WorldWideScience

Sample records for intact rat fat

  1. Uptake and clearance of plutonium-238 from intact liver and liver cells transplanted into fat pads of F344/N rats

    International Nuclear Information System (INIS)

    Brooks, A.L.; Guilmette, R.A.; Hahn, F.F.; Jirtle, R.L.

    1985-01-01

    An understanding of the role of liver cells and the intact liver in plutonium biokinetics is needed. Liver cells were isolated from rats, injected into fat pads of recipient rats, and allowed 21 days to form cell colonies. Rats then received a single intraperitoneal injection of 1 μCi 238 Pu-citrate and were serially sacrificed. Uptake, retention, and distribution of Pu in intact liver and in liver cells growing in fat pads were determined. Intact liver cells took up about twice as much 238 Pu as liver cells transplanted into fat pads. However, the retention kinetics of Pu were similar for both the liver cells in the fat pads and the intact liver cells when the retention was expressed as activity per cell. 4 references, 1 figure, 1 table

  2. Sensory-specific satiety is intact in rats made obese on a high-fat high-sugar choice diet.

    Science.gov (United States)

    Myers, Kevin P

    2017-05-01

    Sensory-specific satiety (SSS) is the temporary decreased pleasantness of a recently eaten food, which inhibits further eating. Evidence is currently mixed whether SSS is weaker in obese people, and whether such difference precedes or follows from the obese state. Animal models allow testing whether diet-induced obesity causes SSS impairment. Female rats (n = 24) were randomly assigned to an obesogenic high-fat, high-sugar choice diet or chow-only control. Tests of SSS involved pre-feeding a single palatable, distinctively-flavored food (cheese- or cocoa-flavored) prior to free choice between both foods. Rats were tested for short-term SSS (2 h pre-feeding immediately followed by 2 h choice) and long-term SSS (3 day pre-feeding prior to choice on day 4). In both short- and long-term tests rats exhibited SSS by shifting preference towards the food not recently eaten. SSS was not impaired in obese rats. On the contrary, in the long-term tests they showed stronger SSS than controls. This demonstrates that neither the obese state nor a history of excess energy consumption fundamentally causes impaired SSS in rats. The putative impaired SSS in obese people may instead reflect a specific predisposition, properties of the obesogenic diet, or history of restrictive dieting and bingeing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Metabolism of inhaled ethane and pentane by the intact rat

    International Nuclear Information System (INIS)

    Daugherty, M.S.; Luddent, T.M.; Burk, R.F.

    1986-01-01

    Measurement of exhaled ethane or pentane is a noninvasive technique for studying in vivo lipid peroxidation. Many past studies have assumed that pentane and ethane are not metabolized. Radiolabeled ( 14 C) ethane and pentane were used to study the disposition of these compounds in intact rats. Rats were placed for 8 h in a closed plexiglass chamber fitted with a system for replenishing chamber atmospheric O 2 . Evolved CO 2 was trapped by recirculating chamber air through 3 N NaOH contained in a vessel external to the chamber. Radiolabeled ethane or pentane was injected into the chamber at the start of each experiment. The percent of 14 C-activity added to the chamber recovered in the CO 2 trap, urine, and chamber air at the end of the experiment (8 h) in the [ 14 C]-ethane (n=5) and [ 14 C]-pentane (n=4) studies are presented. Results indicate that both ethane and pentane are metabolized to CO 2 in the intact rat. Possible changes in ethane and pentane metabolism must be considered if the exhalation rates of these hydrocarbons are to be used as indices of in vivo lipid peroxidation

  4. The uptake of radioactive iodine in rat intact Graafian follicles

    International Nuclear Information System (INIS)

    Lieberman, L.M.; Lieberman, G.L.; Lieberman, M.E.

    1984-01-01

    The concentration of iodine-131 in the ovaries of mammals has important implications in the use of I-131 for the diagnosis and treatment of thyroid disease in women. The authors studied the I-131 uptake in whole ovaries and in isolated Graafian follicles of sexually mature rats. Adult female Sprague-Dawley rats, in groups of 5-6 animals, were injected IP with 10-50 μCi of I-131, at 3, 12, and 24 hrs prior to the day of proestrus and killed on the day of proestrus. The thyroid gland and ovaries were removed intact and these organs, as well as eight other tissue specimens, were weighed. The large preovulatory follicles (6-9/ovary) were then isolated under a dissecting microscope and the remaining ovary weighed. All samples were counted in a gamma well counter and the % dose/g estimated. The thyroid gland showed 23.7% dose/organ at 24 hrs. Blood decreased from 1.6% dose/g at 3 hrs to 0.5% dose/g at 24 hrs with the uterus showing 1.1% dose/g and 0.4% dose/g at the same times. Ovarian tissue was 0.5, 0.1, and 0.1% dose/g at 3,12, and 24 hrs respectively, while the intact Graafian follicles had from one-tenth to one-third the concentration of the ovary at the same times. (0.05, 0.03, and 0.03% dose/g). The authors found that the intact Graafian follicle concentrates approximately one-thirtieth to one-sixteenth of the I-131 in the blood and one-tenth to one-third of the I-131 in the ovary. This suggests that there is no active uptake of I-131 in the follicle or follicular fluid

  5. Measurement of tritiated norepinephrine metabolism in intact rat brain

    International Nuclear Information System (INIS)

    Levitt, M.; Kowalik, S.; Barkai, A.I.

    1983-01-01

    A procedure for the study of NE metabolism in the intact rat brain is described. The method involves ventriculocisternal perfusion of the adult male rat with artificial CSF containing [ 3 H]NE. Radioactivity in the perfusate associated with NE and its metabolites 3,4-dihydroxymandelic acid (DOMA), 3,4-dihydroxphenylethyleneglycol (DHPG), 3-methoxy-4-hydroxymandelic acid (VMA), 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), and normetanephrine (NMN) is separated using high-performance liquid chromatography (HPLC). After 80 min the radioactivity in the perfusate reaches an apparent steady-state. Analysis of the steady-state samples shows higher activity in the fractions corresponding to DHPG and MHPG than in those corresponding to DOMA and VMA, confirming glycol formation as the major pathway of NE metabolism in rat brain. Pretreatment with an MAO inhibitor (tranylcypromine) results in a marked decrease in the deaminated metabolites DHPG and MHPG and a concurrent increase in NMN. The results indicate this to be a sensitive procedure for the in vivo determination of changes in NE metabolism. (Auth.)

  6. Liver polyribosome distribution in intact and adrenalectomized rats exposed to. gamma. radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yatvin, M B; Abdel-Halim, M N [Wisconsin Univ., Madison (USA). Dept. of Radiology; Wisconsin Univ., Madison (USA). Dept. of Human Oncology)

    1978-06-01

    The mechanism(s) by which gamma radiation influences liver polyribosome distribution was studied in groups of intact and adrenalectomized male rats. A shift from light to heavy aggregates occurred in the polyribosomes of both intact and adrenalectomized rats after they were exposed to gamma rays. In irradiated adrenalectomized rats, however, the shift to heavier aggregates was not as great as that which occurred in irradiated adrenal-intact animals. Subcutaneous injection of cortisone acetate (10 mg/100 g body weight) also altered the liver polyribosome patterns of both intact and adrenalectomized rats within 8 hours of its administration. The shift which occurred following cortisone administration, however, was less striking than that seen after irradiation only. Thus, although adrenal glucocorticoids contribute to the radiation-indu ied shift in liver polyribosomes in adrenal-intact rats, other factors appear to be involved, since the shift is also obtained in adrenalectomized animals.

  7. Beta Adrenergic Regulation of Intrapulmonary Arteriovenous Anastomoses in Intact Rat and Isolated Rat Lungs

    Directory of Open Access Journals (Sweden)

    Melissa L. Bates

    2017-04-01

    Full Text Available Intrapulmonary arteriovenous anastomoses (IPAVA allow large diameter particles of venous origin to bypass the pulmonary capillary bed and embolize the systemic arterial circulation. IPAVA have been routinely observed in healthy humans with exercise, hypoxia, and catecholamine infusion, but the mechanism by which they are recruited is not well-defined. We hypothesized that beta-adrenergic receptor stimulation recruits IPAVA and that receptor blockade would limit hypoxia-induced IPAVA recruitment. To test our hypothesis, we evaluated the transpulmonary passage of microspheres in intact rats and isolated rats lung infused with the beta-adrenergic receptor agonist isoproterenol. We also evaluated IPAVA recruitment in intact rats with hypoxia and the beta-adrenergic receptor blocker propranolol. We found that IPAVA are recruited in the intact rat by isoproterenol and their recruitment by hypoxia can be minimized by propranolol, suggesting a role for the adrenergic system in the recruitment of IPAVA by hypoxia. IPAVA recruitment is completely abolished by ventilation with 100% oxygen. Isoproterenol also recruits IPAVA in isolated rat lungs. The fact that isoproterenol can recruit IPAVA in isolated lungs, without increased pulmonary flow, suggests that elevated cardiac output is not required for IPAVA recruitment.

  8. Determination of rat vertebral bone compressive fatigue properties in untreated intact rats and zoledronic-acid-treated, ovariectomized rats

    NARCIS (Netherlands)

    Brouwers, J.E.M.; Ruchselman, M.; Rietbergen, van B.; Bouxsein, M.L.

    2009-01-01

    Summary Compressive fatigue properties of whole vertebrae, which may be clinically relevant for osteoporotic vertebral fractures, were determined in untreated, intact rats and zoledronic-acid-treated, ovariectomized rats. Typical fatigue behavior was found and was similar to that seen in other

  9. Digested BLG can induce tolerance when co-administered with intact BLG in Brown Norway rats

    DEFF Research Database (Denmark)

    Bøgh, Katrine Lindholm; Barkholt, Vibeke; Madsen, Charlotte Bernhard

    the human gastro-duodenal digestion process. Four different fractions of BLG-digest was made, based on sizes of peptides or aggregates hereof. Intact BLG and the four fractions of BLG-digesta were characterized by protein chemical analyses. Brown Norway (BN) rats were immunised i.p. three times without......Background: Milk is a major constituent of small children’s diet. Milk allergy is also one of the most common allergies in small children. Prevention, treatment and general understanding of this allergy are therefore important. Methods: Intact BLG was digested in an in vitro model simulating...... the use of adjuvant with either PBS (control), 200 µg of intact BLG, 30 µg of intact BLG, 200 µg of digested BLG (with 30 µg of intact BLG), 200 µg of digested BLG, 200 µg of a fraction of large complexes or 200 µg of a fraction of small complexes (all three without intact BLG). Sera from BN rats were...

  10. Binding of radiolabelled luteinizing hormone to intact and ovariectomised rat uterus

    International Nuclear Information System (INIS)

    Sen, S.; Bhattacharya, S.

    1992-01-01

    Binding of ovine LH to uterine tissue preparation from intact and ovariectomised rat clearly indicates that uterus possesses specific binding sites for LH. Binding characteristics of LH to uterine tissue preparation from intact rat showed saturability with high affinity and low capacity. Scatchard plot analysis showed dissociation constant of the specific binding site to be 0.12 x 10 -9 mol/l and the number of binding sites was 2.31±0.05 fmol/mg protein. Ovariectomy did not change the binding affinity but effected a decrease in the number of binding sites (1.7 ± 0.08 f mol/mg protein). LH treatment of ovariectomized (ovx) rat had no effect on binding affinity but significantly increased the number of binding sites (3.23 ± 0.1 f mol/mg protein). Reduction of uterine weight due to ovariectomy and marked increase of ovx rat uterine weight by LH administration indicate a source of estrogen in ovx rat. An in vitro uterine tissue slice (from intact and ovx rat) incubation showed depletion of 17 β-estradiol (E 2 ) content in ovx rat which significantly elevated on LH addition. Data suggest the LH binding to rat uterine tissue has biological relevance. (author). 16 refs., 4 figs. 1 tab

  11. Spatial memory is intact in aged rats after propofol anesthesia.

    Science.gov (United States)

    Lee, In Ho; Culley, Deborah J; Baxter, Mark G; Xie, Zhongcong; Tanzi, Rudolph E; Crosby, Gregory

    2008-10-01

    We have previously demonstrated that aged rats have persistent impairment of spatial memory after sedation with nitrous oxide or general anesthesia with isoflurane-nitrous oxide. Propofol has different receptor mechanisms of action and a favorable short-term recovery profile, and it has been proposed that propofol is devoid of enduring effects on cognitive performance. No studies have investigated this question in aged subjects, however, so we designed an experiment to examine the long-term effects of propofol anesthesia on spatial working memory. Eighteen-mo-old rats were randomized to 2 h of 100% oxygen-propofol anesthesia (n=11) or to a control group that breathed 100% oxygen (n=10). Propofol was administered by continuous infusion via a tail vein catheter. Rats breathed spontaneously and rectal temperature was maintained. Mean arterial blood pressure was measured noninvasively and a venous blood gas was obtained just before discontinuation of propofol. After a 2-day recovery, spatial working memory was assessed for 14 days using a 12-arm radial maze. The number of total errors, number of correct choices to first error, and time to complete the maze was recorded and analyzed using a repeated measure analysis of variance (ANOVA), with Pmemory in aged rats. In aged rats, propofol anesthesia is devoid of the persistent memory effects observed with other general anesthetics in this model. Thus, while it appears that the state of general anesthesia is neither necessary nor sufficient for development of postanesthetic memory impairment, the choice of anesthetics may play a role in late cognitive outcome in the aged.

  12. Mechanisms of blood pressure changes following renal irradiation of intact, adrenalectomized, and adrenal regenerating rats

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1977-01-01

    This study was conducted to determine the differences in changes in systolic arterial blood pressure following renal x irradiation (1100 R) in adrenal-intact, adrenalectomized, and adrenal-regenerating rats and to elucidate the involvement or roles of the kidneys and of the adrenal glands in the blood pressure changes. The parameters studied included the following: systolic blood pressure; body weight; food and fluid consumption; urine output; plasma and urine electrolytes; sodium balance; plasma renin activity; plasma corticosterone; renal vascular volume; renal vascular permeability (using 125 I-polyvinylpyrrolidone extravasation rate as an indicator); renal blood flow (using 42 K extraction); kidney weight; hematocrit; and total vascular, plasma, and red cell volumes. Renal x irradiation of intact rats caused polydipsia, polyuria, and reduced urine concentrations of sodium and potassium without significantly affecting blood pressure during the period of study (80 days); plasma renin activity was significantly lowered and had a positive correlation with blood volume; an abnormal blood volume-plasma renin activity relationship is suggested. Adrenalectomy caused prolonged hypotension in saline-maintained rats even though their sodium balance was more positive than that in adrenal-intact or adrenal-regenerating rats with normal or elevated blood pressure. The blood pressure of renally irrradiated, adrenalectomized rats was greater than non-irradiated adrenalectomized rats, but with only borderline significance; it is concluded that the absence of the adrenal glands does not affect the degree or duration of the effects of renal irradiation on blood pressure

  13. Mechanisms of blood pressure changes following renal irradiation of intact, adrenalectomized and adrenal regenerating rats

    International Nuclear Information System (INIS)

    Rosenblum, M.

    1976-01-01

    Results are reported from studies on the differences in changes in systolic arterial blood pressure following renal x-irradiation (1100 R) in adrenal-intact, adrenalectomized, and adrenal-regenerating rats and the roles of the kidneys and of the adrenal glands in the blood pressure changes

  14. Insulin rapidly stimulates phosphorylation of a 46-kDa membrane protein on tyrosine residues as well as phosphorylation of several soluble proteins in intact fat cells

    International Nuclear Information System (INIS)

    Haering, H.U.; White, M.F.; Machicao, F.; Ermel, B.; Schleicher, E.; Obermaier, B.

    1987-01-01

    It is speculated that the transmission of an insulin signal across the plasma membrane of cells occurs through activation of the tyrosine-specific receptor kinase, autophosphorylation of the receptor, and subsequent phosphorylation of unidentified substrates in the cell. In an attempt to identify possible substrates, the authors labeled intact rat fat cells with [ 32 P]orthophosphate and used an antiphosphotyrosine antibody to identify proteins that become phosphorylated on tyrosine residues in an insulin-stimulated way. In the membrane fraction of the fat cells, they found, in addition to the 95-kDa β-subunit of the receptor, a 46-kDa phosphoprotein that is phosphorylated exclusively on tyrosine residues. This protein is not immunoprecipitated by antibodies against different regions of the insulin receptor and its HPLC tryptic peptide map is different from the tryptic peptide map of the insulin receptor, suggesting that it is not derived from the receptor β-subunit. Insulin stimulates the tyrosine phosphorylation of the 46-kDa protein within 150 sec in the intact cell 3- to 4-fold in a dose-dependent way at insulin concentrations between 0.5 nM and 100 nM. Insulin (0.5 nM, 100 nM) stimulated within 2 min the 32 P incorporation into a 116-kDa band, a 62 kDa band, and three bands between 45 kDa and 50 kDa 2- to 10-fold. They suggest that the 46-kDa membrane protein and possibly also the soluble proteins are endogenous substrates of the receptor tyrosine kinase in fat cells and that their phosphorylation is an early step in insulin signal transmission

  15. Chronic blood pressure and appetite responses to central leptin infusion in rats fed a high fat diet.

    Science.gov (United States)

    Dubinion, John H; da Silva, Alexandre A; Hall, John E

    2011-04-01

    Obesity has been suggested to induce selective leptin resistance whereby leptin's anorexic effects are attenuated, whereas the effects to increase sympathetic nervous system activity and blood pressure remain intact. Most studies, however, have tested only the acute responses to leptin administration. This study tested whether feeding a high-fat diet causes resistance to the appetite and cardiovascular responses to chronic central leptin infusion. Sprague-Dawley rats were fed high-fat diet (40% kcal from fat, n=5) or normal-fat diet (13% kcal from fat, n=5) for a year. Radiotelemeters were implanted for continuous monitoring of mean arterial pressure (MAP) and heart rate (HR). A 21G steel cannula was implanted in the lateral cerebral ventricle [intracerebroventricular (ICV)]. After recovery, leptin was infused ICV at 0.02 μg/kg per min for 10 days. High-fat rats were heavier than normal-fat rats (582±12 vs. 511±19 g) and exhibited significantly higher MAP (114±3 vs. 96±7 mmHg). Although the acute (24 h) effects of leptin were attenuated in high-fat rats, chronic ICV leptin infusion decreased caloric intake in both groups similarly (50±8 vs. 40±10%) by day 5. Despite decreased food intake and weight loss, leptin infusion significantly increased MAP and HR in both high-fat and normal-fat rats (7±2 and 5±1 mmHg; 18±11 and 21±10 b.p.m., respectively). These results suggest that obesity induced by feeding a high-fat diet blunts the acute anorexic effects of leptin but does not cause significant resistance to the chronic central nervous system effects of leptin on appetite, MAP, or HR.

  16. Fat digestion and absorption in spice-pretreated rats.

    Science.gov (United States)

    Prakash, Usha N S; Srinivasan, Krishnapura

    2012-02-01

    A few common spices are known to stimulate secretion of bile with higher amount of bile acids which play a major role in digestion and absorption of dietary lipids. It would be appropriate to verify if these spices enable efficient digestion and absorption during high-fat intake. In this context, dietary ginger (0.05%), piperine (0.02%), capsaicin (0.015%), and curcumin (0.5%) were examined for their influence on bile secretion, digestive enzymes of pancreas and absorption of dietary fat in high-fat (30%) fed Wistar rats for 8 weeks. These spices enhanced the activity of pancreatic lipase, amylase, trypsin and chymotrypsin by 22-57%, 32-51%, 63-81% and 12-38%, respectively. Dietary intake of spices along with high-fat enhanced fat absorption. These dietary spices increased bile secretion with higher bile acid content. Stimulation of lipid mobilisation from adipose tissue was suggested by the decrease in perirenal adipose tissue weight by dietary capsaicin and piperine. This was also accompanied by prevention of the accumulation of triglyceride in liver and serum in high-fat fed rats. Activities of key lipogenic enzymes in liver were reduced which was accompanied by an increased activity of hormone-sensitive lipase. Thus, dietary ginger and other spice compounds enhance fat digestion and absorption in high-fat fed situation through enhanced secretion of bile salts and a stimulation of the activity pancreatic lipase. At the same time, the energy expenditure is facilitated by these spices to prevent the accumulation of absorbed fat. Copyright © 2011 Society of Chemical Industry.

  17. Ingested soluble CD14 from milk is transferred intact into the blood of newborn rats.

    Science.gov (United States)

    Ward, Tonya L; Spencer, William J; Davis, Laura D R; Harrold, Joann; Mack, David R; Altosaar, Illimar

    2014-02-01

    Milk acts as an edible immune system that is transferred from mother to newborn. Soluble Cluster of Differentiation 14 (sCD14) is a protein found in significant quantities in human milk (~8-29 µg/ml). At a 10-fold lower concentration in the blood (~3 µg/ml), the most notable role of sCD14 is to sequester lipopolysaccharides of Gram-negative bacteria from immune cells. To explore the pharmacodynamics of this milk protein and its biological fate, the biodistribution of radiolabeled sCD14 ((14)C, (125)I) was monitored in 10-d-old rat pups. Up to 3.4 ± 2.2% of the radiolabeled sCD14 administered was observed, intact, in the pup blood for up to 8 h post-ingestion. Additionally, 30.3 ± 13.0% of the radiolabeled sCD14 administered was observed degraded in the stomach at 8 h post-ingestion. A reservoir of intact, administered sCD14 (3.2 ± 0.3%), however, remained in the stomach at 8 h post-ingestion. Intact sCD14 was observed in the small intestine at 5.5 ± 1.6% of the dose fed at 8 h post-ingestion. The presence of intact sCD14 in the blood and the gastrointestinal tract of newborns post-ingestion has implications in the development of allergies, obesity, and other inflammation-related pathogeneses later in life.

  18. Tinospora crispa Ameliorates Insulin Resistance Induced by High Fat Diet in Wistar Rats

    Directory of Open Access Journals (Sweden)

    Mohd Nazri Abu

    2015-01-01

    Full Text Available The antidiabetic properties of Tinospora crispa, a local herb that has been used in traditional Malay medicine and rich in antioxidant, were explored based on obesity-linked insulin resistance condition. Male Wistar rats were randomly divided into four groups, namely, the normal control (NC which received standard rodent diet, the high fat diet (HFD which received high fat diet only, the high fat diet treated with T. crispa (HFDTC, and the high fat diet treated with orlistat (HFDO. After sixteen weeks of treatment, blood and organs were harvested for analyses. Results showed that T. crispa significantly (p < 0.05 reduced the body weight (41.14 ± 1.40%, adiposity index serum levels (4.910 ± 0.80%, aspartate aminotransferase (AST: 161 ± 4.71 U/L, alanine aminotransferase (ALT: 100.95 ± 3.10 U/L, total cholesterol (TC: 18.55 ± 0.26 mmol/L, triglycerides (TG: 3.70 ± 0.11 mmol/L, blood glucose (8.50 ± 0.30 mmo/L, resistin (0.74 ± 0.20 ng/mL, and leptin (17.428 ± 1.50 ng/mL hormones in HFDTC group. The insulin (1.65 ± 0.07 pg/mL and C-peptide (136.48 pmol/L hormones were slightly decreased but within normal range. The histological results showed unharmed and intact liver tissues in HFDTC group. As a conclusion, T. crispa ameliorates insulin resistance-associated with obesity in Wistar rats fed with high fat diet.

  19. Impaired reward learning and intact motivation after serotonin depletion in rats.

    Science.gov (United States)

    Izquierdo, Alicia; Carlos, Kathleen; Ostrander, Serena; Rodriguez, Danilo; McCall-Craddolph, Aaron; Yagnik, Gargey; Zhou, Feimeng

    2012-08-01

    Aside from the well-known influence of serotonin (5-hydroxytryptamine, 5-HT) on emotional regulation, more recent investigations have revealed the importance of this monoamine in modulating cognition. Parachlorophenylalanine (PCPA) depletes 5-HT by inhibiting tryptophan hydroxylase, the enzyme required for 5-HT synthesis and, if administered at sufficiently high doses, can result in a depletion of at least 90% of the brain's 5-HT levels. The present study assessed the long-lasting effects of widespread 5-HT depletions on two tasks of cognitive flexibility in Long Evans rats: effort discounting and reversal learning. We assessed performance on these tasks after administration of either 250 or 500 mg/kg PCPA or saline (SAL) on two consecutive days. Consistent with a previous report investigating the role of 5-HT on effort discounting, pretreatment with either dose of PCPA resulted in normal effortful choice: All rats continued to climb tall barriers to obtain large rewards and were not work-averse. Additionally, rats receiving the lower dose of PCPA displayed normal reversal learning. However, despite intact motivation to work for food rewards, rats receiving the largest dose of PCPA were unexpectedly impaired relative to SAL rats on the pretraining stages leading up to reversal learning, ultimately failing to approach and respond to the stimuli associated with reward. High performance liquid chromatography (HPLC) with electrochemical detection confirmed 5-HT, and not dopamine, levels in the ventromedial frontal cortex were correlated with this measure of associative reward learning. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Effects of SH-reagents of different molecular size upon glucose metabolism in isolated rat fat cells

    International Nuclear Information System (INIS)

    Kather, H.; Simon, B.

    1975-01-01

    To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p-CMB-derivative - p-CMB-Dextran, MW approximately 10,000 -. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p-CMB showed an 1) insulin-like enhancement of 14 C incorporation from (U- 14 C) glucose into CO 2 and triglyceride, 2) inhibition of the insulin-stimulatory effect on these parameters and 3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism. (orig.) [de

  1. Effects of SH-reagents of different molecular size upon glucose metabolism in isolated rat fat cells

    Energy Technology Data Exchange (ETDEWEB)

    Kather, H; Simon, B [Heidelberg Univ. (F.R. Germany). Klinisches Inst. fuer Herzinfarktforschung

    1975-09-01

    To study the role of membrane SH-groups in glucose transport of isolated rat fat cells we compared the effects of a small organic mercurial reagent p-CMB with those of a large p-CMB-derivative - p-CMB-Dextran, MW approximately 10,000 -. It could be shown that both compounds were of almost identical reactivity on fat cell homogenate metabolism. When applied to intact fat cells uncoupled p-CMB showed an 1) insulin-like enhancement of /sup 14/C incorporation from (U-/sup 14/C) glucose into CO/sub 2/ and triglyceride, 2) inhibition of the insulin-stimulatory effect on these parameters and 3) inhibition of basal glucose uptake dependent on the concentrations used. Identical concentrations of p-CMB-Dextran, however, failed to influence basal glucose uptake as well as the insulin mediated increase in glucose metabolism.

  2. The effect of hepatoprotective preparations thioctacid and flavobion on histones in intact and regenerating lever in irradiated rats

    International Nuclear Information System (INIS)

    Kozhurkova, M.; Kropachova, E.; Mishurova, R.; Reksa, R.

    1992-01-01

    The changes in concentration, total content of histones and relative proportion of individual histone fractions in intact and regenerating liver were followed in rats after administration of hepatoprotective agents flavobion and thioctacid and after whole-body gamma irradiation with a dose 5.7 Gy. Thioctacid alone caused an increase in histone concentration in intact liver whereas flavobion alone did not produce significant quantitative changes. Irradiation alone decreased markedly the concentration and total content of histones in intact as well as regenerating liver of unprotected rats. Administration of thioctacid or flavobion protected from these quantitative histone changes or alleviated them consideradly. In relative proportion of individual histone fractions, the most profound changes were found in H1 histone after flavobion application

  3. Plasticity in intact A delta- and C-fibers contributes to cold hypersensitivity in neuropathic rats.

    Science.gov (United States)

    Ji, G; Zhou, S; Kochukov, M Y; Westlund, K N; Carlton, S M

    2007-11-30

    Cold hypersensitivity is a common sensory abnormality accompanying peripheral neuropathies and is difficult to treat. Progress has been made in understanding peripheral mechanisms underlying neuropathic pain but little is known concerning peripheral mechanisms of cold hypersensitivity. The aim of this study was to analyze the contribution of uninjured primary afferents to the cold hypersensitivity that develops in neuropathic rats. Rats with a lumbar 5 (L5) and L6 spinal nerve ligation (SNL, Chung model) but not sham, developed mechanical allodynia, evidenced by decreased paw withdrawal thresholds and increased magnitude of response to von Frey stimulation. Cold hypersensitivity also developed in SNL but not sham rats, evidenced by enhanced nociceptive behaviors induced by placement on a cold plate (6 degrees C) or application of icilin (a transient receptor potential M8 (TRPM8)/transient receptor potential A1 (TRPA1) receptor agonist) to nerve-injured hind paws. Single fiber recordings demonstrated that the mean conduction velocities of intact L4 cutaneous A delta- and C-fibers were not different between naive and SNL rats; however, mechanical thresholds of the A delta- but not the C-fibers were significantly decreased in SNL compared with naive. There was a higher prevalence of C-mechanoheat-cold (CMHC) fibers in SNL compared with naive, but the overall percentage of cold-sensitive C-fibers was not significantly increased compared with naive. This was in contrast to the numerous changes in A delta-fibers: the percentage of L4 cold sensitive A delta-, but not C-fibers, was significantly increased, the percentage of L4 icilin-sensitive A delta-, but not C-fibers, was significantly increased, the icilin-induced activity of L4 A delta-, but not C-fibers, was significantly increased. Icilin-induced activity was blocked by the TRPA1 antagonist Ruthenium Red. The results indicate plasticity in both A delta- and C-uninjured fibers, but A delta fibers appear to provide a

  4. Quantification of regional fat volume in rat MRI

    Science.gov (United States)

    Sacha, Jaroslaw P.; Cockman, Michael D.; Dufresne, Thomas E.; Trokhan, Darren

    2003-05-01

    Multiple initiatives in the pharmaceutical and beauty care industries are directed at identifying therapies for weight management. Body composition measurements are critical for such initiatives. Imaging technologies that can be used to measure body composition noninvasively include DXA (dual energy x-ray absorptiometry) and MRI (magnetic resonance imaging). Unlike other approaches, MRI provides the ability to perform localized measurements of fat distribution. Several factors complicate the automatic delineation of fat regions and quantification of fat volumes. These include motion artifacts, field non-uniformity, brightness and contrast variations, chemical shift misregistration, and ambiguity in delineating anatomical structures. We have developed an approach to deal practically with those challenges. The approach is implemented in a package, the Fat Volume Tool, for automatic detection of fat tissue in MR images of the rat abdomen, including automatic discrimination between abdominal and subcutaneous regions. We suppress motion artifacts using masking based on detection of implicit landmarks in the images. Adaptive object extraction is used to compensate for intensity variations. This approach enables us to perform fat tissue detection and quantification in a fully automated manner. The package can also operate in manual mode, which can be used for verification of the automatic analysis or for performing supervised segmentation. In supervised segmentation, the operator has the ability to interact with the automatic segmentation procedures to touch-up or completely overwrite intermediate segmentation steps. The operator's interventions steer the automatic segmentation steps that follow. This improves the efficiency and quality of the final segmentation. Semi-automatic segmentation tools (interactive region growing, live-wire, etc.) improve both the accuracy and throughput of the operator when working in manual mode. The quality of automatic segmentation has been

  5. Toxicological aspects of interesterified fat: Brain damages in rats.

    Science.gov (United States)

    D'avila, Lívia Ferraz; Dias, Verônica Tironi; Vey, Luciana Taschetto; Milanesi, Laura Hautrive; Roversi, Karine; Emanuelli, Tatiana; Bürger, Marilise Escobar; Trevizol, Fabíola; Maurer, H Luana

    2017-07-05

    In recent years, interesterified fat (IF) has been used to replace hydrogenated vegetable fat (HVF), rich in trans isomers, being found in processed foods. Studies involving IF have shown deleterious influences on the metabolic system, similarly to HVF, whereas no studies regarding its influence on the central nervous system (CNS) were performed. Rats from first generation born and maintained under supplementation (3g/Kg, p.o.) of soybean-oil or IF until adulthood were assessed on memory, biochemical and molecular markers in the hippocampus. IF group showed higher saturated fatty acids and linoleic acid and lower docosahexaenoic acid incorporation in the hippocampus. In addition, IF supplementation impaired short and long-term memory, which were related to increased reactive species generation and protein carbonyl levels, decreased catalase activity, BDNF and TrkB levels in the hippocampus. To the best of our knowledge, this is the first study to show that lifelong IF consumption may be related to brain oxidative damage, memory impairments and neurotrophins modifications, which collectively may be present indifferent neurological disorders. In fact, the use of IF in foods was intended to avoid damage from HVF consumption; however this substitute should be urgently reviewed, since this fat can be as harmful as trans fat. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Fructo-oligosaccharides reduce energy intake but do not affect adiposity in rats fed a low-fat diet but increase energy intake and reduce fat mass in rats fed a high-fat diet.

    Science.gov (United States)

    Hadri, Zouheyr; Rasoamanana, Rojo; Fromentin, Gilles; Azzout-Marniche, Dalila; Even, Patrick C; Gaudichon, Claire; Darcel, Nicolas; Bouras, Abdelkader Dilmi; Tomé, Daniel; Chaumontet, Catherine

    2017-12-01

    The ingestion of low or high lipid diets enriched with fructo-oligosaccharide (FOS) affects energy homeostasis. Ingesting protein diets also induces a depression of energy intake and decreases body weight. The goal of this study was to investigate the ability of FOS, combined or not with a high level of protein (P), to affect energy intake and body composition when included in diets containing different levels of lipids (L). We performed two studies of similar design over a period of 5weeks. During the first experiment (exp1), after a 3-week period of adaptation to a normal protein-low fat diet, the rats received one of the following four diets for 5weeks (6 rats per group): (i) normal protein (14% P/E (Energy) low fat (10% L/E) diet, (ii) normal protein, low fat diet supplemented with 10% FOS, (iii) high protein (55%P/E) low fat diet, and (iv) high protein, low fat diet supplemented with 10% FOS. In a second experiment (exp2) after the 3-week period of adaptation to a normal protein-high fat diet, the rats received one of the following 4 diets for 5weeks (6 rats per group): (i) normal protein, high fat diet (35% of fat), (ii) normal protein, high fat diet supplemented with 10% FOS, (iii) high protein high fat diet and (iv) high protein high fat diet supplemented with 10% FOS. In low-fat fed rats, FOS did not affect lean body mass (LBM) and fat mass but the protein level reduced fat mass and tended to reduce adiposity. In high-fat fed rats, FOS did not affect LBM but reduced fat mass and adiposity. No additive or antagonistic effects between FOS and the protein level were observed. FOS reduced energy intake in low-fat fed rats, did not affect energy intake in normal-protein high-fat fed rats but surprisingly, and significantly, increased energy intake in high-protein high-fat fed rats. The results thus showed that FOS added to a high-fat diet reduced body fat and body adiposity. Published by Elsevier Inc.

  7. Radioimmunolocalization and selective delivery of radiation in a rat model system: comparison of intact and fragmented antibody

    International Nuclear Information System (INIS)

    Walker, K.Z.; Seymour-Munn, K.; Axiak, S.M.; Raison, R.L.; Basten, A.; Towson, J.E.; Bautovitch, G.J.; Morris, J.

    1988-01-01

    Monoclonal antibody (MoAb) fragments are known to have advantages over intact immunoglobulins for radioimmunoscintigraphy. It is less clear whether they are as effective in the delivery of radioimmunotherapy. The imaging and dosimetric properties of an intact MoAb, K-1-21, reactive against human kappa light chains (LC) were compared with that of its F(ab') 2 and Fab fragments using a normal rat model system. Two days after injection of 131 I-K-1-21 into rats bearing antigen-sepharose implants, gamma camera images showed specific localization of the MoAb to the target (kappa LC) but not to the control (lambda LC) implant. Better images were obtained with K-1-21 F(ab') 2 than with Fab or intact antibody. Mean kappa implant: blood ratios were 8.6 ± 3.9 for Fab, 7.9 ± 1.8 for F(ab') 2 and 2.0 ± 0.3 for intact K-1-21. The improvement associated with the use of 131 I-K-1-21 fragments was, however, achieved at the expense of lower absolute values of activity at the target site. Thus the absorbed dose delivered to the implant by the intact K-1-21 was double that delivered with F(ab') 2 and six times that delivered with Fab. As intact K-1-21 also delivered a greater radiation dose to normal tissues, F(ab') 2 fragments may have the greatest overall advantages for therapy with radionuclide MoAb conjugates. (author)

  8. Clinically Relevant Levels of 4-Aminopyridine Strengthen Physiological Responses in Intact Motor Circuits in Rats, Especially After Pyramidal Tract Injury.

    Science.gov (United States)

    Sindhurakar, Anil; Mishra, Asht M; Gupta, Disha; Iaci, Jennifer F; Parry, Tom J; Carmel, Jason B

    2017-04-01

    4-Aminopyridine (4-AP) is a Food and Drug Administration-approved drug to improve motor function in people with multiple sclerosis. Preliminary results suggest the drug may act on intact neural circuits and not just on demyelinated ones. To determine if 4-AP at clinically relevant levels alters the excitability of intact motor circuits. In anesthetized rats, electrodes were placed over motor cortex and the dorsal cervical spinal cord for electrical stimulation, and electromyogram electrodes were inserted into biceps muscle to measure responses. The motor responses to brain and spinal cord stimulation were measured before and for 5 hours after 4-AP administration both in uninjured rats and rats with a cut lesion of the pyramidal tract. Blood was collected at the same time as electrophysiology to determine drug plasma concentration with a goal of 20 to 100 ng/mL. We first determined that a bolus infusion of 0.32 mg/kg 4-AP was optimal: it produced on average 61.5 ± 1.8 ng/mL over the 5 hours after infusion. This dose of 4-AP increased responses to spinal cord stimulation by 1.3-fold in uninjured rats and 3-fold in rats with pyramidal tract lesion. Responses to cortical stimulation also increased by 2-fold in uninjured rats and up to 4-fold in the injured. Clinically relevant levels of 4-AP strongly augment physiological responses in intact circuits, an effect that was more robust after partial injury, demonstrating its broad potential in treating central nervous system injuries.

  9. Study on optimal fat content in total parenteral nutrition in partially hepatectomized rats.

    Science.gov (United States)

    Abe, S; Sakabe, S; Hirata, M; Kamuro, H; Asahara, N; Watanabe, M

    1997-04-01

    In order to investigate the optimal fat content for total parenteral nutrition (TPN) solutions, male Wistar rats were subjected to 70% hepatectomy and then placed, for five days, on one of five TPN regimens in which fat represented 0%, 10%, 20%, 30% and 40%, respectively, of the total calorie content. As serum triglyceride levels in the fat-treated groups were lower than those in the non-treated normal rats, it was concluded that the administered fat was sufficiently hydrolyzed. The greater the fat content, the higher the regeneration rate of the remnant liver. Significant differences were found between the 0%-fat group and 20%-plus fat groups. Hepatic triglyceride level was significantly lower in the 20%-fat group. Hepatic protein level was significantly elevated in all fat-treated groups. Serum phospholipids and total cholesterol due to the lecithin contained in fat emulsion were significantly elevated in the 30 and 40%-fat groups, indicating that fat content of 30 and 40% was excessive. The results suggest that TPN containing fat is superior to fat-free TPN for liver regeneration after partial hepatectomy, and that optimal fat content is estimated to be about 20% of total calorie content in the case of this fat emulsion.

