involves the extraction and characterization of kathal (Artocarpus integer) gum as a pharmaceutical excipient. Water was used as a solvent for extraction of the natural polymer. Yield was calculated with an aim to evaluate the efficacy of the process. The product was screened for the presence of Micrometric properties, and swelling index, flow behavior, surface tension, and viscosity of natural polymers were calculated. Using a water based extraction method, the yield of gum was found to be 2.85%. Various parameters such as flow behavior, organoleptic properties, surface tension, viscosity, loss on drying, ash value and swelling index together with microscopic studies of particles were done to characterize the extracted gum. The result showed that extracted kathal gum exhibited excellent flow properties. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. It had a good swelling index (13 ± 1). The pH and surface tension of the 1% gum solution were found to be 6 ± 0.5 and 0.0627 J/m2, respectively. The ash values such as total ash, acid insoluble ash, and water soluble ash were found to be 18.9%, 0.67% and 4% respectively. Loss on drying was 6.61%. The extracted gum was soluble in warm water and insoluble in organic solvents. The scanning electron micrograph (SEM) revealed rough and irregular particles of the isolated polymer. The results of the evaluated properties showed that kathal-derived gum has acceptable pH and organoleptic properties and can be used as a pharmaceutical excipient to formulate solid oral dosage forms.
Discovery of functional and approximate functional dependencies in relational databases
Ronald S. King
2003-01-01
Full Text Available This study develops the foundation for a simple, yet efficient method for uncovering functional and approximate functional dependencies in relational databases. The technique is based upon the mathematical theory of partitions defined over a relation's row identifiers. Using a levelwise algorithm the minimal non-trivial functional dependencies can be found using computations conducted on integers. Therefore, the required operations on partitions are both simple and fast. Additionally, the row identifiers provide the added advantage of nominally identifying the exceptions to approximate functional dependencies, which can be used effectively in practical data mining applications.
Yusriski, R.; Sukoyo; Samadhi, T. M. A. A.; Halim, A. H.
2016-02-01
In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%.
Yusriski, R; Sukoyo; Samadhi, T M A A; Halim, A H
2016-01-01
In the manufacturing industry, several identical parts can be processed in batches, and setup time is needed between two consecutive batches. Since the processing times of batches are not always fixed during a scheduling period due to learning and deterioration effects, this research deals with batch scheduling problems with simultaneous learning and deterioration effects. The objective is to minimize total actual flow time, defined as a time interval between the arrival of all parts at the shop and their common due date. The decision variables are the number of batches, integer batch sizes, and the sequence of the resulting batches. This research proposes a heuristic algorithm based on the Lagrange Relaxation. The effectiveness of the proposed algorithm is determined by comparing the resulting solutions of the algorithm to the respective optimal solution obtained from the enumeration method. Numerical experience results show that the average of difference among the solutions is 0.05%. (paper)
Integer Quantum Magnon Hall Plateau-Plateau Transition in a Spin Ice Model
Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi
2016-01-01
Low-energy magnon bands in a two-dimensional spin ice model become integer quantum magnon Hall bands. By calculating the localization length and the two-terminal conductance of magnon transport, we show that the magnon bands with disorders undergo a quantum phase transition from an integer quantum magnon Hall regime to a conventional magnon localized regime. Finite size scaling analysis as well as a critical conductance distribution shows that the quantum critical point belongs to the same un...
A low-resource quantum factoring algorithm
Bernstein, D.J.; Biasse, J. F.; Mosca, M.; Lange, T.; Takagi, T.
2017-01-01
In this paper, we present a factoring algorithm that, assuming standard heuristics, uses just (log N)2/3+o(1) qubits to factor an integer N in time Lq+o(1) where L = exp((log N)1/3 (log log N)2/3) and q =3√8/3 ≈ 1.387. For comparison, the lowest asymptotic time complexity for known pre-quantum
Ryan, Jason C; Banerjee, Ashis Gopal; Cummings, Mary L; Roy, Nicholas
2014-06-01
Planning operations across a number of domains can be considered as resource allocation problems with timing constraints. An unexplored instance of such a problem domain is the aircraft carrier flight deck, where, in current operations, replanning is done without the aid of any computerized decision support. Rather, veteran operators employ a set of experience-based heuristics to quickly generate new operating schedules. These expert user heuristics are neither codified nor evaluated by the United States Navy; they have grown solely from the convergent experiences of supervisory staff. As unmanned aerial vehicles (UAVs) are introduced in the aircraft carrier domain, these heuristics may require alterations due to differing capabilities. The inclusion of UAVs also allows for new opportunities for on-line planning and control, providing an alternative to the current heuristic-based replanning methodology. To investigate these issues formally, we have developed a decision support system for flight deck operations that utilizes a conventional integer linear program-based planning algorithm. In this system, a human operator sets both the goals and constraints for the algorithm, which then returns a proposed schedule for operator approval. As a part of validating this system, the performance of this collaborative human-automation planner was compared with that of the expert user heuristics over a set of test scenarios. The resulting analysis shows that human heuristics often outperform the plans produced by an optimization algorithm, but are also often more conservative.
An algorithm to transform natural language into SQL queries for relational databases
Garima Singh
2016-09-01
Full Text Available Intelligent interface, to enhance efficient interactions between user and databases, is the need of the database applications. Databases must be intelligent enough to make the accessibility faster. However, not every user familiar with the Structured Query Language (SQL queries as they may not aware of structure of the database and they thus require to learn SQL. So, non-expert users need a system to interact with relational databases in their natural language such as English. For this, Database Management System (DBMS must have an ability to understand Natural Language (NL. In this research, an intelligent interface is developed using semantic matching technique which translates natural language query to SQL using set of production rules and data dictionary. The data dictionary consists of semantics sets for relations and attributes. A series of steps like lower case conversion, tokenization, speech tagging, database element and SQL element extraction is used to convert Natural Language Query (NLQ to SQL Query. The transformed query is executed and the results are obtained by the user. Intelligent Interface is the need of database applications to enhance efficient interaction between user and DBMS.
An Automatic Multilevel Image Thresholding Using Relative Entropy and Meta-Heuristic Algorithms
Josue R. Cuevas
2013-06-01
Full Text Available Multilevel thresholding has been long considered as one of the most popular techniques for image segmentation. Multilevel thresholding outputs a gray scale image in which more details from the original picture can be kept, while binary thresholding can only analyze the image in two colors, usually black and white. However, two major existing problems with the multilevel thresholding technique are: it is a time consuming approach, i.e., finding appropriate threshold values could take an exceptionally long computation time; and defining a proper number of thresholds or levels that will keep most of the relevant details from the original image is a difficult task. In this study a new evaluation function based on the Kullback-Leibler information distance, also known as relative entropy, is proposed. The property of this new function can help determine the number of thresholds automatically. To offset the expensive computational effort by traditional exhaustive search methods, this study establishes a procedure that combines the relative entropy and meta-heuristics. From the experiments performed in this study, the proposed procedure not only provides good segmentation results when compared with a well known technique such as Otsu’s method, but also constitutes a very efficient approach.
Optimization of source pencil deployment based on plant growth simulation algorithm
Yang Lei; Liu Yibao; Liu Yujuan
2009-01-01
A plant growth simulation algorithm was proposed for optimizing source pencil deployment for a 60 Co irradiator. A method used to evaluate the calculation results was presented with the objective function defined by relative standard deviation of the exposure rate at the reference points, and the method to transform two kinds of control variables, i.e., position coordinates x j and y j of source pencils in the source plaque, into proper integer variables was also analyzed and solved. The results show that the plant growth simulation algorithm, which possesses both random and directional search mechanism, has good global search ability and can be used conveniently. The results are affected a little by initial conditions, and improve the uniformity in the irradiation fields. It creates a dependable field for the optimization of source bars arrangement at irradiation facility. (authors)
PARALLEL ADAPTIVE MULTILEVEL SAMPLING ALGORITHMS FOR THE BAYESIAN ANALYSIS OF MATHEMATICAL MODELS
Prudencio, Ernesto; Cheung, Sai Hung
2012-01-01
In recent years, Bayesian model updating techniques based on measured data have been applied to many engineering and applied science problems. At the same time, parallel computational platforms are becoming increasingly more powerful and are being used more frequently by the engineering and scientific communities. Bayesian techniques usually require the evaluation of multi-dimensional integrals related to the posterior probability density function (PDF) of uncertain model parameters. The fact that such integrals cannot be computed analytically motivates the research of stochastic simulation methods for sampling posterior PDFs. One such algorithm is the adaptive multilevel stochastic simulation algorithm (AMSSA). In this paper we discuss the parallelization of AMSSA, formulating the necessary load balancing step as a binary integer programming problem. We present a variety of results showing the effectiveness of load balancing on the overall performance of AMSSA in a parallel computational environment.
Kim, Heungseob; Kim, Pansoo
2017-01-01
To maximize the reliability of a system, the traditional reliability–redundancy allocation problem (RRAP) determines the component reliability and level of redundancy for each subsystem. This paper proposes an advanced RRAP that also considers the optimal redundancy strategy, either active or cold standby. In addition, new examples are presented for it. Furthermore, the exact reliability function for a cold standby redundant subsystem with an imperfect detector/switch is suggested, and is expected to replace the previous approximating model that has been used in most related studies. A parallel genetic algorithm for solving the RRAP as a mixed-integer nonlinear programming model is presented, and its performance is compared with those of previous studies by using numerical examples on three benchmark problems. - Highlights: • Optimal strategy is proposed to solve reliability redundancy allocation problem. • The redundancy strategy uses parallel genetic algorithm. • Improved reliability function for a cold standby subsystem is suggested. • Proposed redundancy strategy enhances the system reliability.
DESIGN STUDY: INTEGER SUBTRACTION OPERATION TEACHING LEARNING USING MULTIMEDIA IN PRIMARY SCHOOL
Rendi Muhammad Aris
2016-12-01
Full Text Available This study aims to develop a learning trajectory to help students understand concept of subtraction of integers using multimedia in the fourth grade. This study is thematic integrative learning in Curriculum 2013 PMRI based. The method used is design research consists of three stages; preparing for the experiment, design experiment, retrospective analysis. The studied was conducted on 20 students of grade four SDN 1 Muara Batun, OKI. The activities of students in this study consisted of six learning trajectories. The first activity asks the students to classify heroism and non-heroism acts, summarize, and classify integers and non-integer. The second activity asks the students to answer the questions in the film given. The third activity asks students to count the remaining gravel in the film. The fourth activity asks students to count remaining spent money in the film. The fifth activity invites students to play rubber seeds in the bag. The last activity asks students to answer the questions in the student worksheet. The media used along the learning activities are a ruler, rubber seed, student worksheet, money, gravel, and film. The results indicate that the learning trajectory using multimedia help students understand the concept of integer subtraction integer. Keywords: Subtraction Integer, PMRI, Multimedia DOI: http://dx.doi.org/10.22342/jme.8.1.3233.95-102
Genetic algorithms and fuzzy multiobjective optimization
Sakawa, Masatoshi
2002-01-01
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...
Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang
2008-12-01
Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.
Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks
Lee, Charles H.; Cheung, Kar-Ming
2012-01-01
In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.
2015-01-01
solution approach that combines heuristic search and integer programming. Boudia et al. (2007) solved an SDVRP instance using a memetic algorithm with...Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management for the split delivery vehicle routing problem
Creutz, M.
1987-11-01
A large variety of Monte Carlo algorithms are being used for lattice gauge simulations. For purely bosonic theories, present approaches are generally adequate; nevertheless, overrelaxation techniques promise savings by a factor of about three in computer time. For fermionic fields the situation is more difficult and less clear. Algorithms which involve an extrapolation to a vanishing step size are all quite closely related. Methods which do not require such an approximation tend to require computer time which grows as the square of the volume of the system. Recent developments combining global accept/reject stages with Langevin or microcanonical updatings promise to reduce this growth to V/sup 4/3/
Approximation in two-stage stochastic integer programming
W. Romeijnders; L. Stougie (Leen); M. van der Vlerk
2014-01-01
htmlabstractApproximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value.
Approximation in two-stage stochastic integer programming
Romeijnders, W.; Stougie, L.; van der Vlerk, M.H.
2014-01-01
Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solution value. However,
Integer goal programming approach for finding a compromise ...
In second model the cost and time spent on repairing the components are considered as two different objectives. Selective maintenance operation is used to select the repairable components and a multi-objective goal programming algorithm is proposed to obtain compromise selection of repairable components for the two ...
Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming
P. C. Roling
2008-01-01
Full Text Available We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool that aims to optimize the routing and scheduling of airport surface traffic in such a way as to deconflict the taxi plans while optimizing delay, total taxi-time, or some other airport efficiency metric. Certain input parameters related to resource demand, such as the expected landing times and the expected pushback times, are rather difficult to predict accurately. Due to uncertainty in the input data driving the taxi-planning process, the taxi-planning tool is designed such that it produces solutions that are robust to uncertainty. The taxi-planning concept presented herein, which is based on mixed-integer linear programming, is designed such that it is able to adapt to perturbations in these input conditions, as well as to account for failure in the actual execution of surface trajectories. The capabilities of the tool are illustrated in a simple hypothetical airport.
Quantum simulation of the integer factorization problem: Bell states in a Penning trap
Rosales, Jose Luis; Martin, Vicente
2018-03-01
The arithmetic problem of factoring an integer N can be translated into the physics of a quantum device, a result that supports Pólya's and Hilbert's conjecture to demonstrate Riemann's hypothesis. The energies of this system, being univocally related to the factors of N , are the eigenvalues of a bounded Hamiltonian. Here we solve the quantum conditions and show that the histogram of the discrete energies, provided by the spectrum of the system, should be interpreted in number theory as the relative probability for a prime to be a factor candidate of N . This is equivalent to a quantum sieve that is shown to require only o (ln√{N}) 3 energy measurements to solve the problem, recovering Shor's complexity result. Hence the outcome can be seen as a probability map that a pair of primes solve the given factorization problem. Furthermore, we show that a possible embodiment of this quantum simulator corresponds to two entangled particles in a Penning trap. The possibility to build the simulator experimentally is studied in detail. The results show that factoring numbers, many orders of magnitude larger than those computed with experimentally available quantum computers, is achievable using typical parameters in Penning traps.
