WorldWideScience

Sample records for integer constrained optimization

  1. Evolutionary constrained optimization

    CERN Document Server

    Deb, Kalyanmoy

    2015-01-01

    This book makes available a self-contained collection of modern research addressing the general constrained optimization problems using evolutionary algorithms. Broadly the topics covered include constraint handling for single and multi-objective optimizations; penalty function based methodology; multi-objective based methodology; new constraint handling mechanism; hybrid methodology; scaling issues in constrained optimization; design of scalable test problems; parameter adaptation in constrained optimization; handling of integer, discrete and mix variables in addition to continuous variables; application of constraint handling techniques to real-world problems; and constrained optimization in dynamic environment. There is also a separate chapter on hybrid optimization, which is gaining lots of popularity nowadays due to its capability of bridging the gap between evolutionary and classical optimization. The material in the book is useful to researchers, novice, and experts alike. The book will also be useful...

  2. Distribution Locational Marginal Pricing for Optimal Electric Vehicle Charging through Chance Constrained Mixed-Integer Programming

    DEFF Research Database (Denmark)

    Liu, Zhaoxi; Wu, Qiuwei; Oren, Shmuel S.

    2017-01-01

    This paper presents a distribution locational marginal pricing (DLMP) method through chance constrained mixed-integer programming designed to alleviate the possible congestion in the future distribution network with high penetration of electric vehicles (EVs). In order to represent the stochastic...

  3. Application of a Double-Sided Chance-Constrained Integer Linear Program for Optimization of the Incremental Value of Ecosystem Services in Jilin Province, China

    Directory of Open Access Journals (Sweden)

    Baofeng Cai

    2017-08-01

    Full Text Available The Interconnected River System Network Project (IRSNP is a significant water supply engineering project, which is capable of effectively utilizing flood resources to generate ecological value, by connecting 198 lakes and ponds in western Jilin, northeast China. In this article, an optimization research approach has been proposed to maximize the incremental value of IRSNP ecosystem services. A double-sided chance-constrained integer linear program (DCCILP method has been proposed to support the optimization, which can deal with uncertainties presented as integers or random parameters that appear on both sides of the decision variable at the same time. The optimal scheme indicates that after rational optimization, the total incremental value of ecosystem services from the interconnected river system network project increased 22.25%, providing an increase in benefits of 3.26 × 109 ¥ compared to the original scheme. Most of the functional area is swamp wetland, which provides the greatest ecological benefits. Adjustment services increased obviously, implying that the optimization scheme prioritizes ecological benefits rather than supply and production services.

  4. Integer and combinatorial optimization

    CERN Document Server

    Nemhauser, George L

    1999-01-01

    Rave reviews for INTEGER AND COMBINATORIAL OPTIMIZATION ""This book provides an excellent introduction and survey of traditional fields of combinatorial optimization . . . It is indeed one of the best and most complete texts on combinatorial optimization . . . available. [And] with more than 700 entries, [it] has quite an exhaustive reference list.""-Optima ""A unifying approach to optimization problems is to formulate them like linear programming problems, while restricting some or all of the variables to the integers. This book is an encyclopedic resource for such f

  5. A Mixed Integer Linear Programming Approach to Electrical Stimulation Optimization Problems.

    Science.gov (United States)

    Abouelseoud, Gehan; Abouelseoud, Yasmine; Shoukry, Amin; Ismail, Nour; Mekky, Jaidaa

    2018-02-01

    Electrical stimulation optimization is a challenging problem. Even when a single region is targeted for excitation, the problem remains a constrained multi-objective optimization problem. The constrained nature of the problem results from safety concerns while its multi-objectives originate from the requirement that non-targeted regions should remain unaffected. In this paper, we propose a mixed integer linear programming formulation that can successfully address the challenges facing this problem. Moreover, the proposed framework can conclusively check the feasibility of the stimulation goals. This helps researchers to avoid wasting time trying to achieve goals that are impossible under a chosen stimulation setup. The superiority of the proposed framework over alternative methods is demonstrated through simulation examples.

  6. Hard equality constrained integer knapsacks

    NARCIS (Netherlands)

    Aardal, K.I.; Lenstra, A.K.; Cook, W.J.; Schulz, A.S.

    2002-01-01

    We consider the following integer feasibility problem: "Given positive integer numbers a 0, a 1,..., a n, with gcd(a 1,..., a n) = 1 and a = (a 1,..., a n), does there exist a nonnegative integer vector x satisfying ax = a 0?" Some instances of this type have been found to be extremely hard to solve

  7. Mixed integer evolution strategies for parameter optimization.

    Science.gov (United States)

    Li, Rui; Emmerich, Michael T M; Eggermont, Jeroen; Bäck, Thomas; Schütz, M; Dijkstra, J; Reiber, J H C

    2013-01-01

    Evolution strategies (ESs) are powerful probabilistic search and optimization algorithms gleaned from biological evolution theory. They have been successfully applied to a wide range of real world applications. The modern ESs are mainly designed for solving continuous parameter optimization problems. Their ability to adapt the parameters of the multivariate normal distribution used for mutation during the optimization run makes them well suited for this domain. In this article we describe and study mixed integer evolution strategies (MIES), which are natural extensions of ES for mixed integer optimization problems. MIES can deal with parameter vectors consisting not only of continuous variables but also with nominal discrete and integer variables. Following the design principles of the canonical evolution strategies, they use specialized mutation operators tailored for the aforementioned mixed parameter classes. For each type of variable, the choice of mutation operators is governed by a natural metric for this variable type, maximal entropy, and symmetry considerations. All distributions used for mutation can be controlled in their shape by means of scaling parameters, allowing self-adaptation to be implemented. After introducing and motivating the conceptual design of the MIES, we study the optimality of the self-adaptation of step sizes and mutation rates on a generalized (weighted) sphere model. Moreover, we prove global convergence of the MIES on a very general class of problems. The remainder of the article is devoted to performance studies on artificial landscapes (barrier functions and mixed integer NK landscapes), and a case study in the optimization of medical image analysis systems. In addition, we show that with proper constraint handling techniques, MIES can also be applied to classical mixed integer nonlinear programming problems.

  8. Presolving and regularization in mixed-integer second-order cone optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    Mixed-integer second-order cone optimization is a powerful mathematical framework capable of representing both logical conditions and nonlinear relationships in mathematical models of industrial optimization problems. What is more, solution methods are already part of many major commercial solvers...... both continuous and mixed-integer conic optimization in general, is discovered and treated. This part of the thesis continues the studies of facial reduction preceding the work of Borwein and Wolkowicz [17] in 1981, when the first algorithmic cure for these kinds of reliability issues were formulated....... An important distinction to make between continuous and mixed-integer optimization, however, is that the reliability issues occurring in mixed-integer optimization cannot be blamed on the practitioner’s formulation of the problem. Specifically, as shown, the causes for these issues may well lie within...

  9. Mixed Integer PDE Constrained Optimization for the Control of a Wildfire Hazard

    Science.gov (United States)

    2017-01-01

    Constrained Optimization for the Control of a Wildfire Hazard Herausgegeben von der Professor fur Angewandte Mathematik Professor Dr. rer. nat. Armin...and H.H. Tan . Finite difference methods for solving the two-dimensional advection-diffusion equation. Int. J. Numer. Meth. Fluids, 9:75-98, 1989. 6

  10. Composite Differential Evolution with Modified Oracle Penalty Method for Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Minggang Dong

    2014-01-01

    Full Text Available Motivated by recent advancements in differential evolution and constraints handling methods, this paper presents a novel modified oracle penalty function-based composite differential evolution (MOCoDE for constrained optimization problems (COPs. More specifically, the original oracle penalty function approach is modified so as to satisfy the optimization criterion of COPs; then the modified oracle penalty function is incorporated in composite DE. Furthermore, in order to solve more complex COPs with discrete, integer, or binary variables, a discrete variable handling technique is introduced into MOCoDE to solve complex COPs with mix variables. This method is assessed on eleven constrained optimization benchmark functions and seven well-studied engineering problems in real life. Experimental results demonstrate that MOCoDE achieves competitive performance with respect to some other state-of-the-art approaches in constrained optimization evolutionary algorithms. Moreover, the strengths of the proposed method include few parameters and its ease of implementation, rendering it applicable to real life. Therefore, MOCoDE can be an efficient alternative to solving constrained optimization problems.

  11. Split diversity in constrained conservation prioritization using integer linear programming.

    Science.gov (United States)

    Chernomor, Olga; Minh, Bui Quang; Forest, Félix; Klaere, Steffen; Ingram, Travis; Henzinger, Monika; von Haeseler, Arndt

    2015-01-01

    Phylogenetic diversity (PD) is a measure of biodiversity based on the evolutionary history of species. Here, we discuss several optimization problems related to the use of PD, and the more general measure split diversity (SD), in conservation prioritization.Depending on the conservation goal and the information available about species, one can construct optimization routines that incorporate various conservation constraints. We demonstrate how this information can be used to select sets of species for conservation action. Specifically, we discuss the use of species' geographic distributions, the choice of candidates under economic pressure, and the use of predator-prey interactions between the species in a community to define viability constraints.Despite such optimization problems falling into the area of NP hard problems, it is possible to solve them in a reasonable amount of time using integer programming. We apply integer linear programming to a variety of models for conservation prioritization that incorporate the SD measure.We exemplarily show the results for two data sets: the Cape region of South Africa and a Caribbean coral reef community. Finally, we provide user-friendly software at http://www.cibiv.at/software/pda.

  12. Optimization of Product Instantiation using Integer Programming

    NARCIS (Netherlands)

    van den Broek, P.M.; Botterweck, Goetz; Jarzabek, Stan; Kishi, Tomoji

    2010-01-01

    We show that Integer Programming (IP) can be used as an optimization technique for the instantiation of products of feature models. This is done by showing that the constraints of feature models can be written in linear form. As particular IP technique, we use Gomory cutting planes. We have applied

  13. Optimal Diet Planning for Eczema Patient Using Integer Programming

    Science.gov (United States)

    Zhen Sheng, Low; Sufahani, Suliadi

    2018-04-01

    Human diet planning is conducted by choosing appropriate food items that fulfill the nutritional requirements into the diet formulation. This paper discusses the application of integer programming to build the mathematical model of diet planning for eczema patients. The model developed is used to solve the diet problem of eczema patients from young age group. The integer programming is a scientific approach to select suitable food items, which seeks to minimize the costs, under conditions of meeting desired nutrient quantities, avoiding food allergens and getting certain foods into the diet that brings relief to the eczema conditions. This paper illustrates that the integer programming approach able to produce the optimal and feasible solution to deal with the diet problem of eczema patient.

  14. Searching for optimal integer solutions to set partitioning problems using column generation

    OpenAIRE

    Bredström, David; Jörnsten, Kurt; Rönnqvist, Mikael

    2007-01-01

    We describe a new approach to produce integer feasible columns to a set partitioning problem directly in solving the linear programming (LP) relaxation using column generation. Traditionally, column generation is aimed to solve the LP relaxation as quick as possible without any concern of the integer properties of the columns formed. In our approach we aim to generate the columns forming the optimal integer solution while simultaneously solving the LP relaxation. By this we can re...

  15. Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems

    KAUST Repository

    Domínguez, Luis F.

    2010-12-01

    This work introduces two algorithms for the solution of pure integer and mixed-integer bilevel programming problems by multiparametric programming techniques. The first algorithm addresses the integer case of the bilevel programming problem where integer variables of the outer optimization problem appear in linear or polynomial form in the inner problem. The algorithm employs global optimization techniques to convexify nonlinear terms generated by a reformulation linearization technique (RLT). A continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem appear in linear or polynomial forms in the inner problem. The algorithm relies on the use of global multiparametric mixed-integer programming techniques at the inner optimization level. In both algorithms, the multiparametric solutions obtained are embedded in the outer problem to form a set of single-level (M)(I)(N)LP problems - which are then solved to global optimality using standard fixed-point (global) optimization methods. Numerical examples drawn from the open literature are presented to illustrate the proposed algorithms. © 2010 Elsevier Ltd.

  16. Sensitive Constrained Optimal PMU Allocation with Complete Observability for State Estimation Solution

    Directory of Open Access Journals (Sweden)

    R. Manam

    2017-12-01

    Full Text Available In this paper, a sensitive constrained integer linear programming approach is formulated for the optimal allocation of Phasor Measurement Units (PMUs in a power system network to obtain state estimation. In this approach, sensitive buses along with zero injection buses (ZIB are considered for optimal allocation of PMUs in the network to generate state estimation solutions. Sensitive buses are evolved from the mean of bus voltages subjected to increase of load consistently up to 50%. Sensitive buses are ranked in order to place PMUs. Sensitive constrained optimal PMU allocation in case of single line and no line contingency are considered in observability analysis to ensure protection and control of power system from abnormal conditions. Modeling of ZIB constraints is included to minimize the number of PMU network allocations. This paper presents optimal allocation of PMU at sensitive buses with zero injection modeling, considering cost criteria and redundancy to increase the accuracy of state estimation solution without losing observability of the whole system. Simulations are carried out on IEEE 14, 30 and 57 bus systems and results obtained are compared with traditional and other state estimation methods available in the literature, to demonstrate the effectiveness of the proposed method.

  17. Penempatan Optimal Phasor Measurement Unit (PMU) Dengan Integer Programming

    OpenAIRE

    Amrulloh, Yunan Helmy

    2013-01-01

    Phasor Measurement Unit (PMU) merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP) yang akan memberikan variabel dengan pilihan nilai (0,1) yang menu...

  18. Mixed Integer Programming and Heuristic Scheduling for Space Communication

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2013-01-01

    Optimal planning and scheduling for a communication network was created where the nodes within the network are communicating at the highest possible rates while meeting the mission requirements and operational constraints. The planning and scheduling problem was formulated in the framework of Mixed Integer Programming (MIP) to introduce a special penalty function to convert the MIP problem into a continuous optimization problem, and to solve the constrained optimization problem using heuristic optimization. The communication network consists of space and ground assets with the link dynamics between any two assets varying with respect to time, distance, and telecom configurations. One asset could be communicating with another at very high data rates at one time, and at other times, communication is impossible, as the asset could be inaccessible from the network due to planetary occultation. Based on the network's geometric dynamics and link capabilities, the start time, end time, and link configuration of each view period are selected to maximize the communication efficiency within the network. Mathematical formulations for the constrained mixed integer optimization problem were derived, and efficient analytical and numerical techniques were developed to find the optimal solution. By setting up the problem using MIP, the search space for the optimization problem is reduced significantly, thereby speeding up the solution process. The ratio of the dimension of the traditional method over the proposed formulation is approximately an order N (single) to 2*N (arraying), where N is the number of receiving antennas of a node. By introducing a special penalty function, the MIP problem with non-differentiable cost function and nonlinear constraints can be converted into a continuous variable problem, whose solution is possible.

  19. Towards Merging Binary Integer Programming Techniques with Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Reza Zamani

    2017-01-01

    Full Text Available This paper presents a framework based on merging a binary integer programming technique with a genetic algorithm. The framework uses both lower and upper bounds to make the employed mathematical formulation of a problem as tight as possible. For problems whose optimal solutions cannot be obtained, precision is traded with speed through substituting the integrality constrains in a binary integer program with a penalty. In this way, instead of constraining a variable u with binary restriction, u is considered as real number between 0 and 1, with the penalty of Mu(1-u, in which M is a large number. Values not near to the boundary extremes of 0 and 1 make the component of Mu(1-u large and are expected to be avoided implicitly. The nonbinary values are then converted to priorities, and a genetic algorithm can use these priorities to fill its initial pool for producing feasible solutions. The presented framework can be applied to many combinatorial optimization problems. Here, a procedure based on this framework has been applied to a scheduling problem, and the results of computational experiments have been discussed, emphasizing the knowledge generated and inefficiencies to be circumvented with this framework in future.

  20. Learning decision trees with flexible constraints and objectives using integer optimization

    NARCIS (Netherlands)

    Verwer, S.; Zhang, Y.

    2017-01-01

    We encode the problem of learning the optimal decision tree of a given depth as an integer optimization problem. We show experimentally that our method (DTIP) can be used to learn good trees up to depth 5 from data sets of size up to 1000. In addition to being efficient, our new formulation allows

  1. Mixed-integer evolution strategies for parameter optimization and their applications to medical image analysis

    NARCIS (Netherlands)

    Li, Rui

    2009-01-01

    The target of this work is to extend the canonical Evolution Strategies (ES) from traditional real-valued parameter optimization domain to mixed-integer parameter optimization domain. This is necessary because there exist numerous practical optimization problems from industry in which the set of

  2. A chance-constrained stochastic approach to intermodal container routing problems.

    Science.gov (United States)

    Zhao, Yi; Liu, Ronghui; Zhang, Xi; Whiteing, Anthony

    2018-01-01

    We consider a container routing problem with stochastic time variables in a sea-rail intermodal transportation system. The problem is formulated as a binary integer chance-constrained programming model including stochastic travel times and stochastic transfer time, with the objective of minimising the expected total cost. Two chance constraints are proposed to ensure that the container service satisfies ship fulfilment and cargo on-time delivery with pre-specified probabilities. A hybrid heuristic algorithm is employed to solve the binary integer chance-constrained programming model. Two case studies are conducted to demonstrate the feasibility of the proposed model and to analyse the impact of stochastic variables and chance-constraints on the optimal solution and total cost.

  3. An n -material thresholding method for improving integerness of solutions in topology optimization

    International Nuclear Information System (INIS)

    Watts, Seth; Engineering); Tortorelli, Daniel A.; Engineering)

    2016-01-01

    It is common in solving topology optimization problems to replace an integer-valued characteristic function design field with the material volume fraction field, a real-valued approximation of the design field that permits "fictitious" mixtures of materials during intermediate iterations in the optimization process. This is reasonable so long as one can interpolate properties for such materials and so long as the final design is integer valued. For this purpose, we present a method for smoothly thresholding the volume fractions of an arbitrary number of material phases which specify the design. This method is trivial for two-material design problems, for example, the canonical topology design problem of specifying the presence or absence of a single material within a domain, but it becomes more complex when three or more materials are used, as often occurs in material design problems. We take advantage of the similarity in properties between the volume fractions and the barycentric coordinates on a simplex to derive a thresholding, method which is applicable to an arbitrary number of materials. As we show in a sensitivity analysis, this method has smooth derivatives, allowing it to be used in gradient-based optimization algorithms. Finally, we present results, which show synergistic effects when used with Solid Isotropic Material with Penalty and Rational Approximation of Material Properties material interpolation functions, popular methods of ensuring integerness of solutions.

  4. Penempatan Optimal Phasor Measurement Unit (PMU dengan Integer Programming

    Directory of Open Access Journals (Sweden)

    Yunan Helmy Amrulloh

    2013-09-01

    Full Text Available Phasor Measurement Unit (PMU merupakan peralatan yang mampu memberikan pengukuran fasor tegangan dan arus secara real-time. PMU dapat digunakan untuk monitoring, proteksi dan kontrol pada sistem tenaga listrik. Tugas akhir ini membahas penempatan PMU secara optimal berdasarkan topologi jaringan sehingga sistem tenaga listrik  dapat diobservasi. Penempatan optimal PMU dirumuskan sebagai masalah Binary Integer Programming (BIP yang akan memberikan variabel dengan pilihan nilai (0,1 yang menunjukkan tempat yang harus dipasang PMU. Dalam tugas akhir ini, BIP diterapkan untuk menyelesaikan masalah penempatan PMU secara optimal pada sistem tenaga listrik  Jawa-Bali 500 KV yang selanjutnya diterapkan dengan penambahan konsep incomplete observability. Hasil simulasi menunjukkan bahwa penerapan BIP pada sistem dengan incomplete observability memberikan jumlah PMU yang lebih sedikit dibandingkan dengan sistem tanpa konsep incomplete observability.

  5. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  6. Constrained optimization via simulation models for new product innovation

    Science.gov (United States)

    Pujowidianto, Nugroho A.

    2017-11-01

    We consider the problem of constrained optimization where the decision makers aim to optimize the primary performance measure while constraining the secondary performance measures. This paper provides a brief overview of stochastically constrained optimization via discrete event simulation. Most review papers tend to be methodology-based. This review attempts to be problem-based as decision makers may have already decided on the problem formulation. We consider constrained optimization models as there are usually constraints on secondary performance measures as trade-off in new product development. It starts by laying out different possible methods and the reasons using constrained optimization via simulation models. It is then followed by the review of different simulation optimization approach to address constrained optimization depending on the number of decision variables, the type of constraints, and the risk preferences of the decision makers in handling uncertainties.

  7. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  8. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  9. Integer programming

    CERN Document Server

    Conforti, Michele; Zambelli, Giacomo

    2014-01-01

    This book is an elegant and rigorous presentation of integer programming, exposing the subject’s mathematical depth and broad applicability. Special attention is given to the theory behind the algorithms used in state-of-the-art solvers. An abundance of concrete examples and exercises of both theoretical and real-world interest explore the wide range of applications and ramifications of the theory. Each chapter is accompanied by an expertly informed guide to the literature and special topics, rounding out the reader’s understanding and serving as a gateway to deeper study. Key topics include: formulations polyhedral theory cutting planes decomposition enumeration semidefinite relaxations Written by renowned experts in integer programming and combinatorial optimization, Integer Programming is destined to become an essential text in the field.

  10. Trends in PDE constrained optimization

    CERN Document Server

    Benner, Peter; Engell, Sebastian; Griewank, Andreas; Harbrecht, Helmut; Hinze, Michael; Rannacher, Rolf; Ulbrich, Stefan

    2014-01-01

    Optimization problems subject to constraints governed by partial differential equations (PDEs) are among the most challenging problems in the context of industrial, economical and medical applications. Almost the entire range of problems in this field of research was studied and further explored as part of the Deutsche Forschungsgemeinschaft (DFG) priority program 1253 on “Optimization with Partial Differential Equations” from 2006 to 2013. The investigations were motivated by the fascinating potential applications and challenging mathematical problems that arise in the field of PDE constrained optimization. New analytic and algorithmic paradigms have been developed, implemented and validated in the context of real-world applications. In this special volume, contributions from more than fifteen German universities combine the results of this interdisciplinary program with a focus on applied mathematics.   The book is divided into five sections on “Constrained Optimization, Identification and Control”...

  11. A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization

    Science.gov (United States)

    Li, Zukui; Ding, Ran; Floudas, Christodoulos A.

    2011-01-01

    Robust counterpart optimization techniques for linear optimization and mixed integer linear optimization problems are studied in this paper. Different uncertainty sets, including those studied in literature (i.e., interval set; combined interval and ellipsoidal set; combined interval and polyhedral set) and new ones (i.e., adjustable box; pure ellipsoidal; pure polyhedral; combined interval, ellipsoidal, and polyhedral set) are studied in this work and their geometric relationship is discussed. For uncertainty in the left hand side, right hand side, and objective function of the optimization problems, robust counterpart optimization formulations induced by those different uncertainty sets are derived. Numerical studies are performed to compare the solutions of the robust counterpart optimization models and applications in refinery production planning and batch process scheduling problem are presented. PMID:21935263

  12. Security constrained optimal power flow by modern optimization tools

    African Journals Online (AJOL)

    Security constrained optimal power flow by modern optimization tools. ... International Journal of Engineering, Science and Technology ... If you would like more information about how to print, save, and work with PDFs, Highwire Press ...

  13. Developing optimal nurses work schedule using integer programming

    Science.gov (United States)

    Shahidin, Ainon Mardhiyah; Said, Mohd Syazwan Md; Said, Noor Hizwan Mohamad; Sazali, Noor Izatie Amaliena

    2017-08-01

    Time management is the art of arranging, organizing and scheduling one's time for the purpose of generating more effective work and productivity. Scheduling is the process of deciding how to commit resources between varieties of possible tasks. Thus, it is crucial for every organization to have a good work schedule for their staffs. The job of Ward nurses at hospitals runs for 24 hours every day. Therefore, nurses will be working using shift scheduling. This study is aimed to solve the nurse scheduling problem at an emergency ward of a private hospital. A 7-day work schedule for 7 consecutive weeks satisfying all the constraints set by the hospital will be developed using Integer Programming. The work schedule for the nurses obtained gives an optimal solution where all the constraints are being satisfied successfully.

  14. Linear and integer programming made easy

    CERN Document Server

    Hu, T C

    2016-01-01

    Linear and integer programming are fundamental toolkits for data and information science and technology, particularly in the context of today’s megatrends toward statistical optimization, machine learning, and big data analytics. Drawn from over 30 years of classroom teaching and applied research experience, this textbook provides a crisp and practical introduction to the basics of linear and integer programming. The authors’ approach is accessible to students from all fields of engineering, including operations research, statistics, machine learning, control system design, scheduling, formal verification, and computer vision. Readers will learn to cast hard combinatorial problems as mathematical programming optimizations, understand how to achieve formulations where the objective and constraints are linear, choose appropriate solution methods, and interpret results appropriately. •Provides a concise introduction to linear and integer programming, appropriate for undergraduates, graduates, a short cours...

  15. Performance comparison of genetic algorithms and particle swarm optimization for model integer programming bus timetabling problem

    Science.gov (United States)

    Wihartiko, F. D.; Wijayanti, H.; Virgantari, F.

    2018-03-01

    Genetic Algorithm (GA) is a common algorithm used to solve optimization problems with artificial intelligence approach. Similarly, the Particle Swarm Optimization (PSO) algorithm. Both algorithms have different advantages and disadvantages when applied to the case of optimization of the Model Integer Programming for Bus Timetabling Problem (MIPBTP), where in the case of MIPBTP will be found the optimal number of trips confronted with various constraints. The comparison results show that the PSO algorithm is superior in terms of complexity, accuracy, iteration and program simplicity in finding the optimal solution.

  16. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    Science.gov (United States)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  17. Coevolutionary particle swarm optimization using Gaussian distribution for solving constrained optimization problems.

    Science.gov (United States)

    Krohling, Renato A; Coelho, Leandro dos Santos

    2006-12-01

    In this correspondence, an approach based on coevolutionary particle swarm optimization to solve constrained optimization problems formulated as min-max problems is presented. In standard or canonical particle swarm optimization (PSO), a uniform probability distribution is used to generate random numbers for the accelerating coefficients of the local and global terms. We propose a Gaussian probability distribution to generate the accelerating coefficients of PSO. Two populations of PSO using Gaussian distribution are used on the optimization algorithm that is tested on a suite of well-known benchmark constrained optimization problems. Results have been compared with the canonical PSO (constriction factor) and with a coevolutionary genetic algorithm. Simulation results show the suitability of the proposed algorithm in terms of effectiveness and robustness.

  18. A mixed-integer nonlinear programming approach to the optimal design of heat network in a polygeneration energy system

    International Nuclear Information System (INIS)

    Zhang, Jianyun; Liu, Pei; Zhou, Zhe; Ma, Linwei; Li, Zheng; Ni, Weidou

    2014-01-01

    Highlights: • Integration of heat streams with HRSG in a polygeneration system is studied. • A mixed-integer nonlinear programming model is proposed to optimize heat network. • Operating parameters and heat network configuration are optimized simultaneously. • The optimized heat network highly depends on the HRSG type and model specification. - Abstract: A large number of heat flows at various temperature and pressure levels exist in a polygeneration plant which co-produces electricity and chemical products. Integration of these external heat flows in a heat recovery steam generator (HRSG) has great potential to further enhance energy efficiency of such a plant; however, it is a challenging problem arising from the large design space of heat exchanger network. In this paper, a mixed-integer nonlinear programming model is developed for the design optimization of a HRSG with consideration of all alternative matches between the HRSG and external heat flows. This model is applied to four polygeneration cases with different HRSG types, and results indicate that the optimized heat network mainly depends on the HRSG type and the model specification

  19. A new methodological development for solving linear bilevel integer programming problems in hybrid fuzzy environment

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2016-04-01

    Full Text Available This paper deals with fuzzy goal programming approach to solve fuzzy linear bilevel integer programming problems with fuzzy probabilistic constraints following Pareto distribution and Frechet distribution. In the proposed approach a new chance constrained programming methodology is developed from the view point of managing those probabilistic constraints in a hybrid fuzzy environment. A method of defuzzification of fuzzy numbers using ?-cut has been adopted to reduce the problem into a linear bilevel integer programming problem. The individual optimal value of the objective of each DM is found in isolation to construct the fuzzy membership goals. Finally, fuzzy goal programming approach is used to achieve maximum degree of each of the membership goals by minimizing under deviational variables in the decision making environment. To demonstrate the efficiency of the proposed approach, a numerical example is provided.

  20. Constrained Optimization and Optimal Control for Partial Differential Equations

    CERN Document Server

    Leugering, Günter; Griewank, Andreas

    2012-01-01

    This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The cont

  1. Canonical Duality Theory for Topology Optimization

    OpenAIRE

    Gao, David Yang

    2016-01-01

    This paper presents a canonical duality approach for solving a general topology optimization problem of nonlinear elastic structures. By using finite element method, this most challenging problem can be formulated as a mixed integer nonlinear programming problem (MINLP), i.e. for a given deformation, the first-level optimization is a typical linear constrained 0-1 programming problem, while for a given structure, the second-level optimization is a general nonlinear continuous minimization pro...

  2. Optimal placement of capacitors in a radial network using conic and mixed integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Jabr, R.A. [Electrical, Computer and Communication Engineering Department, Notre Dame University, P.O. Box: 72, Zouk Mikhael, Zouk Mosbeh (Lebanon)

    2008-06-15

    This paper considers the problem of optimally placing fixed and switched type capacitors in a radial distribution network. The aim of this problem is to minimize the costs associated with capacitor banks, peak power, and energy losses whilst satisfying a pre-specified set of physical and technical constraints. The proposed solution is obtained using a two-phase approach. In phase-I, the problem is formulated as a conic program in which all nodes are candidates for placement of capacitor banks whose sizes are considered as continuous variables. A global solution of the phase-I problem is obtained using an interior-point based conic programming solver. Phase-II seeks a practical optimal solution by considering capacitor sizes as discrete variables. The problem in this phase is formulated as a mixed integer linear program based on minimizing the L1-norm of deviations from the phase-I state variable values. The solution to the phase-II problem is obtained using a mixed integer linear programming solver. The proposed method is validated via extensive comparisons with previously published results. (author)

  3. A fixed recourse integer programming approach towards a ...

    African Journals Online (AJOL)

    Regardless of the success that linear programming and integer linear programming has had in applications in engineering, business and economics, one has to challenge the assumed reality that these optimization models represent. In this paper the certainty assumptions of an integer linear program application is ...

  4. Optimal Allocation of Static Var Compensator via Mixed Integer Conic Programming

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaohu [ORNL; Shi, Di [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Zhiwei [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Huang, Junhui [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Wang, Xu [Global Energy Interconnection Research Institute North America (GEIRI North America), California; Liu, Guodong [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)

    2017-01-01

    Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a planning model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus system demonstrate the effectiveness of the proposed planning model.

  5. Integer programming and combinatorial optimization : 15th international conference, IPCO 2011, New York NY, USA, June 15-17, 2011 : proceedings

    NARCIS (Netherlands)

    Günlük, O.; Woeginger, G.J.

    2011-01-01

    This volume contains the 33 papers presented at IPCO 2011, the 15th Conference on Integer Programming and Combinatorial Optimization, held during June 15–17, 2011 at the IBM T.J. Watson Research Center in New York, USA. IPCO conferences are sponsored by the Mathematical Optimization Society. The

  6. Constrained optimization of test intervals using a steady-state genetic algorithm

    International Nuclear Information System (INIS)

    Martorell, S.; Carlos, S.; Sanchez, A.; Serradell, V.

    2000-01-01

    There is a growing interest from both the regulatory authorities and the nuclear industry to stimulate the use of Probabilistic Risk Analysis (PRA) for risk-informed applications at Nuclear Power Plants (NPPs). Nowadays, special attention is being paid on analyzing plant-specific changes to Test Intervals (TIs) within the Technical Specifications (TSs) of NPPs and it seems to be a consensus on the need of making these requirements more risk-effective and less costly. Resource versus risk-control effectiveness principles formally enters in optimization problems. This paper presents an approach for using the PRA models in conducting the constrained optimization of TIs based on a steady-state genetic algorithm (SSGA) where the cost or the burden is to be minimized while the risk or performance is constrained to be at a given level, or vice versa. The paper encompasses first with the problem formulation, where the objective function and constraints that apply in the constrained optimization of TIs based on risk and cost models at system level are derived. Next, the foundation of the optimizer is given, which is derived by customizing a SSGA in order to allow optimizing TIs under constraints. Also, a case study is performed using this approach, which shows the benefits of adopting both PRA models and genetic algorithms, in particular for the constrained optimization of TIs, although it is also expected a great benefit of using this approach to solve other engineering optimization problems. However, care must be taken in using genetic algorithms in constrained optimization problems as it is concluded in this paper

  7. Neuroevolutionary Constrained Optimization for Content Creation

    DEFF Research Database (Denmark)

    Liapis, Antonios; Yannakakis, Georgios N.; Togelius, Julian

    2011-01-01

    and thruster types and topologies) independently of game physics and steering strategies. According to the proposed framework, the designer picks a set of requirements for the spaceship that a constrained optimizer attempts to satisfy. The constraint satisfaction approach followed is based on neuroevolution...... and survival tasks and are also visually appealing....

  8. Quasicanonical structure of optimal control in constrained discrete systems

    Science.gov (United States)

    Sieniutycz, S.

    2003-06-01

    This paper considers discrete processes governed by difference rather than differential equations for the state transformation. The basic question asked is if and when Hamiltonian canonical structures are possible in optimal discrete systems. Considering constrained discrete control, general optimization algorithms are derived that constitute suitable theoretical and computational tools when evaluating extremum properties of constrained physical models. The mathematical basis of the general theory is the Bellman method of dynamic programming (DP) and its extension in the form of the so-called Carathéodory-Boltyanski (CB) stage criterion which allows a variation of the terminal state that is otherwise fixed in the Bellman's method. Two relatively unknown, powerful optimization algorithms are obtained: an unconventional discrete formalism of optimization based on a Hamiltonian for multistage systems with unconstrained intervals of holdup time, and the time interval constrained extension of the formalism. These results are general; namely, one arrives at: the discrete canonical Hamilton equations, maximum principles, and (at the continuous limit of processes with free intervals of time) the classical Hamilton-Jacobi theory along with all basic results of variational calculus. Vast spectrum of applications of the theory is briefly discussed.

  9. Effective Teaching of Economics: A Constrained Optimization Problem?

    Science.gov (United States)

    Hultberg, Patrik T.; Calonge, David Santandreu

    2017-01-01

    One of the fundamental tenets of economics is that decisions are often the result of optimization problems subject to resource constraints. Consumers optimize utility, subject to constraints imposed by prices and income. As economics faculty, instructors attempt to maximize student learning while being constrained by their own and students'…

  10. Optimal Airport Surface Traffic Planning Using Mixed-Integer Linear Programming

    Directory of Open Access Journals (Sweden)

    P. C. Roling

    2008-01-01

    Full Text Available We describe an ongoing research effort pertaining to the development of a surface traffic automation system that will help controllers to better coordinate surface traffic movements related to arrival and departure traffic. More specifically, we describe the concept for a taxi-planning support tool that aims to optimize the routing and scheduling of airport surface traffic in such a way as to deconflict the taxi plans while optimizing delay, total taxi-time, or some other airport efficiency metric. Certain input parameters related to resource demand, such as the expected landing times and the expected pushback times, are rather difficult to predict accurately. Due to uncertainty in the input data driving the taxi-planning process, the taxi-planning tool is designed such that it produces solutions that are robust to uncertainty. The taxi-planning concept presented herein, which is based on mixed-integer linear programming, is designed such that it is able to adapt to perturbations in these input conditions, as well as to account for failure in the actual execution of surface trajectories. The capabilities of the tool are illustrated in a simple hypothetical airport.

  11. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    International Nuclear Information System (INIS)

    Salazar, Daniel; Rocco, Claudio M.; Galvan, Blas J.

    2006-01-01

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature

  12. Optimization of constrained multiple-objective reliability problems using evolutionary algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, Daniel [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain) and Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: danielsalazaraponte@gmail.com; Rocco, Claudio M. [Facultad de Ingenieria, Universidad Central Venezuela, Caracas (Venezuela)]. E-mail: crocco@reacciun.ve; Galvan, Blas J. [Instituto de Sistemas Inteligentes y Aplicaciones Numericas en Ingenieria (IUSIANI), Division de Computacion Evolutiva y Aplicaciones (CEANI), Universidad de Las Palmas de Gran Canaria, Islas Canarias (Spain)]. E-mail: bgalvan@step.es

    2006-09-15

    This paper illustrates the use of multi-objective optimization to solve three types of reliability optimization problems: to find the optimal number of redundant components, find the reliability of components, and determine both their redundancy and reliability. In general, these problems have been formulated as single objective mixed-integer non-linear programming problems with one or several constraints and solved by using mathematical programming techniques or special heuristics. In this work, these problems are reformulated as multiple-objective problems (MOP) and then solved by using a second-generation Multiple-Objective Evolutionary Algorithm (MOEA) that allows handling constraints. The MOEA used in this paper (NSGA-II) demonstrates the ability to identify a set of optimal solutions (Pareto front), which provides the Decision Maker with a complete picture of the optimal solution space. Finally, the advantages of both MOP and MOEA approaches are illustrated by solving four redundancy problems taken from the literature.

  13. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    International Nuclear Information System (INIS)

    Santos Coelho, Leandro dos

    2009-01-01

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature

  14. An efficient particle swarm approach for mixed-integer programming in reliability-redundancy optimization applications

    Energy Technology Data Exchange (ETDEWEB)

    Santos Coelho, Leandro dos [Industrial and Systems Engineering Graduate Program, LAS/PPGEPS, Pontifical Catholic University of Parana, PUCPR, Imaculada Conceicao, 1155, 80215-901 Curitiba, Parana (Brazil)], E-mail: leandro.coelho@pucpr.br

    2009-04-15

    The reliability-redundancy optimization problems can involve the selection of components with multiple choices and redundancy levels that produce maximum benefits, and are subject to the cost, weight, and volume constraints. Many classical mathematical methods have failed in handling nonconvexities and nonsmoothness in reliability-redundancy optimization problems. As an alternative to the classical optimization approaches, the meta-heuristics have been given much attention by many researchers due to their ability to find an almost global optimal solutions. One of these meta-heuristics is the particle swarm optimization (PSO). PSO is a population-based heuristic optimization technique inspired by social behavior of bird flocking and fish schooling. This paper presents an efficient PSO algorithm based on Gaussian distribution and chaotic sequence (PSO-GC) to solve the reliability-redundancy optimization problems. In this context, two examples in reliability-redundancy design problems are evaluated. Simulation results demonstrate that the proposed PSO-GC is a promising optimization technique. PSO-GC performs well for the two examples of mixed-integer programming in reliability-redundancy applications considered in this paper. The solutions obtained by the PSO-GC are better than the previously best-known solutions available in the recent literature.

  15. Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This research focuses on optimal design of different types of magnetorheological brakes (MRBs), from which an optimal selection of MRB types is identified. In the optimization, common types of MRB such as disc-type, drum-type, hybrid-types, and T-shaped type are considered. The optimization problem is to find the optimal value of significant geometric dimensions of the MRB that can produce a maximum braking torque. The MRB is constrained in a cylindrical volume of a specific radius and length. After a brief description of the configuration of MRB types, the braking torques of the MRBs are derived based on the Herschel–Bulkley model of the MR fluid. The optimal design of MRBs constrained in a specific cylindrical volume is then analysed. The objective of the optimization is to maximize the braking torque while the torque ratio (the ratio of maximum braking torque and the zero-field friction torque) is constrained to be greater than a certain value. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions of the MRBs. Optimal solutions of MRBs constrained in different volumes are obtained based on the proposed optimization procedure. From the results, discussions on the optimal selection of MRB types depending on constrained volumes are given. (paper)

  16. A Mixed Integer Efficient Global Optimization Framework: Applied to the Simultaneous Aircraft Design, Airline Allocation and Revenue Management Problem

    Science.gov (United States)

    Roy, Satadru

    Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network

  17. Thermally-Constrained Fuel-Optimal ISS Maneuvers

    Science.gov (United States)

    Bhatt, Sagar; Svecz, Andrew; Alaniz, Abran; Jang, Jiann-Woei; Nguyen, Louis; Spanos, Pol

    2015-01-01

    Optimal Propellant Maneuvers (OPMs) are now being used to rotate the International Space Station (ISS) and have saved hundreds of kilograms of propellant over the last two years. The savings are achieved by commanding the ISS to follow a pre-planned attitude trajectory optimized to take advantage of environmental torques. The trajectory is obtained by solving an optimal control problem. Prior to use on orbit, OPM trajectories are screened to ensure a static sun vector (SSV) does not occur during the maneuver. The SSV is an indicator that the ISS hardware temperatures may exceed thermal limits, causing damage to the components. In this paper, thermally-constrained fuel-optimal trajectories are presented that avoid an SSV and can be used throughout the year while still reducing propellant consumption significantly.

  18. IESIP - AN IMPROVED EXPLORATORY SEARCH TECHNIQUE FOR PURE INTEGER LINEAR PROGRAMMING PROBLEMS

    Science.gov (United States)

    Fogle, F. R.

    1994-01-01

    IESIP, an Improved Exploratory Search Technique for Pure Integer Linear Programming Problems, addresses the problem of optimizing an objective function of one or more variables subject to a set of confining functions or constraints by a method called discrete optimization or integer programming. Integer programming is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more difficult, integer programming is required for accuracy when modeling systems with small numbers of components such as the distribution of goods, machine scheduling, and production scheduling. IESIP establishes a new methodology for solving pure integer programming problems by utilizing a modified version of the univariate exploratory move developed by Robert Hooke and T.A. Jeeves. IESIP also takes some of its technique from the greedy procedure and the idea of unit neighborhoods. A rounding scheme uses the continuous solution found by traditional methods (simplex or other suitable technique) and creates a feasible integer starting point. The Hook and Jeeves exploratory search is modified to accommodate integers and constraints and is then employed to determine an optimal integer solution from the feasible starting solution. The user-friendly IESIP allows for rapid solution of problems up to 10 variables in size (limited by DOS allocation). Sample problems compare IESIP solutions with the traditional branch-and-bound approach. IESIP is written in Borland's TURBO Pascal for IBM PC series computers and compatibles running DOS. Source code and an executable are provided. The main memory requirement for execution is 25K. This program is available on a 5.25 inch 360K MS DOS format diskette. IESIP was developed in 1990. IBM is a trademark of International Business Machines. TURBO Pascal is registered by Borland International.

  19. Investigating Students’ Development of Learning Integer Concept and Integer Addition

    Directory of Open Access Journals (Sweden)

    Nenden Octavarulia Shanty

    2016-09-01

    Full Text Available This research aimed at investigating students’ development of learning integer concept and integer addition. The investigation was based on analyzing students’ works in solving the given mathematical problems in each instructional activity designed based on Realistic Mathematics Education (RME levels. Design research was chosen to achieve and to contribute in developing a local instruction theory for teaching and learning of integer concept and integer addition. In design research, the Hypothetical Learning Trajectory (HLT plays important role as a design and research instrument. It was designed in the phase of preliminary design and tested to three students of grade six OASIS International School, Ankara – Turkey. The result of the experiments showed that temperature in the thermometer context could stimulate students’ informal knowledge of integer concept. Furthermore, strategies and tools used by the students in comparing and relating two temperatures were gradually be developed into a more formal mathematics. The representation of line inside thermometer which then called the number line could bring the students to the last activity levels, namely rules for adding integer, and became the model for more formal reasoning. Based on these findings, it can be concluded that students’ learning integer concept and integer addition developed through RME levels.Keywords: integer concept, integer addition, Realistic Mathematics Education DOI: http://dx.doi.org/10.22342/jme.7.2.3538.57-72

  20. Spreading Sequences Generated Using Asymmetrical Integer-Number Maps

    Directory of Open Access Journals (Sweden)

    V. Sebesta

    2007-09-01

    Full Text Available Chaotic sequences produced by piecewise linear maps can be transformed to binary sequences. The binary sequences are optimal for the asynchronous DS/CDMA systems in case of certain shapes of the maps. This paper is devoted to the one-to-one integer-number maps derived from the suitable asymmetrical piecewise linear maps. Such maps give periodic integer-number sequences, which can be transformed to the binary sequences. The binary sequences produced via proposed modified integer-number maps are perfectly balanced and embody good autocorrelation and crosscorrelation properties. The number of different binary sequences is sizable. The sequences are suitable as spreading sequences in DS/CDMA systems.

  1. Quantum Integers

    International Nuclear Information System (INIS)

    Khrennikov, Andrei; Klein, Moshe; Mor, Tal

    2010-01-01

    In number theory, a partition of a positive integer n is a way of writing n as a sum of positive integers. The number of partitions of n is given by the partition function p(n). Inspired by quantum information processing, we extend the concept of partitions in number theory as follows: for an integer n, we treat each partition as a basis state of a quantum system representing that number n, so that the Hilbert-space that corresponds to that integer n is of dimension p(n); the 'classical integer' n can thus be generalized into a (pure) quantum state ||ψ(n) > which is a superposition of the partitions of n, in the same way that a quantum bit (qubit) is a generalization of a classical bit. More generally, ρ(n) is a density matrix in that same Hilbert-space (a probability distribution over pure states). Inspired by the notion of quantum numbers in quantum theory (such as in Bohr's model of the atom), we then try to go beyond the partitions, by defining (via recursion) the notion of 'sub-partitions' in number theory. Combining the two notions mentioned above, sub-partitions and quantum integers, we finally provide an alternative definition of the quantum integers [the pure-state |ψ'(n)> and the mixed-state ρ'(n),] this time using the sub-partitions as the basis states instead of the partitions, for describing the quantum number that corresponds to the integer n.

  2. Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle

    International Nuclear Information System (INIS)

    Lei, Fei; Du, Bin; Liu, Xin; Xie, Xiaoping; Chai, Tian

    2016-01-01

    In this paper, implicit constrained multi-physics model of a motor wheel for an electric vehicle is built and then optimized. A novel optimization approach is proposed to solve the compliance problem between implicit constraints and stochastic global optimization. Firstly, multi-physics model of motor wheel is built from the theories of structural mechanics, electromagnetism and thermal physics. Then, implicit constraints are applied from the vehicle performances and magnetic characteristics. Implicit constrained optimization is carried out by a series of unconstrained optimization and verifications. In practice, sequentially updated subspaces are designed to completely substitute the original design space in local areas. In each subspace, a solution is obtained and is then verified by the implicit constraints. Optimal solutions which satisfy the implicit constraints are accepted as final candidates. The final global optimal solution is optimized from those candidates. Discussions are carried out to discover the differences between optimal solutions with unconstrained problem and different implicit constrained problems. Results show that the implicit constraints have significant influences on the optimal solution and the proposed approach is effective in finding the optimals. - Highlights: • An implicit constrained multi-physics model is built for sizing a motor wheel. • Vehicle dynamic performances are applied as implicit constraints for nonlinear system. • An efficient novel optimization is proposed to explore the constrained design space. • The motor wheel is optimized to achieve maximum efficiency on vehicle dynamics. • Influences of implicit constraints on vehicle performances are compared and analyzed.