  10. Dietary Shiitake Mushroom (Lentinus edodes Prevents Fat Deposition and Lowers Triglyceride in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    D. Handayani

    2011-01-01

    Full Text Available High-fat diet (HFD induces obesity. This study examined the effects of Shiitake mushroom on the prevention of alterations of plasma lipid profiles, fat deposition, energy efficiency, and body fat index induced by HFD. Rats were given a low, medium, and high (7, 20, 60 g/kg = LD-M, MD-M, HD-M Shiitake mushroom powder in their high-fat (50% in kcal diets for 6 weeks. The results showed that the rats on the HD-M diet had the lowest body weight gain compared to MD-M and LD-M groups (P<0.05. The total fat deposition was significantly lower (−35%, P<0.05 in rats fed an HD-M diet than that of HFD group. Interestingly, plasma triacylglycerol (TAG level was significantly lower (−55%, P<0.05 in rats on HD-M than HFD. This study also revealed the existence of negative correlations between the amount of Shiitake mushroom supplementation and body weight gain, plasma TAG, and total fat masses.

  11. Moderate High Fat Diet Increases Sucrose Self-Administration In Young Rats

    OpenAIRE

    Figlewicz, Dianne P.; Jay, Jennifer L.; Acheson, Molly A.; Magrisso, Irwin J.; West, Constance H.; Zavosh, Aryana; Benoit, Stephen C.; Davis, Jon F.

    2012-01-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However...

  12. In Vivo Real-Time Imaging of Exogenous HGF-Triggered Cell Migration in Rat Intact Soleus Muscles

    International Nuclear Information System (INIS)

    Ishido, Minenori; Kasuga, Norikatsu

    2012-01-01

    The transplantation of myogenic cells is a potentially effective therapy for muscular dystrophy. However, this therapy has achieved little success because the diffusion of transplanted myogenic cells is limited. Hepatocyte growth factor (HGF) is one of the primary triggers to induce myogenic cell migration in vitro. However, to our knowledge, whether exogenous HGF can trigger the migration of myogenic cells (i.e. satellite cells) in intact skeletal muscles in vivo has not been reported. We previously reported a novel in vivo real-time imaging method in rat skeletal muscles. Therefore, the present study examined the relationship between exogenous HGF treatment and cell migration in rat intact soleus muscles using this imaging method. As a result, it was indicated that the cell migration velocity was enhanced in response to increasing exogenous HGF concentration in skeletal muscles. Furthermore, the expression of MyoD was induced in satellite cells in response to HGF treatment. We first demonstrated in vivo real-time imaging of cell migration triggered by exogenous HGF in intact soleus muscles. The experimental method used in the present study will be a useful tool to understand further the regulatory mechanism of HGF-induced satellite cell migration in skeletal muscles in vivo

  13. Swimming exercise increases serum irisin level and reduces body fat mass in high-fat-diet fed Wistar rats.

    Science.gov (United States)

    Lu, Yun; Li, Hongwei; Shen, Shi-Wei; Shen, Zhen-Hai; Xu, Ming; Yang, Cheng-Jian; Li, Feng; Feng, Yin-Bo; Yun, Jing-Ting; Wang, Ling; Qi, Hua-Jin

    2016-05-13

    It has been shown that irisin levels are reduced in skeletal muscle and plasma of obese rats; however, the effect of exercise training on irisin level remains controversial. We aim to evaluate the association of swimming exercise with serum irisin level and other obesity-associated parameters. Forty healthy male Wistar rats were randomly assigned to 4 groups: a normal diet and sedentary group (ND group), normal diet and exercise group (NDE group), high-fat diet and sedentary group (HFD group), and high-fat diet and exercise group (HFDE group. After 8 consecutive weeks of swimming exercise, fat mass and serum irisin level was determined. Higher serum irisin levels were detected in the HFDE group (1.15 ± 0.28 μg/L) and NDE group (1.76 ± 0.17 μg/L) than in the HFD group (0.84 ± 0.23 μg/L) or the ND group (1.24 ± 0.29 μg/L), respectively (HFDE group vs. HFD group, P mass (r = -0.68, P mass (r = -0.576, P mass (r = -0.439, P mass, visceral fat mass and percentage fat mass were lower in the HFDE group than the HFD group (all P values mass in high-fat-fed Wistar rats, which may be attributable to elevated irisin levels induced by swimming exercise.

  14. The influence of sexual hormones on lipogenesis and lipolysis in rat fat cells

    DEFF Research Database (Denmark)

    Hansen, Finn Mølgård; Fahmy, N; Nielsen, Jens Høiriis

    1980-01-01

    and prooestrus than in dioestrus. Oestradiol treatment of both female and male rats and testosterone treatment of male rats for three days lowered the fatty acid synthesis and increased the lipolysis. The metabolic oscillation disappeared in ovariectomized rats, and the fat cells from these animals showed...

  15. Intrahippocampal administration of an androgen receptor antagonist, flutamide, can increase anxiety-like behavior in intact and DHT-replaced male rats.

    Science.gov (United States)

    Edinger, Kassandra L; Frye, Cheryl A

    2006-08-01

    Testosterone (T) and its 5alpha-reduced metabolite, dihydrotestosterone (DHT), can decrease anxiety-like behavior; however, the mechanisms underlying these effects have not been established. First, we hypothesized that if T reduces anxiety-like behavior through actions of its 5alpha-reduced metabolite, DHT, then gonadectomy (GDX) would increase anxiety-like behavior, an effect which would be reversed by systemic administration of DHT. Second, we hypothesized that if T and DHT reduce anxiety-like behavior in part through actions at intracellular androgen receptors in the hippocampus, then administration of an androgen receptor antagonist, flutamide, directly to the hippocampus should increase anxiety-like behavior of intact and DHT-replaced, but not GDX, male rats. Inserts that were empty or contained flutamide were applied directly to the dorsal hippocampus of intact, GDX, or GDX and DHT-replaced rats 2 h prior to testing in the open field, elevated plus maze, or defensive freezing tasks. GDX rats exhibited significantly more anxiety-like behaviors than intact or DHT-replaced rats. Intact and DHT-replaced rats administered flutamide to the hippocampus showed significantly more anxiety-like behavior than did intact and DHT-replaced controls. However, flutamide alone did not increase anxiety-like behavior of GDX rats. Together, these findings suggest that androgens can decrease anxiety-like behavior of male rats in part through DHT's actions at androgen receptors in the hippocampus.

  16. Increased susceptibility of post-weaning rats on high-fat diet to metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Hong Sheng Cheng

    2017-11-01

    Full Text Available The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets and two different developmental stages (post-weaning and young adult on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively Sprague Dawley rats were given control, high-fat (60% kcal, and high-fat-high-sucrose (60% kcal fat + 30% sucrose water diets for eight weeks (n = 6 to 7 per group. Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR α and γ in the liver and receptor for advanced glycation end products (RAGE in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.

  17. Biotransformation of the citrus flavone tangeretin in rats. Identification of metabolites with intact flavane nucleus

    DEFF Research Database (Denmark)

    Nielsen, S.E.; Breinholt, V.; Cornett, C.

    2000-01-01

    were separated and identified by HPLC and the structures elucidated by LC/MS and H-1 NMR. Ten new, major metabolites with intact flavonoid structure were identified. The metabolites identified were either demethylated or hydroxylated derivatives of the parent compound and metabolic changes were found...

  18. Dietary fat content modulates the hypolipidemic effect of dietary inulin in rats.

    Science.gov (United States)

    Han, Kyu-Ho; Yamamoto, Aiko; Shimada, Ken-Ichiro; Kikuchi, Hiroto; Fukushima, Michihiro

    2017-08-01

    Dietary fat content (low versus high fat) may modulate the serum lipid-lowering effect of high-performance (HP)-inulin. This study investigated the effect of dietary HP-inulin on metabolism in rats fed a low- or high-fat diet. Rats were fed a diet of 5% fat with 5% cellulose or 5% HP-inulin (average degree of polymerization = 24) (low-fat diet) or of 20% fat with 5% cellulose or 5% HP-inulin (high-fat diet) for 28 days. Total, HDL, and non-HDL cholesterols, and triglyceride concentrations in the serum were measured along with total lipid content of liver and feces. Hepatic triglyceride and cholesterol, and fecal neutral and acidic sterol concentrations in total lipid were assessed. In addition, cecum SCFA levels and bacterial profiles were determined. The hypolipidemic effect of HP-inulin differed depending on dietary fat content (5% versus 20%). Specifically, 5% inulin instead of cellulose in a semi-purified diet significantly reduced serum lipid levels in rats fed a high-fat diet, which was strongly associated with increased total lipid and neutral sterol excretion. Dietary fat content modulates the hypolipidemic effect of dietary inulin. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Influence of dietary minerals and fat on the absorption of lead. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Barltrop, D.; Khoo, H.E.

    1976-01-01

    The nutritional factors influencing the absorption of lead from the gut were studied using both intact animals and ligated gut loop preparation. Short-term feeding studies were made in groups of six rats using diets of constant lead content (0.075%) but in which the nutritional components were varied sequentially. Dietary lead was labelled with /sup 203/Pb. Absorption was determined in the carcass and individual organs by means of a small-animal whole-body counter. The results showed that absorption was enhanced to twenty-times control value by diets deficient in minerals and seven-fold by diets of high fat content. Conversely, high mineral diets were shown to result in a two-fold reduction in lead absorption. The interaction of lead with individual dietary components was further studied under controlled conditions using ligated gut loop preparations. Using this technique the relative roles of luminal interaction and tissue response for lead absorption were explored and the kinetics of lead absorption determined.

  20. High fat diet promotes achievement of peak bone mass in young rats

    Energy Technology Data Exchange (ETDEWEB)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Mittal, Monika; Chattopadhyay, Naibedya [Division of Endocrinology and Center for Research in Anabolic Skeletal Targets in Health and Illness (ASTHI), CSIR-Central Drug Research Institute, Jankipuram Extension, Sitapur Road, Lucknow 226 031 (India); Wani, Mohan R. [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India); Bhat, Manoj Kumar, E-mail: manojkbhat@nccs.res.in [National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune 411 007 (India)

    2014-12-05

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet.

  1. High fat diet promotes achievement of peak bone mass in young rats

    International Nuclear Information System (INIS)

    Malvi, Parmanand; Piprode, Vikrant; Chaube, Balkrishna; Pote, Satish T.; Mittal, Monika; Chattopadhyay, Naibedya; Wani, Mohan R.; Bhat, Manoj Kumar

    2014-01-01

    Highlights: • High fat diet helps in achieving peak bone mass at younger age. • Shifting from high fat to normal diet normalizes obese parameters. • Bone parameters are sustained even after withdrawal of high fat diet. - Abstract: The relationship between obesity and bone is complex. Epidemiological studies demonstrate positive as well as negative correlation between obesity and bone health. In the present study, we investigated the impact of high fat diet-induced obesity on peak bone mass. After 9 months of feeding young rats with high fat diet, we observed obesity phenotype in rats with increased body weight, fat mass, serum triglycerides and cholesterol. There were significant increases in serum total alkaline phosphatase, bone mineral density and bone mineral content. By micro-computed tomography (μ-CT), we observed a trend of better trabecular bones with respect to their microarchitecture and geometry. This indicated that high fat diet helps in achieving peak bone mass and microstructure at younger age. We subsequently shifted rats from high fat diet to normal diet for 6 months and evaluated bone/obesity parameters. It was observed that after shifting rats from high fat diet to normal diet, fat mass, serum triglycerides and cholesterol were significantly decreased. Interestingly, the gain in bone mineral density, bone mineral content and trabecular bone parameters by HFD was retained even after body weight and obesity were normalized. These results suggest that fat rich diet during growth could accelerate achievement of peak bone mass that is sustainable even after withdrawal of high fat diet

  2. Administration of phosphatidylcholine-cholesterol liposomes partially reconstitutes fat absorption in chronically bile-diverted rats

    NARCIS (Netherlands)

    Nishioka, T; Havinga, R; Tazuma, S; Stellaard, F; Kuipers, F; Verkade, HJ

    2004-01-01

    Background and aims: Intestinal bile deficiency in cholestatic patients leads to fat malabsorption. We addressed the potency of model bile, bile salts and phosphatidylcholine (PC)-cholesterol (CH) liposomes to reconstitute fat absorption in permanently bile-diverted (BD) rats. Methods: The plasma

  3. Effects of high fat diet on incidence of spontaneous tumors in Wistar rats

    DEFF Research Database (Denmark)

    KRISTIANSEN, E.; Madsen, Charlotte Bernhard; Meyer, Otto A.

    1993-01-01

    In a 2.5-year carcinogenicity study, two groups, both including male and female Wistar rats, were fed two different diets with 4% and 16% fat. In addition to 4% soybean oil, the high-fat diet contained 12% mono- and diglycerides, of which 85% was stearic acid and 13% palmitic acid...

  4. EFFECTS OF DIETARY CORN AND OLIVE OIL VERSUS COCONUT FAT ON BILIARY CHOLESTEROL SECRETION IN RATS

    NARCIS (Netherlands)

    SMIT, MJ; WOLTERS, H; TEMMERMAN, AM; KUIPERS, F; BEYNEN, AC; VONK, RJ

    1994-01-01

    We have studied the effects of dietary corn and olive oil versus coconut fat on bile formation and fluidity of hepatic plasma membranes in rats. After 4 weeks of feeding the purified diets containing 9% (w/w) of the test fats, there was no difference in plasma cholesterol concentration between the

  5. Maternal obesity and post-natal high fat diet disrupt hepatic circadian rhythm in rat offspring

    Science.gov (United States)

    Offspring of obese (Ob) rat dams gain greater body wt and fat mass when fed high-fat diet (HFD) as compared to controls. Alterations of diurnal circadian rhythm are known to detrimentally impact metabolically active tissues such as liver. We sought to determine if maternal obesity (MOb) leads to p...

  6. Binge-type behavior in rats consuming trans-fat-free shortening.

    Science.gov (United States)

    Wojnicki, F H E; Charny, G; Corwin, R L W

    2008-07-05

    Studies from this and another laboratory involving an animal model of binge-type behavior have used vegetable shortening containing trans-fats. Due to reformulations by vegetable shortening manufacturers to remove trans-fats from their products, only trans-fat-free shortenings are now available. The goal of the present study was to assess binge-type behavior in rats with trans-fat and trans-free vegetable shortening. Trans-fat-free shortening was provided to three different groups of non-food-deprived male Sprague Dawley rats on different schedules of access: continuous access (24 h/day-7 days/week), daily access (1 h every day), and intermittent access (1 h on Mondays, Wednesdays, Fridays). Trans-fat shortening was provided to a fourth group on the intermittent access schedule. A fifth group had no shortening access (chow only). Both intermittent groups (trans-fat-free and trans-fat) consumed significantly more shortening during the 1-h period of availability than did the daily group, and there was no difference in shortening intakes between the intermittent groups. These results are identical to previous reports of binge-type behavior in rats using this model. Thus, binge-type behavior in the present behavioral model depends upon the schedule of access, not the presence of trans-fats in the shortening.

  7. Dietary D-psicose reduced visceral fat mass in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chung, Young-Mee; Hyun Lee, Joo; Youl Kim, Deuk; Hwang, Se-Hee; Hong, Young-Ho; Kim, Seong-Bo; Jin Lee, Song; Hye Park, Chi

    2012-02-01

    D-Psicose, a C-3 epimer of D-fructose, has shown promise in reducing body fat accumulation in normal rats and plasma glucose level in genetic diabetic mice. Effects of D-psicose on diet-induced obesity are not clearly elucidated, and we investigated food intake, body weight, and fat accumulation in rats fed high-fat (HF) diet. Sprague-Dawley rats became obese by feeding HF diet for 4 wk, and were assigned either to normal or HF diet supplemented with or without D-psicose, sucrose, or erythritol for 8 wk. Changing HF to normal diet gained less body weight and adipose tissue due to different energy intake. D-psicose-fed rats exhibited lower weight gain, food efficiency ratio, and fat accumulation than erythritol- and sucrose-fed rats. This effect was more prominent in D-psicose-fed rats with normal diet than with HF diet, suggesting combination of psicose and calorie restriction further reduced obesity. There was no difference in serum cholesterol/high-density lipoprotein (HDL)-C and low-density lipoprotein (LDL)-C/HDL-C ratios between D-psicose group and other groups. Liver weight in 5% psicose group with normal diet was higher than in other groups, but histopathological examination did not reveal any psicose-related change. D-Psicose inhibited the differentiation of mesenchymal stem cell (MSC) to adipose tissue in a concentration-dependent manner. These results demonstrate that D-psicose produces a marked decrease, greater than erythritol, in weight gain and visceral fat in an established obesity model by inhibiting MSC differentiation to adipocyte. Thus, D-psicose can be useful in preventing and reducing obesity as a sugar substitute and food ingredient. We can develop D-psicose as a sugar substitute and food ingredient since it can prevent obesity in normal people, but also suppress adiposity as a sugar substitute or food ingredients with antiobesity effect in obese people. D-psicose can be unique functional sweetener because of its function of reducing visceral

  8. A high fat meal activates blood coagulation factor vii in rats

    DEFF Research Database (Denmark)

    Olsen, A. K.; Bladbjerg, E. M.; Kornerup Hansen, A.

    2002-01-01

    In humans, high fat meals cause postprandial activation of blood coagulation factor VII (FVII), but human studies have not provided definite evidence for a prothrombotic effect of dietary FVII activation. An animal model would be an attractive way to pursue this question and therefore we tested...... the LEW/Mol rat. We gavaged 3 mL of a fat emulsion (n = 42) or 3 mL isotonic glucose (n = 42). Blood was sampled by heart puncture 2, 4 and 6 h (n = 14/group at each time) after the fat/glucose load. Furthermore, blood was sampled from 16 untreated rats to determine the baseline levels. Triglyceride...

  9. Berberine improves insulin resistance induced by high fat diet in rats

    International Nuclear Information System (INIS)

    Zhou Libin; Yang Ying; Shang Wenbin; Li Fengying; Tang Jinfeng; Wang Xiao; Liu Shangquan; Yuan Guoyue; Chen Mingdao

    2005-01-01

    Objective: To observe the effect of berberine on insulin resistance induced by high fat diet in rats. Methods: Normal male SD rats (8 weeks old) were divided into two groups taking either normal chow (NC, n=9) or high fat diet (HF, n=20). After fourteen weeks, HF rats were divided into two groups. Ten rats continued to take high fat diet. Another ten rats took additional berberine gavage (HF+B, 150mg/kg weight once a day). Six weeks later, oral glucose tolerance test and insulin tolerance test were performed for estimating insulin sensitivity. Results: The body weight, liver weight and epididyaml fat pads weight of HF group were significantly higher than those of HF+B group and NC group (all P<0.01). Fasting plasma glucose, insulin and plasma glucose, insulin 2h after taking glucose in HF+B rats were significantly lower than those in HF rats (all P<0.01). Plasma glucose and insulin levels at all time points in HF rats were significantly higher than those in NC rats. Homa-IR of HF group was markedly higher than that of HF+B group (P<0.01). The glucose-lowering effects after the administration of insuin (0.5u/kg intrapenitoneally) at all time points in HF+B rats were stronger than those in HF rats with 23% and 7% reduction at 15min respectively. Conclusion: Long term high fat diet resulted in insulin resistance. Berberine was able to reverse insulin resistance through promoting peripheral tissue up taking of glucose and decreasing insulin, which would be quite ideal for the intervention of IGT. (authors)

  10. Sex-dependent effects of high-fat-diet feeding on rat pancreas oxidative stress.

    Science.gov (United States)

    Gómez-Pérez, Yolanda; Gianotti, Magdalena; Lladó, Isabel; Proenza, Ana M

    2011-07-01

    The objective of the study was to investigate whether sex differences in oxidative stress-associated insulin resistance previously reported in rats could be attributed to a possible sex dimorphism in pancreas redox status. Fifteen-month-old male and female Wistar rats were fed a control diet or a high-fat diet for 14 weeks. Serum glucose, lipids, and hormone levels were measured. Insulin immunohistochemistry and morphometric analysis of islets were performed. Pancreas triglyceride content, oxidative damage, and antioxidant enzymatic activities were determined. Lipoprotein lipase, hormone-sensitive lipase, and uncoupling protein 2 (UCP2) levels were also measured. Male rats showed a more marked insulin resistance profile than females. In control female rats, pancreas Mn-superoxide dismutase activity and UCP2 levels were higher, and oxidative damage was lower compared with males. High-fat-diet feeding decreased pancreas triglyceride content in female rats and UCP2 levels in male rats. High-fat-diet female rats showed larger islets than both their control and sex counterparts. These results confirm the existence of a sex dimorphism in pancreas oxidative status in both control and high-fat-diet feeding situations, with female rats showing higher protection against oxidative stress, thus maintaining pancreatic function and contributing to a lower risk of insulin resistance.

  11. Effects of High Fat Diet and Physical Exercise on Glucose Tolelance and Insulin Sensitivity in Rats

    OpenAIRE

    福田,哲也

    1987-01-01

    To investigate the interrelationships between the westernized diet and physical exercise as they affect the development of non-insulin-dependent diabetes mellitus (NIDDM), adiposity, glucose tolerance and insulin response to an intraperitoneal glucose load (1.5g/kg bw) and insulin sensitivity to exogenous insulin (0.2U/kg bw) were studied in spontaneously exercised and sedentary rats fed either a high fat diet (40% fat, modern western type) or a low fat diet (10% fat, traditional Japanese typ...

  12. Oxidized LDL Is Strictly Limited to Hyperthyroidism Irrespective of Fat Feeding in Female Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Sieglinde Zelzer

    2015-05-01

    Full Text Available Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66 were grouped into normal diet (n = 30 and high-fat diet (n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL, malondialdehyde (MDA, 4-hydroxynonenal (HNE, the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats.

  13. Oxidized LDL Is Strictly Limited to Hyperthyroidism Irrespective of Fat Feeding in Female Sprague Dawley Rats.

    Science.gov (United States)

    Zelzer, Sieglinde; Mangge, Harald; Pailer, Sabine; Ainoedhofer, Herwig; Kieslinger, Petra; Stojakovic, Tatjana; Scharnagl, Hubert; Prüller, Florian; Weghuber, Daniel; Datz, Christian; Haybaeck, Johannes; Obermayer-Pietsch, Barbara; Trummer, Christian; Gostner, Johanna; Gruber, Hans-Jürgen

    2015-05-21

    Metabolic dysfunctions might play a crucial role in the pathophysiology of thyroid dysfunctions. This study aimed to investigate the impact of a controlled diet (normal versus high fat feeding) on hypothyroid and hyperthyroid Sprague Dawley rats. Female Sprague Dawley rats (n = 66) were grouped into normal diet (n = 30) and high-fat diet (n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment metabolic parameters, such as oxidized LDL (oxLDL), malondialdehyde (MDA), 4-hydroxynonenal (HNE), the lipid profile, body weight and food intake parameters were analyzed. Successfully induced thyroid dysfunctions were shown by T3 levels, both under normal and high fat diet. Thyroid dysfunctions were accompanied by changes in calorie intake and body weight as well as in the lipid profile. In detail, hypothyroid rats showed significantly decreased oxLDL levels, whereas hyperthyroid rats showed significantly increased oxLDL levels. These effects were seen under high fat diet and were less pronounced with normal feeding. Taken together, we showed for the first time in female SD rats that only hyper-, but not hypothyroidism, is associated with high atherogenic oxidized LDL irrespective of normal or high-fat diet in Sprague Dawley rats.

  14. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance

    OpenAIRE

    Bosse, John D.; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E. Dale; Pereira, Troy J.; Dolinsky, Vernon W.; Symons, J. David; Jalili, Thunder

    2013-01-01

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-...

  15. Hypolipidemic activity of Piper betel in high fat diet induced hyperlipidemic rat

    OpenAIRE

    Thirunavukkarasu Thirumalai; Narayanaswamy Tamilselvan; Ernest David

    2014-01-01

    Objective: To evaluate the hypolipidemic effect of Piper betel (P. betel) in high fat diet induced hyperlipidemia rat. Methods: The methanol leaf extract was tested for hypolipidemic effect in the albino rats at the selected optimum dosage of 250 mg/kg body weight and administered orally. Adult male albino rats of six numbers in each group were undertaken study and evaluated. Results: In group II animals, the activity levels of serum total cholesterol (TC), triglycerides (TG), low densi...

  16. Fenugreek Seed Extract Inhibit Fat Accumulation and Ameliorates Dyslipidemia in High Fat Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Parveen Kumar

    2014-01-01

    Full Text Available This study investigated the inhibitory effect of aqueous extract of Trigonella foenum-graecum seeds (AqE-TFG on fat accumulation and dyslipidemia in high fat diet- (HFD- induced obese rats. Female Wistar rats were fed with HFD ad libitum, and the rats on HFD were treated orally with AqE-TFG or orlistat ((HFD for 28 days + AqE-TFG (0.5 and 1.0 g/kg or orlistat (10 mg/kg from day 8 to 28, respectively. Treatment with AqE-TFG produced significant reduction in body weight gain, body mass index (BMI, white adipose tissue (WAT weights, blood glucose, serum insulin, lipids, leptin, lipase, and apolipoprotein-B levels and elevation in adiponectin levels. AqE-TFG improved serum aspartate amino transferase (AST, alanine amino transferase (ALT, and lactate dehydrogenase (LDH levels. AqE-TFG treatment reduced the hepatic and cardiac thiobarbituric acid reactive substances (TBARS and elevated the antioxidant enzyme (glutathione (GSH, superoxide dismutase (SOD, and catalase (CAT levels. In addition, liver and uterine WAT lipogenic enzyme (fatty acid synthetase (FAS and glucose-6-phosphate dehydrogenase (G6PD activities were restored towards normal levels. These findings demonstrated the preventive effect of AqE-TFG on fat accumulation and dyslipidemia, due to inhibition of impaired lipid digestion and absorption, in addition to improvement in glucose and lipid metabolism, enhancement of insulin sensitivity, increased antioxidant defense, and downregulation of lipogenic enzymes.

  17. Long term highly saturated fat diet does not induce NASH in Wistar rats

    Directory of Open Access Journals (Sweden)

    Filippi Céline

    2007-02-01

    Full Text Available Abstract Background Understanding of nonalcoholic steatohepatitis (NASH is hampered by the lack of a suitable model. Our aim was to investigate whether long term high saturated-fat feeding would induce NASH in rats. Methods 21 day-old rats fed high fat diets for 14 weeks, with either coconut oil or butter, and were compared with rats feeding a standard diet or a methionine choline-deficient (MCD diet, a non physiological model of NASH. Results MCDD fed rats rapidly lost weight and showed NASH features. Rats fed coconut (86% of saturated fatty acid or butter (51% of saturated fatty acid had an increased caloric intake (+143% and +30%. At the end of the study period, total lipid ingestion in term of percentage of energy intake was higher in both coconut (45% and butter (42% groups than in the standard (7% diet group. No change in body mass was observed as compared with standard rats at the end of the experiment. However, high fat fed rats were fattier with enlarged white and brown adipose tissue (BAT depots, but they showed no liver steatosis and no difference in triglyceride content in hepatocytes, as compared with standard rats. Absence of hepatic lipid accumulation with high fat diets was not related to a higher lipid oxidation by isolated hepatocytes (unchanged ketogenesis and oxygen consumption or hepatic mitochondrial respiration but was rather associated with a rise in BAT uncoupling protein UCP1 (+25–28% vs standard. Conclusion Long term high saturated fat feeding led to increased "peripheral" fat storage and BAT thermogenesis but did not induce hepatic steatosis and NASH.

  18. Dietary fat level affecting histochemical radiosensitivity in dorsal aorta in rats

    International Nuclear Information System (INIS)

    Yousri, R.M.; Roushdy, H.M.; EL-Malkh, N.M.; Ashry, M.A.; Soliman, S.M.

    1988-01-01

    The present work has been conducted to investigate the effect of dietary fat status and/or cumulative whole body gamma radiation exposures up to 15 Gy the histochemical pattern of the dorsal aortas of male albino rats. Experimental animals were fed on either fat-rich or fat-free diet and the observations compared with those fed normal fat diet. The histochemical investigations has been confined to the concentration levels of mucopolysaccharide substance and total lipids. The dorsal aorta normal fat group showed higher content of PAS-positive material in the first two layers of the aorta wall in comparison with decreased amount of collagen fibers was shown in fat-rich group

  19. Hypothyroidism Exacerbates Thrombophilia in Female Rats Fed with a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Harald Mangge

    2015-07-01

    Full Text Available Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP, a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66 were grouped into normal diet (ND; n = 30 and high-fat diet (HFD; n = 36 groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3 treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.

  20. Intermittent fasting reduces body fat but exacerbates hepatic insulin resistance in young rats regardless of high protein and fat diets.

    Science.gov (United States)

    Park, Sunmin; Yoo, Kyung Min; Hyun, Joo Suk; Kang, Suna

    2017-02-01

    Intermittent fasting (IMF) is a relatively new dietary approach to weight management, although the efficacy and adverse effects have not been full elucidated and the optimal diets for IMF are unknown. We tested the hypothesis that a one-meal-per-day intermittent fasting with high fat (HF) or protein (HP) diets can modify energy, lipid, and glucose metabolism in normal young male Sprague-Dawley rats with diet-induced obesity or overweight. Male rats aged 5 weeks received either HF (40% fat) or HP (26% protein) diets ad libitum (AL) or for 3 h at the beginning of the dark cycle (IMF) for 5 weeks. Epidydimal fat pads and fat deposits in the leg and abdomen were lower with HP and IMF. Energy expenditure at the beginning of the dark cycle, especially from fat oxidation, was higher with IMF than AL, possibly due to greater activity levels. Brown fat content was higher with IMF. Serum ghrelin levels were higher in HP-IMF than other groups, and accordingly, cumulative food intake was also higher in HP-IMF than HF-IMF. HF-IMF exhibited higher area under the curve (AUC) of serum glucose at the first part (0-40 min) during oral glucose tolerance test, whereas AUC of serum insulin levels in both parts were higher in IMF and HF. During intraperitoneal insulin tolerance test, serum glucose levels were higher with IMF than AL. Consistently, hepatic insulin signaling (GLUT2, pAkt) was attenuated and PEPCK expression was higher with IMF and HF than other groups, and HOMA-IR revealed significantly impaired attenuated insulin sensitivity in the IMF groups. However, surprisingly, hepatic and skeletal muscle glycogen storage was higher in IMF groups than AL. The higher glycogen storage in the IMF groups was associated with the lower expression of glycogen phosphorylase than the AL groups. In conclusion, IMF especially with HF increased insulin resistance, possibly by attenuating hepatic insulin signaling, and lowered glycogen phosphorylase expression despite decreased fat mass in young

  1. Eating high-fat chow enhances sensitization to the effects of methamphetamine on locomotion in rats.

    Science.gov (United States)

    McGuire, Blaine A; Baladi, Michelle G; France, Charles P

    2011-05-11

    Eating high-fat chow can modify the effects of drugs acting directly or indirectly on dopamine systems and repeated intermittent drug administration can markedly increase sensitivity (i.e., sensitization) to the behavioral effects of indirect-acting dopamine receptor agonists (e.g., methamphetamine). This study examined whether eating high-fat chow alters the sensitivity of male Sprague Dawley rats to the locomotor stimulating effects of acute or repeated administration of methamphetamine. The acute effects of methamphetamine on locomotion were not different between rats (n=6/group) eating high-fat or standard chow for 1 or 4 weeks. Sensitivity to the effects of methamphetamine (0.1-10mg/kg, i.p.) increased progressively across 4 once per week tests; this sensitization developed more rapidly and to a greater extent in rats eating high-fat chow as compared with rats eating standard chow. Thus, while eating high-fat chow does not appear to alter sensitivity of rats to acutely-administered methamphetamine, it significantly increases the sensitization that develops to repeated intermittent administration of methamphetamine. These data suggest that eating certain foods influences the development of sensitization to drugs acting on dopamine systems. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Equisetum sylvaticum base reduces atherosclerosis risk factors in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Cheng-He Lin

    2014-08-01

    Full Text Available We identify an Equisetum sylvaticum alkaloid (ESA derived from E. hyemale, which has robust antihyperlipidemic effects in rats fed a high-fat diet. ESA was isolated from E. hyemale and identified by IR, 13C NMR and 1H NMR. Rats were induced to hyperlipidemia and subjected to ESA treatment. In hyperlipidemic model, fed with a high-fat diet, the blood levels of TC, TG and LDL-C were increased. The administration of ESA (20 or 40 mg/kg to those rats significantly improved the HDL-C level and reduced the levels of TC, TG, LDL-C. The atherosclerosis index and atherosclerosis risk of these rats were significantly reduced by ESA. In addition, the administration of ESA in rats increased the activity of SOD and decreased the level of MDA. These results reveal the antihyperlipidemic and anti-oxidative effects of ESA in vivo.

  3. Effects of preoperative exposure to a high-fat versus a low-fat diet on ingestive behavior after gastric bypass surgery in rats.

    Science.gov (United States)

    Seyfried, Florian; Miras, Alexander D; Bueter, Marco; Prechtl, Christina G; Spector, Alan C; le Roux, Carel W

    2013-11-01

    The consumption of high fat and sugar diets is decreased after gastric bypass surgery (GB). The mechanisms remain unclear, with tests of motivated behavior toward fat and sugar producing conflicting results in a rat model. These discrepancies may be due to differences in presurgical maintenance diets. The authors used their GB rat model to determine whether the fat content of preoperative maintenance diets affects weight loss, calorie intake, and macronutrient selection after surgery. Male Wistar rats were either low-fat diet fed (LFDF) with normal chow or high-fat diet fed (HFDF) before randomization to GB or sham surgery. In food preference test 1, the animals were offered the choice of a vegetable drink (V8) or a high-calorie liquid (Ensure), and in food preference test 2, they could choose normal chow or a solid high-fat diet. The GB groups did not differ significantly in terms of body weight loss or caloric intake. In food preference test 1, both groups responded similarly by reducing their preference for Ensure and increasing their preference for V8. In food preference test 2, the HFDF-GB rats reduced their preference for a solid high-fat diet gradually compared with the immediate reduction observed in the LFDF-GB rats. The consumption of presurgical maintenance diets with different fat contents did not affect postoperative weight loss outcomes. Both the LFDF-GB and HFDF-GB rats exhibited behaviors consistent with the possible expression of a conditioned taste aversion to a high-fat stimulus. These results suggest that for some physiologic parameters, low-fat-induced obesity models can be used for the study of changes after GB and have relevance to many obese humans who consume high-calorie but low-fat diets.

  4. Pharmacological TLR4 Inhibition Protects against Acute and Chronic Fat-Induced Insulin Resistance in Rats.

    Science.gov (United States)

    Zhang, Ning; Liang, Hanyu; Farese, Robert V; Li, Ji; Musi, Nicolas; Hussey, Sophie E

    2015-01-01

    To evaluate whether pharmacological TLR4 inhibition protects against acute and chronic fat-induced insulin resistance in rats. For the acute experiment, rats received a TLR4 inhibitor [TAK-242 or E5564 (2x5 mg/kg i.v. bolus)] or vehicle, and an 8-h Intralipid (20%, 8.5 mg/kg/min) or saline infusion, followed by a two-step hyperinsulinemic-euglycemic clamp. For the chronic experiment, rats were subcutaneously implanted with a slow-release pellet of TAK-242 (1.5 mg/d) or placebo. Rats then received a high fat diet (HFD) or a low fat control diet (LFD) for 10 weeks, followed by a two-step insulin clamp. Acute experiment; the lipid-induced reduction (18%) in insulin-stimulated glucose disposal (Rd) was attenuated by TAK-242 and E5564 (the effect of E5564 was more robust), suggesting improved peripheral insulin action. Insulin was able to suppress hepatic glucose production (HGP) in saline- but not lipid-treated rats. TAK-242, but not E5564, partially restored this effect, suggesting improved HGP. Chronic experiment; insulin-stimulated Rd was reduced ~30% by the HFD, but completely restored by TAK-242. Insulin could not suppress HGP in rats fed a HFD and TAK-242 had no effect on HGP. Pharmacological TLR4 inhibition provides partial protection against acute and chronic fat-induced insulin resistance in vivo.

  5. Differential effects of restricted versus unlimited high-fat feeding in rats on fat mass, plasma hormones and brain appetite regulators.

    Science.gov (United States)

    Shiraev, T; Chen, H; Morris, M J

    2009-07-01

    The rapid rise in obesity has been linked to altered food consumption patterns. There is increasing evidence that, in addition to total energy intake, the macronutrient composition of the diet may influence the development of obesity. The present study aimed to examine the impact of high dietary fat content, under both isocaloric and hypercaloric conditions, compared with a low fat diet, on adiposity, glucose and lipid metabolism, and brain appetite regulators in rats. Male Sprague-Dawley rats were exposed to one of three diets: control (14% fat), ad lib high-fat palatable (HFD, 35% fat) or high-fat palatable restricted (HFD-R, matched to the energy intake of control) and were killed in the fasting state 11 weeks later. Body weight was increased by 28% in unrestricted HFD fed rats, with an almost tripling of caloric intake and fat mass (P < 0.001) and double the plasma triglycerides of controls. Glucose intolerance and increased insulin levels were observed. HFD-R animals calorie matched to control had double their fat mass, plasma insulin and triglycerides (P < 0.05). Only ad lib consumption of the HFD increased the hypothalamic mRNA expression of the appetite-regulating peptides, neuropeptide Y and pro-opiomelanocortin. Although restricted consumption of palatable HFD had no significant impact on hypothalamic appetite regulators or body weight, it increased adiposity and circulating triglycerides, suggesting that the proportion of dietary fat, independent of caloric intake, affects fat deposition and the metabolic profile.

  6. Effects of high fat diet, ovariectomy, and physical activity on leptin receptor expression in rat brain and white fat tissue.

    Science.gov (United States)

    Blažetić, Senka; Labak, Irena; Viljetić, Barbara; Balog, Marta; Vari, Sandor G; Krivošíková, Zora; Gajdoš, Martin; Kramárová, Patrícia; Kebis, Anton; Vuković, Rosemary; Puljak, Livia; Has-Schön, Elizabeta; Heffer, Marija

    2014-06-01

    To evaluate in a rat animal model whether ovariectomy, high fat diet (HFD), and physical activity in the form of running affect leptin receptor (Ob-R) distribution in the brain and white fat tissue compared to sham (Sh) surgery, standard diet (StD), and sedentary conditions. The study included 48 female laboratory Wistar rats (4 weeks old). Following eight weeks of feeding with standard or HFD, rats were subjected to either OVX or Sh surgery. After surgery, all animals continued StD or HFD for the next 10 weeks. During these 10 weeks, ovariectomy and Sh groups were subjected to physical activity or sedentary conditions. Free-floating immunohistochemistry and Western blot methods were carried out to detect Ob-R in the brain and adipose tissue. StD-ovariectomy-sedentary group had a greater number of Ob-R positive neurons in lateral hypothalamic nuclei than StD-Sh-sedentary group. There was no difference in Ob-R positive neurons in arcuatus nuclei between all groups. Ob-R distribution in the barrel cortex was higher in HFD group than in StD group. Ob-R presence in perirenal and subcutaneous fat was decreased in StD-ovariectomy group. HFD and ovariectomy increased Ob-R distribution in lateral hypothalamic nuclei, but there was no effect on arcuatus nuclei. Our results are first to suggest that HFD, ovariectomy, and physical activity affect Ob-R distribution in the barrel cortex, which might be correlated with the role of Ob-R in election of food in rats.