Beggs, Clive B; Shepherd, Simon J; Emmonds, Stacey; Jones, Ben
2017-01-01
Ranking enables coaches, sporting authorities, and pundits to determine the relative performance of individual athletes and teams in comparison to their peers. While ranking is relatively straightforward in sports that employ traditional leagues, it is more difficult in sports where competition is fragmented (e.g. athletics, boxing, etc.), with not all competitors competing against each other. In such situations, complex points systems are often employed to rank athletes. However, these systems have the inherent weakness that they frequently rely on subjective assessments in order to gauge the calibre of the competitors involved. Here we show how two Internet derived algorithms, the PageRank (PR) and user preference (UP) algorithms, when utilised with a simple 'who beat who' matrix, can be used to accurately rank track athletes, avoiding the need for subjective assessment. We applied the PR and UP algorithms to the 2015 IAAF Diamond League men's 100m competition and compared their performance with the Keener, Colley and Massey ranking algorithms. The top five places computed by the PR and UP algorithms, and the Diamond League '2016' points system were all identical, with the Kendall's tau distance between the PR standings and '2016' points system standings being just 15, indicating that only 5.9% of pairs differed in their order between these two lists. By comparison, the UP and '2016' standings displayed a less strong relationship, with a tau distance of 95, indicating that 37.6% of the pairs differed in their order. When compared with the standings produced using the Keener, Colley and Massey algorithms, the PR standings appeared to be closest to the Keener standings (tau distance = 67, 26.5% pair order disagreement), whereas the UP standings were more similar to the Colley and Massey standings, with the tau distances between these ranking lists being only 48 (19.0% pair order disagreement) and 59 (23.3% pair order disagreement) respectively. In particular, the
Clive B Beggs
Full Text Available Ranking enables coaches, sporting authorities, and pundits to determine the relative performance of individual athletes and teams in comparison to their peers. While ranking is relatively straightforward in sports that employ traditional leagues, it is more difficult in sports where competition is fragmented (e.g. athletics, boxing, etc., with not all competitors competing against each other. In such situations, complex points systems are often employed to rank athletes. However, these systems have the inherent weakness that they frequently rely on subjective assessments in order to gauge the calibre of the competitors involved. Here we show how two Internet derived algorithms, the PageRank (PR and user preference (UP algorithms, when utilised with a simple 'who beat who' matrix, can be used to accurately rank track athletes, avoiding the need for subjective assessment. We applied the PR and UP algorithms to the 2015 IAAF Diamond League men's 100m competition and compared their performance with the Keener, Colley and Massey ranking algorithms. The top five places computed by the PR and UP algorithms, and the Diamond League '2016' points system were all identical, with the Kendall's tau distance between the PR standings and '2016' points system standings being just 15, indicating that only 5.9% of pairs differed in their order between these two lists. By comparison, the UP and '2016' standings displayed a less strong relationship, with a tau distance of 95, indicating that 37.6% of the pairs differed in their order. When compared with the standings produced using the Keener, Colley and Massey algorithms, the PR standings appeared to be closest to the Keener standings (tau distance = 67, 26.5% pair order disagreement, whereas the UP standings were more similar to the Colley and Massey standings, with the tau distances between these ranking lists being only 48 (19.0% pair order disagreement and 59 (23.3% pair order disagreement respectively. In
Koa, A.S.; Chang, N.B. [University of Central Florida, Orlando, FL (United States). Dept. for Civil & Environmental Engineering
2008-07-15
Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO{sub 2}) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To case the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.
Ko, Andi Setiady; Chang, Ni-Bin
2008-07-01
Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.
Zhang, Yunhua; Dai, Li; Liu, Ying; Zhang, YuHang; Wang, ShaoPeng
2017-01-01
Fruit is essential for plant reproduction and is responsible for protection and dispersal of seeds. The development and maturation of fruit is tightly regulated by numerous genetic factors that respond to environmental and internal stimulation. In this study, we attempted to identify novel fruit-related genes in a model organism, Arabidopsis thaliana, using a computational method. Based on validated fruit-related genes, the random walk with restart (RWR) algorithm was applied on a protein-protein interaction (PPI) network using these genes as seeds. The identified genes with high probabilities were filtered by the permutation test and linkage tests. In the permutation test, the genes that were selected due to the structure of the PPI network were discarded. In the linkage tests, the importance of each candidate gene was measured from two aspects: (1) its functional associations with validated genes and (2) its similarity with validated genes on gene ontology (GO) terms and KEGG pathways. Finally, 255 inferred genes were obtained, subsequent extensive analysis of important genes revealed that they mainly contribute to ubiquitination (UBQ9, UBQ8, UBQ11, UBQ10), serine hydroxymethyl transfer (SHM7, SHM5, SHM6) or glycol-metabolism (HXKL2_ARATH, CSY5, GAPCP1), suggesting essential roles during the development and maturation of fruit in Arabidopsis thaliana.
Seno, Shoji; Nakajima, Makoto; Toida, Masaru; Kunimaru, Takanori; Watanabe, Kunio; Sohail Ahmed Rai
2009-12-01
Horonobe Underground Research Center has carried out the Horonobe Underground Research Laboratory Project which is a comprehensive research project to investigate the deep geological environment within sedimentary rock. In this project, long-term observation of the pore water pressure has been conducted with monitoring systems introduced in 9 of 11 boreholes drilled in phase I (surface-based investigation). Since August 2003 the monitoring systems have been settled successively in the boreholes, and a certain amount of the pore water pressure data has been already accumulated. Using 6 borehole data (HDB-1,3,6,7,8,9) among this, this report summarized the result of a study on reciprocal relation of pore water pressure to investigate the hydrogeological environment of this site. At first, to exclude the influences of working of nature such as tide and atmospheric pressure from the source data, an analysis with Bayesian model was progressed. As the result of the estimation of these influences calculated by BAYTAP-G (Bayesian Tidal Analysis Program Grouping Model), it was found that the influence of the atmospheric pressure was comparatively large and that of tide was comparatively small. Secondly, an analysis on the reciprocal relation of the pore water pressure was carried out to investigate the relation between the different depth points of the same borehole and the relation between different boreholes. As the result of the calculations with genetic algorithm (GA) and neural network models (BPANN, GAANN), it was found that estimation by GA models was better than other models in the case where analyzing data included radical changes. And the result also showed that in regions lower than GL.-400m of HDB-3,6,7,8, the pore water pressures change in the same manner. These results indicate the effectiveness of this analysis method. (author)
Multi-Target Tracking via Mixed Integer Optimization
2016-05-13
an easily interpretable global objective function. Furthermore, we propose a greedy heuristic which quickly finds good solutions. We extend both the... heuristic and the MIO model to scenarios with missed detections and false alarms. Index Terms—optimization; multi-target tracking; data asso- ciation...energy in [14] and then again as a minimization of discrete-continuous energy in [15]. These algorithms aim to more accurately represent the nature of the
Combinatorial therapy discovery using mixed integer linear programming.
Pang, Kaifang; Wan, Ying-Wooi; Choi, William T; Donehower, Lawrence A; Sun, Jingchun; Pant, Dhruv; Liu, Zhandong
2014-05-15
Combinatorial therapies play increasingly important roles in combating complex diseases. Owing to the huge cost associated with experimental methods in identifying optimal drug combinations, computational approaches can provide a guide to limit the search space and reduce cost. However, few computational approaches have been developed for this purpose, and thus there is a great need of new algorithms for drug combination prediction. Here we proposed to formulate the optimal combinatorial therapy problem into two complementary mathematical algorithms, Balanced Target Set Cover (BTSC) and Minimum Off-Target Set Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced solution that maximizes the coverage on the disease genes and minimizes the off-target hits at the same time. MOTSC seeks a full coverage on the disease gene set while minimizing the off-target set. Through simulation, both BTSC and MOTSC demonstrated a much faster running time over exhaustive search with the same accuracy. When applied to real disease gene sets, our algorithms not only identified known drug combinations, but also predicted novel drug combinations that are worth further testing. In addition, we developed a web-based tool to allow users to iteratively search for optimal drug combinations given a user-defined gene set. Our tool is freely available for noncommercial use at http://www.drug.liuzlab.org/. zhandong.liu@bcm.edu Supplementary data are available at Bioinformatics online.
District Heating Network Design and Configuration Optimization with Genetic Algorithm
Li, Hongwei; Svendsen, Svend
2013-01-01
In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...
Post, Evert Jan
1999-05-01
This essay presents conclusive evidence of the impermissibility of Copenhagen's single system interpretation of the Schroedinger process. The latter needs to be viewed as a tool exclusively describing phase and orientation randomized ensembles and is not be used for isolated single systems. Asymptotic closeness of single system and ensemble behavior and the rare nature of true single system manifestations have prevented a definitive identification of this Copenhagen deficiency over the past three quarter century. Quantum uncertainty so becomes a basic trade mark of phase and orientation disordered ensembles. The ensuing void of usable single system tools opens a new inquiry for tools without statistical connotations. Three, in part already known, period integrals here identified as flux, charge and action counters emerge as diffeo-4 invariant tools fully compatible with the demands of the general theory of relativity. The discovery of the quantum Hall effect has been instrumental in forcing a distinction between ensemble disorder as in the normal Hall effect versus ensemble order in the plateau states. Since the order of the latter permits a view of the plateau states as a macro- or meso-scopic single system, the period integral description applies, yielding a straightforward unified description of integer and fractional quantum Hall effects.
WORKFORCE SIZING AND SCHEDULING FOR A SERVICE CONTRACTOR USING INTEGER PROGRAMMING
D.G. Conradie
2012-01-01
Full Text Available
ENGLISH ABSTRACT: Operations Research is perceived to be on the verge of demise as a decision support tool in industry. However, this is not true, since the relevancy and interdisciplinary nature of Operations Research makes it an indispensable part of operations management. What should rather be asked is how Operations Research is introduced to undergraduate industrial engineering students. This paper reports on one of the optimisation initiatives undertaken for a service contractor using integer programming as part of a semester project. Although the model addresses specific business issues related to the contractor, it can easily be generalised for other applications.
AFRIKAANSE OPSOMMING: Operasionele Navorsing word geag as ’n kwynende besluitnemingsinstrument in die nywerheid. Dit is egter onwaar, aangesien die toepaslikheid en interdissiplinêre karakter van Operasionele Navorsing dit ‘n onmisbare rol laat speel in operasionele bestuur. Die vraag wat eerder gevra moet word is hoe Operasionele Navorsing aan voorgraadse bedryfsingenieurswesestudente aangebied word. Hierdie artikel doen verslag oor een van die optimerings-inisiatiewe wat as deel van ‘n semesterprojek vir ‘n diensverskaffer uitgevoer is, en maak van heeltal-programmering gebruik. Alhoewel die model kontrakteur-spesifieke besigheidsreëls aanspreek, kan dit maklik veralgemeen word vir wyer toepassing.
Baran, Richard; Northen, Trent R
2013-10-15
Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.
A time series model: First-order integer-valued autoregressive (INAR(1))
Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.
2017-07-01
Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.
Ogorodnikov, Yuri; Khachay, Michael; Pljonkin, Anton
2018-04-01
We describe the possibility of employing the special case of the 3-SAT problem stemming from the well known integer factorization problem for the quantum cryptography. It is known, that for every instance of our 3-SAT setting the given 3-CNF is satisfiable by a unique truth assignment, and the goal is to find this assignment. Since the complexity status of the factorization problem is still undefined, development of approximation algorithms and heuristics adopts interest of numerous researchers. One of promising approaches to construction of approximation techniques is based on real-valued relaxation of the given 3-CNF followed by minimizing of the appropriate differentiable loss function, and subsequent rounding of the fractional minimizer obtained. Actually, algorithms developed this way differ by the rounding scheme applied on their final stage. We propose a new rounding scheme based on Bayesian learning. The article shows that the proposed method can be used to determine the security in quantum key distribution systems. In the quantum distribution the Shannon rules is applied and the factorization problem is paramount when decrypting secret keys.
Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.
1987-01-01
A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.
Development of Web-Based Menu Planning Support System and its Solution Using Genetic Algorithm
Kashima, Tomoko; Matsumoto, Shimpei; Ishii, Hiroaki
2009-10-01
Recently lifestyle-related diseases have become an object of public concern, while at the same time people are being more health conscious. As an essential factor for causing the lifestyle-related diseases, we assume that the knowledge circulation on dietary habits is still insufficient. This paper focuses on everyday meals close to our life and proposes a well-balanced menu planning system as a preventive measure of lifestyle-related diseases. The system is developed by using a Web-based frontend and it provides multi-user services and menu information sharing capabilities like social networking services (SNS). The system is implemented on a Web server running Apache (HTTP server software), MySQL (database management system), and PHP (scripting language for dynamic Web pages). For the menu planning, a genetic algorithm is applied by understanding this problem as multidimensional 0-1 integer programming.
Application of a non-integer Bessel uniform approximation to inelastic molecular collisions
Connor, J.N.L.; Mayne, H.R.
1979-01-01
A non-integer Bessel uniform approximation has been used to calculate transition probabilities for collinear atom-oscillator collisions. The collision systems used are a harmonic oscillator interacting via a Lennard-Jones potential and a Morse oscillator interacting via an exponential potential. Both classically allowed and classically forbidden transitions have been treated. The order of the Bessel function is chosen by a physical argument that makes use of information contained in the final-action initial-angle plot. Limitations of this procedure are discussed. It is shown that the non-integer Bessel approximation is accurate for elastic 0 → 0 collisions at high collision energies, where the integer Bessel approximation is inaccurate or inapplicable. (author)
Fabry-Perot Interferometry in the Integer and Fractional Quantum Hall Regimes
McClure, Douglas; Chang, Willy; Kou, Angela; Marcus, Charles; Pfeiffer, Loren; West, Ken
2011-03-01
We present measurements of electronic Fabry-Perot interferometers in the integer and fractional quantum Hall regimes. Two classes of resistance oscillations may be seen as a function of magnetic field and gate voltage, as we have previously reported. In small interferometers in the integer regime, oscillations of the type associated with Coulomb interaction are ubiquitous, while those consistent with single-particle Aharonov-Bohm interference are seen to co-exist in some configurations. The amplitude scaling of both types with temperature and device size is consistent with a theoretical model. Oscillations are further observed in the fractional quantum Hall regime. Here the dependence of the period on the filling factors in the constrictions and bulk of the interferometer can shed light on the effective charge of the interfering quasiparticles, but care is needed to distinguish these oscillations from those associated with integer quantum Hall states. We acknowledge funding from Microsoft Project Q and IBM.
An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories
Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril
2018-01-01
In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.