  3. Chance-constrained optimization of demand response to price signals

    DEFF Research Database (Denmark)

    Dorini, Gianluca Fabio; Pinson, Pierre; Madsen, Henrik

    2013-01-01

    within a recursive least squares (RLS) framework using data measurable at the grid level, in an adaptive fashion. Optimal price signals are generated by embedding the FIR models within a chance-constrained optimization framework. The objective is to keep the price signal as unchanged as possible from...

  4. RSM 1.0 - A RESUPPLY SCHEDULER USING INTEGER OPTIMIZATION

    Science.gov (United States)

    Viterna, L. A.

    1994-01-01

    RSM, Resupply Scheduling Modeler, is a fully menu-driven program that uses integer programming techniques to determine an optimum schedule for replacing components on or before the end of a fixed replacement period. Although written to analyze the electrical power system on the Space Station Freedom, RSM is quite general and can be used to model the resupply of almost any system subject to user-defined resource constraints. RSM is based on a specific form of the general linear programming problem in which all variables in the objective function and all variables in the constraints are integers. While more computationally intensive, integer programming was required for accuracy when modeling systems with small quantities of components. Input values for component life cane be real numbers, RSM converts them to integers by dividing the lifetime by the period duration, then reducing the result to the next lowest integer. For each component, there is a set of constraints that insure that it is replaced before its lifetime expires. RSM includes user-defined constraints such as transportation mass and volume limits, as well as component life, available repair crew time and assembly sequences. A weighting factor allows the program to minimize factors such as cost. The program then performs an iterative analysis, which is displayed during the processing. A message gives the first period in which resources are being exceeded on each iteration. If the scheduling problem is unfeasible, the final message will also indicate the first period in which resources were exceeded. RSM is written in APL2 for IBM PC series computers and compatibles. A stand-alone executable version of RSM is provided; however, this is a "packed" version of RSM which can only utilize the memory within the 640K DOS limit. This executable requires at least 640K of memory and DOS 3.1 or higher. Source code for an APL2/PC workspace version is also provided. This version of RSM can make full use of any

  5. A penalty method for PDE-constrained optimization in inverse problems

    International Nuclear Information System (INIS)

    Leeuwen, T van; Herrmann, F J

    2016-01-01

    Many inverse and parameter estimation problems can be written as PDE-constrained optimization problems. The goal is to infer the parameters, typically coefficients of the PDE, from partial measurements of the solutions of the PDE for several right-hand sides. Such PDE-constrained problems can be solved by finding a stationary point of the Lagrangian, which entails simultaneously updating the parameters and the (adjoint) state variables. For large-scale problems, such an all-at-once approach is not feasible as it requires storing all the state variables. In this case one usually resorts to a reduced approach where the constraints are explicitly eliminated (at each iteration) by solving the PDEs. These two approaches, and variations thereof, are the main workhorses for solving PDE-constrained optimization problems arising from inverse problems. In this paper, we present an alternative method that aims to combine the advantages of both approaches. Our method is based on a quadratic penalty formulation of the constrained optimization problem. By eliminating the state variable, we develop an efficient algorithm that has roughly the same computational complexity as the conventional reduced approach while exploiting a larger search space. Numerical results show that this method indeed reduces some of the nonlinearity of the problem and is less sensitive to the initial iterate. (paper)

  6. Bidirectional Dynamic Diversity Evolutionary Algorithm for Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Weishang Gao

    2013-01-01

    Full Text Available Evolutionary algorithms (EAs were shown to be effective for complex constrained optimization problems. However, inflexible exploration-exploitation and improper penalty in EAs with penalty function would lead to losing the global optimum nearby or on the constrained boundary. To determine an appropriate penalty coefficient is also difficult in most studies. In this paper, we propose a bidirectional dynamic diversity evolutionary algorithm (Bi-DDEA with multiagents guiding exploration-exploitation through local extrema to the global optimum in suitable steps. In Bi-DDEA potential advantage is detected by three kinds of agents. The scale and the density of agents will change dynamically according to the emerging of potential optimal area, which play an important role of flexible exploration-exploitation. Meanwhile, a novel double optimum estimation strategy with objective fitness and penalty fitness is suggested to compute, respectively, the dominance trend of agents in feasible region and forbidden region. This bidirectional evolving with multiagents can not only effectively avoid the problem of determining penalty coefficient but also quickly converge to the global optimum nearby or on the constrained boundary. By examining the rapidity and veracity of Bi-DDEA across benchmark functions, the proposed method is shown to be effective.

  7. Stochastic integer programming by dynamic programming

    NARCIS (Netherlands)

    Lageweg, B.J.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Stougie, L.; Ermoliev, Yu.; Wets, R.J.B.

    1988-01-01

    Stochastic integer programming is a suitable tool for modeling hierarchical decision situations with combinatorial features. In continuation of our work on the design and analysis of heuristics for such problems, we now try to find optimal solutions. Dynamic programming techniques can be used to

  8. Optimal Power Constrained Distributed Detection over a Noisy Multiaccess Channel

    Directory of Open Access Journals (Sweden)

    Zhiwen Hu

    2015-01-01

    Full Text Available The problem of optimal power constrained distributed detection over a noisy multiaccess channel (MAC is addressed. Under local power constraints, we define the transformation function for sensor to realize the mapping from local decision to transmitted waveform. The deflection coefficient maximization (DCM is used to optimize the performance of power constrained fusion system. Using optimality conditions, we derive the closed-form solution to the considered problem. Monte Carlo simulations are carried out to evaluate the performance of the proposed new method. Simulation results show that the proposed method could significantly improve the detection performance of the fusion system with low signal-to-noise ratio (SNR. We also show that the proposed new method has a robust detection performance for broad SNR region.

  9. SU-E-T-574: Novel Chance-Constrained Optimization in Intensity-Modulated Proton Therapy Planning to Account for Range and Patient Setup Uncertainties

    International Nuclear Information System (INIS)

    An, Y; Liang, J; Liu, W

    2015-01-01

    Purpose: We propose to apply a probabilistic framework, namely chanceconstrained optimization, in the intensity-modulated proton therapy (IMPT) planning subject to range and patient setup uncertainties. The purpose is to hedge against the influence of uncertainties and improve robustness of treatment plans. Methods: IMPT plans were generated for a typical prostate patient. Nine dose distributions are computed — the nominal one and one each for ±5mm setup uncertainties along three cardinal axes and for ±3.5% range uncertainty. These nine dose distributions are supplied to the solver CPLEX as chance constraints to explicitly control plan robustness under these representative uncertainty scenarios with certain probability. This probability is determined by the tolerance level. We make the chance-constrained model tractable by converting it to a mixed integer optimization problem. The quality of plans derived from this method is evaluated using dose-volume histogram (DVH) indices such as tumor dose homogeneity (D5% – D95%) and coverage (D95%) and normal tissue sparing like V70 of rectum, V65, and V40 of bladder. We also compare the results from this novel method with the conventional PTV-based method to further demonstrate its effectiveness Results: Our model can yield clinically acceptable plans within 50 seconds. The chance-constrained optimization produces IMPT plans with comparable target coverage, better target dose homogeneity, and better normal tissue sparing compared to the PTV-based optimization [D95% CTV: 67.9 vs 68.7 (Gy), D5% – D95% CTV: 11.9 vs 18 (Gy), V70 rectum: 0.0 % vs 0.33%, V65 bladder: 2.17% vs 9.33%, V40 bladder: 8.83% vs 21.83%]. It also simultaneously makes the plan more robust [Width of DVH band at D50%: 2.0 vs 10.0 (Gy)]. The tolerance level may be varied to control the tradeoff between plan robustness and quality. Conclusion: The chance-constrained optimization generates superior IMPT plan compared to the PTV-based optimization with

  10. A One-Layer Recurrent Neural Network for Constrained Complex-Variable Convex Optimization.

    Science.gov (United States)

    Qin, Sitian; Feng, Jiqiang; Song, Jiahui; Wen, Xingnan; Xu, Chen

    2018-03-01

    In this paper, based on calculus and penalty method, a one-layer recurrent neural network is proposed for solving constrained complex-variable convex optimization. It is proved that for any initial point from a given domain, the state of the proposed neural network reaches the feasible region in finite time and converges to an optimal solution of the constrained complex-variable convex optimization finally. In contrast to existing neural networks for complex-variable convex optimization, the proposed neural network has a lower model complexity and better convergence. Some numerical examples and application are presented to substantiate the effectiveness of the proposed neural network.

  11. Solving a mixed-integer linear programming model for a multi-skilled project scheduling problem by simulated annealing

    Directory of Open Access Journals (Sweden)

    H Kazemipoor

    2012-04-01

    Full Text Available A multi-skilled project scheduling problem (MSPSP has been generally presented to schedule a project with staff members as resources. Each activity in project network requires different skills and also staff members have different skills, too. This causes the MSPSP becomes a special type of a multi-mode resource-constrained project scheduling problem (MM-RCPSP with a huge number of modes. Given the importance of this issue, in this paper, a mixed integer linear programming for the MSPSP is presented. Due to the complexity of the problem, a meta-heuristic algorithm is proposed in order to find near optimal solutions. To validate performance of the algorithm, results are compared against exact solutions solved by the LINGO solver. The results are promising and show that optimal or near-optimal solutions are derived for small instances and good solutions for larger instances in reasonable time.

  12. A multi-objective improved teaching-learning based optimization algorithm for unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2014-01-01

    Full Text Available The present work proposes a multi-objective improved teaching-learning based optimization (MO-ITLBO algorithm for unconstrained and constrained multi-objective function optimization. The MO-ITLBO algorithm is the improved version of basic teaching-learning based optimization (TLBO algorithm adapted for multi-objective problems. The basic TLBO algorithm is improved to enhance its exploration and exploitation capacities by introducing the concept of number of teachers, adaptive teaching factor, tutorial training and self-motivated learning. The MO-ITLBO algorithm uses a grid-based approach to adaptively assess the non-dominated solutions (i.e. Pareto front maintained in an external archive. The performance of the MO-ITLBO algorithm is assessed by implementing it on unconstrained and constrained test problems proposed for the Congress on Evolutionary Computation 2009 (CEC 2009 competition. The performance assessment is done by using the inverted generational distance (IGD measure. The IGD measures obtained by using the MO-ITLBO algorithm are compared with the IGD measures of the other state-of-the-art algorithms available in the literature. Finally, Lexicographic ordering is used to assess the overall performance of competitive algorithms. Results have shown that the proposed MO-ITLBO algorithm has obtained the 1st rank in the optimization of unconstrained test functions and the 3rd rank in the optimization of constrained test functions.

  13. Volume-constrained optimization of magnetorheological and electrorheological valves and dampers

    Science.gov (United States)

    Rosenfeld, Nicholas C.; Wereley, Norman M.

    2004-12-01

    This paper presents a case study of magnetorheological (MR) and electrorheological (ER) valve design within a constrained cylindrical volume. The primary purpose of this study is to establish general design guidelines for volume-constrained MR valves. Additionally, this study compares the performance of volume-constrained MR valves against similarly constrained ER valves. Starting from basic design guidelines for an MR valve, a method for constructing candidate volume-constrained valve geometries is presented. A magnetic FEM program is then used to evaluate the magnetic properties of the candidate valves. An optimized MR valve is chosen by evaluating non-dimensional parameters describing the candidate valves' damping performance. A derivation of the non-dimensional damping coefficient for valves with both active and passive volumes is presented to allow comparison of valves with differing proportions of active and passive volumes. The performance of the optimized MR valve is then compared to that of a geometrically similar ER valve using both analytical and numerical techniques. An analytical equation relating the damping performances of geometrically similar MR and ER valves in as a function of fluid yield stresses and relative active fluid volume, and numerical calculations are provided to calculate each valve's damping performance and to validate the analytical calculations.

  14. Solution for state constrained optimal control problems applied to power split control for hybrid vehicles

    NARCIS (Netherlands)

    Keulen, van T.A.C.; Gillot, J.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    This paper presents a numerical solution for scalar state constrained optimal control problems. The algorithm rewrites the constrained optimal control problem as a sequence of unconstrained optimal control problems which can be solved recursively as a two point boundary value problem. The solution

  15. A one-layer recurrent neural network for constrained nonsmooth invex optimization.

    Science.gov (United States)

    Li, Guocheng; Yan, Zheng; Wang, Jun

    2014-02-01

    Invexity is an important notion in nonconvex optimization. In this paper, a one-layer recurrent neural network is proposed for solving constrained nonsmooth invex optimization problems, designed based on an exact penalty function method. It is proved herein that any state of the proposed neural network is globally convergent to the optimal solution set of constrained invex optimization problems, with a sufficiently large penalty parameter. In addition, any neural state is globally convergent to the unique optimal solution, provided that the objective function and constraint functions are pseudoconvex. Moreover, any neural state is globally convergent to the feasible region in finite time and stays there thereafter. The lower bounds of the penalty parameter and convergence time are also estimated. Two numerical examples are provided to illustrate the performances of the proposed neural network. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. An Integer Programming Model for Multi-Echelon Supply Chain Decision Problem Considering Inventories

    Science.gov (United States)

    Harahap, Amin; Mawengkang, Herman; Siswadi; Effendi, Syahril

    2018-01-01

    In this paper we address a problem that is of significance to the industry, namely the optimal decision of a multi-echelon supply chain and the associated inventory systems. By using the guaranteed service approach to model the multi-echelon inventory system, we develop a mixed integer; programming model to simultaneously optimize the transportation, inventory and network structure of a multi-echelon supply chain. To solve the model we develop a direct search approach using a strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points.

  17. New Exact Penalty Functions for Nonlinear Constrained Optimization Problems

    Directory of Open Access Journals (Sweden)

    Bingzhuang Liu

    2014-01-01

    Full Text Available For two kinds of nonlinear constrained optimization problems, we propose two simple penalty functions, respectively, by augmenting the dimension of the primal problem with a variable that controls the weight of the penalty terms. Both of the penalty functions enjoy improved smoothness. Under mild conditions, it can be proved that our penalty functions are both exact in the sense that local minimizers of the associated penalty problem are precisely the local minimizers of the original constrained problem.

  18. Constrained multi-objective optimization of storage ring lattices

    Science.gov (United States)

    Husain, Riyasat; Ghodke, A. D.

    2018-03-01

    The storage ring lattice optimization is a class of constrained multi-objective optimization problem, where in addition to low beam emittance, a large dynamic aperture for good injection efficiency and improved beam lifetime are also desirable. The convergence and computation times are of great concern for the optimization algorithms, as various objectives are to be optimized and a number of accelerator parameters to be varied over a large span with several constraints. In this paper, a study of storage ring lattice optimization using differential evolution is presented. The optimization results are compared with two most widely used optimization techniques in accelerators-genetic algorithm and particle swarm optimization. It is found that the differential evolution produces a better Pareto optimal front in reasonable computation time between two conflicting objectives-beam emittance and dispersion function in the straight section. The differential evolution was used, extensively, for the optimization of linear and nonlinear lattices of Indus-2 for exploring various operational modes within the magnet power supply capabilities.

  19. Integer linear models with a polynomial number of variables and constraints for some classical combinatorial optimization problems

    Directory of Open Access Journals (Sweden)

    Nelson Maculan

    2003-01-01

    Full Text Available We present integer linear models with a polynomial number of variables and constraints for combinatorial optimization problems in graphs: optimum elementary cycles, optimum elementary paths and optimum tree problems.Apresentamos modelos lineares inteiros com um número polinomial de variáveis e restrições para problemas de otimização combinatória em grafos: ciclos elementares ótimos, caminhos elementares ótimos e problemas em árvores ótimas.

  20. Adaptive Multi-Agent Systems for Constrained Optimization

    Science.gov (United States)

    Macready, William; Bieniawski, Stefan; Wolpert, David H.

    2004-01-01

    Product Distribution (PD) theory is a new framework for analyzing and controlling distributed systems. Here we demonstrate its use for distributed stochastic optimization. First we review one motivation of PD theory, as the information-theoretic extension of conventional full-rationality game theory to the case of bounded rational agents. In this extension the equilibrium of the game is the optimizer of a Lagrangian of the (probability distribution of) the joint state of the agents. When the game in question is a team game with constraints, that equilibrium optimizes the expected value of the team game utility, subject to those constraints. The updating of the Lagrange parameters in the Lagrangian can be viewed as a form of automated annealing, that focuses the MAS more and more on the optimal pure strategy. This provides a simple way to map the solution of any constrained optimization problem onto the equilibrium of a Multi-Agent System (MAS). We present computer experiments involving both the Queen s problem and K-SAT validating the predictions of PD theory and its use for off-the-shelf distributed adaptive optimization.

  1. Stress-constrained topology optimization for compliant mechanism design

    DEFF Research Database (Denmark)

    de Leon, Daniel M.; Alexandersen, Joe; Jun, Jun S.

    2015-01-01

    This article presents an application of stress-constrained topology optimization to compliant mechanism design. An output displacement maximization formulation is used, together with the SIMP approach and a projection method to ensure convergence to nearly discrete designs. The maximum stress...... is approximated using a normalized version of the commonly-used p-norm of the effective von Mises stresses. The usual problems associated with topology optimization for compliant mechanism design: one-node and/or intermediate density hinges are alleviated by the stress constraint. However, it is also shown...

  2. Metal artifact reduction in x-ray computed tomography (CT) by constrained optimization

    International Nuclear Information System (INIS)

    Zhang Xiaomeng; Wang Jing; Xing Lei

    2011-01-01

    Purpose: The streak artifacts caused by metal implants have long been recognized as a problem that limits various applications of CT imaging. In this work, the authors propose an iterative metal artifact reduction algorithm based on constrained optimization. Methods: After the shape and location of metal objects in the image domain is determined automatically by the binary metal identification algorithm and the segmentation of ''metal shadows'' in projection domain is done, constrained optimization is used for image reconstruction. It minimizes a predefined function that reflects a priori knowledge of the image, subject to the constraint that the estimated projection data are within a specified tolerance of the available metal-shadow-excluded projection data, with image non-negativity enforced. The minimization problem is solved through the alternation of projection-onto-convex-sets and the steepest gradient descent of the objective function. The constrained optimization algorithm is evaluated with a penalized smoothness objective. Results: The study shows that the proposed method is capable of significantly reducing metal artifacts, suppressing noise, and improving soft-tissue visibility. It outperforms the FBP-type methods and ART and EM methods and yields artifacts-free images. Conclusions: Constrained optimization is an effective way to deal with CT reconstruction with embedded metal objects. Although the method is presented in the context of metal artifacts, it is applicable to general ''missing data'' image reconstruction problems.

  3. Filter Pattern Search Algorithms for Mixed Variable Constrained Optimization Problems

    National Research Council Canada - National Science Library

    Abramson, Mark A; Audet, Charles; Dennis, Jr, J. E

    2004-01-01

    .... This class combines and extends the Audet-Dennis Generalized Pattern Search (GPS) algorithms for bound constrained mixed variable optimization, and their GPS-filter algorithms for general nonlinear constraints...

  4. A constrained optimization algorithm for total energy minimization in electronic structure calculations

    International Nuclear Information System (INIS)

    Yang Chao; Meza, Juan C.; Wang Linwang

    2006-01-01

    A new direct constrained optimization algorithm for minimizing the Kohn-Sham (KS) total energy functional is presented in this paper. The key ingredients of this algorithm involve projecting the total energy functional into a sequence of subspaces of small dimensions and seeking the minimizer of total energy functional within each subspace. The minimizer of a subspace energy functional not only provides a search direction along which the KS total energy functional decreases but also gives an optimal 'step-length' to move along this search direction. Numerical examples are provided to demonstrate that this new direct constrained optimization algorithm can be more efficient than the self-consistent field (SCF) iteration

  5. Bivium as a Mixed Integer Programming Problem

    DEFF Research Database (Denmark)

    Borghoff, Julia; Knudsen, Lars Ramkilde; Stolpe, Mathias

    2009-01-01

    over $GF(2)$ into a combinatorial optimization problem. We convert the Boolean equation system into an equation system over $\\mathbb{R}$ and formulate the problem of finding a $0$-$1$-valued solution for the system as a mixed-integer programming problem. This enables us to make use of several...

  6. A New Continuous-Time Equality-Constrained Optimization to Avoid Singularity.

    Science.gov (United States)

    Quan, Quan; Cai, Kai-Yuan

    2016-02-01

    In equality-constrained optimization, a standard regularity assumption is often associated with feasible point methods, namely, that the gradients of constraints are linearly independent. In practice, the regularity assumption may be violated. In order to avoid such a singularity, a new projection matrix is proposed based on which a feasible point method to continuous-time, equality-constrained optimization is developed. First, the equality constraint is transformed into a continuous-time dynamical system with solutions that always satisfy the equality constraint. Second, a new projection matrix without singularity is proposed to realize the transformation. An update (or say a controller) is subsequently designed to decrease the objective function along the solutions of the transformed continuous-time dynamical system. The invariance principle is then applied to analyze the behavior of the solution. Furthermore, the proposed method is modified to address cases in which solutions do not satisfy the equality constraint. Finally, the proposed optimization approach is applied to three examples to demonstrate its effectiveness.

  7. Integer anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, R. [ONR, Arlington, VA (United States)

    1994-11-15

    The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.

  8. Amodified probabilistic genetic algorithm for the solution of complex constrained optimization problems

    OpenAIRE

    Vorozheikin, A.; Gonchar, T.; Panfilov, I.; Sopov, E.; Sopov, S.

    2009-01-01

    A new algorithm for the solution of complex constrained optimization problems based on the probabilistic genetic algorithm with optimal solution prediction is proposed. The efficiency investigation results in comparison with standard genetic algorithm are presented.

  9. On meeting capital requirements with a chance-constrained optimization model.

    Science.gov (United States)

    Atta Mills, Ebenezer Fiifi Emire; Yu, Bo; Gu, Lanlan

    2016-01-01

    This paper deals with a capital to risk asset ratio chance-constrained optimization model in the presence of loans, treasury bill, fixed assets and non-interest earning assets. To model the dynamics of loans, we introduce a modified CreditMetrics approach. This leads to development of a deterministic convex counterpart of capital to risk asset ratio chance constraint. We pursue the scope of analyzing our model under the worst-case scenario i.e. loan default. The theoretical model is analyzed by applying numerical procedures, in order to administer valuable insights from a financial outlook. Our results suggest that, our capital to risk asset ratio chance-constrained optimization model guarantees banks of meeting capital requirements of Basel III with a likelihood of 95 % irrespective of changes in future market value of assets.

  10. Topology Optimization of Constrained Layer Damping on Plates Using Method of Moving Asymptote (MMA Approach

    Directory of Open Access Journals (Sweden)

    Zheng Ling

    2011-01-01

    Full Text Available Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an

  11. Smart-Grid Backbone Network Real-Time Delay Reduction via Integer Programming.

    Science.gov (United States)

    Pagadrai, Sasikanth; Yilmaz, Muhittin; Valluri, Pratyush

    2016-08-01

    This research investigates an optimal delay-based virtual topology design using integer linear programming (ILP), which is applied to the current backbone networks such as smart-grid real-time communication systems. A network traffic matrix is applied and the corresponding virtual topology problem is solved using the ILP formulations that include a network delay-dependent objective function and lightpath routing, wavelength assignment, wavelength continuity, flow routing, and traffic loss constraints. The proposed optimization approach provides an efficient deterministic integration of intelligent sensing and decision making, and network learning features for superior smart grid operations by adaptively responding the time-varying network traffic data as well as operational constraints to maintain optimal virtual topologies. A representative optical backbone network has been utilized to demonstrate the proposed optimization framework whose simulation results indicate that superior smart-grid network performance can be achieved using commercial networks and integer programming.

  12. An overview of solution methods for multi-objective mixed integer linear programming programs

    DEFF Research Database (Denmark)

    Andersen, Kim Allan; Stidsen, Thomas Riis

    Multiple objective mixed integer linear programming (MOMIP) problems are notoriously hard to solve to optimality, i.e. finding the complete set of non-dominated solutions. We will give an overview of existing methods. Among those are interactive methods, the two phases method and enumeration...... methods. In particular we will discuss the existing branch and bound approaches for solving multiple objective integer programming problems. Despite the fact that branch and bound methods has been applied successfully to integer programming problems with one criterion only a few attempts has been made...

  13. A Simply Constrained Optimization Reformulation of KKT Systems Arising from Variational Inequalities

    International Nuclear Information System (INIS)

    Facchinei, F.; Fischer, A.; Kanzow, C.; Peng, J.-M.

    1999-01-01

    The Karush-Kuhn-Tucker (KKT) conditions can be regarded as optimality conditions for both variational inequalities and constrained optimization problems. In order to overcome some drawbacks of recently proposed reformulations of KKT systems, we propose casting KKT systems as a minimization problem with nonnegativity constraints on some of the variables. We prove that, under fairly mild assumptions, every stationary point of this constrained minimization problem is a solution of the KKT conditions. Based on this reformulation, a new algorithm for the solution of the KKT conditions is suggested and shown to have some strong global and local convergence properties

  14. 5th Conference on Non-integer Order Calculus and Its Applications

    CERN Document Server

    Kacprzyk, Janusz; Baranowski, Jerzy

    2013-01-01

    This volume presents various aspects of non-integer order systems, also known as fractional systems, which have recently attracted an increasing attention in the scientific community of systems science, applied mathematics, control theory. Non-integer systems have become relevant for many fields of science and technology exemplified by the modeling of signal transmission, electric noise, dielectric polarization, heat transfer, electrochemical reactions, thermal processes,  acoustics, etc. The content is divided into six parts, every of which considers one of the currently relevant problems. In the first part the Realization problem is discussed, with a special focus on positive systems. The second part considers stability of certain classes of non-integer order systems with and without delays. The third part is focused on such important aspects as controllability, observability and optimization especially in discrete time. The fourth part is focused on distributed systems where non-integer calculus leads to ...

  15. Fuzzy chance constrained linear programming model for scrap charge optimization in steel production

    DEFF Research Database (Denmark)

    Rong, Aiying; Lahdelma, Risto

    2008-01-01

    the uncertainty based on fuzzy set theory and constrain the failure risk based on a possibility measure. Consequently, the scrap charge optimization problem is modeled as a fuzzy chance constrained linear programming problem. Since the constraints of the model mainly address the specification of the product...

  16. Modified Backtracking Search Optimization Algorithm Inspired by Simulated Annealing for Constrained Engineering Optimization Problems

    Directory of Open Access Journals (Sweden)

    Hailong Wang

    2018-01-01

    Full Text Available The backtracking search optimization algorithm (BSA is a population-based evolutionary algorithm for numerical optimization problems. BSA has a powerful global exploration capacity while its local exploitation capability is relatively poor. This affects the convergence speed of the algorithm. In this paper, we propose a modified BSA inspired by simulated annealing (BSAISA to overcome the deficiency of BSA. In the BSAISA, the amplitude control factor (F is modified based on the Metropolis criterion in simulated annealing. The redesigned F could be adaptively decreased as the number of iterations increases and it does not introduce extra parameters. A self-adaptive ε-constrained method is used to handle the strict constraints. We compared the performance of the proposed BSAISA with BSA and other well-known algorithms when solving thirteen constrained benchmarks and five engineering design problems. The simulation results demonstrated that BSAISA is more effective than BSA and more competitive with other well-known algorithms in terms of convergence speed.

  17. Integer Linear Programming for Constrained Multi-Aspect Committee Review Assignment

    Science.gov (United States)

    Karimzadehgan, Maryam; Zhai, ChengXiang

    2011-01-01

    Automatic review assignment can significantly improve the productivity of many people such as conference organizers, journal editors and grant administrators. A general setup of the review assignment problem involves assigning a set of reviewers on a committee to a set of documents to be reviewed under the constraint of review quota so that the reviewers assigned to a document can collectively cover multiple topic aspects of the document. No previous work has addressed such a setup of committee review assignments while also considering matching multiple aspects of topics and expertise. In this paper, we tackle the problem of committee review assignment with multi-aspect expertise matching by casting it as an integer linear programming problem. The proposed algorithm can naturally accommodate any probabilistic or deterministic method for modeling multiple aspects to automate committee review assignments. Evaluation using a multi-aspect review assignment test set constructed using ACM SIGIR publications shows that the proposed algorithm is effective and efficient for committee review assignments based on multi-aspect expertise matching. PMID:22711970

  18. A Branch and Bound Algorithm for a Class of Biobjective Mixed Integer Programs

    DEFF Research Database (Denmark)

    Stidsen, Thomas Riis; Andersen, Kim Allan; Dammann, Bernd

    2014-01-01

    there is the complicating factor that some of the variables are required to be integral. The resulting class of problems is named multiobjective mixed integer programming (MOMIP) problems. Solving these kinds of optimization problems exactly requires a method that can generate the whole set of nondominated points (the...... Pareto-optimal front). In this paper, we first give a survey of the newly developed branch and bound methods for solving MOMIP problems. After that, we propose a new branch and bound method for solving a subclass of MOMIP problems, where only two objectives are allowed, the integer variables are binary......, and one of the two objectives has only integer variables. The proposed method is able to find the full set of nondominated points. It is tested on a large number of problem instances, from six different classes of MOMIP problems. The results reveal that the developed biobjective branch and bound method...

  19. Adaptive Constrained Optimal Control Design for Data-Based Nonlinear Discrete-Time Systems With Critic-Only Structure.

    Science.gov (United States)

    Luo, Biao; Liu, Derong; Wu, Huai-Ning

    2018-06-01

    Reinforcement learning has proved to be a powerful tool to solve optimal control problems over the past few years. However, the data-based constrained optimal control problem of nonaffine nonlinear discrete-time systems has rarely been studied yet. To solve this problem, an adaptive optimal control approach is developed by using the value iteration-based Q-learning (VIQL) with the critic-only structure. Most of the existing constrained control methods require the use of a certain performance index and only suit for linear or affine nonlinear systems, which is unreasonable in practice. To overcome this problem, the system transformation is first introduced with the general performance index. Then, the constrained optimal control problem is converted to an unconstrained optimal control problem. By introducing the action-state value function, i.e., Q-function, the VIQL algorithm is proposed to learn the optimal Q-function of the data-based unconstrained optimal control problem. The convergence results of the VIQL algorithm are established with an easy-to-realize initial condition . To implement the VIQL algorithm, the critic-only structure is developed, where only one neural network is required to approximate the Q-function. The converged Q-function obtained from the critic-only VIQL method is employed to design the adaptive constrained optimal controller based on the gradient descent scheme. Finally, the effectiveness of the developed adaptive control method is tested on three examples with computer simulation.

  20. Nonlinear Chance Constrained Problems: Optimality Conditions, Regularization and Solvers

    Czech Academy of Sciences Publication Activity Database

    Adam, Lukáš; Branda, Martin

    2016-01-01

    Roč. 170, č. 2 (2016), s. 419-436 ISSN 0022-3239 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Chance constrained programming * Optimality conditions * Regularization * Algorithms * Free MATLAB codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 1.289, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0460909.pdf

  1. PageRank of integers

    International Nuclear Information System (INIS)

    Frahm, K M; Shepelyansky, D L; Chepelianskii, A D

    2012-01-01

    We up a directed network tracing links from a given integer to its divisors and analyze the properties of the Google matrix of this network. The PageRank vector of this matrix is computed numerically and it is shown that its probability is approximately inversely proportional to the PageRank index thus being similar to the Zipf law and the dependence established for the World Wide Web. The spectrum of the Google matrix of integers is characterized by a large gap and a relatively small number of nonzero eigenvalues. A simple semi-analytical expression for the PageRank of integers is derived that allows us to find this vector for matrices of billion size. This network provides a new PageRank order of integers. (paper)

  2. Network interdiction and stochastic integer programming

    CERN Document Server

    2003-01-01

    On March 15, 2002 we held a workshop on network interdiction and the more general problem of stochastic mixed integer programming at the University of California, Davis. Jesús De Loera and I co-chaired the event, which included presentations of on-going research and discussion. At the workshop, we decided to produce a volume of timely work on the topics. This volume is the result. Each chapter represents state-of-the-art research and all of them were refereed by leading investigators in the respective fields. Problems - sociated with protecting and attacking computer, transportation, and social networks gain importance as the world becomes more dep- dent on interconnected systems. Optimization models that address the stochastic nature of these problems are an important part of the research agenda. This work relies on recent efforts to provide methods for - dressing stochastic mixed integer programs. The book is organized with interdiction papers first and the stochastic programming papers in the second part....

  3. Superalloy design - A Monte Carlo constrained optimization method

    CSIR Research Space (South Africa)

    Stander, CM

    1996-01-01

    Full Text Available optimization method C. M. Stander Division of Materials Science and Technology, CSIR, PO Box 395, Pretoria, Republic of South Africa Received 74 March 1996; accepted 24 June 1996 A method, based on Monte Carlo constrained... successful hit, i.e. when Liow < LMP,,, < Lhiph, and for all the properties, Pj?, < P, < Pi@?. If successful this hit falls within the ROA. Repeat steps 4 and 5 to find at least ten (or more) successful hits with values...

  4. Integer programming theory, applications, and computations

    CERN Document Server

    Taha, Hamdy A

    1975-01-01

    Integer Programming: Theory, Applications, and Computations provides information pertinent to the theory, applications, and computations of integer programming. This book presents the computational advantages of the various techniques of integer programming.Organized into eight chapters, this book begins with an overview of the general categorization of integer applications and explains the three fundamental techniques of integer programming. This text then explores the concept of implicit enumeration, which is general in a sense that it is applicable to any well-defined binary program. Other

  5. A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids

    International Nuclear Information System (INIS)

    Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel

    2017-01-01

    Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.

  6. CLFs-based optimization control for a class of constrained visual servoing systems.

    Science.gov (United States)

    Song, Xiulan; Miaomiao, Fu

    2017-03-01

    In this paper, we use the control Lyapunov function (CLF) technique to present an optimized visual servo control method for constrained eye-in-hand robot visual servoing systems. With the knowledge of camera intrinsic parameters and depth of target changes, visual servo control laws (i.e. translation speed) with adjustable parameters are derived by image point features and some known CLF of the visual servoing system. The Fibonacci method is employed to online compute the optimal value of those adjustable parameters, which yields an optimized control law to satisfy constraints of the visual servoing system. The Lyapunov's theorem and the properties of CLF are used to establish stability of the constrained visual servoing system in the closed-loop with the optimized control law. One merit of the presented method is that there is no requirement of online calculating the pseudo-inverse of the image Jacobian's matrix and the homography matrix. Simulation and experimental results illustrated the effectiveness of the method proposed here. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

    KAUST Repository

    Reyes, Juan Carlos De los

    2013-11-01

    We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.

  8. Image denoising: Learning the noise model via nonsmooth PDE-constrained optimization

    KAUST Repository

    Reyes, Juan Carlos De los; Schö nlieb, Carola-Bibiane

    2013-01-01

    We propose a nonsmooth PDE-constrained optimization approach for the determination of the correct noise model in total variation (TV) image denoising. An optimization problem for the determination of the weights corresponding to different types of noise distributions is stated and existence of an optimal solution is proved. A tailored regularization approach for the approximation of the optimal parameter values is proposed thereafter and its consistency studied. Additionally, the differentiability of the solution operator is proved and an optimality system characterizing the optimal solutions of each regularized problem is derived. The optimal parameter values are numerically computed by using a quasi-Newton method, together with semismooth Newton type algorithms for the solution of the TV-subproblems. © 2013 American Institute of Mathematical Sciences.

  9. Integer 1/0 Knapsack Problem Dynamic Programming Approach in Building Maintenance Optimization

    Directory of Open Access Journals (Sweden)

    Viska Dewi Fawzy

    2017-12-01

    Full Text Available The most common problem in urban areas is the high public demand and the limited provision of housing. In meeting the needs of affordable housing for low income communities, the Government of Indonesia implements Rusunawa Project. Object of this research is Pandanarang Rusunawa. Rusunawa Pandanarang is one of the vertical housing in Cilacap that is facing deterioration issue and needs good maintenance management. This study aims at insetting priority and optimizing maintenance plan due to limited funds (limited budget and the amount of damage that must be repaired.This study uses one of the optimization methods of Dynamic Programing on the application of Integer 1/0 Knapsack Problem, to determine an schedule the maintenance activities. The Criteria that are used such as: the level of building components damage and the level of occupants participation. In the first criterion, the benefit (p is the percentage of damage that is fixed with the cost (w. While on the second criterion, the benefit (p is the percentage of occupant participation rate on the maintenance activities with the cost (w. For the budget of Rp 125.000.000, 00, it was obtained from the simulation that the value of the optimum solution on the first criterion at the 7th stage of 71.88% with total cost Rp 106.000.000, 00. At the second criterion, the value of the optimum solution at the 7th stage of 89.29% with total cost Rp 124.000.000, 00.

  10. Subspace Barzilai-Borwein Gradient Method for Large-Scale Bound Constrained Optimization

    International Nuclear Information System (INIS)

    Xiao Yunhai; Hu Qingjie

    2008-01-01

    An active set subspace Barzilai-Borwein gradient algorithm for large-scale bound constrained optimization is proposed. The active sets are estimated by an identification technique. The search direction consists of two parts: some of the components are simply defined; the other components are determined by the Barzilai-Borwein gradient method. In this work, a nonmonotone line search strategy that guarantees global convergence is used. Preliminary numerical results show that the proposed method is promising, and competitive with the well-known method SPG on a subset of bound constrained problems from CUTEr collection

  11. PAPR-Constrained Pareto-Optimal Waveform Design for OFDM-STAP Radar

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Satyabrata [ORNL

    2014-01-01

    We propose a peak-to-average power ratio (PAPR) constrained Pareto-optimal waveform design approach for an orthogonal frequency division multiplexing (OFDM) radar signal to detect a target using the space-time adaptive processing (STAP) technique. The use of an OFDM signal does not only increase the frequency diversity of our system, but also enables us to adaptively design the OFDM coefficients in order to further improve the system performance. First, we develop a parametric OFDM-STAP measurement model by considering the effects of signaldependent clutter and colored noise. Then, we observe that the resulting STAP-performance can be improved by maximizing the output signal-to-interference-plus-noise ratio (SINR) with respect to the signal parameters. However, in practical scenarios, the computation of output SINR depends on the estimated values of the spatial and temporal frequencies and target scattering responses. Therefore, we formulate a PAPR-constrained multi-objective optimization (MOO) problem to design the OFDM spectral parameters by simultaneously optimizing four objective functions: maximizing the output SINR, minimizing two separate Cramer-Rao bounds (CRBs) on the normalized spatial and temporal frequencies, and minimizing the trace of CRB matrix on the target scattering coefficients estimations. We present several numerical examples to demonstrate the achieved performance improvement due to the adaptive waveform design.

  12. 50 Years of Integer Programming 1958-2008 From the Early Years to the State-of-the-Art

    CERN Document Server

    Jünger, Michael; Naddef, Denis

    2010-01-01

    In 1958, Ralph E. Gomory transformed the field of integer programming when he published a paper that described a cutting-plane algorithm for pure integer programs and announced that the method could be refined to give a finite algorithm for integer programming. In 2008, to commemorate the anniversary of this seminal paper, a special workshop celebrating fifty years of integer programming was held in Aussois, France, as part of the 12th Combinatorial Optimization Workshop. It contains reprints of key historical articles and written versions of survey lectures on six of the hottest topics in the

  13. Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.

    Science.gov (United States)

    Demirci, Nagehan; Tönük, Ergin

    2014-01-01

    During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.

  14. Multiparametric programming based algorithms for pure integer and mixed-integer bilevel programming problems

    KAUST Repository

    Domí nguez, Luis F.; Pistikopoulos, Efstratios N.

    2010-01-01

    continuous multiparametric programming algorithm is then used to solve the reformulated convex inner problem. The second algorithm addresses the mixed-integer case of the bilevel programming problem where integer and continuous variables of the outer problem

  15. Order-Constrained Solutions in K-Means Clustering: Even Better than Being Globally Optimal

    Science.gov (United States)

    Steinley, Douglas; Hubert, Lawrence

    2008-01-01

    This paper proposes an order-constrained K-means cluster analysis strategy, and implements that strategy through an auxiliary quadratic assignment optimization heuristic that identifies an initial object order. A subsequent dynamic programming recursion is applied to optimally subdivide the object set subject to the order constraint. We show that…

  16. CBLIB 2014: a benchmark library for conic mixed-integer and continuous optimization

    DEFF Research Database (Denmark)

    Friberg, Henrik Alsing

    2016-01-01

    The Conic Benchmark Library is an ongoing community-driven project aiming to challenge commercial and open source solvers on mainstream cone support. In this paper, 121 mixed-integer and continuous second-order cone problem instances have been selected from 11 categories as representative...

  17. Raw material utilization in slaughterhouses – optimizing expected profit using mixed-integer programming

    DEFF Research Database (Denmark)

    Jensen, Toke Koldborg; Kjærsgaard, Niels Christian

    Slaughterhouses are major players in the pork supply chain, and supply and demand must be matched in order to generate the highest profit. In particular, carcasses must be sorted in order to produce the “right” final products from the “right” carcasses. We develop a mixed-integer programming (MIP) ...... at slaughterhouses. Finally, we comment on the expected effect of variations in the raw material supply and the demand as well as future research concerning joint modelling of supply chain aspects.......Slaughterhouses are major players in the pork supply chain, and supply and demand must be matched in order to generate the highest profit. In particular, carcasses must be sorted in order to produce the “right” final products from the “right” carcasses. We develop a mixed-integer programming (MIP...

  18. Applied Integer Programming Modeling and Solution

    CERN Document Server

    Chen, Der-San; Dang, Yu

    2011-01-01

    An accessible treatment of the modeling and solution of integer programming problems, featuring modern applications and software In order to fully comprehend the algorithms associated with integer programming, it is important to understand not only how algorithms work, but also why they work. Applied Integer Programming features a unique emphasis on this point, focusing on problem modeling and solution using commercial software. Taking an application-oriented approach, this book addresses the art and science of mathematical modeling related to the mixed integer programming (MIP) framework and

  19. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Vivek Patel

    2012-08-01

    Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.

  20. A first-order multigrid method for bound-constrained convex optimization

    Czech Academy of Sciences Publication Activity Database

    Kočvara, Michal; Mohammed, S.

    2016-01-01

    Roč. 31, č. 3 (2016), s. 622-644 ISSN 1055-6788 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant - others:European Commission - EC(XE) 313781 Institutional support: RVO:67985556 Keywords : bound-constrained optimization * multigrid methods * linear complementarity problems Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/kocvara-0460326.pdf

  1. Mixed-integer nonlinear approach for the optimal scheduling of a head-dependent hydro chain

    Energy Technology Data Exchange (ETDEWEB)

    Catalao, J.P.S.; Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)

    2010-08-15

    This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain. We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to earlier studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas. Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper. Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement. (author)

  2. A New Interpolation Approach for Linearly Constrained Convex Optimization

    KAUST Repository

    Espinoza, Francisco

    2012-08-01

    In this thesis we propose a new class of Linearly Constrained Convex Optimization methods based on the use of a generalization of Shepard\\'s interpolation formula. We prove the properties of the surface such as the interpolation property at the boundary of the feasible region and the convergence of the gradient to the null space of the constraints at the boundary. We explore several descent techniques such as steepest descent, two quasi-Newton methods and the Newton\\'s method. Moreover, we implement in the Matlab language several versions of the method, particularly for the case of Quadratic Programming with bounded variables. Finally, we carry out performance tests against Matab Optimization Toolbox methods for convex optimization and implementations of the standard log-barrier and active-set methods. We conclude that the steepest descent technique seems to be the best choice so far for our method and that it is competitive with other standard methods both in performance and empirical growth order.

  3. Slip and Slide Method of Factoring Trinomials with Integer Coefficients over the Integers

    Science.gov (United States)

    Donnell, William A.

    2012-01-01

    In intermediate and college algebra courses there are a number of methods for factoring quadratic trinomials with integer coefficients over the integers. Some of these methods have been given names, such as trial and error, reversing FOIL, AC method, middle term splitting method and slip and slide method. The purpose of this article is to discuss…

  4. A Framework for Constrained Optimization Problems Based on a Modified Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Biwei Tang

    2016-01-01

    Full Text Available This paper develops a particle swarm optimization (PSO based framework for constrained optimization problems (COPs. Aiming at enhancing the performance of PSO, a modified PSO algorithm, named SASPSO 2011, is proposed by adding a newly developed self-adaptive strategy to the standard particle swarm optimization 2011 (SPSO 2011 algorithm. Since the convergence of PSO is of great importance and significantly influences the performance of PSO, this paper first theoretically investigates the convergence of SASPSO 2011. Then, a parameter selection principle guaranteeing the convergence of SASPSO 2011 is provided. Subsequently, a SASPSO 2011-based framework is established to solve COPs. Attempting to increase the diversity of solutions and decrease optimization difficulties, the adaptive relaxation method, which is combined with the feasibility-based rule, is applied to handle constraints of COPs and evaluate candidate solutions in the developed framework. Finally, the proposed method is verified through 4 benchmark test functions and 2 real-world engineering problems against six PSO variants and some well-known methods proposed in the literature. Simulation results confirm that the proposed method is highly competitive in terms of the solution quality and can be considered as a vital alternative to solve COPs.

  5. Design optimization of axial flow hydraulic turbine runner: Part II - multi-objective constrained optimization method

    Science.gov (United States)

    Peng, Guoyi; Cao, Shuliang; Ishizuka, Masaru; Hayama, Shinji

    2002-06-01

    This paper is concerned with the design optimization of axial flow hydraulic turbine runner blade geometry. In order to obtain a better design plan with good performance, a new comprehensive performance optimization procedure has been presented by combining a multi-variable multi-objective constrained optimization model with a Q3D inverse computation and a performance prediction procedure. With careful analysis of the inverse design of axial hydraulic turbine runner, the total hydraulic loss and the cavitation coefficient are taken as optimization objectives and a comprehensive objective function is defined using the weight factors. Parameters of a newly proposed blade bound circulation distribution function and parameters describing positions of blade leading and training edges in the meridional flow passage are taken as optimization variables.The optimization procedure has been applied to the design optimization of a Kaplan runner with specific speed of 440 kW. Numerical results show that the performance of designed runner is successfully improved through optimization computation. The optimization model is found to be validated and it has the feature of good convergence. With the multi-objective optimization model, it is possible to control the performance of designed runner by adjusting the value of weight factors defining the comprehensive objective function. Copyright

  6. Multi-Objective Differential Evolution for Voltage Security Constrained Optimal Power Flow in Deregulated Power Systems

    Science.gov (United States)

    Roselyn, J. Preetha; Devaraj, D.; Dash, Subhransu Sekhar

    2013-11-01

    Voltage stability is an important issue in the planning and operation of deregulated power systems. The voltage stability problems is a most challenging one for the system operators in deregulated power systems because of the intense use of transmission line capabilities and poor regulation in market environment. This article addresses the congestion management problem avoiding offline transmission capacity limits related to voltage stability by considering Voltage Security Constrained Optimal Power Flow (VSCOPF) problem in deregulated environment. This article presents the application of Multi Objective Differential Evolution (MODE) algorithm to solve the VSCOPF problem in new competitive power systems. The maximum of L-index of the load buses is taken as the indicator of voltage stability and is incorporated in the Optimal Power Flow (OPF) problem. The proposed method in hybrid power market which also gives solutions to voltage stability problems by considering the generation rescheduling cost and load shedding cost which relieves the congestion problem in deregulated environment. The buses for load shedding are selected based on the minimum eigen value of Jacobian with respect to the load shed. In the proposed approach, real power settings of generators in base case and contingency cases, generator bus voltage magnitudes, real and reactive power demands of selected load buses using sensitivity analysis are taken as the control variables and are represented as the combination of floating point numbers and integers. DE/randSF/1/bin strategy scheme of differential evolution with self-tuned parameter which employs binomial crossover and difference vector based mutation is used for the VSCOPF problem. A fuzzy based mechanism is employed to get the best compromise solution from the pareto front to aid the decision maker. The proposed VSCOPF planning model is implemented on IEEE 30-bus system, IEEE 57 bus practical system and IEEE 118 bus system. The pareto optimal

  7. Reliability constrained generation expansion planning with consideration of wind farms uncertainties in deregulated electricity market

    International Nuclear Information System (INIS)

    Hemmati, Reza; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin

    2013-01-01

    Highlights: • Generation expansion planning is presented in deregulated electricity market. • Wind farm uncertainty is modeled in the problem. • The profit of each GENCO is maximized and also the safe operation of system is satisfied. • Salve sector is managed as an optimization programming and solved by using PSO technique. • Master sector is considered in pool market and Cournot model is used to simulate it. - Abstract: This paper addresses reliability constrained generation expansion planning (GEP) in the presence of wind farm uncertainty in deregulated electricity market. The proposed GEP aims at maximizing the expected profit of all generation companies (GENCOs), while considering security and reliability constraints such as reserve margin and loss of load expectation (LOLE). Wind farm uncertainty is also considered in the planning and GENCOs denote their planning in the presence of wind farm uncertainty. The uncertainty is modeled by probability distribution function (PDF) and Monte-Carlo simulation (MCS) is used to insert uncertainty into the problem. The proposed GEP is a constrained, nonlinear, mixed-integer optimization programming and solved by using particle swarm optimization (PSO) method. In this paper, Electricity market structure is modeled as a pool market. Simulation results verify the effectiveness and validity of the proposed planning for maximizing GENCOs profit in the presence of wind farms uncertainties in electricity market

  8. Determining on-fault earthquake magnitude distributions from integer programming

    Science.gov (United States)

    Geist, Eric L.; Parsons, Thomas E.