  7. Fatness

    DEFF Research Database (Denmark)

    Hansen, Anne Katrine Kleberg

    In 1727, the English physician Thomas Short wrote: “I believe no Age did ever afford more instances of Corpulency than our own.” Even in the 18th century, fatness was addressed as an issue of special contemporary concern. This thesis probes concepts and perceptions of fatness in Western European...... Medicine c. 1700–1900. It has been written with particular attention to whether and how fatness has been regarded as a disease during that period in history. One purpose of the thesis is to investigate the immediate period before fatness allegedly became problematized. Another purpose has been to grasp...

  8. High-fat diet induced insulin resistance in pregnant rats through pancreatic pax6 signaling pathway.

    Science.gov (United States)

    Wu, Hao; Liu, Yunyun; Wang, Hongkun; Xu, Xianming

    2015-01-01

    To explore the changes in pancreas islet function of pregnant rats after consumption of high-fat diet and the underlying mechanism. Thirty pregnant Wistar rats were randomly divided into two groups: high-fat diet group and normal control group. Twenty days after gestation, fasting blood glucose concentration (FBG) and fasting serum insulin concentration (FINS) were measured. Then, oral glucose tolerance test (OGTT) and insulin release test (IRT) were performed. Finally, all the rats were sacrificed and pancreas were harvested. Insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR) were calculated according to FBG and FINS. RT-PCR and Real-time PCR were performed to study the expression of paired box 6 transcription factor (Pax6) and its target genes in pancreatic tissues. The body weight was significantly increased in the high-fat diet group compared with that of normal control rats (Pinsulin concentration between the two groups. OGTT and IRT were abnormal in the high-fat diet group. The high-fat diet rats were more prone to impaired glucose tolerance and insulin resistance. The level of the expression of Pax6 transcription factor and its target genes in pancreas, such as pancreatic and duodenal homeobox factor-1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (MafA) and glucose transporter 2 (Glut2) were decreased significantly compared with those of normal control group. High-fat diet feeding during pregnancy may induce insulin resistance in maternal rats by inhibiting pancreatic Pax6 and its target genes expression.

  9. Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures

    Directory of Open Access Journals (Sweden)

    Floriana Rotondo

    2016-11-01

    Full Text Available Background White adipose tissue (WAT is a complex, diffuse, multifunctional organ which contains adipocytes, and a large proportion of fat, but also other cell types, active in defense, regeneration and signalling functions. Studies with adipocytes often require their isolation from WAT by breaking up the matrix of collagen fibres; however, it is unclear to what extent adipocyte number in primary cultures correlates with their number in intact WAT, since recovery and viability are often unknown. Experimental Design Epididymal WAT of four young adult rats was used to isolate adipocytes with collagenase. Careful recording of lipid content of tissue, and all fraction volumes and weights, allowed us to trace the amount of initial WAT fat remaining in the cell preparation. Functionality was estimated by incubation with glucose and measurement of glucose uptake and lactate, glycerol and NEFA excretion rates up to 48 h. Non-adipocyte cells were also recovered and their sizes (and those of adipocytes were measured. The presence of non-nucleated cells (erythrocytes was also estimated. Results Cell numbers and sizes were correlated from all fractions to intact WAT. Tracing the lipid content, the recovery of adipocytes in the final, metabolically active, preparation was in the range of 70–75%. Cells showed even higher metabolic activity in the second than in the first day of incubation. Adipocytes were 7%, erythrocytes 66% and other stromal (nucleated cells 27% of total WAT cells. However, their overall volumes were 90%, 0.05%, and 0.2% of WAT. Non-fat volume of adipocytes was 1.3% of WAT. Conclusions The methodology presented here allows for a direct quantitative reference to the original tissue of studies using isolated cells. We have also found that the “live cell mass” of adipose tissue is very small: about 13 µL/g for adipocytes and 2 µL/g stromal, plus about 1 µL/g blood (the rats were killed by exsanguination. These data translate (with

  10. Effects of high fat fish oil and high fat corn oil diets on initiation of AOM-induced colonic aberrant crypt foci in male F344 rats

    NARCIS (Netherlands)

    Dommels, Y.E.M.; Heemskerk, S.; Berg, H. van den; Alink, G.M.; Bladeren, P.J. van; Ommen, B. van

    2003-01-01

    Modulating effects of high fat fish oil (HFFO) and high fat corn oil (HFCO) diets on azoxymethane (AOM)-induced colonic aberrant crypt foci (ACF) were studied in male F344 rats following 8 weeks of dietary treatment. The incidence of AOM-induced ACF was significantly lower in the proximal colon of

  11. Bone marrow dosimetry in rats using direct tissue counting after injection of radio-iodinated intact monoclonal antibodies or F(ab')2 fragments

    International Nuclear Information System (INIS)

    Buchegger, F.; Chalandon, Y.; Pelegrin, A.; Hardman, N.; Mach, J.P.

    1991-01-01

    Normal rats were injected intravenously with 131I- and 125I-labeled intact murine and chimeric mouse-human monoclonal antibodies directed against carcinoembryonic antigen or with the corresponding F(ab')2 fragments. At different times after injection, individual animals were killed and radioactivity of blood and major organs, including bones and bone marrow, was determined. Ratios comparing radioactivity concentration in different tissues with that of bone marrow were calculated and found to remain stable during several effective half-lives of the antibodies. Mean bone marrow radioactivity was 35% (range, 29%-40%) of that of blood and 126% (range, 108%-147%) of that of liver after injection of intact Mabs or F(ab')2 fragments. In nude rats bearing human colon carcinoma xenografts producing carcinoembryonic antigen, relative bone marrow radioactivity was slightly lower than that in normal rats

  12. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring

    OpenAIRE

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    Background The mother?s consumption of high-fat food can affect glucose metabolism and the hypothalamic?pituitary?adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Methods Female rats were randomly divided into normal and high-fat diet groups and were fed in a...

  13. INFLUENCE OF DIETARY FAT ON LEPTIN AND INSULIN IN MALE ALBINO RATS

    International Nuclear Information System (INIS)

    KASSAB, F.M.A.; ABDEL-KHALEK, L.G.; KAMAL, A.M.

    2008-01-01

    Sixty male albino rats were arranged into 5 equal groups which were used in this study to investigate the relation between leptin and insulin hormones under high fat intake and to assess the role of fresh vegetable intake on minimizing dyslipidemia.The results denoted that dietary fat caused significant increase in the levels of blood glucose and leptin hormone with significant decrease in insulin concentration and with prolonged high fat intake, insulin level was increased. However, the increased leptin and glucose indicated that prolonged fatty diet may cause insulin resistance. Addition of green vegetables to the diet normalized to a great extent the level of cholesterol, triglycerides, VLDL, glucose and insulin

  14. Milrinone ameliorates cardiac mechanical dysfunction after hypothermia in an intact rat model.

    Science.gov (United States)

    Dietrichs, Erik Sveberg; Kondratiev, Timofei; Tveita, Torkjel

    2014-12-01

    Rewarming from hypothermia is often complicated by cardiac dysfunction, characterized by substantial reduction in stroke volume. Previously we have reported that inotropic agents, working via cardiac β-receptor agonism may exert serious side effects when applied to treat cardiac contractile dysfunction during rewarming. In this study we tested whether Milrinone, a phosphodiesterase III inhibitor, is able to ameliorate such dysfunction when given during rewarming. A rat model designed for circulatory studies during experimental hypothermia with cooling to a core temperature of 15°C, stable hypothermia at this temperature for 3h and subsequent rewarming was used, with a total of 3 groups: (1) a normothermic group receiving Milrinone, (2) a hypothermic group receiving Milrinone the last hour of hypothermia and during rewarming, and (3) a hypothermic saline control group. Hemodynamic function was monitored using a conductance catheter introduced to the left ventricle. After rewarming from 15°C, stroke volume and cardiac output returned to within baseline values in Milrinone treated animals, while these variables were significantly reduced in saline controls. Milrinone ameliorated cardiac dysfunction during rewarming from 15°C. The present results suggest that at low core temperatures and during rewarming from such temperatures, pharmacologic efforts to support cardiovascular function is better achieved by substances preventing cyclic AMP breakdown rather than increasing its formation via β-receptor stimulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Atrial natriuretic peptide (ANP) increases urinary albumin excretion (UAE) in intact and uninephrectomized (UNX) rats

    International Nuclear Information System (INIS)

    Valentin, J.P.; Ribstein, J.; Mimran, A.

    1990-01-01

    Previous experimental observations have suggested that ANP increases the transcapillary shift of water and albumin. The present studies were conducted in anesthetized euvolemic rats 6 weeks after UNX or sham operation. The effect of iv infusion of 103-126 hANP was assessed on GFR and ERPF ( 99 Tc.DTPA and 131 I-hippuran clearances), and UAE (nephelemetric method). ANP infusion was associated with no change in mean arterial pressure during the low dose (LD) and a 30 mm Hg decrease during the high dose (HD). ANP induced a dose-dependent and reversible increase in UNaV. Both proximal (as assessed by lithium excretion) and distal reabsorption of sodium were decreased by ANP. GFR was altered whereas ERPF decreased only during HD-AMP; filtration fraction (FF) dose-dependently increased in response to ANP. UAE increased dose-dependently and to a similar extent in both groups in response to ANP. The increase in UAE was readily reversible after discontinuation of ANP. There was a positive correlation between changes in UAE and changes in FF induced by ANP. These results indicate that ANP has a potent albuminuric effect. The simultaneous increase in UAE and FF, which could explain the effect of ANP on proximal tubular handling of sodium, may result from an ANP-induced rise in intraglomerular capillary pressure and/or an increase in glomerular permeability to albumin

  16. Administration of dried Aloe vera gel powder reduced body fat mass in diet-induced obesity (DIO) rats.

    Science.gov (United States)

    Misawa, Eriko; Tanaka, Miyuki; Nabeshima, Kazumi; Nomaguchi, Kouji; Yamada, Muneo; Toida, Tomohiro; Iwatsuki, Keiji

    2012-01-01

    The aim of the present study was to investigate the anti-obesity effects of Aloe vera gel administration in male Sprague-Dawley (SD) rats with diet-induced obesity (DIO). SD rats at 7 wk of age were fed either a standard diet (10 kcal% fat) (StdD) or high-fat (60 kcal% fat) diet (HFD) during the experimental period. Four weeks after of HFD-feeding, DIO rats (11 wk of age) were orally administered with two doses of Aloe vera gel powder (20 and 200 mg/kg/d) for 90 d. Body weights (g) and body fat (%) of HFD fed rats were significantly higher than those of StdD-fed rats. Although a modest decrease of body weight (g) was observed with the administration of dried Aloe vera gel powder, both subcutaneous and visceral fat weight (g) and body fat (%) were reduced significantly in Aloe vera gel-treated rats. Serum lipid parameters elevated by HFD were also improved by the Aloe vera gel treatment. The oxygen consumption (VO(2)), an index of energy expenditure, was decreased in HFD-fed rats compared with that in StdD-fed rats. Administration of Aloe vera gel reversed the change in VO(2) in the HFD-fed rats. These results suggest that intake of Aloe vera gel reduced body fat accumulation, in part, by stimulation of energy expenditure. Aloe vera gel might be beneficial for the prevention and improvement of diet-induced obesity.

  17. The action of ryanodine on rat fast and slow intact skeletal muscles.

    Science.gov (United States)

    Fryer, M W; Lamb, G D; Neering, I R

    1989-07-01

    1. The action of ryanodine on force development of bundles dissected from rat extensor digitorum longus (EDL) and soleus muscles has been examined. 2. Ryanodine (100-5000 nM) irreversibly depressed twitch and tetanic tension of both muscle types in a dose-related manner. 3. At concentrations above 250 nM, ryanodine induced a slowly developing, dose-dependent contracture which could not be blocked by 5 mM-Co2+. Increasing the stimulation rate or decreasing the oxygenation of the preparation accelerated the rate of contracture development while the total removal of extracellular Ca2+ was required to prevent it. 4. Following the relaxation of the initial contracture (IC) in Ca2+-free solution, a second type of contracture (SC) could be induced by the readdition of Ca2+. This contracture differed from IC in that it was dependent on Ca2+ in the millimolar range and was prevented by 5 mM-Co2+. Both IC and SC were relaxed by perfusion with Ca2+-free, EGTA-containing solution. 5. Subcontracture doses of ryanodine (100 nM) markedly potentiated caffeine contractures of both muscle types. 6. Asymmetric charge movement in EDL fibres was recorded with the Vaseline-gap technique. The amount of charge moved near threshold was virtually unaffected by the presence of 10 microM-ryanodine over the time examined. 7. The results are consistent with the suggestion that ryanodine locks the calcium release channels of the sarcoplasmic reticulum (SR) in an open subconductance state with reduced conductance. It appears that lowering the external calcium concentration might still inactivate the release channels after they have been blocked open by ryanodine, possibly by an effect on the T-tubular voltage sensor.

  18. Melatonin counteracts changes in hypothalamic gene expression of signals regulating feeding behavior in high-fat fed rats.

    Science.gov (United States)

    Ríos-Lugo, María J; Jiménez-Ortega, Vanesa; Cano-Barquilla, Pilar; Mateos, Pilar Fernández; Spinedi, Eduardo J; Cardinali, Daniel P; Esquifino, Ana I

    2015-03-01

    Previous studies indicate that the administration of melatonin caused body weight and abdominal visceral fat reductions in rodent models of hyperadiposity. The objective of the present study performed in high-fat fed rats was to evaluate the activity of melatonin on gene expression of some medial basal hypothalamus (MBH) signals involved in feeding behavior regulation, including neuropeptide Y (NPY), proopiomelanocortin (POMC), prolactin-releasing peptide (PrRP), leptin- and insulin-receptors (R) and insulin-R substrate (IRS)-1 and -2. Blood levels of leptin and adiponectin were also measured. Adult Wistar male rats were divided into four groups (n=16 per group): (i) control diet (3% fat); (ii) high-fat (35%) diet; (iii) high-fat diet+melatonin; (iv) control diet+melatonin. Rats had free access to high-fat or control chow and one of the following drinking solutions: (a) tap water; (b) 25 μg/mL of melatonin. After 10 weeks, the high-fat fed rats showed augmented MBH mRNA levels of NPY, leptin-R, PrRP, insulin-R, IRS-1 and IRS-2. The concomitant administration of melatonin counteracted this increase. Feeding of rats with a high-fat diet augmented expression of the MBH POMC gene through an effect insensitive to melatonin treatment. The augmented levels of circulating leptin and adiponectin seen in high-fat fed rats were counteracted by melatonin as was the augmented body weight: melatonin significantly attenuated a body weight increase in high-fat fed rats without affecting chow or water consumption. Melatonin augmented plasma leptin and adiponectin in control rats. The results indicate that an effect on gene expression of feeding behavior signals at the central nervous system (CNS) may complement a peripheral rise of the energy expenditure produced by melatonin to decrease body weight in high-fat fed rats.

  19. Physical activity prevents augmented body fat accretion in moderately iron-deficient rats.

    Science.gov (United States)

    McClung, James P; Andersen, Nancy E; Tarr, Tyson N; Stahl, Chad H; Young, Andrew J

    2008-07-01

    Recent studies describe an association between poor iron status and obesity in humans, although the mechanism explaining this relationship is unclear. The present study aimed to determine the effect of moderate iron deficiency and physical activity (PA) on body composition in an animal model. Male Sprague-Dawley rats consumed iron-adequate (IA; 40 mg/kg) or moderately iron-deficient (ID; 9 mg/kg) diets ad libitum for 12 wk. Rats were assigned to 4 treatment groups (n = 10 per group): IA, sedentary (IAS); IA, PA (IAPA); ID, sedentary (IDS); or ID, PA (IDPA). Activity involved running on motorized running wheels at 4 m/min for 1 h/d for 5 d/wk. After 12 wk, ID rats were not anemic, but body iron stores were reduced as indicated by diminished (P IA rats. Treatment group did not affect body weight or feed consumption. However, fat mass was greater (P IAS (31.8 +/- 2.9%), IAPA (31.8 +/- 2.0%), and IDPA (32.8 +/- 4.5%) rats. Furthermore, lean body mass was diminished in IDS rats (58.7 +/- 6.8%) compared with IAS (65.6 +/- 3.0%), IAPA (65.6 +/- 2.1%), and IDPA (64.7 +/- 4.5%) rats. Thus, moderate iron deficiency may cause increased body fat accretion in rats and PA attenuates that effect.

  20. Up-regulation of cytochrome P450 and phase II enzyme systems in rat precision-cut rat lung slices by the intact glucosinolates, glucoraphanin and glucoerucin.

    Science.gov (United States)

    Abdull Razis, Ahmad Faizal; Bagatta, Manuela; De Nicola, Gina Rosalinda; Iori, Renato; Ioannides, Costas

    2011-03-01

    It is believed that the chemopreventive activity of cruciferous vegetables in the lung and other tissues is exclusively the result of exposure to degradation products of glucosinolates, such as the isothiocyanates, and that the parent glucosinolates make no contribution. In the present study, evidence is presented for the first time that, in rat lung, the intact glucosinolates, glucoraphanin and glucoerucin, can modulate carcinogen-metabolising enzyme systems. The glucosinolates were isolated from cruciferous vegetables and incubated (1-25 μM) with precision-cut rat lung slices for 24h. Both glucosinolates, at concentrations as low as 1 μM, up-regulated the O-deethylation of ethoxyresorufin and the apoprotein levels of CYP1A1 and CYP1B1; supplementation of the incubation medium with myrosinase, the enzyme that converts glucosinolates to their corresponding isothiocyanates, abolished the rise in ethoxyresorufin O-deethylase activity. In contrast, neither glucosinolate, at the concentrations studied, influenced quinone reductase activity in the lung slices, but addition of myrosinase to the glucosinolate incubations led to a marked rise in activity. Glutathione S-transferase activity, monitored using 1-chloro-2,4-dinitrobenzene as the accepting substrate, was elevated in lung slices exposed to glucoraphanin. GSTα protein levels were increased by glucoraphanin and, to a much lesser extent, glucoerucin. It may be concluded that intact glucosinolates can modulate the activity of pulmonary carcinogen-metabolising enzyme systems, and can thus contribute to the documented chemopreventive activity of cruciferous vegetables in the lung. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  1. Swimming training induces liver adaptations to oxidative stress and insulin sensitivity in rats submitted to high-fat diet.

    Science.gov (United States)

    Zacarias, Aline Cruz; Barbosa, Maria Andrea; Guerra-Sá, Renata; De Castro, Uberdan Guilherme Mendes; Bezerra, Frank Silva; de Lima, Wanderson Geraldo; Cardoso, Leonardo M; Santos, Robson Augusto Souza Dos; Campagnole-Santos, Maria José; Alzamora, Andréia Carvalho

    2017-11-01

    Oxidative stress, physical inactivity and high-fat (FAT) diets are associated with hepatic disorders such as metabolic syndrome (MS). The therapeutic effects of physical training (PT) were evaluated in rats with MS induced by FAT diet for 13 weeks, on oxidative stress and insulin signaling in the liver, during the last 6 weeks. FAT-sedentary (SED) rats increased body mass, retroperitoneal fat, mean arterial pressure (MAP) and heart rate (HR), and total cholesterol, serum alanine aminotransferase, glucose and insulin. Livers of FAT-SED rats increased superoxide dismutase activity, thiobarbituric acid-reactive substances, protein carbonyl and oxidized glutathione (GSSG); and decreased catalase activity, reduced glutathione/GSSG ratio, and the mRNA expression of insulin receptor substrate 1 (IRS-1) and serine/threonine kinase 2. FAT-PT rats improved in fitness and reduced their body mass, retroperitoneal fat, and glucose, insulin, total cholesterol, MAP and HR; and their livers increased superoxide dismutase and catalase activities, the reduced glutathione/GSSG ratio and the expression of peroxisome proliferator-activated receptor gamma and insulin receptor compared to FAT-SED rats. These findings indicated adaptive responses to PT by restoring the oxidative balance and insulin signaling in the liver and certain biometric and biochemical parameters as well as MAP in MS rats.

  2. Eating high fat chow increases the sensitivity of rats to 8-OH-DPAT-induced lower lip retraction.

    Science.gov (United States)

    Li, Jun-Xu; Ju, Shutian; Baladi, Michelle G; Koek, Wouter; France, Charles P

    2011-12-01

    Eating high fat food can alter sensitivity to drugs acting on dopamine systems; this study examined whether eating high fat food alters sensitivity to a drug acting on serotonin (5-HT) systems. Sensitivity to (+)-8-hydroxy-2-(dipropylamino) tetralin hydrobromide (8-OH-DPAT; 5-HT1A receptor agonist)-induced lower lip retraction was examined in separate groups (n=8-9) of rats with free access to standard (5.7% fat) or high fat (34.3% fat) chow; sensitivity to quinpirole (dopamine D3/D2 receptor agonist)-induced yawning was also examined. Rats eating high fat chow gained more body weight than rats eating standard chow and, after 6 weeks of eating high fat chow, they were more sensitive to 8-OH-DPAT (0.01-0.1 mg/kg)-induced lower lip retraction and quinpirole (0.0032-0.32 mg/kg)-induced yawning. These changes were not reversed when rats that previously ate high fat chow were switched to eating standard chow and sensitivity to 8-OH-DPAT and quinpirole increased when rats that previously ate standard chow ate high fat chow. These data extend previous results showing changes in sensitivity to drugs acting on dopamine systems in animals eating high fat chow to a drug acting at 5-HT1A receptors and they provide support for the notion that eating certain foods impacts sensitivity to drugs acting on monoamine systems.

  3. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Alessandra Ferramosca

    2015-01-01

    Full Text Available In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group, a diet with 35% fat (HF group, or a high-fat diet supplemented with 2.5% krill oil (HF+KO group. The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  4. Krill Oil Ameliorates Mitochondrial Dysfunctions in Rats Treated with High-Fat Diet.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Zara, Vincenzo

    2015-01-01

    In recent years, several studies focused their attention on the role of dietary fats in the pathogenesis of hepatic steatosis. It has been demonstrated that a high-fat diet is able to induce hyperglycemia, hyperinsulinemia, obesity, and nonalcoholic fatty liver disease. On the other hand, krill oil, a novel dietary supplement of n-3 PUFAs, has the ability to improve lipid and glucose metabolism, exerting possible protective effects against hepatic steatosis. In this study we have investigated the effects of krill oil on mitochondrial energetic metabolism in animals fed a high-fat diet. To this end, male Sprague-Dawley rats were divided into three groups and fed for 4 weeks with a standard diet (control group), a diet with 35% fat (HF group), or a high-fat diet supplemented with 2.5% krill oil (HF+KO group). The obtained results suggest that krill oil promotes the burning of fat excess introduced by the high-fat diet. This effect is obtained by stimulating mitochondrial metabolic pathways such as fatty acid oxidation, Krebs cycle, and respiratory chain complexes activity. Modulation of the expression of carrier proteins involved in mitochondrial uncoupling was also observed. Overall, krill oil counteracts the negative effects of a high-fat diet on mitochondrial energetic metabolism.

  5. Chronic consumption of trans fat can facilitate the development of hyperactive behavior in rats.

    Science.gov (United States)

    Pase, C S; Roversi, Kr; Trevizol, F; Kuhn, F T; Dias, V T; Roversi, K; Vey, L T; Antoniazzi, C T; Barcelos, R C S; Bürger, M E

    2015-02-01

    In recent decades, the increased consumption of processed foods, which are rich in hydrogenated vegetable fat (HVF), has led to a decreased consumption of fish and oilseed, rich in omega-3 fatty acids. This eating habit provides an increased intake of trans fatty acids (TFA), which may be related to neuropsychiatric conditions, including inattention and hyperactivity. In this study, we evaluated the potential connection between prolonged trans fat consumption and development of hyperactivity-like symptoms in rats using different behavioral paradigms. Trans fat intake for 10 months (Experiment 1), as well as during pregnancy and lactation across two sequential generations of rats, (Experiment 4) induced active coping in the forced swimming task (FST). In addition, HVF supplementation was associated with increased locomotion before and after amphetamine (AMPH) administration (Experiment 2). Similarly, HVF supplementation during pregnancy and lactation were associated with increased locomotion in both young and adult rats (Experiment 3). Furthermore, trans fat intake across two sequential generations increased locomotor and exploratory activities following stressors (Experiment 4). From these results, we suggest that chronic consumption of trans fat is able to enhance impulsiveness and reactivity to novelty, facilitating hyperactive behaviors. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Comparison of hydrogenated vegetable shortening and nutritionally complete high fat diet on limited access-binge behavior in rats

    OpenAIRE

    Davis, Jon F.; Melhorn, Susan J.; Heiman, Justin U.; Tschöp, Matthias H.; Clegg, Deborah J.; Benoit, Stephen C.

    2007-01-01

    Previous studies have suggested that intermittent exposure to hydrogenated vegetable shortening yields a binge/compensate pattern of feeding in rats. The present study was designed to assess whether rats would exhibit similar patterns of intake when given intermittent access to a nutritionally complete high-fat diet. Four groups of rats received varying exposure to either hydrogenated vegetable shortening or high-fat diet for 8 consecutive weeks. Animals were given daily and intermittent acce...

  7. Moderate high fat diet increases sucrose self-administration in young rats.

    Science.gov (United States)

    Figlewicz, Dianne P; Jay, Jennifer L; Acheson, Molly A; Magrisso, Irwin J; West, Constance H; Zavosh, Aryana; Benoit, Stephen C; Davis, Jon F

    2013-02-01

    We have previously reported that a moderately high fat diet increases motivation for sucrose in adult rats. In this study, we tested the motivational, neurochemical, and metabolic effects of the high fat diet in male rats transitioning through puberty, during 5-8 weeks of age. We observed that the high fat diet increased motivated responding for sucrose, which was independent of either metabolic changes or changes in catecholamine neurotransmitter metabolites in the nucleus accumbens. However, AGRP mRNA levels in the hypothalamus were significantly elevated. We demonstrated that increased activation of AGRP neurons is associated with motivated behavior, and that exogenous (third cerebroventricular) AGRP administration resulted in significantly increased motivation for sucrose. These observations suggest that increased expression and activity of AGRP in the medial hypothalamus may underlie the increased responding for sucrose caused by the high fat diet intervention. Finally, we compared motivation for sucrose in pubertal vs. adult rats and observed increased motivation for sucrose in the pubertal rats, which is consistent with previous reports that young animals and humans have an increased preference for sweet taste, compared with adults. Together, our studies suggest that background diet plays a strong modulatory role in motivation for sweet taste in adolescent animals. Published by Elsevier Ltd.

  8. Physiological and Biochemical Responses of Growing Rats Fed Irradiated Full-Fat Rice Bran

    International Nuclear Information System (INIS)

    EL-Niely, H.F.G.

    2006-01-01

    Raw and irradiated full-fat rice bran at dose levels of 10, 15, 20 and 25 kGy were used in the diets of growing rats to evaluate their effect on plasma and liver lipid profile. Comparison was also done with the use of a standard casein diet. After 49 days of feeding trail, food intake and wt gain were found to be highest with rats received casein diet in comparison with those fed on rice bran diets. Raw and irradiated full-fat rice bran diets, fed to rats caused a significant reduction in the level of total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-c), while a significant elevation in the level of high-density lipoprotein cholesterol (HDL-c) in plasma was recorded compared to those fed on casein diet. Also, similar changes were observed in liver. There was a significant increase in plasma and liver HDL-c/ TC ratio and LDL-c/ HDL-c ratio. Relative liver wt of rats fed on raw and irradiated full-fat rice brain up to 25 kGy was lower compared to those fed on control diet (casein diet). The casein group had the highest total plasma and liver total protein (TP) compared to the other experimental groups. Among the experimental groups, raw and processed full-fat rice brain up to 25 kGy, induced no significant effect on TP content of plasma and liver

  9. Clofibrate improves glucose tolerance in fat-fed rats but decreases hepatic glucose consumption capacity

    NARCIS (Netherlands)

    Gustafson, LA; Kuipers, F; Wiegman, C; Sauerwein, HP; Romijn, JA; Meijer, AJ

    2002-01-01

    Background/Aims: High-fat (HF) diets cause glucose intolerance. Fibrates improve glucose tolerance. We have tried to obtain information on possible hepatic mechanisms contributing to this effect. Methods: Rats were fed a HF diet, isocaloric with the control diet, for 3 weeks without or with

  10. Effect of high fat and high sugar diet on insulin binding and insulin action in isolated rat adipocytes

    OpenAIRE

    岡﨑,悟

    1987-01-01

    To clarify on a cellular basis the mechanism of the diabetogenic effect of the westernized diet, insulin binding, insulin stimulated 3-o-methylglucose uptake and glucose oxidation were studied in isolated adipocytes from rats fed experimental diets : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the westernized diet), low fat-high sugar diet (10% fat, 50% starch, 20% s...

  11. Increased Hypothalamic Inflammation Associated with the Susceptibility to Obesity in Rats Exposed to High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Xiaoke Wang

    2012-01-01

    Full Text Available Inflammation has been implicated in the hypothalamic leptin and insulin resistance resulting defective food intake during high fat diet period. To investigate hypothalamic inflammation in dietary induced obesity (DIO and obesity resistant (DIO-R rats, we established rat models of DIO and DIO-R by feeding high fat diet for 10 weeks. Then we switched half of DIO and DIO-R rats to chow food and the other half to high fat diet for the following 8 weeks to explore hypothalamic inflammation response to the low fat diet intervention. Body weight, caloric intake, HOMA-IR, as well as the mRNA expression of hypothalamic TLR4, NF-κB, TNF-α, IL-1β, and IL-6 in DIO/HF rats were significantly increased compared to DIO-R/HF and CF rats, whereas IL-10 mRNA expression was lower in both DIO/HF and DIO-R/HF rats compared with CF rats. Switching to chow food from high fat diet reduced the body weight and improved insulin sensitivity but not affecting the expressions of studied inflammatory genes in DIO rats. Take together, upregulated hypothalamic inflammation may contribute to the overeating and development of obesity susceptibility induced by high fat diet. Switching to chow food had limited role in correcting hypothalamic inflammation in DIO rats during the intervention period.

  12. Dietary fat influences the expression of contractile and metabolic genes in rat skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Wataru Mizunoya

    Full Text Available Dietary fat plays a major role in obesity, lipid metabolism, and cardiovascular diseases. To determine whether the intake of different types of dietary fats affect the muscle fiber types that govern the metabolic and contractile properties of the skeletal muscle, we fed male Wistar rats with a 15% fat diet derived from different fat sources. Diets composed of soybean oil (n-6 polyunsaturated fatty acids (PUFA-rich, fish oil (n-3 PUFA-rich, or lard (low in PUFAs were administered to the rats for 4 weeks. Myosin heavy chain (MyHC isoforms were used as biomarkers to delineate the skeletal muscle fiber types. Compared with soybean oil intake, fish oil intake showed significantly lower levels of the fast-type MyHC2B and higher levels of the intermediate-type MyHC2X composition in the extensor digitorum longus (EDL muscle, which is a fast-type dominant muscle. Concomitantly, MyHC2X mRNA levels in fish oil-fed rats were significantly higher than those observed in the soybean oil-fed rats. The MyHC isoform composition in the lard-fed rats was an intermediate between that of the fish oil and soybean oil-fed rats. Mitochondrial uncoupling protein 3, pyruvate dehydrogenase kinase 4, and porin mRNA showed significantly upregulated levels in the EDL of fish oil-fed rats compared to those observed in soybean oil-fed and lard-fed rats, implying an activation of oxidative metabolism. In contrast, no changes in the composition of MyHC isoforms was observed in the soleus muscle, which is a slow-type dominant muscle. Fatty acid composition in the serum and the muscle was significantly influenced by the type of dietary fat consumed. In conclusion, dietary fat affects the expression of genes related to the contractile and metabolic properties in the fast-type dominant skeletal muscle, where the activation of oxidative metabolism is more pronounced after fish oil intake than that after soybean oil intake.

  13. Dietary milk fat globule membrane reduces the incidence of aberrant crypt foci in Fischer-344 rats.

    Science.gov (United States)

    Snow, Dallin R; Jimenez-Flores, Rafael; Ward, Robert E; Cambell, Jesse; Young, Michael J; Nemere, Ilka; Hintze, Korry J

    2010-02-24

    Milk fat globule membrane (MFGM) is a biopolymer composed primarily of membrane proteins and lipids that surround the fat globules in milk. Although it is considered to have potential as a bioactive ingredient, few feeding studies have been conducted to measure its potential benefits. The aim of this investigation was to determine if dietary MFGM confers protection against colon carcinogenesis compared to diets containing corn oil (CO) or anhydrous milk fat (AMF). Male, weanling Fischer-344 rats were randomly assigned to one of three dietary treatments that differed only in the fat source: (1) AIN-76A diet, corn oil; (2) AIN-76A diet, AMF; and (3) AIN-76A diet, 50% MFGM, 50% AMF. Each diet contained 50 g/kg diet of fat. With the exception of the fat source, diets were formulated to be identical in macro and micro nutrient content. Animals were injected with 1,2-dimethylhydrazine once per week at weeks 3 and 4, and fed experimental diets for a total of 13 weeks. Over the course of the study dietary treatment did not affect food consumption, weight gain or body composition. After 13 weeks animals were sacrificed, colons were removed and aberrant crypt foci (ACF) were counted by microscopy. Rats fed the MFGM diet (n = 16) had significantly fewer ACF (20.9 +/- 5.7) compared to rats fed corn oil (n = 17) or AMF (n = 16) diets (31.3 +/- 9.5 and 29.8 +/- 11.4 respectively; P < 0.05). Gene expression analysis of colonic mucosa did not reveal differential expression of candidate colon cancer genes, and the sphingolipid profile of the colonic mucosa was not affected by diet. While there were notable and significant differences in plasma and red blood cell lipids, there was no relationship to the cancer protection. These results support previous findings that dietary sphingolipids are protective against colon carcinogenesis yet extend this finding to MFGM, a milk fat fraction available as a food ingredient.

  14. Oral insulin improves metabolic parameters in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    LEANDRO C. LIPINSKI

    2017-08-01

    Full Text Available ABSTRACT Introduction/Aim: The gut has shown to have a pivotal role on the pathophysiology of metabolic disease. Food stimulation of distal intestinal segments promotes enterohormones secretion influencing insulin metabolism. In diabetic rats, oral insulin has potential to change intestinal epithelium behavior. This macromolecule promotes positive effects on laboratorial metabolic parameters and decreases diabetic intestinal hypertrophy. This study aims to test if oral insulin can influence metabolic parameters and intestinal weight in obese non-diabetic rats. Methods: Twelve weeks old Wistar rats were divided in 3 groups: control (CTRL standard chow group; high fat diet low carbohydrates group (HFD and HFD plus daily oral 20U insulin gavage (HFD+INS. Weight and food consumption were weekly obtained. After eight weeks, fasting blood samples were collected for laboratorial analysis. After euthanasia gut samples were isolated. Results: Rat oral insulin treatment decreased body weight gain (p<0,001, fasting glucose and triglycerides serum levels (p<0,05 an increased intestinal weight of distal ileum (P<0,05. Animal submitted to high fat diet presented higher levels of HOMA-IR although significant difference to CT was not achieved. HOMA-beta were significantly higher (p<0.05 in HFD+INS. Visceral fat was 10% lower in HFD+INS but the difference was not significant. Conclusions: In non-diabetic obese rats, oral insulin improves metabolic malfunction associated to rescue of beta-cell activity.

  15. Cyclic fatty acid monomers from dietary heated fats affect rat liver enzyme activity.

    Science.gov (United States)

    Lamboni, C; Sébédio, J L; Perkins, E G

    1998-07-01

    This study was conducted to investigate the effects of dietary cyclic fatty acid monomers (CFAM), contained in heated fat from a commercial deep-fat frying operation, on rat liver enzyme activity. A partially hydrogenated soybean oil (PHSBO) used 7 d (7-DH) for frying foodstuffs, or 0.15% methylated CFAM diets was fed to male weanling rats in comparison to a control group fed a nonheated PHSBO (NH) diet in a 10-wk experiment. All diets were isocaloric with 15% fat. Animals fed either CFAM or 7-DH diets showed increased hepatic content of cytochrome (cyt.) b5 and P450 and increased activity of (E.C. 1.6.2.4) NADPH-cyt. P450 reductase in comparison to the control rats. In addition, the activities of (E.C. 2.3.1.21) carnitine palmitoyltransferase-I and (E.C. 1.1.1.42) isocitrate dehydrogenase were significantly decreased when compared to that of rats fed the NH diet. A significantly depressed activity of (E.C. 1.1.1.49) glucose 6-phosphate dehydrogenase was also observed for these animals compared to the control rats fed NH diet. Moreover, liver and microsomal proteins were significantly increased when CFAM or 7-DH diets were fed to animals in comparison to controls while liver glycogen was decreased significantly in experimental groups of rats. The results obtained in this study indicate that the CFAM in the diet from either synthetic sources or used fats increase the activity of liver enzyme systems that detoxify them.

  16. Pubertal Development and Thyroid Function in Intact Juvenile Rats Exposed to 3-Nitro-1,2,4-Trazol-5-One (NTO), February-June 2012

    Science.gov (United States)

    2014-02-01

    vivo effects on androgen-dependent tissues in young rats (i.e., prochloraz) similar to the effects of NTO in the present study have feminized male...the potential to interact with the endocrine system in vivo by identifying effects on pubertal development and thyroid function in the intact juvenile...estrogen or thyroid active compound under the test conditions. The observed testicular toxicity and the effects on the androgen-dependent reproductive

  17. The yield of genome mutations in cells of intact and regenerating rat liver in normal conditions and after γ-irradiation

    International Nuclear Information System (INIS)

    Gil'yano, N.Ya.; Malinovskij, O.V.

    1984-01-01

    A comparative study was made of spontaneus and induced polyploidy in cells of resting and regenerating rat liver. Polyploidy was shown to play a major role in the ontogenesis and during regeneration after partial hepatectomy. An essential difference was revealed in the radiation response of cells of intact and regenerating liver with respect to the yield of polyploid cells. This distinction was referped to different effectiveness of the processes of repair and fixation of radiation damages in the actively proliferating and resting cells

  18. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats.