Allocating the Fixed Resources and Setting Targets in Integer Data Envelopment Analysis
Kobra Gholami
2013-11-01
Full Text Available Data envelopment analysis (DEA is a non-parametric approach to evaluate a set of decision making units (DMUs consuming multiple inputs to produce multiple outputs. Formally, DEA use to estimate the efficiency score into the empirical efficient frontier. Also, DEA can be used to allocate resources and set targets for future forecast. The data are continuous in the standard DEA model whereas there are many problems in the real life that data must be integer such as number of employee, machinery, expert and so on. Thus in this paper we propose an approach to allocate fixed resources and set fixed targets with selective integer assumption that is based on an integer data envelopment analysis (IDEA approach for the first time. The major aim in this approach is preserving the efficiency score of DMUs. We use the concept of benchmarking to reach this aim. The numerical example gets to illustrate the applicability of the proposed method.
An Efficient Integer Coding and Computing Method for Multiscale Time Segment
TONG Xiaochong
2016-12-01
Full Text Available This article focus on the exist problem and status of current time segment coding, proposed a new set of approach about time segment coding: multi-scale time segment integer coding (MTSIC. This approach utilized the tree structure and the sort by size formed among integer, it reflected the relationship among the multi-scale time segments: order, include/contained, intersection, etc., and finally achieved an unity integer coding processing for multi-scale time. On this foundation, this research also studied the computing method for calculating the time relationships of MTSIC, to support an efficient calculation and query based on the time segment, and preliminary discussed the application method and prospect of MTSIC. The test indicated that, the implement of MTSIC is convenient and reliable, and the transformation between it and the traditional method is convenient, it has the very high efficiency in query and calculating.
Markham, Annette
This paper takes an actor network theory approach to explore some of the ways that algorithms co-construct identity and relational meaning in contemporary use of social media. Based on intensive interviews with participants as well as activity logging and data tracking, the author presents a richly...... layered set of accounts to help build our understanding of how individuals relate to their devices, search systems, and social network sites. This work extends critical analyses of the power of algorithms in implicating the social self by offering narrative accounts from multiple perspectives. It also...... contributes an innovative method for blending actor network theory with symbolic interaction to grapple with the complexity of everyday sensemaking practices within networked global information flows....
Techniques for Performance Improvement of Integer Multiplication in Cryptographic Applications
Robert Brumnik
2014-01-01
Full Text Available The problem of arithmetic operations performance in number fields is actively researched by many scientists, as evidenced by significant publications in this field. In this work, we offer some techniques to increase performance of software implementation of finite field multiplication algorithm, for both 32-bit and 64-bit platforms. The developed technique, called “delayed carry mechanism,” allows to preventing necessity to consider a significant bit carry at each iteration of the sum accumulation loop. This mechanism enables reducing the total number of additions and applies the modern parallelization technologies effectively.
Mahnke, Martina; Uprichard, Emma
2014-01-01
Imagine sailing across the ocean. The sun is shining, vastness all around you. And suddenly [BOOM] you’ve hit an invisible wall. Welcome to the Truman Show! Ever since Eli Pariser published his thoughts on a potential filter bubble, this movie scenario seems to have become reality, just with slight...... changes: it’s not the ocean, it’s the internet we’re talking about, and it’s not a TV show producer, but algorithms that constitute a sort of invisible wall. Building on this assumption, most research is trying to ‘tame the algorithmic tiger’. While this is a valuable and often inspiring approach, we...
Integers in number systems with positive and negative quadratic Pisot base
Masáková, Zuzana; Vávra, Tomáš
2013-01-01
We consider numeration systems with base $\\beta$ and $-\\beta$, for quadratic Pisot numbers $\\beta$ and focus on comparing the combinatorial structure of the sets $\\Z_\\beta$ and $\\Z_{-\\beta}$ of numbers with integer expansion in base $\\beta$, resp. $-\\beta$. Our main result is the comparison of languages of infinite words $u_\\beta$ and $u_{-\\beta}$ coding the ordering of distances between consecutive $\\beta$- and $(-\\beta)$-integers. It turns out that for a class of roots $\\beta$ of $x^2-mx-m$...
On factoring RSA modulus using random-restart hill-climbing algorithm and Pollard’s rho algorithm
Budiman, M. A.; Rachmawati, D.
2017-12-01
The security of the widely-used RSA public key cryptography algorithm depends on the difficulty of factoring a big integer into two large prime numbers. For many years, the integer factorization problem has been intensively and extensively studied in the field of number theory. As a result, a lot of deterministic algorithms such as Euler’s algorithm, Kraitchik’s, and variants of Pollard’s algorithms have been researched comprehensively. Our study takes a rather uncommon approach: rather than making use of intensive number theories, we attempt to factorize RSA modulus n by using random-restart hill-climbing algorithm, which belongs the class of metaheuristic algorithms. The factorization time of RSA moduli with different lengths is recorded and compared with the factorization time of Pollard’s rho algorithm, which is a deterministic algorithm. Our experimental results indicates that while random-restart hill-climbing algorithm is an acceptable candidate to factorize smaller RSA moduli, the factorization speed is much slower than that of Pollard’s rho algorithm.
Schultz, R.; Stougie, L.; Vlerk, van der M.H.
1998-01-01
In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the
van der Laan, G.; Talman, A.J.J.; Yang, Z.F.
2007-01-01
Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set f§1;§2; ¢ ¢ ¢ ;§ng with the property that antipodal vertices on the boundary of
Physical Applications of a Simple Approximation of Bessel Functions of Integer Order
Barsan, V.; Cojocaru, S.
2007-01-01
Applications of a simple approximation of Bessel functions of integer order, in terms of trigonometric functions, are discussed for several examples from electromagnetism and optics. The method may be applied in the intermediate regime, bridging the "small values regime" and the "asymptotic" one, and covering, in this way, an area of great…
Spherical Bessel functions jsub(n) and ysub(n) of integer order and real argument
Ardill, R.W.B.; Moriarty, K.J.M.
1978-01-01
The spherical Bessel function appears in a variety of physical applications, and especially in phase shift analysis. The package SPHBES contains a subroutine to calculate jsub(n)(x) and ysub(n)(x) for any integer order n and real argument x. The functions jsub(n)(x) and ysub(n)(x) are produced simultaneously and efficiently. (Auth.)
CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization
Friberg, Henrik Alsing
2016-01-01
The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative...
Lemmen-Gerdessen, van J.C.; Souverein, O.W.; Veer, van 't P.; Vries, de J.H.M.
2015-01-01
Objective To support the selection of food items for FFQs in such a way that the amount of information on all relevant nutrients is maximised while the food list is as short as possible. Design Selection of the most informative food items to be included in FFQs was modelled as a Mixed Integer Linear
A Finer Classification of the Unit Sum Number of the Ring of Integers ...
Here we introduce a finer classification for the unit sum number of a ring and in this new classification we completely determine the unit sum number of the ring of integers of a quadratic field. Further we obtain some results on cubic complex fields which one can decide whether the unit sum number is or ∞. Then we ...
Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.
2017-01-01
This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...
Learning decision trees with flexible constraints and objectives using integer optimization
Verwer, S.; Zhang, Y.
2017-01-01
We encode the problem of learning the optimal decision tree of a given depth as an integer optimization problem. We show experimentally that our method (DTIP) can be used to learn good trees up to depth 5 from data sets of size up to 1000. In addition to being efficient, our new formulation allows
Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Graells, Moises
2017-01-01
-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data...
A mixed integer program to model spatial wildfire behavior and suppression placement decisions
Erin J. Belval; Yu Wei; Michael. Bevers
2015-01-01
Wildfire suppression combines multiple objectives and dynamic fire behavior to form a complex problem for decision makers. This paper presents a mixed integer program designed to explore integrating spatial fire behavior and suppression placement decisions into a mathematical programming framework. Fire behavior and suppression placement decisions are modeled using...
Integer Programming Formulation of the Problem of Generating Milton Babbitt's All-partition Arrays
Tanaka, Tsubasa; Bemman, Brian; Meredith, David
2016-01-01
Milton Babbitt (1916–2011) was a composer of twelve-tone serial music noted for creating the all-partition array. The problem of generating an all-partition array involves finding a rectangular array of pitch-class integers that can be partitioned into regions, each of which represents a distinct...
Exact diagonalization study of domain structures in integer filling factor quantum Hall ferromagnets
Rezayi, E. H.; Jungwirth, Tomáš; MacDonald, A. H.; Haldane, F. D. M.
2003-01-01
Roč. 67, č. 20 (2003), s. 201305-1 - 201305-4 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754 Institutional research plan: CEZ:AV0Z1010914 Keywords : domain structure * integer filling factor * quantum Hall ferromagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003
Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface
Gruenewald, Marco; Schirra, Laura K.; Winget, Paul; Kozlik, Michael; Ndione, Paul F.; Sigdel, Ajaya K.; Berry, Joseph J.; Forker, Roman; Bredas, Jean-Luc; Fritz, Torsten; Monti, Oliver L. A.
2015-01-01
with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron
Li, Rui
2009-01-01
The target of this work is to extend the canonical Evolution Strategies (ES) from traditional real-valued parameter optimization domain to mixed-integer parameter optimization domain. This is necessary because there exist numerous practical optimization problems from industry in which the set of
Lin, Shu; Fossorier, Marc
1998-01-01
In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.
Hao, Tian
2017-02-22
The Hall effects, especially the integer, fractional and anomalous quantum Hall effects, have been addressed using Eyring's rate process theory and free volume concept. The basic assumptions are that the conduction process is a common rate controlled "reaction" process that can be described with Eyring's absolute rate process theory; the mobility of electrons should be dependent on the free volume available for conduction electrons. The obtained Hall conductivity is clearly quantized as with prefactors related to both the magnetic flux quantum number and the magnetic quantum number via the azimuthal quantum number, with and without an externally applied magnetic field. This article focuses on two dimensional (2D) systems, but the approaches developed in this article can be extended to 3D systems.
Perrin, Jean-Baptiste; Durand, Benoît; Gay, Emilie; Ducrot, Christian; Hendrikx, Pascal; Calavas, Didier; Hénaux, Viviane
2015-01-01
We performed a simulation study to evaluate the performances of an anomaly detection algorithm considered in the frame of an automated surveillance system of cattle mortality. The method consisted in a combination of temporal regression and spatial cluster detection which allows identifying, for a given week, clusters of spatial units showing an excess of deaths in comparison with their own historical fluctuations. First, we simulated 1,000 outbreaks of a disease causing extra deaths in the French cattle population (about 200,000 herds and 20 million cattle) according to a model mimicking the spreading patterns of an infectious disease and injected these disease-related extra deaths in an authentic mortality dataset, spanning from January 2005 to January 2010. Second, we applied our algorithm on each of the 1,000 semi-synthetic datasets to identify clusters of spatial units showing an excess of deaths considering their own historical fluctuations. Third, we verified if the clusters identified by the algorithm did contain simulated extra deaths in order to evaluate the ability of the algorithm to identify unusual mortality clusters caused by an outbreak. Among the 1,000 simulations, the median duration of simulated outbreaks was 8 weeks, with a median number of 5,627 simulated deaths and 441 infected herds. Within the 12-week trial period, 73% of the simulated outbreaks were detected, with a median timeliness of 1 week, and a mean of 1.4 weeks. The proportion of outbreak weeks flagged by an alarm was 61% (i.e. sensitivity) whereas one in three alarms was a true alarm (i.e. positive predictive value). The performances of the detection algorithm were evaluated for alternative combination of epidemiologic parameters. The results of our study confirmed that in certain conditions automated algorithms could help identifying abnormal cattle mortality increases possibly related to unidentified health events.
Aspect-object alignment with Integer Linear Programming in opinion mining.
Yanyan Zhao
Full Text Available Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial.
Non extensive statistics and entropic gravity in a non-integer dimensional space
Abreu, Everton M.C.; Ananias Neto, Jorge; Godinho, Cresus F.L.
2013-01-01
Full text: The idea that gravity can be originated from thermodynamics features has begun with the discovering that black hole physics is connected to the thermodynamics laws. These concepts were strongly boosted after Jacobson's work, where the Einstein equations were obtained from general thermodynamics approaches. In a recent work, Padmanabhan obtained an interpretation of gravity as an equipartition law. In Verlinde's thermo gravitational formalism, the temperature and the acceleration are connected via Unruh effect. At the same time, he combined the holographic principle with an equipartition law, where the number of bits is proportional to the area of the holographic surface. Bits were used to define the microscopic degrees of freedom. With these ingredients, the entropic force combined with the holographic principle and the equipartition law originated the Newton's law of gravitation. The possible interpretation of Verlinde's result is that gravity is not an underlying concept, but an emergent one. It originates from the statistical behavior of the holographic screen microscopic degrees of freedom. Following these ideas, the current literature has grown in an accelerated production from Coulomb force and symmetry considerations of entropic force to cosmology and loop quantum. In this work we introduced the Newton's constant in a fractal space as a function of the non extensive one. With this result we established a relation between the Tsallis non extensive parameter and the dimension of this fractal space. Using Verlinde's formalism we used these fractal ideas combined with the concept of entropic gravity to calculate the number of bits of an holographic surface in this non-integer dimensional space, a fractal holographic screen. We introduced a fundamental length, a Planck-like length, into this space as a function of this fractal holographic screen radius. Finally, we consider superior dimensions in this analysis. (author)
Aspect-object alignment with Integer Linear Programming in opinion mining.
Zhao, Yanyan; Qin, Bing; Liu, Ting; Yang, Wei
2015-01-01
Target extraction is an important task in opinion mining. In this task, a complete target consists of an aspect and its corresponding object. However, previous work has always simply regarded the aspect as the target itself and has ignored the important "object" element. Thus, these studies have addressed incomplete targets, which are of limited use for practical applications. This paper proposes a novel and important sentiment analysis task, termed aspect-object alignment, to solve the "object neglect" problem. The objective of this task is to obtain the correct corresponding object for each aspect. We design a two-step framework for this task. We first provide an aspect-object alignment classifier that incorporates three sets of features, namely, the basic, relational, and special target features. However, the objects that are assigned to aspects in a sentence often contradict each other and possess many complicated features that are difficult to incorporate into a classifier. To resolve these conflicts, we impose two types of constraints in the second step: intra-sentence constraints and inter-sentence constraints. These constraints are encoded as linear formulations, and Integer Linear Programming (ILP) is used as an inference procedure to obtain a final global decision that is consistent with the constraints. Experiments on a corpus in the camera domain demonstrate that the three feature sets used in the aspect-object alignment classifier are effective in improving its performance. Moreover, the classifier with ILP inference performs better than the classifier without it, thereby illustrating that the two types of constraints that we impose are beneficial.