    2018-01-01

    Earthquake magnitude distributions among faults within a fault system are determined from regional seismicity and fault slip rates using binary integer programming. A synthetic earthquake catalog (i.e., list of randomly sampled magnitudes) that spans millennia is first formed, assuming that regional seismicity follows a Gutenberg-Richter relation. Each earthquake in the synthetic catalog can occur on any fault and at any location. The objective is to minimize misfits in the target slip rate for each fault, where slip for each earthquake is scaled from its magnitude. The decision vector consists of binary variables indicating which locations are optimal among all possibilities. Uncertainty estimates in fault slip rates provide explicit upper and lower bounding constraints to the problem. An implicit constraint is that an earthquake can only be located on a fault if it is long enough to contain that earthquake. A general mixed-integer programming solver, consisting of a number of different algorithms, is used to determine the optimal decision vector. A case study is presented for the State of California, where a 4 kyr synthetic earthquake catalog is created and faults with slip ≥3 mm/yr are considered, resulting in >106  variables. The optimal magnitude distributions for each of the faults in the system span a rich diversity of shapes, ranging from characteristic to power-law distributions. 

  9. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    Science.gov (United States)

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Adaptively Constrained Stochastic Model Predictive Control for the Optimal Dispatch of Microgrid

    Directory of Open Access Journals (Sweden)

    Xiaogang Guo

    2018-01-01

    Full Text Available In this paper, an adaptively constrained stochastic model predictive control (MPC is proposed to achieve less-conservative coordination between energy storage units and uncertain renewable energy sources (RESs in a microgrid (MG. Besides the economic objective of MG operation, the limits of state-of-charge (SOC and discharging/charging power of the energy storage unit are formulated as chance constraints when accommodating uncertainties of RESs, considering mild violations of these constraints are allowed during long-term operation, and a closed-loop online update strategy is performed to adaptively tighten or relax constraints according to the actual deviation probability of violation level from the desired one as well as the current change rate of deviation probability. Numerical studies show that the proposed adaptively constrained stochastic MPC for MG optimal operation is much less conservative compared with the scenario optimization based robust MPC, and also presents a better convergence performance to the desired constraint violation level than other online update strategies.

  11. Mixed-Integer Conic Linear Programming: Challenges and Perspectives

    Science.gov (United States)

    2013-10-01

    The novel DCCs for MISOCO may be used in branch- and-cut algorithms when solving MISOCO problems. The experimental software CICLO was developed to...perform limited, but rigorous computational experiments. The CICLO solver utilizes continuous SOCO solvers, MOSEK, CPLES or SeDuMi, builds on the open...submitted Fall 2013. Software: 1. CICLO : Integer conic linear optimization package. Authors: J.C. Góez, T.K. Ralphs, Y. Fu, and T. Terlaky

  12. A Globally Convergent Parallel SSLE Algorithm for Inequality Constrained Optimization

    Directory of Open Access Journals (Sweden)

    Zhijun Luo

    2014-01-01

    Full Text Available A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.

  13. Block-triangular preconditioners for PDE-constrained optimization

    KAUST Repository

    Rees, Tyrone

    2010-11-26

    In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.

  14. Block-triangular preconditioners for PDE-constrained optimization

    KAUST Repository

    Rees, Tyrone; Stoll, Martin

    2010-01-01

    In this paper we investigate the possibility of using a block-triangular preconditioner for saddle point problems arising in PDE-constrained optimization. In particular, we focus on a conjugate gradient-type method introduced by Bramble and Pasciak that uses self-adjointness of the preconditioned system in a non-standard inner product. We show when the Chebyshev semi-iteration is used as a preconditioner for the relevant matrix blocks involving the finite element mass matrix that the main drawback of the Bramble-Pasciak method-the appropriate scaling of the preconditioners-is easily overcome. We present an eigenvalue analysis for the block-triangular preconditioners that gives convergence bounds in the non-standard inner product and illustrates their competitiveness on a number of computed examples. Copyright © 2010 John Wiley & Sons, Ltd.

  15. An L∞/L1-Constrained Quadratic Optimization Problem with Applications to Neural Networks

    International Nuclear Information System (INIS)

    Leizarowitz, Arie; Rubinstein, Jacob

    2003-01-01

    Pattern formation in associative neural networks is related to a quadratic optimization problem. Biological considerations imply that the functional is constrained in the L ∞ norm and in the L 1 norm. We consider such optimization problems. We derive the Euler-Lagrange equations, and construct basic properties of the maximizers. We study in some detail the case where the kernel of the quadratic functional is finite-dimensional. In this case the optimization problem can be fully characterized by the geometry of a certain convex and compact finite-dimensional set

  16. A statistical mechanical approach to restricted integer partition functions

    Science.gov (United States)

    Zhou, Chi-Chun; Dai, Wu-Sheng

    2018-05-01

    The main aim of this paper is twofold: (1) suggesting a statistical mechanical approach to the calculation of the generating function of restricted integer partition functions which count the number of partitions—a way of writing an integer as a sum of other integers under certain restrictions. In this approach, the generating function of restricted integer partition functions is constructed from the canonical partition functions of various quantum gases. (2) Introducing a new type of restricted integer partition functions corresponding to general statistics which is a generalization of Gentile statistics in statistical mechanics; many kinds of restricted integer partition functions are special cases of this restricted integer partition function. Moreover, with statistical mechanics as a bridge, we reveal a mathematical fact: the generating function of restricted integer partition function is just the symmetric function which is a class of functions being invariant under the action of permutation groups. Using this approach, we provide some expressions of restricted integer partition functions as examples.

  17. Optimal Information Processing in Biochemical Networks

    Science.gov (United States)

    Wiggins, Chris

    2012-02-01

    A variety of experimental results over the past decades provide examples of near-optimal information processing in biological networks, including in biochemical and transcriptional regulatory networks. Computing information-theoretic quantities requires first choosing or computing the joint probability distribution describing multiple nodes in such a network --- for example, representing the probability distribution of finding an integer copy number of each of two interacting reactants or gene products while respecting the `intrinsic' small copy number noise constraining information transmission at the scale of the cell. I'll given an overview of some recent analytic and numerical work facilitating calculation of such joint distributions and the associated information, which in turn makes possible numerical optimization of information flow in models of noisy regulatory and biochemical networks. Illustrating cases include quantification of form-function relations, ideal design of regulatory cascades, and response to oscillatory driving.

  18. Preventive Security-Constrained Optimal Power Flow Considering UPFC Control Modes

    Directory of Open Access Journals (Sweden)

    Xi Wu

    2017-08-01

    Full Text Available The successful application of the unified power flow controller (UPFC provides a new control method for the secure and economic operation of power system. In order to make the full use of UPFC and improve the economic efficiency and static security of a power system, a preventive security-constrained power flow optimization method considering UPFC control modes is proposed in this paper. Firstly, an iterative method considering UPFC control modes is deduced for power flow calculation. Taking into account the influence of different UPFC control modes on the distribution of power flow after N-1 contingency, the optimization model is then constructed by setting a minimal system operation cost and a maximum static security margin as the objective. Based on this model, the particle swarm optimization (PSO algorithm is utilized to optimize power system operating parameters and UPFC control modes simultaneously. Finally, a standard IEEE 30-bus system is utilized to demonstrate that the proposed method fully exploits the potential of static control of UPFC and significantly increases the economic efficiency and static security of the power system.

  19. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2017-01-01

    Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5

  20. An Improved Method for Solving Multiobjective Integer Linear Fractional Programming Problem

    Directory of Open Access Journals (Sweden)

    Meriem Ait Mehdi

    2014-01-01

    Full Text Available We describe an improvement of Chergui and Moulaï’s method (2008 that generates the whole efficient set of a multiobjective integer linear fractional program based on the branch and cut concept. The general step of this method consists in optimizing (maximizing without loss of generality one of the fractional objective functions over a subset of the original continuous feasible set; then if necessary, a branching process is carried out until obtaining an integer feasible solution. At this stage, an efficient cut is built from the criteria’s growth directions in order to discard a part of the feasible domain containing only nonefficient solutions. Our contribution concerns firstly the optimization process where a linear program that we define later will be solved at each step rather than a fractional linear program. Secondly, local ideal and nadir points will be used as bounds to prune some branches leading to nonefficient solutions. The computational experiments show that the new method outperforms the old one in all the treated instances.

  1. Solving Multi-Resource Constrained Project Scheduling Problem using Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Hsiang-Hsi Huang

    2015-01-01

    Full Text Available This paper applied Ant Colony Optimization (ACO to develop a resource constraints scheduling model to achieve the resource allocation optimization and the shortest completion time of a project under resource constraints and the activities precedence requirement for projects. Resource leveling is also discussed and has to be achieved under the resource allocation optimization in this research. Testing cases and examples adopted from the international test bank were studied for verifying the effectiveness of the proposed model. The results showed that the solutions of different cases all have a better performance within a reasonable time. These can be obtained through ACO algorithm under the same constrained conditions. A program was written for the proposed model that is able to automatically produce the project resource requirement figure after the project duration is solved.

  2. Using Integer Programming for Airport Service Planning in Staff Scheduling

    Directory of Open Access Journals (Sweden)

    W.H. Ip

    2010-09-01

    Full Text Available Reliability and safety in flight is extremely necessary and that depend on the adoption of proper maintenance system. Therefore, it is essential for aircraft maintenance companies to perform the manpower scheduling efficiently. One of the objectives of this paper is to provide an Integer Programming approach to determine the optimal solutions to aircraft maintenance planning and scheduling and hence the planning and scheduling processes can become more efficient and effective. Another objective is to develop a set of computational schedules for maintenance manpower to cover all scheduled flights. In this paper, a sequential methodology consisting of 3 stages is proposed. They are initial maintenance demand schedule, the maintenance pairing and the maintenance group(s assignment. Since scheduling would split up into different stages, different mathematical techniques have been adopted to cater for their own problem characteristics. Microsoft Excel would be used. Results from the first stage and second stage would be inputted into integer programming model using Microsoft Excel Solver to find the optimal solution. Also, Microsoft Excel VBA is used for devising a scheduling system in order to reduce the manual process and provide a user friendly interface. For the results, all can be obtained optimal solution and the computation time is reasonable and acceptable. Besides, the comparison of the peak time and non-peak time is discussed.

  3. Constrained Optimization Based on Hybrid Evolutionary Algorithm and Adaptive Constraint-Handling Technique

    DEFF Research Database (Denmark)

    Wang, Yong; Cai, Zixing; Zhou, Yuren

    2009-01-01

    A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...

  4. Application of integer programming on logistics solution for load transportation: the solver tool and its limitations in the search for the optimal solution

    Directory of Open Access Journals (Sweden)

    Ricardo França Santos

    2012-01-01

    Full Text Available This work tries to solve a typical logistics problem of Navy of Brazil regards the allocation, transportation and distribution of genera refrigerated for Military Organizations within Grande Rio (RJ. After a brief review of literature on Linear/Integer Programming and some of their applications, we proposed the use of Integer Programming, using the Excel’s Solver as a tool for obtaining the optimal load configuration for the fleet, obtaining the lower distribution costs in order to meet the demand schedule. The assumptions were met in a first attempt with a single spreadsheet, but it could not find a convergent solution, without degeneration problems and with a reasonable solution time. A second solution was proposed separating the problem into three phases, which allowed us to highlight the potential and limitations of the Solver tool. This study showed the importance of formulating a realistic model and of a detailed critical analysis, which could be seen through the lack of convergence of the first solution and the success achieved by the second one.

  5. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2017-01-01

    Roč. 74, č. 1 (2017), s. 19-37 ISSN 1017-1398 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution method s * preconditioning Subject RIV: BA - General Mathematics OBOR OECD: Applied mathematics Impact factor: 1.241, year: 2016 https://link.springer.com/article/10.1007%2Fs11075-016-0136-5

  6. Modeling an integrated hospital management planning problem using integer optimization approach

    Science.gov (United States)

    Sitepu, Suryati; Mawengkang, Herman; Irvan

    2017-09-01

    Hospital is a very important institution to provide health care for people. It is not surprising that nowadays the people’s demands for hospital is increasing. However, due to the rising cost of healthcare services, hospitals need to consider efficiencies in order to overcome these two problems. This paper deals with an integrated strategy of staff capacity management and bed allocation planning to tackle these problems. Mathematically, the strategy can be modeled as an integer linear programming problem. We solve the model using a direct neighborhood search approach, based on the notion of superbasic variables.

  7. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization

    Science.gov (United States)

    Wang, Mingming; Luo, Jianjun; Yuan, Jianping; Walter, Ulrich

    2018-05-01

    Application of the multi-arm space robot will be more effective than single arm especially when the target is tumbling. This paper investigates the application of particle swarm optimization (PSO) strategy to coordinated trajectory planning of the dual-arm space robot in free-floating mode. In order to overcome the dynamics singularities issue, the direct kinematics equations in conjunction with constrained PSO are employed for coordinated trajectory planning of dual-arm space robot. The joint trajectories are parametrized with Bézier curve to simplify the calculation. Constrained PSO scheme with adaptive inertia weight is implemented to find the optimal solution of joint trajectories while specific objectives and imposed constraints are satisfied. The proposed method is not sensitive to the singularity issue due to the application of forward kinematic equations. Simulation results are presented for coordinated trajectory planning of two kinematically redundant manipulators mounted on a free-floating spacecraft and demonstrate the effectiveness of the proposed method.

  8. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Science.gov (United States)

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  9. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    Science.gov (United States)

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  10. Fuzzy Constrained Predictive Optimal Control of High Speed Train with Actuator Dynamics

    Directory of Open Access Journals (Sweden)

    Xi Wang

    2016-01-01

    Full Text Available We investigate the problem of fuzzy constrained predictive optimal control of high speed train considering the effect of actuator dynamics. The dynamics feature of the high speed train is modeled as a cascade of cars connected by flexible couplers, and the formulation is mathematically transformed into a Takagi-Sugeno (T-S fuzzy model. The goal of this study is to design a state feedback control law at each decision step to enhance safety, comfort, and energy efficiency of high speed train subject to safety constraints on the control input. Based on Lyapunov stability theory, the problem of optimizing an upper bound on the cruise control cost function subject to input constraints is reduced to a convex optimization problem involving linear matrix inequalities (LMIs. Furthermore, we analyze the influences of second-order actuator dynamics on the fuzzy constrained predictive controller, which shows risk of potentially deteriorating the overall system. Employing backstepping method, an actuator compensator is proposed to accommodate for the influence of the actuator dynamics. The experimental results show that with the proposed approach high speed train can track the desired speed, the relative coupler displacement between the neighbouring cars is stable at the equilibrium state, and the influence of actuator dynamics is reduced, which demonstrate the validity and effectiveness of the proposed approaches.

  11. Integer-valued trawl processes

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole E.; Lunde, Asger; Shephard, Neil

    2014-01-01

    the probabilistic properties of such processes in detail and, in addition, study volatility modulation and multivariate extensions within the new modelling framework. Moreover, we describe how the parameters of a trawl process can be estimated and obtain promising estimation results in our simulation study. Finally......This paper introduces a new continuous-time framework for modelling serially correlated count and integer-valued data. The key component in our new model is the class of integer-valued trawl processes, which are serially correlated, stationary, infinitely divisible processes. We analyse...

  12. The use of mixed-integer programming for inverse treatment planning with pre-defined field segments

    International Nuclear Information System (INIS)

    Bednarz, Greg; Michalski, Darek; Houser, Chris; Huq, M. Saiful; Xiao Ying; Rani, Pramila Anne; Galvin, James M.

    2002-01-01

    Complex intensity patterns generated by traditional beamlet-based inverse treatment plans are often very difficult to deliver. In the approach presented in this work the intensity maps are controlled by pre-defining field segments to be used for dose optimization. A set of simple rules was used to define a pool of allowable delivery segments and the mixed-integer programming (MIP) method was used to optimize segment weights. The optimization problem was formulated by combining real variables describing segment weights with a set of binary variables, used to enumerate voxels in targets and critical structures. The MIP method was compared to the previously used Cimmino projection algorithm. The field segmentation approach was compared to an inverse planning system with a traditional beamlet-based beam intensity optimization. In four complex cases of oropharyngeal cancer the segmental inverse planning produced treatment plans, which competed with traditional beamlet-based IMRT plans. The mixed-integer programming provided mechanism for imposition of dose-volume constraints and allowed for identification of the optimal solution for feasible problems. Additional advantages of the segmental technique presented here are: simplified dosimetry, quality assurance and treatment delivery. (author)

  13. Order-constrained linear optimization.

    Science.gov (United States)

    Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P

    2017-11-01

    Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.

  14. Analysis misconception of integers in microteaching activities

    Science.gov (United States)

    Setyawati, R. D.; Indiati, I.

    2018-05-01

    This study view to analyse student misconceptions on integers in microteaching activities. This research used qualitative research design. An integers test contained questions from eight main areas of integers. The Integers material test includes (a) converting the image into fractions, (b) examples of positive numbers including rational numbers, (c) operations in fractions, (d) sorting fractions from the largest to the smallest, and vice versa; e) equate denominator, (f) concept of ratio mark, (g) definition of fraction, and (h) difference between fractions and parts. The results indicated an integers concepts: (1) the students have not been able to define concepts well based on the classification of facts in organized part; (2) The correlational concept: students have not been able to combine interrelated events in the form of general principles; and (3) theoretical concepts: students have not been able to use concepts that facilitate in learning the facts or events in an organized system.

  15. A motion-based integer ambiguity resolution method for attitude determination using the global positioning system (GPS)

    International Nuclear Information System (INIS)

    Wang, Bo; Deng, Zhihong; Wang, Shunting; Fu, Mengyin

    2010-01-01

    Loss of the satellite signal and noise disturbance will cause cycle slips to occur in the carrier phase observation of the attitude determination system using the global positioning system (GPS), especially in the dynamic situation. Therefore, in order to reject the error by cycle slips, the integer ambiguity should be re-computed. A motion model-based Kalman predictor is used for the ambiguity re-computation in dynamic applications. This method utilizes the correct observation of the last step to predict the current ambiguities. With the baseline length as a constraint to reject invalid values, we can solve the current integer ambiguity and the attitude angles, by substituting the obtained ambiguities into the constrained LAMBDA method. Experimental results demonstrate that the proposed method is more efficient in the dynamic situation, which takes less time to obtain new fixed ambiguities with a higher mean success rate

  16. Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data

    Science.gov (United States)

    Dwi Sari, Yunita; Angria S, Layla; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    The most productive scale size (MPSS) is a measurement that states how resources should be organized and utilized to achieve optimal results. The most productive scale size (MPSS) can be used as a benchmark for the success of an industry or company in producing goods or services. To estimate the most productive scale size (MPSS), each decision making unit (DMU) should pay attention the level of input-output efficiency, by data envelopment analysis (DEA) method decision making unit (DMU) can identify units used as references that can help to find the cause and solution from inefficiencies can optimize productivity that main advantage in managerial applications. Therefore, data envelopment analysis (DEA) is chosen to estimating most productive scale size (MPSS) that will focus on the input of integer value data with the CCR model and the BCC model. The purpose of this research is to find the best solution for estimating most productive scale size (MPSS) with input of integer value data in data envelopment analysis (DEA) method.

  17. A First-order Prediction-Correction Algorithm for Time-varying (Constrained) Optimization: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Dall-Anese, Emiliano [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Simonetto, Andrea [Universite catholique de Louvain

    2017-07-25

    This paper focuses on the design of online algorithms based on prediction-correction steps to track the optimal solution of a time-varying constrained problem. Existing prediction-correction methods have been shown to work well for unconstrained convex problems and for settings where obtaining the inverse of the Hessian of the cost function can be computationally affordable. The prediction-correction algorithm proposed in this paper addresses the limitations of existing methods by tackling constrained problems and by designing a first-order prediction step that relies on the Hessian of the cost function (and do not require the computation of its inverse). Analytical results are established to quantify the tracking error. Numerical simulations corroborate the analytical results and showcase performance and benefits of the algorithms.

  18. An entropy theorem for computing the capacity of weakly (d, k)-constrained sequences

    NARCIS (Netherlands)

    Janssen, A.J.E.M.; Schouhamer Immink, K.A.

    2000-01-01

    We find an analytic expression for the maximum of the normalized entropy -SieTpiln pi/SieTipi where the set T is the disjoint union of sets Sn of positive integers that are assigned probabilities Pn, SnPn =1. This result is applied to the computation of the capacity of weakly (d,k)-constrained

  19. Harmonic oscillator states with integer and non-integer orbital angular momentum

    International Nuclear Information System (INIS)

    Land, Martin

    2011-01-01

    We study the quantum mechanical harmonic oscillator in two and three dimensions, with particular attention to the solutions as basis states for representing their respective symmetry groups — O(2), O(1,1), O(3), and O(2,1). The goal of this study is to establish a correspondence between Hilbert space descriptions found by solving the Schrodinger equation in polar coordinates, and Fock space descriptions constructed by expressing the symmetry operators in terms of creation/annihilation operators. We obtain wavefunctions characterized by a principal quantum number, the group Casimir eigenvalue, and one group generator whose eigenvalue is m + s, for integer m and real constant parameter s. For the three groups that contain O(2), the solutions split into two inequivalent representations, one associated with s = 0, from which we recover the familiar description of the oscillator as a product of one-dimensional solutions, and the other with s > 0 (in three dimensions, solutions are found for s = 0 and s = 1/2) whose solutions are non-separable in Cartesian coordinates, and are hence overlooked by the standard Fock space approach. The O(1,1) solutions are singlet states, restricted to zero eigenvalue of the symmetry operator, which represents the boost, not angular momentum. For O(2), a single set of creation and annihilation operators forms a ladder representation for the allowed oscillator states for any s, and the degeneracy of energy states is always finite. However, in three dimensions, the integer and half-integer eigenstates are qualitatively different: the former can be expressed as finite dimensional irreducible tensors under O(3) or O(2,1) while the latter exhibit infinite degeneracy. Creation operators that produce the allowed integer states by acting on the non-degenerate ground state are constructed as irreducible tensor products of the fundamental vector representation. However, the half-integer eigenstates are infinite-dimensional, as expected for the non

  20. On the Delone property of (−β-integers

    Directory of Open Access Journals (Sweden)

    Wolfgang Steiner

    2011-08-01

    Full Text Available The (−β-integers are natural generalisations of the β-integers, and thus of the integers, for negative real bases. They can be described by infinite words which are fixed points of anti-morphisms. We show that they are not necessarily uniformly discrete and relatively dense in the real numbers.

  1. Quasi-greedy systems of integer translates

    DEFF Research Database (Denmark)

    Nielsen, Morten; Sikic, Hrvoje

    We consider quasi-greedy systems of integer translates in a finitely generated shift invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...

  2. Quasi-greedy systems of integer translates

    DEFF Research Database (Denmark)

    Nielsen, Morten; Sikic, Hrvoje

    2008-01-01

    We consider quasi-greedy systems of integer translates in a finitely generated shift-invariant subspace of L2(Rd), that is systems for which the thresholding approximation procedure is well behaved. We prove that every quasi-greedy system of integer translates is also a Riesz basis for its closed...

  3. An improved exploratory search technique for pure integer linear programming problems

    Science.gov (United States)

    Fogle, F. R.

    1990-01-01

    The development is documented of a heuristic method for the solution of pure integer linear programming problems. The procedure draws its methodology from the ideas of Hooke and Jeeves type 1 and 2 exploratory searches, greedy procedures, and neighborhood searches. It uses an efficient rounding method to obtain its first feasible integer point from the optimal continuous solution obtained via the simplex method. Since this method is based entirely on simple addition or subtraction of one to each variable of a point in n-space and the subsequent comparison of candidate solutions to a given set of constraints, it facilitates significant complexity improvements over existing techniques. It also obtains the same optimal solution found by the branch-and-bound technique in 44 of 45 small to moderate size test problems. Two example problems are worked in detail to show the inner workings of the method. Furthermore, using an established weighted scheme for comparing computational effort involved in an algorithm, a comparison of this algorithm is made to the more established and rigorous branch-and-bound method. A computer implementation of the procedure, in PC compatible Pascal, is also presented and discussed.

  4. Thickness optimization of fiber reinforced laminated composites using the discrete material optimization method

    DEFF Research Database (Denmark)

    Sørensen, Søren Nørgaard; Lund, Erik

    2012-01-01

    This work concerns a novel large-scale multi-material topology optimization method for simultaneous determination of the optimum variable integer thickness and fiber orientation throughout laminate structures with fixed outer geometries while adhering to certain manufacturing constraints....... The conceptual combinatorial/integer problem is relaxed to a continuous problem and solved on basis of the so-called Discrete Material Optimization method, explicitly including the manufacturing constraints as linear constraints....

  5. Mixed integer programming model for optimizing the layout of an ICU vehicle

    Directory of Open Access Journals (Sweden)

    García-Sánchez Álvaro

    2009-12-01

    Full Text Available Abstract Background This paper presents a Mixed Integer Programming (MIP model for designing the layout of the Intensive Care Units' (ICUs patient care space. In particular, this MIP model was developed for optimizing the layout for materials to be used in interventions. This work was developed within the framework of a joint project between the Madrid Technical Unverstity and the Medical Emergency Services of the Madrid Regional Government (SUMMA 112. Methods The first task was to identify the relevant information to define the characteristics of the new vehicles and, in particular, to obtain a satisfactory interior layout to locate all the necessary materials. This information was gathered from health workers related to ICUs. With that information an optimization model was developed in order to obtain a solution. From the MIP model, a first solution was obtained, consisting of a grid to locate the different materials needed for the ICUs. The outcome from the MIP model was discussed with health workers to tune the solution, and after slightly altering that solution to meet some requirements that had not been included in the mathematical model, the eventual solution was approved by the persons responsible for specifying the characteristics of the new vehicles. According to the opinion stated by the SUMMA 112's medical group responsible for improving the ambulances (the so-called "coaching group", the outcome was highly satisfactory. Indeed, the final design served as a basis to draw up the requirements of a public tender. Results As a result from solving the Optimization model, a grid was obtained to locate the different necessary materials for the ICUs. This grid had to be slightly altered to meet some requirements that had not been included in the mathematical model. The results were discussed with the persons responsible for specifying the characteristics of the new vehicles. Conclusion The outcome was highly satisfactory. Indeed, the final

  6. A simple two stage optimization algorithm for constrained power economic dispatch

    International Nuclear Information System (INIS)

    Huang, G.; Song, K.

    1994-01-01

    A simple two stage optimization algorithm is proposed and investigated for fast computation of constrained power economic dispatch control problems. The method is a simple demonstration of the hierarchical aggregation-disaggregation (HAD) concept. The algorithm first solves an aggregated problem to obtain an initial solution. This aggregated problem turns out to be classical economic dispatch formulation, and it can be solved in 1% of overall computation time. In the second stage, linear programming method finds optimal solution which satisfies power balance constraints, generation and transmission inequality constraints and security constraints. Implementation of the algorithm for IEEE systems and EPRI Scenario systems shows that the two stage method obtains average speedup ratio 10.64 as compared to classical LP-based method

  7. Risk-Constrained Dynamic Programming for Optimal Mars Entry, Descent, and Landing

    Science.gov (United States)

    Ono, Masahiro; Kuwata, Yoshiaki

    2013-01-01

    A chance-constrained dynamic programming algorithm was developed that is capable of making optimal sequential decisions within a user-specified risk bound. This work handles stochastic uncertainties over multiple stages in the CEMAT (Combined EDL-Mobility Analyses Tool) framework. It was demonstrated by a simulation of Mars entry, descent, and landing (EDL) using real landscape data obtained from the Mars Reconnaissance Orbiter. Although standard dynamic programming (DP) provides a general framework for optimal sequential decisionmaking under uncertainty, it typically achieves risk aversion by imposing an arbitrary penalty on failure states. Such a penalty-based approach cannot explicitly bound the probability of mission failure. A key idea behind the new approach is called risk allocation, which decomposes a joint chance constraint into a set of individual chance constraints and distributes risk over them. The joint chance constraint was reformulated into a constraint on an expectation over a sum of an indicator function, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the chance-constraint optimization problem can be turned into an unconstrained optimization over a Lagrangian, which can be solved efficiently using a standard DP approach.

  8. Stochastic risk-averse coordinated scheduling of grid integrated energy storage units in transmission constrained wind-thermal systems within a conditional value-at-risk framework

    International Nuclear Information System (INIS)

    Hemmati, Reza; Saboori, Hedayat; Saboori, Saeid

    2016-01-01

    In recent decades, wind power resources have been integrated in the power systems increasingly. Besides confirmed benefits, utilization of large share of this volatile source in power generation portfolio has been faced system operators with new challenges in terms of uncertainty management. It is proved that energy storage systems are capable to handle projected uncertainty concerns. Risk-neutral methods have been proposed in the previous literature to schedule storage units considering wind resources uncertainty. Ignoring risk of the cost distributions with non-desirable properties may result in experiencing high costs in some unfavorable scenarios with high probability. In order to control the risk of the operator decisions, this paper proposes a new risk-constrained two-stage stochastic programming model to make optimal decisions on energy storage and thermal units in a transmission constrained hybrid wind-thermal power system. Risk-aversion procedure is explicitly formulated using the conditional value-at-risk measure, because of possessing distinguished features compared to the other risk measures. The proposed model is a mixed integer linear programming considering transmission network, thermal unit dynamics, and storage devices constraints. The simulations results demonstrate that taking the risk of the problem into account will affect scheduling decisions considerably depend on the level of the risk-aversion. - Highlights: • Risk of the operation decisions is handled by using risk-averse programming. • Conditional value-at-risk is used as risk measure. • Optimal risk level is obtained based on the cost/benefit analysis. • The proposed model is a two-stage stochastic mixed integer linear programming. • The unit commitment is integrated with ESSs and wind power penetration.

  9. Optimal dispatch in dynamic security constrained open power market

    International Nuclear Information System (INIS)

    Singh, S.N.; David, A.K.

    2002-01-01

    Power system security is a new concern in the competitive power market operation, because the integration of the system controller and the generation owner has been broken. This paper presents an approach for dynamic security constrained optimal dispatch in restructured power market environment. The transient energy margin using transient energy function (TEF) approach has been used to calculate the stability margin of the system and a hybrid method is applied to calculate the approximate unstable equilibrium point (UEP) that is used to calculate the exact UEP and thus, the energy margin using TEF. The case study results illustrated on two systems shows that the operating mechanisms are compatible with the new business environment. (author)

  10. Robust and Reliable Portfolio Optimization Formulation of a Chance Constrained Problem

    Directory of Open Access Journals (Sweden)

    Sengupta Raghu Nandan

    2017-02-01

    Full Text Available We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.

  11. JuPOETs: a constrained multiobjective optimization approach to estimate biochemical model ensembles in the Julia programming language.

    Science.gov (United States)

    Bassen, David M; Vilkhovoy, Michael; Minot, Mason; Butcher, Jonathan T; Varner, Jeffrey D

    2017-01-25

    Ensemble modeling is a promising approach for obtaining robust predictions and coarse grained population behavior in deterministic mathematical models. Ensemble approaches address model uncertainty by using parameter or model families instead of single best-fit parameters or fixed model structures. Parameter ensembles can be selected based upon simulation error, along with other criteria such as diversity or steady-state performance. Simulations using parameter ensembles can estimate confidence intervals on model variables, and robustly constrain model predictions, despite having many poorly constrained parameters. In this software note, we present a multiobjective based technique to estimate parameter or models ensembles, the Pareto Optimal Ensemble Technique in the Julia programming language (JuPOETs). JuPOETs integrates simulated annealing with Pareto optimality to estimate ensembles on or near the optimal tradeoff surface between competing training objectives. We demonstrate JuPOETs on a suite of multiobjective problems, including test functions with parameter bounds and system constraints as well as for the identification of a proof-of-concept biochemical model with four conflicting training objectives. JuPOETs identified optimal or near optimal solutions approximately six-fold faster than a corresponding implementation in Octave for the suite of test functions. For the proof-of-concept biochemical model, JuPOETs produced an ensemble of parameters that gave both the mean of the training data for conflicting data sets, while simultaneously estimating parameter sets that performed well on each of the individual objective functions. JuPOETs is a promising approach for the estimation of parameter and model ensembles using multiobjective optimization. JuPOETs can be adapted to solve many problem types, including mixed binary and continuous variable types, bilevel optimization problems and constrained problems without altering the base algorithm. JuPOETs is open

  12. Integer-linear-programing optimization in scalable video multicast with adaptive modulation and coding in wireless networks.

    Science.gov (United States)

    Lee, Dongyul; Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.

  13. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    Directory of Open Access Journals (Sweden)

    Dongyul Lee

    2014-01-01

    Full Text Available The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC with adaptive modulation and coding (AMC provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP and provide numerical results to show the performance under 802.16 m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm.

  14. Identifying optimal regional solid waste management strategies through an inexact integer programming model containing infinite objectives and constraints.

    Science.gov (United States)

    He, Li; Huang, Guo-He; Zeng, Guang-Ming; Lu, Hong-Wei

    2009-01-01

    The previous inexact mixed-integer linear programming (IMILP) method can only tackle problems with coefficients of the objective function and constraints being crisp intervals, while the existing inexact mixed-integer semi-infinite programming (IMISIP) method can only deal with single-objective programming problems as it merely allows the number of constraints to be infinite. This study proposes, an inexact mixed-integer bi-infinite programming (IMIBIP) method by incorporating the concept of functional intervals into the programming framework. Different from the existing methods, the IMIBIP can tackle the inexact programming problems that contain both infinite objectives and constraints. The developed method is applied to capacity planning of waste management systems under a variety of uncertainties. Four scenarios are considered for comparing the solutions of IMIBIP with those of IMILP. The results indicate that reasonable solutions can be generated by the IMIBIP method. Compared with IMILP, the system cost from IMIBIP would be relatively high since the fluctuating market factors are considered; however, the IMILP solutions are associated with a raised system reliability level and a reduced constraint violation risk level.

  15. Ramsey theory on the integers

    CERN Document Server

    Landman, Bruce M

    2003-01-01

    Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students something quite rare for a book at this level: a glimpse into the world of mathematical research and the opportunity to begin pondering unsolved problems themselves. In addition to being the first truly accessible book on Ramsey theory, this innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subarea of Ramsey theory. The result is a breakthrough book that will engage students, teachers, and researchers alike.

  16. Fractal electrodynamics via non-integer dimensional space approach

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-09-01

    Using the recently suggested vector calculus for non-integer dimensional space, we consider electrodynamics problems in isotropic case. This calculus allows us to describe fractal media in the framework of continuum models with non-integer dimensional space. We consider electric and magnetic fields of fractal media with charges and currents in the framework of continuum models with non-integer dimensional spaces. An application of the fractal Gauss's law, the fractal Ampere's circuital law, the fractal Poisson equation for electric potential, and equation for fractal stream of charges are suggested. Lorentz invariance and speed of light in fractal electrodynamics are discussed. An expression for effective refractive index of non-integer dimensional space is suggested.

  17. Solving discretely-constrained MPEC problems with applications in electric power markets

    International Nuclear Information System (INIS)

    Gabriel, Steven A.; Leuthold, Florian U.

    2010-01-01

    Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)

  18. Solving discretely-constrained MPEC problems with applications in electric power markets

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, Steven A. [1143 Glenn L. Martin Hall, Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742-3021 (United States); Leuthold, Florian U. [Chair of Energy Economics and Public Sector Management, Dresden University of Technology, 01069 Dresden (Germany)

    2010-01-15

    Many of the European energy markets are characterized by dominant players that own a large share of their respective countries' generation capacities. In addition to that, there is a significant lack of cross-border transmission capacity. Combining both facts justifies the assumption that these dominant players are able to influence the market outcome of an internal European energy market due to strategic behavior. In this paper, we present a mathematical formulation in order to solve a Stackelberg game for a network-constrained energy market using integer programming. The strategic player is the Stackelberg leader and the independent system operator (including the decisions of the competitive fringe firms) acts as follower. We assume that there is one strategic player which results in a mathematical program with equilibrium constraints (MPEC). This MPEC is reformulated as mixed-integer linear program (MILP) by using disjunctive constraints and linearization. The MILP formulation gives the opportunity to solve the problems reliably and paves the way to add discrete constraints to the original MPEC formulation which can be used in order to solve discretely-constrained mathematical programs with equilibrium constraints (DC-MPECs). We report computational results for a small illustrative network as well as a stylized Western European grid with realistic data. (author)

  19. Stability Constrained Efficiency Optimization for Droop Controlled DC-DC Conversion System

    DEFF Research Database (Denmark)

    Meng, Lexuan; Dragicevic, Tomislav; Guerrero, Josep M.

    2013-01-01

    implementing tertiary regulation. Moreover, system dynamic is affected when shifting VRs. Therefore, the stability is considered in optimization by constraining the eigenvalues arising from dynamic state space model of the system. Genetic algorithm is used in searching for global efficiency optimum while....... As the efficiency of each converter changes with output power, virtual resistances (VRs) are set as decision variables for adjusting power sharing proportion among converters. It is noteworthy that apart from restoring the voltage deviation, secondary control plays an important role to stabilize dc bus voltage when...

  20. TRACKING SIMULATIONS NEAR HALF-INTEGER RESONANCE AT PEP-II

    International Nuclear Information System (INIS)

    Nosochkov, Yuri

    2003-01-01

    Beam-beam simulations predict that PEP-II luminosity can be increased by operating the horizontal betatron tune near and above a half-integer resonance. However, effects of the resonance and its synchrotron sidebands significantly enhance betatron and chromatic perturbations which tend to reduce dynamic aperture. In the study, chromatic variation of horizontal tune near the resonance was minimized by optimizing local sextupoles in the Interaction Region. Dynamic aperture was calculated using tracking simulations in LEGO code. Dependence of dynamic aperture on the residual orbit, dispersion and β distortion after correction was investigated

  1. Integrative improvement method and mixed-integer programming in system planning

    International Nuclear Information System (INIS)

    Sadegheih, A.

    2002-01-01

    In this paper, system planning network is formulated for mixed-integer programming and a Ga. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The Dc load flow equations for the network are embedded in the constraints of the mathematical model to avoid sub-optimal solutions that can arise if the enforcement of such constraints is done in an indirect way. The solution of the model gives the best line additions. and also provides information regarding the optimal generation at each generation point. This method of solutions is demonstrated on the expansion of a 5 bus -bar system to 6 bus-bars

  2. Fast optimization of statistical potentials for structurally constrained phylogenetic models

    Directory of Open Access Journals (Sweden)

    Rodrigue Nicolas

    2009-09-01

    Full Text Available Abstract Background Statistical approaches for protein design are relevant in the field of molecular evolutionary studies. In recent years, new, so-called structurally constrained (SC models of protein-coding sequence evolution have been proposed, which use statistical potentials to assess sequence-structure compatibility. In a previous work, we defined a statistical framework for optimizing knowledge-based potentials especially suited to SC models. Our method used the maximum likelihood principle and provided what we call the joint potentials. However, the method required numerical estimations by the use of computationally heavy Markov Chain Monte Carlo sampling algorithms. Results Here, we develop an alternative optimization procedure, based on a leave-one-out argument coupled to fast gradient descent algorithms. We assess that the leave-one-out potential yields very similar results to the joint approach developed previously, both in terms of the resulting potential parameters, and by Bayes factor evaluation in a phylogenetic context. On the other hand, the leave-one-out approach results in a considerable computational benefit (up to a 1,000 fold decrease in computational time for the optimization procedure. Conclusion Due to its computational speed, the optimization method we propose offers an attractive alternative for the design and empirical evaluation of alternative forms of potentials, using large data sets and high-dimensional parameterizations.

  3. Final Report---Optimization Under Nonconvexity and Uncertainty: Algorithms and Software

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Linderoth

    2011-11-06

    the goal of this work was to develop new algorithmic techniques for solving large-scale numerical optimization problems, focusing on problems classes that have proven to be among the most challenging for practitioners: those involving uncertainty and those involving nonconvexity. This research advanced the state-of-the-art in solving mixed integer linear programs containing symmetry, mixed integer nonlinear programs, and stochastic optimization problems. The focus of the work done in the continuation was on Mixed Integer Nonlinear Programs (MINLP)s and Mixed Integer Linear Programs (MILP)s, especially those containing a great deal of symmetry.

  4. Hybrid Particle Swarm Optimization based Day-Ahead Self-Scheduling for Thermal Generator in Competitive Electricity Market

    DEFF Research Database (Denmark)

    Pindoriya, Naran M.; Singh, S.N.; Østergaard, Jacob

    2009-01-01

    in day-ahead energy market subject to operational constraints and 2) at the same time, to minimize the risk due to uncertainty in price forecast. Therefore, it is a conflicting bi-objective optimization problem which has both binary and continuous optimization variables considered as constrained mixed......This paper presents a hybrid particle swarm optimization algorithm (HPSO) to solve the day-ahead self-scheduling for thermal power producer in competitive electricity market. The objective functions considered to model the self-scheduling problem are 1) to maximize the profit from selling energy...... integer nonlinear programming. To demonstrate the effectiveness of the proposed method for self-scheduling in a day-ahead energy market, the locational margin price (LMP) forecast uncertainty in PJM electricity market is considered. An adaptive wavelet neural network (AWNN) is used to forecast the day...

  5. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    Science.gov (United States)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  6. Stochastic Averaging for Constrained Optimization With Application to Online Resource Allocation

    Science.gov (United States)

    Chen, Tianyi; Mokhtari, Aryan; Wang, Xin; Ribeiro, Alejandro; Giannakis, Georgios B.

    2017-06-01

    Existing approaches to resource allocation for nowadays stochastic networks are challenged to meet fast convergence and tolerable delay requirements. The present paper leverages online learning advances to facilitate stochastic resource allocation tasks. By recognizing the central role of Lagrange multipliers, the underlying constrained optimization problem is formulated as a machine learning task involving both training and operational modes, with the goal of learning the sought multipliers in a fast and efficient manner. To this end, an order-optimal offline learning approach is developed first for batch training, and it is then generalized to the online setting with a procedure termed learn-and-adapt. The novel resource allocation protocol permeates benefits of stochastic approximation and statistical learning to obtain low-complexity online updates with learning errors close to the statistical accuracy limits, while still preserving adaptation performance, which in the stochastic network optimization context guarantees queue stability. Analysis and simulated tests demonstrate that the proposed data-driven approach improves the delay and convergence performance of existing resource allocation schemes.

  7. Generation and reserve dispatch in a competitive market using constrained particle swarm optimization

    International Nuclear Information System (INIS)

    Azadani, E. Nasr; Hosseinian, S.H.; Moradzadeh, B.

    2010-01-01

    Competitive bidding for energy and ancillary services is increasingly recognized as an important part of electricity markets. In addition, the transmission capacity limits should be considered to optimize the total market cost. In this paper, a new approach based on constrained particle swarm optimization (CPSO) is developed to deal with the multi-product (energy and reserve) and multi-area electricity market dispatch problem. Constraint handling is based on particle ranking and uniform distribution. CPSO method offers a new solution for optimizing the total market cost in a multi-area competitive electricity market considering the system constraints. The proposed technique shows promising performance for smooth and non smooth cost function as well. Three different systems are examined to demonstrate the effectiveness and the accuracy of the proposed algorithm. (author)

  8. Positive integer solutions of certain diophantine equations

    Indian Academy of Sciences (India)

    BIJAN KUMAR PATEL

    2018-03-19

    Mar 19, 2018 ... integer solutions. They also found all the positive integer solutions of the given equations in terms of Fibonacci and Lucas numbers. Another interesting number sequence which is closely related to the sequence of. Fibonacci numbers is the sequence of balancing numbers. In 1999, Behera et al. [1] intro-.

  9. A Novel Optimal Joint Resource Allocation Method in Cooperative Multicarrier Networks: Theory and Practice

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2016-04-01

    Full Text Available With the increasing demands for better transmission speed and robust quality of service (QoS, the capacity constrained backhaul gradually becomes a bottleneck in cooperative wireless networks, e.g., in the Internet of Things (IoT scenario in joint processing mode of LTE-Advanced Pro. This paper focuses on resource allocation within capacity constrained backhaul in uplink cooperative wireless networks, where two base stations (BSs equipped with single antennae serve multiple single-antennae users via multi-carrier transmission mode. In this work, we propose a novel cooperative transmission scheme based on compress-and-forward with user pairing to solve the joint mixed integer programming problem. To maximize the system capacity under the limited backhaul, we formulate the joint optimization problem of user sorting, subcarrier mapping and backhaul resource sharing among different pairs (subcarriers for users. A novel robust and efficient centralized algorithm based on alternating optimization strategy and perfect mapping is proposed. Simulations show that our novel method can improve the system capacity significantly under the constraint of the backhaul resource compared with the blind alternatives.