    Science.gov (United States)

    Mitra, Anaya; Alvers, Kristin M; Crump, Erica M; Rowland, Neil E

    2009-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet condition. Female offspring were weaned on either control or "junk food" diets until about 6 mo of age. Rats fed the high-fat junk food diet were hyperphagic relative to their chow-fed controls. The junk food-fed rats were significantly heavier and had greater fat pad mass than those rats maintained on chow alone. Importantly, those rats suckled by high-fat dams had heavier fat pads than those suckled by control diet dams. Fasting serum leptin and insulin levels differed as a function of the gestational, lactational, and postweaning diet histories. Rats gestated in, or suckled by high-fat dams, or maintained on the junk food diet were hyperleptinemic compared with their respective controls. Indirect blood pressure did not differ as a function of postweaning diet, but rats gestated in the high-fat dams had lower mean arterial blood pressures than those gestated in the control diet dams. The postweaning dietary history affected food-motivated behavior; junk food-fed rats earned less food pellets on fixed (FR) and progressive (PR) ratio cost schedules than chow-fed controls. In conclusion, the effects of maternal high-fat diet during gestation or lactation were mostly small and transient. The postweaning effects of junk food diet were evident on the majority of the parameters measured, including body weight, fat pad mass, serum leptin and insulin levels, and operant performance.

  19. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  20. Eating high fat chow enhances the locomotor-stimulating effects of cocaine in adolescent and adult female rats.

    Science.gov (United States)

    Baladi, Michelle G; Koek, Wouter; Aumann, Megan; Velasco, Fortino; France, Charles P

    2012-08-01

    Dopamine systems vary through development in a manner that can impact drugs acting on those systems. Dietary factors can also impact the effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters locomotor effects of cocaine (1-56 mg/kg) in adolescent and adult female rats. Cocaine was studied in rats (n = 6/group) with free access to standard (5.7% fat) or high fat (34.3%) chow or restricted access to high fat chow (body weight matched to rats eating standard chow). After 1 week of eating high fat chow (free or restricted access), sensitivity to cocaine was significantly increased in adolescent and adult rats, compared with rats eating standard chow. Sensitivity to cocaine was also increased in adolescent rats with restricted, but not free, access to high fat chow for 4 weeks. When adolescent and adult rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. In adolescent and adult female rats eating high fat chow, but not those eating standard chow, sensitivity to cocaine increased progressively over once weekly tests with cocaine (i.e., sensitization) in a manner that was not statistically different between adolescents and adults. These results show that eating high fat chow alters sensitivity of female rats to acutely administered cocaine and also facilitates the development of sensitization to cocaine. That the type of food consumed can increase drug effects might have relevance to vulnerability to abuse cocaine in the female population.

  1. Working and reference memory across the estrous cycle of rat: a long-term study in gonadally intact females.

    Science.gov (United States)

    Pompili, Assunta; Tomaz, Carlos; Arnone, Benedetto; Tavares, Maria Clotilde; Gasbarri, Antonella

    2010-11-12

    The results of many studies conducted over the past two decades suggested a role of estrogen on mammal's ability to learn and remember. In the present paper, we analyzed the influence that the endogenous fluctuation of estrogen, naturally present across the different phases of estrous cycle of female rats, can exert over the performance of tasks utilized to assess memory. In particular, we analyzed the performances in an eight arms radial maze task, dependent upon working memory, and in a water maze (WM) task, dependent upon spatial reference memory. The water maze is aversively motivated by the desire to escape onto a safe platform, whereas the radial arm maze (RAM) is motivated by food reward. The difference in reinforcement may affect the speed of learning, the strategy adopted and the necessity for accurate navigation. Therefore, coherent results obtained through the two different tasks can be due to mnemonic factors. The study was conducted during a long period of time, 14 months, utilizing gonadally intact females, without pharmacological and surgical treatments. In order to evaluate the post-acquisition phase we first trained the animals to reach the criterion in performing tasks, and then we submitted them to experimental phase. Our results show that estrogen can have an effect on memory processes, and that this effect may be different in relation to different kinds of memory. In fact, in our study, estrogen selectively improved working memory, but not reference memory, during post-acquisition performance of a RAM task with four baited and four un-baited arms. Moreover, WM performances showed that estrogen have a negative effect on spatial reference memory. (c) 2010 Elsevier B.V. All rights reserved.

  2. High fat diet disrupts endoplasmic reticulum calcium homeostasis in the rat liver.

    Science.gov (United States)

    Wires, Emily S; Trychta, Kathleen A; Bäck, Susanne; Sulima, Agnieszka; Rice, Kenner C; Harvey, Brandon K

    2017-11-01

    Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during

  3. Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Levin, Barry E

    2015-02-01

    Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamus (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on a 45% fat diet, DIO rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin-resistant on a 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin-resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats.

  4. Impact of maternal high fat diet on hypothalamic transcriptome in neonatal Sprague Dawley rats.

    Directory of Open Access Journals (Sweden)

    Sanna Barrand

    Full Text Available Maternal consumption of a high fat diet during early development has been shown to impact the formation of hypothalamic neurocircuitry, thereby contributing to imbalances in appetite and energy homeostasis and increasing the risk of obesity in subsequent generations. Early in postnatal life, the neuronal projections responsible for energy homeostasis develop in response to appetite-related peptides such as leptin. To date, no study characterises the genome-wide transcriptional changes that occur in response to exposure to high fat diet during this critical window. We explored the effects of maternal high fat diet consumption on hypothalamic gene expression in Sprague Dawley rat offspring at postnatal day 10. RNA-sequencing enabled discovery of differentially expressed genes between offspring of dams fed a high fat diet and offspring of control diet fed dams. Female high fat diet offspring displayed altered expression of 86 genes (adjusted P-value<0.05, including genes coding for proteins of the extra cellular matrix, particularly Collagen 1a1 (Col1a1, Col1a2, Col3a1, and the imprinted Insulin-like growth factor 2 (Igf2 gene. Male high fat diet offspring showed significant changes in collagen genes (Col1a1 and Col3a1 and significant upregulation of two genes involved in regulation of dopamine availability in the brain, tyrosine hydroxylase (Th and dopamine reuptake transporter Slc6a3 (also known as Dat1. Transcriptional changes were accompanied by increased body weight, body fat and body length in the high fat diet offspring, as well as altered blood glucose and plasma leptin. Transcriptional changes identified in the hypothalamus of offspring of high fat diet mothers could alter neuronal projection formation during early development leading to abnormalities in the neuronal circuitry controlling appetite in later life, hence priming offspring to the development of obesity.

  5. Coenzyme Q Metabolism Is Disturbed in High Fat Diet-Induced Non Alcoholic Fatty Liver Disease in Rats

    Directory of Open Access Journals (Sweden)

    Kathleen M Botham

    2012-02-01

    Full Text Available Oxidative stress is believed to be a major contributory factor in the development of non alcoholic fatty liver disease (NAFLD, the most common liver disorder worldwide. In this study, the effects of high fat diet-induced NAFLD on Coenzyme Q (CoQ metabolism and plasma oxidative stress markers in rats were investigated. Rats were fed a standard low fat diet (control or a high fat diet (57% metabolizable energy as fat for 18 weeks. The concentrations of total (reduced + oxidized CoQ9 were increased by > 2 fold in the plasma of animals fed the high fat diet, while those of total CoQ10 were unchanged. Reduced CoQ levels were raised, but oxidized CoQ levels were not, thus the proportion in the reduced form was increased by about 75%. A higher percentage of plasma CoQ9 as compared to CoQ10 was in the reduced form in both control and high fat fed rats. Plasma protein thiol (SH levels were decreased in the high fat-fed rats as compared to the control group, but concentrations of lipid hydroperoxides and low density lipoprotein (LDL conjugated dienes were unchanged. These results indicate that high fat diet-induced NAFLD in rats is associated with altered CoQ metabolism and increased protein, but not lipid, oxidative stress.

  6. Contrasting apoptotic responses of conjugated linoleic acid in the liver of obese Zucker rats fed palm oil or ovine fat.

    Science.gov (United States)

    Lopes, Paula A; Martins, Susana V; Viana, Ricardo S J; Ramalho, Rita M; Alfaia, Cristina M; Pinho, Mário S; Jerónimo, Eliana; Bessa, Rui J B; Castro, Matilde F; Rodrigues, Cecília M P; Prates, José A M

    2011-08-01

    We hypothesized that reducing weight properties of conjugated linoleic acid (CLA) are due to adipocyte apoptosis and that CLA differentially modulates the apoptotic responses in hepatic lipotoxicity from rats fed saturated fat diets. Obese Zucker rats were fed atherogenic diets (2%w/w of cholesterol) formulated with high (15%w/w) saturated fat, from vegetable or animal origin, supplemented or not with 1% of a mixture (1:1) of cis-9, trans-11 and trans-10, cis-12 CLA isomers for 14 weeks. CLA induced no changes on retroperitoneal fat depot weight, which was in line with similar levels of apoptosis. Interestingly, CLA had a contrasting effect on cell death in the liver according to the dietary fat. CLA increased hepatocyte apoptosis, associated with upregulation of Fas protein in rats fed palm oil, compared to rats receiving palm oil alone. However, rats fed ovine fat alone displayed the highest levels of hepatic cell death, which were decreased in rats fed ovine fat plus CLA. This reducing effect of CLA was related to positively restoring endoplasmic reticulum (ER) ATF-6α, BiP and CHOP protein levels and increasing phosphorylated c-Jun NH(2)-terminal kinase (JNK) and c-Jun, thus suggesting an adaptive response of cell survival. These findings reinforce the role of CLA as regulator of apoptosis in the liver. Moreover, the dietary fat composition is a key factor in activation of apoptosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Effect of Ethanolic Extract of Emblica officinalis (Amla on Glucose Homeostasis in Rats Fed with High Fat Diet

    Directory of Open Access Journals (Sweden)

    Pallavi S. Kanthe

    2017-07-01

    Full Text Available Background: Emblica officinalis contains many biological active components which are found to have some medicinal properties against diseases. Aim and Objectives: To assess hypolipidemic and glucose regulatory actions of Ethanolic Extract of Emblica officinalis (EEO on High Fat Diet (HFD fed experimental rats. Material and Methods: Twenty four rats were divided into four groups, having six rats in each group as following; Group I- Control (20% fat; Group II (EEO 100 mg/kg/b w; Group III (30% fat and Group IV (30% fat + EEO 100 mg/kg/b w. The treatment was continued for 21 days. Gravimetric parameters and lipid profiles of all the groups were measured. Oral Glucose Tolerance Test (OGTT, fasting and postprandial glucose and fasting insulin levels were estimated. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR was calculated. Statistical analysis was done. Results: Significant alteration in serum lipid profile, fasting and post prandial blood glucose levels and fasting insulin level were observed in rats of Group III fed with high fat diet. Supplementation of EEO improved both of glycemic and lipid profiles in rats of Group IV fed with high fat diet. Conclusion: Results from the study indicate the beneficial role of EEO on dyslipidemia and glucose homeostasis in rats treated with high fat diet.

  8. Intestinal absorption of dietary fat from a liquid diet perfused in rats at a submaximum level

    International Nuclear Information System (INIS)

    Simko, V.; Kelley, R.E.

    1988-01-01

    The small intestine of rats was perfused in vivo for 2 h with a nutritionally complete liquid diet (68% calories from fat as corn oil). As the perfusion increased from 106 mg/2 h, the intestinal disappearance of the 14 C-triolein marker remained proportional to the load up to 2359 mg fat/2 h. Despite a decrease in absorption from 70 to 17%, this represents a very large fat intake. Fat absorption improved when medium-chain triglycerides or octanoic acid replaced corn oil (both p less than 0.01). Linoleic acid was absorbed from the diet less than corn oil (p less than 0.01). Dry ox bile reduced fat absorption (p less than 0.05); lipase and an antacid had no effect. Corn oil perfused alone was absorbed better than from the diet (p less than 0.01). Data with 14 C-triolein was confirmed by dry-weight disappearance of the diet and by net intestinal water balance. Usual feeding underutilizes a large reserve for fat absorption. This reserve should be considered in therapeutic nutrition

  9. High-fat diet reduces the formation of butyrate, but increases succinate, inflammation, liver fat and cholesterol in rats, while dietary fibre counteracts these effects.

    Directory of Open Access Journals (Sweden)

    Greta Jakobsdottir

    Full Text Available Obesity is linked to type 2 diabetes and risk factors associated to the metabolic syndrome. Consumption of dietary fibres has been shown to have positive metabolic health effects, such as by increasing satiety, lowering blood glucose and cholesterol levels. These effects may be associated with short-chain fatty acids (SCFAs, particularly propionic and butyric acids, formed by microbial degradation of dietary fibres in colon, and by their capacity to reduce low-grade inflammation.To investigate whether dietary fibres, giving rise to different SCFAs, would affect metabolic risk markers in low-fat and high-fat diets using a model with conventional rats for 2, 4 and 6 weeks.Conventional rats were administered low-fat or high-fat diets, for 2, 4 or 6 weeks, supplemented with fermentable dietary fibres, giving rise to different SCFA patterns (pectin - acetic acid; guar gum - propionic acid; or a mixture - butyric acid. At the end of each experimental period, liver fat, cholesterol and triglycerides, serum and caecal SCFAs, plasma cholesterol, and inflammatory cytokines were analysed. The caecal microbiota was analysed after 6 weeks.Fermentable dietary fibre decreased weight gain, liver fat, cholesterol and triglyceride content, and changed the formation of SCFAs. The high-fat diet primarily reduced formation of SCFAs but, after a longer experimental period, the formation of propionic and acetic acids recovered. The concentration of succinic acid in the rats increased in high-fat diets with time, indicating harmful effect of high-fat consumption. The dietary fibre partly counteracted these harmful effects and reduced inflammation. Furthermore, the number of Bacteroides was higher with guar gum, while noticeably that of Akkermansia was highest with the fibre-free diet.

  10. A high-fat diet differentially affects the gut metabolism and blood lipids of rats depending on the type of dietary fat and carbohydrate.

    Science.gov (United States)

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-02-03

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet) as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  11. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    OpenAIRE

    Jurgoński, Adam; Juśkiewicz, Jerzy; Zduńczyk, Zenon

    2014-01-01

    The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated) and carbohydrate (simple vs. complex). The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet) as the source of saturated or unsaturated fatty ac...

  12. Novel molecular events associated with altered steroidogenesis induced by exposure to atrazine in the intact and castrate male rat

    Science.gov (United States)

    Toxicology is increasingly focused on molecular events comprising adverse outcome pathways. Atrazine activates the hypothalamic-pituitary adrenal axis, but relationships to gonadal alterations are unknown. We characterized hormone profiles and adrenal (intact and castrate) and te...

  13. High fat diet aggravates arsenic induced oxidative stress in rat heart and liver.

    Science.gov (United States)

    Dutta, Mousumi; Ghosh, Debosree; Ghosh, Arnab Kumar; Bose, Gargi; Chattopadhyay, Aindrila; Rudra, Smita; Dey, Monalisa; Bandyopadhyay, Arkita; Pattari, Sanjib K; Mallick, Sanjaya; Bandyopadhyay, Debasish

    2014-04-01

    Arsenic is a well known global groundwater contaminant. Exposure of human body to arsenic causes various hazardous effects via oxidative stress. Nutrition is an important susceptible factor which can affect arsenic toxicity by several plausible mechanisms. Development of modern civilization led to alteration in the lifestyle as well as food habits of the people both in urban and rural areas which led to increased use of junk food containing high level of fat. The present study was aimed at investigating the effect of high fat diet on heart and liver tissues of rats when they were co-treated with arsenic. This study was established by elucidating heart weight to body weight ratio as well as analysis of the various functional markers, oxidative stress biomarkers and also the activity of the antioxidant enzymes. Histological analysis confirmed the biochemical investigations. From this study it can be concluded that high fat diet increased arsenic induced oxidative stress. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Effect of different commercial fat sources on brain, liver and blood lipid profiles of rats in growth phase

    OpenAIRE

    Angelis-Pereira, Michel Cardoso de; Barcelos, Maria de Fátima Píccolo; Pereira, Juciane de Abreu Ribeiro; Pereira, Rafaela Corrêa; Souza, Raimundo Vicente de

    2017-01-01

    Abstract Purpose: To investigate the fatty acid content of different fat sources and evaluate the effect of them on plasma and hepatic lipids and on the fatty acid profile of the brain tissue of Wistar rats. Methods: Thirty male albino Wistar rats received for 59 days, the following diets: diet added of margarine with low content of polyunsaturated fatty acids (PUFA); diet added of margarine with high content of PUFA; diet added of butter; diet added of hydrogenated vegetable fat; diet ad...

  15. Jinlida reduces insulin resistance and ameliorates liver oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Liu, Yixuan; Song, An; Zang, Shasha; Wang, Chao; Song, Guangyao; Li, Xiaoling; Zhu, Yajun; Yu, Xian; Li, Ling; Wang, Yun; Duan, Liyuan

    2015-03-13

    Jinlida (JLD) is a compound preparation formulated on the basis of traditional Chinese medicine and is officially approved for the treatment of type 2 diabetes (T2DM) in China. We aimed to elucidate the mechanism of JLD treatment, in comparison to metformin treatment, on ameliorating insulin sensitivity in insulin resistant rats and to reveal its anti-oxidant properties. Rats were fed with standard or high-fat diet for 6 weeks. After 6 weeks, the high-fat fed rats were subdivided into five groups and orally fed with JLD or metformin for 8 weeks. Fasting blood glucose (FBG), fasting blood insulin, blood lipid and antioxidant enzymes were measured. Intraperitoneal glucose tolerance test (IPGTT) and hyperinsulinemic euglycemic clamp technique were carried out to measure insulin sensitivity. Gene expression of the major signaling pathway molecules that regulate glucose uptake, including insulin receptor (INSR), insulin receptor substrate-1 (IRS-1), phosphoinositide-3-kinase (PI3K), protein kinase beta (AKT), and glucose transporter type 2 (GLUT2), were assessed by quantitative RT-PCR. The totle and phosphorylation expression of IRS-1, AKT, JNK and p38MAPK were determined by Western blot. Treatment with JLD effectively ameliorated the high-fat induced hyperglycemia, hyperinsulinemia and hyperlipidemia. Similar to metformin, the high insulin resistance in high-fat fed rats was significantly decreased by JLD treatment. JLD displayed anti-oxidant effects, coupled with up-regulation of the insulin signaling pathway. The attenuation of hepatic oxidative stress by JLD treatment was associated with reduced phosphorylation protein levels of JNK and p38MAPK. Treatment with JLD could moderate glucose and lipid metabolism as well as reduce hepatic oxidative stress, most likely through the JNK and p38MAPK pathways. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    OpenAIRE

    Lee, Hyun-Ho; Paudel, Keshav Raj; Jeong, Jieun; Wi, An-Jin; Park, Whoa-Shig; Kim, Dong-Wook; Oak, Min-Ho

    2016-01-01

    Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF) in a high fat diet- (HFD-) induced hypercholesterolemic rat model. CJF was administered orally at three different doses: ...

  17. Ellagic acid attenuates high-carbohydrate, high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Panchal, Sunil K; Ward, Leigh; Brown, Lindsay

    2013-03-01

    Fruits and nuts may prevent or reverse common human health conditions such as obesity, diabetes and hypertension; together, these conditions are referred to as metabolic syndrome, an increasing problem. This study has investigated the responses to ellagic acid, present in many fruits and nuts, in a diet-induced rat model of metabolic syndrome. Eight- to nine-week-old male Wistar rats were divided into four groups for 16-week feeding with cornstarch diet (C), cornstarch diet supplemented with ellagic acid (CE), high-carbohydrate, high-fat diet (H) and high-carbohydrate, high-fat diet supplemented with ellagic acid (HE). CE and HE rats were given 0.8 g/kg ellagic acid in food from week 8 to 16 only. At the end of 16 weeks, cardiovascular, hepatic and metabolic parameters along with protein levels of Nrf2, NF-κB and CPT1 in the heart and the liver were characterised. High-carbohydrate, high-fat diet-fed rats developed cardiovascular remodelling, impaired ventricular function, impaired glucose tolerance, non-alcoholic fatty liver disease with increased protein levels of NF-κB and decreased protein levels of Nrf2 and CPT1 in the heart and the liver. Ellagic acid attenuated these diet-induced symptoms of metabolic syndrome with normalisation of protein levels of Nrf2, NF-κB and CPT1. Ellagic acid derived from nuts and fruits such as raspberries and pomegranates may provide a useful dietary supplement to decrease the characteristic changes in metabolism and in cardiac and hepatic structure and function induced by a high-carbohydrate, high-fat diet by suppressing oxidative stress and inflammation.

  18. Molecular fingerprint of high fat diet induced urinary bladder metabolic dysfunction in a rat model.

    Directory of Open Access Journals (Sweden)

    Andreas Oberbach

    Full Text Available AIMS/HYPOTHESIS: Diabetic voiding dysfunction has been reported in epidemiological dimension of individuals with diabetes mellitus. Animal models might provide new insights into the molecular mechanisms of this dysfunction to facilitate early diagnosis and to identify new drug targets for therapeutic interventions. METHODS: Thirty male Sprague-Dawley rats received either chow or high-fat diet for eleven weeks. Proteomic alterations were comparatively monitored in both groups to discover a molecular fingerprinting of the urinary bladder remodelling/dysfunction. Results were validated by ELISA, Western blotting and immunohistology. RESULTS: In the proteome analysis 383 proteins were identified and canonical pathway analysis revealed a significant up-regulation of acute phase reaction, hypoxia, glycolysis, β-oxidation, and proteins related to mitochondrial dysfunction in high-fat diet rats. In contrast, calcium signalling, cytoskeletal proteins, calpain, 14-3-3η and eNOS signalling were down-regulated in this group. Interestingly, we found increased ubiquitin proteasome activity in the high-fat diet group that might explain the significant down-regulation of eNOS, 14-3-3η and calpain. CONCLUSIONS/INTERPRETATION: Thus, high-fat diet is sufficient to induce significant remodelling of the urinary bladder and alterations of the molecular fingerprint. Our findings give new insights into obesity related bladder dysfunction and identified proteins that may indicate novel pathophysiological mechanisms and therefore constitute new drug targets.

  19. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  20. Effects of herbal mixture extracts on obesity in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chien

    2016-07-01

    Full Text Available The aim of this study was to investigate and compare the effects of three herbal mixture extracts on obesity induced by high-fat diet (HFD in rats. The prescriptions—Pericarpium citri reticulatae and Fructus crataegi—were used as matrix components and mixed with Ampelopsis grossedentata, Salvia miltiorrhiza, and epigallocatechin-3-gallate (EGCG to form T1, T2, and T3 complexes, respectively. Results revealed that HFD feeding significantly increased body weight gain, fat deposition, plasma lipid profiles, hepatic lipid accumulation, and hepatic vacuoles formation, but decreased plasma levels of adiponectin in rats. Only the T1 complex showed the tendency, although not significantly so, for decreased HFD-induced body weight gain. T1 and T3 complexes significantly reduced HFD-induced fat deposition, and plasma levels of triglyceride, total cholesterol, and low-density lipoprotein cholesterol. Only the T1 complex significantly increased HFD-reduced adiponectin levels in plasma, but decreased HFD-increased triglyceride content in liver tissues. All complexes effectively inhibited HFD-induced vacuoles formation. The content of dihydromyricetin, salvianolic acid B, and EGCG in T1, T2, and T3 complexes was 18.25 ± 0.07%, 22.20 ± 0.10%, and 18.86 ± 0.04%, respectively. In summary, we demonstrated that herbal mixture extracts, especially T1 complex, exhibit antiobesity activity in HFD-fed rats.

  1. Patterns of hyperphagia in the Zucker obese rat: a role for fat cell size and number?

    Science.gov (United States)

    Vasselli, J R

    1985-06-01

    The hypothesis that adipocyte size and number influence feeding behavior, via as yet unidentified signals to the CNS, is reviewed. The proposal is made that, due to several metabolic alterations which favor lipid deposition, the genetically obese Zucker rat (fafa) may be an appropriate model in which to study feeding-adipose tissue relationships. Data from several studies are presented demonstrating that the developing male Zucker fatty rat displays hyperphagia during the growth period which reaches a peak, or "break point," and then declines such that intake of fatty and lean rats becomes comparable at approximately 20 weeks of age. Beyond week 20, cycles of hyperphagia of several weeks' duration can be detected in fatty rats. The above feeding changes are related to data showing that on a laboratory chow-type diet, adipocytes approach maximal size at 15-16 weeks in the fatty rat, while accelerated proliferation of adipocytes takes place following week 20. During growth, responding for food in an operant task by fatty rats varies in accord with the pattern of hyperphagia. Further studies in the fatty rat show that the duration and magnitude of developmental hyperphagia can be altered by manipulating the caloric density and macronutrient content of the diet, with fat containing diets leading to the earliest break point of developmental hyperphagia. Some theoretical problems with the notion of adipose tissue feedback control of feeding behavior are discussed.

  2. Rat hepatic β2-adrenergic receptor: structural similarities to the rat fat cell β1-adrenergic receptor

    International Nuclear Information System (INIS)

    Graziano, M.P.

    1984-01-01

    The mammalian β 2 -adrenergic receptor from rat liver has been purified by sequential cycles of affinity chromatography followed by steric-exclusion high performance liquid chromatography. Electrophoresis of highly purified receptor preparations on polyacrylamide gels in the presence of sodium dodecyl sulfate under reducing conditions reveals a single peptide M/sub r/ = 67,000, as judged by silver staining. Purified β 2 -adrenergic receptor migrates on steric-exclusion high performance liquid chromatography in two peaks, with M/sub r/ = 140,000 and 67,000. Specific binding of the high affinity, β-adrenergic receptor antagonists (-)[ 3 H]dihydroalprenolol and (-)[ 125 I]iodocyanopindolol to purified rat liver β-adrenergic receptor preparations displays stereoselectivity for (-)isomers of agonists and a rank order of potencies for agonists characteristics of a β 2 -adrenergic receptor. Radioiodinated, β 1 -adrenergic receptors from rat fat cells and β 2 -adrenergic receptors from rat liver purified in the presence of protease inhibitors comigrate in electrophoretic separations on polyacrylamide gels in the presence of sodium dodecyl sulfate as 67,000-M/sub r/ peptides. Autoradiograms of two dimensional partial proteolytic digests of the purified, radioiodinated rat liver β 2 -adrenergic receptor, generated with α-chymotrypsin, S. aureus V8 protease and elastase reveal a pattern of peptide fragments essentially identical to those generated by partial proteolytic digests of the purified, radioiodinated β 1 -adrenergic receptor from rat fat cells, by these same proteases. These data indicate that a high degree of homology exists between these two pharmacologically distinct mammalian β-adrenergic receptor proteins

  3. The Effect of N-acetyl-cysteine on Memory Retrieval and the Number of Intact Neurons of Hippocampal CA1 Area in Streptozotocin-induced Alzheimeric Male Rats

    Directory of Open Access Journals (Sweden)

    Niloufar Darbandi

    2018-01-01

    Full Text Available Abstract Background: Alzheimer is a neurodegenerative disease wich caused memory impairment, reduced cognitive functions, intellectual ability and behavior changes. In this study, the effect of N-acetyl-cysteine (NAC as a strong antioxidant on memory deficiency and number of CA1 pyramidal neurons in Streptozotocine (STZ - induced Alzheimeric rats were studied. Materials and Methods: 32 Male Wistar rats were divided into four groups: sham group, streptozotocin group, treated group with streptozotocin plus N-acetyl-cysteine, and treated group with N-acetyl-cysteine alone. Intracerebroventricular (ICV administration of STZ was done in the first and the third day of surgery and i.p injection of N-acetyl-cysteine was done in the fourth of surgery. After the memory test, the animals were killed and their brains were fixed and density of intact neurons in the CA1 area of the hippocampus was investigated. Statistical analysis was performed with software SPSS, ANOVA and Prisme software. The level of statistical significance was set at p 0.05. Conclusion: N-acetyl-cysteine improved memory retrieval and hippocampal CA1 area intact neurons in streptozotocin-induced Alzheimeric male rats.

  4. Maternal omega-3 supplementation increases fat mass in male and female rat offspring

    Directory of Open Access Journals (Sweden)

    Beverly Sara Muhlhausler

    2011-07-01

    Full Text Available Adipogenesis and lipogenesis are highly sensitive to the nutritional environment in utero and in early postnatal life. Omega-3 long chain polyunsaturated fatty acids (LCPUFA inhibit adipogenesis and lipogenesis in adult rats, however it is not known whether supplementing the maternal diet with omega-3 LCPUFA results in reduced fat deposition in the offspring. Female Albino Wistar rats were fed either a standard chow (Control, n=10 or chow designed to provide ~15mg/kg/day of omega-3 LCPUFA, chiefly as docosahexaenoic acid (DHA, throughout pregnancy and lactation (Omega-3, n=11 and all pups were weaned onto a commercial rat chow. Blood and tissues were collected from pups at 3wks and 6wks of age and weights of visceral and subcutaneous fat depots recorded. The expression of adipogenic and lipogenic genes in the subcutaneous and visceral fat depots were determined using qRT-PCR. Birth weight and postnatal growth were not different between groups. At 6 weeks of age, total percentage body fat was significantly increased in both male (5.09 ± 0.32% vs 4.56 ± 0.2%, P<0.04 and female (5.15 ± 0.37% vs 3.89 ± 0.36%, P<0.04 offspring of omega-3 dams compared to controls. The omega-3 LCPUFA content of erythrocyte phospholipids (as a % of total fatty acids was higher in omega-3 offspring (6.7 ± 0.2 % vs 5.6 ± 0.2%, P<0.001. There was no effect of maternal omega-3 LCPUFA supplementation on the expression of adipogenic or lipogenic genes in the offspring in either the visceral or subcutaneous fat depots. We have therefore established that an omega-3 rich environment during pregnancy and lactation in a rodent model increases fat accumulation in both male and female offspring, particularly in subcutaneous depots, but that this effect is not mediated via upregulation adipogenic/lipogenic gene transcription. These data suggest that maternal n-3 LCPUFA supplementation during pregnancy/lactation may not be an effective strategy for reducing fat deposition in

  5. Behavioral and Neurochemical Studies in Stressed and Unstressed Rats Fed on Protein, Carbohydrate and Fat Rich Diet

    Directory of Open Access Journals (Sweden)

    Samia Moin§, Saida Haider*, Saima Khaliq1, Saiqa Tabassum and Darakhshan J. Haleem

    2012-05-01

    Full Text Available Stress produces behavioral and neurochemical deficits. To study the relationship between adaptation to stress and macronutrient intake, the present study was designed to monitor the effects of different diets on feed intake, growth rate and serotonin (5-Hydroxytryptamine, 5-HT metabolism following exposure to restraint stress in rats. Rats were divided into four groups (n=12 as control, sugar, protein and fat rich diet fed rats. After 5 weeks of treatment animals of each group were divided into unrestrained and restrained animals (n=6. Rats of restrained group were given immobilization stress for 2 hours/day for 5 days. Food intake and growth rates of unrestrained and restrained rats were monitored daily. Rats were decapitated on 6th day to collect brain samples for neurochemical estimation. Results show that sugar diet fed rats produced adaptation to stress early as compared to normal diet fed rats. Food intake and growth rates of unrestrained and restrained rats were comparable on 3rd day in sugar diet fed rats and on 4th day in normal diet fed rats. Stress decreased food intake and growth rates of protein and fat treated rats. Repeated stress did not alter brain 5-HT and 5-HIAA levels of normal diet fed rats and sugar diet fed rats. Protein diet fed restrained rats showed elevated brain 5-HT levels. Fat diet fed restrained rats significantly decreased brain TRP and 5-HIAA levels. Finding suggested that carbohydrate diet might protect against stressful conditions. Study also showed that nutritional status could alter different behaviors in response to a stressful environment.

  6. Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats.

    Science.gov (United States)

    Zhou, Albert L; Hintze, Korry J; Jimenez-Flores, Rafael; Ward, Robert E

    2012-12-01

    The AIN-76A diet causes fatty liver in rodents when fed for long periods of time. The aim of this study was to utilize fatty acid analysis and transcriptomics to investigate the effects of different fat sources in the AIN-76A diet on tissue lipid profiles and gene expression in male, weanling Fischer-344 rats. Animals were fed isocaloric diets that differed only in the fat source: (1) corn oil (CO) (2) anhydrous milk fat (AMF), and (3) AMF supplemented with 10% phospholipids from the milk fat globule membrane (AMF-MFGM). There were no differences in food intake, body weight, growth rate, or body fat composition among the groups, and the fatty acid compositions of red blood cells (RBC), plasma, muscle, and visceral adipose tissues reflected the dietary fat sources. Modifying the fat source resulted in 293 genes differentially regulated in skeletal muscle, 1,124 in adipose, and 831 in liver as determined by analysis of variance (ANOVA). Although tissue fatty acid profiles mostly reflected the diet, there were several quantitative differences in lipid classes in the liver and plasma. The AMF diet resulted in the highest level of hepatic triacylglycerols, but the lowest level in plasma. The CO diet resulted in significant accumulation of hepatic unesterified fatty acids and decreased DGAT expression and activity, a potential trigger for steatohepatitis. These results indicate that the fatty acid composition and presence of polar lipids in the AIN-76A diets have significant effects on lipid partitioning, gene expression, and potentially the development of liver pathology.

  7. In vitro evaluation of percutaneous diffusion of uranyl nitrate through intact or excoriated skin of rat and pig

    International Nuclear Information System (INIS)

    Petitot, F.; Moreels, A.M.; Paquet, F.

    2004-01-01

    At the present time, the International Commission on Radiological Protection (ICRP) has not published any model concerning internal radioactive contamination by uptake from wounds. The aims of our work were to determine the time available to treat contamination of intact or wounded skin before a significant uptake of uranium occurred and to evaluate the consequences of incomplete decontamination on uranium uptake. The kinetics of percutaneous diffusion of uranium through intact or excoriated skin and its distribution in skin layers were evaluated using an in vitro technique. Our data demonstrated a dramatic increase of uranium percutaneous diffusion through excoriated skin compared with intact skin. Significant uptake of uranium through excoriated skin occurred in only 30 min, indicating that there is only a short interval available to treat a contaminated wound effectively. Moreover, in the case of an incompletely decontaminated superficial wound, viable epidermis behaved as a reservoir for uranium that remained bioavailable. At the present time, potential uptake of uranium and perhaps other radionuclides through intact or wounded skin is not adequately taken into account by radiological protection agencies. Our results emphasize the need for further study and modeling of uptake of radionuclides through intact or wounded skin. (author)

  8. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats

    Directory of Open Access Journals (Sweden)

    Cuauhtemoc Sandoval-Salazar

    Full Text Available BACKGROUND: It has been proposed that the γ-aminobutyric acid (GABA plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC. It has been also proposed that the high-fat diet (HFD could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats RESULTS: The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats CONCLUSIONS: HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  9. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats.

    Science.gov (United States)

    Sandoval-Salazar, Cuauhtemoc; Ramírez-Emiliano, Joel; Trejo-Bahena, Aurora; Oviedo-Solís, Cecilia I; Solís-Ortiz, Martha Silvia

    2016-02-29

    It has been proposed that the γ-aminobutyric acid (GABA) plays a key role in the regulation of food intake and body weight by controlling the excitability, plasticity and the synchronization of neuronal activity in the frontal cortex (FC). It has been also proposed that the high-fat diet (HFD) could disturb the metabolism of glutamate and consequently the GABA levels, but the mechanism is not yet clearly understood. Therefore, the aim of this study was to investigate the effect of a HFD on the GABA levels in the FC and hippocampus of rats. The HFD significantly increased weight gain and blood glucose levels, whereas decreased the GABA levels in the FC and hippocampus compared with standard diet-fed rats. HFD decreases GABA levels in the FC and hippocampus of rat, which likely disrupts the GABAergic inhibitory processes, underlying feeding behavior.

  10. Histological study of subcutaneous fat at NIR laser treatment of the rat skin in vivo

    Science.gov (United States)

    Yanina, I. Y.; Svenskaya, Yu. I.; Navolokin, N. A.; Matveeva, O. V.; Bucharskaya, A. B.; Maslyakova, G. N.; Gorin, D. A.; Sukhorukov, G. B.; Tuchin, V. V.

    2015-07-01

    The goal of this work is to quantify impact of in vivo photochemical treatment using indocyanine green (ICG) or encapsulated ICG and NIR laser irradiation through skin of rat with obesity by the follow up tissue sampling and histochemistry. After 1 hour elapsed since 1-min light exposure samples of rat skin with subcutaneous tissue of thickness of 1.5-2.5 mm were taken by surgery from rats within marked 4-zones of the skin site. For hematoxylin-eosin histological examination of excised tissue samples, fixation was carried out by 10%-formaldehyde solution. For ICG and encapsulated ICG subcutaneous injection and subsequent 1-min diode laser irradiation with power density of 8 W/cm2, different necrotic regions with lipolysis of subcutaneous fat were observed. The obtained data can be used for safe layer-by-layer laser treatment of obesity and cellulite.

  11. High-Fat and Fat-Enriched Diets Impair the Benefits of Moderate Physical Training in the Aorta and the Heart in Rats

    Directory of Open Access Journals (Sweden)

    Cleverson Rodrigues Fernandes

    2017-05-01

    Full Text Available AimMillions of people die each year due to cardiovascular disease (CVD. A Western lifestyle not only fuses a significant intake of fat with physical inactivity and obesity but also promotes CVD. Recent evidence suggests that dietary fat intake impairs the benefits of physical training. We investigated whether aerobic training could reverse the adverse effects of a high-fat diet (HFD on the aorta. Then, we explored whether this type of exercise could reverse the damage to the heart that is imposed by fat-enriched diet (FED.MethodsRats were randomly assigned to two experiments, which lasted 8 weeks each. First, rats swam for 60 min and were fed either a regular diet [standard diet (STD] or an HFD. After aortic samples had been collected, the rats underwent a histopathological analysis for different biomarkers. Another experiment subjected rats that were fed either an STD or an FED to swimming for 20 or 90 min.ResultsThe first experiment revealed that rats that were subjected to an HFD-endured increased oxidative damage in the aorta that exercises could not counteract. Together with increased cyclooxygenase 2 expression, an HFD in combination with physical training increased the number of macrophages. A reduction in collagen fibers with an increased number of positive α-actin cells and expression of matrix metalloproteinase-2 occurred concomitantly. Upon analyzing the second experiment, we found that physically training rats that were given an FED for 90 min/day decreased the cardiac adipose tissue density, although it did not protect the heart from fat-induced oxidative damage. Even though the physical training lowered cholesterol levels that were promoted by the FED, the levels were still higher than those in the animals that were given an STD. Feeding rats an FED impaired the swimming protocol’s effects on lowering triglyceride concentration. Additionally, exercise was unable to reverse the fat-induced deregulation in hepatic

  12. Linseed Dietary Fibers Reduce Apparent Digestibility of Energy and Fat and Weight Gain in Growing Rats

    Directory of Open Access Journals (Sweden)

    Arne Astrup

    2013-08-01

    Full Text Available Dietary fibers (DF may affect energy balance, an effect often ascribed to the viscous nature of some water soluble DF, which affect luminal viscosity and thus multiple physiological processes. We have tested the hypothesis that viscous linseed DF reduce apparent nutrient digestibility, and limit weight gain, in a randomized feeding trial where 60 male, growing, Wistar rats, with an initial weight of ~200 g, were fed different diets (n = 10 per group: low DF control (C, 5% DF from cellulose (5-CEL, CEL + 5% DF from whole (5-WL or ground linseed (5-GL, CEL + 5% DF from linseed DF extract (5-LDF, and CEL + 10% DF from linseed DF extract (10-LDF. Diets were provided ad libitum for 21 days. Feed intake and faecal output were measured during days 17–21. Faecal fat excretion increased with increasing DF content and was highest in the 10-LDF group. Apparent fat digestibility was highest with the C diet (94.9% ± 0.8% and lowest (74.3% ± 0.6% with the 10-LDF diet, and decreased in a non-linear manner with increasing DF (p < 0.001. Apparent fat digestibility also decreased with increased accessibility of DF (5-WL vs. 5-GL and when the proportion of viscous DF increased (5-GL vs. 5-LDF. The 10-LDF resulted in a lower final body weight (258 ± 6.2 g compared to C (282 ± 5.9 g, 5-CEL (281 ± 5.9 g, and 5-WL (285 ± 5.9 g (p < 0.05. The 10-LDF diet reduced body fat compared to 5-CEL (p < 0.01. In conclusion, DF extracted from linseed reduced apparent energy and fat digestibility and resulted in restriction of body weight gain in growing rats.