Obstacle avoidance handling and mixed integer predictive control for space robots
Zong, Lijun; Luo, Jianjun; Wang, Mingming; Yuan, Jianping
2018-04-01
This paper presents a novel obstacle avoidance constraint and a mixed integer predictive control (MIPC) method for space robots avoiding obstacles and satisfying physical limits during performing tasks. Firstly, a novel kind of obstacle avoidance constraint of space robots, which needs the assumption that the manipulator links and the obstacles can be represented by convex bodies, is proposed by limiting the relative velocity between two closest points which are on the manipulator and the obstacle, respectively. Furthermore, the logical variables are introduced into the obstacle avoidance constraint, which have realized the constraint form is automatically changed to satisfy different obstacle avoidance requirements in different distance intervals between the space robot and the obstacle. Afterwards, the obstacle avoidance constraint and other system physical limits, such as joint angle ranges, the amplitude boundaries of joint velocities and joint torques, are described as inequality constraints of a quadratic programming (QP) problem by using the model predictive control (MPC) method. To guarantee the feasibility of the obtained multi-constraint QP problem, the constraints are treated as soft constraints and assigned levels of priority based on the propositional logic theory, which can realize that the constraints with lower priorities are always firstly violated to recover the feasibility of the QP problem. Since the logical variables have been introduced, the optimization problem including obstacle avoidance and system physical limits as prioritized inequality constraints is termed as MIPC method of space robots, and its computational complexity as well as possible strategies for reducing calculation amount are analyzed. Simulations of the space robot unfolding its manipulator and tracking the end-effector's desired trajectories with the existence of obstacles and physical limits are presented to demonstrate the effectiveness of the proposed obstacle avoidance
Nagasinghe, Iranga
2010-01-01
This thesis investigates and develops a few acceleration techniques for the search engine algorithms used in PageRank and HITS computations. PageRank and HITS methods are two highly successful applications of modern Linear Algebra in computer science and engineering. They constitute the essential technologies accounted for the immense growth and…
Lee, Dongyul; Lee, Chaewoo
2014-01-01
The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.
Dongyul Lee
2014-01-01
Full Text Available The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC with adaptive modulation and coding (AMC provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.
Counting Zeros in Random Walks on the Integers and Analysis of Optimal Dual-Pivot Quicksort
Aumüller, Martin; Dietzfelbinger, Martin; Heuberger, Clemens
2016-01-01
We present an average case analysis of two variants of dual-pivot quicksort, one with a non-algorithmic comparison-optimal partitioning strategy, the other with a closely related algorithmic strategy. For both we calculate the expected number of comparisons exactly as well as asymptotically......, in particular, we provide exact expressions for the linear, logarithmic, and constant terms. An essential step is the analysis of zeros of lattice paths in a certain probability model. Along the way a combinatorial identity is proven....
De Götzen , Amalia; Mion , Luca; Tache , Olivier
2007-01-01
International audience; We call sound algorithms the categories of algorithms that deal with digital sound signal. Sound algorithms appeared in the very infancy of computer. Sound algorithms present strong specificities that are the consequence of two dual considerations: the properties of the digital sound signal itself and its uses, and the properties of auditory perception.
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Fast half-sibling population reconstruction: theory and algorithms.
Dexter, Daniel; Brown, Daniel G
2013-07-12
Kinship inference is the task of identifying genealogically related individuals. Kinship information is important for determining mating structures, notably in endangered populations. Although many solutions exist for reconstructing full sibling relationships, few exist for half-siblings. We consider the problem of determining whether a proposed half-sibling population reconstruction is valid under Mendelian inheritance assumptions. We show that this problem is NP-complete and provide a 0/1 integer program that identifies the minimum number of individuals that must be removed from a population in order for the reconstruction to become valid. We also present SibJoin, a heuristic-based clustering approach based on Mendelian genetics, which is strikingly fast. The software is available at http://github.com/ddexter/SibJoin.git+. Our SibJoin algorithm is reasonably accurate and thousands of times faster than existing algorithms. The heuristic is used to infer a half-sibling structure for a population which was, until recently, too large to evaluate.
Cheng-Hong Yang
Full Text Available BACKGROUND: Complete mitochondrial (mt genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5' end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA. METHODOLOGY/PRINCIPAL FINDINGS: The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO, all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided. CONCLUSIONS/SIGNIFICANCE: In conclusion, it can be said that our proposed sliding window-based PSO
Siebert, E.; Bohner, G. [Department of Neuroradiology, Charite Universitary Medicine Berlin (Germany); Dewey, M.; Bauknecht, C. [Department of Radiology, Charite Universitary Medicine Berlin (Germany); Klingebiel, R. [Department of Neuroradiology, Charite Universitary Medicine Berlin (Germany)], E-mail: randolf.klingebiel@charite.de
2010-01-15
Purpose: Comparative evaluation of a low-dose scan protocol for a novel bone-subtraction (BS) algorithm, applicable to 64-row cervico-cranial (cc) CT angiography (MSCTA). Methods and patients: BS algorithm assessment was performed in cadaveric phantom studies by stepwise variation of tube current and head malrotation using a 64-row CT scanner. In order to define minimum dose requirements and the rotation correction capacity, a low dose BS MSCTA protocol was defined and evaluated in 12 patients in comparison to a common manual bone removal algorithm. Standard MIPs of both modalities were evaluated in a blinded manner by two neuroradiologists for image quality composed, of vessel contour sharpness and bony vessel superposition, by using a five-point score each. Effective Dose (E) and data post-processing times were defined. Results: In experimental studies prescan tube current could be cut down to one-sixth of post-contrast scan doses without compromise of bone-subtraction whereas incomplete subtraction appeared from four degrees head malrotation on. Prescan E amounted to additional 1.1 mSv (+25%) in clinical studies. BS MSCTA performed significantly superior in terms of bony superposition for vascular segments C3-C7 (p < 0.001), V1-V2, V3-V4 (p < 0.05, p < 0.001 respectively) and the ophthalmic artery (p < 0.05), whereas vessel contour sharpness in BS MSCTA only proved superior for arterial segments V3-V4 (p < 0.001) and C3-C7 (p < 0.001). MBR MSCTA received higher ratings in vessel contour sharpness for C1-C2 (p < 0.001), callosomarginal artery (p < 0.001), M1, M2, M3 (p < 0.001 each) and the basilar artery (p < 0.001). Reconstruction times amounted to an average of 1.5 (BS MSCTA) and 3 min (MBR MSCTA) respectively. Conclusion: The novel BS algorithm provides superior skull base artery visualisation as compared to common manual bone removal algorithms, increasing the Effective Dose by one-fourth. Yet, inferior vessel contour sharpness was noted intracranially, thus
Siebert, E.; Bohner, G.; Dewey, M.; Bauknecht, C.; Klingebiel, R.
2010-01-01
Purpose: Comparative evaluation of a low-dose scan protocol for a novel bone-subtraction (BS) algorithm, applicable to 64-row cervico-cranial (cc) CT angiography (MSCTA). Methods and patients: BS algorithm assessment was performed in cadaveric phantom studies by stepwise variation of tube current and head malrotation using a 64-row CT scanner. In order to define minimum dose requirements and the rotation correction capacity, a low dose BS MSCTA protocol was defined and evaluated in 12 patients in comparison to a common manual bone removal algorithm. Standard MIPs of both modalities were evaluated in a blinded manner by two neuroradiologists for image quality composed, of vessel contour sharpness and bony vessel superposition, by using a five-point score each. Effective Dose (E) and data post-processing times were defined. Results: In experimental studies prescan tube current could be cut down to one-sixth of post-contrast scan doses without compromise of bone-subtraction whereas incomplete subtraction appeared from four degrees head malrotation on. Prescan E amounted to additional 1.1 mSv (+25%) in clinical studies. BS MSCTA performed significantly superior in terms of bony superposition for vascular segments C3-C7 (p < 0.001), V1-V2, V3-V4 (p < 0.05, p < 0.001 respectively) and the ophthalmic artery (p < 0.05), whereas vessel contour sharpness in BS MSCTA only proved superior for arterial segments V3-V4 (p < 0.001) and C3-C7 (p < 0.001). MBR MSCTA received higher ratings in vessel contour sharpness for C1-C2 (p < 0.001), callosomarginal artery (p < 0.001), M1, M2, M3 (p < 0.001 each) and the basilar artery (p < 0.001). Reconstruction times amounted to an average of 1.5 (BS MSCTA) and 3 min (MBR MSCTA) respectively. Conclusion: The novel BS algorithm provides superior skull base artery visualisation as compared to common manual bone removal algorithms, increasing the Effective Dose by one-fourth. Yet, inferior vessel contour sharpness was noted intracranially, thus
Application of Logic to Integer Sequences: A Survey
Makowsky, Johann A.
Chomsky and Schützenberger showed in 1963 that the sequence d L (n), which counts the number of words of a given length n in a regular language L, satisfies a linear recurrence relation with constant coefficients for n, or equivalently, the generating function g_L(x)=sumn d_L(n) x^n is a rational function. In this talk we survey results concerning sequences a(n) of natural numbers which satisfy linear recurrence relations over ℤ or ℤ m , and
Independent tasks scheduling in cloud computing via improved estimation of distribution algorithm
Sun, Haisheng; Xu, Rui; Chen, Huaping
2018-04-01
To minimize makespan for scheduling independent tasks in cloud computing, an improved estimation of distribution algorithm (IEDA) is proposed to tackle the investigated problem in this paper. Considering that the problem is concerned with multi-dimensional discrete problems, an improved population-based incremental learning (PBIL) algorithm is applied, which the parameter for each component is independent with other components in PBIL. In order to improve the performance of PBIL, on the one hand, the integer encoding scheme is used and the method of probability calculation of PBIL is improved by using the task average processing time; on the other hand, an effective adaptive learning rate function that related to the number of iterations is constructed to trade off the exploration and exploitation of IEDA. In addition, both enhanced Max-Min and Min-Min algorithms are properly introduced to form two initial individuals. In the proposed IEDA, an improved genetic algorithm (IGA) is applied to generate partial initial population by evolving two initial individuals and the rest of initial individuals are generated at random. Finally, the sampling process is divided into two parts including sampling by probabilistic model and IGA respectively. The experiment results show that the proposed IEDA not only gets better solution, but also has faster convergence speed.
Recurrence relations for three-loop prototypes of bubble diagrams with a mass
Avdeev, L.V.
1995-01-01
Recurrence relations derived via the Chetyrkin-Tkachev method of integration by parts are applied to reduce scalar three-loop bubble (vacuum) diagrams with a mass to a limited number of master integrals. The reduction is implemented as a package of computer programs for analytic evaluation in FORM. The algorithms are applicable to diagrams with any integer powers on the lines in an arbitrary dimension. A physical application is the evaluation of the three-loop QCD correction to the electroweak ρ-parameter. 8 refs., 1 fig
Kiers, Henk A.L.; Harshman, Richard A.
Multilinear analysis methods such as component (and three-way component) analysis of very large data sets can become very computationally demanding and even infeasible unless some method is used to compress the data and/or speed up the algorithms. We discuss two previously proposed speedup methods.
Joux, Antoine
2009-01-01
Illustrating the power of algorithms, Algorithmic Cryptanalysis describes algorithmic methods with cryptographically relevant examples. Focusing on both private- and public-key cryptographic algorithms, it presents each algorithm either as a textual description, in pseudo-code, or in a C code program.Divided into three parts, the book begins with a short introduction to cryptography and a background chapter on elementary number theory and algebra. It then moves on to algorithms, with each chapter in this section dedicated to a single topic and often illustrated with simple cryptographic applic
Modified Clipped LMS Algorithm
Lotfizad Mojtaba
2005-01-01
Full Text Available Abstract A new algorithm is proposed for updating the weights of an adaptive filter. The proposed algorithm is a modification of an existing method, namely, the clipped LMS, and uses a three-level quantization ( scheme that involves the threshold clipping of the input signals in the filter weight update formula. Mathematical analysis shows the convergence of the filter weights to the optimum Wiener filter weights. Also, it can be proved that the proposed modified clipped LMS (MCLMS algorithm has better tracking than the LMS algorithm. In addition, this algorithm has reduced computational complexity relative to the unmodified one. By using a suitable threshold, it is possible to increase the tracking capability of the MCLMS algorithm compared to the LMS algorithm, but this causes slower convergence. Computer simulations confirm the mathematical analysis presented.
Multiobjective genetic algorithm approaches to project scheduling under risk
Kılıç, Murat; Kilic, Murat
2003-01-01
In this thesis, project scheduling under risk is chosen as the topic of research. Project scheduling under risk is defined as a biobjective decision problem and is formulated as a 0-1 integer mathematical programming model. In this biobjective formulation, one of the objectives is taken as the expected makespan minimization and the other is taken as the expected cost minimization. As the solution approach to this biobjective formulation genetic algorithm (GA) is chosen. After carefully invest...
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
Artificial neural networks and evolutionary algorithms in engineering design
T. Velsker; M. Eerme; J. Majak; M. Pohlak; K. Karjust
2011-01-01
Purpose: Purpose of this paper is investigation of optimization strategies eligible for solving complex engineering design problems. An aim is to develop numerical algorithms for solving optimal design problems which may contain real and integer variables, a number of local extremes, linear- and non-linear constraints and multiple optimality criteria.Design/methodology/approach: The methodology proposed for solving optimal design problems is based on integrated use of meta-modeling techniques...
A simplicial algorithm for testing the integral properties of polytopes : A revision
Yang, Z.F.
1994-01-01
Given an arbitrary polytope P in the n-dimensional Euclidean space R n , the question is to determine whether P contains an integral point or not. We propose a simplicial algorithm to answer this question based on a specifc integer labeling rule and a specific triangulation of R n . Starting from an
A deterministic algorithm for fitting a step function to a weighted point-set
Fournier, Hervé
2013-01-01
Given a set of n points in the plane, each point having a positive weight, and an integer k>0, we present an optimal O(nlogn)-time deterministic algorithm to compute a step function with k steps that minimizes the maximum weighted vertical distance
Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface
Gruenewald, Marco
2015-02-11
We investigate the prototypical hybrid interface formed between PTCDA and conductive n-doped ZnO films by means of complementary optical and electronic spectroscopic techniques. We demonstrate that shallow donors in the vicinity of the ZnO surface cause an integer charge transfer to PTCDA, which is clearly restricted to the first monolayer. By means of DFT calculations, we show that the experimental signatures of the anionic PTCDA species can be understood in terms of strong hybridization with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron-transport level but requires rather an atomistic understanding of the interfacial interactions. The study reveals that defect sites and dopants can have a significant influence on the specifics of interfacial coupling and thus on carrier injection or extraction.
Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain
Catalao, J.P.S.; Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)
2010-08-15
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain. We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to earlier studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas. Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper. Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement. (author)
Time-Series INSAR: An Integer Least-Squares Approach For Distributed Scatterers
Samiei-Esfahany, Sami; Hanssen, Ramon F.
2012-01-01
The objective of this research is to extend the geode- tic mathematical model which was developed for persistent scatterers to a model which can exploit distributed scatterers (DS). The main focus is on the integer least- squares framework, and the main challenge is to include the decorrelation effect in the mathematical model. In order to adapt the integer least-squares mathematical model for DS we altered the model from a single master to a multi-master configuration and introduced the decorrelation effect stochastically. This effect is described in our model by a full covariance matrix. We propose to de- rive this covariance matrix by numerical integration of the (joint) probability distribution function (PDF) of interferometric phases. This PDF is a function of coherence values and can be directly computed from radar data. We show that the use of this model can improve the performance of temporal phase unwrapping of distributed scatterers.
Half-integer flux quantum effect in cuprate superconductors - a probe of pairing symmetry
Tsuei, C.C.; Kirtley, J.R.; Gupta, A.; Sun, J.Z.; Moler, K.A.; Wang, J.H.
1996-01-01
Based on macroscopic quantum coherence effects arising from pair tunneling and flux quantization, a series of tricrystal experiments have been designed and carried out to test the order parameter symmetry in high-T c cuprate superconductors. By using a scanning SQUID microscope, we have directly and non-invasively observed the spontaneously generated half-integer flux quantum effect in controlled-orientation tricrystal cuprate superconducting systems. The presence or absence of the half-integer flux quantum effect as a function of the tricrystal geometry allows us to prove that the order parameter symmetry in the YBCO and Tl2201 systems is consistent with that of the d x 2 -y 2 pair state. (orig.)
IMC-PID-fractional-order-filter controllers design for integer order systems.
Maâmar, Bettayeb; Rachid, Mansouri
2014-09-01
One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Jensen, Toke Koldborg; Kjærsgaard, Niels Christian
Slaughterhouses are major players in the pork supply chain, and supply and demand must be matched in order to generate the highest proﬁt. In particular, carcasses must be sorted in order to produce the “right” ﬁnal products from the “right” carcasses. We develop a mixed-integer programming (MIP) ...... at slaughterhouses. Finally, we comment on the expected effect of variations in the raw material supply and the demand as well as future research concerning joint modelling of supply chain aspects.......Slaughterhouses are major players in the pork supply chain, and supply and demand must be matched in order to generate the highest proﬁt. In particular, carcasses must be sorted in order to produce the “right” ﬁnal products from the “right” carcasses. We develop a mixed-integer programming (MIP...
Mixed integer linear programming model for dynamic supplier selection problem considering discounts
Adi Wicaksono Purnawan
2018-01-01
Full Text Available Supplier selection is one of the most important elements in supply chain management. This function involves evaluation of many factors such as, material costs, transportation costs, quality, delays, supplier capacity, storage capacity and others. Each of these factors varies with time, therefore, supplier identified for one period is not necessarily be same for the next period to supply the same product. So, mixed integer linear programming (MILP was developed to overcome the dynamic supplier selection problem (DSSP. In this paper, a mixed integer linear programming model is built to solve the lot-sizing problem with multiple suppliers, multiple periods, multiple products and quantity discounts. The buyer has to make a decision for some products which will be supplied by some suppliers for some periods cosidering by discount. To validate the MILP model with randomly generated data. The model is solved by Lingo 16.
Non-Porod scattering and non-integer scaling of resistance in rough films
Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay
2017-04-01
In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.
Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.
Extension of the Poincaré group with half-integer spin generators: hypergravity and beyond
Fuentealba, Oscar [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Matulich, Javier; Troncoso, Ricardo [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile)
2015-09-01
An extension of the Poincaré group with half-integer spin generators is explicitly constructed. We start discussing the case of three spacetime dimensions, and as an application, it is shown that hypergravity can be formulated so as to incorporate this structure as its local gauge symmetry. Since the algebra admits a nontrivial Casimir operator, the theory can be described in terms of gauge fields associated to the extension of the Poincaré group with a Chern-Simons action. The algebra is also shown to admit an infinite-dimensional non-linear extension, that in the case of fermionic spin-3/2 generators, corresponds to a subset of a contraction of two copies of WB{sub 2}. Finally, we show how the Poincaré group can be extended with half-integer spin generators for d≥3 dimensions.
Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.
Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush
2016-08-01
This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.
Animesh Biswas
2016-04-01
Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.
Naseem Cassim
2017-02-01
Full Text Available Introduction: CD4 testing in South Africa is based on an integrated tiered service delivery model that matches testing demand with capacity. The National Health Laboratory Service has predominantly implemented laboratory-based CD4 testing. Coverage gaps, over-/under-capacitation and optimal placement of point-of-care (POC testing sites need investigation. Objectives: We assessed the impact of relational algebraic capacitated location (RACL algorithm outcomes on the allocation of laboratory and POC testing sites. Methods: The RACL algorithm was developed to allocate laboratories and POC sites to ensure coverage using a set coverage approach for a defined travel time (T. The algorithm was repeated for three scenarios (A: T = 4; B: T = 3; C: T = 2 hours. Drive times for a representative sample of health facility clusters were used to approximate T. Outcomes included allocation of testing sites, Euclidian distances and test volumes. Additional analysis included platform distribution and space requirement assessment. Scenarios were reported as fusion table maps. Results: Scenario A would offer a fully-centralised approach with 15 CD4 laboratories without any POC testing. A significant increase in volumes would result in a four-fold increase at busier laboratories. CD4 laboratories would increase to 41 in scenario B and 61 in scenario C. POC testing would be offered at two sites in scenario B and 20 sites in scenario C. Conclusion: The RACL algorithm provides an objective methodology to address coverage gaps through the allocation of CD4 laboratories and POC sites for a given T. The algorithm outcomes need to be assessed in the context of local conditions.
Topologically induced fractional Hall steps in the integer quantum Hall regime of MoS 2
Firoz Islam, SK; Benjamin, Colin
2016-09-01
The quantum magnetotransport properties of a monolayer of molybdenum disulfide are derived using linear response theory. In particular, the effect of topological terms on longitudinal and Hall conductivity is analyzed. The Hall conductivity exhibits fractional steps in the integer quantum Hall regime. Further complete spin and valley polarization of the longitudinal conductivitity is seen in presence of these topological terms. Finally, the Shubnikov-de Hass oscillations are suppressed or enhanced contingent on the sign of these topological terms.
Core barrier formation near integer q surfaces in DIII-D
Austin, M. E.; Gentle, K. W.; Burrell, K. H.; Waltz, R. E.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Luo, Y.; Kinsey, J. E.; Makowski, M. A.; McKee, G. R.; Shafer, M. W.; Nazikian, R.; Rhodes, T. L.; Van Zeeland, M. A.
2006-01-01
Recent DIII-D experiments have significantly improved the understanding of internal transport barriers (ITBs) that are triggered close to the time when an integer value of the minimum in q is crossed. While this phenomenon has been observed on many tokamaks, the extensive transport and fluctuation diagnostics on DIII-D have permitted a detailed study of the generation mechanisms of q-triggered ITBs as pertaining to turbulence suppression dynamics, shear flows, and energetic particle modes. In these discharges, the evolution of the q profile is measured using motional Stark effect polarimetry and the integer q min crossings are further pinpointed in time by the observation of Alfven cascades. High time resolution measurements of the ion and electron temperatures and the toroidal rotation show that the start of improved confinement is simultaneous in all three channels, and that this event precedes the traversal of integer q min by 5-20 ms. There is no significant low-frequency magnetohydrodynamic activity prior to or just after the crossing of the integer q min and hence magnetic reconnection is determined not to be the precipitant of the confinement change. Instead, results from the GYRO code point to the effects of zonal flows near low order rational q values as playing a role in ITB triggering. A reduction in local turbulent fluctuations is observed at the start of the temperature rise and, concurrently, an increase in turbulence poloidal flow velocity and flow shear is measured with the beam emission spectroscopy diagnostic. For the case of a transition to an enduring internal barrier the fluctuation level remains at a reduced amplitude. The timing and nature of the temperature, rotation, and fluctuation changes leading to internal barriers suggests transport improvement due to increased shear flow arising from the zonal flow structures
A Mixed Integer Linear Programming Model for the North Atlantic Aircraft Trajectory Planning
Sbihi , Mohammed; Rodionova , Olga; Delahaye , Daniel; Mongeau , Marcel
2015-01-01
International audience; This paper discusses the trajectory planning problem for ights in the North Atlantic oceanic airspace (NAT). We develop a mathematical optimization framework in view of better utilizing available capacity by re-routing aircraft. The model is constructed by discretizing the problem parameters. A Mixed integer linear program (MILP) is proposed. Based on the MILP a heuristic to solve real-size instances is also introduced
Learning Bayesian network structure: towards the essential graph by integer linear programming tools
Studený, Milan; Haws, D.
2014-01-01
Roč. 55, č. 4 (2014), s. 1043-1071 ISSN 0888-613X R&D Projects: GA ČR GA13-20012S Institutional support: RVO:67985556 Keywords : learning Bayesian network structure * integer linear programming * characteristic imset * essential graph Subject RIV: BA - General Mathematics Impact factor: 2.451, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/studeny-0427002.pdf
Hougardy, Stefan
2016-01-01
Algorithms play an increasingly important role in nearly all fields of mathematics. This book allows readers to develop basic mathematical abilities, in particular those concerning the design and analysis of algorithms as well as their implementation. It presents not only fundamental algorithms like the sieve of Eratosthenes, the Euclidean algorithm, sorting algorithms, algorithms on graphs, and Gaussian elimination, but also discusses elementary data structures, basic graph theory, and numerical questions. In addition, it provides an introduction to programming and demonstrates in detail how to implement algorithms in C++. This textbook is suitable for students who are new to the subject and covers a basic mathematical lecture course, complementing traditional courses on analysis and linear algebra. Both authors have given this "Algorithmic Mathematics" course at the University of Bonn several times in recent years.
Verslycke, Tim; Poelmans, Sofie; De Wasch, Katia; Vercauteren, Jordy; Devos, Christophe; Moens, Luc; Sandra, Patrick; De Brabander, Hubert F; Janssen, Colin R
2003-09-01
Current evidence suggests that the biocide tributyltin (TBT) causes the development of imposex, a state of pseudohermaphrodism in which females exhibit functional secondary male characteristics, by altering the biotransformation or elimination of testosterone. Imposex in gastropods following TBT exposure is the most complete example of the effects of an endocrine disrupter on marine invertebrates. Previous studies have demonstrated that the estuarine mysid Neomysis integer converts testosterone into multiple polar and nonpolar metabolites resulting from both phase I and phase II biotransformations. In this study, the effects of TBT chloride (TBTCl) on the phase I and II testosterone metabolism of N. integer were evaluated. The TBTCl was highly toxic to N. integer (96-h median lethal concentration [LC50] of 164 ng/L). To assess the effects on testosterone metabolism, mysids were exposed for 96 h to different concentrations of TBTCl (control, 10, 100, and 1,000 ng/L), and testosterone elimination as polar hydroxylated, nonpolar oxido-reduced, and glucose- and sulfate-conjugated metabolites was examined. The TBTCl differentially affected testosterone metabolism. The effect of TBTCl on phase I metabolism was unclear and has been shown to vary among species, likely depending on the inducibility or presence of certain P450 isozyme families. Reductase activity and metabolic androgenization were induced in the 10-ng/L treatment, whereas higher concentrations resulted in a reduction of sulfate conjugation. The exact mechanisms underlying TBT-induced imposex and alterations in the steroid metabolism need to be further elucidated.
Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number
Wang Xingyuan
2010-01-01
Full Text Available This paper presents two methods for accurately computing the periodic regions' centers. One method fits for the general M-sets with integer index number, the other fits for the general M-sets with negative integer index number. Both methods improve the precision of computation by transforming the polynomial equations which determine the periodic regions' centers. We primarily discuss the general M-sets with negative integer index, and analyze the relationship between the number of periodic regions' centers on the principal symmetric axis and in the principal symmetric interior. We can get the centers' coordinates with at least 48 significant digits after the decimal point in both real and imaginary parts by applying the Newton's method to the transformed polynomial equation which determine the periodic regions' centers. In this paper, we list some centers' coordinates of general M-sets' k-periodic regions (k=3,4,5,6 for the index numbers α=−25,−24,…,−1 , all of which have highly numerical accuracy.
Spatial “Artistic” Networks: From Deconstructing Integer-Functions to Visual Arts
Ernesto Estrada
2018-01-01
Full Text Available Deconstructivism is an aesthetically appealing architectonic style. Here, we identify some general characteristics of this style, such as decomposition of the whole into parts, superposition of layers, and conservation of the memory of the whole. Using these attributes, we propose a method to deconstruct functions based on integers. Using this integer-function deconstruction we generate spatial networks which display a few artistic attributes such as (i biomorphic shapes, (ii symmetry, and (iii beauty. In building these networks, the deconstructed integer-functions are used as the coordinates of the nodes in a unit square, which are then joined according to a given connection radius like in random geometric graphs (RGGs. Some graph-theoretic invariants of these networks are calculated and compared with the classical RGGs. We then show how these networks inspire an artist to create artistic compositions using mixed techniques on canvas and on paper. Finally, we call for avoiding that the applicability of (network sciences should not go in detriment of curiosity-driven, and aesthetic-driven, researches. We claim that the aesthetic of network research, and not only its applicability, would be an attractor for new minds to this field.