  10. Risk-constrained self-scheduling of a fuel and emission constrained power producer using rolling window procedure

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, Mohsen Parsa

    2011-01-01

    This work addresses a relevant methodology for self-scheduling of a price-taker fuel and emission constrained power producer in day-ahead correlated energy, spinning reserve and fuel markets to achieve a trade-off between the expected profit and the risk versus different risk levels based on Markowitz's seminal work in the area of portfolio selection. Here, a set of uncertainties including price forecasting errors and available fuel uncertainty are considered. The latter uncertainty arises because of uncertainties in being called for reserve deployment in the spinning reserve market and availability of power plant. To tackle the price forecasting errors, variances of energy, spinning reserve and fuel prices along with their covariances which are due to markets correlation are taken into account using relevant historical data. In order to tackle available fuel uncertainty, a framework for self-scheduling referred to as rolling window is proposed. This risk-constrained self-scheduling framework is therefore formulated and solved as a mixed-integer non-linear programming problem. Furthermore, numerical results for a case study are discussed. (author)

  11. Modelos lineares e não lineares inteiros para problemas da mochila bidimensional restrita a 2 estágios Linear and nonlinear integer models for constrained two-stage two-dimensional knapsack problems

    Directory of Open Access Journals (Sweden)

    Horacio Hideki Yanasse

    2013-01-01

    Full Text Available Neste trabalho revemos alguns modelos lineares e não lineares inteiros para gerar padrões de corte bidimensionais guilhotinados de 2 estágios, incluindo os casos exato e não exato e restrito e irrestrito. Esses problemas são casos particulares do problema da mochila bidimensional. Apresentamos também novos modelos para gerar esses padrões de corte, baseados em adaptações ou extensões de modelos para gerar padrões de corte bidimensionais restritos 1-grupo. Padrões 2 estágios aparecem em diferentes processos de corte, como, por exemplo, em indústrias de móveis e de chapas de madeira. Os modelos são úteis para a pesquisa e o desenvolvimento de métodos de solução mais eficientes, explorando estruturas particulares, a decomposição do modelo, relaxações do modelo etc. Eles também são úteis para a avaliação do desempenho de heurísticas, já que permitem (pelo menos para problemas de tamanho moderado uma estimativa do gap de otimalidade de soluções obtidas por heurísticas. Para ilustrar a aplicação dos modelos, analisamos os resultados de alguns experimentos computacionais com exemplos da literatura e outros gerados aleatoriamente. Os resultados foram produzidos usando um software comercial conhecido e mostram que o esforço computacional necessário para resolver os modelos pode ser bastante diferente.In this work we review some linear and nonlinear integer models to generate two stage two-dimensional guillotine cutting patterns, including the constrained, non constrained, exact and non exact cases. These problems are particular cases of the two dimensional knapsack problems. We also present new models to generate these cutting patterns, based on adaptations and extensions of models that generate one-group constrained two dimensional cutting patterns. Two stage patterns arise in different cutting processes like, for instance, in the furniture industry and wooden hardboards. The models are useful for the research and

  12. Diversity and non-integer differentiation for system dynamics

    CERN Document Server

    Oustaloup, Alain

    2014-01-01

    Based on a structured approach to diversity, notably inspired by various forms of diversity of natural origins, Diversity and Non-integer Derivation Applied to System Dynamics provides a study framework to the introduction of the non-integer derivative as a modeling tool. Modeling tools that highlight unsuspected dynamical performances (notably damping performances) in an ""integer"" approach of mechanics and automation are also included. Written to enable a two-tier reading, this is an essential resource for scientists, researchers, and industrial engineers interested in this subject area. Ta

  13. Finite-time convergent recurrent neural network with a hard-limiting activation function for constrained optimization with piecewise-linear objective functions.

    Science.gov (United States)

    Liu, Qingshan; Wang, Jun

    2011-04-01

    This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.

  14. Memory and Energy Optimization Strategies for Multithreaded Operating System on the Resource-Constrained Wireless Sensor Node

    Directory of Open Access Journals (Sweden)

    Xing Liu

    2014-12-01

    Full Text Available Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes.

  15. Superposition of two optical vortices with opposite integer or non-integer orbital angular momentum

    Directory of Open Access Journals (Sweden)

    Carlos Fernando Díaz Meza

    2016-01-01

    Full Text Available This work develops a brief proposal to achieve the superposition of two opposite vortex beams, both with integer or non-integer mean value of the orbital angular momentum. The first part is about the generation of this kind of spatial light distributions through a modified Brown and Lohmann’s hologram. The inclusion of a simple mathematical expression into the pixelated grid’s transmittance function, based in Fourier domain properties, shifts the diffraction orders counterclockwise and clockwise to the same point and allows the addition of different modes. The strategy is theoretically and experimentally validated for the case of two opposite rotation helical wavefronts.

  16. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    Science.gov (United States)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  17. S-parts of terms of integer linear recurrence sequences

    NARCIS (Netherlands)

    Bugeaud, Y.; Evertse, J.H.

    2017-01-01

    Let S = {q1 , . . . , qs } be a finite, non-empty set of distinct prime numbers. For a non-zero integer m, write m = q1^ r1 . . . qs^rs M, where r1 , . . . , rs  are non-negative integers and M is an integer relatively prime to q1 . . . qs. We define the S-part [m]_S of m by [m]_S := q1^r1 . . .

  18. Neomysis integer: a review

    OpenAIRE

    Fockedey, N.

    2005-01-01

    The present chapter aims to be a literature review on the brackish water mysid Neomysis integer, with focus on its feeding ecology, life history aspects, behaviour, physiology, biochemical composition, bioenergetics and ecotoxico10gy. All records on the species, available from literature, are listed as an appendix. The review aims to identify the state-of-the-art and the gaps in our knowledge on the species. Abundant information is available on the distribution patterns of Neomysis integer in...

  19. Topology Optimization for Minimizing the Resonant Response of Plates with Constrained Layer Damping Treatment

    Directory of Open Access Journals (Sweden)

    Zhanpeng Fang

    2015-01-01

    Full Text Available A topology optimization method is proposed to minimize the resonant response of plates with constrained layer damping (CLD treatment under specified broadband harmonic excitations. The topology optimization problem is formulated and the square of displacement resonant response in frequency domain at the specified point is considered as the objective function. Two sensitivity analysis methods are investigated and discussed. The derivative of modal damp ratio is not considered in the conventional sensitivity analysis method. An improved sensitivity analysis method considering the derivative of modal damp ratio is developed to improve the computational accuracy of the sensitivity. The evolutionary structural optimization (ESO method is used to search the optimal layout of CLD material on plates. Numerical examples and experimental results show that the optimal layout of CLD treatment on the plate from the proposed topology optimization using the conventional sensitivity analysis or the improved sensitivity analysis can reduce the displacement resonant response. However, the optimization method using the improved sensitivity analysis can produce a higher modal damping ratio than that using the conventional sensitivity analysis and develop a smaller displacement resonant response.

  20. Pareto-optimal estimates that constrain mean California precipitation change

    Science.gov (United States)

    Langenbrunner, B.; Neelin, J. D.

    2017-12-01

    Global climate model (GCM) projections of greenhouse gas-induced precipitation change can exhibit notable uncertainty at the regional scale, particularly in regions where the mean change is small compared to internal variability. This is especially true for California, which is located in a transition zone between robust precipitation increases to the north and decreases to the south, and where GCMs from the Climate Model Intercomparison Project phase 5 (CMIP5) archive show no consensus on mean change (in either magnitude or sign) across the central and southern parts of the state. With the goal of constraining this uncertainty, we apply a multiobjective approach to a large set of subensembles (subsets of models from the full CMIP5 ensemble). These constraints are based on subensemble performance in three fields important to California precipitation: tropical Pacific sea surface temperatures, upper-level zonal winds in the midlatitude Pacific, and precipitation over the state. An evolutionary algorithm is used to sort through and identify the set of Pareto-optimal subensembles across these three measures in the historical climatology, and we use this information to constrain end-of-century California wet season precipitation change. This technique narrows the range of projections throughout the state and increases confidence in estimates of positive mean change. Furthermore, these methods complement and generalize emergent constraint approaches that aim to restrict uncertainty in end-of-century projections, and they have applications to even broader aspects of uncertainty quantification, including parameter sensitivity and model calibration.

  1. SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging

    International Nuclear Information System (INIS)

    Weir, V; Zhang, J

    2015-01-01

    Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. The phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols

  2. SU-E-I-23: A General KV Constrained Optimization of CNR for CT Abdominal Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Weir, V; Zhang, J [University of Kentucky, Lexington, KY (United States)

    2015-06-15

    Purpose: While Tube current modulation has been well accepted for CT dose reduction, kV adjusting in clinical settings is still at its early stage. This is mainly due to the limited kV options of most current CT scanners. kV adjusting can potentially reduce radiation dose and optimize image quality. This study is to optimize CT abdomen imaging acquisition based on the assumption of a continuous kV, with the goal to provide the best contrast to noise ratio (CNR). Methods: For a given dose (CTDIvol) level, the CNRs at different kV and pitches were measured with an ACR GAMMEX phantom. The phantom was scanned in a Siemens Sensation 64 scanner and a GE VCT 64 scanner. A constrained mathematical optimization was used to find the kV which led to the highest CNR for the anatomy and pitch setting. Parametric equations were obtained from polynomial fitting of plots of kVs vs CNRs. A suitable constraint region for optimization was chosen. Subsequent optimization yielded a peak CNR at a particular kV for different collimations and pitch setting. Results: The constrained mathematical optimization approach yields kV of 114.83 and 113.46, with CNRs of 1.27 and 1.11 at the pitch of 1.2 and 1.4, respectively, for the Siemens Sensation 64 scanner with the collimation of 32 x 0.625mm. An optimized kV of 134.25 and 1.51 CNR is obtained for a GE VCT 64 slice scanner with a collimation of 32 x 0.625mm and a pitch of 0.969. At 0.516 pitch and 32 x 0.625 mm an optimized kV of 133.75 and a CNR of 1.14 was found for the GE VCT 64 slice scanner. Conclusion: CNR in CT image acquisition can be further optimized with a continuous kV option instead of current discrete or fixed kV settings. A continuous kV option is a key for individualized CT protocols.

  3. A Mixed Integer Linear Programming Model for the North Atlantic Aircraft Trajectory Planning

    OpenAIRE

    Sbihi , Mohammed; Rodionova , Olga; Delahaye , Daniel; Mongeau , Marcel

    2015-01-01

    International audience; This paper discusses the trajectory planning problem for ights in the North Atlantic oceanic airspace (NAT). We develop a mathematical optimization framework in view of better utilizing available capacity by re-routing aircraft. The model is constructed by discretizing the problem parameters. A Mixed integer linear program (MILP) is proposed. Based on the MILP a heuristic to solve real-size instances is also introduced

  4. Binary Positive Semidefinite Matrices and Associated Integer Polytopes

    DEFF Research Database (Denmark)

    Letchford, Adam N.; Sørensen, Michael Malmros

    2012-01-01

    We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature-the cut, boolean qua...

  5. Neutrosophic Integer Programming Problem

    Directory of Open Access Journals (Sweden)

    Mai Mohamed

    2017-02-01

    Full Text Available In this paper, we introduce the integer programming in neutrosophic environment, by considering coffecients of problem as a triangulare neutrosophic numbers. The degrees of acceptance, indeterminacy and rejection of objectives are simultaneously considered.

  6. Mini-batch optimized full waveform inversion with geological constrained gradient filtering

    Science.gov (United States)

    Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai

    2018-05-01

    High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.

  7. Electrochemomechanical constrained multiobjective optimization of PPy/MWCNT actuators

    International Nuclear Information System (INIS)

    Khalili, N; Naguib, H E; Kwon, R H

    2014-01-01

    Polypyrrole (PPy) conducting polymers have shown a great potential for the fabrication of conjugated polymer-based actuating devices. Consequently, they have been a key point in developing many advanced emerging applications such as biomedical devices and biomimetic robotics. When designing an actuator, taking all of the related decision variables, their roles and relationships into consideration is of pivotal importance to determine the actuator’s final performance. Therefore, the central focus of this study is to develop an electrochemomechanical constrained multiobjective optimization model of a PPy/MWCNTs trilayer actuator. For this purpose, the objective functions are designed to capture the three main characteristics of these actuators, namely their tip vertical displacement, blocking force and response time. To obtain the optimum range of the designated decision variables within the feasible domain, a multiobjective optimization algorithm is applied while appropriate constraints are imposed. The optimum points form a Pareto surface on which they are consistently spread. The numerical results are presented; these results enable one to design an actuator with consideration to the desired output performances. For the experimental analysis, a multilayer bending-type actuator is fabricated, which is composed of a PVDF layer and two layers of PPy with an incorporated layer of multi-walled carbon nanotubes deposited on each side of the PVDF membrane. The numerical results are experimentally verified; in order to determine the performance of the fabricated actuator, its outputs are compared with a neat PPy actuator’s experimental and numerical counterparts. (paper)

  8. Garbage-free reversible constant multipliers for arbitrary integers

    DEFF Research Database (Denmark)

    Mogensen, Torben Ægidius

    2013-01-01

    We present a method for constructing reversible circuitry for multiplying integers by arbitrary integer constants. The method is based on Mealy machines and gives circuits whose size are (in the worst case) linear in the size of the constant. This makes the method unsuitable for large constants...

  9. Constrained multi-objective optimization of radial expanders in organic Rankine cycles by firefly algorithm

    International Nuclear Information System (INIS)

    Bahadormanesh, Nikrouz; Rahat, Shayan; Yarali, Milad

    2017-01-01

    Highlights: • A multi-objective optimization for radial expander in Organic Rankine Cycles is implemented. • By using firefly algorithm, Pareto front based on the size of turbine and thermal efficiency is produced. • Tension and vibration constrains have a significant effect on optimum design points. - Abstract: Organic Rankine Cycles are viable energy conversion systems in sustainable energy systems due to their compatibility with low-temperature heat sources. In the present study, one dimensional model of radial expanders in conjunction with a thermodynamic model of organic Rankine cycles is prepared. After verification, by defining thermal efficiency of the cycle and size parameter of a radial turbine as the objective functions, a multi-objective optimization was conducted regarding tension and vibration constraints for 4 different organic working fluids (R22, R245fa, R236fa and N-Pentane). In addition to mass flow rate, evaporator temperature, maximum pressure of cycle and turbo-machinery design parameters are selected as the decision variables. Regarding Pareto fronts, by a little increase in size of radial expanders, it is feasible to reach high efficiency. Moreover, by assessing the distribution of decision variables, the variables that play a major role in trending between the objective functions are found. Effects of mechanical and vibration constrains on optimum decision variables are investigated. The results of optimization can be considered as an initial values for design of radial turbines for Organic Rankine Cycles.

  10. Integers annual volume 2013

    CERN Document Server

    Landman, Bruce

    2014-01-01

    ""Integers"" is a refereed online journal devoted to research in the area of combinatorial number theory. It publishes original research articles in combinatorics and number theory. This work presents all papers of the 2013 volume in book form.

  11. A General Approach for Orthogonal 4-Tap Integer Multiwavelet Transforms

    Directory of Open Access Journals (Sweden)

    Mingli Jing

    2010-01-01

    Full Text Available An algorithm for orthogonal 4-tap integer multiwavelet transforms is proposed. We compute the singular value decomposition (SVD of block recursive matrices of transform matrix, and then transform matrix can be rewritten in a product of two block diagonal matrices and a permutation matrix. Furthermore, we factorize the block matrix of block diagonal matrices into triangular elementary reversible matrices (TERMs, which map integers to integers by rounding arithmetic. The cost of factorizing block matrix into TERMs does not increase with the increase of the dimension of transform matrix, and the proposed algorithm is in-place calculation and without allocating auxiliary memory. Examples of integer multiwavelet transform using DGHM and CL are given, which verify that the proposed algorithm is an executable algorithm and outperforms the existing algorithm for orthogonal 4-tap integer multiwavelet transform.

  12. Bi-objective integer programming for RNA secondary structure prediction with pseudoknots.

    Science.gov (United States)

    Legendre, Audrey; Angel, Eric; Tahi, Fariza

    2018-01-15

    RNA structure prediction is an important field in bioinformatics, and numerous methods and tools have been proposed. Pseudoknots are specific motifs of RNA secondary structures that are difficult to predict. Almost all existing methods are based on a single model and return one solution, often missing the real structure. An alternative approach would be to combine different models and return a (small) set of solutions, maximizing its quality and diversity in order to increase the probability that it contains the real structure. We propose here an original method for predicting RNA secondary structures with pseudoknots, based on integer programming. We developed a generic bi-objective integer programming algorithm allowing to return optimal and sub-optimal solutions optimizing simultaneously two models. This algorithm was then applied to the combination of two known models of RNA secondary structure prediction, namely MEA and MFE. The resulting tool, called BiokoP, is compared with the other methods in the literature. The results show that the best solution (structure with the highest F 1 -score) is, in most cases, given by BiokoP. Moreover, the results of BiokoP are homogeneous, regardless of the pseudoknot type or the presence or not of pseudoknots. Indeed, the F 1 -scores are always higher than 70% for any number of solutions returned. The results obtained by BiokoP show that combining the MEA and the MFE models, as well as returning several optimal and several sub-optimal solutions, allow to improve the prediction of secondary structures. One perspective of our work is to combine better mono-criterion models, in particular to combine a model based on the comparative approach with the MEA and the MFE models. This leads to develop in the future a new multi-objective algorithm to combine more than two models. BiokoP is available on the EvryRNA platform: https://EvryRNA.ibisc.univ-evry.fr .

  13. Constrained Quadratic Programming and Neurodynamics-Based Solver for Energy Optimization of Biped Walking Robots

    Directory of Open Access Journals (Sweden)

    Liyang Wang

    2017-01-01

    Full Text Available The application of biped robots is always trapped by their high energy consumption. This paper makes a contribution by optimizing the joint torques to decrease the energy consumption without changing the biped gaits. In this work, a constrained quadratic programming (QP problem for energy optimization is formulated. A neurodynamics-based solver is presented to solve the QP problem. Differing from the existing literatures, the proposed neurodynamics-based energy optimization (NEO strategy minimizes the energy consumption and guarantees the following three important constraints simultaneously: (i the force-moment equilibrium equation of biped robots, (ii frictions applied by each leg on the ground to hold the biped robot without slippage and tipping over, and (iii physical limits of the motors. Simulations demonstrate that the proposed strategy is effective for energy-efficient biped walking.

  14. Applications and algorithms for mixed integer nonlinear programming

    International Nuclear Information System (INIS)

    Leyffer, Sven; Munson, Todd; Linderoth, Jeff; Luedtke, James; Miller, Andrew

    2009-01-01

    The mathematical modeling of systems often requires the use of both nonlinear and discrete components. Discrete decision variables model dichotomies, discontinuities, and general logical relationships. Nonlinear functions are required to accurately represent physical properties such as pressure, stress, temperature, and equilibrium. Problems involving both discrete variables and nonlinear constraint functions are known as mixed-integer nonlinear programs (MINLPs) and are among the most challenging computational optimization problems faced by researchers and practitioners. In this paper, we describe relevant scientific applications that are naturally modeled as MINLPs, we provide an overview of available algorithms and software, and we describe ongoing methodological advances for solving MINLPs. These algorithmic advances are making increasingly larger instances of this important family of problems tractable.

  15. Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System

    Directory of Open Access Journals (Sweden)

    Shuyuan Yang

    2008-04-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.

  16. Optimally Joint Subcarrier Matching and Power Allocation in OFDM Multihop System

    Directory of Open Access Journals (Sweden)

    Wang Wenyi

    2008-01-01

    Full Text Available Orthogonal frequency division multiplexing (OFDM multihop system is a promising way to increase capacity and coverage. In this paper, we propose an optimally joint subcarrier matching and power allocation scheme to further maximize the total channel capacity with the constrained total system power. First, the problem is formulated as a mixed binary integer programming problem, which is prohibitive to find the global optimum in terms of complexity. Second, by making use of the equivalent channel power gain for any matched subcarrier pair, a low complexity scheme is proposed. The optimal subcarrier matching is to match subcarriers by the order of the channel power gains. The optimal power allocation among the matched subcarrier pairs is water-filling. An analytical argument is given to prove that the two steps achieve the optimally joint subcarrier matching and power allocation. The simulation results show that the proposed scheme achieves the largest total channel capacity as compared to the other schemes, where there is no subcarrier matching or no power allocation.

  17. Reverse engineering of logic-based differential equation models using a mixed-integer dynamic optimization approach.

    Science.gov (United States)

    Henriques, David; Rocha, Miguel; Saez-Rodriguez, Julio; Banga, Julio R

    2015-09-15

    Systems biology models can be used to test new hypotheses formulated on the basis of previous knowledge or new experimental data, contradictory with a previously existing model. New hypotheses often come in the shape of a set of possible regulatory mechanisms. This search is usually not limited to finding a single regulation link, but rather a combination of links subject to great uncertainty or no information about the kinetic parameters. In this work, we combine a logic-based formalism, to describe all the possible regulatory structures for a given dynamic model of a pathway, with mixed-integer dynamic optimization (MIDO). This framework aims to simultaneously identify the regulatory structure (represented by binary parameters) and the real-valued parameters that are consistent with the available experimental data, resulting in a logic-based differential equation model. The alternative to this would be to perform real-valued parameter estimation for each possible model structure, which is not tractable for models of the size presented in this work. The performance of the method presented here is illustrated with several case studies: a synthetic pathway problem of signaling regulation, a two-component signal transduction pathway in bacterial homeostasis, and a signaling network in liver cancer cells. Supplementary data are available at Bioinformatics online. julio@iim.csic.es or saezrodriguez@ebi.ac.uk. © The Author 2015. Published by Oxford University Press.

  18. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    In this paper, the configuration of a district heating network which connects from the heating plant to the end users is optimized. Each end user in the network represents a building block. The connections between the heat generation plant and the end users are represented with mixed integer...... and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...... and it is optimized in terms of the net present cost. The optimization results indicates that the optimal DH network configuration is determined by multiple factors such as the consumer heating load, the distance between the heating plant to the consumer, the design criteria regarding the pressure and temperature...

  19. Resource Constrained Project Scheduling Subject to Due Dates: Preemption Permitted with Penalty

    Directory of Open Access Journals (Sweden)

    Behrouz Afshar-Nadjafi

    2014-01-01

    Full Text Available Extensive research works have been carried out in resource constrained project scheduling problem. However, scarce researches have studied the problems in which a setup cost must be incurred if activities are preempted. In this research, we investigate the resource constrained project scheduling problem to minimize the total project cost, considering earliness-tardiness and preemption penalties. A mixed integer programming formulation is proposed for the problem. The resulting problem is NP-hard. So, we try to obtain a satisfying solution using simulated annealing (SA algorithm. The efficiency of the proposed algorithm is tested based on 150 randomly produced examples. Statistical comparison in terms of the computational times and objective function indicates that the proposed algorithm is efficient and effective.

  20. Multivariate constrained shape optimization: Application to extrusion bell shape for pasta production

    Science.gov (United States)

    Sarghini, Fabrizio; De Vivo, Angela; Marra, Francesco

    2017-10-01

    Computational science and engineering methods have allowed a major change in the way products and processes are designed, as validated virtual models - capable to simulate physical, chemical and bio changes occurring during production processes - can be realized and used in place of real prototypes and performing experiments, often time and money consuming. Among such techniques, Optimal Shape Design (OSD) (Mohammadi & Pironneau, 2004) represents an interesting approach. While most classical numerical simulations consider fixed geometrical configurations, in OSD a certain number of geometrical degrees of freedom is considered as a part of the unknowns: this implies that the geometry is not completely defined, but part of it is allowed to move dynamically in order to minimize or maximize the objective function. The applications of optimal shape design (OSD) are uncountable. For systems governed by partial differential equations, they range from structure mechanics to electromagnetism and fluid mechanics or to a combination of the three. This paper presents one of possible applications of OSD, particularly how extrusion bell shape, for past production, can be designed by applying a multivariate constrained shape optimization.

  1. Integer-valued time series

    NARCIS (Netherlands)

    van den Akker, R.

    2007-01-01

    This thesis adresses statistical problems in econometrics. The first part contributes statistical methodology for nonnegative integer-valued time series. The second part of this thesis discusses semiparametric estimation in copula models and develops semiparametric lower bounds for a large class of

  2. Integer programming techniques for educational timetabling

    DEFF Research Database (Denmark)

    Fonseca, George H.G.; Santos, Haroldo G.; Carrano, Eduardo G.

    2017-01-01

    in recent studies in the field. This work presents new cuts and reformulations for the existing integer programming model for XHSTT. The proposed cuts improved hugely the linear relaxation of the formulation, leading to an average gap reduction of 32%. Applied to XHSTT-2014 instance set, the alternative...... formulation provided four new best known lower bounds and, used in a matheuristic framework, improved eleven best known solutions. The computational experiments also show that the resulting integer programming models from the proposed formulation are more effectively solved for most of the instances....

  3. COMPARISON BETWEEN MIXED INTEGER PROGRAMMING WITH HEURISTIC METHOD FOR JOB SHOP SCHEDULING WITH SEPARABLE SEQUENCE-DEPENDENT SETUPS

    Directory of Open Access Journals (Sweden)

    I Gede Agus Widyadana

    2001-01-01

    Full Text Available The decisions to choose appropriate tools for solving industrial problems are not just tools that achieve optimal solution only but it should consider computation time too. One of industrial problems that still difficult to achieve both criteria is scheduling problem. This paper discuss comparison between mixed integer programming which result optimal solution and heuristic method to solve job shop scheduling problem with separable sequence-dependent setup. The problems are generated and the result shows that the heuristic methods still cannot satisfy optimal solution.

  4. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)

    2014-08-15

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  5. Anisotropic fractal media by vector calculus in non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2014-08-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.

  6. Anisotropic fractal media by vector calculus in non-integer dimensional space

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2014-01-01

    A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media

  7. Integer Representations towards Efficient Counting in the Bit Probe Model

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Greve, Mark; Pandey, Vineet

    2011-01-01

    Abstract We consider the problem of representing numbers in close to optimal space and supporting increment, decrement, addition and subtraction operations efficiently. We study the problem in the bit probe model and analyse the number of bits read and written to perform the operations, both...... in the worst-case and in the average-case. A counter is space-optimal if it represents any number in the range [0,...,2 n  − 1] using exactly n bits. We provide a space-optimal counter which supports increment and decrement operations by reading at most n − 1 bits and writing at most 3 bits in the worst......-case. To the best of our knowledge, this is the first such representation which supports these operations by always reading strictly less than n bits. For redundant counters where we only need to represent numbers in the range [0,...,L] for some integer L bits, we define the efficiency...

  8. Efficient Algorithms for gcd and Cubic Residuosity in the Ring of Eisenstein Integers

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre; Frandsen, Gudmund Skovbjerg

    2003-01-01

    We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, bf Z[ ]i.e. the integers extended with , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd and deri......We present simple and efficient algorithms for computing gcd and cubic residuosity in the ring of Eisenstein integers, bf Z[ ]i.e. the integers extended with , a complex primitive third root of unity. The algorithms are similar and may be seen as generalisations of the binary integer gcd...

  9. Spinor Field Realizations of the half-integer $W_{2,s}$ Strings

    OpenAIRE

    Wei, Shao-Wen; Liu, Yu-Xiao; Zhang, Li-Jie; Ren, Ji-Rong

    2008-01-01

    The grading Becchi-Rouet-Stora-Tyutin (BRST) method gives a way to construct the integer $W_{2,s}$ strings, where the BRST charge is written as $Q_B=Q_0+Q_1$. Using this method, we reconstruct the nilpotent BRST charges $Q_{0}$ for the integer $W_{2,s}$ strings and the half-integer $W_{2,s}$ strings. Then we construct the exact grading BRST charge with spinor fields and give the new realizations of the half-integer $W_{2,s}$ strings for the cases of $s=3/2$, 5/2, and 7/2.

  10. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.

    Science.gov (United States)

    Luo, Biao; Wu, Huai-Ning; Huang, Tingwen; Liu, Derong

    2015-11-01

    The constrained optimal control problem depends on the solution of the complicated Hamilton-Jacobi-Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is proposed, which learns the solution of the HJBE and the optimal control policy from real system data. One important feature of the off-policy RL is that its policy evaluation can be realized with data generated by other behavior policies, not necessarily the target policy, which solves the insufficient exploration problem. The convergence of the off-policy RL is proved by demonstrating its equivalence to the successive approximation approach. Its implementation procedure is based on the actor-critic neural networks structure, where the function approximation is conducted with linearly independent basis functions. Subsequently, the convergence of the implementation procedure with function approximation is also proved. Finally, its effectiveness is verified through computer simulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Racing Sampling Based Microimmune Optimization Approach Solving Constrained Expected Value Programming

    Directory of Open Access Journals (Sweden)

    Kai Yang

    2016-01-01

    Full Text Available This work investigates a bioinspired microimmune optimization algorithm to solve a general kind of single-objective nonlinear constrained expected value programming without any prior distribution. In the study of algorithm, two lower bound sample estimates of random variables are theoretically developed to estimate the empirical values of individuals. Two adaptive racing sampling schemes are designed to identify those competitive individuals in a given population, by which high-quality individuals can obtain large sampling size. An immune evolutionary mechanism, along with a local search approach, is constructed to evolve the current population. The comparative experiments have showed that the proposed algorithm can effectively solve higher-dimensional benchmark problems and is of potential for further applications.

  12. Constrained Optimal Transport

    Science.gov (United States)

    Ekren, Ibrahim; Soner, H. Mete

    2018-03-01

    The classical duality theory of Kantorovich (C R (Doklady) Acad Sci URSS (NS) 37:199-201, 1942) and Kellerer (Z Wahrsch Verw Gebiete 67(4):399-432, 1984) for classical optimal transport is generalized to an abstract framework and a characterization of the dual elements is provided. This abstract generalization is set in a Banach lattice X with an order unit. The problem is given as the supremum over a convex subset of the positive unit sphere of the topological dual of X and the dual problem is defined on the bi-dual of X. These results are then applied to several extensions of the classical optimal transport.

  13. Oil Reservoir Production Optimization using Optimal Control

    DEFF Research Database (Denmark)

    Völcker, Carsten; Jørgensen, John Bagterp; Stenby, Erling Halfdan

    2011-01-01

    Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using the adjo...... reservoir using water ooding and smart well technology. Compared to the uncontrolled case, the optimal operation increases the Net Present Value of the oil field by 10%.......Practical oil reservoir management involves solution of large-scale constrained optimal control problems. In this paper we present a numerical method for solution of large-scale constrained optimal control problems. The method is a single-shooting method that computes the gradients using...

  14. Design of a Circularly Polarized Galileo E6-Band Textile Antenna by Dedicated Multiobjective Constrained Pareto Optimization

    Directory of Open Access Journals (Sweden)

    Arnaut Dierck

    2015-01-01

    Full Text Available Designing textile antennas for real-life applications requires a design strategy that is able to produce antennas that are optimized over a wide bandwidth for often conflicting characteristics, such as impedance matching, axial ratio, efficiency, and gain, and, moreover, that is able to account for the variations that apply for the characteristics of the unconventional materials used in smart textile systems. In this paper, such a strategy, incorporating a multiobjective constrained Pareto optimization, is presented and applied to the design of a Galileo E6-band antenna with optimal return loss and wide-band axial ratio characteristics. Subsequently, different prototypes of the optimized antenna are fabricated and measured to validate the proposed design strategy.

  15. Proximity search heuristics for wind farm optimal layout

    DEFF Research Database (Denmark)

    Fischetti, Martina; Monaci, Michele

    2016-01-01

    A heuristic framework for turbine layout optimization in a wind farm is proposed that combines ad-hoc heuristics and mixed-integer linear programming. In our framework, large-scale mixed-integer programming models are used to iteratively refine the current best solution according to the recently...

  16. Genetic Algorithm for Mixed Integer Nonlinear Bilevel Programming and Applications in Product Family Design

    OpenAIRE

    Chenlu Miao; Gang Du; Yi Xia; Danping Wang

    2016-01-01

    Many leader-follower relationships exist in product family design engineering problems. We use bilevel programming (BLP) to reflect the leader-follower relationship and describe such problems. Product family design problems have unique characteristics; thus, mixed integer nonlinear BLP (MINLBLP), which has both continuous and discrete variables and multiple independent lower-level problems, is widely used in product family optimization. However, BLP is difficult in theory and is an NP-hard pr...

  17. A Hybrid Method for the Modelling and Optimisation of Constrained Search Problems

    Directory of Open Access Journals (Sweden)

    Sitek Pawel

    2014-08-01

    Full Text Available The paper presents a concept and the outline of the implementation of a hybrid approach to modelling and solving constrained problems. Two environments of mathematical programming (in particular, integer programming and declarative programming (in particular, constraint logic programming were integrated. The strengths of integer programming and constraint logic programming, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The hybrid method is not worse than either of its components used independently. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. To validate the proposed approach, two illustrative examples are presented and solved. The first example is the authors’ original model of cost optimisation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the well-known capacitated vehicle routing problem.

  18. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  19. Parallel integer sorting with medium and fine-scale parallelism

    Science.gov (United States)

    Dagum, Leonardo

    1993-01-01

    Two new parallel integer sorting algorithms, queue-sort and barrel-sort, are presented and analyzed in detail. These algorithms do not have optimal parallel complexity, yet they show very good performance in practice. Queue-sort designed for fine-scale parallel architectures which allow the queueing of multiple messages to the same destination. Barrel-sort is designed for medium-scale parallel architectures with a high message passing overhead. The performance results from the implementation of queue-sort on a Connection Machine CM-2 and barrel-sort on a 128 processor iPSC/860 are given. The two implementations are found to be comparable in performance but not as good as a fully vectorized bucket sort on the Cray YMP.

  20. Security-constrained self-scheduling of generation companies in day-ahead electricity markets considering financial risk

    International Nuclear Information System (INIS)

    Amjady, Nima; Vahidinasab, Vahid

    2013-01-01

    Highlights: ► A security-constrained self-scheduling is presented. ► The proposed framework takes into account the uncertainty of the predicted market prices. ► We model the risk and profit tradeoff of a GENCO based on an efficient multi-objective model. ► Unit commitment and inter-temporal constraints of generators are considered in an MIP model. ► Simulation results are presented on the IEEE 30-bus and IEEE 118-bus test systems. - Abstract: In this paper, a new security-constrained self-scheduling framework incorporating the transmission flow limits in both steady state conditions and post-contingent states is presented to produce efficient bidding strategy for generation companies (GENCOs) in day-ahead electricity markets. Moreover, the proposed framework takes into account the uncertainty of the predicted market prices and models the risk and profit tradeoff of a GENCO based on an efficient multi-objective model. Furthermore, unit commitment and inter-temporal constraints of generators are considered in the suggested model converting it to a mixed-integer programming (MIP) optimization problem. Sensitivity of the proposed framework with respect to both the level of the market prices and adopted risk level is also evaluated in the paper. Simulation results are presented on the IEEE 30-bus and IEEE 118-bus test systems illustrating the performance of the proposed self-scheduling model.

  1. Mixed-integer representations in control design mathematical foundations and applications

    CERN Document Server

    Prodan, Ionela; Olaru, Sorin; Niculescu, Silviu-Iulian

    2016-01-01

    In this book, the authors propose efficient characterizations of the non-convex regions that appear in many control problems, such as those involving collision/obstacle avoidance and, in a broader sense, in the description of feasible sets for optimization-based control design involving contradictory objectives. The text deals with a large class of systems that require the solution of appropriate optimization problems over a feasible region, which is neither convex nor compact. The proposed approach uses the combinatorial notion of hyperplane arrangement, partitioning the space by a finite collection of hyperplanes, to describe non-convex regions efficiently. Mixed-integer programming techniques are then applied to propose acceptable formulations of the overall problem. Multiple constructions may arise from the same initial problem, and their complexity under various parameters - space dimension, number of binary variables, etc. - is also discussed. This book is a useful tool for academic researchers and grad...

  2. A Mixed-Integer Linear Programming approach to wind farm layout and inter-array cable routing

    DEFF Research Database (Denmark)

    Fischetti, Martina; Leth, John-Josef; Borchersen, Anders Bech

    2015-01-01

    A Mixed-Integer Linear Programming (MILP) approach is proposed to optimize the turbine allocation and inter-array offshore cable routing. The two problems are considered with a two steps strategy, solving the layout problem first and then the cable problem. We give an introduction to both problems...... and present the MILP models we developed to solve them. To deal with interference in the onshore cases, we propose an adaptation of the standard Jensen’s model, suitable for 3D cases. A simple Stochastic Programming variant of our model allows us to consider different wind scenarios in the optimization...

  3. Mixed Integer Programming and Heuristic Scheduling for Space Communication Networks

    Science.gov (United States)

    Lee, Charles H.; Cheung, Kar-Ming

    2012-01-01

    In this paper, we propose to solve the constrained optimization problem in two phases. The first phase uses heuristic methods such as the ant colony method, particle swarming optimization, and genetic algorithm to seek a near optimal solution among a list of feasible initial populations. The final optimal solution can be found by using the solution of the first phase as the initial condition to the SQP algorithm. We demonstrate the above problem formulation and optimization schemes with a large-scale network that includes the DSN ground stations and a number of spacecraft of deep space missions.

  4. Optimization strategies for discrete multi-material stiffness optimization

    DEFF Research Database (Denmark)

    Hvejsel, Christian Frier; Lund, Erik; Stolpe, Mathias

    2011-01-01

    Design of composite laminated lay-ups are formulated as discrete multi-material selection problems. The design problem can be modeled as a non-convex mixed-integer optimization problem. Such problems are in general only solvable to global optimality for small to moderate sized problems. To attack...... which numerically confirm the sought properties of the new scheme in terms of convergence to a discrete solution....

  5. Rewrite systems for integer arithmetic

    NARCIS (Netherlands)

    H.R. Walters (Pum); H. Zantema (Hans)

    1995-01-01

    textabstractWe present three term rewrite systems for integer arithmetic with addition, multiplication, and, in two cases, subtraction. All systems are ground confluent and terminating; termination is proved by semantic labelling and recursive path order. The first system represents numbers by

  6. Scheduling Appliances with GA, TLBO, FA, OSR and Their Hybrids Using Chance Constrained Optimization for Smart Homes

    Directory of Open Access Journals (Sweden)

    Zunaira Nadeem

    2018-04-01

    Full Text Available In this paper, we design a controller for home energy management based on following meta-heuristic algorithms: teaching learning-based optimization (TLBO, genetic algorithm (GA, firefly algorithm (FA and optimal stopping rule (OSR theory. The principal goal of designing this controller is to reduce the energy consumption of residential sectors while reducing consumer’s electricity bill and maximizing user comfort. Additionally, we propose three hybrid schemes OSR-GA, OSR-TLBO and OSR-FA, by combining the best features of existing algorithms. We have also optimized the desired parameters: peak to average ratio, energy consumption, cost, and user comfort (appliance waiting time for 20, 50, 100 and 200 heterogeneous homes in two steps. In the first step, we obtain the optimal scheduling of home appliances implementing our aforementioned hybrid schemes for single and multiple homes while considering user preferences and threshold base policy. In the second step, we formulate our problem through chance constrained optimization. Simulation results show that proposed hybrid scheduling schemes outperformed for single and multiple homes and they shift the consumer load demand exceeding a predefined threshold to the hours where the electricity price is low thus following the threshold base policy. This helps to reduce electricity cost while considering the comfort of a user by minimizing delay and peak to average ratio. In addition, chance-constrained optimization is used to ensure the scheduling of appliances while considering the uncertainties of a load hence smoothing the load curtailment. The major focus is to keep the appliances power consumption within the power constraint, while keeping power consumption below a pre-defined acceptable level. Moreover, the feasible regions of appliances electricity consumption are calculated which show the relationship between cost and energy consumption and cost and waiting time.

  7. Rewrite systems for integer arithmetic

    NARCIS (Netherlands)

    Walters, H.R.; Zantema, H.

    1994-01-01

    We present three term rewrite systems for integer arithmetic with addition, multiplication, and, in two cases, subtraction. All systems are ground con uent and terminating; termination is proved by semantic labelling and recursive path order. The first system represents numbers by successor and

  8. A few Smarandache Integer Sequences

    OpenAIRE

    Ibstedt, Henry

    2010-01-01

    This paper deals with the analysis of a few Smarandache Integer Sequences which first appeared in Properties or the Numbers, F. Smarandache, University or Craiova Archives, 1975. The first four sequences are recurrence generated sequences while the last three are concatenation sequences.

  9. Modified Covariance Matrix Adaptation – Evolution Strategy algorithm for constrained optimization under uncertainty, application to rocket design

    Directory of Open Access Journals (Sweden)

    Chocat Rudy

    2015-01-01

    Full Text Available The design of complex systems often induces a constrained optimization problem under uncertainty. An adaptation of CMA-ES(λ, μ optimization algorithm is proposed in order to efficiently handle the constraints in the presence of noise. The update mechanisms of the parametrized distribution used to generate the candidate solutions are modified. The constraint handling method allows to reduce the semi-principal axes of the probable research ellipsoid in the directions violating the constraints. The proposed approach is compared to existing approaches on three analytic optimization problems to highlight the efficiency and the robustness of the algorithm. The proposed method is used to design a two stage solid propulsion launch vehicle.

  10. A time series model: First-order integer-valued autoregressive (INAR(1))

    Science.gov (United States)

    Simarmata, D. M.; Novkaniza, F.; Widyaningsih, Y.

    2017-07-01

    Nonnegative integer-valued time series arises in many applications. A time series model: first-order Integer-valued AutoRegressive (INAR(1)) is constructed by binomial thinning operator to model nonnegative integer-valued time series. INAR (1) depends on one period from the process before. The parameter of the model can be estimated by Conditional Least Squares (CLS). Specification of INAR(1) is following the specification of (AR(1)). Forecasting in INAR(1) uses median or Bayesian forecasting methodology. Median forecasting methodology obtains integer s, which is cumulative density function (CDF) until s, is more than or equal to 0.5. Bayesian forecasting methodology forecasts h-step-ahead of generating the parameter of the model and parameter of innovation term using Adaptive Rejection Metropolis Sampling within Gibbs sampling (ARMS), then finding the least integer s, where CDF until s is more than or equal to u . u is a value taken from the Uniform(0,1) distribution. INAR(1) is applied on pneumonia case in Penjaringan, Jakarta Utara, January 2008 until April 2016 monthly.

  11. Integers without large prime factors in short intervals: Conditional ...

    Indian Academy of Sciences (India)

    α > 0 the interval (X, X +. √. X(log X)1/2+o(1)] contains an integer having no prime factor exceeding Xα for all X sufficiently large. Keywords. Smooth numbers; Riemann zeta function. 1. Introduction. Suppose P (n) denotes the largest prime factor of an integer n > 1 and let us declare. P(1) = 1. Given a positive real number y, ...

  12. Parallel Integer Factorization Using Quadratic Forms

    National Research Council Canada - National Science Library

    McMath, Stephen S

    2005-01-01

    Factorization is important for both practical and theoretical reasons. In secure digital communication, security of the commonly used RSA public key cryptosystem depends on the difficulty of factoring large integers...

  13. A new algorithm for benchmarking in integer data envelopment analysis

    Directory of Open Access Journals (Sweden)

    M. M. Omran

    2012-08-01

    Full Text Available The aim of this study is to investigate the effect of integer data in data envelopment analysis (DEA. The inputs and outputs in different types of DEA are considered to be continuous. In most application-oriented problems, some or all data are integers; and subsequently, the continuous condition of the values is omitted. For example, situations in which the inputs/outputs are representatives of the number of cars, people, etc. In fact, the benchmark unit is artificial and does not contain integer inputs/outputs after projection on the efficiency frontier. By rounding off the projection point, we may lose the feasibility or end up having inefficient DMU. In such cases, it is required to provide a benchmark unit such that the considered unit reaches the efficiency. In the present short communication, by proposing a novel algorithm, the projecting of an inefficient DMU is carried out in such a way that produced benchmarking takes values with fully integer inputs/outputs.

  14. Constrained Optimization Methods in Health Services Research-An Introduction: Report 1 of the ISPOR Optimization Methods Emerging Good Practices Task Force.

    Science.gov (United States)

    Crown, William; Buyukkaramikli, Nasuh; Thokala, Praveen; Morton, Alec; Sir, Mustafa Y; Marshall, Deborah A; Tosh, Jon; Padula, William V; Ijzerman, Maarten J; Wong, Peter K; Pasupathy, Kalyan S

    2017-03-01

    Providing health services with the greatest possible value to patients and society given the constraints imposed by patient characteristics, health care system characteristics, budgets, and so forth relies heavily on the design of structures and processes. Such problems are complex and require a rigorous and systematic approach to identify the best solution. Constrained optimization is a set of methods designed to identify efficiently and systematically the best solution (the optimal solution) to a problem characterized by a number of potential solutions in the presence of identified constraints. This report identifies 1) key concepts and the main steps in building an optimization model; 2) the types of problems for which optimal solutions can be determined in real-world health applications; and 3) the appropriate optimization methods for these problems. We first present a simple graphical model based on the treatment of "regular" and "severe" patients, which maximizes the overall health benefit subject to time and budget constraints. We then relate it back to how optimization is relevant in health services research for addressing present day challenges. We also explain how these mathematical optimization methods relate to simulation methods, to standard health economic analysis techniques, and to the emergent fields of analytics and machine learning. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  15. Mixed-Integer Nonconvex Quadratic Optimization Relaxations and Performance Analysis

    Science.gov (United States)

    2016-10-11

    stationary point. These results are the state of art in complexity analysis of non-convex optimization. “Complexity of Unconstrained L2-Lp Minimization...Parameter Optimized Radiation Therapy ( SPORT )” (M Zarepisheh, Y Ye, S Boyd, R Li, L Xing), Medical Physics 41(6) (2014) 292-292. Station parameter...optimized radiation therapy ( SPORT ) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in

  16. Poster — Thur Eve — 69: Computational Study of DVH-guided Cancer Treatment Planning Optimization Methods

    Energy Technology Data Exchange (ETDEWEB)

    Ghomi, Pooyan Shirvani; Zinchenko, Yuriy [University of Calgary, Department of Mathematics and Statistics (Canada)

    2014-08-15

    Purpose: To compare methods to incorporate the Dose Volume Histogram (DVH) curves into the treatment planning optimization. Method: The performance of three methods, namely, the conventional Mixed Integer Programming (MIP) model, a convex moment-based constrained optimization approach, and an unconstrained convex moment-based penalty approach, is compared using anonymized data of a prostate cancer patient. Three plans we generated using the corresponding optimization models. Four Organs at Risk (OARs) and one Tumor were involved in the treatment planning. The OARs and Tumor were discretized into total of 50,221 voxels. The number of beamlets was 943. We used commercially available optimization software Gurobi and Matlab to solve the models. Plan comparison was done by recording the model runtime followed by visual inspection of the resulting dose volume histograms. Conclusion: We demonstrate the effectiveness of the moment-based approaches to replicate the set of prescribed DVH curves. The unconstrained convex moment-based penalty approach is concluded to have the greatest potential to reduce the computational effort and holds a promise of substantial computational speed up.

  17. Stochastic programming with integer recourse

    NARCIS (Netherlands)

    van der Vlerk, Maarten Hendrikus

    1995-01-01

    In this thesis we consider two-stage stochastic linear programming models with integer recourse. Such models are at the intersection of two different branches of mathematical programming. On the one hand some of the model parameters are random, which places the problem in the field of stochastic

  18. Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems - Poisson and convection-diffusion control

    Czech Academy of Sciences Publication Activity Database

    Axelsson, Owe; Farouq, S.; Neytcheva, M.

    2016-01-01

    Roč. 73, č. 3 (2016), s. 631-633 ISSN 1017-1398 R&D Projects: GA MŠk ED1.1.00/02.0070 Institutional support: RVO:68145535 Keywords : PDE-constrained optimization problems * finite elements * iterative solution methods Subject RIV: BA - General Mathematics Impact factor: 1.241, year: 2016 http://link.springer.com/article/10.1007%2Fs11075-016-0111-1

  19. Ramsey theory on the integers

    CERN Document Server

    Landman, Bruce M

    2014-01-01

    Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and t...