  13. Prolonged decrease of adipocyte size after rosiglitazone treatment in high- and low-fat-fed rats.

    Science.gov (United States)

    Johnson, Julia A; Trasino, Steven E; Ferrante, Anthony W; Vasselli, Joseph R

    2007-11-01

    The anti-diabetic thiazolidinediones (TZDs) stimulate adipocyte differentiation and decrease mean adipocyte size. However, whether these smaller, more insulin-sensitive adipocytes maintain their size after TZD therapy is discontinued has not been studied. Adult female Sprague-Dawley rats were fed a low-fat (10% fat) diet or, to elevate body weight (BW), a high-fat (HF) diet (45% fat) for 6 weeks. Rats were initially randomized to groups (n = 12) fed either low-fat or HF diets, with or without the TZD rosiglitazone (ROSI; 5 mg/kg per day), for 6 weeks. ROSI was then discontinued, and all animals were fed HF for another 6 weeks before sacrifice. Retroperitoneal (RP) adipose tissue morphology was determined from tissue collected by serial biopsies before and after 6 weeks of ROSI treatment and at sacrifice. Measures of BW and adiposity did not differ among groups 6 weeks after stopping ROSI treatment. However, during treatment, ROSI in both diets significantly decreased RP adipocyte size and increased RP DNA content, and these effects continued to be observed after discontinuing treatment. ROSI administration also decreased circulating insulin, leptin, and triglycerides and increased circulating adiponectin levels; however, these effects were reversed on stopping treatment. These results demonstrated that TZD-induced effects on adipocyte size and number were maintained after discontinuing treatment, even with consumption of an obesigenic diet. However, additional studies are needed to determine whether TZD-treated animals eventually achieve an adipocyte size similar to that of untreated animals at the expense of a higher BW.

  14. Post-weaning high-fat diet results in growth cartilage lesions in young male rats.

    Directory of Open Access Journals (Sweden)

    Samuel S Haysom

    Full Text Available To determine if a high-fat diet (HF from weaning would result in a pro-inflammatory state and affect joint cartilage, we fed male rats either HF or Chow diet post-weaning, and voluntary wheel exercise (EX or cage only activity (SED after 9 weeks of age. At 17 weeks body composition, plasma biomarkers and histomorphology scores of femoro-tibial cartilages of HF-SED, HF-EX, Chow-SED and Chow-EX groups were compared. Food intake and activity were not significantly different between groups. HF diet resulted in significantly higher weight gain, %fat, fat:lean ratio, and plasma leptin, insulin and TNFα concentrations, with significant interactions between diet and exercise. No abnormal features were detected in the hyaline articular cartilage or in the metaphyseal growth plate in all four groups. However, collagen type X- positive regions of retained epiphyseal growth cartilage (EGC was present in all HF-fed animals and significantly greater than that observed in Chow-fed sedentary rats. Most lesions were located in the lateral posterior aspect of the tibia and/or femur. The severity of lesions was greater in HF-fed animals. Although exercise had a significantly greater effect in reducing adiposity and associated systemic inflammation in HF-fed rats, it had no effect on lesion incidence or severity. Lesion incidence was also significantly associated with indices of obesity and plasma markers of chronic inflammation. Clinically, EGC lesions induced by HF feeding in rats from very early in life, and possibly by insufficient activity, is typical of osteochondrosis in animals. Such lesions may be the precursor of juvenile osteochondritis dissecans requiring surgery in children/adolescents, conservative management of which could benefit from improved understanding of early changes in cellular and gene expression.

  15. Temperature-dependent changes in the viscoelasticity of intact resting mammalian (rat) fast- and slow-twitch muscle fibres.

    Science.gov (United States)

    Mutungi, G; Ranatunga, K W

    1998-04-01

    1. The tension and sarcomere length responses induced by ramp stretches (at amplitudes of 1-3 % fibre length (Lo) and speeds of 0.01-12 Lo s-1) were examined at different temperatures (range, 10-35 degrees C) in resting intact muscle fibre bundles isolated from the soleus (a slow-twitch muscle) and extensor digitorum longus (a fast-twitch muscle) of the rat. Some observations are also presented on the effects of chemical skinning on passive viscoelasticity at 10 degrees C. 2. As previously reported, the tension response to a ramp stretch, in different preparations and under various conditions, could be resolved into a viscous (P1), a viscoelastic (P2) and an elastic (P3) component and showed characteristic differences between slow and fast muscle fibres. 3. Chemical skinning of the muscle fibres led to a decrease in the amplitude of all three tension components. However, the fast-slow fibre differences remained after skinning. For example, the viscosity coefficient derived from P1 tension data decreased from 0.84 +/- 0.06 before skinning to 0.44 +/- 0.06 kN s m-2 after skinning in fast fibres; the corresponding values in slow fibres were 2.1 +/- 0.08 and 0.87 +/- 0.09 kN s m-2, respectively. 4. Increasing the experimental temperature from 10 to 35 degrees C led to a decrease in all the tension components in both fast and slow muscle fibre bundles. The decrease of P1 (viscous) tension was such that the viscosity coefficient calculated using P1 data was reduced from 0.84 +/- 0.1 to 0.43 +/- 0.05 kN s m-2 in fast fibres and from 2.0 +/- 0.1 to 1.0 +/- 0.1 kN s m-2 in slow fibres (Q10 of approximately 1.3 in both). 5. In both fast and slow muscle fibre preparations, the plateau tension of the viscoelastic component (P2) decreased by 60-80 % as the temperature was increased from 10 to 35 degrees C giving P2 tension a Q10 of approximately 1.4 in slow fibres and approximately 1.7 in the fast fibres. Additionally, the relaxation time of the viscoelasticity decreased from

  16. Plasma lipids and prothrombin time in rats fed palm oil and other commonly used fats in Egypt

    OpenAIRE

    Hussein, Mona M.; Salama, Fawzy M.; Ebada, Karina M.

    1993-01-01

    Sprague-Dawley rats were fed for a total period of 8 weeks on six diets that were different in the source of their fat content. The fat content was provided either, palm oil or palm olein or corn oil or hydrogenated fat, or frying palm oil and mixture of corn oil + hydrogenated fat in the ratio (1:1). The latter was given to the control group. Animals fed these various experimental diets showed statistically significant differences in serum cholesterol and serum triglycerides content amo...

  17. The organ specificity in pathological damage of chronic intermittent hypoxia: an experimental study on rat with high-fat diet.

    Science.gov (United States)

    Wang, Hui; Tian, Jian-li; Feng, Shu-zhi; Sun, Ning; Chen, Bao-yuan; Zhang, Yun

    2013-09-01

    It is known today that sleep apnea hypopnea syndrome and its characteristic chronic intermittent hypoxia can cause damages to multiple organs, including the cardiovascular system, urinary system, and liver. It is still unclear, however, whether the damage caused by sleep apnea hypopnea syndrome and the severity of the damage are organ-specific. This research observed the pathological effects of chronic intermittent hypoxia on rat's thoracic aorta, myocardium, liver, and kidney, under the condition of lipid metabolism disturbance, through establishing the rat model of chronic intermittent hypoxia with high-fat diet by imitating the features of human sleep apnea hypopnea syndrome. In this model, 24 male Wistar rats were randomly divided into three groups: a control group fed by regular diet, a high-fat group fed by high-fat diet, and a high-fat plus intermittent hypoxia group fed by high-fat diet and treated with intermittent hypoxia 7 h a day. At the end of the ninth week, the pathological changes of rat's organs, including the thoracic aorta, myocardium, liver, and kidney are observed (under both optical microscopy and transmission electron microscopy). As the result of the experiment shows, while there was no abnormal effect observed on any organs of the control group, slight pathological changes were found in the organs of the high-fat group. For the high-fat plus intermittent hypoxia group, however, remarkably severer damages were found on all the organs. It also showed that the severity of the damage varies by organ in the high-fat plus intermittent hypoxia group, with the thoracic aorta being the worst, followed by the liver and myocardium, and the kidney being the slightest. Chronic intermittent hypoxia can lead to multiple-organ damage to rat with high-fat diet. Different organs appear to have different sensitivity to chronic intermittent hypoxia.

  18. Effects of Yogurt Containing Fermented Pepper Juice on the Body Fat and Cholesterol Level in High Fat and High Cholesterol Diet Fed Rat.

    Science.gov (United States)

    Yeon, Su-Jung; Hong, Go-Eun; Kim, Chang-Kyu; Park, Woo Joon; Kim, Soo-Ki; Lee, Chi-Ho

    2015-01-01

    This experiment investigated whether yogurt containing fermented pepper juice (FPJY) affects cholesterol level in high fat and high cholesterol diet (HFCD) fed rat. Twenty five Sprague-Dawley male rats of 7 wk were divided into 5 groups, and fed following diets for 9 wk; CON (control diet), HFCD (HFCD), PY (HFCD supplemented with 2% of plain yogurt), LFY (HFCD supplemented with 2% of FPJY), and HFY (HFCD supplemented with 5% of FPJY). In the LFY group, hepatic total lipid level decreased significantly compared to the HFCD group (p0.05). In HFY group, body weight and hepatic total lipid level significantly decreased over the HFCD group (p0.05). Liver weight decreased as FPJY content was increased. Results suggested FPJY would inhibit organ hypertrophy and accumulation of body fat, hepatic lipid, and cholesterol in HFCD fed rat.

  19. Metabolic and oxidative stress markers in Wistar rats after 2?months on a high-fat diet

    OpenAIRE

    Auberval, Nathalie; Dal, St?phanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Val?rie; Sigrist, S?verine

    2014-01-01

    Background Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Materials and methods Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared ...

  20. Influence of dietary fat and selenium fed during initiation or promotion on the development of preneoplastic lesions in rat liver

    International Nuclear Information System (INIS)

    Baldwin, S.; Parker, R.S.

    1986-01-01

    Aflatoxin B 1 (AFB1)-induced γ-glutamyl transpeptidase (GGT)-positive foci in rat liver were assessed in animals fed different levels of fat and selenium (Se) during either initiation (IN) or promotion (PR). Male Sprague Dawley rats (50g) were divided into 12 groups. One of six modified AIN-76 experimental diets were fed to groups 1-6 during weeks 1-4.5 (IN) and to groups 7-12 during weeks 4.5-15 (PR). During weeks 3-4, 13 rats/group received 10 daily doses of AFB1 (.4 mg/kg bwt/dose, i.g.). Two levels of corn oil (2% and 20%) were fed, each containing 3 levels of Se: < 0.02; 0.15; 2.5 (IN) or 1.9 (PR) ppm. When not fed the experimental diets rats were fed a standard AIN-76 diet. In groups 1-6, 0.03% phenobarbital was added to the standard diet. At week 15 rats were sacrificed. Compared to all low-fat groups, the high-fat diets with either < 0.02 or 0.15 ppm Se fed during IN resulted in a marked increase in mean diameter of GGT-positive foci and % liver section occupied by foci. In rats fed high-fat 2.5 ppm Se, preneoplastic development was decreased below all low-fat groups. During PR, Se status but not dietary fat level influenced foci formation. Rats fed < 0.02 ppm Se had greater mean diameter of foci and % section occupied by foci than either 0.15 or 1.9 ppm Se. Thus, an interaction was observed between dietary fat and selenium during IN, but not during PR

  1. Effect of Morinda citrifolia (Noni) Fruit Juice on High Fat Diet Induced Dyslipidemia in Rats.

    Science.gov (United States)

    Shoeb, Ahsan; Alwar, M C; Shenoy, Preethi J; Gokul, P

    2016-04-01

    The medicinal value of Morinda citrifolia L. (commonly known as Noni) has been explored in ancient folk remedies with a wide range of therapeutic utility, including antibacterial, antiviral, antifungal, antitumour, analgesic, hypotensive, anti-inflammatory and immune enhancing effects. The present study was designed to evaluate the effects of Noni fruit juice on serum lipid profile in high fat diet induced murine model of dyslipidemia. Hyperlipidemia was induced by feeding a cholesterol rich high fat diet for 45 days in wistar albino rats of either sex (n=8). Noni fruit juice administered at 50mg/kg/day and 100mg/kg/day, per oral, was compared with the standard drug Atorvastatin (10mg/kg/day, oral) fed for the latter 30 days. The blood samples were then sent for complete blood lipid profile, after 30 days of treatment. The data presented as mean ± SEM was analyzed using one-way ANOVA followed by Tukey's post-hoc test. The p juice treated group showed a significant decrease in the total cholesterol, triglycerides and very low density lipoprotein - Cholesterol at both the doses when compared to the disease control (pjuice at the 50mg/kg dose employed, failed to show a statistical significance when compared to atorvastatin. The present study provides evidence for the hypolipidemic activity of Noni fruit juice in high fat diet induced hyperlipidemia in rats.

  2. Investigation of endocrine and immunological response in fat tissue to hyperbaric oxygen administration in rats.

    Science.gov (United States)

    Şen, H; Erbağ, G; Ovali, M A; Öztopuz, R Ö; Uzun, M

    2016-04-30

    Though HBO treatment is becoming more common, the mechanism of action is not fully known. The positive effects of HBO administration on the inflammatory response is thought to be a possible basic mechanism. As a result, we aimed to research whether endocrine and immunological response of fat tissue changes in rats given HBO treatment model. This research was carried out on Wistar albino rats, they were treated with hyperbaric oxygen therapy. Their fatty tissue were taken from the abdomen, gene expression of the cytokines and adipokines were analyzed with Real time PCR method. When the gene expression of hormones and cytokines by fat tissue was examined, the leptin, visfatin, TNF-α, IL-1β and IL-10 levels in the HBO treatment group were statistically significantly increased compared to the control group (p=0.0313, p=0.0156, p=0.0156, p=0.0156, p=0.0313). In conclusion, in our study we identified that HBO administration affected the endochrinological functions of fat tissue.

  3. [Rosuvastatin improves insulin sensitivity in overweight rats induced by high fat diet. Role of SIRT1 in adipose tissue].

    Science.gov (United States)

    Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; Cachofeiro, Victoria; Lahera, Vicente; de Las Heras, Natalia

    2014-01-01

    To study the effects of rosuvastatin on insulin resistance in overweight rats induced by high fat diet, as well as potential mediators. We used male Wistar rats fed with a standard diet (CT) or high fat diet (33.5% fat) (HFD); half of the animals HFD were treated with rosuvastatin (15mg/kg/day) (HFD+Rosu) for 7 weeks. HFD rats showed increased body, epididymal and lumbar adipose tissue weights. Treatment with Rosu did not modify body weight or the weight of the adipose packages in HFD rat. Plasma glucose and insulin levels and HOMA index were higher in HFD rats, and rosuvastatin treatment reduced them. Leptin/adiponectin ratio in plasma and lumbar adipose tissue were higher in HDF rats, and were reduced by rosuvastatin. SIRT-1, PPAR-γ and GLUT-4 protein expression in lumbar adipose tissue were lower in HFD rats and Rosu normalized expression of the three mediators. Rosuvastatin ameliorates insulin sensitivity induced by HFD in rats. This effect is mediated by several mechanisms including reduction of leptin and enhancement of SIRT-1, PPAR-γ and GLUT-4 expression in white adipose tissue. SIRT1 could be considered a major mediator of the beneficial effects of rosuvastatin on insulin sensitivity in overweight rats induced by diet. Copyright © 2013 Sociedad Española de Arteriosclerosis. Published by Elsevier España. All rights reserved.

  4. Cardiac Hypertrophy and Brain Natriuretic Peptide Levels in an Ovariectomized Rat Model Fed a High-Fat Diet

    Science.gov (United States)

    Goncalves, Gleisy Kelly; de Oliveira, Thiago Henrique Caldeira; de Oliveira Belo, Najara

    2017-01-01

    Background Heart failure in women increases around the time of menopause when high-fat diets may result in obesity. The heart produces brain natriuretic peptide (BNP), also known as B-type natriuretic peptide. This aims of this study were to assess cardiac hypertrophy and BNP levels in ovariectomized rats fed a high-fat diet. Material/Methods Forty-eight female Wistar rats were divided into four groups: sham-operated rats fed a control diet (SC) (n=12); ovariectomized rats fed a control diet (OC) (n=12); sham-operated rats fed a high-fat diet (SF) (n=12); and ovariectomized rats fed a high-fat diet (OF) (n=12). Body weight and blood pressure were measured weekly for 24 weeks. Rats were then euthanized, and plasma samples and heart tissue were studied for gene expression, hydroxyproline levels, and histological examination. Results A high-fat diet and ovariectomy (group OF) increased the weight body and the systolic blood pressure after three months and five months, respectively. Cardiomyocyte hypertrophy was associated with increased expression of ventricular BNP, decreased natriuretic peptide receptor (NPR)-A and increased levels of hydroxyproline and transforming growth factor (TGF)-β. The plasma levels of BNP and estradiol were inversely correlated; expression of estrogen receptor (ER)β and ERα were reduced. Conclusions The findings of this study showed that, in the ovariectomized rats fed a high-fat diet, the BNP-NPR-A receptor complex was involved in cardiac remodeling. BNP may be a marker of cardiac hypertrophy in this animal model. PMID:29249795

  5. Modulatory effects of dietary supplementation by Vernonia amygdalina on high-fat-diet-induced obesity in Wistar rats.

    Science.gov (United States)

    Ekeleme-Egedigwe, Chima A; Ijeh, Ifeoma I; Okafor, Polycarp N

    2017-01-01

    Obesity is a growing public health problem arising from energy imbalance. The effect of 10% dietary incorporation of Vernonia amygdalina (VA) leaves into high-fat diets on some biological markers of adiposity and dyslipidaemia was investigated. Experimental diets consisted of the following – CD (control diet); HFD (high-fat diet); and HFD- VA (HFD containing 10% Vernonia amygdalina leaves) supplementation. Fifteen male Wistar rats were randomly divided into three groups of five animals each. After twelve weeks of feeding, serum lipid profile, blood glucose concentrations, body weight, adiposity index, feed intake, fecal loss and relative organ weight were investigated. Vernonia amygdalina (VA) inhibited HFD-induced weight gain and adiposity in rats. HFD-induced obese rats showed a significant increase in the levels of serum TG and TC compared to rats on a normal diet. However, the levels of serum TG, TC, LDL-C in HFDVA rats reduced significantly relative to the levels in HFD rats. Our results indicate that HFDVA reversed fatty infiltration leading to decreased body weight and fat tissue mass in the rats. These results suggested that incorporation of Vernonia amygdalina into high-fat diets may have therapeutic potentials for obesity and related metabolic disorders. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted.

  6. Accretion of visceral fat and hepatic insulin resistance in pregnant rats.

    Science.gov (United States)

    Einstein, Francine H; Fishman, Sigal; Muzumdar, Radhika H; Yang, Xiao Man; Atzmon, Gil; Barzilai, Nir

    2008-02-01

    Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P insulin action in pregnancy.

  7. Decaffeinated coffee consumption induces expression of tight junction proteins in high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Mazzone G

    2016-09-01

    Full Text Available Background: Recent evidence indicates that gut microbiota plays a key role in the development of NAFLD through the gut-liver axis. An altered gut permeability induced by alterations of tight junction (TJ proteins allows the passage of bacteria and substances leading to liver inflammation, hepatocyte damage and fibrosis. This study aims to evaluate the influence of decaffeinated coffee on gut permeability in a rat model of fat liver damage induced by a high fat diet (HFD. Methods: Twelve male Wistar rats were assigned to 3 groups. The first group received HFD for 5 months and drank water. The second group received HFD for 5 months and drank water added with 1.2mL decaffeinated coffee/day starting from the 4th month. The third group received standard diet (SD and drank water. Protein and mRNA expression levels of Toll-Like Receptor- 4 (TLR-4, Occludin and Zonula occludens-1 (ZO-1 were assessed in rat intestines. Results: A significant reduction of Occludin and ZO-1 was observed in HFD fed rats (0.97±0.05 vs 0.15±0.08 p˂0.01, and 0.97±0.05 vs 0.57±0.14 p˂0.001 respectively. This reduction was reverted in HFD+COFFEE rats (0.15±0.08 vs 0.83±0.27 p˂0.01 and 0.57±0.14 vs 0.85±0.12 p˂0.01 respectively. The TLR-4 expression up-regulated by HFD was partially reduced by coffee administration. Conclusions: HFD impairs the intestinal TJ barrier integrity. Coffee increases the expression of TJ proteins, reverting the altered gut permeability and reducing TLR-4 expression.

  8. Lipoprotein lipase activity and chylomicron clearance in rats fed a high fat diet

    International Nuclear Information System (INIS)

    Brown, C.M.; Layman, D.K.

    1988-01-01

    The relationships of tissue and plasma lipoprotein lipase (LPL) activities to tissue uptake and plasma clearance of 14 C-labeled chylomicron-triglyceride ( 14 C-CM-TG) were studied in female rats fed isoenergetic and isonitrogenous control (12% kJ from fat) or high fat diets (72% kJ from fat) for 8 wk. Animals fed the high-fat diet had higher levels of fasting plasma triglycerides and lower LPL activities in heart, renal adipose tissue and post-heparin plasma. Changes in LPL activities of skeletal muscles varied among muscles with higher values in the soleus and plantaris (32-61%) and no differences in the gastrocnemius. The lower LPL activity in renal adipose tissue was associated with lower uptake of fatty acids from 14 C-CM-TG by adipose. Fatty-acid uptake from labeled TG was not associated with tissue LPL activity in other tissues. Clearance of 14 C-CM-TG from plasma and the half-lives of 14 C-CM-TG were similar in both dietary groups. These data indicate that tissue and plasma LPL activities are not a direct index of uptake of fatty acids by tissues or clearance of chylomicron triglycerides

  9. A krill oil supplemented diet suppresses hepatic steatosis in high-fat fed rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Burri, Lena; Berge, Kjetil; De Nuccio, Francesco; Giudetti, Anna Maria; Zara, Vincenzo

    2012-01-01

    Krill oil (KO) is a dietary source of n-3 polyunsaturated fatty acids, mainly represented by eicosapentaenoic acid and docosahexaenoic acid bound to phospholipids. The supplementation of a high-fat diet with 2.5% KO efficiently prevented triglyceride and cholesterol accumulation in liver of treated rats. This effect was accompanied by a parallel reduction of the plasma levels of triglycerides and glucose and by the prevention of a plasma insulin increase. The investigation of the molecular mechanisms of KO action in high-fat fed animals revealed a strong decrease in the activities of the mitochondrial citrate carrier and of the cytosolic acetyl-CoA carboxylase and fatty acid synthetase, which are both involved in hepatic de novo lipogenesis. In these animals a significant increase in the activity of carnitine palmitoyl-transferase I and in the levels of carnitine was also observed, suggesting a concomitant stimulation of hepatic fatty acid oxidation. The KO supplemented animals also retained an efficient mitochondrial oxidative phosphorylation, most probably as a consequence of a KO-induced arrest of the uncoupling effects of a high-fat diet. Lastly, the KO supplementation prevented an increase in body weight, as well as oxidative damage of lipids and proteins, which is often found in high-fat fed animals.

  10. Hypolipidemic effect of fruit fibers in rats fed with high dietary fat.

    Science.gov (United States)

    Esmael, O A; Sonbul, S N; Kumosani, T A; Moselhy, S S

    2015-03-01

    The hypolipidemic effect of 10% fruit fibers in rats fed with high-fat diet (HFD) was evaluated. This study was conducted on a total of 50 male Albino rats divided into 10 equal groups fed with different types of dietary fruits. The feeding period lasted for 24 weeks. Fasting blood samples were collected and sera separated and subjected to lipid profile assay and atherogenic index. In addition, total antioxidant activity of different fruits was determined. The results obtained showed that pomegranate had higher content of antioxidants followed by apple, strawberry and guava compared with other fruits. Rats fed with 20% coconut oil showed a highly significant elevation in the levels of serum total cholesterol, low-density lipoprotein cholesterol and atherogenic factor while the level of high-density lipoprotein cholesterol was significantly decreased when compared with control rats. Histological examination revealed that there was a large lipid and cholesterol deposition in the livers of rats fed with HFD. The potential in lowering the levels of plasma total cholesterol and triglyceride is in the following order: pomegranate > apple > strawberry > guava > papaya > mandarin and orange. Accumulation of hepatic lipid droplets was diminished when compared with the HFD group. Also, antiatherogenic is better than the untreated groups. Accordingly these hypolipidemic effects may be due to high-fiber content and antioxidant activity of these fruits. © The Author(s) 2012.

  11. 5-HT modulation of multiple inward rectifiers in motoneurons in intact preparations of the neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Kiehn, Ole

    2001-01-01

    This study introduces novel aspects of inward rectification in neonatal rat spinal motoneurons (MNs) and its modulation by serotonin (5-HT). Whole cell tight-seal recordings were made from MNs in an isolated lumbar spinal cord preparation from rats 1-2 days of age. In voltage clamp, hyperpolarizi...

  12. Influence of metabolism modifiers of cyclic nucleotides on contractility of right ventricle of rat heart with intact and removed endocardial endothelium

    Directory of Open Access Journals (Sweden)

    Savić Slađana

    2010-01-01

    Full Text Available Introduction. Endocardial endothelium, a natural biological barrier between circulating blood in heart ventricle and cells, creates a complex yet finely tuned balance of interactions with the immediate environment. Objective. We investigated the roles of theophylline, nonspecific phosphodiesterase inhibitor, and imidazole, an activator of phosphodiesterase on contractility of the right ventricle of rat heart, with intact and removed endocardial endothelium. Methods. Adult rats, of both sexes, type Wistar albino, were used in this experiment. All experiments were conducted on the preparations of the right ventricle using two experimental models. In the first experimental model, an endocardial endothelium (EE was preserved, and in the second model, an endocardial endothelium (-EE was removed using 1% solution Triton X-100. Results. Theophylline (1x10-2 mol/l expressed the positive inotropic effect on the heart, regardless of the presence of the endocardial endothelium. Inotropic response as multiple process can be induced by inhibition of phosphodiesterase, accumulation of cyclic nucleotides and activation of Ca2+ channels. Imidazole (2x10-3 mol/l increased the contractility of the right ventricle of the heart with EE. The modulator effect of endocardial endothelium on contractility of imidazole proved to be significant. As imidazole influenced the contractility of the right ventricle only in the presence of the endocardial endothelium, it is assumed that its effect is mediated via deliverance of endothelial mediators with positive inotropic effect. Conclusion. An intact endocardial endothelium is necessary for completion of contractile performance of the heart.

  13. Effects of High-sugar and High-fat Diet on Fat Deposition and Blood Vessel Wall on Sprague Dawley Rats Liver

    Directory of Open Access Journals (Sweden)

    Vera Citra Setiawan Hoei

    2013-11-01

    Full Text Available People nowadays tend to consume more fast food and sweetened beverages. These foods usually contain high amount sugar and fat that have effects on the body including liver.This study was conducted to explore the effects of extensive intake of sugar and fat on blood glucose and  cholesterol level as well as changes in liver. Research was conducted with experimental method using 20 Sprague Dawley rats which were divided into 4 groups; 2 controls and 2 treatments. Rats were given 5 ml sugar or lard alternatively every 2 consecutive days for 1-month and 2-month respectively. Data was retrieved include blood glucose and cholesterol level, fatty liver percentage and blood vessel thickening after intervention through HE staining. The results showed that both 1-month and 2-month intervention group has significant increase in blood glucose and cholesterol level. However, the enhancement of fatty liver percentage and number of thickened blood vessels (p<0.05 were only foundsignificant (p<0.05 in 1-month intervention group.  We concluded that high intake of sugar and fat within 1-monthintervention have significant effects on the rat body including liver. Nevertheless, it was not found significant in 2-months intervention. Further studies are still needed to analyze this incongruent result.Key words: high-sugar diet, high-fat diet, fatty liver, atherosclerosis 

  14. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    Directory of Open Access Journals (Sweden)

    Adam Jurgoński

    2014-02-01

    Full Text Available The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated and carbohydrate (simple vs. complex. The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  15. Characterization of beta-adrenergic receptors and adenylate cyclase activity in rat brown fat

    International Nuclear Information System (INIS)

    Baresi, L.A.; Morley, J.E.; Scarpace, P.J.

    1986-01-01

    Catecholamines stimulate thermogenesis in rat brown fat through a mechanism which involves binding to the beta-adrenergic receptor (BAR), stimulation of adenylate cyclase (AC) and culminating with uncoupling of mitochondrial respiration from ATP synthesis. The authors characterized BAR, AC and cytochrome (cyt) c oxidase in CDF (F-344) interscapular brown fat. Scatchard analysis of [ 125 ]Iodopindolol binding yields a straight line consistent with a single class of antagonist binding sites with 41.8 +/- 12.0 fmol BAR/mg protein and a K/sub d/ of 118 +/- 15 pM. Binding was both specific and stereospecific. Competition with 1-propranolol (K/sub d/ = 6.7 nM) was 15 times more potent than d-propranolol (K/sub d/ = 103 nM). Competition with isoproterenol (K/sub d/ = 79 nM) was 10 times more potent than epinephrine (K/sub d/ = 820 nM) which was 35 times more potent than norepinephrine (K/sub d/ = 2.9 x 10 -5 M) suggesting predominate beta 2 -type BAR. Cyt c oxidase activity was assessed in brown fat mitochrondrial preparations. The ratio of BAR to cyt c activity was 959 +/- 275 nmol BAR/mol cyc c/min. Isoproterenol (0.1 mM) stimulated AC activity was 24 times GTP (0.1 mM) stimulated AC (98.5 vs 40.7 pmol cAMP/min/mg). NaF-stimulated AC was nine times basal activity (90.5 vs 11.3 pmol cAMP/min/mg). These data demonstrate the presence of a beta- 2 -type BAR coupled to adenylate cyclase in rat brown fat

  16. Geraniin Protects High-Fat Diet-Induced Oxidative Stress in Sprague Dawley Rats

    Directory of Open Access Journals (Sweden)

    Alexis Panny Y. S. Chung

    2018-03-01

    Full Text Available Geraniin, a hydrolysable polyphenol derived from Nephelium lappaceum L. fruit rind, has been shown to possess significant antioxidant activity in vitro and recently been recognized for its therapeutic potential in metabolic syndrome. This study investigated its antioxidative strength and protective effects on organs in high-fat diet (HFD-induced rodents. Rats were fed HFD for 6 weeks to induce obesity, followed by 10 and 50 mg/kg of geraniin supplementation for 4 weeks to assess its protective potential. The control groups were maintained on standard rat chows and HFD for the same period. At the 10th week, oxidative status was assessed and the pancreas, liver, heart and aorta, kidney, and brain of the Sprague Dawley rats were harvested and subjected to pathological studies. HFD rats demonstrated changes in redox balance; increased protein carbonyl content, decreased levels of superoxide dismutase, glutathione peroxidase, and glutathione reductase with a reduction in the non-enzymatic antioxidant mechanisms and total antioxidant capacity, indicating a higher oxidative stress (OS index. In addition, HFD rats demonstrated significant diet-induced changes particularly in the pancreas. Four-week oral geraniin supplementation, restored the OS observed in the HFD rats. It was able to restore OS biomarkers, serum antioxidants, and the glutathione redox balance (reduced glutathione/oxidized glutathione ratio to levels comparable with that of the control group, particularly at dosage of 50 mg geraniin. Geraniin was not toxic to the HFD rats but exhibited protection against glucotoxicity and lipotoxicity particularly in the pancreas of the obese rodents. It is suggested that geraniin has the pharmaceutical potential to be developed as a supplement to primary drugs in the treatment of obesity and its pathophysiological sequels.

  17. Hormonal control of fat accumulation in L-glutamate-treated obese rats

    International Nuclear Information System (INIS)

    Remke, H.; Wilsdorf, A.; Mueller, F.

    1988-01-01

    Persistently decreased concentrations of the growth hormone and the tissue-nonepinephrine in connection with growth retardation and obesity were investigated concerning the effects on cells of epididymal adipose tissue in postnatally injured glutamate-treated rats using 14 C-labelled tracers. Diminished secretion of growth hormone causes in adipocytes increased glucose intake, amplification of the insulin effect, and fat accumulation. A supersensitivity towards norepinephrine in adipocytes in vitro is due to diminished concentration of this hormone in the tissue. Insulin resistance is developed at the beginning of the stationary phase of obesity in these animals. (author)

  18. Sensitivity to apomorphine-induced yawning and hypothermia in rats eating standard or high-fat chow.

    Science.gov (United States)

    Baladi, Michelle G; Thomas, Yvonne M; France, Charles P

    2012-07-01

    Feeding conditions modify sensitivity to indirect- and direct-acting dopamine receptor agonists as well as the development of sensitization to these drugs. This study examined whether feeding condition affects acute sensitivity to apomorphine-induced yawning or changes in sensitivity that occur over repeated drug administration. Quinpirole-induced yawning was also evaluated to see whether sensitization to apomorphine confers cross-sensitization to quinpirole. Drug-induced yawning was measured in different groups of male Sprague Dawley rats (n = 6/group) eating high (34.3%) fat or standard (5.7% fat) chow. Five weeks of eating high-fat chow rendered otherwise drug-naïve rats more sensitive to apomorphine- (0.01-1.0 mg/kg, i.p.) and quinpirole- (0.0032-0.32 mg/kg, i.p.) induced yawning, compared with rats eating standard chow. In other rats, tested weekly with apomorphine, sensitivity to apomorphine-induced yawning increased (sensitization) similarly in rats with free access to standard or high-fat chow; conditioning to the testing environment appeared to contribute to increased yawning in both groups of rats. Food restriction decreased sensitivity to apomorphine-induced yawning across five weekly tests. Rats with free access to standard or high-fat chow and sensitized to apomorphine were cross-sensitized to quinpirole-induced yawning. The hypothermic effects of apomorphine and quinpirole were not different regardless of drug history or feeding condition. Eating high-fat chow or restricting access to food alters sensitivity to direct-acting dopamine receptor agonists (apomorphine, quinpirole), although the relative contribution of drug history and dietary conditions to sensitivity changes appears to vary among agonists.

  19. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  20. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure and insulin resistance in offspring rats.

    Science.gov (United States)

    Hao, Xue-Qin; Du, Jing-Xia; Li, Yan; Li, Meng; Zhang, Shou-Yan

    2014-01-01

    Adult metabolic syndrome may in part have origins in fetal or early life. This study was designed to explore the effect of prenatal exposure to lipopolysaccharide and high-fat diet on metabolic syndrome in offspring rats. 32 pregnant rats were randomly divided into four groups, including Control group; LPS group (pregnant rats were injected with LPS 0.4 mg/kg intraperitoneally on the 8(th), 10(th) and 12(th) day of pregnancy); High-fat group (maternal rats had high-fat diet during pregnancy and lactation period, and their pups also had high-fat diet up to the third month of life); LPS + High-fat group (rats were exposed to the identical experimental scheme with LPS group and High-fat group). Blood pressure elevated in LPS group and High-fat group, reduced in LPS+High-fat group, accompanied by the increase of serum leptin level in LPS and High-fat group and increase of serum IL-6, TNF-a in High-fat group; both serum insulin and cholesterol increased in High-fat and LPS+High-fat group, as well as insulin in LPS group. HOMA-IR value increased in LPS, High-fat and LPS+High-fat group, and QUICKI decreased in these groups; H-E staining showed morphologically pathological changes in thoracic aorta and liver tissue in the three groups. Increased serum alanine and aspartate aminotransferase suggest impaired liver function in LPS+High-fat group. Prenatal exposure to lipopolysaccharide combined with pre- and postnatal high-fat diet result in lowered blood pressure, insulin resistance and impaired liver function in three-month old offspring rats. The lowered blood pressure might benefit from the predictive adaptive response to prenatal inflammation.

  1. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets.

    Science.gov (United States)

    Lee, Yun Jung; Choi, Deok Ho; Cho, Guk Hyun; Kim, Jin Sook; Kang, Dae Gill; Lee, Ho Sub

    2012-08-06

    Arctium lappa L. (Asteraceae), burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL) seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD). EAL-I (100 mg·kg-1/day), EAL-II (200 mg·kg-1/day), and fluvastatin (3 mg·kg-1/day) groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL) in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh)-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP) and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM)-1, vascular cell adhesion molecule (VCAM)-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP)-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  2. Arctium lappa ameliorates endothelial dysfunction in rats fed with high fat/cholesterol diets

    Directory of Open Access Journals (Sweden)

    Lee Yun

    2012-08-01

    Full Text Available Abstract Background Arctium lappa L. (Asteraceae, burdock, is a medicinal plant that is popularly used for treating hypertension, gout, hepatitis, and other inflammatory disorders. This study was performed to test the effect of ethanol extract of Arctium lappa L. (EAL seeds on vascular reactivity and inflammatory factors in rats fed a high fat/cholesterol diet (HFCD. Method EAL-I (100 mg·kg−1/day, EAL-II (200 mg·kg−1/day, and fluvastatin (3 mg·kg−1/day groups initially received HFCD alone for 8 weeks, with EAL supplementation provided during the final 6 weeks. Results Treatment with low or high doses of EAL markedly attenuated plasma levels of triglycerides and augmented plasma levels of high-density lipoprotein (HDL in HFCD-fed rats. Chronic treatment with EAL markedly reduced impairments of acetylcholine (ACh-induced relaxation of aortic rings. Furthermore, chronic treatment with EAL significantly lowered systolic blood pressure (SBP and maintained smooth and flexible intimal endothelial layers in HFCD-fed rats. Chronic treatment with EAL suppressed upregulation of intercellular adhesion molecule (ICAM-1, vascular cell adhesion molecule (VCAM-1, and E-selectin in the aorta. Chronic treatment with EAL also suppressed increases in matrix metalloproteinase (MMP-2 expression. These results suggested that EAL can inhibit HFCD-induced vascular inflammation in the rat model. Conclusion The present study provides evidence that EAL ameliorates HFCD-induced vascular dysfunction through protection of vascular relaxation and suppression of vascular inflammation.