Unwinding the hairball graph: Pruning algorithms for weighted complex networks
Dianati, Navid
2016-01-01
Empirical networks of weighted dyadic relations often contain "noisy" edges that alter the global characteristics of the network and obfuscate the most important structures therein. Graph pruning is the process of identifying the most significant edges according to a generative null model and extracting the subgraph consisting of those edges. Here, we focus on integer-weighted graphs commonly arising when weights count the occurrences of an "event" relating the nodes. We introduce a simple and intuitive null model related to the configuration model of network generation and derive two significance filters from it: the marginal likelihood filter (MLF) and the global likelihood filter (GLF). The former is a fast algorithm assigning a significance score to each edge based on the marginal distribution of edge weights, whereas the latter is an ensemble approach which takes into account the correlations among edges. We apply these filters to the network of air traffic volume between US airports and recover a geographically faithful representation of the graph. Furthermore, compared with thresholding based on edge weight, we show that our filters extract a larger and significantly sparser giant component.
Grolmusz, Vince I
2015-04-01
Diabetes is a growing concern for the developed nations worldwide. New genomic, metagenomic and gene-technologic approaches may yield considerable results in the next several years in its early diagnosis, or in advances in therapy and management. In this work, we highlight some human proteins that may serve as new targets in the early diagnosis and therapy. With the help of a very successful mathematical tool for network analysis that formed the basis of the early successes of Google(TM), Inc., we analyse the human protein-protein interaction network gained from the IntAct database with a mathematical algorithm. The novelty of our approach is that the new protein targets suggested do not have many interacting partners (so, they are not hubs or super-hubs), so their inhibition or promotion probably will not have serious side effects. We have identified numerous possible protein targets for diabetes therapy and/or management; some of these have been well known for a long time (these validate our method), some of them appeared in the literature in the last 12 months (these show the cutting edge of the algorithm), and the remainder are still unknown to be connected with diabetes, witnessing completely new hits of the method.
Tel, G.
We define the notion of total algorithms for networks of processes. A total algorithm enforces that a "decision" is taken by a subset of the processes, and that participation of all processes is required to reach this decision. Total algorithms are an important building block in the design of
Krystel K. Castillo-Villar
2014-11-01
Full Text Available Bioenergy is a new source of energy that accounts for a substantial portion of the renewable energy production in many countries. The production of bioenergy is expected to increase due to its unique advantages, such as no harmful emissions and abundance. Supply-related problems are the main obstacles precluding the increase of use of biomass (which is bulky and has low energy density to produce bioenergy. To overcome this challenge, large-scale optimization models are needed to be solved to enable decision makers to plan, design, and manage bioenergy supply chains. Therefore, the use of effective optimization approaches is of great importance. The traditional mathematical methods (such as linear, integer, and mixed-integer programming frequently fail to find optimal solutions for non-convex and/or large-scale models whereas metaheuristics are efficient approaches for finding near-optimal solutions that use less computational resources. This paper presents a comprehensive review by studying and analyzing the application of metaheuristics to solve bioenergy supply chain models as well as the exclusive challenges of the mathematical problems applied in the bioenergy supply chain field. The reviewed metaheuristics include: (1 population approaches, such as ant colony optimization (ACO, the genetic algorithm (GA, particle swarm optimization (PSO, and bee colony algorithm (BCA; and (2 trajectory approaches, such as the tabu search (TS and simulated annealing (SA. Based on the outcomes of this literature review, the integrated design and planning of bioenergy supply chains problem has been solved primarily by implementing the GA. The production process optimization was addressed primarily by using both the GA and PSO. The supply chain network design problem was treated by utilizing the GA and ACO. The truck and task scheduling problem was solved using the SA and the TS, where the trajectory-based methods proved to outperform the population
Wang, Bo; Miao, Lingjuan; Wang, Shunting; Shen, Jun
2009-01-01
During attitude determination using a global positioning system (GPS), cycle slips occur due to the loss of lock and noise disturbance. Therefore, the integer ambiguity needs re-computation to isolate the error in carrier phase. This paper presents a fast method for integer ambiguity resolution for land vehicle application. After the cycle slips are detected, the velocity vector is utilized to obtain the rough baseline vector. The obtained baseline vector is substituted into carrier phase observation equations to solve the float ambiguity solution which can be used as a constraint to accelerate the integer ambiguity search procedure at next epochs. The probability of correct integer estimation in the expanded search space is analyzed. Experimental results demonstrate that the proposed method gives a fast approach to obtain new fixed ambiguities while the regular method takes longer time and sometimes results in incorrect solutions
Mixed integer programming model for optimizing the layout of an ICU vehicle
García-Sánchez Álvaro
2009-12-01
Full Text Available Abstract Background This paper presents a Mixed Integer Programming (MIP model for designing the layout of the Intensive Care Units' (ICUs patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112. Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group", the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final
Zörnig, Peter
2015-08-01
We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.
New Optimization Algorithms in Physics
Hartmann, Alexander K
2004-01-01
Many physicists are not aware of the fact that they can solve their problems by applying optimization algorithms. Since the number of such algorithms is steadily increasing, many new algorithms have not been presented comprehensively until now. This presentation of recently developed algorithms applied in physics, including demonstrations of how they work and related results, aims to encourage their application, and as such the algorithms selected cover concepts and methods from statistical physics to optimization problems emerging in theoretical computer science.
Warner, J.L.; Lutz, J.D.
2006-01-01
Residential water heating is an important consideration in California?s building energy efficiency standard. Explicit treatment of ground-coupled hot water piping is one of several planned improvements to the standard. The properties of water, piping, insulation, backfill materials, concrete slabs, and soil, their interactions, and their variations with temperature and over time are important considerations in the required supporting analysis. Heat transfer algorithms and models devised for generalized, hot water distribution system, ground-source heat pump and ground heat exchanger, nuclear waste repository, buried oil pipeline, and underground electricity transmission cable applications can be adapted to the simulation of under-slab water piping. A numerical model that permits detailed examination of and broad variations in many inputs while employing a technique to conserve computer run time is recommended.
Explaining algorithms using metaphors
Forišek, Michal
2013-01-01
There is a significant difference between designing a new algorithm, proving its correctness, and teaching it to an audience. When teaching algorithms, the teacher's main goal should be to convey the underlying ideas and to help the students form correct mental models related to the algorithm. This process can often be facilitated by using suitable metaphors. This work provides a set of novel metaphors identified and developed as suitable tools for teaching many of the 'classic textbook' algorithms taught in undergraduate courses worldwide. Each chapter provides exercises and didactic notes fo
A hybrid Jaya algorithm for reliability-redundancy allocation problems
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Greenberg, Harold
1971-01-01
In this book, we study theoretical and practical aspects of computing methods for mathematical modelling of nonlinear systems. A number of computing techniques are considered, such as methods of operator approximation with any given accuracy; operator interpolation techniques including a non-Lagrange interpolation; methods of system representation subject to constraints associated with concepts of causality, memory and stationarity; methods of system representation with an accuracy that is the best within a given class of models; methods of covariance matrix estimation;methods for low-rank mat
Wiyada Kumam
2016-05-01
Full Text Available In this article, we introduce a new multi-step iteration for approximating a common fixed point of a finite class of multi-valued Bregman relatively nonexpansive mappings in the setting of reflexive Banach spaces. We prove a strong convergence theorem for the proposed iterative algorithm under certain hypotheses. Additionally, we also use our results for the solution of variational inequality problems and to find the zero points of maximal monotone operators. The theorems furnished in this work are new and well-established and generalize many well-known recent research works in this field.
When do evolutionary algorithms optimize separable functions in parallel?
Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten
2013-01-01
is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...
Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem
Chen, Wei
2015-07-01
In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.
An improved cut-and-solve algorithm for the single-source capacitated facility location problem
Gadegaard, Sune Lauth; Klose, Andreas; Nielsen, Lars Relund
2018-01-01
In this paper, we present an improved cut-and-solve algorithm for the single-source capacitated facility location problem. The algorithm consists of three phases. The first phase strengthens the integer program by a cutting plane algorithm to obtain a tight lower bound. The second phase uses a two......-level local branching heuristic to find an upper bound, and if optimality has not yet been established, the third phase uses the cut-and-solve framework to close the optimality gap. Extensive computational results are reported, showing that the proposed algorithm runs 10–80 times faster on average compared...
Extension of the direct statistical approach to a volume parameter model (non-integer splitting)
Burn, K.W.
1990-01-01
The Direct Statistical Approach is a rigorous mathematical derivation of the second moment for surface splitting and Russian Roulette games attached to the Monte Carlo modelling of fixed source particle transport. It has been extended to a volume parameter model (involving non-integer ''expected value'' splitting), and then to a cell model. The cell model gives second moment and time functions that have a closed form. This suggests the possibility of two different methods of solution of the optimum splitting/Russian Roulette parameters. (author)
Modeling an integrated hospital management planning problem using integer optimization approach
Sitepu, Suryati; Mawengkang, Herman; Irvan
2017-09-01
Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.
Scheduling of head-dependent cascaded hydro systems: Mixed-integer quadratic programming approach
Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F.
2010-01-01
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach.
Scheduling of head-dependent cascaded hydro systems: Mixed-integer quadratic programming approach
Catalao, J.P.S.; Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)
2010-03-15
This paper is on the problem of short-term hydro scheduling, particularly concerning head-dependent cascaded hydro systems. We propose a novel mixed-integer quadratic programming approach, considering not only head-dependency, but also discontinuous operating regions and discharge ramping constraints. Thus, an enhanced short-term hydro scheduling is provided due to the more realistic modeling presented in this paper. Numerical results from two case studies, based on Portuguese cascaded hydro systems, illustrate the proficiency of the proposed approach. (author)
A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order
Damgård, Ivan Bjerre; Fujisaki, Eiichiro
2002-01-01
We present a statistically-hiding commitment scheme allowing commitment to arbitrary size integers, based on any (Abelian) group with certain properties, most importantly, that it is hard for the committer to compute its order. We also give efficient zero-knowledge protocols for proving knowledge...... input is chosen by the (possibly cheating) prover. - - Our results apply to any group with suitable properties. In particular, they apply to a much larger class of RSA moduli than the safe prime products proposed in [14] - Potential examples include RSA moduli, class groups and, with a slight...
Universal conductance and conductivity at critical points in integer quantum Hall systems.
Schweitzer, L; Markos, P
2005-12-16
The sample averaged longitudinal two-terminal conductance and the respective Kubo conductivity are calculated at quantum critical points in the integer quantum Hall regime. In the limit of large system size, both transport quantities are found to be the same within numerical uncertainty in the lowest Landau band, and , respectively. In the second-lowest Landau band, a critical conductance is obtained which indeed supports the notion of universality. However, these numbers are significantly at variance with the hitherto commonly believed value . We argue that this difference is due to the multifractal structure of critical wave functions, a property that should generically show up in the conductance at quantum critical points.
Mixed Integer Linear Programming model for Crude Palm Oil Supply Chain Planning
Sembiring, Pasukat; Mawengkang, Herman; Sadyadharma, Hendaru; Bu'ulolo, F.; Fajriana
2018-01-01
The production process of crude palm oil (CPO) can be defined as the milling process of raw materials, called fresh fruit bunch (FFB) into end products palm oil. The process usually through a series of steps producing and consuming intermediate products. The CPO milling industry considered in this paper does not have oil palm plantation, therefore the FFB are supplied by several public oil palm plantations. Due to the limited availability of FFB, then it is necessary to choose from which plantations would be appropriate. This paper proposes a mixed integer linear programming model the supply chain integrated problem, which include waste processing. The mathematical programming model is solved using neighborhood search approach.
Entanglement Properties of a Higher-Integer-Spin AKLT Model with Quantum Group Symmetry
Chikashi Arita
2012-10-01
Full Text Available We study the entanglement properties of a higher-integer-spin Affleck-Kennedy-Lieb-Tasaki model with quantum group symmetry in the periodic boundary condition. We exactly calculate the finite size correction terms of the entanglement entropies from the double scaling limit. We also evaluate the geometric entanglement, which serves as another measure for entanglement. We find the geometric entanglement reaches its maximum at the isotropic point, and decreases with the increase of the anisotropy. This behavior is similar to that of the entanglement entropies.
Absence of even-integer ζ-function values in Euclidean physical quantities in QCD
Jamin, Matthias; Miravitllas, Ramon
2018-04-01
At order αs4 in perturbative quantum chromodynamics, even-integer ζ-function values are present in Euclidean physical correlation functions like the scalar quark correlation function or the scalar gluonium correlator. We demonstrate that these contributions cancel when the perturbative expansion is expressed in terms of the so-called C-scheme coupling αˆs which has recently been introduced in Ref. [1]. It is furthermore conjectured that a ζ4 term should arise in the Adler function at order αs5 in the MS ‾-scheme, and that this term is expected to disappear in the C-scheme as well.
TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II
Nosochkov, Yuri
2003-01-01
Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and β distortion after correction was investigated
Edit distance for marked point processes revisited: An implementation by binary integer programming
Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2015-12-15
We implement the edit distance for marked point processes [Suzuki et al., Int. J. Bifurcation Chaos 20, 3699–3708 (2010)] as a binary integer program. Compared with the previous implementation using minimum cost perfect matching, the proposed implementation has two advantages: first, by using the proposed implementation, we can apply a wide variety of software and hardware, even spin glasses and coherent ising machines, to calculate the edit distance for marked point processes; second, the proposed implementation runs faster than the previous implementation when the difference between the numbers of events in two time windows for a marked point process is large.
Optimal Allocation of Static Var Compensator via Mixed Integer Conic Programming
Zhang, Xiaohu [ORNL; Shi, Di [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Zhiwei [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Huang, Junhui [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Xu [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)
2017-01-01
Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus system demonstrate the effectiveness of the proposed planning model.
A concrete approach to abstract algebra from the integers to the insolvability of the quintic
Bergen, Jeffrey
2010-01-01
A Concrete Approach to Abstract Algebra begins with a concrete and thorough examination of familiar objects like integers, rational numbers, real numbers, complex numbers, complex conjugation and polynomials, in this unique approach, the author builds upon these familar objects and then uses them to introduce and motivate advanced concepts in algebra in a manner that is easier to understand for most students. The text will be of particular interest to teachers and future teachers as it links abstract algebra to many topics wich arise in courses in algebra, geometry, trigonometry, preca
Okumura, Hisashi; Itoh, Satoru G; Okamoto, Yuko
2007-02-28
The authors propose explicit symplectic integrators of molecular dynamics (MD) algorithms for rigid-body molecules in the canonical and isobaric-isothermal ensembles. They also present a symplectic algorithm in the constant normal pressure and lateral surface area ensemble and that combined with the Parrinello-Rahman algorithm. Employing the symplectic integrators for MD algorithms, there is a conserved quantity which is close to Hamiltonian. Therefore, they can perform a MD simulation more stably than by conventional nonsymplectic algorithms. They applied this algorithm to a TIP3P pure water system at 300 K and compared the time evolution of the Hamiltonian with those by the nonsymplectic algorithms. They found that the Hamiltonian was conserved well by the symplectic algorithm even for a time step of 4 fs. This time step is longer than typical values of 0.5-2 fs which are used by the conventional nonsymplectic algorithms.