  20. Suppression of tunneling by interference in half-integer--spin particles

    OpenAIRE

    Loss, Daniel; DiVincenzo, David P.; Grinstein, G.

    1992-01-01

    Within a wide class of ferromagnetic and antiferromagnetic systems, quantum tunneling of magnetization direction is spin-parity dependent: it vanishes for magnetic particles with half-integer spin, but is allowed for integer spin. A coherent-state path integral calculation shows that this topological effect results from interference between tunneling paths.

  1. A Constrained Least Squares Approach to Mobile Positioning: Algorithms and Optimality

    Science.gov (United States)

    Cheung, KW; So, HC; Ma, W.-K.; Chan, YT

    2006-12-01

    The problem of locating a mobile terminal has received significant attention in the field of wireless communications. Time-of-arrival (TOA), received signal strength (RSS), time-difference-of-arrival (TDOA), and angle-of-arrival (AOA) are commonly used measurements for estimating the position of the mobile station. In this paper, we present a constrained weighted least squares (CWLS) mobile positioning approach that encompasses all the above described measurement cases. The advantages of CWLS include performance optimality and capability of extension to hybrid measurement cases (e.g., mobile positioning using TDOA and AOA measurements jointly). Assuming zero-mean uncorrelated measurement errors, we show by mean and variance analysis that all the developed CWLS location estimators achieve zero bias and the Cramér-Rao lower bound approximately when measurement error variances are small. The asymptotic optimum performance is also confirmed by simulation results.

  2. Chance constrained uncertain classification via robust optimization

    NARCIS (Netherlands)

    Ben-Tal, A.; Bhadra, S.; Bhattacharayya, C.; Saketha Nat, J.

    2011-01-01

    This paper studies the problem of constructing robust classifiers when the training is plagued with uncertainty. The problem is posed as a Chance-Constrained Program (CCP) which ensures that the uncertain data points are classified correctly with high probability. Unfortunately such a CCP turns out

  3. Using Integer Clocks to Verify the Timing-Sync Sensor Network Protocol

    Science.gov (United States)

    Huang, Xiaowan; Singh, Anu; Smolka, Scott A.

    2010-01-01

    We use the UPPAAL model checker for Timed Automata to verify the Timing-Sync time-synchronization protocol for sensor networks (TPSN). The TPSN protocol seeks to provide network-wide synchronization of the distributed clocks in a sensor network. Clock-synchronization algorithms for sensor networks such as TPSN must be able to perform arithmetic on clock values to calculate clock drift and network propagation delays. They must be able to read the value of a local clock and assign it to another local clock. Such operations are not directly supported by the theory of Timed Automata. To overcome this formal-modeling obstacle, we augment the UPPAAL specification language with the integer clock derived type. Integer clocks, which are essentially integer variables that are periodically incremented by a global pulse generator, greatly facilitate the encoding of the operations required to synchronize clocks as in the TPSN protocol. With this integer-clock-based model of TPSN in hand, we use UPPAAL to verify that the protocol achieves network-wide time synchronization and is devoid of deadlock. We also use the UPPAAL Tracer tool to illustrate how integer clocks can be used to capture clock drift and resynchronization during protocol execution

  4. Optimization of edge state velocity in the integer quantum Hall regime

    Science.gov (United States)

    Sahasrabudhe, H.; Novakovic, B.; Nakamura, J.; Fallahi, S.; Povolotskyi, M.; Klimeck, G.; Rahman, R.; Manfra, M. J.

    2018-02-01

    Observation of interference in the quantum Hall regime may be hampered by a small edge state velocity due to finite phase coherence time. Therefore designing two quantum point contact (QPCs) interferometers having a high edge state velocity is desirable. Here we present a new simulation method for designing heterostructures with high edge state velocity by realistically modeling edge states near QPCs in the integer quantum Hall effect (IQHE) regime. Using this simulation method, we also predict the filling factor at the center of QPCs and their conductance at different gate voltages. The 3D Schrödinger equation is split into 1D and 2D parts. Quasi-1D Schrödinger and Poisson equations are solved self-consistently in the IQHE regime to obtain the potential profile, and quantum transport is used to solve for the edge state wave functions. The velocity of edge states is found to be /B , where is the expectation value of the electric field for the edge state. Anisotropically etched trench gated heterostructures with double-sided delta doping have the highest edge state velocity among the structures considered.

  5. 7th Conference on Non-Integer Order Calculus and Its Applications

    CERN Document Server

    Dworak, Paweł

    2016-01-01

    This volume is devoted to presentation of new results of research on systems of non-integer order, called also fractional systems. Their analysis and practical implementation have been the object of spontaneous development for a few last decades. The fractional order models can depict a physical plant better than the classical integer order ones. This covers different research fields such as insulator properties, visco-elastic materials, electrodynamic, electrothermal, electrochemical, economic processes modelling etc. On the other hand fractional controllers often outperform their integer order counterparts. This volume contains new ideas and examples of implementation, theoretical and pure practical aspects of using a non-integer order calculus. It is divided into four parts covering: mathematical fundamentals, modeling and approximations, controllability, observability and stability problems and practical applications of fractional control systems. The first part expands the base of tools and methods of th...

  6. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Chao, M [The Mount Sinai Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  7. SU-G-BRA-08: Diaphragm Motion Tracking Based On KV CBCT Projections with a Constrained Linear Regression Optimization

    International Nuclear Information System (INIS)

    Wei, J; Chao, M

    2016-01-01

    Purpose: To develop a novel strategy to extract the respiratory motion of the thoracic diaphragm from kilovoltage cone beam computed tomography (CBCT) projections by a constrained linear regression optimization technique. Methods: A parabolic function was identified as the geometric model and was employed to fit the shape of the diaphragm on the CBCT projections. The search was initialized by five manually placed seeds on a pre-selected projection image. Temporal redundancies, the enabling phenomenology in video compression and encoding techniques, inherent in the dynamic properties of the diaphragm motion together with the geometrical shape of the diaphragm boundary and the associated algebraic constraint that significantly reduced the searching space of viable parabolic parameters was integrated, which can be effectively optimized by a constrained linear regression approach on the subsequent projections. The innovative algebraic constraints stipulating the kinetic range of the motion and the spatial constraint preventing any unphysical deviations was able to obtain the optimal contour of the diaphragm with minimal initialization. The algorithm was assessed by a fluoroscopic movie acquired at anteriorposterior fixed direction and kilovoltage CBCT projection image sets from four lung and two liver patients. The automatic tracing by the proposed algorithm and manual tracking by a human operator were compared in both space and frequency domains. Results: The error between the estimated and manual detections for the fluoroscopic movie was 0.54mm with standard deviation (SD) of 0.45mm, while the average error for the CBCT projections was 0.79mm with SD of 0.64mm for all enrolled patients. The submillimeter accuracy outcome exhibits the promise of the proposed constrained linear regression approach to track the diaphragm motion on rotational projection images. Conclusion: The new algorithm will provide a potential solution to rendering diaphragm motion and ultimately

  8. Frozen density embedding with non-integer subsystems' particle numbers.

    Science.gov (United States)

    Fabiano, Eduardo; Laricchia, Savio; Della Sala, Fabio

    2014-03-21

    We extend the frozen density embedding theory to non-integer subsystems' particles numbers. Different features of this formulation are discussed, with special concern for approximate embedding calculations. In particular, we highlight the relation between the non-integer particle-number partition scheme and the resulting embedding errors. Finally, we provide a discussion of the implications of the present theory for the derivative discontinuity issue and the calculation of chemical reactivity descriptors.

  9. Deterministic integer multiple firing depending on initial state in Wang model

    Energy Technology Data Exchange (ETDEWEB)

    Xie Yong [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: yxie@mail.xjtu.edu.cn; Xu Jianxue [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China); Jiang Jun [Institute of Nonlinear Dynamics, MSSV, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an 710049 (China)

    2006-12-15

    We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables.

  10. Deterministic integer multiple firing depending on initial state in Wang model

    International Nuclear Information System (INIS)

    Xie Yong; Xu Jianxue; Jiang Jun

    2006-01-01

    We investigate numerically dynamical behaviour of the Wang model, which describes the rhythmic activities of thalamic relay neurons. The model neuron exhibits Type I excitability from a global view, but Type II excitability from a local view. There exists a narrow range of bistability, in which a subthreshold oscillation and a suprathreshold firing behaviour coexist. A special firing pattern, integer multiple firing can be found in the certain part of the bistable range. The characteristic feature of such firing pattern is that the histogram of interspike intervals has a multipeaked structure, and the peaks are located at about integer multiples of a basic interspike interval. Since the Wang model is noise-free, the integer multiple firing is a deterministic firing pattern. The existence of bistability leads to the deterministic integer multiple firing depending on the initial state of the model neuron, i.e., the initial values of the state variables

  11. Performance Analysis for Cooperative Communication System with QC-LDPC Codes Constructed with Integer Sequences

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-01-01

    Full Text Available This paper presents four different integer sequences to construct quasi-cyclic low-density parity-check (QC-LDPC codes with mathematical theory. The paper introduces the procedure of the coding principle and coding. Four different integer sequences constructing QC-LDPC code are compared with LDPC codes by using PEG algorithm, array codes, and the Mackey codes, respectively. Then, the integer sequence QC-LDPC codes are used in coded cooperative communication. Simulation results show that the integer sequence constructed QC-LDPC codes are effective, and overall performance is better than that of other types of LDPC codes in the coded cooperative communication. The performance of Dayan integer sequence constructed QC-LDPC is the most excellent performance.

  12. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    2001-01-01

    A model for constrained computerized adaptive testing is proposed in which the information on the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  13. A model for optimal constrained adaptive testing

    NARCIS (Netherlands)

    van der Linden, Willem J.; Reese, Lynda M.

    1997-01-01

    A model for constrained computerized adaptive testing is proposed in which the information in the test at the ability estimate is maximized subject to a large variety of possible constraints on the contents of the test. At each item-selection step, a full test is first assembled to have maximum

  14. DESIGN STUDY: INTEGER SUBTRACTION OPERATION TEACHING LEARNING USING MULTIMEDIA IN PRIMARY SCHOOL

    Directory of Open Access Journals (Sweden)

    Rendi Muhammad Aris

    2016-12-01

    Full Text Available This study aims to develop a learning trajectory to help students understand concept of subtraction of integers using multimedia in the fourth grade. This study is thematic integrative learning in Curriculum 2013 PMRI based. The method used is design research consists of three stages; preparing for the experiment, design experiment, retrospective analysis. The studied was conducted on 20 students of grade four SDN 1 Muara Batun, OKI. The activities of students in this study consisted of six learning trajectories. The first activity asks the students to classify heroism and non-heroism acts, summarize, and classify integers and non-integer. The second activity asks the students to answer the questions in the film given. The third activity asks students to count the remaining gravel in the film. The fourth activity asks students to count remaining spent money in the film. The fifth activity invites students to play rubber seeds in the bag. The last activity asks students to answer the questions in the student worksheet. The media used along the learning activities are a ruler, rubber seed, student worksheet, money, gravel, and film. The results indicate that the learning trajectory using multimedia help students understand the concept of integer subtraction integer. Keywords: Subtraction Integer, PMRI, Multimedia DOI: http://dx.doi.org/10.22342/jme.8.1.3233.95-102

  15. Sabrewing: A lightweight architecture for combined floating-point and integer arithmetic

    NARCIS (Netherlands)

    Bruintjes, Tom; Walters, K.H.G.; Gerez, Sabih H.; Molenkamp, Egbert; Smit, Gerardus Johannes Maria

    In spite of the fact that floating-point arithmetic is costly in terms of silicon area, the joint design of hardware for floating-point and integer arithmetic is seldom considered. While components like multipliers and adders can potentially be shared, floating-point and integer units in

  16. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2016-01-01

    Full Text Available The teaching-learning-based optimization (TLBO algorithm is finding a large number of applications in different fields of engineering and science since its introduction in 2011. The major applications are found in electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics, chemistry, biotechnology and economics. This paper presents a review of applications of TLBO algorithm and a tutorial for solving the unconstrained and constrained optimization problems. The tutorial is expected to be useful to the beginners.

  17. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming

    Energy Technology Data Exchange (ETDEWEB)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-03-27

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Results: Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs.

  18. Integer Optimization Model for a Logistic System based on Location-Routing Considering Distance and Chosen Route

    Science.gov (United States)

    Mulyasari, Joni; Mawengkang, Herman; Efendi, Syahril

    2018-02-01

    In a distribution network it is important to decide the locations of facilities that impacts not only the profitability of an organization but the ability to serve customers.Generally the location-routing problem is to minimize the overall cost by simultaneously selecting a subset of candidate facilities and constructing a set of delivery routes that satisfy some restrictions. In this paper we impose restriction on the route that should be passed for delivery. We use integer programming model to describe the problem. A feasible neighbourhood search is proposed to solve the result model.

  19. An integer optimization algorithm for robust identification of non-linear gene regulatory networks

    Directory of Open Access Journals (Sweden)

    Chemmangattuvalappil Nishanth

    2012-09-01

    Full Text Available Abstract Background Reverse engineering gene networks and identifying regulatory interactions are integral to understanding cellular decision making processes. Advancement in high throughput experimental techniques has initiated innovative data driven analysis of gene regulatory networks. However, inherent noise associated with biological systems requires numerous experimental replicates for reliable conclusions. Furthermore, evidence of robust algorithms directly exploiting basic biological traits are few. Such algorithms are expected to be efficient in their performance and robust in their prediction. Results We have developed a network identification algorithm to accurately infer both the topology and strength of regulatory interactions from time series gene expression data in the presence of significant experimental noise and non-linear behavior. In this novel formulism, we have addressed data variability in biological systems by integrating network identification with the bootstrap resampling technique, hence predicting robust interactions from limited experimental replicates subjected to noise. Furthermore, we have incorporated non-linearity in gene dynamics using the S-system formulation. The basic network identification formulation exploits the trait of sparsity of biological interactions. Towards that, the identification algorithm is formulated as an integer-programming problem by introducing binary variables for each network component. The objective function is targeted to minimize the network connections subjected to the constraint of maximal agreement between the experimental and predicted gene dynamics. The developed algorithm is validated using both in silico and experimental data-sets. These studies show that the algorithm can accurately predict the topology and connection strength of the in silico networks, as quantified by high precision and recall, and small discrepancy between the actual and predicted kinetic parameters

  20. Design of problem-specific evolutionary algorithm/mixed-integer programming hybrids: two-stage stochastic integer programming applied to chemical batch scheduling

    Science.gov (United States)

    Urselmann, Maren; Emmerich, Michael T. M.; Till, Jochen; Sand, Guido; Engell, Sebastian

    2007-07-01

    Engineering optimization often deals with large, mixed-integer search spaces with a rigid structure due to the presence of a large number of constraints. Metaheuristics, such as evolutionary algorithms (EAs), are frequently suggested as solution algorithms in such cases. In order to exploit the full potential of these algorithms, it is important to choose an adequate representation of the search space and to integrate expert-knowledge into the stochastic search operators, without adding unnecessary bias to the search. Moreover, hybridisation with mathematical programming techniques such as mixed-integer programming (MIP) based on a problem decomposition can be considered for improving algorithmic performance. In order to design problem-specific EAs it is desirable to have a set of design guidelines that specify properties of search operators and representations. Recently, a set of guidelines has been proposed that gives rise to so-called Metric-based EAs (MBEAs). Extended by the minimal moves mutation they allow for a generalization of EA with self-adaptive mutation strength in discrete search spaces. In this article, a problem-specific EA for process engineering task is designed, following the MBEA guidelines and minimal moves mutation. On the background of the application, the usefulness of the design framework is discussed, and further extensions and corrections proposed. As a case-study, a two-stage stochastic programming problem in chemical batch process scheduling is considered. The algorithm design problem can be viewed as the choice of a hierarchical decision structure, where on different layers of the decision process symmetries and similarities can be exploited for the design of minimal moves. After a discussion of the design approach and its instantiation for the case-study, the resulting problem-specific EA/MIP is compared to a straightforward application of a canonical EA/MIP and to a monolithic mathematical programming algorithm. In view of the

  1. Reversible Integer Wavelet Transform for the Joint of Image Encryption and Watermarking

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available In recent years, signal processing in the encrypted domain has attracted considerable research interest, especially embedding watermarking in encrypted image. In this work, a novel joint of image encryption and watermarking based on reversible integer wavelet transform is proposed. Firstly, the plain-image is encrypted by chaotic maps and reversible integer wavelet transform. Then the lossless watermarking is embedded in the encrypted image by reversible integer wavelet transform and histogram modification. Finally an encrypted image containing watermarking is obtained by the inverse integer wavelet transform. What is more, the original image and watermarking can be completely recovered by inverse process. Numerical experimental results and comparing with previous works show that the proposed scheme possesses higher security and embedding capacity than previous works. It is suitable for protecting the image information.

  2. Adaptive optimal control of unknown constrained-input systems using policy iteration and neural networks.

    Science.gov (United States)

    Modares, Hamidreza; Lewis, Frank L; Naghibi-Sistani, Mohammad-Bagher

    2013-10-01

    This paper presents an online policy iteration (PI) algorithm to learn the continuous-time optimal control solution for unknown constrained-input systems. The proposed PI algorithm is implemented on an actor-critic structure where two neural networks (NNs) are tuned online and simultaneously to generate the optimal bounded control policy. The requirement of complete knowledge of the system dynamics is obviated by employing a novel NN identifier in conjunction with the actor and critic NNs. It is shown how the identifier weights estimation error affects the convergence of the critic NN. A novel learning rule is developed to guarantee that the identifier weights converge to small neighborhoods of their ideal values exponentially fast. To provide an easy-to-check persistence of excitation condition, the experience replay technique is used. That is, recorded past experiences are used simultaneously with current data for the adaptation of the identifier weights. Stability of the whole system consisting of the actor, critic, system state, and system identifier is guaranteed while all three networks undergo adaptation. Convergence to a near-optimal control law is also shown. The effectiveness of the proposed method is illustrated with a simulation example.

  3. Multi-Target Tracking via Mixed Integer Optimization

    Science.gov (United States)

    2016-05-13

    an easily interpretable global objective function. Furthermore, we propose a greedy heuristic which quickly finds good solutions. We extend both the... heuristic and the MIO model to scenarios with missed detections and false alarms. Index Terms—optimization; multi-target tracking; data asso- ciation...energy in [14] and then again as a minimization of discrete-continuous energy in [15]. These algorithms aim to more accurately represent the nature of the

  4. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model

    Energy Technology Data Exchange (ETDEWEB)

    Koa, A.S.; Chang, N.B. [University of Central Florida, Orlando, FL (United States). Dept. for Civil & Environmental Engineering

    2008-07-15

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO{sub 2}) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To case the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  5. Optimal planning of co-firing alternative fuels with coal in a power plant by grey nonlinear mixed integer programming model.

    Science.gov (United States)

    Ko, Andi Setiady; Chang, Ni-Bin

    2008-07-01

    Energy supply and use is of fundamental importance to society. Although the interactions between energy and environment were originally local in character, they have now widened to cover regional and global issues, such as acid rain and the greenhouse effect. It is for this reason that there is a need for covering the direct and indirect economic and environmental impacts of energy acquisition, transport, production and use. In this paper, particular attention is directed to ways of resolving conflict between economic and environmental goals by encouraging a power plant to consider co-firing biomass and refuse-derived fuel (RDF) with coal simultaneously. It aims at reducing the emission level of sulfur dioxide (SO(2)) in an uncertain environment, using the power plant in Michigan City, Indiana as an example. To assess the uncertainty by a comparative way both deterministic and grey nonlinear mixed integer programming (MIP) models were developed to minimize the net operating cost with respect to possible fuel combinations. It aims at generating the optimal portfolio of alternative fuels while maintaining the same electricity generation simultaneously. To ease the solution procedure stepwise relaxation algorithm was developed for solving the grey nonlinear MIP model. Breakeven alternative fuel value can be identified in the post-optimization stage for decision-making. Research findings show that the inclusion of RDF does not exhibit comparative advantage in terms of the net cost, albeit relatively lower air pollution impact. Yet it can be sustained by a charge system, subsidy program, or emission credit as the price of coal increases over time.

  6. Loading pattern optimization with maximum utilization of discharging fuel employing adaptively constrained discontinuous penalty function

    International Nuclear Information System (INIS)

    Park, T. K.; Joo, H. G.; Kim, C. H.

    2010-01-01

    In order to find the most economical loading pattern (LP) considering multi-cycle fuel loading, multi-objective fuel LP optimization problems are examined by employing an adaptively constrained discontinuous penalty function (ACDPF) method. This is an improved method to simplify the complicated acceptance logic of the original DPF method in that the stochastic effects caused by the different random number sequence can be reduced. The effectiveness of the multi-objective simulated annealing (SA) algorithm employing ACDPF is examined for the reload core LP of Cycle 4 of Yonggwang Nuclear Unit 4. Several optimization runs are performed with different numbers of objectives consisting of cycle length and average burnup of fuels to be discharged or reloaded. The candidate LPs obtained from the multi-objective optimization runs turn out to be better than the reference LP in the aspects of cycle length and utilization of given fuels. It is note that the proposed ACDPF based MOSA algorithm can be a practical method to obtain an economical LP considering multi-cycle fuel loading. (authors)

  7. Load Frequency Control in Microgrids Based on a Stochastic Non-Integer Controller

    DEFF Research Database (Denmark)

    Khooban, Mohammad-Hassan; Niknam, Taher; Shasadeghi, Mokhtar

    2018-01-01

    of battery energy storage systems (BESS) can solve the unbalance effects between the load and supply of an isolated MG, their high cost and tendency toward degradation are restrictive factors, which call for the use of alternative power balancing options. In recent years, the concept of utilizing the BESSs...... of EVs, also known as vehicle-to-grid (V2G) concept, for frequency support of MGs has attracted a lot of attention. In order to allow the V2G controller operate optimally under a wide range of operation conditions caused by the intermittent behavior of renewable energy resources (RESs), a new multi...... hole optimization algorithm (MBHA) is utilized for the adaptive tuning of the non-integer fuzzy PID controller coefficients. The performance of the proposed LFC is evaluated by using real world wind and solar radiation data. Finally, the extensive studies and hardware-in-the-loop (HIL) simulations...

  8. Thermodynamic optimization of mixed refrigerant Joule- Thomson systems constrained by heat transfer considerations

    International Nuclear Information System (INIS)

    Hinze, J F; Klein, S A; Nellis, G F

    2015-01-01

    Mixed refrigerant (MR) working fluids can significantly increase the cooling capacity of a Joule-Thomson (JT) cycle. The optimization of MRJT systems has been the subject of substantial research. However, most optimization techniques do not model the recuperator in sufficient detail. For example, the recuperator is usually assumed to have a heat transfer coefficient that does not vary with the mixture. Ongoing work at the University of Wisconsin-Madison has shown that the heat transfer coefficients for two-phase flow are approximately three times greater than for a single phase mixture when the mixture quality is between 15% and 85%. As a result, a system that optimizes a MR without also requiring that the flow be in this quality range may require an extremely large recuperator or not achieve the performance predicted by the model. To ensure optimal performance of the JT cycle, the MR should be selected such that it is entirely two-phase within the recuperator. To determine the optimal MR composition, a parametric study was conducted assuming a thermodynamically ideal cycle. The results of the parametric study are graphically presented on a contour plot in the parameter space consisting of the extremes of the qualities that exist within the recuperator. The contours show constant values of the normalized refrigeration power. This ‘map’ shows the effect of MR composition on the cycle performance and it can be used to select the MR that provides a high cooling load while also constraining the recuperator to be two phase. The predicted best MR composition can be used as a starting point for experimentally determining the best MR. (paper)

  9. Optimal control of cooperative multi-vehicle systems; Optimalsteuerung kooperierender Mehrfahrzeugsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Reinl, Christian; Stryk, Oskar von [Technische Univ. Darmstadt (Germany). FB Informatik; Glocker, Markus [Trimble Terrasat GmbH, Hoehenkirchen (Germany)

    2009-07-01

    Nonlinear hybrid dynamical systems for modeling optimal cooperative control enable a tight and formal coupling of discrete and continuous state dynamics, i.e. of dynamic role and task assignment with switching dynamics of motions. In the resulting mixed-integer multi-phase optimal control problems constraints on the discrete and continuous state and control variables can be considered, e.g., formation or communication requirements. Two numerical methods are investigated: a decomposition approach using branch-and-bound and direct collocation methods as well as an approximation by large-scale, mixed-integer linear problems. Both methods are applied to example problems: the optimal simultaneous waypoint sequencing and trajectory planning of a team of aerial vehicles and the optimization of role distribution and trajectories in robot soccer. (orig.)

  10. Population transfer HMQC for half-integer quadrupolar nuclei

    International Nuclear Information System (INIS)

    Wang, Qiang; Xu, Jun; Feng, Ningdong; Deng, Feng; Li, Yixuan; Trébosc, Julien; Lafon, Olivier; Hu, Bingwen; Chen, Qun; Amoureux, Jean-Paul

    2015-01-01

    This work presents a detailed analysis of a recently proposed nuclear magnetic resonance method [Wang et al., Chem. Commun. 49(59), 6653-6655 (2013)] for accelerating heteronuclear coherence transfers involving half-integer spin quadrupolar nuclei by manipulating their satellite transitions. This method, called Population Transfer Heteronuclear Multiple Quantum Correlation (PT-HMQC), is investigated in details by combining theoretical analyses, numerical simulations, and experimental investigations. We find that compared to instant inversion or instant saturation, continuous saturation is the most practical strategy to accelerate coherence transfers on half-integer quadrupolar nuclei. We further demonstrate that this strategy is efficient to enhance the sensitivity of J-mediated heteronuclear correlation experiments between two half-integer quadrupolar isotopes (e.g., 27 Al- 17 O). In this case, the build-up is strongly affected by relaxation for small T 2 ′ and J coupling values, and shortening the mixing time makes a huge signal enhancement. Moreover, this concept of population transfer can also be applied to dipolar-mediated HMQC experiments. Indeed, on the AlPO 4 -14 sample, one still observes experimentally a 2-fold shortening of the optimum mixing time albeit with no significant signal gain in the 31 P-( 27 Al) experiments

  11. Automatic Design of Synthetic Gene Circuits through Mixed Integer Non-linear Programming

    Science.gov (United States)

    Huynh, Linh; Kececioglu, John; Köppe, Matthias; Tagkopoulos, Ilias

    2012-01-01

    Automatic design of synthetic gene circuits poses a significant challenge to synthetic biology, primarily due to the complexity of biological systems, and the lack of rigorous optimization methods that can cope with the combinatorial explosion as the number of biological parts increases. Current optimization methods for synthetic gene design rely on heuristic algorithms that are usually not deterministic, deliver sub-optimal solutions, and provide no guaranties on convergence or error bounds. Here, we introduce an optimization framework for the problem of part selection in synthetic gene circuits that is based on mixed integer non-linear programming (MINLP), which is a deterministic method that finds the globally optimal solution and guarantees convergence in finite time. Given a synthetic gene circuit, a library of characterized parts, and user-defined constraints, our method can find the optimal selection of parts that satisfy the constraints and best approximates the objective function given by the user. We evaluated the proposed method in the design of three synthetic circuits (a toggle switch, a transcriptional cascade, and a band detector), with both experimentally constructed and synthetic promoter libraries. Scalability and robustness analysis shows that the proposed framework scales well with the library size and the solution space. The work described here is a step towards a unifying, realistic framework for the automated design of biological circuits. PMID:22536398

  12. Optimal Financing Decisions of Two Cash-Constrained Supply Chains with Complementary Products

    Directory of Open Access Journals (Sweden)

    Yuting Li

    2016-04-01

    Full Text Available In recent years; financing difficulties have been obsessed small and medium enterprises (SMEs; especially emerging SMEs. Inter-members’ joint financing within a supply chain is one of solutions for SMEs. How about members’ joint financing of inter-supply chains? In order to answer the question, we firstly employ the Stackelberg game to propose three kinds of financing decision models of two cash-constrained supply chains with complementary products. Secondly, we analyze qualitatively these models and find the joint financing decision of the two supply chains is the most optimal one. Lastly, we conduct some numerical simulations not only to illustrate above results but also to find that the larger are cross-price sensitivity coefficients; the higher is the motivation for participants to make joint financing decisions; and the more are profits for them to gain.

  13. Combinatorial optimization games

    Energy Technology Data Exchange (ETDEWEB)

    Deng, X. [York Univ., North York, Ontario (Canada); Ibaraki, Toshihide; Nagamochi, Hiroshi [Kyoto Univ. (Japan)

    1997-06-01

    We introduce a general integer programming formulation for a class of combinatorial optimization games, which immediately allows us to improve the algorithmic result for finding amputations in the core (an important solution concept in cooperative game theory) of the network flow game on simple networks by Kalai and Zemel. An interesting result is a general theorem that the core for this class of games is nonempty if and only if a related linear program has an integer optimal solution. We study the properties for this mathematical condition to hold for several interesting problems, and apply them to resolve algorithmic and complexity issues for their cores along the line as put forward in: decide whether the core is empty; if the core is empty, find an imputation in the core; given an imputation x, test whether x is in the core. We also explore the properties of totally balanced games in this succinct formulation of cooperative games.

  14. Edge states and integer quantum Hall effect in topological insulator thin films.

    Science.gov (United States)

    Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing

    2015-08-25

    The integer quantum Hall effect is a topological state of quantum matter in two dimensions, and has recently been observed in three-dimensional topological insulator thin films. Here we study the Landau levels and edge states of surface Dirac fermions in topological insulators under strong magnetic field. We examine the formation of the quantum plateaux of the Hall conductance and find two different patterns, in one pattern the filling number covers all integers while only odd integers in the other. We focus on the quantum plateau closest to zero energy and demonstrate the breakdown of the quantum spin Hall effect resulting from structure inversion asymmetry. The phase diagrams of the quantum Hall states are presented as functions of magnetic field, gate voltage and chemical potential. This work establishes an intuitive picture of the edge states to understand the integer quantum Hall effect for Dirac electrons in topological insulator thin films.

  15. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    determination of the appropriate laminate thickness and the material choice in the structure. The optimal design problems that arise are stated as nonconvex mixed integer programming problems. We resort to different reformulation techniques to state the optimization problems as either linear or nonlinear convex....... The continuous relaxation of the mixed integer programming problems is being solved by an implementation of a primal–dual interior point method for nonlinear programming that updates the barrier parameter adaptively. The method is chosen for its excellent convergence properties and the ability of the method...... design phase results in structures with better structural performance reducing the need of manually post–processing the found designs....

  16. A Stochastic Integer Programming Model for Minimizing Cost in the Use of Rain Water Collectors for Firefighting

    Directory of Open Access Journals (Sweden)

    Luis A. Rivera-Morales

    2014-01-01

    Full Text Available In this paper we propose a stochastic integer programming optimization model to determine the optimal location and number of rain water collectors (RWCs for forest firefighting. The objective is to minimize expected total cost to control forest fires. The model is tested using a real case and several additional realistic scenarios. The impact on the solution of varying the limit on the number of RWCs, the RWC water capacity, the aircraft capacity, the water demands, and the aircraft operating cost is explored. Some observations are that the objective value improves with larger RWCs and with the use of aircraft with greater capacity.

  17. Logic integer programming models for signaling networks.

    Science.gov (United States)

    Haus, Utz-Uwe; Niermann, Kathrin; Truemper, Klaus; Weismantel, Robert

    2009-05-01

    We propose a static and a dynamic approach to model biological signaling networks, and show how each can be used to answer relevant biological questions. For this, we use the two different mathematical tools of Propositional Logic and Integer Programming. The power of discrete mathematics for handling qualitative as well as quantitative data has so far not been exploited in molecular biology, which is mostly driven by experimental research, relying on first-order or statistical models. The arising logic statements and integer programs are analyzed and can be solved with standard software. For a restricted class of problems the logic models reduce to a polynomial-time solvable satisfiability algorithm. Additionally, a more dynamic model enables enumeration of possible time resolutions in poly-logarithmic time. Computational experiments are included.

  18. Linearly constrained minimax optimization

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans

    1978-01-01

    We present an algorithm for nonlinear minimax optimization subject to linear equality and inequality constraints which requires first order partial derivatives. The algorithm is based on successive linear approximations to the functions defining the problem. The resulting linear subproblems...

  19. A Variant of the Topkis-Veinott Method for Solving Inequality Constrained Optimization Problems

    International Nuclear Information System (INIS)

    Birge, J. R.; Qi, L.; Wei, Z.

    2000-01-01

    In this paper we give a variant of the Topkis-Veinott method for solving inequality constrained optimization problems. This method uses a linearly constrained positive semidefinite quadratic problem to generate a feasible descent direction at each iteration. Under mild assumptions, the algorithm is shown to be globally convergent in the sense that every accumulation point of the sequence generated by the algorithm is a Fritz-John point of the problem. We introduce a Fritz-John (FJ) function, an FJ1 strong second-order sufficiency condition (FJ1-SSOSC), and an FJ2 strong second-order sufficiency condition (FJ2-SSOSC), and then show, without any constraint qualification (CQ), that (i) if an FJ point z satisfies the FJ1-SSOSC, then there exists a neighborhood N(z) of z such that, for any FJ point y element of N(z) {z } , f 0 (y) ≠ f 0 (z) , where f 0 is the objective function of the problem; (ii) if an FJ point z satisfies the FJ2-SSOSC, then z is a strict local minimum of the problem. The result (i) implies that the entire iteration point sequence generated by the method converges to an FJ point. We also show that if the parameters are chosen large enough, a unit step length can be accepted by the proposed algorithm

  20. Incorporating a Constrained Optimization Algorithm into Remote- Sensing/Precision Agriculture Methodology

    Science.gov (United States)

    Morgenthaler, George; Khatib, Nader; Kim, Byoungsoo

    with information to improve their crop's vigor has been a major topic of interest. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, the efficiency of farming must increase to meet future food requirements and to make farming a sustainable occupation for the farmer. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The goal is to increase farm revenue by increasing crop yield and decreasing applications of costly chemical and water treatments. In addition, this methodology will decrease the environmental costs of farming, i.e., reduce air, soil, and water pollution. Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now available. Commercial satellite systems can image (multi-spectral) the Earth with a resolution of approximately 2.5 m. Variable precision dispensing systems using GPS are available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been formulated. Personal computers and internet access are in place in most farm homes and can provide a mechanism to periodically disseminate, e.g. bi-weekly, advice on what quantities of water and chemicals are needed in individual regions of the field. What is missing is a model that fuses the disparate sources of information on the current states of the crop and soil, and the remaining resource levels available with the decisions farmers are required to make. This must be a product that is easy for the farmer to understand and to implement. A "Constrained Optimization Feed-back Control Model" to fill this void will be presented. The objective function of the model will be used to maximize the farmer's profit by increasing yields while decreasing environmental costs and decreasing

  1. Incorporating a constrained optimization algorithm into remote sensing/precision agriculture methodology

    Science.gov (United States)

    Moreenthaler, George W.; Khatib, Nader; Kim, Byoungsoo

    2003-08-01

    For two decades now, the use of Remote Sensing/Precision Agriculture to improve farm yields while reducing the use of polluting chemicals and the limited water supply has been a major goal. With world population growing exponentially, arable land being consumed by urbanization, and an unfavorable farm economy, farm efficiency must increase to meet future food requirements and to make farming a sustainable, profitable occupation. "Precision Agriculture" refers to a farming methodology that applies nutrients and moisture only where and when they are needed in the field. The real goal is to increase farm profitability by identifying the additional treatments of chemicals and water that increase revenues more than they increase costs and do no exceed pollution standards (constrained optimization). Even though the economic and environmental benefits appear to be great, Remote Sensing/Precision Agriculture has not grown as rapidly as early advocates envisioned. Technology for a successful Remote Sensing/Precision Agriculture system is now in place, but other needed factors have been missing. Commercial satellite systems can now image the Earth (multi-spectrally) with a resolution as fine as 2.5 m. Precision variable dispensing systems using GPS are now available and affordable. Crop models that predict yield as a function of soil, chemical, and irrigation parameter levels have been developed. Personal computers and internet access are now in place in most farm homes and can provide a mechanism for periodically disseminating advice on what quantities of water and chemicals are needed in specific regions of each field. Several processes have been selected that fuse the disparate sources of information on the current and historic states of the crop and soil, and the remaining resource levels available, with the critical decisions that farmers are required to make. These are done in a way that is easy for the farmer to understand and profitable to implement. A "Constrained

  2. Slope constrained Topology Optimization

    DEFF Research Database (Denmark)

    Petersson, J.; Sigmund, Ole

    1998-01-01

    The problem of minimum compliance topology optimization of an elastic continuum is considered. A general continuous density-energy relation is assumed, including variable thickness sheet models and artificial power laws. To ensure existence of solutions, the design set is restricted by enforcing...

  3. Fitness Estimation Based Particle Swarm Optimization Algorithm for Layout Design of Truss Structures

    Directory of Open Access Journals (Sweden)

    Ayang Xiao

    2014-01-01

    Full Text Available Due to the fact that vastly different variables and constraints are simultaneously considered, truss layout optimization is a typical difficult constrained mixed-integer nonlinear program. Moreover, the computational cost of truss analysis is often quite expensive. In this paper, a novel fitness estimation based particle swarm optimization algorithm with an adaptive penalty function approach (FEPSO-AP is proposed to handle this problem. FEPSO-AP adopts a special fitness estimate strategy to evaluate the similar particles in the current population, with the purpose to reduce the computational cost. Further more, a laconic adaptive penalty function is employed by FEPSO-AP, which can handle multiple constraints effectively by making good use of historical iteration information. Four benchmark examples with fixed topologies and up to 44 design dimensions were studied to verify the generality and efficiency of the proposed algorithm. Numerical results of the present work compared with results of other state-of-the-art hybrid algorithms shown in the literature demonstrate that the convergence rate and the solution quality of FEPSO-AP are essentially competitive.

  4. Distributed mixed-integer fuzzy hierarchical programming for municipal solid waste management. Part I: System identification and methodology development.

    Science.gov (United States)

    Cheng, Guanhui; Huang, Guohe; Dong, Cong; Xu, Ye; Chen, Xiujuan; Chen, Jiapei

    2017-03-01

    Due to the existence of complexities of heterogeneities, hierarchy, discreteness, and interactions in municipal solid waste management (MSWM) systems such as Beijing, China, a series of socio-economic and eco-environmental problems may emerge or worsen and result in irredeemable damages in the following decades. Meanwhile, existing studies, especially ones focusing on MSWM in Beijing, could hardly reflect these complexities in system simulations and provide reliable decision support for management practices. Thus, a framework of distributed mixed-integer fuzzy hierarchical programming (DMIFHP) is developed in this study for MSWM under these complexities. Beijing is selected as a representative case. The Beijing MSWM system is comprehensively analyzed in many aspects such as socio-economic conditions, natural conditions, spatial heterogeneities, treatment facilities, and system complexities, building a solid foundation for system simulation and optimization. Correspondingly, the MSWM system in Beijing is discretized as 235 grids to reflect spatial heterogeneity. A DMIFHP model which is a nonlinear programming problem is constructed to parameterize the Beijing MSWM system. To enable scientific solving of it, a solution algorithm is proposed based on coupling of fuzzy programming and mixed-integer linear programming. Innovations and advantages of the DMIFHP framework are discussed. The optimal MSWM schemes and mechanism revelations will be discussed in another companion paper due to length limitation.

  5. Improved helicopter aeromechanical stability analysis using segmented constrained layer damping and hybrid optimization

    Science.gov (United States)

    Liu, Qiang; Chattopadhyay, Aditi

    2000-06-01

    Aeromechanical stability plays a critical role in helicopter design and lead-lag damping is crucial to this design. In this paper, the use of segmented constrained damping layer (SCL) treatment and composite tailoring is investigated for improved rotor aeromechanical stability using formal optimization technique. The principal load-carrying member in the rotor blade is represented by a composite box beam, of arbitrary thickness, with surface bonded SCLs. A comprehensive theory is used to model the smart box beam. A ground resonance analysis model and an air resonance analysis model are implemented in the rotor blade built around the composite box beam with SCLs. The Pitt-Peters dynamic inflow model is used in air resonance analysis under hover condition. A hybrid optimization technique is used to investigate the optimum design of the composite box beam with surface bonded SCLs for improved damping characteristics. Parameters such as stacking sequence of the composite laminates and placement of SCLs are used as design variables. Detailed numerical studies are presented for aeromechanical stability analysis. It is shown that optimum blade design yields significant increase in rotor lead-lag regressive modal damping compared to the initial system.

  6. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, W.T.; Siebers, J.V. [University of Virginia, Charlottesville, VA (United States)

    2016-06-15

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanar Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing

  7. WE-AB-209-12: Quasi Constrained Multi-Criteria Optimization for Automated Radiation Therapy Treatment Planning

    International Nuclear Information System (INIS)

    Watkins, W.T.; Siebers, J.V.

    2016-01-01

    Purpose: To introduce quasi-constrained Multi-Criteria Optimization (qcMCO) for unsupervised radiation therapy optimization which generates alternative patient-specific plans emphasizing dosimetric tradeoffs and conformance to clinical constraints for multiple delivery techniques. Methods: For N Organs At Risk (OARs) and M delivery techniques, qcMCO generates M(N+1) alternative treatment plans per patient. Objective weight variations for OARs and targets are used to generate alternative qcMCO plans. For 30 locally advanced lung cancer patients, qcMCO plans were generated for dosimetric tradeoffs to four OARs: each lung, heart, and esophagus (N=4) and 4 delivery techniques (simple 4-field arrangements, 9-field coplanar IMRT, 27-field non-coplanar IMRT, and non-coplanar Arc IMRT). Quasi-constrained objectives included target prescription isodose to 95% (PTV-D95), maximum PTV dose (PTV-Dmax)< 110% of prescription, and spinal cord Dmax<45 Gy. The algorithm’s ability to meet these constraints while simultaneously revealing dosimetric tradeoffs was investigated. Statistically significant dosimetric tradeoffs were defined such that the coefficient of determination between dosimetric indices which varied by at least 5 Gy between different plans was >0.8. Results: The qcMCO plans varied mean dose by >5 Gy to ipsilateral lung for 24/30 patients, contralateral lung for 29/30 patients, esophagus for 29/30 patients, and heart for 19/30 patients. In the 600 plans computed without human interaction, average PTV-D95=67.4±3.3 Gy, PTV-Dmax=79.2±5.3 Gy, and spinal cord Dmax was >45 Gy in 93 plans (>50 Gy in 2/600 plans). Statistically significant dosimetric tradeoffs were evident in 19/30 plans, including multiple tradeoffs of at least 5 Gy between multiple OARs in 7/30 cases. The most common statistically significant tradeoff was increasing PTV-Dmax to reduce OAR dose (15/30 patients). Conclusion: The qcMCO method can conform to quasi-constrained objectives while revealing

  8. Elasticity of fractal materials using the continuum model with non-integer dimensional space

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-01-01

    Using a generalization of vector calculus for space with non-integer dimension, we consider elastic properties of fractal materials. Fractal materials are described by continuum models with non-integer dimensional space. A generalization of elasticity equations for non-integer dimensional space, and its solutions for the equilibrium case of fractal materials are suggested. Elasticity problems for fractal hollow ball and cylindrical fractal elastic pipe with inside and outside pressures, for rotating cylindrical fractal pipe, for gradient elasticity and thermoelasticity of fractal materials are solved.

  9. A note on number fields having reciprocal integer generators | Zaïmi ...

    African Journals Online (AJOL)

    We prove that a totally complex algebraic number field K; having a conjugate which is not closed under complex conjugation, can be generated by a reciprocal integer, when the Galois group of its normal closure is contained in the hyperoctahedral group Bdeg(K)/2. Keywords: Reciprocal integers, unit primitive elements, ...

  10. Predecessor queries in dynamic integer sets

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting

    1997-01-01

    We consider the problem of maintaining a set of n integers in the range 0.2w–1 under the operations of insertion, deletion, predecessor queries, minimum queries and maximum queries on a unit cost RAM with word size w bits. Let f (n) be an arbitrary nondecreasing smooth function satisfying n...

  11. A novel constrained H2 optimization algorithm for mechatronics design in flexure-linked biaxial gantry.

    Science.gov (United States)

    Ma, Jun; Chen, Si-Lu; Kamaldin, Nazir; Teo, Chek Sing; Tay, Arthur; Mamun, Abdullah Al; Tan, Kok Kiong

    2017-11-01

    The biaxial gantry is widely used in many industrial processes that require high precision Cartesian motion. The conventional rigid-link version suffers from breaking down of joints if any de-synchronization between the two carriages occurs. To prevent above potential risk, a flexure-linked biaxial gantry is designed to allow a small rotation angle of the cross-arm. Nevertheless, the chattering of control signals and inappropriate design of the flexure joint will possibly induce resonant modes of the end-effector. Thus, in this work, the design requirements in terms of tracking accuracy, biaxial synchronization, and resonant mode suppression are achieved by integrated optimization of the stiffness of flexures and PID controller parameters for a class of point-to-point reference trajectories with same dynamics but different steps. From here, an H 2 optimization problem with defined constraints is formulated, and an efficient iterative solver is proposed by hybridizing direct computation of constrained projection gradient and line search of optimal step. Comparative experimental results obtained on the testbed are presented to verify the effectiveness of the proposed method. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Vector calculus in non-integer dimensional space and its applications to fractal media

    Science.gov (United States)

    Tarasov, Vasily E.

    2015-02-01

    We suggest a generalization of vector calculus for the case of non-integer dimensional space. The first and second orders operations such as gradient, divergence, the scalar and vector Laplace operators for non-integer dimensional space are defined. For simplification we consider scalar and vector fields that are independent of angles. We formulate a generalization of vector calculus for rotationally covariant scalar and vector functions. This generalization allows us to describe fractal media and materials in the framework of continuum models with non-integer dimensional space. As examples of application of the suggested calculus, we consider elasticity of fractal materials (fractal hollow ball and fractal cylindrical pipe with pressure inside and outside), steady distribution of heat in fractal media, electric field of fractal charged cylinder. We solve the correspondent equations for non-integer dimensional space models.

  13. Sequential optimization of a terrestrial biosphere model constrained by multiple satellite based products

    Science.gov (United States)

    Ichii, K.; Kondo, M.; Wang, W.; Hashimoto, H.; Nemani, R. R.