  3. Effect of Dietary Supplementation by Irradiated Full-Fat Rapeseed on Biochemical Changes in Rats

    International Nuclear Information System (INIS)

    Farga, D. M. H.; El-Shennawy, H. M.; Soliman, N.A.

    2000-01-01

    Supplementation of 230 gk 1 of raw and irradiated full-fat rapeseed at 20 kGy in the food of male albino rats for ten weeks of age, caused significantly lower total plasma protein concentration as compared with those fed control diet, heated seeds and seeds irradiated at 50 and 70 kGy diets. On the other hand, the highest total plasma protein value was obtained from the control group flowed in descending order by heated and seeds irradiated at 70 kGy, and 50 kGy. Plasma albumin decreased significantly in rats fed either raw or rapeseed irradiated at 20 and 50 kGy as compared with rats fed control diet, heated or irradiated rapeseed at 70 kGy diets. The same result was observed with plasma globulin and A/G ratio. Supplementing the diet of rats with raw and irradiated rapeseed at 20 and 50 kGy caused significantly higher plasma transaminases activities (GOT and GPT) as compared with those fed control diet, heated or rapeseed irradiated at 70 kGy. However, rats fed raw and rapeseed irradiated at 20 kGy caused a significant increase in alkaline phosphatase as compared with those fed control diet, heated or irradiated seeds at 50 or 70 kGy diets. Moreover, there was no significant discrepancy between groups fed heated seed and seeds irradiated at 50 or 70 kGy as compared with those fed control diets. Level of plasma creatinine was significantly higher in groups of rats fed row and irradiated seeds at 20 kGy as compared with those fed heat processed and irradiated seeds at 50 kGy and 70 kGy and control diets. The results confirm that the applied radiation doses are insufficient enough to bring a complete detoxification of processed seeds. Increasing the applied radiation doses might be be beneficial in this respect

  4. Effects of discontinuing a high-fat diet on mitochondrial proteins and 6-hydroxydopamine-induced dopamine depletion in rats.

    Science.gov (United States)

    Ma, Delin; Shuler, Jeffrey M; Raider, Kayla D; Rogers, Robert S; Wheatley, Joshua L; Geiger, Paige C; Stanford, John A

    2015-07-10

    Diet-induced obesity can increase the risk for developing age-related neurodegenerative diseases including Parkinson's disease (PD). Increasing evidence suggests that mitochondrial and proteasomal mechanisms are involved in both insulin resistance and PD. The goal of this study was to determine whether diet intervention could influence mitochondrial or proteasomal protein expression and vulnerability to 6-Hydroxydopamine (6-OHDA)-induced nigrostriatal dopamine (DA) depletion in rats' nigrostriatal system. After a 3 month high-fat diet regimen, we switched one group of rats to a low-fat diet for 3 months (HF-LF group), while the other half continued with the high-fat diet (HF group). A chow group was included as a control. Three weeks after unilateral 6-OHDA lesions, HF rats had higher fasting insulin levels and higher Homeostasis model assessment of insulin resistance (HOMA-IR), indicating insulin resistance. HOMA-IR was significantly lower in HF-LF rats than HF rats, indicating that insulin resistance was reversed by switching to a low-fat diet. Compared to the Chow group, the HF group exhibited significantly greater DA depletion in the substantia nigra but not in the striatum. DA depletion did not differ between the HF-LF and HF group. Proteins related to mitochondrial function (such as AMPK, PGC-1α), and to proteasomal function (such as TCF11/Nrf1) were influenced by diet intervention, or by 6-OHDA lesion. Our findings suggest that switching to a low-fat diet reverses the effects of a high-fat diet on systemic insulin resistance, and mitochondrial and proteasomal function in the striatum. Conversely, they suggest that the effects of the high-fat diet on nigrostriatal vulnerability to 6-OHDA-induced DA depletion persist. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The adverse effect of 4-tert-octylphenol on fat metabolism in pregnant rats via regulation of lipogenic proteins.

    Science.gov (United States)

    Kim, Jun; Kang, Eun-Jin; Park, Mee-Na; Kim, Ji-Eun; Kim, Seung-Chul; Jeung, Eui-Bae; Lee, Geun-Shik; Hwang, Dae-Youn; An, Beum-Soo

    2015-07-01

    Alkylphenols such as 4-tert-octylphenol (OP), nonylphenol, and bisphenol A are classified as endocrine-disrupting chemicals (EDCs). Digestion and metabolism of food are controlled by many endocrine factors, including insulin, glucagon, and estrogen. These factors are differentially regulated during pregnancy. The alteration of nutritional intake and fat metabolism may affect the maintenance of pregnancy and supplementation of nutrients to the fetus, and therefore can cause severe metabolic diseases such as ketosis, marasmus and diabetes mellitus in pregnant individuals. In this study, we examined the effects of OP on fat metabolism in pregnant rats. Ethinyl estradiol (EE) was also administered as an estrogenic positive control. In our results, rats treated with OP showed significantly reduced body weights compared to the control group. In addition, histological analysis showed that the amount of fat deposited in adipocytes was reduced by OP treatment. To study the mechanism of action of OP in fat metabolism, we examined the expression levels of fat metabolism-associated genes in rat adipose tissue and liver by real-time PCR. OP and EE negatively regulated the expression of lipogenic enzymes, including FAS (fatty acid synthase), ACC-1 (acetyl-CoA carboxylase-1), and SCD-1 (stearoyl-CoA desaturase-1). The levels of lipogenic enzyme-associated transcription factors such as C/EBP-α (CAAT enhancer binding protein alpha) and SREBP-1c (sterol regulatory element binding protein-1c) were also reduced in both liver and adipose tissue. In summary, these findings suggest that OP has adverse effects on fat metabolism in pregnant rats and inhibits fat deposition via regulating lipogenic genes in the liver and adipose tissue. The altered fat metabolism by OP may affect the nutrition balance during pregnancy and can cause metabolism-related diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Exposure to elevated levels of dietary fat attenuates psychostimulant reward and mesolimbic dopamine turnover in the rat

    OpenAIRE

    Davis, Jon F.; Tracy, Andrea L.; Schurdak, Jennifer D.; Tschöp, Matthias H.; Lipton, Jack W.; Clegg, Deborah J.; Benoit, Stephen C.

    2008-01-01

    Recent studies indicate that decreased central dopamine is associated with diet-induced obesity in humans and in animal models. In the current study, we assessed the hypothesis that diet-induced obesity reduces mesolimbic dopamine function. Specifically, we compared dopamine turnover in this region between rats fed a high-fat diet and those consuming a standard low-fat diet. We also assessed behavioral consequences of diet-induced obesity by testing the response of these animals in a conditio...

  7. Effect of high-fat diet during gestation, lactation, or postweaning on physiological and behavioral indexes in borderline hypertensive rats

    OpenAIRE

    Mitra, Anaya; Alvers, Kristin M.; Crump, Erica M.; Rowland, Neil E.

    2008-01-01

    Maternal obesity is becoming more prevalent. We used borderline hypertensive rats (BHR) to investigate whether a high-fat diet at different stages of development has adverse programming consequences on metabolic parameters and blood pressure. Wistar dams were fed a high- or low-fat diet for 6 wk before mating with spontaneously hypertensive males and during the ensuing pregnancy. At birth, litters were fostered to a dam from the same diet group as during gestation or to the alternate diet con...

  8. Effects of power densities, continuous and pulse frequencies, and number of sessions of low-level laser therapy on intact rat brain.

    Science.gov (United States)

    Ilic, Sanja; Leichliter, Sandra; Streeter, Jackson; Oron, Amir; DeTaboada, Luis; Oron, Uri

    2006-08-01

    The aim of the present study was to investigate the possible short- and long-term adverse neurological effects of low-level laser therapy (LLLT) given at different power densities, frequencies, and modalities on the intact rat brain. LLLT has been shown to modulate biological processes depending on power density, wavelength, and frequency. To date, few well-controlled safety studies on LLLT are available. One hundred and eighteen rats were used in the study. Diode laser (808 nm, wavelength) was used to deliver power densities of 7.5, 75, and 750 mW/cm2 transcranially to the brain cortex of mature rats, in either continuous wave (CW) or pulse (Pu) modes. Multiple doses of 7.5 mW/cm2 were also applied. Standard neurological examination of the rats was performed during the follow-up periods after laser irradiation. Histology was performed at light and electron microscopy levels. Both the scores from standard neurological tests and the histopathological examination indicated that there was no long-term difference between laser-treated and control groups up to 70 days post-treatment. The only rats showing an adverse neurological effect were those in the 750 mW/cm2 (about 100-fold optimal dose), CW mode group. In Pu mode, there was much less heating, and no tissue damage was noted. Long-term safety tests lasting 30 and 70 days at optimal 10x and 100x doses, as well as at multiple doses at the same power densities, indicate that the tested laser energy doses are safe under this treatment regime. Neurological deficits and histopathological damage to 750 mW/cm2 CW laser irradiation are attributed to thermal damage and not due to tissue-photon interactions.

  9. Haloperidol and Rimonabant Increase Delay Discounting in Rats Fed High-Fat and Standard-Chow Diets

    Science.gov (United States)

    Boomhower, Steven R.; Rasmussen, Erin B.

    2016-01-01

    The dopamine and endocannabinoid neurotransmitter systems have been implicated in delay discounting, a measure of impulsive choice, and obesity. The current study was designed to determine the extent to which haloperidol and rimonabant affected delay discounting in rats fed standard-chow and high-fat diets. Sprague-Dawley rats were allowed to free-feed under a high-fat diet (4.73 kcal/g) or a standard-chow diet (3.0 kcal/g) for three months. Then, operant sessions began in which rats (n = 9 standard chow; n = 10 high-fat) chose between one sucrose pellet delivered immediately vs. three sucrose pellets after a series of delays. In another condition, carrot-flavored pellets replaced sucrose pellets. After behavior stabilized, acute injections of rimonabant (0.3-10 mg/kg) and haloperidol (0.003-0.1 mg/kg) were administered i.p. before some choice sessions in both pellet conditions. Haloperidol and rimonabant increased discounting in both groups of rats by decreasing percent choice for the larger reinforcer and area-under-the-curve (AUC) values. Rats in the high-fat diet condition demonstrated increased sensitivity to haloperidol compared to chow-fed controls: haloperidol increased discounting in both dietary groups in the sucrose condition,, but only in the high-fat-fed rats in the carrot-pellet condition. These findings indicate that blocking D2 and CB1 receptors results in increased delay discounting, and that a high-fat diet may alter sensitivity to dopaminergic compounds using the delay-discounting task. PMID:25000488

  10. Protective effect of lycopene on high-fat diet-induced cognitive impairment in rats.

    Science.gov (United States)

    Wang, Zhiqiang; Fan, Jin; Wang, Jian; Li, Yuxia; Xiao, Li; Duan, Dan; Wang, Qingsong

    2016-08-03

    A Western diet, high in saturated fats, has been linked to the development of cognitive impairment. Lycopene has recently received considerable attention for its potent protective properties demonstrated in several models of nervous system dysfunction. However, it remains unclear whether lycopene exerts protective effects on cognition. The present study aimed to investigate the protective effects of lycopene on learning and memory impairment and the potential underlying mechanism in rats fed a high-fat diet (HFD). One-month-old male rats were fed different diets for 16 weeks (n=12 per group), including a standard chow diet (CD), a HFD, or a HFD plus lycopene (4mg/kg, oral gavage in the last three weeks). Behavioral testing, including the Morris water maze (MWM), object recognition task (ORT), and anxiety-like behavior in an open field (OF), were assessed at week 16. The dendritic spine density and neuronal density in the hippocampal CA1 subfield were subsequently measured. The results indicate that HFD consumption for 16 weeks significantly impaired spatial memory (Plycopene significantly attenuated learning and memory impairments and prevented the reduction in dendritic spine density (Plycopene helps to protect HFD induced cognitive dysfunction. Copyright © 2016. Published by Elsevier Ireland Ltd.

  11. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats.

    Science.gov (United States)

    Zhang, Xiao-Juan; Zhou, Li-Hong; Ban, Xiang; Liu, Dian-Xin; Jiang, Wei; Liu, Xiao-Min

    2011-10-01

    Mammals spontaneously prefer lipid rich foods. Overconsumption of high-fat diet leads to obesity and related diseases. Recent findings indicate that taste may participate in the orosensory perception of dietary lipids and the fatty taste may contribute to a preference for and excessive consumption of dietary fat. CD36, a trans-membrane glycoprotein, which is located in the taste buds of circumvallate papillae of rodents, appears to be a plausible receptor for this fatty taste. Obese subjects present a stronger preference for fatty foods, though the mechanisms involved are complex and are not fully investigated. Our data from immunofluorescence and real-time RT-PCR showed that the expression levels of CD36 in circumvallate taste buds were significantly lower in high-fat diet induced obese rats as compared with that of control rats fed a normal diet. These results suggest that decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats may be associated with diminished fatty taste sensitivity and in order to compensate the preference for dietary fat, rats consume more fatty foods. Therapeutic strategies designed to alter or manipulate CD36 expression or function in taste buds may have important implications in treating obesity and related diseases. Copyright © 2010 Elsevier GmbH. All rights reserved.

  12. Is Remodelling of Corticospinal Tract Terminations Originating in the Intact Hemisphere Associated with Recovery following Transient Ischaemic Stroke in the Rat?

    Directory of Open Access Journals (Sweden)

    Emma J Mitchell

    Full Text Available Following large strokes that encompass the cerebral cortex, it has been suggested that the corticospinal tract originating from the non-ischaemic hemisphere reorganises its pattern of terminal arborisation within the spinal cord to compensate for loss of function. However many strokes in humans predominantly affect subcortical structures with minimal involvement of the cerebral cortex. The aim of the present study was to determine whether remodelling of corticospinal terminals arising from the non-ischaemic hemisphere was associated with spontaneous recovery in rats with subcortical infarcts. Rats were subjected to transient middle cerebral artery occlusion or sham surgery and 28 days later, when animals exhibited functional recovery, cholera toxin b subunit was injected into the contralesional, intact forelimb motor cortex in order to anterogradely label terminals within cervical spinal cord segments. Infarcts were limited to subcortical structures and resulted in partial loss of corticospinal tract axons from the ischaemic hemisphere. Quantitative analysis revealed there was no significant difference in the numbers of terminals on the contralesional side of the spinal grey matter between ischaemic and sham rats. The results indicate that significant remodelling of the corticospinal tract from the non-ischaemic hemisphere is not associated with functional recovery in animals with subcortical infarcts.

  13. [State of homeostasis under administration of bear fat in rats with exogenous and endogenous thrombinemia].

    Science.gov (United States)

    Kalashnikova, S P; Solovyov, V G

    2016-01-01

    In experimental studies on 448 rats treated with bear fat diet (0.08 ml/100 g body weight), the nature and mechanisms of influence of this additive on the process of blood coagulation in experimental thromboplastinemia of different origin has been studied. As a result of intravenous injection in the jugular vein of a suspension of thrombin (exog­enous thrombinemia) all clothingsee tests lengthened in the control animals (pbear fat, but the potential of hemostatic cascade and anticoagulation system remained high (judging by the tests PTV, thrombin time and content of antithrombin III). Under endogenous thromboplastinemia caused by combined stress (hypothermia + physi­cal activity) in animals of the control group on the background of the shortening of the APTT (by 24.9%) and PTV (16.8%), RCMP concentration increased by 52% and activity of antithrombin III increased compensatory. There was an increase of platelet count, due to the activated forms. To 3 h signs of hypocoagulation aggravated even more. In animals treated with bear fat, the results of clothing tests did not differ from the original figures, and by 3 h, the majority of the indicators have reached their original values. The increase in platelet count has not been observed.

  14. INFLUENCE OF GINGER ON SOME BIOCHEMICAL CHANGES INDUCED BY DIAZINON PESTICIDE OR FAT IN MALE RATS

    International Nuclear Information System (INIS)

    AFIFI, E.A.A.

    2009-01-01

    The present investigation was carried out to evaluate the effect of ginger extract (100 mg/kg b.wt) for five weeks on some biochemical changes induced in rats administered daily oral dose of organophosphorus pesticide diazinon at the level of 40 mg/kg b.wt for five weeks and/or high fat (butter oil) at the dose level 16 ml/kg b.wt for five weeks.The data showed that the pesticide and high fat caused disturbance in liver function and significant decrease in deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and levels of total protein. Moreover, these changes were associated with disturbances in the carbohydrate metabolism in liver through the significant increase in liver glycogen, lactate and bilirubin levels, with significant decrease in serum glucose levels. Also, disturbance in liver lipid metabolism was occurred through significant increase in serum triglycerides, total cholesterol, LDL-cholesterol and significant decrease in HDL-cholesterol. Moreover, a significant decrease in serum testosterone level was also observed.The results showed that extended administration of ginger extract during diazinon pesticide and/or high fat treatment minimized the disturbance and injury induced in liver function and testis.

  15. Alternate-Day High-Fat Diet Induces an Increase in Mitochondrial Enzyme Activities and Protein Content in Rat Skeletal Muscle.

    Science.gov (United States)

    Li, Xi; Higashida, Kazuhiko; Kawamura, Takuji; Higuchi, Mitsuru

    2016-04-06

    Long-term high-fat diet increases muscle mitochondrial enzyme activity and endurance performance. However, excessive calorie intake causes intra-abdominal fat accumulation and metabolic syndrome. The purpose of this study was to investigate the effect of an alternating day high-fat diet on muscle mitochondrial enzyme activities, protein content, and intra-abdominal fat mass in rats. Male Wistar rats were given a standard chow diet (CON), high-fat diet (HFD), or alternate-day high-fat diet (ALT) for 4 weeks. Rats in the ALT group were fed a high-fat diet and standard chow every other day for 4 weeks. After the dietary intervention, mitochondrial enzyme activities and protein content in skeletal muscle were measured. Although body weight did not differ among groups, the epididymal fat mass in the HFD group was higher than those of the CON and ALT groups. Citrate synthase and beta-hydroxyacyl CoA dehydrogenase activities in the plantaris muscle of rats in HFD and ALT were significantly higher than that in CON rats, whereas there was no difference between HFD and ALT groups. No significant difference was observed in muscle glycogen concentration or glucose transporter-4 protein content among the three groups. These results suggest that an alternate-day high-fat diet induces increases in mitochondrial enzyme activities and protein content in rat skeletal muscle without intra-abdominal fat accumulation.

  16. Induction of ketosis in rats fed low-carbohydrate, high-fat diets depends on the relative abundance of dietary fat and protein.

    Science.gov (United States)

    Bielohuby, Maximilian; Menhofer, Dominik; Kirchner, Henriette; Stoehr, Barbara J M; Müller, Timo D; Stock, Peggy; Hempel, Madlen; Stemmer, Kerstin; Pfluger, Paul T; Kienzle, Ellen; Christ, Bruno; Tschöp, Matthias H; Bidlingmaier, Martin

    2011-01-01

    Low-carbohydrate/high-fat diets (LC-HFDs) in rodent models have been implicated with both weight loss and as a therapeutic approach to treat neurological diseases. LC-HFDs are known to induce ketosis; however, systematic studies analyzing the impact of the macronutrient composition on ketosis induction and weight loss success are lacking. Male Wistar rats were pair-fed for 4 wk either a standard chow diet or one of three different LC-HFDs, which only differed in the relative abundance of fat and protein (percentages of fat/protein in dry matter: LC-75/10; LC-65/20; LC-55/30). We subsequently measured body composition by nuclear magnetic resonance (NMR), analyzed blood chemistry and urine acetone content, evaluated gene expression changes of key ketogenic and gluconeogenic genes, and measured energy expenditure (EE) and locomotor activity (LA) during the first 4 days and after 3 wk on the respective diets. Compared with chow, rats fed with LC-75/10, LC-65/20, and LC-55/30 gained significantly less body weight. Reductions in body weight were mainly due to lower lean body mass and paralleled by significantly increased fat mass. Levels of β-hydroxybutyate were significantly elevated feeding LC-75/10 and LC-65/20 but decreased in parallel to reductions in dietary fat. Acetone was about 16-fold higher with LC-75/10 only (P ketosis. LC-HFDs must be high in fat, but also low in protein contents to be clearly ketogenic. Independent of the macronutrient composition, LC-HFD-induced weight loss is not due to increased EE and LA.

  17. Eating high-fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-10-01

    Discriminative stimulus effects of direct acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high-fat chow increases sensitivity to quinpirole-induced yawning, and this study examined whether eating high-fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high-fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose-response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free-feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high-fat chow is likely because of enhanced sensitivity at D3 receptors. Thus, eating high-fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse.

  18. Eating high fat chow increases the sensitivity of rats to quinpirole-induced discriminative stimulus effects and yawning

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2010-01-01

    Discriminative stimulus effects of directly-acting dopamine receptor agonists (e.g. quinpirole) appear to be mediated by D3 receptors in free-feeding rats. Free access to high fat chow increases sensitivity to quinpirole-induced yawning and the current study examined whether eating high fat chow increases sensitivity to the discriminative stimulus effects of quinpirole. Five rats discriminated between 0.032 mg/kg quinpirole and vehicle while responding under a continuous reinforcement schedule of stimulus shock termination. When rats had free access to high fat chow (discrimination training was suspended), the quinpirole discrimination dose-response curve shifted leftward, possibly indicating enhanced sensitivity at D3 receptors. In the same rats, both the ascending (mediated by D3 receptors) and descending (mediated by D2 receptors) limbs of the dose- response curve for quinpirole-induced yawning shifted leftward. When rats had free access to a standard chow (discrimination training was suspended), the quinpirole discrimination and yawning dose-response curves did not change. Together with published data showing that the discriminative stimulus effects of quinpirole in free- feeding rats are mediated by D3 receptors and the insensitivity of this effect of quinpirole to food restriction (shown to increase sensitivity to D2 but not D3-mediated effects), these results suggest that the leftward shift of the discrimination dose-response curve when rats eat high fat chow is likely due to enhanced sensitivity at D3 receptors. Thus, eating high fat food enhances drug effects in a manner that might impact clinical effects of drugs or vulnerability to drug abuse. PMID:20729718

  19. Metabolism of branched-chain amino acids in leg muscles from tail-cast suspended intact and adrenalectomized rats

    Science.gov (United States)

    Jaspers, Stephen R.; Henriksen, Erik; Jacob, Stephan; Tischler, Marc E.

    1989-01-01

    The effects of muscle unloading, adrenalectomy, and cortisol treatment on the metabolism of branched-chain amino acids in the soleus and extensor digitorum longus of tail-cast suspended rats were investigated using C-14-labeled lucine, isoleucine, and valine in incubation studies. It was found that, compared to not suspended controls, the degradation of branched-chain amino acids in hind limb muscles was accelerated in tail-cast suspended rats. Adrenalectomy was found to abolish the aminotransferase flux and to diminish the dehydrogenase flux in the soleus. The data also suggest that cortisol treatment increases the rate of metabolism of branched-chain amino acids at the dehydrogenase step.

  20. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  1. Impact of dietary oils and fats on lipid peroxidation in liver and blood of albino rats

    Science.gov (United States)

    Haggag, Mohammad El-Sayed Yassin El-Sayed; Elsanhoty, Rafaat Mohamed; Ramadan, Mohamed Fawzy

    2014-01-01

    Objective To investigate the effects of different dietary fat and oils (differing in their degree of saturation and unsaturation) on lipid peroxidation in liver and blood of rats. Methods The study was conducted on 50 albino rats that were randomly divided into 5 groups of 10 animals. The groups were fed on dietary butter (Group I), margarine (Group II), olive oil (Group III), sunflower oil (Group IV) and corn oil (Group V) for 7 weeks. After 12 h of diet removal, livers were excised and blood was collected to measure malondialdehyde (MDA) levels in the supernatant of liver homogenate and in blood. Blood superoxide dismutase activity (SOD), glutathione peroxidase activity (GPx), serum vitamin E and total antioxidant capacity (TAC) levels were also measured to determine the effects of fats and oils on lipid peroxidation. Results The results indicated that no significant differences were observed in SOD activity, vitamin E and TAC levels between the five groups. However, there was significant decrease of GPx activity in groups IV and V when compared with other groups. The results indicated that feeding corn oil caused significant increases in liver and blood MDA levels as compared with other oils and fats. There were positive correlations between SOD and GPx, vitamin E and TAC as well as between GPx and TAC (r: 0.743; P<0.001) and between blood MDA and liver MDA (r: 0.897; P<0.001). The results showed also negative correlations between blood MDA on one hand and SOD, GPx, vitamin E and TAC on the other hand. Conclusions The results demonstrated that feeding oils rich in polyunsaturated fatty acids (PUFA) increases lipid peroxidation significantly and may raise the susceptibility of tissues to free radical oxidative damage. PMID:24144131

  2. Chronic CNS oxytocin signaling preferentially induces fat loss in high-fat diet-fed rats by enhancing satiety responses and increasing lipid utilization.

    Science.gov (United States)

    Blevins, James E; Thompson, Benjamin W; Anekonda, Vishwanath T; Ho, Jacqueline M; Graham, James L; Roberts, Zachary S; Hwang, Bang H; Ogimoto, Kayoko; Wolden-Hanson, Tami; Nelson, Jarrell; Kaiyala, Karl J; Havel, Peter J; Bales, Karen L; Morton, Gregory J; Schwartz, Michael W; Baskin, Denis G

    2016-04-01

    Based largely on a number of short-term administration studies, growing evidence suggests that central oxytocin is important in the regulation of energy balance. The goal of the current work is to determine whether long-term third ventricular (3V) infusion of oxytocin into the central nervous system (CNS) is effective for obesity prevention and/or treatment in rat models. We found that chronic 3V oxytocin infusion between 21 and 26 days by osmotic minipumps both reduced weight gain associated with the progression of high-fat diet (HFD)-induced obesity and elicited a sustained reduction of fat mass with no decrease of lean mass in rats with established diet-induced obesity. We further demonstrated that these chronic oxytocin effects result from 1) maintenance of energy expenditure at preintervention levels despite ongoing weight loss, 2) a reduction in respiratory quotient, consistent with increased fat oxidation, and 3) an enhanced satiety response to cholecystokinin-8 and associated decrease of meal size. These weight-reducing effects persisted for approximately 10 days after termination of 3V oxytocin administration and occurred independently of whether sucrose was added to the HFD. We conclude that long-term 3V administration of oxytocin to rats can both prevent and treat diet-induced obesity.

  3. Gastric emptying in rats following administration of a range of different fats measured as acetaminophen concentration in plasma

    DEFF Research Database (Denmark)

    Porsgaard, Trine; Straarup, Ellen Marie; Høy, Carl-Erik

    2003-01-01

    an indirect measure of gastric emptying. Emulsified fats with added acetaminophen were fed by gavage to rats, and the plasma concentration of acetaminophen was followed for 3 h by repeated blood sampling from the carotid artery. The fats administered included rapeseed, corn, and fish oils, lard, and cocoa...... in gastric emptying between the groups fed the different fats, except for the emptying of tridecanoin (tri-10:0) that was statistically significantly slower than that of randomized oil, cocoa butter, and rapeseed oil (p

  4. High fat diet and inflammation - modulation of Haptoglobin level in rat brain

    Directory of Open Access Journals (Sweden)

    Maria Stefania eSpagnuolo

    2015-12-01

    Full Text Available Obesity and dietary fats are well known risk factors for the pathogenesis of neurodegenerative diseases. The analysis of specific markers, whose brain level can be affected by diet, might contribute to unveil the intersection between inflammation/obesity and neurodegeneration. Haptoglobin (Hpt is an acute phase protein, which acts as antioxidant by binding free Haemoglobin (Hb, thus neutralizing its pro-oxidative action. We previously demonstrated that Hpt plays critical functions in brain, modulating cholesterol trafficking in neuroblastoma cell lines, beta-amyloid (Aβ uptake by astrocyte, and limiting Aβ toxicity on these cells. A major aim of this study was to evaluate whether a long term (12 or 24 weeks high-fat diet (HFD influences Hpt and Hb expression in rat hippocampus. We also assessed the development of obesity-induced inflammation by measuring hippocampal level of TNF-alpha, and the extent of protein oxidation by titrating nitro-tyrosine (N-Tyr. Hpt concentration was lower (p<0.001 in hippocampus of HFD rats than in control animals, both in the 12 and in the 24 weeks fed groups. HFD was also associated in hippocampus with the increase of Hb level (p<0.01, inflammation and protein oxidative modification, as evidenced by the increase in the concentration of TNF-alpha and nitro-tyrosine. In fact, TNF-alpha concentration was higher in rats receiving HFD for 12 (p<0.01 or 24 weeks (p<0.001 compared to those receiving the control diet. N-Tyr concentration was more elevated in hippocampus of HFD than in control rats in both 12 weeks (p=0.04 and 24 weeks groups (p=0.01, and a positive correlation between Hb and N-Tyr concentration was found in each group. Finally, we found that the treatment of the human glioblastoma-astrocytoma cell line U-87 MG with cholesterol and fatty acids, such as palmitic and linoleic acid, significantly impairs (p<0.001 Hpt secretion in the extracellular compartment.We hypothesize that the HFD-dependent decrease of

  5. [Effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats].

    Science.gov (United States)

    Yu, Tao; Liu, Rui; Li, Mao; Li, Xian; Qiang, Ou; Huang, Wei; Tang, Chengwei

    2014-03-01

    To investigate effects of octreotide on fatty infiltration of the pancreas in high-fat diet induced obesity rats. SD rats were divided into control group (n = 14) and high-fat diet group (n = 36). Obese rats from the high-fat diet group were further divided into 2 groups: the obese group (n = 14) and the octreotide-treated group (n = 16). Rats in the octreotide-treated group were subcutaneously injected with octreotide per 12 h (40 mg/kg BW) for 8 days. Body weight, fasting plasma glucose (FPG), fasting serum insulin, triglyceride (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) levels, pancreatic TG and FFA content were measured. Homeostatic model assessment (HOMA) index was calculated. Somatostatin (SST) and the expression of adipose differentiation-related protein (ADFP) in pancrea were measured. Pathological changes of pancreas were examined with light microscopy. Body weight, Lee's index, FPG, fasting serum insulin, TG, TC levels and HOMA index in the obese group were higher than those in the control group (P pancreas, and lowering the levels of plasma glucose and lipid in the high-fat diet induced obesity rats.

  6. Soluble Fermentable Dietary Fibre (Pectin) Decreases Caloric Intake, Adiposity and Lipidaemia in High-Fat Diet-Induced Obese Rats

    Science.gov (United States)

    Adam, Clare L.; Thomson, Lynn M.; Williams, Patricia A.; Ross, Alexander W.

    2015-01-01

    Consumption of a high fat diet promotes obesity and poor metabolic health, both of which may be improved by decreasing caloric intake. Satiety-inducing ingredients such as dietary fibre may be beneficial and this study investigates in diet-induced obese (DIO) rats the effects of high or low fat diet with or without soluble fermentable fibre (pectin). In two independently replicated experiments, young adult male DIO rats that had been reared on high fat diet (HF; 45% energy from fat) were given HF, low fat diet (LF; 10% energy from fat), HF with 10% w/w pectin (HF+P), or LF with 10% w/w pectin (LF+P) ad libitum for 4 weeks (n = 8/group/experiment). Food intake, body weight, body composition (by magnetic resonance imaging), plasma hormones, and plasma and liver lipid concentrations were measured. Caloric intake and body weight gain were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Body fat mass increased in HF, was maintained in LF, but decreased significantly in LF+P and HF+P groups. Final plasma leptin, insulin, total cholesterol and triglycerides were lower, and plasma satiety hormone PYY concentrations were higher, in LF+P and HF+P than in LF and HF groups, respectively. Total fat and triglyceride concentrations in liver were greatest in HF, lower in LF and HF+P, and lowest in the LF+P group. Therefore, the inclusion of soluble fibre in a high fat (or low fat) diet promoted increased satiety and decreased caloric intake, weight gain, adiposity, lipidaemia, leptinaemia and insulinaemia. These data support the potential of fermentable dietary fibre for weight loss and improving metabolic health in obesity. PMID:26447990

  7. Maternal high-fat diet intensifies the metabolic response to stress in male rat offspring.

    Science.gov (United States)

    Karbaschi, Roxana; Zardooz, Homeira; Khodagholi, Fariba; Dargahi, Leila; Salimi, Mina; Rashidi, FatemehSadat

    2017-01-01

    The mother's consumption of high-fat food can affect glucose metabolism and the hypothalamic-pituitary-adrenal axis responsiveness in the offspring and potentially affect the metabolic responses to stress as well. This study examines the effect of maternal high-fat diet on the expression of pancreatic glucose transporter 2 and the secretion of insulin in response to stress in offspring. Female rats were randomly divided into normal and high-fat diet groups and were fed in accordance with their given diets from pre-pregnancy to the end of lactation. The offspring were divided into control (NC and HFC) and stress (NS and HFS) groups based on their mothers' diet and exposure to stress in adulthood. After the two-week stress induction period was over, an intraperitoneal glucose tolerance test (IPGTT) was performed and plasma glucose and insulin levels were assessed. The pancreas was then removed for measuring insulin secretion from the isolated islets as well as glucose transporter 2 mRNA expression and protein levels. According to the results obtained, plasma corticosterone concentrations increased significantly on days 1 and 14 of the stress induction period and were lower on the last day compared to on the first day. In both the NS and HFS groups, stress reduced plasma insulin concentration in the IPGTT without changing the plasma glucose concentration, suggesting an increased insulin sensitivity in the NS and HFS groups, although more markedly in the latter. Stress reduced insulin secretion (at high glucose concentrations) and increased glucose transporter 2 mRNA and protein expression, especially in the HFS group. Mothers' high-fat diet appears to intensify the stress response by changing the programming of the neuroendocrine system in the offspring.

  8. N-Acetylneuraminic acid attenuates hypercoagulation on high fat diet-induced hyperlipidemic rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-12-01

    Full Text Available Background and objective: N-Acetylneuraminic acid (Neu5Ac, a type of sialic acid, has close links with cholesterol metabolism and is often used as a biomarker in evaluating the risk of cardiovascular diseases. However, most studies on the health implications of Neu5Ac have focused on its effects on the nervous system, while its effects on cardiovascular risk factors have largely been unreported. Thus, the effects of Neu5Ac on coagulation status in high fat diet (HFD-induced hyperlipidemic rats were evaluated in this study. Methods: Sprague Dawley male rats were divided into five different groups and fed with HFD alone, HFD low-dose Neu5Ac, HFD high-dose Neu5Ac, HFD simvastatin (10 mg/kg day, and normal pellet alone. Food was given ad libitum while body weight of rats was measured weekly. After 12 weeks of intervention, rats were sacrificed and serum and tissue samples were collected for biochemistry and gene expression analysis, respectively. Results: The results showed that Neu5Ac could improve lipid metabolism and hyperlipidemia-associated coagulation. Neu5Ac exerted comparable or sometimes better physiological effects than simvastatin, at biochemical and gene expression levels. Conclusions: The data indicated that Neu5Ac prevented HFD-induced hyperlipidemia and associated hypercoagulation in rats through regulation of lipid-related and coagulation-related genes and, by extension, induced metabolite and protein changes. The implications of the present findings are that Neu5Ac may be used to prevent coagulation-related cardiovascular events in hyperlipidemic conditions. These findings are worth studying further.

  9. Functional Comparison for Lipid Metabolism and Intestinal and Fecal Microflora Enzyme Activities between Low Molecular Weight Chitosan and Chitosan Oligosaccharide in High-Fat-Diet-Fed Rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Feng, Shih-An; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-07-24

    The present study investigated and compared the regulatory effects on the lipid-related metabolism and intestinal disaccharidase/fecal bacterial enzyme activities between low molecular weight chitosan and chitosan oligosaccharide in high-fat-diet-fed rats. Diet supplementation of low molecular weight chitosan showed greater efficiency than chitosan oligosaccharide in suppressing the increased weights in body and in liver and adipose tissues of high-fat-diet-fed rats. Supplementation of low molecular weight chitosan also showed a greater improvement than chitosan oligosaccharide in imbalance of plasma, hepatic, and fecal lipid profiles, and intestinal disaccharidase activities in high-fat-diet-fed rats. Moreover, both low molecular weight chitosan and chitosan oligosaccharide significantly decreased the fecal microflora mucinase and β-glucuronidase activities in high-fat-diet-fed rats. These results suggest that low molecular weight chitosan exerts a greater positive improvement than chitosan oligosaccharide in lipid metabolism and intestinal disaccharidase activity in high-fat-diet-induced obese rats.

  10. High dietary protein decreases fat deposition induced by high-fat and high-sucrose diet in rats

    NARCIS (Netherlands)

    Chaumontet, C.; Even, P.C.; Schwarz, Jessica; Simonin-Foucault, A.; Piedcoq, J.; Fromentin, G.; Tomé, D.; Azzout-Marniche, D.

    2015-01-01

    High-protein diets are known to reduce adiposity in the context of high carbohydrate and Western diets. However, few studies have investigated the specific high-protein effect on lipogenesis induced by a high-sucrose (HS) diet or fat deposition induced by high-fat feeding. We aimed to determine the

  11. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats.

    Science.gov (United States)

    Maithilikarpagaselvi, Nachimuthu; Sridhar, Magadi Gopalakrishna; Swaminathan, Rathinam Palamalai; Sripradha, Ramalingam

    2016-06-01

    The present study investigated the beneficial effects of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed male Wistar rats. Five-month-old male Wistar rats (n=20) were divided into two groups (10 rats in each group). Among the two groups, one group received 30 % high-fat diet (HFD) and another group received 30 % HFD with curcumin (200 mg/kg body weight). Food intake, body weight and biochemical parameters were measured at the beginning and at the end of the study. After 10 weeks, oxidative stress parameters in skeletal muscle and hepatic triacylglycerol (TAG) content were estimated. Histological examinations of the liver samples were performed at the end of the experiment. High-fat feeding caused increase in body weight, liver and adipose tissue mass. Rats fed with HFD showed increased levels of fasting plasma glucose, insulin, Homeostasis Model Assessment for Insulin resistance (HOMA-IR), total cholesterol (TC), TAG, very low density lipoprotein cholesterol (VLDL-c) and decreased high-density lipoprotein cholesterol (HDL-c). There was also increase in the plasma inflammatory markers [tumor necrosis factor-α (TNF-α), C-reactive protein (CRP)] and skeletal muscle oxidative stress parameters [malondialdehyde (MDA), total oxidant status (TOS)] in these rats. In addition, high-fat feeding increased liver TAG content and caused fat accumulation in the liver. Treatment with curcumin significantly reduced body weight, relative organ weights (liver, adipose tissue), glucose, insulin and HOMA-IR. Curcumin supplementation decreased plasma levels of TC, TAG, VLDL-c, TNF-α and increased HDL-c. Administration of curcumin also reduced MDA, TOS in skeletal muscle, hepatic TAG content and liver fat deposition. Curcumin supplementation improved HFD-induced dyslipidemia, oxidative stress, inflammation and insulin resistance.