Krummenacher, P.; Renaud, B.; Marechal, F.; Favrat, D.
2001-07-01
This report presents a new methodological approach for the optimal design of energy-integrated batch processes. The main emphasis is put on indirect and, to some extend, on direct heat exchange networks with the possibility of introducing closed or open storage systems. The study demonstrates the feasibility of optimising with genetic algorithms while highlighting the pros and cons of this type of approach. The study shows that the resolution of such problems should preferably be done in several steps to better target the expected solutions. Demonstration is made that in spite of relatively large computer times (on PCs) the use of genetic algorithm allows the consideration of both continuous decision variables (size, operational rating of equipment, etc.) and integer variables (related to the structure at design and during operation). Comparison of two optimisation strategies is shown with a preference for a two-steps optimisation scheme. One of the strengths of genetic algorithms is the capacity to accommodate heuristic rules, which can be introduced in the model. However, a rigorous modelling strategy is advocated to improve robustness and adequate coding of the decision variables. The practical aspects of the research work are converted into a software developed with MATLAB to solve the energy integration of batch processes with a reasonable number of closed or open stores. This software includes the model of superstructures, including the heat exchangers and the storage alternatives, as well as the link to the Struggle algorithm developed at MIT via a dedicated new interface. The package also includes a user-friendly pre-processing using EXCEL, which is to facilitate to application to other similar industrial problems. These software developments have been validated both on an academic and on an industrial type of problems. (author)
Wang, Xingwei; Cai, Yanpeng; Chen, Jiajun; Dai, Chao
2013-01-01
In this study, a GFIPMIP (grey-forecasting interval-parameter mixed-integer programming) approach was developed for supporting IEEM (integrated electric-environmental management) in Beijing. It was an attempt to incorporate an energy-forecasting model within a general modeling framework at the municipal level. The developed GFIPMIP model can not only forecast electric demands, but also reflect dynamic, interactive, and uncertain characteristics of the IEEM system in Beijing. Moreover, it can address issues regarding power supply, and emission reduction of atmospheric pollutants and GHG (greenhouse gas). Optimal solutions were obtained related to power generation patterns and facility capacity expansion schemes under a series of system constraints. Two scenarios were analyzed based on multiple environmental policies. The results were useful for helping decision makers identify desired management strategies to guarantee the city's power supply and mitigate emissions of GHG and atmospheric pollutants. The results also suggested that the developed GFIPMIP model be applicable to similar engineering problems. - Highlights: • A grey-forecasting interval-parameter mixed integer programming (GFIPMIP) approach was developed. • It could reflect dynamic, interactive, and uncertain characteristics of an IEEM system. • The developed GFIPMIP approach was used for supporting IEEM system planning in Beijing. • Two scenarios were established based on different environmental policies and management targets. • Optimal schemes for power generation, energy supply, and environmental protection were identified
Cristinel Mortici
2015-01-01
Full Text Available In this survey we present our recent results on analysis of gamma function and related functions. The results obtained are in the theory of asymptotic analysis, approximation of gamma and polygamma functions, or in the theory of completely monotonic functions. The motivation of this first part is the work of C. Mortici [Product Approximations via Asymptotic Integration Amer. Math. Monthly 117 (2010 434-441] where a simple strategy for constructing asymptotic series is presented. The classical asymptotic series associated to Stirling, Wallis, Glaisher-Kinkelin are rediscovered. In the second section we discuss some new inequalities related to Landau constants and we establish some asymptotic formulas.
Phil Diamond
2003-01-01
Full Text Available Sensitivity of output of a linear operator to its input can be quantified in various ways. In Control Theory, the input is usually interpreted as disturbance and the output is to be minimized in some sense. In stochastic worst-case design settings, the disturbance is considered random with imprecisely known probability distribution. The prior set of probability measures can be chosen so as to quantify how far the disturbance deviates from the white-noise hypothesis of Linear Quadratic Gaussian control. Such deviation can be measured by the minimal Kullback-Leibler informational divergence from the Gaussian distributions with zero mean and scalar covariance matrices. The resulting anisotropy functional is defined for finite power random vectors. Originally, anisotropy was introduced for directionally generic random vectors as the relative entropy of the normalized vector with respect to the uniform distribution on the unit sphere. The associated a-anisotropic norm of a matrix is then its maximum root mean square or average energy gain with respect to finite power or directionally generic inputs whose anisotropy is bounded above by a≥0. We give a systematic comparison of the anisotropy functionals and the associated norms. These are considered for unboundedly growing fragments of homogeneous Gaussian random fields on multidimensional integer lattice to yield mean anisotropy. Correspondingly, the anisotropic norms of finite matrices are extended to bounded linear translation invariant operators over such fields.
Paradeisos: A perfect hashing algorithm for many-body eigenvalue problems
Jia, C. J.; Wang, Y.; Mendl, C. B.; Moritz, B.; Devereaux, T. P.
2018-03-01
We describe an essentially perfect hashing algorithm for calculating the position of an element in an ordered list, appropriate for the construction and manipulation of many-body Hamiltonian, sparse matrices. Each element of the list corresponds to an integer value whose binary representation reflects the occupation of single-particle basis states for each element in the many-body Hilbert space. The algorithm replaces conventional methods, such as binary search, for locating the elements of the ordered list, eliminating the need to store the integer representation for each element, without increasing the computational complexity. Combined with the "checkerboard" decomposition of the Hamiltonian matrix for distribution over parallel computing environments, this leads to a substantial savings in aggregate memory. While the algorithm can be applied broadly to many-body, correlated problems, we demonstrate its utility in reducing total memory consumption for a series of fermionic single-band Hubbard model calculations on small clusters with progressively larger Hilbert space dimension.
Geometric approximation algorithms
Har-Peled, Sariel
2011-01-01
Exact algorithms for dealing with geometric objects are complicated, hard to implement in practice, and slow. Over the last 20 years a theory of geometric approximation algorithms has emerged. These algorithms tend to be simple, fast, and more robust than their exact counterparts. This book is the first to cover geometric approximation algorithms in detail. In addition, more traditional computational geometry techniques that are widely used in developing such algorithms, like sampling, linear programming, etc., are also surveyed. Other topics covered include approximate nearest-neighbor search, shape approximation, coresets, dimension reduction, and embeddings. The topics covered are relatively independent and are supplemented by exercises. Close to 200 color figures are included in the text to illustrate proofs and ideas.
Conference on Commutative rings, integer-valued polynomials and polynomial functions
Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions
2014-01-01
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: · Homological dimensions of Prüfer-like rings · Quasi complete rings · Total graphs of rings · Properties of prime ideals over various rings · Bases for integer-valued polynomials · Boolean subrings · The portable property of domains · Probabilistic topics in Intn(D) · Closure operations in Zariski-Riemann spaces of valuation domains · Stability of do...
STUDY OF SOLUTION REPRESENTATION LANGUAGE INFLUENCE ON EFFICIENCY OF INTEGER SEQUENCES PREDICTION
A. S. Potapov
2015-01-01
Full Text Available Methods based on genetic programming for the problem solution of integer sequences extrapolation are the subjects for study in the paper. In order to check the hypothesis about the influence of language expression of program representation on the prediction effectiveness, the genetic programming method based on several limited languages for recurrent sequences has been developed. On the single sequence sample the implemented method with the use of more complete language has shown results, significantly better than the results of one of the current methods represented in literature based on artificial neural networks. Analysis of experimental comparison results for the realized method with the usage of different languages has shown that language extension increases the difficulty of consistent patterns search in languages, available for prediction in a simpler language though it makes new sequence classes accessible for prediction. This effect can be reduced but not eliminated completely at language extension by the constructions, which make solutions more compact. Carried out researches have drawn to the conclusion that alone the choice of an adequate language for solution representation is not enough for the full problem solution of integer sequences prediction (and, all the more, universal prediction problem. However, practically applied methods can be received by the usage of genetic programming.
Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data
Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad
2018-01-01
The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.
Imaging the Conductance of Integer and Fractional Quantum Hall Edge States
Nikola Pascher
2014-01-01
Full Text Available We measure the conductance of a quantum point contact while the biased tip of a scanning probe microscope induces a depleted region in the electron gas underneath. At a finite magnetic field, we find plateaus in the real-space maps of the conductance as a function of tip position at integer (ν=1, 2, 3, 4, 6, 8 and fractional (ν=1/3, 2/3, 5/3, 4/5 values of transmission. They resemble theoretically predicted compressible and incompressible stripes of quantum Hall edge states. The scanning tip allows us to shift the constriction limiting the conductance in real space over distances of many microns. The resulting stripes of integer and fractional filling factors are rugged on scales of a few hundred nanometers, i.e., on a scale much smaller than the zero-field elastic mean free path of the electrons. Our experiments demonstrate that microscopic inhomogeneities are relevant even in high-quality samples and lead to locally strongly fluctuating widths of incompressible regions even down to their complete suppression for certain tip positions. The macroscopic quantization of the Hall resistance measured experimentally in a nonlocal contact configuration survives in the presence of these inhomogeneities, and the relevant local energy scale for the ν=2 state turns out to be independent of tip position.
An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem
Meriem Ait Mehdi
2014-01-01
Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.
Canepa, Edward S.
2013-01-01
Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill-Whitham- Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for some decision variable. We use this fact to pose the problem of detecting spoofing cyber-attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offline. A numerical implementation is performed on a cyber-attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © 2013 IEEE.
Canepa, Edward S.
2013-09-01
Traffic sensing systems rely more and more on user generated (insecure) data, which can pose a security risk whenever the data is used for traffic flow control. In this article, we propose a new formulation for detecting malicious data injection in traffic flow monitoring systems by using the underlying traffic flow model. The state of traffic is modeled by the Lighthill- Whitham-Richards traffic flow model, which is a first order scalar conservation law with concave flux function. Given a set of traffic flow data generated by multiple sensors of different types, we show that the constraints resulting from this partial differential equation are mixed integer linear inequalities for a specific decision variable. We use this fact to pose the problem of detecting spoofing cyber attacks in probe-based traffic flow information systems as mixed integer linear feasibility problem. The resulting framework can be used to detect spoofing attacks in real time, or to evaluate the worst-case effects of an attack offliine. A numerical implementation is performed on a cyber attack scenario involving experimental data from the Mobile Century experiment and the Mobile Millennium system currently operational in Northern California. © American Institute of Mathematical Sciences.
INTEG INSPEC, Accident Frequencies and Safety Analysis for Nuclear Power Plant
Arnett, L.M.
1976-01-01
1 - Description of problem or function: These programs analyze the characteristics of a general model developed to represent the safety aspects of an operating nuclear reactor. These characteristics are the frequencies of incidents that are departures from the expected behavior of the reactor. Each incident is assumed to be preceded by a sequence of events starting at some initiating event. At each member in this sequence there may be functions such as safety circuits, and personnel operations that stop the sequence at that member. When mechanical devices fail they are assumed to remain inoperative until repaired. The model accounts for scheduled inspection and maintenance of all equipment in the system. 2 - Method of solution: In INTEG, the discontinuous density function is integrated by the trapezoidal rule from time equals zero to time equals t. INSPEC is based on the simulation of reactor operation as a Markov process. A vector of probabilities is successively multiplied by a transition matrix. 3 - Restrictions on the complexity of the problem: INSPEC is limited to subsystems with no more than 7 safety circuits. The transition matrix can be made up as desired so that any intercorrelations between failures of circuits can be accommodated. In INTEG, failure rates of safety circuits are restricted to independence
Optimal placement of capacitors in a radial network using conic and mixed integer linear programming
Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)
2008-06-15
This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)
Spolaore, P.
2016-03-11
A simple analysis of gamma spectra selected to represent the performance of different detection systems, or, for one same system, different operation modes or states of progress of the system development, allows to compare the relative average-sensitivities of the represented systems themselves, as operated in the selected cases. The obtained SP figure-of-merit takes into account and correlates the main parameters commonly used to estimate the performance of a system. An example of application is given.
Hyungjik Oh
2016-03-01
Full Text Available This study developed an approach for improving Carrier-phase Differential Global Positioning System (CDGPS based realtime satellite relative navigation by applying laser baseline measurement data. The robustness against the space operational environment was considered, and a Synthetic Wavelength Interferometer (SWI algorithm based on a femtosecond laser measurement model was developed. The phase differences between two laser wavelengths were combined to measure precise distance. Generated laser data were used to improve estimation accuracy for the float ambiguity of CDGPS data. Relative navigation simulations in real-time were performed using the extended Kalman filter algorithm. The GPS and laser-combined relative navigation accuracy was compared with GPS-only relative navigation solutions to determine the impact of laser data on relative navigation. In numerical simulations, the success rate of integer ambiguity resolution increased when laser data was added to GPS data. The relative navigational errors also improved five-fold and two-fold, relative to the GPS-only error, for 250 m and 5 km initial relative distances, respectively. The methodology developed in this study is suitable for application to future satellite formation-flying missions.
Composite Differential Search Algorithm
Bo Liu
2014-01-01
Full Text Available Differential search algorithm (DS is a relatively new evolutionary algorithm inspired by the Brownian-like random-walk movement which is used by an organism to migrate. It has been verified to be more effective than ABC, JDE, JADE, SADE, EPSDE, GSA, PSO2011, and CMA-ES. In this paper, we propose four improved solution search algorithms, namely “DS/rand/1,” “DS/rand/2,” “DS/current to rand/1,” and “DS/current to rand/2” to search the new space and enhance the convergence rate for the global optimization problem. In order to verify the performance of different solution search methods, 23 benchmark functions are employed. Experimental results indicate that the proposed algorithm performs better than, or at least comparable to, the original algorithm when considering the quality of the solution obtained. However, these schemes cannot still achieve the best solution for all functions. In order to further enhance the convergence rate and the diversity of the algorithm, a composite differential search algorithm (CDS is proposed in this paper. This new algorithm combines three new proposed search schemes including “DS/rand/1,” “DS/rand/2,” and “DS/current to rand/1” with three control parameters using a random method to generate the offspring. Experiment results show that CDS has a faster convergence rate and better search ability based on the 23 benchmark functions.