    2012-12-01

    Various satellite-based spatial products such as evapotranspiration (ET) and gross primary productivity (GPP) are now produced by integration of ground and satellite observations. Effective use of these multiple satellite-based products in terrestrial biosphere models is an important step toward better understanding of terrestrial carbon and water cycles. However, due to the complexity of terrestrial biosphere models with large number of model parameters, the application of these spatial data sets in terrestrial biosphere models is difficult. In this study, we established an effective but simple framework to refine a terrestrial biosphere model, Biome-BGC, using multiple satellite-based products as constraints. We tested the framework in the monsoon Asia region covered by AsiaFlux observations. The framework is based on the hierarchical analysis (Wang et al. 2009) with model parameter optimization constrained by satellite-based spatial data. The Biome-BGC model is separated into several tiers to minimize the freedom of model parameter selections and maximize the independency from the whole model. For example, the snow sub-model is first optimized using MODIS snow cover product, followed by soil water sub-model optimized by satellite-based ET (estimated by an empirical upscaling method; Support Vector Regression (SVR) method; Yang et al. 2007), photosynthesis model optimized by satellite-based GPP (based on SVR method), and respiration and residual carbon cycle models optimized by biomass data. As a result of initial assessment, we found that most of default sub-models (e.g. snow, water cycle and carbon cycle) showed large deviations from remote sensing observations. However, these biases were removed by applying the proposed framework. For example, gross primary productivities were initially underestimated in boreal and temperate forest and overestimated in tropical forests. However, the parameter optimization scheme successfully reduced these biases. Our analysis

  14. ON PROBLEM OF REGIONAL WAREHOUSE AND TRANSPORT INFRASTRUCTURE OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    I. Yu. Miretskiy

    2017-01-01

    Full Text Available The article suggests an approach of solving the problem of warehouse and transport infrastructure optimization in a region. The task is to determine the optimal capacity and location of the support network of warehouses in the region, as well as power, composition and location of motor fleets. Optimization is carried out using mathematical models of a regional warehouse network and a network of motor fleets. These models are presented as mathematical programming problems with separable functions. The process of finding the optimal solution of problems is complicated due to high dimensionality, non-linearity of functions, and the fact that a part of variables are constrained to integer, and some variables can take values only from a discrete set. Given the mentioned above complications search for an exact solution was rejected. The article suggests an approximate approach to solving problems. This approach employs effective computational schemes for solving multidimensional optimization problems. We use the continuous relaxation of the original problem to obtain its approximate solution. An approximately optimal solution of continuous relaxation is taken as an approximate solution of the original problem. The suggested solution method implies linearization of the obtained continuous relaxation and use of the separable programming scheme and the scheme of branches and bounds. We describe the use of the simplex method for solving the linearized continuous relaxation of the original problem and the specific moments of the branches and bounds method implementation. The paper shows the finiteness of the algorithm and recommends how to accelerate process of finding a solution.

  15. Security constrained optimal power flow by modern optimization tools

    African Journals Online (AJOL)

    The main objective of an optimal power flow (OPF) functions is to optimize .... It is characterized as propagation of plants and this happens by gametes union. ... ss and different variables, for example, wind, nearby fertilization can have a critic.

  16. Nonlinear feedback synchronisation control between fractional-order and integer-order chaotic systems

    International Nuclear Information System (INIS)

    Jia Li-Xin; Dai Hao; Hui Meng

    2010-01-01

    This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method

  17. Mixed integer linear programming for maximum-parsimony phylogeny inference.

    Science.gov (United States)

    Sridhar, Srinath; Lam, Fumei; Blelloch, Guy E; Ravi, R; Schwartz, Russell

    2008-01-01

    Reconstruction of phylogenetic trees is a fundamental problem in computational biology. While excellent heuristic methods are available for many variants of this problem, new advances in phylogeny inference will be required if we are to be able to continue to make effective use of the rapidly growing stores of variation data now being gathered. In this paper, we present two integer linear programming (ILP) formulations to find the most parsimonious phylogenetic tree from a set of binary variation data. One method uses a flow-based formulation that can produce exponential numbers of variables and constraints in the worst case. The method has, however, proven extremely efficient in practice on datasets that are well beyond the reach of the available provably efficient methods, solving several large mtDNA and Y-chromosome instances within a few seconds and giving provably optimal results in times competitive with fast heuristics than cannot guarantee optimality. An alternative formulation establishes that the problem can be solved with a polynomial-sized ILP. We further present a web server developed based on the exponential-sized ILP that performs fast maximum parsimony inferences and serves as a front end to a database of precomputed phylogenies spanning the human genome.

  18. A program package for solving linear optimization problems

    International Nuclear Information System (INIS)

    Horikami, Kunihiko; Fujimura, Toichiro; Nakahara, Yasuaki

    1980-09-01

    Seven computer programs for the solution of linear, integer and quadratic programming (four programs for linear programming, one for integer programming and two for quadratic programming) have been prepared and tested on FACOM M200 computer, and auxiliary programs have been written to make it easy to use the optimization program package. The characteristics of each program are explained and the detailed input/output descriptions are given in order to let users know how to use them. (author)

  19. Topology Optimization Design of 3D Continuum Structure with Reserved Hole Based on Variable Density Method

    Directory of Open Access Journals (Sweden)

    Bai Shiye

    2016-05-01

    Full Text Available An objective function defined by minimum compliance of topology optimization for 3D continuum structure was established to search optimal material distribution constrained by the predetermined volume restriction. Based on the improved SIMP (solid isotropic microstructures with penalization model and the new sensitivity filtering technique, basic iteration equations of 3D finite element analysis were deduced and solved by optimization criterion method. All the above procedures were written in MATLAB programming language, and the topology optimization design examples of 3D continuum structure with reserved hole were examined repeatedly by observing various indexes, including compliance, maximum displacement, and density index. The influence of mesh, penalty factors, and filter radius on the topology results was analyzed. Computational results showed that the finer or coarser the mesh number was, the larger the compliance, maximum displacement, and density index would be. When the filtering radius was larger than 1.0, the topology shape no longer appeared as a chessboard problem, thus suggesting that the presented sensitivity filtering method was valid. The penalty factor should be an integer because iteration steps increased greatly when it is a noninteger. The above modified variable density method could provide technical routes for topology optimization design of more complex 3D continuum structures in the future.

  20. Chaotic improved PSO-based multi-objective optimization for minimization of power losses and L index in power systems

    International Nuclear Information System (INIS)

    Chen, Gonggui; Liu, Lilan; Song, Peizhu; Du, Yangwei

    2014-01-01

    Highlights: • New method for MOORPD problem using MOCIPSO and MOIPSO approaches. • Constrain-prior Pareto-dominance method is proposed to meet the constraints. • The limits of the apparent power flow of transmission line are considered. • MOORPD model is built up for MOORPD problem. • The achieved results by MOCIPSO and MOIPSO approaches are better than MOPSO method. - Abstract: Multi-objective optimal reactive power dispatch (MOORPD) seeks to not only minimize power losses, but also improve the stability of power system simultaneously. In this paper, the static voltage stability enhancement is achieved through incorporating L index in MOORPD problem. Chaotic improved PSO-based multi-objective optimization (MOCIPSO) and improved PSO-based multi-objective optimization (MOIPSO) approaches are proposed for solving complex multi-objective, mixed integer nonlinear problems such as minimization of power losses and L index in power systems simultaneously. In MOCIPSO and MOIPSO based optimization approaches, crossover operator is proposed to enhance PSO diversity and improve their global searching capability, and for MOCIPSO based optimization approach, chaotic sequences based on logistic map instead of random sequences is introduced to PSO for enhancing exploitation capability. In the two approaches, constrain-prior Pareto-dominance method (CPM) is proposed to meet the inequality constraints on state variables, the sorting and crowding distance methods are considered to maintain a well distributed Pareto optimal solutions, and moreover, fuzzy set theory is employed to extract the best compromise solution over the Pareto optimal curve. The proposed approaches have been examined and tested in the IEEE 30 bus and the IEEE 57 bus power systems. The performances of MOCIPSO, MOIPSO, and multi-objective PSO (MOPSO) approaches are compared with respect to multi-objective performance measures. The simulation results are promising and confirm the ability of MOCIPSO and

  1. Linear Independence of -Logarithms over the Eisenstein Integers

    Directory of Open Access Journals (Sweden)

    Peter Bundschuh

    2010-01-01

    Full Text Available For fixed complex with ||>1, the -logarithm is the meromorphic continuation of the series ∑>0/(−1,||1,≠,2,3,…. In 2004, Tachiya showed that this is true in the Subcase =ℚ, ∈ℤ, =−1, and the present authors extended this result to arbitrary integer from an imaginary quadratic number field , and provided a quantitative version. In this paper, the earlier method, in particular its arithmetical part, is further developed to answer the above question in the affirmative if is the Eisenstein number field √ℚ(−3, an integer from , and a primitive third root of unity. Under these conditions, the linear independence holds also for 1,(,(−1, and both results are quantitative.

  2. A quadratic approximation-based algorithm for the solution of multiparametric mixed-integer nonlinear programming problems

    KAUST Repository

    Domínguez, Luis F.

    2012-06-25

    An algorithm for the solution of convex multiparametric mixed-integer nonlinear programming problems arising in process engineering problems under uncertainty is introduced. The proposed algorithm iterates between a multiparametric nonlinear programming subproblem and a mixed-integer nonlinear programming subproblem to provide a series of parametric upper and lower bounds. The primal subproblem is formulated by fixing the integer variables and solved through a series of multiparametric quadratic programming (mp-QP) problems based on quadratic approximations of the objective function, while the deterministic master subproblem is formulated so as to provide feasible integer solutions for the next primal subproblem. To reduce the computational effort when infeasibilities are encountered at the vertices of the critical regions (CRs) generated by the primal subproblem, a simplicial approximation approach is used to obtain CRs that are feasible at each of their vertices. The algorithm terminates when there does not exist an integer solution that is better than the one previously used by the primal problem. Through a series of examples, the proposed algorithm is compared with a multiparametric mixed-integer outer approximation (mp-MIOA) algorithm to demonstrate its computational advantages. © 2012 American Institute of Chemical Engineers (AIChE).

  3. Application of a non-integer Bessel uniform approximation to inelastic molecular collisions

    International Nuclear Information System (INIS)

    Connor, J.N.L.; Mayne, H.R.

    1979-01-01

    A non-integer Bessel uniform approximation has been used to calculate transition probabilities for collinear atom-oscillator collisions. The collision systems used are a harmonic oscillator interacting via a Lennard-Jones potential and a Morse oscillator interacting via an exponential potential. Both classically allowed and classically forbidden transitions have been treated. The order of the Bessel function is chosen by a physical argument that makes use of information contained in the final-action initial-angle plot. Limitations of this procedure are discussed. It is shown that the non-integer Bessel approximation is accurate for elastic 0 → 0 collisions at high collision energies, where the integer Bessel approximation is inaccurate or inapplicable. (author)

  4. Hierarchical Hidden Markov Models for Multivariate Integer-Valued Time-Series

    DEFF Research Database (Denmark)

    Catania, Leopoldo; Di Mari, Roberto

    2018-01-01

    We propose a new flexible dynamic model for multivariate nonnegative integer-valued time-series. Observations are assumed to depend on the realization of two additional unobserved integer-valued stochastic variables which control for the time-and cross-dependence of the data. An Expectation......-Maximization algorithm for maximum likelihood estimation of the model's parameters is derived. We provide conditional and unconditional (cross)-moments implied by the model, as well as the limiting distribution of the series. A Monte Carlo experiment investigates the finite sample properties of our estimation...

  5. Integer factoring and modular square roots

    Czech Academy of Sciences Publication Activity Database

    Jeřábek, Emil

    2016-01-01

    Roč. 82, č. 2 (2016), s. 380-394 ISSN 0022-0000 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : integer factoring * quadratic residue * PPA Subject RIV: BA - General Mathematics Impact factor: 1.678, year: 2016 http://www.sciencedirect.com/science/article/pii/S0022000015000768

  6. Sequential computation of elementary modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear programming.

    Science.gov (United States)

    Song, Hyun-Seob; Goldberg, Noam; Mahajan, Ashutosh; Ramkrishna, Doraiswami

    2017-08-01

    Elementary (flux) modes (EMs) have served as a valuable tool for investigating structural and functional properties of metabolic networks. Identification of the full set of EMs in genome-scale networks remains challenging due to combinatorial explosion of EMs in complex networks. It is often, however, that only a small subset of relevant EMs needs to be known, for which optimization-based sequential computation is a useful alternative. Most of the currently available methods along this line are based on the iterative use of mixed integer linear programming (MILP), the effectiveness of which significantly deteriorates as the number of iterations builds up. To alleviate the computational burden associated with the MILP implementation, we here present a novel optimization algorithm termed alternate integer linear programming (AILP). Our algorithm was designed to iteratively solve a pair of integer programming (IP) and linear programming (LP) to compute EMs in a sequential manner. In each step, the IP identifies a minimal subset of reactions, the deletion of which disables all previously identified EMs. Thus, a subsequent LP solution subject to this reaction deletion constraint becomes a distinct EM. In cases where no feasible LP solution is available, IP-derived reaction deletion sets represent minimal cut sets (MCSs). Despite the additional computation of MCSs, AILP achieved significant time reduction in computing EMs by orders of magnitude. The proposed AILP algorithm not only offers a computational advantage in the EM analysis of genome-scale networks, but also improves the understanding of the linkage between EMs and MCSs. The software is implemented in Matlab, and is provided as supplementary information . hyunseob.song@pnnl.gov. Supplementary data are available at Bioinformatics online. Published by Oxford University Press 2017. This work is written by US Government employees and are in the public domain in the US.

  7. Obstacles and Affordances for Integer Reasoning: An Analysis of Children's Thinking and the History of Mathematics

    Science.gov (United States)

    Bishop, Jessica Pierson; Lamb, Lisa L.; Philipp, Randolph A.; Whitacre, Ian; Schappelle, Bonnie P.; Lewis, Melinda L.

    2014-01-01

    We identify and document 3 cognitive obstacles, 3 cognitive affordances, and 1 type of integer understanding that can function as either an obstacle or affordance for learners while they extend their numeric domains from whole numbers to include negative integers. In particular, we highlight 2 key subsets of integer reasoning: understanding or…

  8. Constrained Optimization of MIMO Training Sequences

    Directory of Open Access Journals (Sweden)

    Coon Justin P

    2007-01-01

    Full Text Available Multiple-input multiple-output (MIMO systems have shown a huge potential for increased spectral efficiency and throughput. With an increasing number of transmitting antennas comes the burden of providing training for channel estimation for coherent detection. In some special cases optimal, in the sense of mean-squared error (MSE, training sequences have been designed. However, in many practical systems it is not feasible to analytically find optimal solutions and numerical techniques must be used. In this paper, two systems (unique word (UW single carrier and OFDM with nulled subcarriers are considered and a method of designing near-optimal training sequences using nonlinear optimization techniques is proposed. In particular, interior-point (IP algorithms such as the barrier method are discussed. Although the two systems seem unrelated, the cost function, which is the MSE of the channel estimate, is shown to be effectively the same for each scenario. Also, additional constraints, such as peak-to-average power ratio (PAPR, are considered and shown to be easily included in the optimization process. Numerical examples illustrate the effectiveness of the designed training sequences, both in terms of MSE and bit-error rate (BER.

  9. A quantum architecture for multiplying signed integers

    International Nuclear Information System (INIS)

    Alvarez-Sanchez, J J; Alvarez-Bravo, J V; Nieto, L M

    2008-01-01

    A new quantum architecture for multiplying signed integers is presented based on Booth's algorithm, which is well known in classical computation. It is shown how a quantum binary chain might be encoded by its flank changes, giving the final product in 2's-complement representation.

  10. Chromosome structures: reduction of certain problems with unequal gene content and gene paralogs to integer linear programming.

    Science.gov (United States)

    Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin

    2017-12-06

    Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these

  11. An Aggregated Optimization Model for Multi-Head SMD Placements

    NARCIS (Netherlands)

    Ashayeri, J.; Ma, N.; Sotirov, R.

    2010-01-01

    In this article we propose an aggregate optimization approach by formulating the multi-head SMD placement optimization problem into a mixed integer program (MIP) with the variables based on batches of components. This MIP is tractable and effective in balancing workload among placement heads,

  12. An aggregated optimization model for multi-head SMD placements

    NARCIS (Netherlands)

    Ashayeri, J.; Ma, N.; Sotirov, R.

    2011-01-01

    In this article we propose an aggregate optimization approach by formulating the multi-head SMD placement optimization problem into a mixed integer program (MIP) with the variables based on batches of components. This MIP is tractable and effective in balancing workload among placement heads,

  13. THE PHENOMENON OF HALF-INTEGER SPIN, QUATERNIONS, AND PAULI MATRICES

    Directory of Open Access Journals (Sweden)

    FERNANDO R. GONZÁLEZ DÍAZ

    2017-01-01

    Full Text Available In this paper the phenomenon of half-integer spin exemplification Paul AM Dirac made with a pair of scissors, an elastic cord and chair play. Four examples in which the same phenomenon appears and the algebraic structure of quaternions is related to one of the examples are described. Mathematical proof of the phenomenon using known topological and algebraic results are explained. The basic results of algebraic structures are described quaternions H , and an intrinsic relationship with the phenomenon half-integer spin and the Pauli matrices is established.

  14. Mixed integer (0-1) fractional programming for decision support in paper production industry

    NARCIS (Netherlands)

    Claassen, G.D.H.

    2014-01-01

    This paper presents an effective and efficient method for solving a special class of mixed integer fractional programming (FP) problems. We take a classical reformulation approach for continuous FP as a starting point and extend it for solving a more general class of mixed integer (0–1) fractional

  15. Dynamic Optimization of Constrained Layer Damping Structure for the Headstock of Machine Tools with Modal Strain Energy Method

    Directory of Open Access Journals (Sweden)

    Yakai Xu

    2017-01-01

    Full Text Available Dynamic stiffness and damping of the headstock, which is a critical component of precision horizontal machining center, are two main factors that influence machining accuracy and surface finish quality. Constrained Layer Damping (CLD structure is proved to be effective in raising damping capacity for the thin plate and shell structures. In this paper, one kind of high damping material is utilized on the headstock to improve damping capacity. The dynamic characteristic of the hybrid headstock is investigated analytically and experimentally. The results demonstrate that the resonant response amplitudes of the headstock with damping material can decrease significantly compared to original cast structure. To obtain the optimal configuration of damping material, a topology optimization method based on the Evolutionary Structural Optimization (ESO is implemented. Modal Strain Energy (MSE method is employed to analyze the damping and to derive the sensitivity of the modal loss factor. The optimization results indicate that the added weight of damping material decreases by 50%; meanwhile the first two orders of modal loss factor decrease by less than 23.5% compared to the original structure.

  16. Design optimization of shell-and-tube heat exchangers using single objective and multiobjective particle swarm optimization

    International Nuclear Information System (INIS)

    Elsays, Mostafa A.; Naguib Aly, M; Badawi, Alya A.

    2010-01-01

    The Particle Swarm Optimization (PSO) algorithm is used to optimize the design of shell-and-tube heat exchangers and determine the optimal feasible solutions so as to eliminate trial-and-error during the design process. The design formulation takes into account the area and the total annual cost of heat exchangers as two objective functions together with operating as well as geometrical constraints. The Nonlinear Constrained Single Objective Particle Swarm Optimization (NCSOPSO) algorithm is used to minimize and find the optimal feasible solution for each of the nonlinear constrained objective functions alone, respectively. Then, a novel Nonlinear Constrained Mult-objective Particle Swarm Optimization (NCMOPSO) algorithm is used to minimize and find the Pareto optimal solutions for both of the nonlinear constrained objective functions together. The experimental results show that the two algorithms are very efficient, fast and can find the accurate optimal feasible solutions of the shell and tube heat exchangers design optimization problem. (orig.)

  17. An Efficient Integer Coding and Computing Method for Multiscale Time Segment

    Directory of Open Access Journals (Sweden)

    TONG Xiaochong

    2016-12-01

    Full Text Available This article focus on the exist problem and status of current time segment coding, proposed a new set of approach about time segment coding: multi-scale time segment integer coding (MTSIC. This approach utilized the tree structure and the sort by size formed among integer, it reflected the relationship among the multi-scale time segments: order, include/contained, intersection, etc., and finally achieved an unity integer coding processing for multi-scale time. On this foundation, this research also studied the computing method for calculating the time relationships of MTSIC, to support an efficient calculation and query based on the time segment, and preliminary discussed the application method and prospect of MTSIC. The test indicated that, the implement of MTSIC is convenient and reliable, and the transformation between it and the traditional method is convenient, it has the very high efficiency in query and calculating.

  18. Comparing Mixed & Integer Programming vs. Constraint Programming by solving Job-Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Renata Melo e Silva de Oliveira

    2015-03-01

    Full Text Available Scheduling is a key factor for operations management as well as for business success. From industrial Job-shop Scheduling problems (JSSP, many optimization challenges have emerged since de 1960s when improvements have been continuously required such as bottlenecks allocation, lead-time reductions and reducing response time to requests.  With this in perspective, this work aims to discuss 3 different optimization models for minimizing Makespan. Those 3 models were applied on 17 classical problems of examples JSSP and produced different outputs.  The first model resorts on Mixed and Integer Programming (MIP and it resulted on optimizing 60% of the studied problems. The other models were based on Constraint Programming (CP and approached the problem in two different ways: a model CP1 is a standard IBM algorithm whereof restrictions have an interval structure that fail to solve 53% of the proposed instances, b Model CP-2 approaches the problem with disjunctive constraints and optimized 88% of the instances. In this work, each model is individually analyzed and then compared considering: i Optimization success performance, ii Computational processing time, iii Greatest Resource Utilization and, iv Minimum Work-in-process Inventory. Results demonstrated that CP-2 presented best results on criteria i and ii, but MIP was superior on criteria iii and iv and those findings are discussed at the final section of this work.

  19. STUDI PERBANDINGAN PERFORMANCE ALGORITMA HEURISTIK POUR TERHADAP MIXED INTEGER PROGRAMMING DALAM MENYELESAIKAN PENJADWALAN FLOWSHOP

    Directory of Open Access Journals (Sweden)

    Tessa Vanina Soetanto

    2004-01-01

    Full Text Available This paper presents a study about new heuristic algorithm performance compared to Mixed Integer Programming (MIP method in solving flowshop scheduling problem to reach minimum makespan. Performance appraisal is based on Efficiency Index (EI, Relative Error (RE and Elapsed Runtime. Abstract in Bahasa Indonesia : Makalah ini menyajikan penelitian tentang performance algoritma heuristik Pour terhadap metode Mixed Integer Programming (MIP dalam menyelesaikan masalah penjadwalan flowshop dengan tujuan meminimalkan makespan. Penilaian performance dilakukan berdasarkan nilai Efficiency Index (EI, Relative Error (RE dan Elapsed Runtime. Kata kunci: flowshop, makespan, algoritma heuristik Pour, Mixed Integer Programming.

  20. Optimal interconnection and renewable targets for north-west Europe

    International Nuclear Information System (INIS)

    Lynch, Muireann Á.; Tol, Richard S.J.; O'Malley, Mark J.

    2012-01-01

    We present a mixed-integer, linear programming model for determining optimal interconnection for a given level of renewable generation using a cost minimisation approach. Optimal interconnection and capacity investment decisions are determined under various targets for renewable penetration. The model is applied to a test system for eight regions in Northern Europe. It is found that considerations on the supply side dominate demand side considerations when determining optimal interconnection investment: interconnection is found to decrease generation capacity investment and total costs only when there is a target for renewable generation. Higher wind integration costs see a concentration of wind in high-wind regions with interconnection to other regions. - Highlights: ► We use mixed-integer linear programming to determine optimal interconnection locations for given renewable targets. ► The model is applied to a test system for eight regions in Northern Europe. ► Interconnection reduces costs only when there is a renewable target. ► Wind integration costs affect the interconnection portfolio.

  1. Pole shifting with constrained output feedback

    International Nuclear Information System (INIS)

    Hamel, D.; Mensah, S.; Boisvert, J.

    1984-03-01

    The concept of pole placement plays an important role in linear, multi-variable, control theory. It has received much attention since its introduction, and several pole shifting algorithms are now available. This work presents a new method which allows practical and engineering constraints such as gain limitation and controller structure to be introduced right into the pole shifting design strategy. This is achieved by formulating the pole placement problem as a constrained optimization problem. Explicit constraints (controller structure and gain limits) are defined to identify an admissible region for the feedback gain matrix. The desired pole configuration is translated into an appropriate cost function which must be closed-loop minimized. The resulting constrained optimization problem can thus be solved with optimization algorithms. The method has been implemented as an algorithmic interactive module in a computer-aided control system design package, MVPACK. The application of the method is illustrated to design controllers for an aircraft and an evaporator. The results illustrate the importance of controller structure on overall performance of a control system

  2. MO-FG-CAMPUS-TeP2-01: A Graph Form ADMM Algorithm for Constrained Quadratic Radiation Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X; Belcher, AH; Wiersma, R [The University of Chicago, Chicago, IL (United States)

    2016-06-15

    Purpose: In radiation therapy optimization the constraints can be either hard constraints which must be satisfied or soft constraints which are included but do not need to be satisfied exactly. Currently the voxel dose constraints are viewed as soft constraints and included as a part of the objective function and approximated as an unconstrained problem. However in some treatment planning cases the constraints should be specified as hard constraints and solved by constrained optimization. The goal of this work is to present a computation efficiency graph form alternating direction method of multipliers (ADMM) algorithm for constrained quadratic treatment planning optimization and compare it with several commonly used algorithms/toolbox. Method: ADMM can be viewed as an attempt to blend the benefits of dual decomposition and augmented Lagrangian methods for constrained optimization. Various proximal operators were first constructed as applicable to quadratic IMRT constrained optimization and the problem was formulated in a graph form of ADMM. A pre-iteration operation for the projection of a point to a graph was also proposed to further accelerate the computation. Result: The graph form ADMM algorithm was tested by the Common Optimization for Radiation Therapy (CORT) dataset including TG119, prostate, liver, and head & neck cases. Both unconstrained and constrained optimization problems were formulated for comparison purposes. All optimizations were solved by LBFGS, IPOPT, Matlab built-in toolbox, CVX (implementing SeDuMi) and Mosek solvers. For unconstrained optimization, it was found that LBFGS performs the best, and it was 3–5 times faster than graph form ADMM. However, for constrained optimization, graph form ADMM was 8 – 100 times faster than the other solvers. Conclusion: A graph form ADMM can be applied to constrained quadratic IMRT optimization. It is more computationally efficient than several other commercial and noncommercial optimizers and it also

  3. Constrained Dynamic Optimality and Binomial Terminal Wealth

    DEFF Research Database (Denmark)

    Pedersen, J. L.; Peskir, G.

    2018-01-01

    with interest rate $r \\in {R}$). Letting $P_{t,x}$ denote a probability measure under which $X^u$ takes value $x$ at time $t,$ we study the dynamic version of the nonlinear optimal control problem $\\inf_u\\, Var{t,X_t^u}(X_T^u)$ where the infimum is taken over admissible controls $u$ subject to $X_t^u \\ge e...... a martingale method combined with Lagrange multipliers, we derive the dynamically optimal control $u_*^d$ in closed form and prove that the dynamically optimal terminal wealth $X_T^d$ can only take two values $g$ and $\\beta$. This binomial nature of the dynamically optimal strategy stands in sharp contrast...... with other known portfolio selection strategies encountered in the literature. A direct comparison shows that the dynamically optimal (time-consistent) strategy outperforms the statically optimal (time-inconsistent) strategy in the problem....

  4. Pricing and lot sizing optimization in a two-echelon supply chain with a constrained Logit demand function

    Directory of Open Access Journals (Sweden)

    Yeison Díaz-Mateus

    2017-07-01

    Full Text Available Decision making in supply chains is influenced by demand variations, and hence sales, purchase orders and inventory levels are therefore concerned. This paper presents a non-linear optimization model for a two-echelon supply chain, for a unique product. In addition, the model includes the consumers’ maximum willingness to pay, taking socioeconomic differences into account. To do so, the constrained multinomial logit for discrete choices is used to estimate demand levels. Then, a metaheuristic approach based on particle swarm optimization is proposed to determine the optimal product sales price and inventory coordination variables. To validate the proposed model, a supply chain of a technological product was chosen and three scenarios are analyzed: discounts, demand segmentation and demand overestimation. Results are analyzed on the basis of profits, lotsizing and inventory turnover and market share. It can be concluded that the maximum willingness to pay must be taken into consideration, otherwise fictitious profits may mislead decision making, and although the market share would seem to improve, overall profits are not in fact necessarily better.

  5. Winding numbers in homotopy theory from integers to reals

    International Nuclear Information System (INIS)

    Mekhfi, M.

    1993-07-01

    In Homotopy Theory (HT) we define paths on a given topological space. Closed paths prove to be construction elements of a group (the fundamental group) Π 1 and carry charges, the winding numbers. The charges are integers as they indicate how many times closed paths encircle a given hole (or set of holes). Open paths as they are defined in (HT) do not possess any groups structure and as such they are less useful in topology. In the present paper we enlarge the concept of a path in such a way that both types of paths do possess a group structure. In this broad sense we have two fundamental groups the Π i = Z group and the SO(2) group of rotations but the latter has the global property that there is no periodicity in the rotation angle. There is also two charge operators W and W λ whose eigenvalues are either integers or reals depending respectively on the paths being closed or open. Also the SO(2) group and the real charge operator W λ are not independently defined but directly related respectively to the Π i group and to the integer charge operator W. Thus well defined links can be established between seemingly different groups and charges. (author). 3 refs, 1 fig

  6. Metamorphic Testing Integer Overflow Faults of Mission Critical Program: A Case Study

    Directory of Open Access Journals (Sweden)

    Zhanwei Hui

    2013-01-01

    Full Text Available For mission critical programs, integer overflow is one of the most dangerous faults. Different testing methods provide several effective ways to detect the defect. However, it is hard to validate the testing outputs, because the oracle of testing is not always available or too expensive to get, unless the program throws an exception obviously. In the present study, the authors conduct a case study, where the authors apply a metamorphic testing (MT method to detect the integer overflow defect and alleviate the oracle problem in testing critical program of Traffic Collision Avoidance System (TCAS. Experimental results show that, in revealing typical integer mutations, compared with traditional safety property testing method, MT with a novel symbolic metamorphic relation is more effective than the traditional method in some cases.

  7. Integers in number systems with positive and negative quadratic Pisot base

    OpenAIRE

    Masáková, Zuzana; Vávra, Tomáš

    2013-01-01

    We consider numeration systems with base $\\beta$ and $-\\beta$, for quadratic Pisot numbers $\\beta$ and focus on comparing the combinatorial structure of the sets $\\Z_\\beta$ and $\\Z_{-\\beta}$ of numbers with integer expansion in base $\\beta$, resp. $-\\beta$. Our main result is the comparison of languages of infinite words $u_\\beta$ and $u_{-\\beta}$ coding the ordering of distances between consecutive $\\beta$- and $(-\\beta)$-integers. It turns out that for a class of roots $\\beta$ of $x^2-mx-m$...

  8. Assessment of electricity demand-supply in health facilities in resource-constrained settings : optimization and evaluation of energy systems for a case in Rwanda

    NARCIS (Netherlands)

    Palacios, S.G.

    2015-01-01

    In health facilities in resource-constrained settings, a lack of access to sustainable and reliable electricity can result on a sub-optimal delivery of healthcare services, as they do not have lighting for medical procedures and power to run essential equipment and devices to treat their patients.

  9. The application of the fall-vector method in decomposition schemes for the solution of integer linear programming problems

    International Nuclear Information System (INIS)

    Sergienko, I.V.; Golodnikov, A.N.

    1984-01-01

    This article applies the methods of decompositions, which are used to solve continuous linear problems, to integer and partially integer problems. The fall-vector method is used to solve the obtained coordinate problems. An algorithm of the fall-vector is described. The Kornai-Liptak decomposition principle is used to reduce the integer linear programming problem to integer linear programming problems of a smaller dimension and to a discrete coordinate problem with simple constraints

  10. A fuzzy mixed integer programming for marketing planning

    Directory of Open Access Journals (Sweden)

    Abolfazl Danaei

    2014-03-01

    Full Text Available One of the primary concerns to market a product is to find appropriate channel to target customers. The recent advances on information technology have created new products with tremendous opportunities. This paper presents a mixed integer programming technique based on McCarthy's 4PS to locate suitable billboards for marketing newly introduced IPHONE product. The paper considers two types of information including age and income and tries to find the best places such that potential consumers aged 25-35 with high income visit the billboards and the cost of advertisement is minimized. The model is formulated in terms of mixed integer programming and it has been applied for potential customers who live in city of Tabriz, Iran. Using a typical software package, the model detects appropriate places in various parts of the city.

  11. Fabry-Perot Interferometry in the Integer and Fractional Quantum Hall Regimes

    Science.gov (United States)

    McClure, Douglas; Chang, Willy; Kou, Angela; Marcus, Charles; Pfeiffer, Loren; West, Ken

    2011-03-01

    We present measurements of electronic Fabry-Perot interferometers in the integer and fractional quantum Hall regimes. Two classes of resistance oscillations may be seen as a function of magnetic field and gate voltage, as we have previously reported. In small interferometers in the integer regime, oscillations of the type associated with Coulomb interaction are ubiquitous, while those consistent with single-particle Aharonov-Bohm interference are seen to co-exist in some configurations. The amplitude scaling of both types with temperature and device size is consistent with a theoretical model. Oscillations are further observed in the fractional quantum Hall regime. Here the dependence of the period on the filling factors in the constrictions and bulk of the interferometer can shed light on the effective charge of the interfering quasiparticles, but care is needed to distinguish these oscillations from those associated with integer quantum Hall states. We acknowledge funding from Microsoft Project Q and IBM.

  12. An Algoritm for the Alocation Optimization of Trading Executions

    Directory of Open Access Journals (Sweden)

    Claudiu Vinte

    2006-02-01

    Full Text Available In this paper, I wish to propose the Integer Allocation employing Tabu Search in conjunction with Simulated Annealing Heuristics for optimizing the distribution of trading executions in investors’ accounts. There is no polynomial algorithm discovered for Integer Linear Programming (a problem which is NP-complete. Generally, the practical experience shows that large-scale integer linear programs seem as yet practically unsolvable or extremely time-consuming. The algorithm described herein proposes an alternative approach to the problem. The algorithm consists of three steps: allocate the total executed quantity proportionally on the accounts, based on the allocation instructions (pro-rata basis; construct an initial solution, distributing the executed prices; improve the solution iteratively, employing Tabu Search in conjunction with Simulated Annealing heuristics.

  13. Network Model for The Problem of Integer Balancing of a Fourdimensional Matrix

    Directory of Open Access Journals (Sweden)

    A. V. Smirnov

    2016-01-01

    Full Text Available The problem of integer balancing of a four-dimensional matrix is studied. The elements of the inner part (all four indices are greater than zero of the given real matrix are summed in each direction and each two- and three-dimensional section of the matrix; the total sum is also found. These sums are placed into the elements where one or more indices are equal to zero (according to the summing directions. The problem is to find an integer matrix of the same structure, which can be produced from the initial one by replacing the elements with the largest previous or the smallest following integer. At the same time, the element with four zero indices should be produced with standard rules of rounding - off. In the article the problem of finding the maximum multiple flow in the network of any natural multiplicity   is also studied. There are arcs of three types: ordinary arcs, multiple arcs and multi-arcs. Each multiple and multi-arc is a union of   linked arcs, which are adjusted with each other. The network constructing rules are described. The definitions of a divisible network and some associated subjects are stated. There are defined the basic principles for reducing the integer balancing problem of an  -dimensional matrix (  to the problem of finding the maximum flow in a divisible multiple network of multiplicity  . There are stated the rules for reducing the four-dimensional balancing problem to the maximum flow problem in the network of multiplicity 5. The algorithm of finding the maximum flow, which meets the solvability conditions for the integer balancing problem, is formulated for such a network.

  14. Multi-objective hybrid PSO-APO algorithm based security constrained optimal power flow with wind and thermal generators

    Directory of Open Access Journals (Sweden)

    Kiran Teeparthi

    2017-04-01

    Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.

  15. Integer batch scheduling problems for a single-machine with simultaneous effect of learning and forgetting to minimize total actual flow time

    Directory of Open Access Journals (Sweden)

    Rinto Yusriski

    2015-09-01

    Full Text Available This research discusses an integer batch scheduling problems for a single-machine with position-dependent batch processing time due to the simultaneous effect of learning and forgetting. The decision variables are the number of batches, batch sizes, and the sequence of the resulting batches. The objective is to minimize total actual flow time, defined as total interval time between the arrival times of parts in all respective batches and their common due date. There are two proposed algorithms to solve the problems. The first is developed by using the Integer Composition method, and it produces an optimal solution. Since the problems can be solved by the first algorithm in a worst-case time complexity O(n2n-1, this research proposes the second algorithm. It is a heuristic algorithm based on the Lagrange Relaxation method. Numerical experiments show that the heuristic algorithm gives outstanding results.

  16. A grey-forecasting interval-parameter mixed-integer programming approach for integrated electric-environmental management–A case study of Beijing

    International Nuclear Information System (INIS)

    Wang, Xingwei; Cai, Yanpeng; Chen, Jiajun; Dai, Chao

    2013-01-01

    In this study, a GFIPMIP (grey-forecasting interval-parameter mixed-integer programming) approach was developed for supporting IEEM (integrated electric-environmental management) in Beijing. It was an attempt to incorporate an energy-forecasting model within a general modeling framework at the municipal level. The developed GFIPMIP model can not only forecast electric demands, but also reflect dynamic, interactive, and uncertain characteristics of the IEEM system in Beijing. Moreover, it can address issues regarding power supply, and emission reduction of atmospheric pollutants and GHG (greenhouse gas). Optimal solutions were obtained related to power generation patterns and facility capacity expansion schemes under a series of system constraints. Two scenarios were analyzed based on multiple environmental policies. The results were useful for helping decision makers identify desired management strategies to guarantee the city's power supply and mitigate emissions of GHG and atmospheric pollutants. The results also suggested that the developed GFIPMIP model be applicable to similar engineering problems. - Highlights: • A grey-forecasting interval-parameter mixed integer programming (GFIPMIP) approach was developed. • It could reflect dynamic, interactive, and uncertain characteristics of an IEEM system. • The developed GFIPMIP approach was used for supporting IEEM system planning in Beijing. • Two scenarios were established based on different environmental policies and management targets. • Optimal schemes for power generation, energy supply, and environmental protection were identified

  17. On the optimal identification of tag sets in time-constrained RFID configurations.

    Science.gov (United States)

    Vales-Alonso, Javier; Bueno-Delgado, María Victoria; Egea-López, Esteban; Alcaraz, Juan José; Pérez-Mañogil, Juan Manuel

    2011-01-01

    In Radio Frequency Identification facilities the identification delay of a set of tags is mainly caused by the random access nature of the reading protocol, yielding a random identification time of the set of tags. In this paper, the cumulative distribution function of the identification time is evaluated using a discrete time Markov chain for single-set time-constrained passive RFID systems, namely those ones where a single group of tags is assumed to be in the reading area and only for a bounded time (sojourn time) before leaving. In these scenarios some tags in a set may leave the reader coverage area unidentified. The probability of this event is obtained from the cumulative distribution function of the identification time as a function of the sojourn time. This result provides a suitable criterion to minimize the probability of losing tags. Besides, an identification strategy based on splitting the set of tags in smaller subsets is also considered. Results demonstrate that there are optimal splitting configurations that reduce the overall identification time while keeping the same probability of losing tags.

  18. Statistical mechanics of budget-constrained auctions

    OpenAIRE

    Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.

    2009-01-01

    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). Based on the cavity method of statistical mechanics, we introduce a message passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution,...

  19. Experimental design approach to the process parameter optimization for laser welding of martensitic stainless steels in a constrained overlap configuration

    Science.gov (United States)

    Khan, M. M. A.; Romoli, L.; Fiaschi, M.; Dini, G.; Sarri, F.

    2011-02-01

    This paper presents an experimental design approach to process parameter optimization for the laser welding of martensitic AISI 416 and AISI 440FSe stainless steels in a constrained overlap configuration in which outer shell was 0.55 mm thick. To determine the optimal laser-welding parameters, a set of mathematical models were developed relating welding parameters to each of the weld characteristics. These were validated both statistically and experimentally. The quality criteria set for the weld to determine optimal parameters were the minimization of weld width and the maximization of weld penetration depth, resistance length and shearing force. Laser power and welding speed in the range 855-930 W and 4.50-4.65 m/min, respectively, with a fiber diameter of 300 μm were identified as the optimal set of process parameters. However, the laser power and welding speed can be reduced to 800-840 W and increased to 4.75-5.37 m/min, respectively, to obtain stronger and better welds.

  20. Convex optimisation approach to constrained fuel optimal control of spacecraft in close relative motion

    Science.gov (United States)

    Massioni, Paolo; Massari, Mauro

    2018-05-01

    This paper describes an interesting and powerful approach to the constrained fuel-optimal control of spacecraft in close relative motion. The proposed approach is well suited for problems under linear dynamic equations, therefore perfectly fitting to the case of spacecraft flying in close relative motion. If the solution of the optimisation is approximated as a polynomial with respect to the time variable, then the problem can be approached with a technique developed in the control engineering community, known as "Sum Of Squares" (SOS), and the constraints can be reduced to bounds on the polynomials. Such a technique allows rewriting polynomial bounding problems in the form of convex optimisation problems, at the cost of a certain amount of conservatism. The principles of the techniques are explained and some application related to spacecraft flying in close relative motion are shown.

  1. A GA based penalty function technique for solving constrained redundancy allocation problem of series system with interval valued reliability of components

    Science.gov (United States)

    Gupta, R. K.; Bhunia, A. K.; Roy, D.

    2009-10-01

    In this paper, we have considered the problem of constrained redundancy allocation of series system with interval valued reliability of components. For maximizing the overall system reliability under limited resource constraints, the problem is formulated as an unconstrained integer programming problem with interval coefficients by penalty function technique and solved by an advanced GA for integer variables with interval fitness function, tournament selection, uniform crossover, uniform mutation and elitism. As a special case, considering the lower and upper bounds of the interval valued reliabilities of the components to be the same, the corresponding problem has been solved. The model has been illustrated with some numerical examples and the results of the series redundancy allocation problem with fixed value of reliability of the components have been compared with the existing results available in the literature. Finally, sensitivity analyses have been shown graphically to study the stability of our developed GA with respect to the different GA parameters.

  2. Optimal load scheduling in commercial and residential microgrids

    Science.gov (United States)

    Ganji Tanha, Mohammad Mahdi

    Residential and commercial electricity customers use more than two third of the total energy consumed in the United States, representing a significant resource of demand response. Price-based demand response, which is in response to changes in electricity prices, represents the adjustments in load through optimal load scheduling (OLS). In this study, an efficient model for OLS is developed for residential and commercial microgrids which include aggregated loads in single-units and communal loads. Single unit loads which include fixed, adjustable and shiftable loads are controllable by the unit occupants. Communal loads which include pool pumps, elevators and central heating/cooling systems are shared among the units. In order to optimally schedule residential and commercial loads, a community-based optimal load scheduling (CBOLS) is proposed in this thesis. The CBOLS schedule considers hourly market prices, occupants' comfort level, and microgrid operation constraints. The CBOLS' objective in residential and commercial microgrids is the constrained minimization of the total cost of supplying the aggregator load, defined as the microgrid load minus the microgrid generation. This problem is represented by a large-scale mixed-integer optimization for supplying single-unit and communal loads. The Lagrangian relaxation methodology is used to relax the linking communal load constraint and decompose the independent single-unit functions into subproblems which can be solved in parallel. The optimal solution is acceptable if the aggregator load limit and the duality gap are within the bounds. If any of the proposed criteria is not satisfied, the Lagrangian multiplier will be updated and a new optimal load schedule will be regenerated until both constraints are satisfied. The proposed method is applied to several case studies and the results are presented for the Galvin Center load on the 16th floor of the IIT Tower in Chicago.

  3. Triangular Numbers, Gaussian Integers, and KenKen

    Science.gov (United States)

    Watkins, John J.

    2012-01-01

    Latin squares form the basis for the recreational puzzles sudoku and KenKen. In this article we show how useful several ideas from number theory are in solving a KenKen puzzle. For example, the simple notion of triangular number is surprisingly effective. We also introduce a variation of KenKen that uses the Gaussian integers in order to…

  4. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  5. Integer Quantum Magnon Hall Plateau-Plateau Transition in a Spin Ice Model

    OpenAIRE

    Xu, Baolong; Ohtsuki, Tomi; Shindou, Ryuichi

    2016-01-01

    Low-energy magnon bands in a two-dimensional spin ice model become integer quantum magnon Hall bands. By calculating the localization length and the two-terminal conductance of magnon transport, we show that the magnon bands with disorders undergo a quantum phase transition from an integer quantum magnon Hall regime to a conventional magnon localized regime. Finite size scaling analysis as well as a critical conductance distribution shows that the quantum critical point belongs to the same un...

  6. Quadratic Sieve integer factorization using Hadoop

    OpenAIRE

    Ghebregiorgish, Semere Tsehaye

    2012-01-01

    Master's thesis in Computer Science Integer factorization problem is one of the most important parts in the world of cryptography. The security of the widely-used public-key cryptographic algorithm, RSA [1], and the Blum Blum Shub cryptographic pseudorandom number generator [2] heavily depend on the presumed difficulty of factoring a number to its prime constituents. As the size of the number to be factored gets larger, the difficulty of the problem increases enormously. Thi...

  7. Discrete-continuous analysis of optimal equipment replacement

    OpenAIRE

    YATSENKO, Yuri; HRITONENKO, Natali

    2008-01-01

    In Operations Research, the equipment replacement process is usually modeled in discrete time. The optimal replacement strategies are found from discrete (or integer) programming problems, well known for their analytic and computational complexity. An alternative approach is represented by continuous-time vintage capital models that explicitly involve the equipment lifetime and are described by nonlinear integral equations. Then the optimal replacement is determined via the opt...

  8. Selecting Tools to Model Integer and Binomial Multiplication

    Science.gov (United States)

    Pratt, Sarah Smitherman; Eddy, Colleen M.

    2017-01-01

    Mathematics teachers frequently provide concrete manipulatives to students during instruction; however, the rationale for using certain manipulatives in conjunction with concepts may not be explored. This article focuses on area models that are currently used in classrooms to provide concrete examples of integer and binomial multiplication. The…

  9. Core barrier formation near integer q surfaces in DIII-D

    International Nuclear Information System (INIS)

    Austin, M. E.; Gentle, K. W.; Burrell, K. H.; Waltz, R. E.; Gohil, P.; Greenfield, C. M.; Groebner, R. J.; Petty, C. C.; Prater, R.; Heidbrink, W. W.; Luo, Y.; Kinsey, J. E.; Makowski, M. A.; McKee, G. R.; Shafer, M. W.; Nazikian, R.; Rhodes, T. L.; Van Zeeland, M. A.

    2006-01-01

    Recent DIII-D experiments have significantly improved the understanding of internal transport barriers (ITBs) that are triggered close to the time when an integer value of the minimum in q is crossed. While this phenomenon has been observed on many tokamaks, the extensive transport and fluctuation diagnostics on DIII-D have permitted a detailed study of the generation mechanisms of q-triggered ITBs as pertaining to turbulence suppression dynamics, shear flows, and energetic particle modes. In these discharges, the evolution of the q profile is measured using motional Stark effect polarimetry and the integer q min crossings are further pinpointed in time by the observation of Alfven cascades. High time resolution measurements of the ion and electron temperatures and the toroidal rotation show that the start of improved confinement is simultaneous in all three channels, and that this event precedes the traversal of integer q min by 5-20 ms. There is no significant low-frequency magnetohydrodynamic activity prior to or just after the crossing of the integer q min and hence magnetic reconnection is determined not to be the precipitant of the confinement change. Instead, results from the GYRO code point to the effects of zonal flows near low order rational q values as playing a role in ITB triggering. A reduction in local turbulent fluctuations is observed at the start of the temperature rise and, concurrently, an increase in turbulence poloidal flow velocity and flow shear is measured with the beam emission spectroscopy diagnostic. For the case of a transition to an enduring internal barrier the fluctuation level remains at a reduced amplitude. The timing and nature of the temperature, rotation, and fluctuation changes leading to internal barriers suggests transport improvement due to increased shear flow arising from the zonal flow structures

  10. A New Method Based on Simulation-Optimization Approach to Find Optimal Solution in Dynamic Job-shop Scheduling Problem with Breakdown and Rework

    Directory of Open Access Journals (Sweden)

    Farzad Amirkhani

    2017-03-01

    The proposed method is implemented on classical job-shop problems with objective of makespan and results are compared with mixed integer programming model. Moreover, the appropriate dispatching priorities are achieved for dynamic job-shop problem minimizing a multi-objective criteria. The results show that simulation-based optimization are highly capable to capture the main characteristics of the shop and produce optimal/near-optimal solutions with highly credibility degree.