  12. Bromocriptine increased operant responding for high fat food but decreased chow intake in both obesity-prone and resistant rats

    Energy Technology Data Exchange (ETDEWEB)

    Thanos, P.K.; Wang, G.; Thanos, P.K.; Cho, J. Kim, R.; Michaelides, M.; Primeaux, S.; Bray, G.; Wang, G.-J.; Volkow, N.D.

    2010-10-27

    Dopamine (DA) and DAD{sub 2} receptors (D2R) have been implicated in obesity and are thought to be involved in the rewarding properties of food. Osborne-Mendel (OM) rats are susceptible to diet induced obesity (DIO) while S5B/P (S5B) rats are resistant when given a high-fat diet. Here we hypothesized that the two strains would differ in high-fat food self-administration (FSA) and that the D2R agonist bromocriptine (BC) would differently affect their behavior. Ad-libitum fed OM and S5B/P rats were tested in a FSA operant chamber and were trained to lever press for high-fat food pellets under a fixed-ratio (FR1) and a progressive ratio (PR) schedule. After sixteen days of PR sessions, rats were treated with three different doses of BC (1, 10 and 20 mg/kg). No significant differences were found between the two strains in the number of active lever presses. BC treatment (10 mg/kg and 20 mg/kg) increased the number of active lever presses (10 mg/kg having the strongest effect) whereas it decreased rat chow intake in the home cage with equivalent effects in both strains. These effects were not observed on the day of BC administration but on the day following its administration. Our results suggest that these two strains have similar motivation for procuring high fat food using this paradigm. BC increased operant responding for high-fat pellets but decreased chow intake in both strains, suggesting that D2R stimulation may have enhanced the motivational drive to procure the fatty food while correspondingly decreasing the intake of regular food. These findings suggest that susceptibility to dietary obesity (prior to the onset of obesity) may not affect operant motivation for a palatable high fat food and that differential susceptibility to obesity may be related to differential sensitivity to D2R stimulation.

  13. Uptake and clearance of plutonium-238 from liver cells transplanted into fat pads of F344 rats

    International Nuclear Information System (INIS)

    Brooks, A.L.; Guilmette, R.A.; Hahn, F.F.

    1986-01-01

    Animals injected with liver cells and control animals received a single intraperitoneal injection of 37 kBq (1 μCi) 238 Pu citrate and were serially sacrificed. It was observed that the cells of the intact liver took up about twice as much 238 Pu as liver cells transplanted into the fat pads of the same animal. The retention half-life was 8.3 days for the total activity in the liver, 20 days using tracks/cell measurements in the liver and 16 days for the tracks/cell measurements in the liver cells translocated to fat pads. When the data on tracks/cell were standardized relative to the amount of Pu present at 5 days after injection, there was no significant difference between the retention of Pu in liver cells from intact animals and liver cells transplanted into the fat pads. About 20% of the 5-day Pu liver burden in both liver cells and liver cells transplanted into fat pads was retained at 70 days. The smaller retention and clearance for liver cells in different environments indicate that uptake and clearance of Pu from the body is dependent, to a major extent, upon hepatocyte function. (author)

  14. Antidiabetic and antihiperlipidemic effect of Andrographis paniculata (Burm. f.) Nees and andrographolide in high-fructose-fat-fed rats

    Science.gov (United States)

    Nugroho, Agung Endro; Andrie, Mohamad; Warditiani, Ni Kadek; Siswanto, Eka; Pramono, Suwidjiyo; Lukitaningsih, Endang

    2012-01-01

    Objectives: Andrographis paniculata (Burm. f.) Nees originates from India and grows widely in many areas in Southeast Asian countries. Andrographis paniculata (Burm. f.) Nees has shown an antidiabetic effect in type 1 DM rats. The present study investigates the purified extract of the plant and its active compound andrographolide for antidiabetic and antihyperlipidemic effects in high-fructose-fat-fed rats, a model of type 2 DM rats. Materials and Methods: Hyperglycemia in rats was induced by high-fructose-fat diet containing 36% fructose, 15% lard, and 5% egg yolks in 0.36 g/200 gb.wt. 55 days. The rats were treated with the extract or test compound on the 50th day. Antidiabetic activity was measured by estimating mainly the pre– and postprandial blood glucose levels and other parameters such as cholesterol, LDL, triglyceride, and body weight. Results: The purified extract and andrographolide significantly (PAndrographis paniculata (Burm. f.) Nees or its active compound andrographolide showed hypoglycemic and hypolipidemic effects in high-fat-fructose-fed rat. PMID:22701250

  15. Isocaloric intake of a high-fat diet modifies adiposity and lipid handling in a sex dependent manner in rats

    Directory of Open Access Journals (Sweden)

    Lladó Isabel

    2011-04-01

    Full Text Available Abstract Background High-fat (HF diet feeding usually leads to hyperphagia and body weight gain, but macronutrient proportions in the diet can modulate energy intake and fat deposition. The mechanisms of fat accumulation and mobilization may differ significantly between depots, and gender can also influence these differences. Aim To investigate, in rats of both sexes, the effect of an isocaloric intake of a diet with an unbalanced proportion of macronutrients on fatty acid composition of visceral and subcutaneous adipose tissues and how this is influenced by both dietary fatty acids and levels of proteins involved in tissue lipid handling. Methods Eight-week-old Wistar rats of both sexes were fed a control diet (3% w/w fat or high-fat diet (30% w/w fat for 14 weeks. Fatty acid composition was analyzed by gas-chromatography and levels of LPL, HSL, α2-AR, β3-AR, PKA and CPT1 were determined by Western blot. Results The HF diet did not induce hyperphagia or body weight gain, but promoted an increase of adiposity index only in male rats. HF diet produced an increase of the proportion of MUFA and a decrease in that of PUFA in both adipose depots and in both sexes. The levels of proteins involved in the adrenergic control of the lipolytic pathway increased in the gonadal fat of HF females, whereas LPL levels increased in the inguinal fat of HF males and decreased in that of females. Conclusion Sexual dimorphism in adiposity index reflects a differential sex response to dietary fatty acid content and could be related to the levels of the proteins involved in tissue lipid management.

  16. Edible Bird’s Nest Prevents High Fat Diet-Induced Insulin Resistance in Rats

    Directory of Open Access Journals (Sweden)

    Zhang Yida

    2015-01-01

    Full Text Available Edible bird’s nest (EBN is used traditionally in many parts of Asia to improve wellbeing, but there are limited studies on its efficacy. We explored the potential use of EBN for prevention of high fat diet- (HFD- induced insulin resistance in rats. HFD was given to rats with or without simvastatin or EBN for 12 weeks. During the intervention period, weight measurements were recorded weekly. Blood samples were collected at the end of the intervention and oral glucose tolerance test conducted, after which the rats were sacrificed and their liver and adipose tissues collected for further studies. Serum adiponectin, leptin, F2-isoprostane, insulin, and lipid profile were estimated, and homeostatic model assessment of insulin resistance computed. Effects of the different interventions on transcriptional regulation of insulin signaling genes were also evaluated. The results showed that HFD worsened metabolic indices and induced insulin resistance partly through transcriptional regulation of the insulin signaling genes. Additionally, simvastatin was able to prevent hypercholesterolemia but promoted insulin resistance similar to HFD. EBN, on the other hand, prevented the worsening of metabolic indices and transcriptional changes in insulin signaling genes due to HFD. The results suggest that EBN may be used as functional food to prevent insulin resistance.

  17. Effect of Different Vegetable Fats on Lipid Profile and Risk of Atherosclerosis in Rats

    International Nuclear Information System (INIS)

    Ainuson, Joana Koma

    2013-07-01

    Atherosclerotic vascular diseases (AVDs) are presently increasing rapidly in incidence and have become key contributors to the burden of disease in most developing countries like Ghana. The condition has been projected to more than double by 2025. The type and amount of dietary fat has been associated with several disorders including AVDs and it complications. Diet, as one of the most important modifiable risk factors of Coronary Heart Disease (CHD) modulates the other known risk factors. Excessive intake of dietary saturated fat and cholesterol has been found to increase serum cholesterol, thus leading to a high risk of cardiovascular diseases. Saturated fats, both of animal and vegetable or plant origin, have been discredited. This study was carried out to investigate the effect of vegetable fats including olive oil (OO), red palm oil (RdPO) and refined palm oil or palm olein (RfPO) on lipid profile and risk of Atherosclerosis in rat model. Three months old male Sprague-Dawley (S-D) rats (n=56) were divided into four groups: control, olive, red palm and refined palm oil groups (n=14 per group) received water and feed ad libitum. The controls were fed the standard rat chow whilst the treatment (oil) groups received diet enriched with extra 6% by weight of the corresponding oil. During the 16 weeks of dietary intervention, 7 rats were randomly selected from each group and sacrificed at two months intervals, and blood samples collected for biochemical analysis. Plasma lipid profile comprising of Total Cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), Apolipoprotein-A1 (Apo-A1), and Apolipoprotein-B100 (Apo-B100) were determined at baseline and at the end of every two months by the enzymatic technique using the Enzyme-Linked Immuno Sorbant Assay (ELISA). Pro-inflammatory markers including Interleukin-2 (IL-2), Interleukin-6 (IL-6), Tumor Necrosis Factor Alpha (TNF-α) and Total Antioxidant Status (TAS) were also determined by the ELISA method at baseline

  18. Inhibition of serum cholesterol oxidation by dietary vitamin C and selenium intake in high fat fed rats.

    Science.gov (United States)

    Menéndez-Carreño, M; Ansorena, D; Milagro, F I; Campión, J; Martínez, J A; Astiasarán, I

    2008-04-01

    Cholesterol oxidation products (COPs) have been considered as specific in vivo markers of oxidative stress. In this study, an increased oxidative status was induced in Wistar rats by feeding them a high-fat diet (cafeteria diet). Another group of animals received the same diet supplemented with a combination of two different antioxidants, ascorbic acid (100 mg/kg rat/day) and sodium selenite (200 microg/kg rat/day) and a third group fed on a control diet. Total and individual COPs analysis of the different diets showed no differences among them. At the end of the experimental trial, rats were sacrificed and serum cholesterol, triglycerides and COPs were measured. None of the diets induced changes in rats body weight, total cholesterol and triglycerides levels. Serum total COPs in rats fed on the high-fat diet were 1.01 microg/ml, two times the amount of the control rats (0.47 microg/ml). When dietary antioxidant supplementation was given, serum total COPs concentration (0.44 microg/ml) showed the same levels than those of the rats on control diet. 7beta-hydroxycholesterol, formed non-enzymatically via cholesterol peroxidation in the presence of reactive oxygen species, showed slightly lower values in the antioxidant-supplemented animals compared to the control ones. This study confirms the importance of dietary antioxidants as protective factors against the formation of oxysterols.

  19. MRI allows for longitudinal quantitative analysis of body fat composition in rats: an analysis of sibutramine-associated changes at the group level.

    Science.gov (United States)

    Müller, Hans-Peter; Niessen, Heiko G; Kaulisch, Thomas; Ludolph, Albert C; Kassubek, Jan; Stiller, Detlef

    2013-09-01

    Body fat distribution changes are associated with multiple alterations in metabolism. Therefore, the assessment of body fat compartments by MRI in animal models is a promising approach to obesity research. Standard T1-weighted (T1w) whole body MRI was used here to quantify different effects in the subcutaneous and visceral fat compartments in rats under treatment with an anorexiant. Twenty rats on a high caloric diet were investigated by the identical MRI protocol at baseline and after seven weeks. Ten rats received a treatment with sibutramine, 10 rats served as vehicle control group. To longitudinally assess body fat components, MRI analysis was used with two approaches: 2D slicewise graphic analysis (SGA) was compared with an automated 3D analysis algorithm (3DA). At the group level, fat volume differences showed a longitudinal increase of subcutaneous and visceral fat volumes for the control group, whereas the sibutramine group showed stable subcutaneous fat volumes and decrease in visceral fat volumes. SGA and 3DA volume determination showed significant correlations for subcutaneous fat volume (C=0.85, psibutramine separate on the fat compartments in rats. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Regulation of the Na(+)-K+ pump activity and estimation of the reserve capacity in intact rat peritoneal mast cells

    DEFF Research Database (Denmark)

    Knudsen, Torben; Johansen, Torben

    1990-01-01

    Evidence is provided that regulation of the Na(+)-K+ pump activity in rat peritoneal mast cells occurs mainly through stimulation of the pump from inside the plasma membrane by sodium. It is demonstrated that there is a large reserve capacity for the exchange of intracellular sodium...... with extracellular potassium in these cells. The maximal pump activity was estimated to be 3230 pmol/10(6) cells per min and Km for extracellular potassium was 1.5 mM....

  1. Effects of Kudingcha Nanoparticles in Hyperlipidaemic Rats Induced by a High Fat Diet

    Directory of Open Access Journals (Sweden)

    Hongliang Zhang

    2018-03-01

    Full Text Available Background/Aims: The herbal medicine Kudingcha has a bitter taste and low bioavailability for lipid reduction. To improve the bioavailability and ameliorate the compliance, we prepared Kudingcha nanoparticles and investigated their effect in hyperlipidaemic rats. In addition, the safety and lipid-lowering mechanism of the Kudingcha nanoparticles were examined. Methods: Kudingcha nanoparticles were prepared by ionotropic gelation and spray-drying. Seventy rats were randomly assigned into eight groups: a normal fat diet group (NF, a high-fat group (HF, a spontaneous recovery group (SR, a Kudingcha group (KDC, a blank nanoparticle group (B-N, and a Kudingcha nanoparticle groups (low, medium and high doses. All groups (except for the normal fat diet group were fed a high-fat diet to establish hyperlipidaemia. Different interventions were administered to the treatment groups for four weeks. Serum lipids were measured using commercially available kits according to the recommended protocols. Liver morphology and histopathology were examined by a light microscope. The mRNA and protein levels of TLR4 and NF-κB were determined by RT-PCR and Western blotting, respectively. In addition, acute toxicity was evaluated by the LD50 test. Results: The Kudingcha nanoparticles were spherical and had a smooth surface. The size distribution of the nanoparticles was 100-600 nm. Acute toxicity results revealed that the Kudingcha nanoparticles were a non-toxic substance. Compared with regular Kudingcha, TG and TC decreased distinctly in the Kudingcha nanoparticles, especially for the moderate and high dose groups (p<0.05. Moreover, the Kudingcha nanoparticles were superior in lowering body, liver and adipose tissue weights compared to Kudingcha (p<0.05. With respect to antioxidant properties, the nanoparticles also revealed an outstanding impact on serum SOD and MDA. In addition, liver morphology and histology in the moderate and high dose nanoparticle groups were

  2. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats.

    Science.gov (United States)

    Amin, Kamal A; Nagy, Mohamed A

    2009-10-16

    Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. To investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR

  3. Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats

    Directory of Open Access Journals (Sweden)

    Amin Kamal A

    2009-10-01

    Full Text Available Abstract Background Obesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity. Aim To investigate the development of obesity in response to a high fat diet (HFD and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats. Method White male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr, 30 rats fed a high-fat diet (HFD for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD, the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments for 4 weeks. Body weight, lipid profile & renal function (urea, uric acid creatinine ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB the oxidative stress marker reduced glutathione (GSH, and Malondialdehyde (MDA catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed. Results Data showed that feeding HFD diet significantly increased final body weight, triglycerides (TG, total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile. Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia

  4. Ephedra-Treated Donor-Derived Gut Microbiota Transplantation Ameliorates High Fat Diet-Induced Obesity in Rats.

    Science.gov (United States)

    Wang, Jing-Hua; Kim, Bong-Soo; Han, Kyungsun; Kim, Hojun

    2017-05-23

    Changes in gut microbiota (GM) are closely associated with metabolic syndrome, obesity, type 2 diabetes and so on. Several medicinal herbs, including Ephedra sinica (Es), have anti-obesity effects that ameliorate metabolic disorders. Therefore, in this study we evaluated whether Es maintains its anti-obesity effect through Es-altered gut microbiota (EsM) transplantation. GM was isolated from cecal contents of Es treated and untreated rats following repeated transplants into obese rats via oral gavage over three weeks. High-fat-diet (HFD)-induced obese rats transplanted with EsM lost significant body weight, epididymal fat, and perirenal fat weight, but no remarkable changes were observed in abdominal fat, liver, cecum weight and food efficiency ratio. In addition, treatment with EsM also significantly lowered the fasting blood glucose, serum insulin level, and insulin resistance index. Meanwhile, EsM transplantation significantly reduced gene expression of proinflammatory cytokines interleukin-1 and monocyte chemotactic protein-1. Rats treated with EsM also showed changed GM composition, especially blautia, roseburia and clostridium, significantly reduced the level of endotoxin and markedly increased the acetic acid in feces. Overall, our results demonstrated that EsM ameliorates HFD-induced obesity and related metabolic disorders, like hyperglycemia and insulin resistance, and is strongly associated with modulating the distribution of GM, enterogenous endotoxin and enteral acetic acid.

  5. Effects of Shiitake Intake on Serum Lipids in Rats Fed Different High-Oil or High-Fat Diets.

    Science.gov (United States)

    Asada, Norihiko; Kairiku, Rumi; Tobo, Mika; Ono, Akifumi

    2018-04-27

    Shiitake (Lentinula edodes) extract, eritadenine, has been shown to reduce cholesterol levels, and its hypocholesterolemic actions are involved in the metabolism of methionine. However, the mechanisms by which eritadenine affects cholesterol metabolism in animals fed a high-fat diet containing different sources of lipids have not yet been elucidated in detail. This study was conducted to investigate the effects of shiitake supplementation on serum lipid concentrations in rats fed a diet including a high amount of a plant oil (HO [high oil] and HOS [high oil with shiitake] groups), animal fat (HF [high fat] and HFS [high fat with shiitake] groups), or MCT- (medium-chain triglyceride-) rich plant oil (HM [high MCT] and HMS [high MCT with shiitake] groups). Rats in the HOS, HFS, and HMS groups were fed shiitake. When rats were fed a diet containing shiitake, serum triglyceride, cholesterol levels, and LCAT (lecithin-cholesterol acyltransferase) activities were lower in rats given MCT-rich plant oil than in those that consumed lard. The lipid type in the diet with shiitake also affected serum cholesterol levels and LCAT activities. The diet containing MCT-rich plant oil showed the greatest rates of decrease in all serum lipid profiles and LCAT activities. These results suggest that shiitake and MCT-rich plant oil work together to reduce lipid profiles and LCAT activity in serum.

  6. Effects on lipid and glucose metabolism of diets with different types of fat and sugar in male fatty Zucker rats

    NARCIS (Netherlands)

    Waard, de H.

    1978-01-01

    The nutritional problem with regard to fat and sugar consumption in relation to lipid and glucose metabolism, and the ultimate goal of the study are generally outlined in Chapter 1. The obese Zucker rat was chosen as being likely a suitable animal model for a study like this. Chapter 2 is

  7. Effects of genetic strain on stress-induced weight and body fat loss in rats: Application to air pollution research

    Science.gov (United States)

    Exposure to some air pollutants is suspected of contributing to obesity. Hazelton chambers are commonly used in air pollution studies but we found unexpected reductions in body weight and body fat of rats housed in Hazelton chambers under control conditions. We suspect that stres...

  8. Impact of metformin treatment and swimming exercise on visfatin levels in high-fat-induced obesity rats.

    Science.gov (United States)

    Gao, Ya; Wang, Changjiang; Pan, Tianrong; Luo, Li

    2014-02-01

    Visfatin is a recently discovered adipocytokine that contributes to glucose and obesity-related conditions. Until now, its responses to the insulin-sensitizing agent metformin and to exercise are largely unknown. We aim to investigate the impact of metformin treatment and/or swimming exercise on serum visfatin and visfatin levels in subcutaneous adipose tissue (SAT), peri-renal adipose tissue (PAT) and skeletal muscle (SM) of high-fat-induced obesity rats. Sprague-Dawley rats were fed a normal diet or a high-fat diet for 16 weeks to develop obesity model. The high-fat-induced obesity model rats were then randomized to metformin (MET), swimming exercise (SWI), or adjunctive therapy of metformin and swimming exercise (MAS), besides high-fat obesity control group and a normal control group, all with 10 rats per group. Zoometric and glycemic parameters, lipid profile, and serum visfatin levels were assessed at baseline and after 6 weeks of therapy. Visfatin levels in SAT, PAT and SM were determined by Western Blot. Metformin and swimming exercise improved lipid profile, and increased insulin sensitivity and body weight reduction were observed. Both metformin and swimming exercise down-regulated visfatin levels in SAT and PAT, while the adjunctive therapy conferred greater benefits, but no changes of visfatin levels were observed in SM. Our results indicate that visfatin down-regulation in SAT and PAT may be one of the mechanisms by which metformin and swimming exercise inhibit obesity.

  9. Antiobesity Effect of Codonopsis lanceolata in High-Calorie/High-Fat-Diet-Induced Obese Rats

    Directory of Open Access Journals (Sweden)

    Hye-Kyung Choi

    2013-01-01

    Full Text Available The antiobesity effects of Codonopsis lanceolata (CL were evaluated in a high-calorie/high-fat-diet (HFD- induced obesity rat model and 3T3-L1 cells. The Sprague-Dawley male rats were fed a normal diet (ND or a HFD for a period of 12 weeks. The rats were subdivided into groups: ND, ND + wild Codonopsis lanceolata (wCL (900 mg/kg/day, p.o., ND + cultivated Codonopsis lanceolata (cCL (900 mg/kg/day, p.o., HFD, HFD + wCL (100, 300, or 900 mg/kg/day, p.o., HFD + cCL (100, 300, or 900 mg/kg/day, p.o., and HFD + sibutramine. The body weight gains of the administered HFD + CL (wCL or CCL were lower than those of the rats fed with only the HFD group. Moreover, the weight of adipose pads and the serum levels of triglycerides, total cholesterol, and low density lipoprotein cholesterol in the group administered HDL + CL were significantly lower than in the HFD group. The inhibitory effect of lipid accumulation in 3T3-L1 cells was measured by Oil Red O staining and reverse transcription-polymerase chain reaction (RT-PCR. Treatment of 3T3-L1 cells with wCL inhibited lipid accumulation and expression of C/EBPα and PPARγ. These results suggest that CL has a great potential as a functional food with anti-obesity effects and as a therapeutic alternative in the treatment of obesity.

  10. High fat diet-fed obese rats are highly sensitive to doxorubicin-induced cardiotoxicity

    International Nuclear Information System (INIS)

    Mitra, Mayurranjan S.; Donthamsetty, Shashikiran; White, Brent; Mehendale, Harihara M.

    2008-01-01

    Often, chemotherapy by doxorubicin (Adriamycin) is limited due to life threatening cardiotoxicity in patients during and posttherapy. Recently, we have shown that moderate diet restriction remarkably protects against doxorubicin-induced cardiotoxicity. This cardioprotection is accompanied by decreased cardiac oxidative stress and triglycerides and increased cardiac fatty-acid oxidation, ATP synthesis, and upregulated JAK/STAT3 pathway. In the current study, we investigated whether a physiological intervention by feeding 40% high fat diet (HFD), which induces obesity in male Sprague-Dawley rats (250-275 g), sensitizes to doxorubicin-induced cardiotoxicity. A LD 10 dose (8 mg doxorubicin/kg, ip) administered on day 43 of the HFD feeding regimen led to higher cardiotoxicity, cardiac dysfunction, lipid peroxidation, and 80% mortality in the obese (OB) rats in the absence of any significant renal or hepatic toxicity. Doxorubicin toxicokinetics studies revealed no change in accumulation of doxorubicin and doxorubicinol (toxic metabolite) in the normal diet-fed (ND) and OB hearts. Mechanistic studies revealed that OB rats are sensitized due to: (1) higher oxyradical stress leading to upregulation of uncoupling proteins 2 and 3, (2) downregulation of cardiac peroxisome proliferators activated receptor-α, (3) decreased plasma adiponectin levels, (4) decreased cardiac fatty-acid oxidation (666.9 ± 14.0 nmol/min/g heart in ND versus 400.2 ± 11.8 nmol/min/g heart in OB), (5) decreased mitochondrial AMP-α2 protein kinase, and (6) 86% drop in cardiac ATP levels accompanied by decreased ATP/ADP ratio after doxorubicin administration. Decreased cardiac erythropoietin and increased SOCS3 further downregulated the cardioprotective JAK/STAT3 pathway. In conclusion, HFD-induced obese rats are highly sensitized to doxorubicin-induced cardiotoxicity by substantially downregulating cardiac mitochondrial ATP generation, increasing oxidative stress and downregulating the JAK/STAT3

  11. Carbenoxolone treatment ameliorated metabolic syndrome in WNIN/Ob obese rats, but induced severe fat loss and glucose intolerance in lean rats.

    Directory of Open Access Journals (Sweden)

    Siva Sankara Vara Prasad Sakamuri

    Full Text Available BACKGROUND: 11beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1 regulates local glucocorticoid action in tissues by catalysing conversion of inactive glucocorticoids to active glucocorticoids. 11β-HSD1 inhibition ameliorates obesity and associated co-morbidities. Here, we tested the effect of 11β-HSD inhibitor, carbenoxolone (CBX on obesity and associated comorbidities in obese rats of WNIN/Ob strain, a new animal model for genetic obesity. METHODOLOGY/PRINCIPAL FINDINGS: Subcutaneous injection of CBX (50 mg/kg body weight or volume-matched vehicle was given once daily for four weeks to three month-old WNIN/Ob lean and obese rats (n = 6 for each phenotype and for each treatment. Body composition, plasma lipids and hormones were assayed. Hepatic steatosis, adipose tissue morphology, inflammation and fibrosis were also studied. Insulin resistance and glucose intolerance were determined along with tissue glycogen content. Gene expressions were determined in liver and adipose tissue. CBX significantly inhibited 11β-HSD1 activity in liver and adipose tissue of WNIN/Ob lean and obese rats. CBX significantly decreased body fat percentage, hypertriglyceridemia, hypercholesterolemia, insulin resistance in obese rats. CBX ameliorated hepatic steatosis, adipocyte hypertrophy, adipose tissue inflammation and fibrosis in obese rats. Tissue glycogen content was significantly decreased by CBX in liver and adipose tissue of obese rats. Severe fat loss and glucose- intolerance were observed in lean rats after CBX treatment. CONCLUSIONS/SIGNIFICANCE: We conclude that 11β-HSD1 inhibition by CBX decreases obesity and associated co-morbidities in WNIN/Ob obese rats. Our study supports the hypothesis that inhibition of 11β-HSD1 is a key strategy to treat metabolic syndrome. Severe fat loss and glucose -intolerance by CBX treatment in lean rats suggest that chronic 11β-HSD1 inhibition may lead to insulin resistance in normal conditions.

  12. Effects of a high-fat diet during pregnancy and lactation are modulated by E. coli in rat offspring.

    Science.gov (United States)

    Fåk, F; Karlsson, C L J; Ahrné, S; Molin, G; Weström, B

    2012-05-01

    Microbial manipulations in early life can affect gut development and inflammatory status of the neonate. The maternal diet during pregnancy and lactation also influences the health of the offspring, but the impact of maternal high-fat (HF) feeding along with modulations of the gut microbiota on body weight, fat deposition and gut function in the offspring has been poorly studied. Rat dams were given access to either an HF or a standard low-fat diet during the last 2 weeks of pregnancy and during lactation and effects on body weight and gastrointestinal function were investigated in the 14-day-old offspring. To elucidate whether bacterial administration to the dam could modulate any effects of the diets in the rat pups, another group of dams were given Escherichia coli in their drinking water. Maternal HF feeding resulted in increased body and fat pad weights in the offspring, along with increased levels of the acute-phase protein, haptoglobin and decreased protein content and disaccharidase activities in the small intestine. The addition of E. coli further accentuated these responses in the young rats, which, in addition to higher body weights and increased fat deposition, also showed an increased intestinal permeability and elevated levels of haptoglobin. The present study demonstrates for the first time how bacterial administration to the maternal diet during the neonatal period can affect body weight and fat deposition in the offspring. The results point to a mechanistic link between the gut microbiota, increased intestinal permeability and metabolic endotoxemia, which appear to have led to increased adiposity in the young rats.

  13. Eating high fat chow decreases dopamine clearance in adolescent and adult male rats but selectively enhances the locomotor stimulating effects of cocaine in adolescents.

    Science.gov (United States)

    Baladi, Michelle G; Horton, Rebecca E; Owens, William A; Daws, Lynette C; France, Charles P

    2015-03-24

    Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  14. Edible bird’s nest attenuates procoagulation effects of high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Yida Z

    2015-07-01

    Full Text Available Zhang Yida,1,2 Mustapha Umar Imam,1 Maznah Ismail,1,3 Norsharina Ismail,1 Zhiping Hou1 1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; 2Cardiology Department, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, People’s Republic of China; 3Faculty of Medicine and Health Sciences, Department of Nutrition and Dietetics, Universiti Putra Malaysia, Serdang, Selangor, Malaysia Abstract: Edible bird’s nest (EBN is popular in Asia, and has long been used traditionally as a supplement. There are, however, limited evidence-based studies on its efficacy. EBN has been reported to improve dyslipidemia, which is closely linked to hypercoagulation states. In the present study, the effects of EBN on high-fat diet- (HFD- induced coagulation in rats were evaluated. Rats were fed for 12 weeks with HFD alone or in combination with simvastatin or EBN. Food intake was estimated, and weight measurements were made during the experimental period. After sacrifice, serum oxidized low-density lipo­protein (oxLDL, adiponectin, leptin, von willibrand factor, prostacyclin, thromboxane and lipid profile, and whole blood coagulation indices (bleeding time, prothrombin time, activated partial thromboplastin time, red blood count count, and platelet count were estimated. Furthermore, hepatic expression of coagulation-related genes was evaluated using multiplex polymerase chain reaction. The results indicated that EBN could attenuate HFD-induced hypercholesterolemia and coagulation similar to simvastatin, partly through transcriptional regulation of coagulation-related genes. The results suggested that EBN has the potential for lowering the risk of cardiovascular disease-related hypercoagulation due to hypercholesterolemia. Keywords: edible bird’s nest, coagulation, high-fat diet, hypercholesterolemia, nutrigeno­mics

  15. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    Science.gov (United States)

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  16. Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat

    Directory of Open Access Journals (Sweden)

    Woong Sun Jang

    2013-01-01

    Full Text Available Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2 and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis.

  17. Resistant starch and exercise independently attenuate weight regain on a high fat diet in a rat model of obesity

    Directory of Open Access Journals (Sweden)

    Johnson Ginger C

    2011-07-01

    Full Text Available Abstract Background Long-term weight reduction remains elusive for many obese individuals. Resistant starch (RS and exercise may be useful for weight maintenance. The effects of RS, with or without exercise, on weight regain was examined during relapse to obesity on a high carbohydrate, high fat (HC/HF diet. Methods Obesity-prone rats were fed ad libitum for 16 weeks then weight reduced on a low fat diet to induce a 17% body weight loss (weight reduced rats. Weight reduced rats were maintained on an energy-restricted low fat diet for 18 weeks, with or without a daily bout of treadmill exercise. Rats were then allowed free access to HC/HF diet containing low (0.3% or high (5.9% levels of RS. Weight regain, energy balance, body composition, adipocyte cellularity, and fuel utilization were monitored as rats relapsed to obesity and surpassed their original, obese weight. Results Both RS and exercise independently attenuated weight regain by reducing the energy gap between the drive to eat and suppressed energy requirements. Exercise attenuated the deposition of lean mass during relapse, whereas its combination with RS sustained lean mass accrual as body weight returned. Early in relapse, RS lowered insulin levels and reduced the deposition of fat in subcutaneous adipose tissue. Exercise cessation at five weeks of relapse led to increased weight gain, body fat, subcutaneous adipocytes, and decreased lean mass; all detrimental consequences to overall metabolic health. Conclusions These data are the first to show the complimentary effects of dietary RS and regular exercise in countering the metabolic drive to regain weight following weight loss and suggest that exercise cessation, in the context of relapse on a HC/HF diet, may have dire metabolic consequences.

  18. Vagus nerve contributes to metabolic syndrome in high-fat diet-fed young and adult rats.

    Science.gov (United States)

    Barella, Luiz F; Miranda, Rosiane A; Franco, Claudinéia C S; Alves, Vander S; Malta, Ananda; Ribeiro, Tatiane A S; Gravena, Clarice; Mathias, Paulo C F; de Oliveira, Júlio C

    2015-01-01

    What is the central question of this study? Different nerve contributes periods of life are known for their differential sensitivity to interventions, and increased parasympathetic activity affects the development and maintenance of obesity. Thus, we evaluated the involvement of the vagus nerve by performing a vagotomy in young or adult rats that were offered an obesogenic high-fat diet. What is the main finding and its importance? Although the accumulation of adipose tissue decreased in both younger and older groups, the younger rats showed a greater response to the effects of vagotomy in general. In addition to the important role of the parasympathetic activity, we suggest that the vagus nerve contributes to the condition of obesity. Obesity has become a global problem, and this condition develops primarily because of an imbalance between energy intake and expenditure. The high complexity involved in the regulation of energy metabolism results from several factors besides endocrine factors. It has been suggested that obesity could be caused by an imbalance in the autonomous nervous system, which could lead to a condition of high parasympathetic activity in counterpart to low sympathetic tonus. High-fat (HF) diets have been used to induce obesity in experimental animals, and their use in animals leads to insulin resistance, hyperinsulinaemia and high parasympathetic activity, among other disorders. The aim of this work was to evaluate the effects of a vagotomy performed at the initiation of a HF diet at two different stages of life, weaning and adulthood. The vagotomy reduced parasympathetic activity (-32 and -51% in normal fat-fed rats and -43 and -55% in HF diet-fed rats; P fat depots (-17 and -33%, only in HF diet-fed rats; P fat diet-fed rats exhibited fasting hyperinsulinaemia (fivefold higher in young rats and threefold higher in older rats; P diet-fed groups was not altered in the vagotomized rats. We suggest that the vagus nerve, in addition to the

  19. Dietary Fat Quantity and Type Induce Transcriptome-Wide Effects on Alternative Splicing of Pre-mRNA in Rat Skeletal Muscle.

    Science.gov (United States)

    Black, Adam J; Ravi, Suhana; Jefferson, Leonard S; Kimball, Scot R; Schilder, Rudolf J

    2017-09-01

    Background: Fat-enriched diets produce metabolic changes in skeletal muscle, which in turn can mediate changes in gene regulation. Objective: We examined the high-fat-diet-induced changes in skeletal muscle gene expression by characterizing variations in pre-mRNA alternative splicing. Methods: Affymetrix Exon Array analysis was performed on the transcriptome of the gastrocnemius/plantaris complex of male obesity-prone Sprague-Dawley rats fed a 10% or 60% fat (lard) diet for 2 or 8 wk. The validation of exon array results was focused on troponin T ( Tnnt3 ). Tnnt3 splice form analyses were extended in studies of rats fed 10% or 30% fat diets across 1- to 8-wk treatment periods and rats fed 10% or 45% fat diets with fat sources from lard or mono- or polyunsaturated fats for 2 wk. Nuclear magnetic resonance (NMR) was used to measure body composition. Results: Consumption of a 60% fat diet for 2 or 8 wk resulted in alternative splicing of 668 and 726 pre-mRNAs, respectively, compared with rats fed a 10% fat diet. Tnnt3 transcripts were alternatively spliced in rats fed a 60% fat diet for either 2 or 8 wk. The high-fat-diet-induced changes in Tnnt3 alternative splicing were observed in rats fed a 30% fat diet across 1- to 8-wk treatment periods. Moreover, this effect depended on fat type, because Tnnt3 alternative splicing occurred in response to 45% fat diets enriched with lard but not in response to diets enriched with mono- or polyunsaturated fatty acids. Fat mass (a proxy for obesity as measured by NMR) did not differ between groups in any study. Conclusions: Rat skeletal muscle responds to overconsumption of dietary fat by modifying gene expression through pre-mRNA alternative splicing. Variations in Tnnt3 alternative splicing occur independently of obesity and are dependent on dietary fat quantity and suggest a role for saturated fatty acids in the high-fat-diet-induced modifications in Tnnt3 alternative splicing. © 2017 American Society for Nutrition.

  20. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    International Nuclear Information System (INIS)

    Dokshina, G.A.; Silaeva, T.Yu.

    1976-01-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when β-receptors are blocked by obsidane (0.5 μg/ml). It is suggested that insuline secretion by β-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible

  1. Effect of taurine on the insuline secretion isolated by the pancreatic tissue of intact and irradiated rats

    Energy Technology Data Exchange (ETDEWEB)

    Dokshina, G A; Silaeva, T Yu [Tomskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Biologii i Biofiziki

    1976-05-01

    The whole-body irradiation of rats (700 rads) inhibits the secretory activity of insular pancreatic tissue. Administration of taurine (200 mg/kg), on the fifth day after irradiation, five times every second day normalizes the secretory function of pancreatic islands. In the experiments in vitro, taurine (1.5 and 3.0 mg/ml) stimulated hormone secretion. The stimulating action of the amino acid manifests itself when ..beta..-receptors are blocked by obsidane (0.5 ..mu..g/ml). It is suggested that insuline secretion by ..beta..-cells of pancreas is restored and enhanced by taurine not merely through the adenylatecyclase system; other ways are also possible.

  2. Sub-cellular Electrical Heterogeneity Revealed by Loose Patch Recording Reflects Differential Localization of Sarcolemmal Ion Channels in Intact Rat Hearts

    Directory of Open Access Journals (Sweden)

    Igor V. Kubasov

    2018-02-01

    Full Text Available The cardiac action potential (AP is commonly recoded as an integral signal from isolated myocytes or ensembles of myocytes (with intracellular microelectrodes and extracellular macroelectrodes, respectively. These signals, however, do not provide a direct measure of activity of ion channels and transporters located in two major compartments of a cardiac myocyte: surface sarcolemma and the T-tubule system, which differentially contribute to impulse propagation and excitation-contraction (EC coupling. In the present study we investigated electrical properties of myocytes within perfused intact rat heart employing loose patch recording with narrow-tip (2 μm diameter extracellular electrodes. Using this approach, we demonstrated two distinct types of electric signals with distinct waveforms (single peak and multi-peak AP; AP1 and AP2, respectively during intrinsic pacemaker activity. These two types of waveforms depend on the position of the electrode tip on the myocyte surface. Such heterogeneity of electrical signals was lost when electrodes of larger pipette diameter were used (5 or 10 μm, which indicates that the electric signal was assessed from a region of <5 μm. Importantly, both pharmacological and mathematical simulation based on transverse (T-tubular distribution suggested that while the AP1 and the initial peak of AP2 are predominantly attributable to the fast, inward Na+ current in myocyte's surface sarcolemma, the late components of AP2 are likely representative of currents associated with L-type Ca2+ channel and Na+/Ca2+ exchanger (NCX currents which are predominantly located in T-tubules. Thus, loose patch recording with narrow-tip pipette provides a valuable tool for studying cardiac electric activity on the subcellular level in the intact heart.