Yu. I. Khoroshikh
2014-01-01
Full Text Available The results of clinical trial of various approaches in treatment the exudative forms of macular degenerations, including age-related, against chronic slow intensity inflammatory process on the extreme retinal periphery of an eye are described in represented material. There were 91 patients (105 eyes in the research with different types of an exudative macular degeneration. The general criteria of inclusion were: age of 18–80 years old, complaints to discomfort in eyes, a spot before an eye, distortions and decrease in the central sight, ophthalmoscopic symptoms of hypostasis in the central and peripheral areas of a retina. It is analyzed the general criteria of diagnostics and treatment of the disease in the article. Considering defeat of the chorioretinal structures located near the ora serrata at persons of young and advanced age. Practical recommendations to a choice of methods of diagnostics and treatment of various clinical and morphological forms of the disease are made. Screening methods of identification of patients with the peripheral uveitis are offered. The scheme of risk calculation of development the macular pathology at persons with changes on the extreme periphery of a retina, that can be used as a method of prevention of development predictively adverse of “wet" forms of an age-related macular degeneration, by means of timely sparing treatment at patients with chronic inflammatory diseases of eyes is given.
Jiao, Yi, E-mail: jiaoyi@ihep.ac.cn; Duan, Zhe
2017-01-01
In a diffraction-limited storage ring, half integer resonances can have strong effects on the beam dynamics, associated with the large detuning terms from the strong focusing and strong sextupoles as required for an ultralow emittance. In this study, the limitation of half integer resonances on the available momentum acceptance (MA) was statistically analyzed based on one design of the High Energy Photon Source (HEPS). It was found that the probability of MA reduction due to crossing of half integer resonances is closely correlated with the level of beta beats at the nominal tunes, but independent of the error sources. The analysis indicated that for the presented HEPS lattice design, the rms amplitude of beta beats should be kept below 1.5% horizontally and 2.5% vertically to reach a small MA reduction probability of about 1%.
Canepa, Edward S.; Claudel, Christian G.
2012-01-01
This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.
Canepa, Edward S.
2012-09-01
This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.
Stochastic cluster algorithms for discrete Gaussian (SOS) models
Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.
1990-10-01
We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)
Selecting a general-purpose data compression algorithm
Mathews, Gary Jason
1995-01-01
The National Space Science Data Center's Common Data Formate (CDF) is capable of storing many types of data such as scalar data items, vectors, and multidimensional arrays of bytes, integers, or floating point values. However, regardless of the dimensionality and data type, the data break down into a sequence of bytes that can be fed into a data compression function to reduce the amount of data without losing data integrity and thus remaining fully reconstructible. Because of the diversity of data types and high performance speed requirements, a general-purpose, fast, simple data compression algorithm is required to incorporate data compression into CDF. The questions to ask are how to evaluate and compare compression algorithms, and what compression algorithm meets all requirements. The object of this paper is to address these questions and determine the most appropriate compression algorithm to use within the CDF data management package that would be applicable to other software packages with similar data compression needs.
Pour, Shahrzad M.; Drake, John H.; Ejlertsen, Lena Secher
2017-01-01
A railway signaling system is a complex and interdependent system which should ensure the safe operation of trains. We introduce and address a mixed integer optimisation model for the preventive signal maintenance crew scheduling problem in the Danish railway system. The problem contains many...... to feed as ‘warm start’ solutions to a Mixed Integer Programming (MIP) solver for further optimisation. We apply the CP/MIP framework to a section of the Danish rail network and benchmark our results against both direct application of a MIP solver and modelling the problem as a Constraint Optimisation...
Um, Jaeyong
2001-08-01
The Space Integrated GPS/INS (SIGI) sensor is the primary navigation and attitude determination source for the International Space Station (ISS). The SIGI was successfully demonstrated on-orbit for the first time in the SIGI Orbital Attitude Readiness (SOAR) demonstration on the Space Shuttle Atlantis in May 2000. Numerous proximity operations near the ISS have been and will be performed over the lifetime of the Station. The development of an autonomous relative navigation system is needed to improve the safety and efficiency of vehicle operations near the ISS. A hardware simulation study was performed for the GPS-based relative navigation using the state vector difference approach and the interferometric approach in the absence of multipath. The interferometric approach, where the relative states are estimated directly, showed comparable results for a 1 km baseline. One of the most pressing current technical issues is the design of an autonomous relative navigation system in the proximity of the ISS, where GPS signals are blocked and maneuvers happen frequently. An integrated GPS/INS system is investigated for the possibility of a fully autonomous relative navigation system. Another application of GPS measurements is determination of the vehicle's orientation in space. This study used the SOAR experiment data to characterize the SICI's on-orbit performance for attitude determination. A cold start initialization algorithm was developed for integer ambiguity resolution in any initial orientation. The original algorithm that was used in the SIGI had an operational limitation in the integer ambiguity resolution, which was developed for terrestrial applications, and limited its effectiveness in space. The new algorithm was tested using the SOAR data and has been incorporated in the current SIGI flight software. The attitude estimation performance was examined using two different GPS/INS integration algorithms. The GPS/INS attitude solution using the SOAR data was as
Non-linear time series extreme events and integer value problems
Turkman, Kamil Feridun; Zea Bermudez, Patrícia
2014-01-01
This book offers a useful combination of probabilistic and statistical tools for analyzing nonlinear time series. Key features of the book include a study of the extremal behavior of nonlinear time series and a comprehensive list of nonlinear models that address different aspects of nonlinearity. Several inferential methods, including quasi likelihood methods, sequential Markov Chain Monte Carlo Methods and particle filters, are also included so as to provide an overall view of the available tools for parameter estimation for nonlinear models. A chapter on integer time series models based on several thinning operations, which brings together all recent advances made in this area, is also included. Readers should have attended a prior course on linear time series, and a good grasp of simulation-based inferential methods is recommended. This book offers a valuable resource for second-year graduate students and researchers in statistics and other scientific areas who need a basic understanding of nonlinear time ...
Ommen, Torben Schmidt; Markussen, Wiebke Brix; Elmegaard, Brian
2014-01-01
In the paper, three frequently used operation optimisation methods are examined with respect to their impact on operation management of the combined utility technologies for electric power and DH (district heating) of eastern Denmark. The investigation focusses on individual plant operation...... differences and differences between the solution found by each optimisation method. One of the investigated approaches utilises LP (linear programming) for optimisation, one uses LP with binary operation constraints, while the third approach uses NLP (non-linear programming). The LP model is used...... as a benchmark, as this type is frequently used, and has the lowest amount of constraints of the three. A comparison of the optimised operation of a number of units shows significant differences between the three methods. Compared to the reference, the use of binary integer variables, increases operation...
Planning of fuel coal imports using a mixed integer programming method
Shih, L.H.
1997-01-01
In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model
An integer programming model and benchmark suite for liner shipping network design
Løfstedt, Berit; Alvarez, Jose Fernando; Plum, Christian Edinger Munk
effective and energy efficient liner shipping networks using operations research is huge and neglected. The implementation of logistic planning tools based upon operations research has enhanced performance of both airlines, railways and general transportation companies, but within the field of liner......Maritime transportation is accountable for 2.7% of the worlds CO2 emissions and the liner shipping industry is committed to a slow steaming policy to provide low cost and environmentally conscious global transport of goods without compromising the level of service. The potential for making cost...... along with a rich integer programming model based on the services, that constitute the fixed schedule of a liner shipping company. The model may be relaxed as well as decomposed. The design of a benchmark suite of data instances to reflect the business structure of a global liner shipping network...
A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design
Brouer, Berit Dangaard; Alvarez, Fernando; Plum, Christian Edinger Munk
2014-01-01
. The potential for making cost-effective and energy-efficient liner-shipping networks using operations research (OR) is huge and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of airlines, railways, and general transportation companies, but within the field......The liner-shipping network design problem is to create a set of nonsimple cyclic sailing routes for a designated fleet of container vessels that jointly transports multiple commodities. The objective is to maximize the revenue of cargo transport while minimizing the costs of operation...... sources of liner shipping for OR researchers in general. We describe and analyze the liner-shipping domain applied to network design and present a rich integer programming model based on services that constitute the fixed schedule of a liner shipping company. We prove the liner-shipping network design...
2D massless QED Hall half-integer conductivity and graphene
Martínez, A Pérez; Querts, E Rodriguez; Rojas, H Pérez; Gaitan, R; Rodriguez-Romo, S
2011-01-01
Starting from the photon self-energy tensor in a magnetized medium, the 3D complete antisymmetric form of the conductivity tensor is found in the static limit of a fermion system C-non-invariant under fermion–antifermion exchange. The massless relativistic 2D fermion limit in QED is derived by using the compactification along the dimension parallel to the magnetic field. In the static limit and at zero temperature, the main features of the quantum Hall effect (QHE) are obtained: the half-integer QHE and the minimum value proportional to e 2 /h for the Hall conductivity. For typical values of graphene the plateaus of the Hall conductivity are also reproduced. (paper)
Planning of fuel coal imports using a mixed integer programming method
Shih, L.H. [National Cheng Kung University, Tainan (Taiwan). Dept. of Mineral and Petroleum Engineering
1997-12-31
In the public utility and commercial fuel industries, commodities from multiple supply sources are sometimes blended before use to reduce costs and assure quality. A typical example of these commodities is the fuel coal used in coal fired power plants. The diversity of the supply sources for these plants makes the planning and scheduling of fuel coal logistics difficult, especially for a power company that has more than one power plant. This study proposes a mixed integer programming model that provides planning and scheduling of coal imports from multiple suppliers for the Taiwan Power Company. The objective is to minimize total inventory cost by minimizing procurement cost, transportation cost and holding cost. Constraints on the system include company procurement policy, power plant demand, harbor unloading capacity, inventory balance equations, blending requirements, and safety stock. An example problem is presented using the central coal logistics system of the Taiwan Power Company to demonstrate the validity of the proposed model.
Integrative improvement method and mixed-integer programming in system planning
Sadegheih, A.
2002-01-01
In this paper, system planning network is formulated for mixed-integer programming and a Ga. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The Dc load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions. and also provides information regarding the optimal generation at each generation point. This method of solutions is demonstrated on the expansion of a 5 bus -bar system to 6 bus-bars
Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting
WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng
2003-01-01
To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.
On the group of substitutions of formal power series with integer coefficients
Babenko, I K; Bogatyi, S A
2008-01-01
We study certain properties of the group J(Z) of substitutions of formal power series in one variable with integer coefficients. We show that J(Z), regarded as a topological group, has four generators and cannot be generated by fewer elements. In particular, we show that the one-dimensional continuous homology of J(Z) is isomorphic to Z oplus Z oplus Z 2 oplus Z 2 . We study various topological and geometric properties of the coset space J(R)/J(Z). We compute the real cohomology H-tilde*(J(Z);R) with uniformly locally constant supports and show that it is naturally isomorphic to the cohomology of the nilpotent part of the Lie algebra of formal vector fields on the line
Two-Part Models for Fractional Responses Defined as Ratios of Integers
Harald Oberhofer
2014-09-01
Full Text Available This paper discusses two alternative two-part models for fractional response variables that are defined as ratios of integers. The first two-part model assumes a Binomial distribution and known group size. It nests the one-part fractional response model proposed by Papke and Wooldridge (1996 and, thus, allows one to apply Wald, LM and/or LR tests in order to discriminate between the two models. The second model extends the first one by allowing for overdispersion in the data. We demonstrate the usefulness of the proposed two-part models for data on the 401(k pension plan participation rates used in Papke and Wooldridge (1996.
A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.
Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa
2018-02-01
Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.
Mixed-integer representations in control design mathematical foundations and applications
Prodan, Ionela; Olaru, Sorin; Niculescu, Silviu-Iulian
2016-01-01
In this book, the authors propose efficient characterizations of the non-convex regions that appear in many control problems, such as those involving collision/obstacle avoidance and, in a broader sense, in the description of feasible sets for optimization-based control design involving contradictory objectives. The text deals with a large class of systems that require the solution of appropriate optimization problems over a feasible region, which is neither convex nor compact. The proposed approach uses the combinatorial notion of hyperplane arrangement, partitioning the space by a finite collection of hyperplanes, to describe non-convex regions efficiently. Mixed-integer programming techniques are then applied to propose acceptable formulations of the overall problem. Multiple constructions may arise from the same initial problem, and their complexity under various parameters - space dimension, number of binary variables, etc. - is also discussed. This book is a useful tool for academic researchers and grad...
Personnel scheduling using an integer programming model- an application at Avanti Blue-Nile Hotels.
Kassa, Biniyam Asmare; Tizazu, Anteneh Eshetu
2013-01-01
In this paper, we report perhaps a first of its kind application of management science in the Ethiopian hotel industry. Avanti Blue Nile Hotels, a newly established five star hotel in Bahir Dar, is the company for which we developed an integer programming model that determines an optimal weekly shift schedule for the Hotel's engineering department personnel while satisfying several constraints including weekly rest requirements per employee, rest requirements between working shifts per employee, required number of personnel per shift, and other constraints. The model is implemented on an excel solver routine. The model enables the company's personnel department management to develop a fair personnel schedule as needed and to effectively utilize personnel resources while satisfying several technical, legal and economic requirements. These encouraging achievements make us optimistic about the gains other Ethiopian organizations can amass by introducing management science approaches in their management planning and decision making systems.
Souza Filho, Erito M.; Bahiense, Laura; Ferreira Filho, Virgilio J.M. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Lima, Leonardo [Centro Federal de Educacao Tecnologica Celso Sukow da Fonseca (CEFET-RJ), Rio de Janeiro, RJ (Brazil)
2008-07-01
Pipeline are known as the most reliable and economical mode of transportation for petroleum and its derivatives, especially when large amounts of products have to be pumped for large distances. In this work we address the short-term schedule of a pipeline system comprising the distribution of several petroleum derivatives from a single oil refinery to several depots, connected to local consumer markets, through a single multi-product pipeline. We propose an integer linear programming formulation and a variable neighborhood search meta-heuristic in order to compare the performances of the exact and heuristic approaches to the problem. Computational tests in C language and MOSEL/XPRESS-MP language are performed over a real Brazilian pipeline system. (author)