  11. SmartFix: Indoor Locating Optimization Algorithm for Energy-Constrained Wearable Devices

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2017-01-01

    Full Text Available Indoor localization technology based on Wi-Fi has long been a hot research topic in the past decade. Despite numerous solutions, new challenges have arisen along with the trend of smart home and wearable computing. For example, power efficiency needs to be significantly improved for resource-constrained wearable devices, such as smart watch and wristband. For a Wi-Fi-based locating system, most of the energy consumption can be attributed to real-time radio scan; however, simply reducing radio data collection will cause a serious loss of locating accuracy because of unstable Wi-Fi signals. In this paper, we present SmartFix, an optimization algorithm for indoor locating based on Wi-Fi RSS. SmartFix utilizes user motion features, extracts characteristic value from history trajectory, and corrects deviation caused by unstable Wi-Fi signals. We implemented a prototype of SmartFix both on Moto 360 2nd-generation Smartwatch and on HTC One Smartphone. We conducted experiments both in a large open area and in an office hall. Experiment results demonstrate that average locating error is less than 2 meters for more than 80% cases, and energy consumption is only 30% of Wi-Fi fingerprinting method under the same experiment circumstances.

  12. A new VLSI complex integer multiplier which uses a quadratic-polynomial residue system with Fermat numbers

    Science.gov (United States)

    Shyu, H. C.; Reed, I. S.; Truong, T. K.; Hsu, I. S.; Chang, J. J.

    1987-01-01

    A quadratic-polynomial Fermat residue number system (QFNS) has been used to compute complex integer multiplications. The advantage of such a QFNS is that a complex integer multiplication requires only two integer multiplications. In this article, a new type Fermat number multiplier is developed which eliminates the initialization condition of the previous method. It is shown that the new complex multiplier can be implemented on a single VLSI chip. Such a chip is designed and fabricated in CMOS-Pw technology.

  13. Bi-objective optimization for multi-modal transportation routing planning problem based on Pareto optimality

    Directory of Open Access Journals (Sweden)

    Yan Sun

    2015-09-01

    Full Text Available Purpose: The purpose of study is to solve the multi-modal transportation routing planning problem that aims to select an optimal route to move a consignment of goods from its origin to its destination through the multi-modal transportation network. And the optimization is from two viewpoints including cost and time. Design/methodology/approach: In this study, a bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. Minimizing the total transportation cost and the total transportation time are set as the optimization objectives of the model. In order to balance the benefit between the two objectives, Pareto optimality is utilized to solve the model by gaining its Pareto frontier. The Pareto frontier of the model can provide the multi-modal transportation operator (MTO and customers with better decision support and it is gained by the normalized normal constraint method. Then, an experimental case study is designed to verify the feasibility of the model and Pareto optimality by using the mathematical programming software Lingo. Finally, the sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case. Findings: The calculation results indicate that the proposed model and Pareto optimality have good performance in dealing with the bi-objective optimization. The sensitivity analysis also shows the influence of the variation of the demand and supply on the multi-modal transportation organization clearly. Therefore, this method can be further promoted to the practice. Originality/value: A bi-objective mixed integer linear programming model is proposed to optimize the multi-modal transportation routing planning problem. The Pareto frontier based sensitivity analysis of the demand and supply in the multi-modal transportation organization is performed based on the designed case.

  14. Wavelet library for constrained devices

    Science.gov (United States)

    Ehlers, Johan Hendrik; Jassim, Sabah A.

    2007-04-01

    The wavelet transform is a powerful tool for image and video processing, useful in a range of applications. This paper is concerned with the efficiency of a certain fast-wavelet-transform (FWT) implementation and several wavelet filters, more suitable for constrained devices. Such constraints are typically found on mobile (cell) phones or personal digital assistants (PDA). These constraints can be a combination of; limited memory, slow floating point operations (compared to integer operations, most often as a result of no hardware support) and limited local storage. Yet these devices are burdened with demanding tasks such as processing a live video or audio signal through on-board capturing sensors. In this paper we present a new wavelet software library, HeatWave, that can be used efficiently for image/video processing/analysis tasks on mobile phones and PDA's. We will demonstrate that HeatWave is suitable for realtime applications with fine control and range to suit transform demands. We shall present experimental results to substantiate these claims. Finally this library is intended to be of real use and applied, hence we considered several well known and common embedded operating system platform differences; such as a lack of common routines or functions, stack limitations, etc. This makes HeatWave suitable for a range of applications and research projects.

  15. Pinning mode of integer quantum Hall Wigner crystal of skyrmions

    Science.gov (United States)

    Zhu, Han; Sambandamurthy, G.; Chen, Y. P.; Jiang, P.-H.; Engel, L. W.; Tsui, D. C.; Pfeiffer, L. N.; West, K. W.

    2009-03-01

    Just away from integer Landau level (LL) filling factors ν, the dilute quasi-particles/holes at the partially filled LL form an integer-quantum-Hall Wigner crystal, which exhibits microwave pinning mode resonances [1]. Due to electron-electron interaction, it was predicted that the elementary excitation around ν= 1 is not a single spin flip, but a larger-scale spin texture, known as a skyrmion [2]. We have compared the pinning mode resonances [1] of integer quantum Hall Wigner crystals formed in the partly filled LL just away from ν= 1 and ν= 2, in the presence of an in-plane magnetic field. As an in-plane field is applied, the peak frequencies of the resonances near ν= 1 increase, while the peak frequencies below ν= 2 show neligible dependence on in-plane field. We interpret this observation as due to a skyrmion crystal phase around ν= 1 and a single-hole Wigner crystal phase below ν= 2. The in-plane field increases the Zeeman gap and causes shrinking of the skyrmion size toward single spin flips. [1] Yong P. Chen et al., Phys. Rev. Lett. 91, 016801 (2003). [2] S. L. Sondhi et al., Phys. Rev. B 47, 16 419 (1993); L. Brey et al., Phys. Rev. Lett. 75, 2562 (1995).

  16. Allocating the Fixed Resources and Setting Targets in Integer Data Envelopment Analysis

    Directory of Open Access Journals (Sweden)

    Kobra Gholami

    2013-11-01

    Full Text Available Data envelopment analysis (DEA is a non-parametric approach to evaluate a set of decision making units (DMUs consuming multiple inputs to produce multiple outputs. Formally, DEA use to estimate the efficiency score into the empirical efficient frontier. Also, DEA can be used to allocate resources and set targets for future forecast. The data are continuous in the standard DEA model whereas there are many problems in the real life that data must be integer such as number of employee, machinery, expert and so on. Thus in this paper we propose an approach to allocate fixed resources and set fixed targets with selective integer assumption that is based on an integer data envelopment analysis (IDEA approach for the first time. The major aim in this approach is preserving the efficiency score of DMUs. We use the concept of benchmarking to reach this aim. The numerical example gets to illustrate the applicability of the proposed method.

  17. Note on Integer-Valued Bilinear Time Series Models

    NARCIS (Netherlands)

    Drost, F.C.; van den Akker, R.; Werker, B.J.M.

    2007-01-01

    Summary. This note reconsiders the nonnegative integer-valued bilinear processes introduced by Doukhan, Latour, and Oraichi (2006). Using a hidden Markov argument, we extend their result of the existence of a stationary solution for the INBL(1,0,1,1) process to the class of superdiagonal INBL(p; q;

  18. Computer Corner: Spreadsheets, Power Series, Generating Functions, and Integers.

    Science.gov (United States)

    Snow, Donald R.

    1989-01-01

    Implements a table algorithm on a spreadsheet program and obtains functions for several number sequences such as the Fibonacci and Catalan numbers. Considers other applications of the table algorithm to integers represented in various number bases. (YP)

  19. Optimal and Suboptimal Finger Selection Algorithms for MMSE Rake Receivers in Impulse Radio Ultra-Wideband Systems

    Directory of Open Access Journals (Sweden)

    Chiang Mung

    2006-01-01

    Full Text Available The problem of choosing the optimal multipath components to be employed at a minimum mean square error (MMSE selective Rake receiver is considered for an impulse radio ultra-wideband system. First, the optimal finger selection problem is formulated as an integer programming problem with a nonconvex objective function. Then, the objective function is approximated by a convex function and the integer programming problem is solved by means of constraint relaxation techniques. The proposed algorithms are suboptimal due to the approximate objective function and the constraint relaxation steps. However, they perform better than the conventional finger selection algorithm, which is suboptimal since it ignores the correlation between multipath components, and they can get quite close to the optimal scheme that cannot be implemented in practice due to its complexity. In addition to the convex relaxation techniques, a genetic-algorithm- (GA- based approach is proposed, which does not need any approximations or integer relaxations. This iterative algorithm is based on the direct evaluation of the objective function, and can achieve near-optimal performance with a reasonable number of iterations. Simulation results are presented to compare the performance of the proposed finger selection algorithms with that of the conventional and the optimal schemes.

  20. Determination of optimum values for maximizing the profit in bread production: Daily bakery Sdn Bhd

    Science.gov (United States)

    Muda, Nora; Sim, Raymond

    2015-02-01

    An integer programming problem is a mathematical optimization or feasibility program in which some or all of the variables are restricted to be integers. In many settings the term refers to integer linear programming (ILP), in which the objective function and the constraints (other than the integer constraints) are linear. An ILP has many applications in industrial production, including job-shop modelling. A possible objective is to maximize the total production, without exceeding the available resources. In some cases, this can be expressed in terms of a linear program, but variables must be constrained to be integer. It concerned with the optimization of a linear function while satisfying a set of linear equality and inequality constraints and restrictions. It has been used to solve optimization problem in many industries area such as banking, nutrition, agriculture, and bakery and so on. The main purpose of this study is to formulate the best combination of all ingredients in producing different type of bread in Daily Bakery in order to gain maximum profit. This study also focuses on the sensitivity analysis due to changing of the profit and the cost of each ingredient. The optimum result obtained from QM software is RM 65,377.29 per day. This study will be benefited for Daily Bakery and also other similar industries. By formulating a combination of all ingredients make up, they can easily know their total profit in producing bread everyday.

  1. Optimization Modeling with Spreadsheets

    CERN Document Server

    Baker, Kenneth R

    2011-01-01

    This introductory book on optimization (mathematical programming) includes coverage on linear programming, nonlinear programming, integer programming and heuristic programming; as well as an emphasis on model building using Excel and Solver.  The emphasis on model building (rather than algorithms) is one of the features that makes this book distinctive. Most books devote more space to algorithmic details than to formulation principles. These days, however, it is not necessary to know a great deal about algorithms in order to apply optimization tools, especially when relying on the sp

  2. Fast parallel DNA-based algorithms for molecular computation: quadratic congruence and factoring integers.

    Science.gov (United States)

    Chang, Weng-Long

    2012-03-01

    Assume that n is a positive integer. If there is an integer such that M (2) ≡ C (mod n), i.e., the congruence has a solution, then C is said to be a quadratic congruence (mod n). If the congruence does not have a solution, then C is said to be a quadratic noncongruence (mod n). The task of solving the problem is central to many important applications, the most obvious being cryptography. In this article, we describe a DNA-based algorithm for solving quadratic congruence and factoring integers. In additional to this novel contribution, we also show the utility of our encoding scheme, and of the algorithm's submodules. We demonstrate how a variety of arithmetic, shifted and comparative operations, namely bitwise and full addition, subtraction, left shifter and comparison perhaps are performed using strands of DNA.

  3. An integer ambiguity resolution method for the global positioning system (GPS)-based land vehicle attitude determination

    International Nuclear Information System (INIS)

    Wang, Bo; Miao, Lingjuan; Wang, Shunting; Shen, Jun

    2009-01-01

    During attitude determination using a global positioning system (GPS), cycle slips occur due to the loss of lock and noise disturbance. Therefore, the integer ambiguity needs re-computation to isolate the error in carrier phase. This paper presents a fast method for integer ambiguity resolution for land vehicle application. After the cycle slips are detected, the velocity vector is utilized to obtain the rough baseline vector. The obtained baseline vector is substituted into carrier phase observation equations to solve the float ambiguity solution which can be used as a constraint to accelerate the integer ambiguity search procedure at next epochs. The probability of correct integer estimation in the expanded search space is analyzed. Experimental results demonstrate that the proposed method gives a fast approach to obtain new fixed ambiguities while the regular method takes longer time and sometimes results in incorrect solutions

  4. Optimization Models for Petroleum Field Exploitation

    Energy Technology Data Exchange (ETDEWEB)

    Jonsbraaten, Tore Wiig

    1998-12-31

    This thesis presents and discusses various models for optimal development of a petroleum field. The objective of these optimization models is to maximize, under many uncertain parameters, the project`s expected net present value. First, an overview of petroleum field optimization is given from the point of view of operations research. Reservoir equations for a simple reservoir system are derived and discretized and included in optimization models. Linear programming models for optimizing production decisions are discussed and extended to mixed integer programming models where decisions concerning platform, wells and production strategy are optimized. Then, optimal development decisions under uncertain oil prices are discussed. The uncertain oil price is estimated by a finite set of price scenarios with associated probabilities. The problem is one of stochastic mixed integer programming, and the solution approach is to use a scenario and policy aggregation technique developed by Rockafellar and Wets although this technique was developed for continuous variables. Stochastic optimization problems with focus on problems with decision dependent information discoveries are also discussed. A class of ``manageable`` problems is identified and an implicit enumeration algorithm for finding optimal decision policy is proposed. Problems involving uncertain reservoir properties but with a known initial probability distribution over possible reservoir realizations are discussed. Finally, a section on Nash-equilibrium and bargaining in an oil reservoir management game discusses the pool problem arising when two lease owners have access to the same underlying oil reservoir. Because the oil tends to migrate, both lease owners have incentive to drain oil from the competitors part of the reservoir. The discussion is based on a numerical example. 107 refs., 31 figs., 14 tabs.

  5. A CU-Level Rate and Distortion Estimation Scheme for RDO of Hardware-Friendly HEVC Encoders Using Low-Complexity Integer DCTs.

    Science.gov (United States)

    Lee, Bumshik; Kim, Munchurl

    2016-08-01

    In this paper, a low complexity coding unit (CU)-level rate and distortion estimation scheme is proposed for High Efficiency Video Coding (HEVC) hardware-friendly implementation where a Walsh-Hadamard transform (WHT)-based low-complexity integer discrete cosine transform (DCT) is employed for distortion estimation. Since HEVC adopts quadtree structures of coding blocks with hierarchical coding depths, it becomes more difficult to estimate accurate rate and distortion values without actually performing transform, quantization, inverse transform, de-quantization, and entropy coding. Furthermore, DCT for rate-distortion optimization (RDO) is computationally high, because it requires a number of multiplication and addition operations for various transform block sizes of 4-, 8-, 16-, and 32-orders and requires recursive computations to decide the optimal depths of CU or transform unit. Therefore, full RDO-based encoding is highly complex, especially for low-power implementation of HEVC encoders. In this paper, a rate and distortion estimation scheme is proposed in CU levels based on a low-complexity integer DCT that can be computed in terms of WHT whose coefficients are produced in prediction stages. For rate and distortion estimation in CU levels, two orthogonal matrices of 4×4 and 8×8 , which are applied to WHT that are newly designed in a butterfly structure only with addition and shift operations. By applying the integer DCT based on the WHT and newly designed transforms in each CU block, the texture rate can precisely be estimated after quantization using the number of non-zero quantized coefficients and the distortion can also be precisely estimated in transform domain without de-quantization and inverse transform required. In addition, a non-texture rate estimation is proposed by using a pseudoentropy code to obtain accurate total rate estimates. The proposed rate and the distortion estimation scheme can effectively be used for HW-friendly implementation of

  6. IMI Workshop on Optimization in the Real World

    CERN Document Server

    Shinano, Yuji; Waki, Hayato

    2016-01-01

    This book clearly shows the importance, usefulness, and powerfulness of current optimization technologies, in particular, mixed-integer programming and its remarkable applications. It is intended to be the definitive study of state-of-the-art optimization technologies for students, academic researchers, and non-professionals in industry. The chapters of this book are based on a collection of selected and extended papers from the  “IMI Workshop on Optimization in the Real World” held in October 2014 in Japan.

  7. Optimal operation of smart houses by a real-time rolling horizon algorithm

    NARCIS (Netherlands)

    Paterakis, N.G.; Pappi, I.N.; Catalão, J.P.S.; Erdinc, O.

    2016-01-01

    In this paper, a novel real-time rolling horizon optimization framework for the optimal operation of a smart household is presented. A home energy management system (HEMS) model based on mixed-integer linear programming (MILP) is developed in order to minimize the energy procurement cost considering

  8. Spatial “Artistic” Networks: From Deconstructing Integer-Functions to Visual Arts

    Directory of Open Access Journals (Sweden)

    Ernesto Estrada

    2018-01-01

    Full Text Available Deconstructivism is an aesthetically appealing architectonic style. Here, we identify some general characteristics of this style, such as decomposition of the whole into parts, superposition of layers, and conservation of the memory of the whole. Using these attributes, we propose a method to deconstruct functions based on integers. Using this integer-function deconstruction we generate spatial networks which display a few artistic attributes such as (i biomorphic shapes, (ii symmetry, and (iii beauty. In building these networks, the deconstructed integer-functions are used as the coordinates of the nodes in a unit square, which are then joined according to a given connection radius like in random geometric graphs (RGGs. Some graph-theoretic invariants of these networks are calculated and compared with the classical RGGs. We then show how these networks inspire an artist to create artistic compositions using mixed techniques on canvas and on paper. Finally, we call for avoiding that the applicability of (network sciences should not go in detriment of curiosity-driven, and aesthetic-driven, researches. We claim that the aesthetic of network research, and not only its applicability, would be an attractor for new minds to this field.

  9. Sparse optimization for inverse problems in atmospheric modelling

    Czech Academy of Sciences Publication Activity Database

    Adam, Lukáš; Branda, Martin

    2016-01-01

    Roč. 79, č. 3 (2016), s. 256-266 ISSN 1364-8152 R&D Projects: GA MŠk(CZ) 7F14287 Institutional support: RVO:67985556 Keywords : Inverse modelling * Sparse optimization * Integer optimization * Least squares * European tracer experiment * Free Matlab codes Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 4.404, year: 2016 http://library.utia.cas.cz/separaty/2016/MTR/adam-0457037.pdf

  10. FATCOP: A Fault Tolerant Condor-PVM Mixed Integer Program Solver

    National Research Council Canada - National Science Library

    Chen, Qun

    1999-01-01

    We describe FATCOP, a new parallel mixed integer program solver written in PVM. The implementation uses the Condor resource management system to provide a virtual machine composed of otherwise idle computers...

  11. Constraining neutron guide optimizations with phase-space considerations

    Energy Technology Data Exchange (ETDEWEB)

    Bertelsen, Mads, E-mail: mads.bertelsen@gmail.com; Lefmann, Kim

    2016-09-11

    We introduce a method named the Minimalist Principle that serves to reduce the parameter space for neutron guide optimization when the required beam divergence is limited. The reduced parameter space will restrict the optimization to guides with a minimal neutron intake that are still theoretically able to deliver the maximal possible performance. The geometrical constraints are derived using phase-space propagation from moderator to guide and from guide to sample, while assuming that the optimized guides will achieve perfect transport of the limited neutron intake. Guide systems optimized using these constraints are shown to provide performance close to guides optimized without any constraints, however the divergence received at the sample is limited to the desired interval, even when the neutron transport is not limited by the supermirrors used in the guide. As the constraints strongly limit the parameter space for the optimizer, two control parameters are introduced that can be used to adjust the selected subspace, effectively balancing between maximizing neutron transport and avoiding background from unnecessary neutrons. One parameter is needed to describe the expected focusing abilities of the guide to be optimized, going from perfectly focusing to no correlation between position and velocity. The second parameter controls neutron intake into the guide, so that one can select exactly how aggressively the background should be limited. We show examples of guides optimized using these constraints which demonstrates the higher signal to noise than conventional optimizations. Furthermore the parameter controlling neutron intake is explored which shows that the simulated optimal neutron intake is close to the analytically predicted, when assuming that the guide is dominated by multiple scattering events.

  12. Improved solution for ill-posed linear systems using a constrained optimization ruled by a penalty: evaluation in nuclear medicine tomography

    International Nuclear Information System (INIS)

    Walrand, Stephan; Jamar, François; Pauwels, Stanislas

    2009-01-01

    Ill-posed linear systems occur in many different fields. A class of regularization methods, called constrained optimization, aims to determine the extremum of a penalty function whilst constraining an objective function to a likely value. We propose here a novel heuristic way to screen the local extrema satisfying the discrepancy principle. A modified version of the Landweber algorithm is used for the iteration process. After finding a local extremum, a bound is performed to the 'farthest' estimate in the data space still satisfying the discrepancy principle. Afterwards, the modified Landweber algorithm is again applied to find a new local extremum. This bound-iteration process is repeated until a satisfying solution is reached. For evaluation in nuclear medicine tomography, a novel penalty function that preserves the edge steps in the reconstructed solution was evaluated on Monte Carlo simulations and using real SPECT acquisitions as well. Surprisingly, the first bound always provided a significantly better solution in a wide range of statistics

  13. Fractional and integer charges from Levinson's theorem

    International Nuclear Information System (INIS)

    Farhi, E.; Graham, N.; Jaffe, R.L.; Weigel, H.

    2001-01-01

    We compute fractional and integer fermion quantum numbers of static background field configurations using phase shifts and Levinson's theorem. By extending fermionic scattering theory to arbitrary dimensions, we implement dimensional regularization in a (1+1)-dimensional gauge theory. We demonstrate that this regularization procedure automatically eliminates the anomaly in the vector current that a naive regulator would produce. We also apply these techniques to bag models in one and three dimensions

  14. Solving stochastic programs with integer recourse by enumeration : a framework using Gröbner basis reductions

    NARCIS (Netherlands)

    Schultz, R.; Stougie, L.; Vlerk, van der M.H.

    1998-01-01

    In this paper we present a framework for solving stochastic programs with complete integer recourse and discretely distributed right-hand side vector, using Gröbner basis methods from computational algebra to solve the numerous second-stage integer programs. Using structural properties of the

  15. The PWR loading pattern optimization in X-IMAGE

    International Nuclear Information System (INIS)

    Stevens, J.G.; Smith, K.S.; Rempe, K.R.; Downar, T.J.

    1993-01-01

    The design of reactor core loading patterns is difficult due to the staggering number of patterns. The integer nature and nonlinear neutronic response of core design preclude simple prescriptions for generation of the feasible patterns, much less optimization among feasible candidates. Fortunately, recent developments in optimization, graphical user interfaces (GUIs), and the speed and low cost of engineering workstations combine to make loading pattern automation possible. The optimization module SIMAN has been added to X-IMAGE to automatically generate high-quality core loadings

  16. Designing fractional factorial split-plot experiments using integer programming

    DEFF Research Database (Denmark)

    Capehart, Shay R.; Keha, Ahmet; Kulahci, Murat

    2011-01-01

    factorial (FF) design, with the restricted randomisation structure to account for the whole plots and subplots. We discuss the formulation of FFSP designs using integer programming (IP) to achieve various design criteria. We specifically look at the maximum number of clear two-factor interactions...

  17. Depletion mapping and constrained optimization to support managing groundwater extraction

    Science.gov (United States)

    Fienen, Michael N.; Bradbury, Kenneth R.; Kniffin, Maribeth; Barlow, Paul M.

    2018-01-01

    Groundwater models often serve as management tools to evaluate competing water uses including ecosystems, irrigated agriculture, industry, municipal supply, and others. Depletion potential mapping—showing the model-calculated potential impacts that wells have on stream baseflow—can form the basis for multiple potential management approaches in an oversubscribed basin. Specific management approaches can include scenarios proposed by stakeholders, systematic changes in well pumping based on depletion potential, and formal constrained optimization, which can be used to quantify the tradeoff between water use and stream baseflow. Variables such as the maximum amount of reduction allowed in each well and various groupings of wells using, for example, K-means clustering considering spatial proximity and depletion potential are considered. These approaches provide a potential starting point and guidance for resource managers and stakeholders to make decisions about groundwater management in a basin, spreading responsibility in different ways. We illustrate these approaches in the Little Plover River basin in central Wisconsin, United States—home to a rich agricultural tradition, with farmland and urban areas both in close proximity to a groundwater-dependent trout stream. Groundwater withdrawals have reduced baseflow supplying the Little Plover River below a legally established minimum. The techniques in this work were developed in response to engaged stakeholders with various interests and goals for the basin. They sought to develop a collaborative management plan at a watershed scale that restores the flow rate in the river in a manner that incorporates principles of shared governance and results in effective and minimally disruptive changes in groundwater extraction practices.

  18. Quantum recurrence and integer ratios in neutron resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ohkubo, Makio

    1998-03-01

    Quantum recurrence of the compound nucleus in neutron resonance reactions are described for normal modes which are excited on the compound nucleus simultaneously. In the structure of the recurrence time, integer relations among dominant level spacings are derived. The `base modes` are assumed as stable combinations of the normal modes, preferably excited in many nuclei. (author)

  19. Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Science.gov (United States)

    Cheng, Jian

    The work in Chapter 2 is motivated by Tutte and Jaeger's pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {2, 3}, if (G, sigma) is (k - 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015). Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥. Tutte's 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF. The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it

  20. 3Es System Optimization under Uncertainty Using Hybrid Intelligent Algorithm: A Fuzzy Chance-Constrained Programming Model

    Directory of Open Access Journals (Sweden)

    Jiekun Song

    2016-01-01

    Full Text Available Harmonious development of 3Es (economy-energy-environment system is the key to realize regional sustainable development. The structure and components of 3Es system are analyzed. Based on the analysis of causality diagram, GDP and industrial structure are selected as the target parameters of economy subsystem, energy consumption intensity is selected as the target parameter of energy subsystem, and the emissions of COD, ammonia nitrogen, SO2, and NOX and CO2 emission intensity are selected as the target parameters of environment system. Fixed assets investment of three industries, total energy consumption, and investment in environmental pollution control are selected as the decision variables. By regarding the parameters of 3Es system optimization as fuzzy numbers, a fuzzy chance-constrained goal programming (FCCGP model is constructed, and a hybrid intelligent algorithm including fuzzy simulation and genetic algorithm is proposed for solving it. The results of empirical analysis on Shandong province of China show that the FCCGP model can reflect the inherent relationship and evolution law of 3Es system and provide the effective decision-making support for 3Es system optimization.

  1. The Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Denis Pinha

    2016-11-01

    Full Text Available This paper presents the formulation and solution of the Combinatorial Multi-Mode Resource Constrained Multi-Project Scheduling Problem. The focus of the proposed method is not on finding a single optimal solution, instead on presenting multiple feasible solutions, with cost and duration information to the project manager. The motivation for developing such an approach is due in part to practical situations where the definition of optimal changes on a regular basis. The proposed approach empowers the project manager to determine what is optimal, on a given day, under the current constraints, such as, change of priorities, lack of skilled worker. The proposed method utilizes a simulation approach to determine feasible solutions, under the current constraints. Resources can be non-consumable, consumable, or doubly constrained. The paper also presents a real-life case study dealing with scheduling of ship repair activities.

  2. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems.

    Science.gov (United States)

    Xu, Y; Li, N

    2014-09-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator-prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework.

  3. Bio-inspired varying subspace based computational framework for a class of nonlinear constrained optimal trajectory planning problems

    International Nuclear Information System (INIS)

    Xu, Y; Li, N

    2014-01-01

    Biological species have produced many simple but efficient rules in their complex and critical survival activities such as hunting and mating. A common feature observed in several biological motion strategies is that the predator only moves along paths in a carefully selected or iteratively refined subspace (or manifold), which might be able to explain why these motion strategies are effective. In this paper, a unified linear algebraic formulation representing such a predator–prey relationship is developed to simplify the construction and refinement process of the subspace (or manifold). Specifically, the following three motion strategies are studied and modified: motion camouflage, constant absolute target direction and local pursuit. The framework constructed based on this varying subspace concept could significantly reduce the computational cost in solving a class of nonlinear constrained optimal trajectory planning problems, particularly for the case with severe constraints. Two non-trivial examples, a ground robot and a hypersonic aircraft trajectory optimization problem, are used to show the capabilities of the algorithms in this new computational framework. (paper)

  4. A Mixed Integer Programming Poultry Feed Ration Optimisation Problem Using the Bat Algorithm

    Directory of Open Access Journals (Sweden)

    Godfrey Chagwiza

    2016-01-01

    Full Text Available In this paper, a feed ration problem is presented as a mixed integer programming problem. An attempt to find the optimal quantities of Moringa oleifera inclusion into the poultry feed ration was done and the problem was solved using the Bat algorithm and the Cplex solver. The study used findings of previous research to investigate the effects of Moringa oleifera inclusion in poultry feed ration. The results show that the farmer is likely to gain US$0.89 more if Moringa oleifera is included in the feed ration. Results also show superiority of the Bat algorithm in terms of execution time and number of iterations required to find the optimum solution as compared with the results obtained by the Cplex solver. Results revealed that there is a significant economic benefit of Moringa oleifera inclusion into the poultry feed ration.

  5. Microgrid optimal scheduling considering impact of high penetration wind generation

    Science.gov (United States)

    Alanazi, Abdulaziz

    The objective of this thesis is to study the impact of high penetration wind energy in economic and reliable operation of microgrids. Wind power is variable, i.e., constantly changing, and nondispatchable, i.e., cannot be controlled by the microgrid controller. Thus an accurate forecasting of wind power is an essential task in order to study its impacts in microgrid operation. Two commonly used forecasting methods including Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Network (ANN) have been used in this thesis to improve the wind power forecasting. The forecasting error is calculated using a Mean Absolute Percentage Error (MAPE) and is improved using the ANN. The wind forecast is further used in the microgrid optimal scheduling problem. The microgrid optimal scheduling is performed by developing a viable model for security-constrained unit commitment (SCUC) based on mixed-integer linear programing (MILP) method. The proposed SCUC is solved for various wind penetration levels and the relationship between the total cost and the wind power penetration is found. In order to reduce microgrid power transfer fluctuations, an additional constraint is proposed and added to the SCUC formulation. The new constraint would control the time-based fluctuations. The impact of the constraint on microgrid SCUC results is tested and validated with numerical analysis. Finally, the applicability of proposed models is demonstrated through numerical simulations.

  6. Integers without Large Prime Factors in Short Intervals: Conditional ...

    Indian Academy of Sciences (India)

    ... Public Lectures · Lecture Workshops · Refresher Courses · Symposia · Live Streaming. Home; Journals; Proceedings – Mathematical Sciences; Volume 120; Issue 5. Integers without Large Prime Factors in Short Intervals: Conditional Results. Goutam Pal Satadal Ganguly. Volume 120 Issue 5 November 2010 pp 515-524 ...

  7. Integer Set Compression and Statistical Modeling

    DEFF Research Database (Denmark)

    Larsson, N. Jesper

    2014-01-01

    enumeration of elements may be arbitrary or random, but where statistics is kept in order to estimate probabilities of elements. We present a recursive subset-size encoding method that is able to benefit from statistics, explore the effects of permuting the enumeration order based on element probabilities......Compression of integer sets and sequences has been extensively studied for settings where elements follow a uniform probability distribution. In addition, methods exist that exploit clustering of elements in order to achieve higher compression performance. In this work, we address the case where...

  8. On the price of integer charge quarks

    International Nuclear Information System (INIS)

    Okun, L.B.; Voloshin, M.B.; Zakharov, V.I.

    1979-01-01

    Implication of the integer charge quark (ICQ) model with a broken SU(3)xU(1) gauge symmetry for interactions in the leptonic sector were discussed. In this model there should be very large deviations of e + e - →μ + μ - annihilation processes in the GeV region from the standard QED behaviour. Such deviations seem to be completely excluded by existing data. Therefore it is concluded that the ICQ model is ruled out

  9. BitPAl: a bit-parallel, general integer-scoring sequence alignment algorithm.

    Science.gov (United States)

    Loving, Joshua; Hernandez, Yozen; Benson, Gary

    2014-11-15

    Mapping of high-throughput sequencing data and other bulk sequence comparison applications have motivated a search for high-efficiency sequence alignment algorithms. The bit-parallel approach represents individual cells in an alignment scoring matrix as bits in computer words and emulates the calculation of scores by a series of logic operations composed of AND, OR, XOR, complement, shift and addition. Bit-parallelism has been successfully applied to the longest common subsequence (LCS) and edit-distance problems, producing fast algorithms in practice. We have developed BitPAl, a bit-parallel algorithm for general, integer-scoring global alignment. Integer-scoring schemes assign integer weights for match, mismatch and insertion/deletion. The BitPAl method uses structural properties in the relationship between adjacent scores in the scoring matrix to construct classes of efficient algorithms, each designed for a particular set of weights. In timed tests, we show that BitPAl runs 7-25 times faster than a standard iterative algorithm. Source code is freely available for download at http://lobstah.bu.edu/BitPAl/BitPAl.html. BitPAl is implemented in C and runs on all major operating systems. jloving@bu.edu or yhernand@bu.edu or gbenson@bu.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  10. Right Propositional Neighborhood Logic over Natural Numbers with Integer Constraints for Interval Lengths

    DEFF Research Database (Denmark)

    Bresolin, Davide; Goranko, Valentin; Montanari, Angelo

    2009-01-01

    Interval temporal logics are based on interval structures over linearly (or partially) ordered domains, where time intervals, rather than time instants, are the primitive ontological entities. In this paper we introduce and study Right Propositional Neighborhood Logic over natural numbers...... with integer constraints for interval lengths, which is a propositional interval temporal logic featuring a modality for the 'right neighborhood' relation between intervals and explicit integer constraints for interval lengths. We prove that it has the bounded model property with respect to ultimately periodic...

  11. New Approaches for Very Large-Scale Integer Programming

    Science.gov (United States)

    2016-06-24

    DISTRIBUTION/ AVAILABILITY STATEMENT Approved for Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT The focus of this project is new computational... heuristics for integer programs in order to rapidly improve dual bounds. 2. Choosing good branching variables in branch-and-bound algorithms for MIP. 3...programming, algorithms, parallel processing, machine learning, heuristics 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF

  12. Workshop on Computational Optimization

    CERN Document Server

    2015-01-01

    Our everyday life is unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many real world and industrial problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks. This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2013. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, resource constrained project scheduling, problems arising in transport services, error correcting codes, optimal system performance and energy consumption and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others.

  13. Risk-constrained dynamic self-scheduling of a pumped-storage plant in the energy and ancillary service markets

    International Nuclear Information System (INIS)

    Kazempour, S. Jalal; Moghaddam, M. Parsa; Haghifam, M.R.; Yousefi, G.R.

    2009-01-01

    This work addresses a new framework for self-scheduling of an individual price-taker pumped-storage plant in a day-ahead (DA) market. The goal is achieving the best trade-off between the expected profit and the risks when the plant participates in DA energy, spinning reserve and regulation markets. In this paper, a set of uncertainties including price forecasting errors and also the uncertainty of power delivery requests in the ancillary service markets are contemplated. Considering these uncertainties, a new approach is proposed which is called dynamic self-scheduling (DSS). This risk-constrained dynamic self-scheduling problem is therefore formulated and solved as a mixed integer programming (MIP) problem. Numerical results for a case study are discussed. (author)

  14. Exact methods for time constrained routing and related scheduling problems

    DEFF Research Database (Denmark)

    Kohl, Niklas

    1995-01-01

    of customers. In the VRPTW customers must be serviced within a given time period - a so called time window. The objective can be to minimize operating costs (e.g. distance travelled), fixed costs (e.g. the number of vehicles needed) or a combination of these component costs. During the last decade optimization......This dissertation presents a number of optimization methods for the Vehicle Routing Problem with Time Windows (VRPTW). The VRPTW is a generalization of the well known capacity constrained Vehicle Routing Problem (VRP), where a fleet of vehicles based at a central depot must service a set...... of J?rnsten, Madsen and S?rensen (1986), which has been tested computationally by Halse (1992). Both methods decompose the problem into a series of time and capacity constrained shotest path problems. This yields a tight lower bound on the optimal objective, and the dual gap can often be closed...

  15. A supply chain optimization framework for CO

    NARCIS (Netherlands)

    Kalyanarengan Ravi, Narayen; Zondervan, Edwin; Van Sint Annaland, Martin; Fransoo, Jan C.; Grievink, J.

    2016-01-01

    A major challenge for the industrial deployment of a CO2 emission reduction methodology is to reduce the overall cost and the integration of all the nodes in the supply chain for CO2 emission reduction. In this work, we develop a mixed integer linear optimization model that

  16. What Else Is Decidable about Integer Arrays?

    OpenAIRE

    Habermehl, Peter; Iosif, Radu; Vojnar, Tomáš

    2008-01-01

    International audience; We introduce a new decidable logic for reasoning about infinite arrays of integers. The logic is in the ∃ * ∀ * first-order fragment and allows (1) Presburger constraints on existentially quantified variables, (2) difference constraints as well as periodicity constraints on universally quantified indices, and (3) difference constraints on values. In particular, using our logic, one can express constraints on consecutive elements of arrays (e.g. ∀i. 0 ≤ i < n → a[i + 1]...

  17. Mixed-integer programming methods for transportation and power generation problems

    Science.gov (United States)

    Damci Kurt, Pelin

    This dissertation conducts theoretical and computational research to solve challenging problems in application areas such as supply chain and power systems. The first part of the dissertation studies a transportation problem with market choice (TPMC) which is a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands (markets) to satisfy. We show that TPMC is strongly NP-complete. We consider a version of the problem with a service level constraint on the maximum number of markets that can be rejected and show that if the original problem is polynomial, its cardinality-constrained version is also polynomial. We propose valid inequalities for mixed-integer cover and knapsack sets with variable upper bound constraints, which appear as substructures of TPMC and use them in a branch-and-cut algorithm to solve this problem. The second part of this dissertation studies a unit commitment (UC) problem in which the goal is to minimize the operational cost of power generators over a time period subject to physical constraints while satisfying demand. We provide several exponential classes of multi-period ramping and multi-period variable upper bound inequalities. We prove the strength of these inequalities and describe polynomial-time separation algorithms. Computational results show the effectiveness of the proposed inequalities when used as cuts in a branch-and-cut algorithm to solve the UC problem. The last part of this dissertation investigates the effects of uncertain wind power on the UC problem. A two-stage robust model and a three-stage stochastic program are compared.

  18. Fractional Order Controller Designing with Firefly Algorithm and Parameter Optimization for Hydroturbine Governing System

    Directory of Open Access Journals (Sweden)

    Li Junyi

    2015-01-01

    Full Text Available A fractional order PID (FOPID controller, which is suitable for control system designing for being insensitive to the variation in system parameter, is proposed for hydroturbine governing system in the paper. The simultaneous optimization for several parameters of controller, that is, Ki, Kd, Kp, λ, and μ, is done by a recently developed metaheuristic nature-inspired algorithm, namely, the firefly algorithm (FA, for the first time, where the selecting, moving, attractiveness behavior between fireflies and updating of brightness, and decision range are studied in detail to simulate the optimization process. Investigation clearly reveals the advantages of the FOPID controller over the integer controllers in terms of reduced oscillations and settling time. The present work also explores the superiority of FA based optimization technique in finding optimal parameters of the controller. Further, convergence characteristics of the FA are compared with optimum integer order PID (IOPID controller to justify its efficiency. What is more, analysis confirms the robustness of FOPID controller under isolated load operation conditions.

  19. Sequential unconstrained minimization algorithms for constrained optimization

    International Nuclear Information System (INIS)

    Byrne, Charles

    2008-01-01

    The problem of minimizing a function f(x):R J → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G k (x)=f(x)+g k (x), to obtain x k . The auxiliary functions g k (x):D subset of R J → R + are nonnegative on the set D, each x k is assumed to lie within D, and the objective is to minimize the continuous function f:R J → R over x in the set C = D-bar, the closure of D. We assume that such minimizers exist, and denote one such by x-circumflex. We assume that the functions g k (x) satisfy the inequalities 0≤g k (x)≤G k-1 (x)-G k-1 (x k-1 ), for k = 2, 3, .... Using this assumption, we show that the sequence {(x k )} is decreasing and converges to f(x-circumflex). If the restriction of f(x) to D has bounded level sets, which happens if x-circumflex is unique and f(x) is closed, proper and convex, then the sequence {x k } is bounded, and f(x*)=f(x-circumflex), for any cluster point x*. Therefore, if x-circumflex is unique, x* = x-circumflex and {x k } → x-circumflex. When x-circumflex is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton–Raphson method. The proof techniques used for SUMMA can be extended to obtain related results

  20. Integer programming for the generalized high school timetabling problem

    DEFF Research Database (Denmark)

    Kristiansen, Simon; Sørensen, Matias; Stidsen, Thomas Riis

    2015-01-01

    , the XHSTT format serves as a common ground for researchers within this area. This paper describes the first exact method capable of handling an arbitrary instance of the XHSTT format. The method is based on a mixed-integer linear programming (MIP) model, which is solved in two steps with a commercial...

  1. A Branch-and-Price approach to find optimal decision trees

    NARCIS (Netherlands)

    Firat, M.; Crognier, Guillaume; Gabor, Adriana; Zhang, Y.

    2018-01-01

    In Artificial Intelligence (AI) field, decision trees have gained certain importance due to their effectiveness in solving classification and regression problems. Recently, in the literature we see finding optimal decision trees are formulated as Mixed Integer Linear Programming (MILP) models. This

  2. Linear Optimization of Frequency Spectrum Assignments Across System

    Science.gov (United States)

    2016-03-01

    selection tools, frequency allocation, transmission optimization, electromagnetic maneuver warfare, electronic protection, assignment model 15. NUMBER ...Characteristics Modeled ...............................................................29 Table 10.   Antenna Systems Modeled , Number of Systems and...surveillance EW early warning GAMS general algebraic modeling system GHz gigahertz IDE integrated development environment ILP integer linear program

  3. When do evolutionary algorithms optimize separable functions in parallel?

    DEFF Research Database (Denmark)

    Doerr, Benjamin; Sudholt, Dirk; Witt, Carsten

    2013-01-01

    is that evolutionary algorithms make progress on all subfunctions in parallel, so that optimizing a separable function does not take not much longer than optimizing the hardest subfunction-subfunctions are optimized "in parallel." We show that this is only partially true, already for the simple (1+1) evolutionary...... algorithm ((1+1) EA). For separable functions composed of k Boolean functions indeed the optimization time is the maximum optimization time of these functions times a small O(log k) overhead. More generally, for sums of weighted subfunctions that each attain non-negative integer values less than r = o(log1...

  4. Superstructure development and optimization under uncertainty for design and retrofit of municipal wastewater treatment plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande; Quaglia, Alberto; Gernaey, Krist

    2014-01-01

    n this contribution, an optimization - based approach is presented for optimal process selec tion and design for domestic wastewater treatment plant s (WWTP s ). In particular, we address the issue of uncertainties by formulating the WWTP design problem as a Stochastic Mixed Integer (Non) Linear ...

  5. OPTIMIZED PARTICLE SWARM OPTIMIZATION BASED DEADLINE CONSTRAINED TASK SCHEDULING IN HYBRID CLOUD

    Directory of Open Access Journals (Sweden)

    Dhananjay Kumar

    2016-01-01

    Full Text Available Cloud Computing is a dominant way of sharing of computing resources that can be configured and provisioned easily. Task scheduling in Hybrid cloud is a challenge as it suffers from producing the best QoS (Quality of Service when there is a high demand. In this paper a new resource allocation algorithm, to find the best External Cloud provider when the intermediate provider’s resources aren’t enough to satisfy the customer’s demand is proposed. The proposed algorithm called Optimized Particle Swarm Optimization (OPSO combines the two metaheuristic algorithms namely Particle Swarm Optimization and Ant Colony Optimization (ACO. These metaheuristic algorithms are used for the purpose of optimization in the search space of the required solution, to find the best resource from the pool of resources and to obtain maximum profit even when the number of tasks submitted for execution is very high. This optimization is performed to allocate job requests to internal and external cloud providers to obtain maximum profit. It helps to improve the system performance by improving the CPU utilization, and handle multiple requests at the same time. The simulation result shows that an OPSO yields 0.1% - 5% profit to the intermediate cloud provider compared with standard PSO and ACO algorithms and it also increases the CPU utilization by 0.1%.

  6. Is there a computable upper bound for the height of a solution of a Diophantine equation with a unique solution in positive integers?

    Directory of Open Access Journals (Sweden)

    Tyszka Apoloniusz

    2017-03-01

    Full Text Available Let Bn = {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈ {1, . . . , n}} denote the system of equations in the variables x1, . . . , xn. For a positive integer n, let _(n denote the smallest positive integer b such that for each system of equations S ⊆ Bn with a unique solution in positive integers x1, . . . , xn, this solution belongs to [1, b]n. Let g(1 = 1, and let g(n + 1 = 22g(n for every positive integer n. We conjecture that ξ (n 6 g(2n for every positive integer n. We prove: (1 the function ξ : N \\ {0} → N \\ {0} is computable in the limit; (2 if a function f : N \\ {0} → N \\ {0} has a single-fold Diophantine representation, then there exists a positive integer m such that f (n m; (3 the conjecture implies that there exists an algorithm which takes as input a Diophantine equation D(x1, . . . , xp = 0 and returns a positive integer d with the following property: for every positive integers a1, . . . , ap, if the tuple (a1, . . . , ap solely solves the equation D(x1, . . . , xp = 0 in positive integers, then a1, . . . , ap 6 d; (4 the conjecture implies that if a set M ⊆ N has a single-fold Diophantine representation, then M is computable; (5 for every integer n > 9, the inequality ξ (n < (22n−5 − 12n−5 + 1 implies that 22n−5 + 1 is composite.

  7. Optimal installation program for reprocessing plants

    International Nuclear Information System (INIS)

    Kubokawa, Toshihiko; Kiyose, Ryohei

    1976-01-01

    Optimization of the program of installation of reprocessing plants is mathematically formulated as problem of mixed integer programming, which is numerically solved by the branch-and-bound method. A new concept of quasi-penalty is used to obviate the difficulties associated with dual degeneracy. The finiteness of the useful life of the plant is also taken into consideration. It is shown that an analogous formulation is possible for the cases in which the demand forecasts and expected plant lives cannot be predicted with certainty. The scale of the problem is found to have kN binary variables, (k+2)N continuous variables, and (k+3)N constraint conditions, where k is the number of intervals used in the piece-wise linear approximation of a nonlinear objective function, and N the overall duration of the period covered by the installation program. Calculations are made for N=24 yr and k=3, with the assumption that the plant life is 15 yr, the plant scale factor 0.5, and the maximum plant capacity 900 (t/yr). The results are calculated and discussed for four different demand forecasts. The difference of net profit between optimal and non-optimal installation programs is found to be in the range of 50 -- 100 M$. The pay-off matrix is calculated, and the optimal choice of action when the demand cannot be forecast with certainty is determined by applying Bayes' theory. The optimal installation program under such conditions of uncertainty is obtained also with a stochastic mixed integer programming model. (auth.)

  8. The Regularized Fast Hartley Transform Optimal Formulation of Real-Data Fast Fourier Transform for Silicon-Based Implementation in Resource-Constrained Environments

    CERN Document Server

    Jones, Keith

    2010-01-01

    The Regularized Fast Hartley Transform provides the reader with the tools necessary to both understand the proposed new formulation and to implement simple design variations that offer clear implementational advantages, both practical and theoretical, over more conventional complex-data solutions to the problem. The highly-parallel formulation described is shown to lead to scalable and device-independent solutions to the latency-constrained version of the problem which are able to optimize the use of the available silicon resources, and thus to maximize the achievable computational density, th

  9. Spillways Scheduling for Flood Control of Three Gorges Reservoir Using Mixed Integer Linear Programming Model

    Directory of Open Access Journals (Sweden)

    Maoyuan Feng

    2014-01-01

    Full Text Available This study proposes a mixed integer linear programming (MILP model to optimize the spillways scheduling for reservoir flood control. Unlike the conventional reservoir operation model, the proposed MILP model specifies the spillways status (including the number of spillways to be open and the degree of the spillway opened instead of reservoir release, since the release is actually controlled by using the spillway. The piecewise linear approximation is used to formulate the relationship between the reservoir storage and water release for a spillway, which should be open/closed with a status depicted by a binary variable. The control order and symmetry rules of spillways are described and incorporated into the constraints for meeting the practical demand. Thus, a MILP model is set up to minimize the maximum reservoir storage. The General Algebraic Modeling System (GAMS and IBM ILOG CPLEX Optimization Studio (CPLEX software are used to find the optimal solution for the proposed MILP model. The China’s Three Gorges Reservoir, whose spillways are of five types with the total number of 80, is selected as the case study. It is shown that the proposed model decreases the flood risk compared with the conventional operation and makes the operation more practical by specifying the spillways status directly.

  10. TAS: 89 0227: TAS Recovery Act - Optimization and Control of Electric Power Systems: ARRA

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hsiao-Dong [Cornell Univ., Ithaca, NY (United States); Zimmerman, Ray D. [Cornell Univ., Ithaca, NY (United States); Thomas, Robert J. [Cornell Univ., Ithaca, NY (United States)

    2014-02-01

    The name SuperOPF is used to refer several projects, problem formulations and soft-ware tools intended to extend, improve and re-define some of the standard methods of optimizing electric power systems. Our work included applying primal-dual interior point methods to standard AC optimal power flow problems of large size, as well as extensions of this problem to include co-optimization of multiple scenarios. The original SuperOPF problem formulation was based on co-optimizing a base scenario along with multiple post-contingency scenarios, where all AC power flow models and constraints are enforced for each, to find optimal energy contracts, endogenously determined locational reserves and appropriate nodal energy prices for a single period optimal power flow problem with uncertainty. This led to example non-linear programming problems on the order of 1 million constraints and half a million variables. The second generation SuperOPF formulation extends this by adding multiple periods and multiple base scenarios per period. It also incorporates additional variables and constraints to model load following reserves, ramping costs, and storage resources. A third generation of the multi-period SuperOPF, adds both integer variables and a receding horizon framework in which the problem type is more challenging (mixed integer), the size is even larger, and it must be solved more frequently, pushing the limits of currently available algorithms and solvers. The consideration of transient stability constraints in optimal power flow (OPF) problems has become increasingly important in modern power systems. Transient stability constrained OPF (TSCOPF) is a nonlinear optimization problem subject to a set of algebraic and differential equations. Solving a TSCOPF problem can be challenging due to (i) the differential-equation constraints in an optimization problem, (ii) the lack of a true analytical expression for transient stability in OPF. To handle the dynamics in TSCOPF, the set

  11. An Improved Search Approach for Solving Non-Convex Mixed-Integer Non Linear Programming Problems

    Science.gov (United States)

    Sitopu, Joni Wilson; Mawengkang, Herman; Syafitri Lubis, Riri

    2018-01-01

    The nonlinear mathematical programming problem addressed in this paper has a structure characterized by a subset of variables restricted to assume discrete values, which are linear and separable from the continuous variables. The strategy of releasing nonbasic variables from their bounds, combined with the “active constraint” method, has been developed. This strategy is used to force the appropriate non-integer basic variables to move to their neighbourhood integer points. Successful implementation of these algorithms was achieved on various test problems.

  12. Optimization-Based Approaches to Control of Probabilistic Boolean Networks

    Directory of Open Access Journals (Sweden)

    Koichi Kobayashi

    2017-02-01

    Full Text Available Control of gene regulatory networks is one of the fundamental topics in systems biology. In the last decade, control theory of Boolean networks (BNs, which is well known as a model of gene regulatory networks, has been widely studied. In this review paper, our previously proposed methods on optimal control of probabilistic Boolean networks (PBNs are introduced. First, the outline of PBNs is explained. Next, an optimal control method using polynomial optimization is explained. The finite-time optimal control problem is reduced to a polynomial optimization problem. Furthermore, another finite-time optimal control problem, which can be reduced to an integer programming problem, is also explained.

  13. Workshop on Computational Optimization

    CERN Document Server

    2016-01-01

    This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2014, held at Warsaw, Poland, September 7-10, 2014. The book presents recent advances in computational optimization. The volume includes important real problems like parameter settings for controlling processes in bioreactor and other processes, resource constrained project scheduling, infection distribution, molecule distance geometry, quantum computing, real-time management and optimal control, bin packing, medical image processing, localization the abrupt atmospheric contamination source and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization tasks.

  14. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    Science.gov (United States)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  15. Multivariable controller for discrete stochastic amplitude-constrained systems

    Directory of Open Access Journals (Sweden)

    Hannu T. Toivonen

    1983-04-01

    Full Text Available A sub-optimal multivariable controller for discrete stochastic amplitude-constrained systems is presented. In the approach the regulator structure is restricted to the class of linear saturated feedback laws. The stationary covariances of the controlled system are evaluated by approximating the stationary probability distribution of the state by a gaussian distribution. An algorithm for minimizing a quadratic loss function is given, and examples are presented to illustrate the performance of the sub-optimal controller.

  16. An algorithm for mass matrix calculation of internally constrained molecular geometries

    International Nuclear Information System (INIS)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-01

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model

  17. An algorithm for mass matrix calculation of internally constrained molecular geometries.

    Science.gov (United States)

    Aryanpour, Masoud; Dhanda, Abhishek; Pitsch, Heinz

    2008-01-28

    Dynamic models for molecular systems require the determination of corresponding mass matrix. For constrained geometries, these computations are often not trivial but need special considerations. Here, assembling the mass matrix of internally constrained molecular structures is formulated as an optimization problem. Analytical expressions are derived for the solution of the different possible cases depending on the rank of the constraint matrix. Geometrical interpretations are further used to enhance the solution concept. As an application, we evaluate the mass matrix for a constrained molecule undergoing an electron-transfer reaction. The preexponential factor for this reaction is computed based on the harmonic model.

  18. Quantized hopfield networks for reliability optimization

    International Nuclear Information System (INIS)

    Nourelfath, Mustapha; Nahas, Nabil

    2003-01-01

    The use of neural networks in the reliability optimization field is rare. This paper presents an application of a recent kind of neural networks in a reliability optimization problem for a series system with multiple-choice constraints incorporated at each subsystem, to maximize the system reliability subject to the system budget. The problem is formulated as a nonlinear binary integer programming problem and characterized as an NP-hard problem. Our design of neural network to solve efficiently this problem is based on a quantized Hopfield network. This network allows us to obtain optimal design solutions very frequently and much more quickly than others Hopfield networks

  19. Direct comparison of fractional and integer quantized Hall resistance

    Science.gov (United States)

    Ahlers, Franz J.; Götz, Martin; Pierz, Klaus

    2017-08-01

    We present precision measurements of the fractional quantized Hall effect, where the quantized resistance {{R}≤ft[ 1/3 \\right]} in the fractional quantum Hall state at filling factor 1/3 was compared with a quantized resistance {{R}[2]} , represented by an integer quantum Hall state at filling factor 2. A cryogenic current comparator bridge capable of currents down to the nanoampere range was used to directly compare two resistance values of two GaAs-based devices located in two cryostats. A value of 1-(5.3  ±  6.3) 10-8 (95% confidence level) was obtained for the ratio ({{R}≤ft[ 1/3 \\right]}/6{{R}[2]} ). This constitutes the most precise comparison of integer resistance quantization (in terms of h/e 2) in single-particle systems and of fractional quantization in fractionally charged quasi-particle systems. While not relevant for practical metrology, such a test of the validity of the underlying physics is of significance in the context of the upcoming revision of the SI.

  20. Discovery of Boolean metabolic networks: integer linear programming based approach.

    Science.gov (United States)

    Qiu, Yushan; Jiang, Hao; Ching, Wai-Ki; Cheng, Xiaoqing

    2018-04-11

    Traditional drug discovery methods focused on the efficacy of drugs rather than their toxicity. However, toxicity and/or lack of efficacy are produced when unintended targets are affected in metabolic networks. Thus, identification of biological targets which can be manipulated to produce the desired effect with minimum side-effects has become an important and challenging topic. Efficient computational methods are required to identify the drug targets while incurring minimal side-effects. In this paper, we propose a graph-based computational damage model that summarizes the impact of enzymes on compounds in metabolic networks. An efficient method based on Integer Linear Programming formalism is then developed to identify the optimal enzyme-combination so as to minimize the side-effects. The identified target enzymes for known successful drugs are then verified by comparing the results with those in the existing literature. Side-effects reduction plays a crucial role in the study of drug development. A graph-based computational damage model is proposed and the theoretical analysis states the captured problem is NP-completeness. The proposed approaches can therefore contribute to the discovery of drug targets. Our developed software is available at " http://hkumath.hku.hk/~wkc/APBC2018-metabolic-network.zip ".

  1. Binary classification posed as a quadratically constrained quadratic ...

    Indian Academy of Sciences (India)

    Binary classification is posed as a quadratically constrained quadratic problem and solved using the proposed method. Each class in the binary classification problem is modeled as a multidimensional ellipsoid to forma quadratic constraint in the problem. Particle swarms help in determining the optimal hyperplane or ...

  2. A decomposition method for network-constrained unit commitment with AC power flow constraints

    International Nuclear Information System (INIS)

    Bai, Yang; Zhong, Haiwang; Xia, Qing; Kang, Chongqing; Xie, Le

    2015-01-01

    To meet the increasingly high requirement of smart grid operations, considering AC power flow constraints in the NCUC (network-constrained unit commitment) is of great significance in terms of both security and economy. This paper proposes a decomposition method to solve NCUC with AC power flow constraints. With conic approximations of the AC power flow equations, the master problem is formulated as a MISOCP (mixed integer second-order cone programming) model. The key advantage of this model is that the active power and reactive power are co-optimised, and the transmission losses are considered. With the AC optimal power flow model, the AC feasibility of the UC result of the master problem is checked in subproblems. If infeasibility is detected, feedback constraints are generated based on the sensitivity of bus voltages to a change in the unit reactive power generation. They are then introduced into the master problem in the next iteration until all AC violations are eliminated. A 6-bus system, a modified IEEE 30-bus system and the IEEE 118-bus system are used to validate the performance of the proposed method, which provides a satisfactory solution with approximately 44-fold greater computational efficiency. - Highlights: • A decomposition method is proposed to solve the NCUC with AC power flow constraints • The master problem considers active power, reactive power and transmission losses. • OPF-based subproblems check the AC feasibility using parallel computing techniques. • An effective feedback constraint interacts between the master problem and subproblem. • Computational efficiency is significantly improved with satisfactory accuracy

  3. The Retrofit Puzzle Extended: Optimal Fleet Owner Behavior over Multiple Time Periods

    Science.gov (United States)

    2009-08-04

    In "The Retrofit Puzzle: Optimal Fleet Owner Behavior in the Context of Diesel Retrofit Incentive Programs" (1) an integer program was developed to model profit-maximizing diesel fleet owner behavior when selecting pollution reduction retrofits. Flee...

  4. A divide and conquer approach to determine the Pareto frontier for optimization of protein engineering experiments

    Science.gov (United States)

    He, Lu; Friedman, Alan M.; Bailey-Kellogg, Chris

    2016-01-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability vs. novelty, affinity vs. specificity, activity vs. immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not “dominated”; i.e., no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), in order to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, PEPFR (Protein Engineering Pareto FRontier), that hierarchically subdivides the objective space, employing appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. PMID:22180081

  5. A divide-and-conquer approach to determine the Pareto frontier for optimization of protein engineering experiments.

    Science.gov (United States)

    He, Lu; Friedman, Alan M; Bailey-Kellogg, Chris

    2012-03-01

    In developing improved protein variants by site-directed mutagenesis or recombination, there are often competing objectives that must be considered in designing an experiment (selecting mutations or breakpoints): stability versus novelty, affinity versus specificity, activity versus immunogenicity, and so forth. Pareto optimal experimental designs make the best trade-offs between competing objectives. Such designs are not "dominated"; that is, no other design is better than a Pareto optimal design for one objective without being worse for another objective. Our goal is to produce all the Pareto optimal designs (the Pareto frontier), to characterize the trade-offs and suggest designs most worth considering, but to avoid explicitly considering the large number of dominated designs. To do so, we develop a divide-and-conquer algorithm, Protein Engineering Pareto FRontier (PEPFR), that hierarchically subdivides the objective space, using appropriate dynamic programming or integer programming methods to optimize designs in different regions. This divide-and-conquer approach is efficient in that the number of divisions (and thus calls to the optimizer) is directly proportional to the number of Pareto optimal designs. We demonstrate PEPFR with three protein engineering case studies: site-directed recombination for stability and diversity via dynamic programming, site-directed mutagenesis of interacting proteins for affinity and specificity via integer programming, and site-directed mutagenesis of a therapeutic protein for activity and immunogenicity via integer programming. We show that PEPFR is able to effectively produce all the Pareto optimal designs, discovering many more designs than previous methods. The characterization of the Pareto frontier provides additional insights into the local stability of design choices as well as global trends leading to trade-offs between competing criteria. Copyright © 2011 Wiley Periodicals, Inc.

  6. Rigorous solution to Bargmann-Wigner equation for integer spin

    CERN Document Server

    Huang Shi Zhong; Wu Ning; Zheng Zhi Peng

    2002-01-01

    A rigorous method is developed to solve the Bargamann-Wigner equation for arbitrary integer spin in coordinate representation in a step by step way. The Bargmann-Wigner equation is first transformed to a form easier to solve, the new equations are then solved rigorously in coordinate representation, and the wave functions in a closed form are thus derived

  7. Optimal sensor placement for leak location in water distribution networks using genetic algorithms.

    Science.gov (United States)

    Casillas, Myrna V; Puig, Vicenç; Garza-Castañón, Luis E; Rosich, Albert

    2013-11-04

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  8. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Luis E. Garza-Castañón

    2013-11-01

    Full Text Available This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs. The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach.

  9. Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms

    Science.gov (United States)

    Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert

    2013-01-01

    This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099

  10. Robust Pitch Estimation Using an Optimal Filter on Frequency Estimates

    DEFF Research Database (Denmark)

    Karimian-Azari, Sam; Jensen, Jesper Rindom; Christensen, Mads Græsbøll

    2014-01-01

    of such signals from unconstrained frequency estimates (UFEs). A minimum variance distortionless response (MVDR) method is proposed as an optimal solution to minimize the variance of UFEs considering the constraint of integer harmonics. The MVDR filter is designed based on noise statistics making it robust...

  11. Optimization and mathematical modeling in computer architecture

    CERN Document Server

    Sankaralingam, Karu; Nowatzki, Tony

    2013-01-01

    In this book we give an overview of modeling techniques used to describe computer systems to mathematical optimization tools. We give a brief introduction to various classes of mathematical optimization frameworks with special focus on mixed integer linear programming which provides a good balance between solver time and expressiveness. We present four detailed case studies -- instruction set customization, data center resource management, spatial architecture scheduling, and resource allocation in tiled architectures -- showing how MILP can be used and quantifying by how much it outperforms t

  12. Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers

    Science.gov (United States)

    Abdukhalikov, Kanat; Scharlau, Rudolf

    2009-03-01

    All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in mathbb{Q}(sqrt{-3}) are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3.

  13. Modeling and Optimization : Theory and Applications Conference

    CERN Document Server

    Terlaky, Tamás

    2017-01-01

    This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 17-19, 2016. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, health, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.

  14. Modeling and Optimization : Theory and Applications Conference

    CERN Document Server

    Terlaky, Tamás

    2015-01-01

    This volume contains a selection of contributions that were presented at the Modeling and Optimization: Theory and Applications Conference (MOPTA) held at Lehigh University in Bethlehem, Pennsylvania, USA on August 13-15, 2014. The conference brought together a diverse group of researchers and practitioners, working on both theoretical and practical aspects of continuous or discrete optimization. Topics presented included algorithms for solving convex, network, mixed-integer, nonlinear, and global optimization problems, and addressed the application of deterministic and stochastic optimization techniques in energy, finance, logistics, analytics, healthcare, and other important fields. The contributions contained in this volume represent a sample of these topics and applications and illustrate the broad diversity of ideas discussed at the meeting.

  15. A property of assignment type mixed integer linear programming problems

    NARCIS (Netherlands)

    Benders, J.F.; van Nunen, J.A.E.E.

    1982-01-01

    In this paper we will proof that rather tight upper bounds can be given for the number of non-unique assignments that are achieved after solving the linear programming relaxation of some types of mixed integer linear assignment problems. Since in these cases the number of splitted assignments is

  16. A mixed integer linear program for an integrated fishery | Hasan ...

    African Journals Online (AJOL)

    ... and labour allocation of quota based integrated fisheries. We demonstrate the workability of our model with a numerical example and sensitivity analysis based on data obtained from one of the major fisheries in New Zealand. Keywords: mixed integer linear program, fishing, trawler scheduling, processing, quotas ORiON: ...

  17. IMC-PID-fractional-order-filter controllers design for integer order systems.

    Science.gov (United States)

    Maâmar, Bettayeb; Rachid, Mansouri

    2014-09-01

    One of the reasons of the great success of standard PID controllers is the presence of simple tuning rules, of the automatic tuning feature and of tables that simplify significantly their design. For the fractional order case, some tuning rules have been proposed in the literature. However, they are not general because they are valid only for some model cases. In this paper, a new approach is investigated. The fractional property is not especially imposed by the controller structure but by the closed loop reference model. The resulting controller is fractional but it has a very interesting structure for its implementation. Indeed, the controller can be decomposed into two transfer functions: an integer transfer function which is generally an integer PID controller and a simple fractional filter. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  18. Personnel scheduling using an integer programming model- an application at Avanti Blue-Nile Hotels.

    Science.gov (United States)

    Kassa, Biniyam Asmare; Tizazu, Anteneh Eshetu

    2013-01-01

    In this paper, we report perhaps a first of its kind application of management science in the Ethiopian hotel industry. Avanti Blue Nile Hotels, a newly established five star hotel in Bahir Dar, is the company for which we developed an integer programming model that determines an optimal weekly shift schedule for the Hotel's engineering department personnel while satisfying several constraints including weekly rest requirements per employee, rest requirements between working shifts per employee, required number of personnel per shift, and other constraints. The model is implemented on an excel solver routine. The model enables the company's personnel department management to develop a fair personnel schedule as needed and to effectively utilize personnel resources while satisfying several technical, legal and economic requirements. These encouraging achievements make us optimistic about the gains other Ethiopian organizations can amass by introducing management science approaches in their management planning and decision making systems.

  19. A new Tevatron Collider working point near the integer

    International Nuclear Information System (INIS)

    Johnson, R.P.; Zhang, P.

    1989-12-01

    It is well established that in hadron colliders the beam-beam interaction is more harmful in the presence of machine resonances of the form mν x + nν y = p, where |m| + |n| is the order of the resonance. Since the closest a resonance line can be to the integer stopband is 1/order, the closer the working point is to the integer, the fewer lower order resonances there are to enhance the beam-beam effects. A shift of the working point of the Tevatron from 19.4 to values near 19 and 20 has been studied. Problems with closed orbit control, dispersion matching, and matched low β insertions were considered. An excellent solution for the B0 insertion was found which has an improved β*. A new injection optics allows a transition to the low β optics which is much easier than the one now used. Results from the first machine studies demonstrate the ability to control the orbit with tunes of 19.03 horizontal and 20.03 vertical. Further studies require the activation of additional quadrupole compensation circuits. 4 refs. , 2 figs

  20. Generation-Side Power Scheduling in a Grid-Connected DC Microgrid

    DEFF Research Database (Denmark)

    Hernández, Adriana Carolina Luna; Aldana, Nelson Leonardo Diaz; Meng, Lexuan

    2015-01-01

    In this paper, a constrained mixed-integer programming model for scheduling the active power supplied by the generation units in storage-based DC microgrids is presented. The optimization problem minimizes operating costs taking into account a two-stage mode operation of the energy storage system...... so that a more accurate model for optimization of the microgrid operation can be obtained. The model is used in a particular grid-connected DC microgrid that includes two renewable energy sources and an energy storage system which supply a critical load. The results of the scheduling process...

  1. Solving the Water Jugs Problem by an Integer Sequence Approach

    Science.gov (United States)

    Man, Yiu-Kwong

    2012-01-01

    In this article, we present an integer sequence approach to solve the classic water jugs problem. The solution steps can be obtained easily by additions and subtractions only, which is suitable for manual calculation or programming by computer. This approach can be introduced to secondary and undergraduate students, and also to teachers and…

  2. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    Science.gov (United States)

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  3. Robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming.

    Science.gov (United States)

    Baran, Richard; Northen, Trent R

    2013-10-15

    Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.

  4. Time-Series INSAR: An Integer Least-Squares Approach For Distributed Scatterers

    Science.gov (United States)

    Samiei-Esfahany, Sami; Hanssen, Ramon F.

    2012-01-01

    The objective of this research is to extend the geode- tic mathematical model which was developed for persistent scatterers to a model which can exploit distributed scatterers (DS). The main focus is on the integer least- squares framework, and the main challenge is to include the decorrelation effect in the mathematical model. In order to adapt the integer least-squares mathematical model for DS we altered the model from a single master to a multi-master configuration and introduced the decorrelation effect stochastically. This effect is described in our model by a full covariance matrix. We propose to de- rive this covariance matrix by numerical integration of the (joint) probability distribution function (PDF) of interferometric phases. This PDF is a function of coherence values and can be directly computed from radar data. We show that the use of this model can improve the performance of temporal phase unwrapping of distributed scatterers.

  5. Application of Integer and Fractional Models in Electrochemical Systems

    Directory of Open Access Journals (Sweden)

    Isabel S. Jesus

    2012-01-01

    Full Text Available This paper describes the use of integer and fractional electrical elements, for modelling two electrochemical systems. A first type of system consists of botanical elements and a second type is implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in the frequency domain, and the pros and cons of adopting fractional-order electrical components for modelling these systems are compared.

  6. Statistical mechanics of budget-constrained auctions

    International Nuclear Information System (INIS)

    Altarelli, F; Braunstein, A; Realpe-Gomez, J; Zecchina, R

    2009-01-01

    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being in the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). On the basis of the cavity method of statistical mechanics, we introduce a message-passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise

  7. Statistical mechanics of budget-constrained auctions

    Science.gov (United States)

    Altarelli, F.; Braunstein, A.; Realpe-Gomez, J.; Zecchina, R.

    2009-07-01

    Finding the optimal assignment in budget-constrained auctions is a combinatorial optimization problem with many important applications, a notable example being in the sale of advertisement space by search engines (in this context the problem is often referred to as the off-line AdWords problem). On the basis of the cavity method of statistical mechanics, we introduce a message-passing algorithm that is capable of solving efficiently random instances of the problem extracted from a natural distribution, and we derive from its properties the phase diagram of the problem. As the control parameter (average value of the budgets) is varied, we find two phase transitions delimiting a region in which long-range correlations arise.

  8. Constrained variational calculus for higher order classical field theories

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn, E-mail: cedricmc@icmat.e, E-mail: mdeleon@icmat.e, E-mail: david.martin@icmat.e [Instituto de Ciencias Matematicas, CSIC-UAM-UC3M-UCM, Serrano 123, 28006 Madrid (Spain)

    2010-11-12

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  9. Constrained variational calculus for higher order classical field theories

    International Nuclear Information System (INIS)

    Campos, Cedric M; De Leon, Manuel; De Diego, David MartIn

    2010-01-01

    We develop an intrinsic geometrical setting for higher order constrained field theories. As a main tool we use an appropriate generalization of the classical Skinner-Rusk formalism. Some examples of applications are studied, in particular to the geometrical description of optimal control theory for partial differential equations.

  10. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  11. Half-integer flux quantum effect in cuprate superconductors - a probe of pairing symmetry

    International Nuclear Information System (INIS)

    Tsuei, C.C.; Kirtley, J.R.; Gupta, A.; Sun, J.Z.; Moler, K.A.; Wang, J.H.

    1996-01-01

    Based on macroscopic quantum coherence effects arising from pair tunneling and flux quantization, a series of tricrystal experiments have been designed and carried out to test the order parameter symmetry in high-T c cuprate superconductors. By using a scanning SQUID microscope, we have directly and non-invasively observed the spontaneously generated half-integer flux quantum effect in controlled-orientation tricrystal cuprate superconducting systems. The presence or absence of the half-integer flux quantum effect as a function of the tricrystal geometry allows us to prove that the order parameter symmetry in the YBCO and Tl2201 systems is consistent with that of the d x 2 -y 2 pair state. (orig.)

  12. Optimal Reinsertion of Cancelled Train Lines

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen; Clausen, Jens

    2006-01-01

    One recovery strategy in case of a major disruption in rail network is to cancel all trains on a specific line of the network. When the disturbance has ended, the cancelled line must be reinserted as soon as possible. In this article we present a mixed integer programming (MIP) model for calculat....... The model finds the optimal solution in an average of 0.5 CPU seconds in each test case....

  13. Optimization in engineering models and algorithms

    CERN Document Server

    Sioshansi, Ramteen

    2017-01-01

    This textbook covers the fundamentals of optimization, including linear, mixed-integer linear, nonlinear, and dynamic optimization techniques, with a clear engineering focus. It carefully describes classical optimization models and algorithms using an engineering problem-solving perspective, and emphasizes modeling issues using many real-world examples related to a variety of application areas. Providing an appropriate blend of practical applications and optimization theory makes the text useful to both practitioners and students, and gives the reader a good sense of the power of optimization and the potential difficulties in applying optimization to modeling real-world systems. The book is intended for undergraduate and graduate-level teaching in industrial engineering and other engineering specialties. It is also of use to industry practitioners, due to the inclusion of real-world applications, opening the door to advanced courses on both modeling and algorithm development within the industrial engineering ...

  14. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  15. Optimal load allocation of complex ship power plants

    International Nuclear Information System (INIS)

    Baldi, Francesco; Ahlgren, Fredrik; Melino, Francesco; Gabrielii, Cecilia; Andersson, Karin

    2016-01-01

    Highlights: • The optimal operation of the prime movers of hybrid ship power plants is addressed. • Both mechanical, electric and thermal power demand are considered. • The problem is modelled as a mixed integer-nonlinear programming problem. • Up to 3% savings can be achieved with hybrid power plants. • Including the thermal power demand improves the solution by up to 4%. - Abstract: In a world with increased pressure on reducing fuel consumption and carbon dioxide emissions, the cruise industry is growing in size and impact. In this context, further effort is required for improving the energy efficiency of cruise ship energy systems. In this paper, we propose a generic method for modelling the power plant of an isolated system with mechanical, electric and thermal power demands and for the optimal load allocation of the different components that are able to fulfil the demand. The optimisation problem is presented in the form of a mixed integer linear programming (MINLP) problem, where the number of engines and/or boilers running is represented by the integer variables, while their respective load is represented by the non-integer variables. The individual components are modelled using a combination of first-principle models and polynomial regressions, thus making the system nonlinear. The proposed method is applied to the load-allocation problem of a cruise ship sailing in the Baltic Sea, and used to compare the existing power plant with a hybrid propulsion plant. The results show the benefits brought by using the proposing method, which allow estimating the performance of the hybrid system (for which the load allocation is a non-trivial problem) while also including the contribution of the heat demand. This allows showing that, based on a reference round voyage, up to 3% savings could be achieved by installing the proposed system, compared to the existing one, and that a NPV of 11 kUSD could be achieved already 5 years after the installation of the

  16. Path-Constrained Motion Planning for Robotics Based on Kinematic Constraints

    NARCIS (Netherlands)

    Dijk, van N.J.M.; Wouw, van de N.; Pancras, W.C.M.; Nijmeijer, H.

    2007-01-01

    Common robotic tracking tasks consist of motions along predefined paths. The design of time-optimal path-constrained trajectories for robotic applications is discussed in this paper. To increase industrial applicability, the proposed method accounts for robot kinematics together with actuator

  17. DESIGN OF DYADIC-INTEGER-COEFFICIENTS BASED BI-ORTHOGONAL WAVELET FILTERS FOR IMAGE SUPER-RESOLUTION USING SUB-PIXEL IMAGE REGISTRATION

    Directory of Open Access Journals (Sweden)

    P.B. Chopade

    2014-05-01

    Full Text Available This paper presents image super-resolution scheme based on sub-pixel image registration by the design of a specific class of dyadic-integer-coefficient based wavelet filters derived from the construction of a half-band polynomial. First, the integer-coefficient based half-band polynomial is designed by the splitting approach. Next, this designed half-band polynomial is factorized and assigned specific number of vanishing moments and roots to obtain the dyadic-integer coefficients low-pass analysis and synthesis filters. The possibility of these dyadic-integer coefficients based wavelet filters is explored in the field of image super-resolution using sub-pixel image registration. The two-resolution frames are registered at a specific shift from one another to restore the resolution lost by CCD array of camera. The discrete wavelet transform (DWT obtained from the designed coefficients is applied on these two low-resolution images to obtain the high resolution image. The developed approach is validated by comparing the quality metrics with existing filter banks.

  18. Conference on Commutative rings, integer-valued polynomials and polynomial functions

    CERN Document Server

    Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions

    2014-01-01

    This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: ·    Homological dimensions of Prüfer-like rings ·    Quasi complete rings ·    Total graphs of rings ·    Properties of prime ideals over various rings ·    Bases for integer-valued polynomials ·    Boolean subrings ·    The portable property of domains ·    Probabilistic topics in Intn(D) ·    Closure operations in Zariski-Riemann spaces of valuation domains ·    Stability of do...

  19. The Capability Portfolio Analysis Tool (CPAT): A Mixed Integer Linear Programming Formulation for Fleet Modernization Analysis (Version 2.0.2).

    Energy Technology Data Exchange (ETDEWEB)

    Waddell, Lucas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Muldoon, Frank [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Henry, Stephen Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hoffman, Matthew John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zwerneman, April Marie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backlund, Peter [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Melander, Darryl J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lawton, Craig R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rice, Roy Eugene [Teledyne Brown Engineering, Huntsville, AL (United States)

    2017-09-01

    In order to effectively plan the management and modernization of their large and diverse fleets of vehicles, Program Executive Office Ground Combat Systems (PEO GCS) and Program Executive Office Combat Support and Combat Service Support (PEO CS&CSS) commis- sioned the development of a large-scale portfolio planning optimization tool. This software, the Capability Portfolio Analysis Tool (CPAT), creates a detailed schedule that optimally prioritizes the modernization or replacement of vehicles within the fleet - respecting numerous business rules associated with fleet structure, budgets, industrial base, research and testing, etc., while maximizing overall fleet performance through time. This paper contains a thor- ough documentation of the terminology, parameters, variables, and constraints that comprise the fleet management mixed integer linear programming (MILP) mathematical formulation. This paper, which is an update to the original CPAT formulation document published in 2015 (SAND2015-3487), covers the formulation of important new CPAT features.

  20. Optimal Design of Composite Structures Under Manufacturing Constraints

    DEFF Research Database (Denmark)

    Marmaras, Konstantinos

    algorithms to perform the global optimization. The efficiency of the proposed models is examined on a set of well–defined discrete multi material and thickness optimization problems originating from the literature. The inclusion of manufacturing limitations along with structural considerations in the early...... mixed integer 0–1 programming problems. The manufacturing constraints have been treated by developing explicit models with favorable properties. In this thesis we have developed and implemented special purpose global optimization methods and heuristic techniques for solving this class of problems......This thesis considers discrete multi material and thickness optimization of laminated composite structures including local failure criteria and manufacturing constraints. Our models closely follow an immediate extension of the Discrete Material Optimization scheme, which allows simultaneous...

  1. Two-Phase Algorithm for Optimal Camera Placement

    Directory of Open Access Journals (Sweden)

    Jun-Woo Ahn

    2016-01-01

    Full Text Available As markers for visual sensor networks have become larger, interest in the optimal camera placement problem has continued to increase. The most featured solution for the optimal camera placement problem is based on binary integer programming (BIP. Due to the NP-hard characteristic of the optimal camera placement problem, however, it is difficult to find a solution for a complex, real-world problem using BIP. Many approximation algorithms have been developed to solve this problem. In this paper, a two-phase algorithm is proposed as an approximation algorithm based on BIP that can solve the optimal camera placement problem for a placement space larger than in current studies. This study solves the problem in three-dimensional space for a real-world structure.

  2. Optimal Turbine Allocation for Offshore and Onshore Wind Farms

    DEFF Research Database (Denmark)

    Fischetti, Martina; Fischetti, Matteo; Monaci, Michele

    2016-01-01

    . In particular, lots of money and energy are spent on the optimal design of wind farms, as an efficient use of the available resources is instrumental for their economical success. In the present paper we address the optimization of turbine positions, which is one of the most relevant problems in the design...... of a wind farm, and propose a heuristic approach based on Mixed-Integer Linear Programming techniques. Computational results on very large scale instances prove the practical viability of the approach....

  3. Optimized packings with applications

    CERN Document Server

    Pintér, János

    2015-01-01

    This volume presents a selection of case studies that address a substantial range of optimized object packings (OOP) and their applications. The contributing authors are well-recognized researchers and practitioners. The mathematical modelling and numerical solution aspects of each application case study are presented in sufficient detail. A broad range of OOP problems are discussed: these include various specific and non-standard container loading and object packing problems, as well as the stowing of hazardous and other materials on container ships, data centre resource management, automotive engineering design, space station logistic support, cutting and packing problems with placement constraints, the optimal design of LED street lighting, robust sensor deployment strategies, spatial scheduling problems, and graph coloring models and metaheuristics for packing applications. Novel points of view related to model development and to computational nonlinear, global, mixed integer optimization and heuristic st...

  4. A new decomposition-based computer-aided molecular/mixture design methodology for the design of optimal solvents and solvent mixtures

    DEFF Research Database (Denmark)

    Karunanithi, A.T.; Achenie, L.E.K.; Gani, Rafiqul

    2005-01-01

    This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective is to be optim......This paper presents a novel computer-aided molecular/mixture design (CAMD) methodology for the design of optimal solvents and solvent mixtures. The molecular/mixture design problem is formulated as a mixed integer nonlinear programming (MINLP) model in which a performance objective...... is to be optimized subject to structural, property, and process constraints. The general molecular/mixture design problem is divided into two parts. For optimal single-compound design, the first part is solved. For mixture design, the single-compound design is first carried out to identify candidates...... and then the second part is solved to determine the optimal mixture. The decomposition of the CAMD MINLP model into relatively easy to solve subproblems is essentially a partitioning of the constraints from the original set. This approach is illustrated through two case studies. The first case study involves...

  5. Joint Chance-Constrained Dynamic Programming

    Science.gov (United States)

    Ono, Masahiro; Kuwata, Yoshiaki; Balaram, J. Bob

    2012-01-01

    This paper presents a novel dynamic programming algorithm with a joint chance constraint, which explicitly bounds the risk of failure in order to maintain the state within a specified feasible region. A joint chance constraint cannot be handled by existing constrained dynamic programming approaches since their application is limited to constraints in the same form as the cost function, that is, an expectation over a sum of one-stage costs. We overcome this challenge by reformulating the joint chance constraint into a constraint on an expectation over a sum of indicator functions, which can be incorporated into the cost function by dualizing the optimization problem. As a result, the primal variables can be optimized by a standard dynamic programming, while the dual variable is optimized by a root-finding algorithm that converges exponentially. Error bounds on the primal and dual objective values are rigorously derived. We demonstrate the algorithm on a path planning problem, as well as an optimal control problem for Mars entry, descent and landing. The simulations are conducted using a real terrain data of Mars, with four million discrete states at each time step.

  6. Heuristic Methods of Integer Programming and Its Applications in Economics

    Directory of Open Access Journals (Sweden)

    Dominika Crnjac Milić

    2010-12-01

    Full Text Available A short overview of the results related to integer programming is described in the introductory part of this paper. Furthermore, there is a list of literature related to this field. The main part of the paper analyses the Heuristic method which yields a very fast result without the use of significant mathematical tools.

  7. Improved Sensitivity Relations in State Constrained Optimal Control

    International Nuclear Information System (INIS)

    Bettiol, Piernicola; Frankowska, Hélène; Vinter, Richard B.

    2015-01-01

    Sensitivity relations in optimal control provide an interpretation of the costate trajectory and the Hamiltonian, evaluated along an optimal trajectory, in terms of gradients of the value function. While sensitivity relations are a straightforward consequence of standard transversality conditions for state constraint free optimal control problems formulated in terms of control-dependent differential equations with smooth data, their verification for problems with either pathwise state constraints, nonsmooth data, or for problems where the dynamic constraint takes the form of a differential inclusion, requires careful analysis. In this paper we establish validity of both ‘full’ and ‘partial’ sensitivity relations for an adjoint state of the maximum principle, for optimal control problems with pathwise state constraints, where the underlying control system is described by a differential inclusion. The partial sensitivity relation interprets the costate in terms of partial Clarke subgradients of the value function with respect to the state variable, while the full sensitivity relation interprets the couple, comprising the costate and Hamiltonian, as the Clarke subgradient of the value function with respect to both time and state variables. These relations are distinct because, for nonsmooth data, the partial Clarke subdifferential does not coincide with the projection of the (full) Clarke subdifferential on the relevant coordinate space. We show for the first time (even for problems without state constraints) that a costate trajectory can be chosen to satisfy the partial and full sensitivity relations simultaneously. The partial sensitivity relation in this paper is new for state constraint problems, while the full sensitivity relation improves on earlier results in the literature (for optimal control problems formulated in terms of Lipschitz continuous multifunctions), because a less restrictive inward pointing hypothesis is invoked in the proof, and because

  8. On the convex hull of the simple integer recourse objective function

    NARCIS (Netherlands)

    Klein Haneveld, Willem K.; Stougie, L.; van der Vlerk, Maarten H.

    1995-01-01

    We consider the objective function of a simple integer recourse problem with fixed technology matrix. Using properties of the expected value function, we prove a relation between the convex hull of this function and the expected value function of a continuous simple recourse program. We present an

  9. Multi-task feature selection in microarray data by binary integer programming.

    Science.gov (United States)

    Lan, Liang; Vucetic, Slobodan

    2013-12-20

    A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.

  10. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.; Claudel, Christian G.

    2012-01-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  11. Exact solutions to traffic density estimation problems involving the Lighthill-Whitham-Richards traffic flow model using mixed integer programming

    KAUST Repository

    Canepa, Edward S.

    2012-09-01

    This article presents a new mixed integer programming formulation of the traffic density estimation problem in highways modeled by the Lighthill Whitham Richards equation. We first present an equivalent formulation of the problem using an Hamilton-Jacobi equation. Then, using a semi-analytic formula, we show that the model constraints resulting from the Hamilton-Jacobi equation result in linear constraints, albeit with unknown integers. We then pose the problem of estimating the density at the initial time given incomplete and inaccurate traffic data as a Mixed Integer Program. We then present a numerical implementation of the method using experimental flow and probe data obtained during Mobile Century experiment. © 2012 IEEE.

  12. Optimizing Ship Speed to Minimize Total Fuel Consumption with Multiple Time Windows

    Directory of Open Access Journals (Sweden)

    Jae-Gon Kim

    2016-01-01

    Full Text Available We study the ship speed optimization problem with the objective of minimizing the total fuel consumption. We consider multiple time windows for each port call as constraints and formulate the problem as a nonlinear mixed integer program. We derive intrinsic properties of the problem and develop an exact algorithm based on the properties. Computational experiments show that the suggested algorithm is very efficient in finding an optimal solution.

  13. Non-Porod scattering and non-integer scaling of resistance in rough films

    Science.gov (United States)

    Bupathy, Arunkumar; Verma, Rupesh; Banerjee, Varsha; Puri, Sanjay

    2017-04-01

    In many physical systems, films are rough due to the stochastic behavior of depositing particles. They are characterized by non-Porod power law decays in the structure factor S (k) . Theoretical studies predict anomalous diffusion in such morphologies, with important implications for diffusivity, conductivity, etc. We use the non-Porod decay to accurately determine the fractal properties of two prototypical nanoparticle films: (i) Palladium (Pd) and (ii) Cu2O. Using scaling arguments, we find that the resistance of rough films of lateral size L obeys a non-integer power law R ∼L-ζ , in contrast to integer power laws for compact structures. The exponent ζ is anisotropic. We confirm our predictions by re-analyzing experimental data from Cu2O nano-particle films. Our results are valuable for understanding recent experiments that report anisotropic electrical properties in (rough) thin films.

  14. Accurate Computation of Periodic Regions' Centers in the General M-Set with Integer Index Number

    Directory of Open Access Journals (Sweden)

    Wang Xingyuan

    2010-01-01

    Full Text Available This paper presents two methods for accurately computing the periodic regions' centers. One method fits for the general M-sets with integer index number, the other fits for the general M-sets with negative integer index number. Both methods improve the precision of computation by transforming the polynomial equations which determine the periodic regions' centers. We primarily discuss the general M-sets with negative integer index, and analyze the relationship between the number of periodic regions' centers on the principal symmetric axis and in the principal symmetric interior. We can get the centers' coordinates with at least 48 significant digits after the decimal point in both real and imaginary parts by applying the Newton's method to the transformed polynomial equation which determine the periodic regions' centers. In this paper, we list some centers' coordinates of general M-sets' k-periodic regions (k=3,4,5,6 for the index numbers α=−25,−24,…,−1 , all of which have highly numerical accuracy.

  15. Optimization with PDE constraints ESF networking program 'OPTPDE'

    CERN Document Server

    2014-01-01

    This book on PDE Constrained Optimization contains contributions on the mathematical analysis and numerical solution of constrained optimal control and optimization problems where a partial differential equation (PDE) or a system of PDEs appears as an essential part of the constraints. The appropriate treatment of such problems requires a fundamental understanding of the subtle interplay between optimization in function spaces and numerical discretization techniques and relies on advanced methodologies from the theory of PDEs and numerical analysis as well as scientific computing. The contributions reflect the work of the European Science Foundation Networking Programme ’Optimization with PDEs’ (OPTPDE).

  16. Optimal energy exchange of an industrial cogeneration in a day-ahead electricity market

    International Nuclear Information System (INIS)

    Yusta, J.M.; De Oliveira-De Jesus, P.M.; Khodr, H.M.

    2008-01-01

    This paper addresses an optimal strategy for the daily energy exchange of a 22-MW combined-cycle cogeneration plant of an industrial factory operating in a liberalized electricity market. The optimization problem is formulated as a Mixed-Integer Linear Programming Problem (MILP) that maximizes the profit from energy exchange of the cogeneration, and is subject to the technical constraints and the industrial demand profile. The integer variables are associated with export or import of electricity whereas the real variables relate to the power output of gas and steam turbines, and to the electricity purchased from or sold to the market. The proposal is applied to a real cogeneration plant in Spain where the detailed cost function of the process is obtained. The problem is solved using a large-scale commercial package and the results are discussed and compared with different predefined scheduling strategies. (author)

  17. Optimization of environmental management strategies through a dynamic stochastic possibilistic multiobjective program.

    Science.gov (United States)

    Zhang, Xiaodong; Huang, Gordon

    2013-02-15

    Greenhouse gas (GHG) emissions from municipal solid waste (MSW) management facilities have become a serious environmental issue. In MSW management, not only economic objectives but also environmental objectives should be considered simultaneously. In this study, a dynamic stochastic possibilistic multiobjective programming (DSPMP) model is developed for supporting MSW management and associated GHG emission control. The DSPMP model improves upon the existing waste management optimization methods through incorporation of fuzzy possibilistic programming and chance-constrained programming into a general mixed-integer multiobjective linear programming (MOP) framework where various uncertainties expressed as fuzzy possibility distributions and probability distributions can be effectively reflected. Two conflicting objectives are integrally considered, including minimization of total system cost and minimization of total GHG emissions from waste management facilities. Three planning scenarios are analyzed and compared, representing different preferences of the decision makers for economic development and environmental-impact (i.e. GHG-emission) issues in integrated MSW management. Optimal decision schemes under three scenarios and different p(i) levels (representing the probability that the constraints would be violated) are generated for planning waste flow allocation and facility capacity expansions as well as GHG emission control. The results indicate that economic and environmental tradeoffs can be effectively reflected through the proposed DSPMP model. The generated decision variables can help the decision makers justify and/or adjust their waste management strategies based on their implicit knowledge and preferences. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface

    KAUST Repository

    Gruenewald, Marco; Schirra, Laura K.; Winget, Paul; Kozlik, Michael; Ndione, Paul F.; Sigdel, Ajaya K.; Berry, Joseph J.; Forker, Roman; Bredas, Jean-Luc; Fritz, Torsten; Monti, Oliver L. A.

    2015-01-01

    with localized states (the shallow donors) in the substrate and charge back-donation, resulting in an effectively integer charge transfer across the interface. Charge transfer is thus not merely a question of locating the Fermi level above the PTCDA electron

  19. Optimization Research of Generation Investment Based on Linear Programming Model

    Science.gov (United States)

    Wu, Juan; Ge, Xueqian

    Linear programming is an important branch of operational research and it is a mathematical method to assist the people to carry out scientific management. GAMS is an advanced simulation and optimization modeling language and it will combine a large number of complex mathematical programming, such as linear programming LP, nonlinear programming NLP, MIP and other mixed-integer programming with the system simulation. In this paper, based on the linear programming model, the optimized investment decision-making of generation is simulated and analyzed. At last, the optimal installed capacity of power plants and the final total cost are got, which provides the rational decision-making basis for optimized investments.

  20. Applications exponential approximation by integer shifts of Gaussian functions

    Directory of Open Access Journals (Sweden)

    S. M. Sitnik

    2013-01-01

    Full Text Available In this paper we consider approximations of functions using integer shifts of Gaussians – quadratic exponentials. A method is proposed to find coefficients of node functions by solving linear systems of equations. The explicit formula for the determinant of the system is found, based on it solvability of linear system under consideration is proved and uniqueness of its solution. We compare results with known ones and briefly indicate applications to signal theory.