  3. Antiatherogenic Effect of Camellia japonica Fruit Extract in High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Hyun-Ho Lee

    2016-01-01

    Full Text Available Hypercholesterolemia is a well-known etiological factor for cardiovascular disease and a common symptom of most types of metabolic disorders. Camellia japonica is a traditional garden plant, and its flower and seed have been used as a base oil of traditional cosmetics in East Asia. The present study was carried out to evaluate the effect of C. japonica fruit extracts (CJF in a high fat diet- (HFD- induced hypercholesterolemic rat model. CJF was administered orally at three different doses: 100, 400, and 800 mg·kg−1·day−1 (CJF 100, 400, and 800, resp.. Our results showed that CJF possessed strong cholesterol-lowering potency as indicated by the decrease in serum total cholesterol (TC, triglyceride (TG, and low-density lipoprotein (LDL, accompanied by an increase in serum high-density lipoprotein (HDL. Furthermore, CJF reduced serum lipid peroxidation by suppressing the formation of thiobarbituric acid reactive substance. In addition, oil red O (ORO staining of rat arteries showed decreased lipid-positive staining in the CJF-treated groups compared to the control HFD group. Taken together, these results suggest that CJF could be a potent herbal therapeutic option and source of a functional food for the prevention and treatment of atherosclerosis and other diseases associated with hypercholesterolemia.

  4. Distribution of dearomatised white spirit in brain, blood, and fat tissue after repeated exposure of rats

    DEFF Research Database (Denmark)

    Lof, A.; Lam, Henrik Rye; Gullstrand, E.

    1999-01-01

    Petroleum products with low content of aromatics have been increasingly used during the past years. This study investigates tissue disposition of dearomatised white spirit. In addition, brain neurotransmitter concentrations were measured. Male rats were exposed by inhalation to 0, 400 (2.29 mg....../l), or 800 p.p.m. (4.58 mg/l) of dearomatised white spirit, 6 hr/day, 5 days/week up to 3 weeks. Five rats from each group were sacrificed immediately after the exposure for 1, 2, or 3 weeks and 2, 4, 6, or 24 hr after the end of 3 weeks' exposure. After 3 weeks of exposure the concentration of total white...... spirit was 1.5 and 5.6 mg/kg in blood; 7.1 and 17.1 mg/kg in brain; 432 and 1452 mg/kg in fat tissue at the exposure levels of 400 and 800 p.p.m., respectively. The concentrations of n-nonane, n-decane, n-undecane, and total white spirit in blood and brain were not affected by the duration of exposure...

  5. Anti-oxidant and anti-hyperlipidemic activity of Hemidesmus indicus in rats fed with high-fat diet

    Directory of Open Access Journals (Sweden)

    Suganya Venkateshan

    2016-08-01

    Full Text Available Objective: Dietary changes playmajor risk roles in oxidative stress andcardiovascular disease and modulate normal metabolic function. The present study was designed to investigate the ameliorative potential of different extracts of Hemidesmus indicus to experimental high-fat diet in wistar rats, and their possible mechanism of action.  Materials and Methods: Male wistar rats were divided into 6 groups (n=6/group andfed with a standard diet (control, high-fat diet (HFD, high-fat diet supplemented with different extracts and positive control for 9 weeks. High-fat diet induced changes in average body weight andoxidative stress and elevated levels of plasma lipid profilein rats. Results: Oral administration of methanolic extract of H. indicus(200 mg/kg offered a significant dose-dependent protection against HFD-induced oxidative stress, as reflected in the levels of catalase (pConclusion: The present study revealed that the methanolic extract of H.indicus protects against oxidative stress, hyperlipidemia and liver damage.

  6. Seaweed supplements normalise metabolic, cardiovascular and liver responses in high-carbohydrate, high-fat fed rats.

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C; Paul, Nicholas A; Brown, Lindsay

    2015-02-02

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330-340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  7. The effect of eight weeks endurance training and high-fat diet on appetite-regulating hormones in rat plasma

    Directory of Open Access Journals (Sweden)

    Rouhollah Haghshenas

    2014-04-01

    Full Text Available Objective(s:Consumption of high-fat foods is one of the major causes of obesity. Physical exercise is a strategy used to counteract obesity. The aim of this study was to investigate the effect of eight weeks endurance training and high-fat diet (HFD on appetite-regulating hormones in rat plasma. Materials and Methods:Twenty eight male Wistar rats were randomly divided into four groups: Control group with standard diet (CSD, endurance training with a standard diet (ESD, control group with high-fat diet (CHFD and endurance training with high-fat diet (EHFD. Twenty-four hr after the last training session, the blood samples were obtained and analyzed for hormones levels. Results: The significant increased weight gain and food intake and decreased plasma nesfatin-1 and PYY3-36 levels were observed in CHFD group, while exercise under the HFD antagonized these effects. There were no significant changes in ghrelin, insulin and leptin levels in different groups. Conclusion: These results suggest that exercise can prevent fattening effect of HFD. Probably, performing exercise makes a reduction of food intake and weight gain in rat via the increase in nesfatin-1 and PYY levels. However, further studies are necessary to understand the exact mechanisms involved in this field.

  8. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Directory of Open Access Journals (Sweden)

    Senthil Arun Kumar

    2015-02-01

    Full Text Available Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO and Derbesia tenuissima (DT, in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium.

  9. Seaweed Supplements Normalise Metabolic, Cardiovascular and Liver Responses in High-Carbohydrate, High-Fat Fed Rats

    Science.gov (United States)

    Kumar, Senthil Arun; Magnusson, Marie; Ward, Leigh C.; Paul, Nicholas A.; Brown, Lindsay

    2015-01-01

    Increased seaweed consumption may be linked to the lower incidence of metabolic syndrome in eastern Asia. This study investigated the responses to two tropical green seaweeds, Ulva ohnoi (UO) and Derbesia tenuissima (DT), in a rat model of human metabolic syndrome. Male Wistar rats (330–340 g) were fed either a corn starch-rich diet or a high-carbohydrate, high-fat diet with 25% fructose in drinking water, for 16 weeks. High-carbohydrate, high-fat diet-fed rats showed the signs of metabolic syndrome leading to abdominal obesity, cardiovascular remodelling and non-alcoholic fatty liver disease. Food was supplemented with 5% dried UO or DT for the final 8 weeks only. UO lowered total final body fat mass by 24%, systolic blood pressure by 29 mmHg, and improved glucose utilisation and insulin sensitivity. In contrast, DT did not change total body fat mass but decreased plasma triglycerides by 38% and total cholesterol by 17%. UO contained 18.1% soluble fibre as part of 40.9% total fibre, and increased magnesium, while DT contained 23.4% total fibre, essentially as insoluble fibre. UO was more effective in reducing metabolic syndrome than DT, possibly due to the increased intake of soluble fibre and magnesium. PMID:25648511

  10. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle.

    Directory of Open Access Journals (Sweden)

    Ying-Ying Zhang

    Full Text Available Intramuscular fat (IMF is known to enhance beef palatability and can be markedly increased by castration. However, there is little understanding of the molecular mechanism underlying the IMF deposition after castration of beef cattle. We hypothesize that genetic regulators function differently in IMF from bulls and steers. Therefore, after detecting serum testosterone and lipid parameter, as well as the contents of IMF at 6, 12, 18 and 24 months, we have investigated differentially expressed (DE microRNAs (miRNAs and mRNAs in IMF of bulls and steers at 24 months of age in Qinchuan cattle using next-generation sequencing, and then explored the possible biopathways regulating IMF deposition. Serum testosterone levels were significantly decreased in steers, whereas IMF content, serum total cholesterol (TC, low-density lipoprotein cholesterol (LDL-C and triglycerides (TGs were markedly increased in steers. Comparing the results of steers and bulls, 580 upregulated genes and 1,120 downregulated genes in IMF tissues were identified as DE genes correlated with IMF deposition. The upregulated genes were mainly associated with lipid metabolism, lipogenesis and fatty acid transportation signalling pathways, and the downregulated genes were correlated with immune response and intracellular signal transduction. Concurrently, the DE miRNAs-important players in adipose tissue accumulation induced by castration-were also examined in IMF tissues; 52 DE miRNAs were identified. The expression profiles of selected genes and miRNAs were also confirmed by quantitative real-time PCR (qRT-PCR assays. Using integrated analysis, we constructed the microRNA-target regulatory network which was supported by target validation using the dual luciferase reporter system. Moreover, Ingenuity Pathway Analysis (IPA software was used to construct a molecular interaction network that could be involved in regulating IMF after castration. The detected molecular network is closely

  11. Transcriptome analysis of mRNA and microRNAs in intramuscular fat tissues of castrated and intact male Chinese Qinchuan cattle

    Science.gov (United States)

    Wang, Ya-Ning; Wang, Hong-Cheng; Zhang, Song; Hong, Jie-Yun; Guo, Hong-Fang; Chen, Dai; Yang, Yang; Zan, Lin-Sen

    2017-01-01

    Intramuscular fat (IMF) is known to enhance beef palatability and can be markedly increased by castration. However, there is little understanding of the molecular mechanism underlying the IMF deposition after castration of beef cattle. We hypothesize that genetic regulators function differently in IMF from bulls and steers. Therefore, after detecting serum testosterone and lipid parameter, as well as the contents of IMF at 6, 12, 18 and 24 months, we have investigated differentially expressed (DE) microRNAs (miRNAs) and mRNAs in IMF of bulls and steers at 24 months of age in Qinchuan cattle using next-generation sequencing, and then explored the possible biopathways regulating IMF deposition. Serum testosterone levels were significantly decreased in steers, whereas IMF content, serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TGs) were markedly increased in steers. Comparing the results of steers and bulls, 580 upregulated genes and 1,120 downregulated genes in IMF tissues were identified as DE genes correlated with IMF deposition. The upregulated genes were mainly associated with lipid metabolism, lipogenesis and fatty acid transportation signalling pathways, and the downregulated genes were correlated with immune response and intracellular signal transduction. Concurrently, the DE miRNAs—important players in adipose tissue accumulation induced by castration—were also examined in IMF tissues; 52 DE miRNAs were identified. The expression profiles of selected genes and miRNAs were also confirmed by quantitative real-time PCR (qRT-PCR) assays. Using integrated analysis, we constructed the microRNA-target regulatory network which was supported by target validation using the dual luciferase reporter system. Moreover, Ingenuity Pathway Analysis (IPA) software was used to construct a molecular interaction network that could be involved in regulating IMF after castration. The detected molecular network is closely associated

  12. l-Leucine Supplementation Worsens the Adiposity of Already Obese Rats by Promoting a Hypothalamic Pattern of Gene Expression that Favors Fat Accumulation

    Directory of Open Access Journals (Sweden)

    Thais T. Zampieri

    2014-04-01

    Full Text Available Several studies showed that l-leucine supplementation reduces adiposity when provided before the onset of obesity. We studied rats that were exposed to a high-fat diet (HFD for 10 weeks before they started to receive l-leucine supplementation. Fat mass was increased in l-leucine-supplemented rats consuming the HFD. Accordingly, l-leucine produced a hypothalamic pattern of gene expression that favors fat accumulation. In conclusion, l-leucine supplementation worsened the adiposity of rats previously exposed to HFD possibly by central mechanisms.

  13. A low-carbohydrate/high-fat diet reduces blood pressure in spontaneously hypertensive rats without deleterious changes in insulin resistance.

    Science.gov (United States)

    Bosse, John D; Lin, Han Yi; Sloan, Crystal; Zhang, Quan-Jiang; Abel, E Dale; Pereira, Troy J; Dolinsky, Vernon W; Symons, J David; Jalili, Thunder

    2013-06-15

    Previous studies reported that diets high in simple carbohydrates could increase blood pressure in rodents. We hypothesized that the converse, a low-carbohydrate/high-fat diet, might reduce blood pressure. Six-week-old spontaneously hypertensive rats (SHR; n = 54) and Wistar-Kyoto rats (WKY; n = 53, normotensive control) were fed either a control diet (C; 10% fat, 70% carbohydrate, 20% protein) or a low-carbohydrate/high-fat diet (HF; 20% carbohydrate, 60% fat, 20% protein). After 10 wk, SHR-HF had lower (P vs. 159 ± 3 mmHg) but a similar degree of cardiac hypertrophy (33.4 ± 0.4 vs. 33.1 ± 0.4 heart weight/tibia length, mg/mm). Mesenteric arteries and the entire aorta were used to assess vascular function and endothelial nitric oxide synthase (eNOS) signaling, respectively. Endothelium-dependent (acetylcholine) relaxation of mesenteric arteries was improved (P vs. SHR-C, whereas contraction (potassium chloride, phenylephrine) was reduced (P vs. SHR-C. Plasma glucose, insulin, and homoeostatic model of insulin assessment were lower (P vs. SHR-C, whereas peripheral insulin sensitivity (insulin tolerance test) was similar. After a 10-h fast, insulin stimulation (2 U/kg ip) increased (P vs. SHR-HF. In conclusion, a low-carbohydrate/high-fat diet reduced blood pressure and improved arterial function in SHR without producing signs of insulin resistance or altering insulin-mediated signaling in the heart, skeletal muscle, or vasculature.

  14. Effect of different commercial fat sources on brain, liver and blood lipid profiles of rats in growth phase.

    Science.gov (United States)

    Angelis-Pereira, Michel Cardoso de; Barcelos, Maria de Fátima Píccolo; Pereira, Juciane de Abreu Ribeiro; Pereira, Rafaela Corrêa; Souza, Raimundo Vicente de

    2017-12-01

    To investigate the fatty acid content of different fat sources and evaluate the effect of them on plasma and hepatic lipids and on the fatty acid profile of the brain tissue of Wistar rats. Thirty male albino Wistar rats received for 59 days, the following diets: diet added of margarine with low content of polyunsaturated fatty acids (PUFA); diet added of margarine with high content of PUFA; diet added of butter; diet added of hydrogenated vegetable fat; diet added of soybean oil. Fatty acid profile of the lipid sources, blood and hepatic lipids fractions and fatty acid profile of the brain tissue were determined. Margarine consumption of provided different responses as to concentrations of blood and hepatic lipid fractions. Intake of butter and hydrogenated increased LDL-c/HDL-c ratio, being the steepest increase promoted by hydrogenated vegetable fat, which also raised LDL-c levels expressively. All fats used in the treatments reduced the cerebral concentration of docosahexaenoic acid when compared to soybean oil (control). The different fat sources commonly consumed by population provided different responses in vivo. This is particularly relevant considering the role of these lipids in the incidence and prevention of cardiovascular diseases.

  15. Low-intensity aerobic exercise training: inhibition of skeletal muscle atrophy in high-fat-diet-induced ovariectomized rats.

    Science.gov (United States)

    Kim, Hye Jin; Lee, Won Jun

    2017-09-30

    Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition

  16. Effects of α-lipoic acid on endothelial function in aged diabetic and high-fat fed rats

    Science.gov (United States)

    Sena, C M; Nunes, E; Louro, T; Proença, T; Fernandes, R; Boarder, M R; Seiça, R M

    2007-01-01

    Background and purpose: This study was conducted to investigate the effects of α-lipoic acid (α-LA) on endothelial function in diabetic and high-fat fed animal models and elucidate the potential mechanism underlying the benefits of α-LA. Experimental approach: Plasma metabolites reflecting glucose and lipid metabolism, endothelial function, urinary albumin excretion (UAE), plasma and aortic malondialdehyde (MDA) and urinary 8-hydroxydeoxyguanosine (8-OHdG) were assessed in non-diabetic controls (Wistar rats), untreated Goto-Kakizaki (GK) diabetic and high-fat fed GK rats (fed with atherogenic diet only, treated with α-LA and treated with vehicle, for 3 months). Vascular eNOS, nitrotyrosine, carbonyl groups and superoxide anion were also assessed in the different groups. Key results: α-LA and soybean oil significantly reduced both total and non-HDL serum cholesterol and triglycerides induced by atherogenic diet. MDA, carbonyl groups, vascular superoxide and 8-OHdG levels were higher in GK and high-fat fed GK groups and fully reversed with α-LA treatment. High-fat fed GK diabetic rats showed significantly reduced endothelial function and increased UAE, effects ameliorated with α-LA. This endothelial dysfunction was associated with decreased NO production, decreased expression of eNOS and increased vascular superoxide production and nitrotyrosine expression. Conclusions and implications: α-LA restores endothelial function and significantly improves systemic and local oxidative stress in high-fat fed GK diabetic rats. Improved endothelial function due to α-LA was at least partially attributed to recoupling of eNOS and increased NO bioavailability and represents a pharmacological approach to prevent major complications associated with type 2 diabetes. PMID:17906683

  17. Endogenous glycosphingolipid acceptor specificity of sialosyltransferase systems in intact golgi membranes, synaptosomes, and synaptic plasma membranes from rat brain

    International Nuclear Information System (INIS)

    Durrie, R.; Saito, M.; Rosenberg, A.

    1988-01-01

    Preparations highly enriched in Golgi complex membranes, synaptosomes, and synaptic plasma membranes (SPM) by marker enzyme analysis and electron microscopic morphology were made from the brains of 28-day-old rats. These were incubated with cytidine 5'-monophosphate-N-acetyl[ 14 C]neuraminic acid (CMP-NeuAc) in a physiologic buffer, without detergents. Glycolipid sialosyltransferase activities (SATs) were measured by analyzing incorporation of radiolabeled NeuAc into endogenous membrane gangliosides. Golgi SAT was diversified in producing all the various molecular species of labeled gangliosides. Synaptosomal SAT exhibited a lower activity, but it was highly specific in its labeling pattern, with a marked preference for labeling NeuAcα2 → 8NeuAcα2 → 3Galβ1 → 4Glcβ1 → 1Cer (GD3 ganglioside). SPM prepared from the synaptosomes retained the GD3-related SAT (or SAT-2), and the total specific activity increased, which suggests that the location of the synaptosomal activity is in the SPM. These results indicate that SAT activity in Golgi membranes differs from that in synaptosomes with regard to endogenous acceptor substrate specificity and SAT activity of synaptosomes should be located in the synaptosomal plasma membrane. This SAT could function as an ectoenzyme in concert with ecto-sialidase to modulate the GD3 and other ganglioside population in situ at the SPM of the central nervous system

  18. Inhibition of Na(+) -K+ pump activity by divalent cations in intact peritoneal mast cells of the rat

    DEFF Research Database (Denmark)

    Knudsen, T; Berthelsen, Carsten; Johansen, Torben

    1990-01-01

    1. The inhibition by the divalent cations magnesium, barium and strontium and the trivalent ion lanthanum of the Na(+) -K+ pump in the plasma membrane of rat peritoneal mast cells was studied in pure mast cell populations by measurement of the ouabain-sensitive uptake of the radioactive potassium...... or more, but no decrease was observed after 2 min incubation when the cells are supposed to be loaded with sodium due to the cell isolation procedure. 3. Barium and strontium caused concentration-dependent decreases in the ouabain-sensitive K(+) -(86Rb+) -uptake of the cells but the ouabain......-resistant uptake was not changed. Half maximum decrease in the ouabain-sensitive K+(86Rb+)-uptake was observed with 1.8 mM magnesium, 1.2mM barium and 0.7 mM strontium. 4. The trivalent ion lanthanum blocked almost completely the ouabain-sensitive K+(86Rb+)-uptake at a concentration of 1 microM as does 1 m...

  19. Protective effects of Sapindus mukorossi Gaertn against fatty liver disease induced by high fat diet in rats

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Qiuxian [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Zhang, Qin; Xiao, Wei; Shao, Meng; Fan, Qin; Zhang, Hongwei [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Zou, Yukai [Department of Biology, Hong Kong Baptist University, Kowloon Tong (Hong Kong); Li, Xin [Cancer Research Institute of Southern Medical University, Guangzhou (China); Xu, Wenxue; Mo, Zhixian [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China); Cai, Hongbing, E-mail: chbing2008@163.com [School of Traditional Chinese Medicine, Southern Medical University, Guangzhou (China)

    2014-07-18

    Highlights: • AESM is able to prevent the elevation of ALT and AST, and to decreased LDL-C level. • AESM demonstrates the effects of down-regulating blood fat level and protecting liver. • AESM consistent with the efficacy of simvastatin in NAFLD. - Abstract: Objectives: Study the effects of alcohol extract of Sapindus mukorossi Gaertn (AESM) on the metabolism of blood fat, morphology of fenestrated liver sinusoidal endothelial cells (LSEC), and the ultrastructure of liver cells of the rats with non-alcoholic fatty liver disease (NAFLD). Methods: Divide SD rats into control group, model group, simvastatin (7.2 mg/kg) group, and S.mukorossi Gaertn group with high dosage (0.5 g/kg), moderate dosage (0.1 g/kg), and low dosage (0.05 g/kg). After feeding with fat-rich nutrients for 3 weeks and establishing the model of hepatic adipose, conduct intragastric administration and provide the rats with fat-rich nutrients at the same time. At the 43rd day, take blood sample and measure aminotransferase and different indexes of blood fat; take hepatic tissue for pathological section, and observe the hepatic morphological patterns under light microscope; obtain and fix the hepatic tissue after injecting perfusate into the body, and observe the changes of fenestrated LSEC under scanning electron microscope; observe the ultrastructure of liver cells under transmission electron microscope. Results: High-dosage alcohol extracts of S.mukorossi Gaertn can alleviate the AST, ALT, TC, TG, LDL, γ-GT, and ALP level, as well as raise the HDL and APN level in the serum of NAFLD-rat model. In addition, through the observation from light microscope and electron microscopes, the morphology of the hepatic tissue and liver cells as well as the recovery of the fenestrated LSEC in the treatment group has become normal. Conclusions: Alcohol extracts of S.mukorossi Gaertn can regulate the level of blood fat and improve the pathological changes of the hepatic tissues in NAFLD-rat model, which

  20. Manipulation of GABA in the ventral pallidum, but not the nucleus accumbens, induces intense, preferential, fat consumption in rats.

    Science.gov (United States)

    Covelo, Ignacio R; Patel, Zaid I; Luviano, Jennifer A; Stratford, Thomas R; Wirtshafter, David

    2014-08-15

    Injections of the GABAA antagonist bicuculline into the medial ventral pallidum (VPm) induce marked increases in food intake, but nothing is known about the way in which these injections alter the distribution of intake in a macronutrient selection situation. We investigated this topic by adapting rats to a diet containing independent sources of protein, carbohydrate and fat, and then examining the effects of intra-VPm bicuculline on diet selection. Under these conditions, bicuculline produced a massive, preferential increase in fat intake with subjects consuming a mean of 97% of their calories from fat. Furthermore, all treated subjects ate fat before any other macronutrient, suggesting that the animals' behavior was directed selectively toward this dietary component even before consumption had begun. Similar effects were not observed following food deprivation, which exerted its largest effect on carbohydrate intake. To compare the intra-VPm bicuculline response to that seen after activation of GABA receptors in the nucleus accumbens shell (AcbSh), a major source of projections to the VPm, we conducted similar experiments with intra-AcbSh injections of muscimol and baclofen. These injections also enhanced food intake, but did not reproduce the selective preference for fat seen after intra-VPm bicuculline. These experiments provide the first demonstration of preferential enhancement of fat intake following manipulations of a nonpeptide neurotransmitter. Since mean intakes of fat under baseline conditions and after deprivation tended to be lower than those of carbohydrates, it seems unlikely that the effects of intra-VPm bicuculline are related to the intrinsic "rewarding" properties of fat, but might rather reflect the induction of a state of "fat craving." Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Dietary supplementation with fish oil prevents high fat diet-induced enhancement of sensitivity to the locomotor stimulating effects of cocaine in adolescent female rats.

    Science.gov (United States)

    Serafine, Katherine M; Labay, Caitlin; France, Charles P

    2016-08-01

    Eating a diet high in fat can lead to obesity, chronic metabolic disease, and increased inflammation in both the central and peripheral nervous systems. Dietary supplements that are high in omega-3 polyunsaturated fatty acids can reduce or prevent these negative health consequences in rats. Eating high fat chow also increases the sensitivity of rats to behavioral effects of drugs acting on dopamine systems (e.g., cocaine), and this effect is greatest in adolescent females. The present experiment tested the hypothesis that dietary supplementation with fish oil prevents high fat chow induced increases in sensitivity to cocaine in adolescent female rats. Female Sprague-Dawley rats (post-natal day 25-27) ate standard laboratory chow (5.7% fat), high fat chow (34.4% fat), or high fat chow supplemented with fish oil (20% w/w). Cocaine dose dependently (1-17.8mg/kg) increased locomotion and induced sensitization across 6 weeks of once-weekly testing in all rats; however, these effects were greatest in rats eating high fat chow. Dietary supplementation with fish oil prevented enhanced locomotion and sensitization in rats eating high fat chow. There were no differences in inflammatory markers in plasma or the hypothalamus among dietary conditions. These results demonstrate that dietary supplementation with fish oil can prevent high fat diet-induced sensitization to cocaine, but they fail to support the view that these effects are due to changes in proinflammatory cytokines. These data add to a growing literature on the relationship between diet and drug abuse and extend the potential health benefits of fish oil to stimulant drug abuse prevention. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Science.gov (United States)

    Betz, Matthias J; Bielohuby, Maximilian; Mauracher, Brigitte; Abplanalp, William; Müller, Hans-Helge; Pieper, Korbinian; Ramisch, Juliane; Tschöp, Matthias H; Beuschlein, Felix; Bidlingmaier, Martin; Slawik, Marc

    2012-01-01

    Low-carbohydrate, high-fat (LC-HF) diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT) morphology and function following exposure to different LC-HF diets. Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein): control (64.3/16.7/19), LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5), LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1), and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7). Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience) and measurement of inducible thermogenesis in vivo (primary endpoint), explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by increased adaptive thermogenesis in BAT.

  3. Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats.

    Directory of Open Access Journals (Sweden)

    Matthias J Betz

    Full Text Available UNLABELLED: Low-carbohydrate, high-fat (LC-HF diets are popular for inducing weight loss in overweighed adults. Adaptive thermogenesis increased by specific effects of macronutrients on energy expenditure has been postulated to induce this weight loss. We studied brown adipose tissue (BAT morphology and function following exposure to different LC-HF diets. METHODS: Male Wistar rats were fed a standard control diet ad libitum or pair-fed isoenergetic amounts of three experimental diets for 4 weeks. The diets had the following macronutrient composition (% metabolizable energy: carbohydrates, fat, protein: control (64.3/16.7/19, LC-HF-low protein (LC-HF-LP, 1.7/92.8/5.5, LC-HF-normal-protein (LC-HF-NP, 2.2/78.7/19.1, and a high fat diet with carbohydrates ("high fat", 19.4/61.9/18.7. RESULTS: Body weight gain was reduced in all pair-fed experimental groups as compared to rats fed the control diet, with more pronounced effect in rats on LC-HF diets than on the high fat diet with carbohydrates. High fat diets increased expression of PGC1α and ADRB3 in BAT indicating higher SNS outflow. However, UCP1 mRNA expression and expression of UCP1 assessed by immunohistochemistry was not different between diet groups. In accordance, analysis of mitochondrial function in-vitro by extracellular flux analyser (Seahorse Bioscience and measurement of inducible thermogenesis in vivo (primary endpoint, explored by indirect calorimetry following norepinephrine injection, did not show significant differences between groups. Histology of BAT revealed increased lipid droplet size in rats fed the high-fat diet and both LC-HF diets. CONCLUSION: All experimental diets upregulated expression of genes which are indicative for increased BAT activity. However, the functional measurements in vivo revealed no increase of inducible BAT thermogenesis. This indicates that lower body weight gain with LC-HF diets and a high fat diet in a pair-feeding setting is not caused by

  4. Protective potentials of wild rice (Zizania latifolia (Griseb) Turcz) against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats.

    Science.gov (United States)

    Han, Shu-Fen; Zhang, Hong; Zhai, Cheng-Kai

    2012-07-01

    The study evaluates the protective potentials of wild rice against obesity and lipotoxicity induced by a high-fat/cholesterol diet in rats. In addition to the rats of low-fat diet group, others animals were exposed to a high-fat/cholesterol diet condition for 8 weeks. The city diet (CD) is based on the diet consumed by urban residents in modern China, which is rich in fat/cholesterol and high in carbohydrates from white rice and processed wheat starch. The chief source of dietary carbohydrates of wild rice diet (WRD) is from Chinese wild rice and other compositions are the same with CD. Rats fed CD showed elevated body and liver organ weights, lipid profiles, free fatty acids (FFA) and leptin comparable with rats fed high-fat/cholesterol diet (HFD) known to induce obesity and hyperlipidaemia in this species. However, rats consuming WRD suppressed the increase of lipid droplets accumulation, FFA, and leptin, and the decrease of lipoprotein lipase and adipose triglyceride lipase. Meanwhile, WRD prevented high-fat/cholesterol diet-induced elevation in protein expression of sterol-regulatory element binding protein-1c, and gene expression of fatty acid synthase and acetyl-CoA carboxylase. These findings indicate that wild rice as a natural food has the potentials of preventing obesity and liver lipotoxicity induced by a high-fat/cholesterol diet in rats. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Basis of aggravated hepatic lipid metabolism by chronic stress in high-fat diet-fed rat.

    Science.gov (United States)

    Han, Ying; Lin, Min; Wang, Xiaobin; Guo, Keke; Wang, Shanshan; Sun, Mengfei; Wang, Jiao; Han, Xiaoyu; Fu, Ting; Hu, Yang; Fu, Jihua

    2015-03-01

    Our previous study has demonstrated that long-term stress, known as chronic stress (CS), can aggravate nonalcoholic fatty liver disease in high-fat diet (HFD)-fed rat. In this study, we tried to figure out which lipid metabolic pathways were impacted by CS in the HFD-fed rat. Male Sprague-Dawley rats (6 weeks of age, n = 8 per group) were fed with either standard diet or HFD with or without CS exposure for 8 weeks. Hepatic lipidosis, biochemical, hormonal, and lipid profile markers in serum and liver, and enzymes involved in de novo lipogenesis (DNL) of fatty acids (FAs) and cholesterol, β-oxidation, FAs uptake, triglycerides synthesis, and very low-density lipoprotein (VLDL) assembly in the liver were detected. CS exposure reduced hepatic lipidosis but further elevated hepatic VLDL content with aggravated dyslipidemia in the HFD-fed rats. There was a synergism between CS and HFD on VLDL production and dyslipidemia. PCR and western blot assays showed that CS exposure significantly promoted hepatic VLDL assembly in rats, especially in the HFD-fed rats, while it had little impact on DNL, β-oxidation, FAs uptake, and triglycerides synthesis in the HFD-fed rats. This phenomenon was in accordance with elevated serum glucocorticoid level. The critical influence of CS exposure on hepatic lipid metabolism in the HFD-fed rats is VLDL assembly which might be regulated by glucocorticoid.

  6. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Data.gov (United States)

    U.S. Environmental Protection Agency — pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets. This dataset...

  7. Protective Effects of Tamarillo (Cyphomandra betacea Extract against High Fat Diet Induced Obesity in Sprague-Dawley Rats

    Directory of Open Access Journals (Sweden)

    Noor Atiqah Aizan Abdul Kadir

    2015-01-01

    Full Text Available This study aims to investigate the protective effect of Cyphomandra betacea in adult male Sprague-Dawley rats fed with high fat diet. Rats were fed on either normal chow or high fat diet for 10 weeks for obesity induction phase and subsequently received C. betacea extract at low dose (150 mg kg−1, medium dose (200 mg kg−1, or high dose (300 mg kg−1 or placebo via oral gavages for another 7 weeks for treatment phase. Treatment of obese rats with C. betacea extracts led to a significant decrease in total cholesterol and significant increase in HDL-C (p<0.05. Also there was a trend of positive reduction in blood glucose, triglyceride, and LDL-C with positive reduction of body weight detected in medium and high dosage of C. betacea extract. Interestingly, C. betacea treated rats showed positive improvement of superoxide dismutase (SOD activity and glutathione peroxidase (GPx activity along with a significant increase of total antioxidant status (TAS (p<0.05. Further, rats treated with C. betacea show significantly lower in TNF-α and IL-6 activities (p<0.05. This study demonstrates the potential use of Cyphomandra betacea extract for weight maintenance and complimentary therapy to suppress some obesity complication signs.

  8. Effects of medium-chain triglycerides on gluconeogenesis and ureagenesis in weaned rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Chitose Sugiyama

    2015-12-01

    Full Text Available We explored the effects of Medium-chain triglycerides (MCT on gluconeogenesis and ureagenesis in the liver of weaned male rats fed high fat, carbohydrate-free diets. The rats of three experimental groups and control were fed for 10 days. The diets were high fat, carbohydrate-free diets consisting either of a corn oil or MCT, and high protein carbohydrate-free diet and a control (high carbohydrate diet. The hepatic glucose-6-phosphatase (G6Pase activity increased in the experimental groups. Despite the elevated G6Pase activity in these groups, hepatic activities of glutamic alanine transaminase (GAT, pyruvate carboxylase (PC and arginase differed among the experimental groups. The HF-corn oil rats showed elevation of PC activity, but no elevation of GAT activity, and the lowest arginase activity among the three groups. The HF-MCT diet-fed rats showed higher GAT and arginase activities than the HF-corn oil group. In the HP diet-fed rats, GAT and arginase activities enhanced, PC did not.

  9. Testosterone replacement alters the cell size in visceral fat but not in subcutaneous fat in hypogonadal aged male rats as a late-onset hypogonadism animal model

    Directory of Open Access Journals (Sweden)

    Abdelhamed A

    2015-03-01

    Full Text Available Amr Abdelhamed,1,2 Shin-ichi Hisasue,1 Masato Shirai,3 Kazuhito Matsushita,1 Yoshiaki Wakumoto,1 Akira Tsujimura,1 Taiji Tsukamoto,4 Shigeo Horie1 1Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo, Japan; 2Department of Dermatology, Venereology and Andrology, Sohag University, Graduate School of Medicine, Sohag, Egypt; 3Department of Urology, Juntendo University Urayasu Hospital, Urayasu, Japan; 4Department of Urology, School of Medicine, Sapporo Medical University, Sapporo, Japan Background: Patients with late-onset hypogonadism (LOH benefit from testosterone replacement by improvement in the parameters of the metabolic syndrome, but fat cell morphology in these patients is still unclear. This study aims to determine the effect of testosterone replacement on the morphology of fat cells in subcutaneous and visceral adipose tissue and on erectile function in hypogonadal aged male rats as a model of LOH. Methods: Ten male Sprague-Dawley rats aged 20–22 months were randomly allocated to two groups, ie, aged male controls (control group, n=5 and aged males treated with testosterone replacement therapy (TRT group, n=5. Testosterone enanthate 25 mg was injected subcutaneously every 2 weeks for 6 weeks. At 6 weeks, the intracavernous pressure (ICP and mean arterial blood pressure (MAP ratio was assessed. Visceral and subcutaneous adipose tissue specimens were collected and analyzed using Image-J software. Results: Body weight at 2, 4, and 6 weeks after TRT was 800.0±35.4 g, 767.5±46.3 g, and 780±40.4 g, respectively (not statistically significant. The ICP/MAP ratio was 0.341±0.015 in the TRT group and 0.274±0.049 in the control group (not statistically significant. The median subcutaneous fat cell size was 4.85×103 (range 0.85–12.53×103 µm2 in the control group and 4.93×103 (range 6.42–19.7×103 µm2 in the TRT group (not statistically significant. In contrast, median visceral fat cell size was significantly

  10. A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats.

    Science.gov (United States)

    Kubant, R; Poon, A N; Sánchez-Hernández, D; Domenichiello, A F; Huot, P S P; Pannia, E; Cho, C E; Hunschede, S; Bazinet, R P; Anderson, G H

    2015-12-14

    Obesity is associated with increased consumption and preference for dietary fat. Experimental models of fat-induced obesity use either lard or vegetable shortening. Yet, there are no direct comparisons of these commonly used fat sources, or the influence of their fatty acid composition, on the development of diet-induced obesity. To compare the effects of lard and hydrogenated vegetable-shortening diets, which differ in their fatty acid composition, on weight gain and the development of obesity and insulin resistance in rats. Male Wistar rats were fed ad libitum for 14 weeks high-fat diets containing either (1) high vegetable fat (HVF, 60 kcal% from vegetable shortening) or (2) high lard fat (HLF, 60 kcal% from lard). Rats fed normal-fat (NF, 16 kcal% from vegetable shortening) diet served as control. Body weight, food intake, adipose tissue mass, serum 25[OH]D3, glucose, insulin and fatty acid composition of diets were measured. Rats fed either of the two high-fat diets had higher energy intake, weight gain and fat accretion than rats fed normal-fat diet. However, rats fed the HLF diet consumed more calories and gained more weight and body fat with greater increases of 32% in total (158.5±8.2 vs 120.2±6.6 g, P<0.05), 30% in visceral (104.4±5.2 vs 80.3±4.2 g, P<0.05) and 36% in subcutaneous fat mass (54.1±3.6 vs 39.9±3.1 g, P<0.05), compared with rats fed the HVF diet. Higher visceral adiposity was positively correlated with serum insulin (r=0.376, P<0.05) and homeostatic model assessment insulin resistance (r=0.391, P<0.05). We conclude that lard-based high-fat diets accentuate the increase in weight gain and the development of obesity and insulin resistance more than hydrogenated vegetable-shortening diets. These results further point to the importance of standardizing fatty acid composition and type of fat used in determining outcomes of consuming high-fat diets.

  11. Chronic high-dose creatine has opposing effects on depression-related gene expression and behavior in intact and sex hormone-treated gonadectomized male and female rats.

    Science.gov (United States)

    Allen, Patricia J; DeBold, Joseph F; Rios, Maribel; Kanarek, Robin B

    2015-03-01

    Creatine is an antioxidant, neuromodulator and key regulator of energy metabolism shown to improve depressive symptoms in humans and animals, especially in females. To better understand the pharmacological effects of creatine, we examined its influence on depression-related hippocampal gene expression and behaviors in the presence and absence of sex steroids. Sham-operated and gonadectomized male and female rats were fed chow alone or chow blended with either 2% or 4% w/w creatine monohydrate for five weeks before forced swim, open field, and wire suspension tests, or seven weeks total. Before supplementation, males were chronically implanted with an empty or a testosterone-filled (T) capsule (10-mm surface release), and females were administered progesterone (P, 250 μg), estradiol benzoate (EB, 2.5 μg), EB+P, or sesame oil vehicle weekly. Relative to non-supplemented shams, all hippocampal plasticity-related mRNAs measured, including brain-derived neurotrophic factor (BDNF), tyrosine kinase B, doublecortin, calretinin, and calbindin, were downregulated in sham males given 4% creatine, and BDNF, doublecortin, and calbindin mRNAs were downregulated in sham females given 4% creatine. In contrast, combined 4% creatine+T in castrates prevented downregulation of BDNF, doublecortin, and calretinin mRNAs. Similarly, combined 4% creatine+EB+P in ovariectomized females attenuated downregulation of BDNF and calbindin mRNA levels. Moderate antidepressant and anxiolytic-like behaviors were observed in EB+P-treated ovariectomized females fed creatine, with similar trends in T-treated castrates fed creatine. Altogether, these data show that chronic, high-dose creatine has opposing effects on neuroplasticity-related genes and depressive behavior in intact and gonadectomized male and female rats. The dose and schedule of creatine used negatively impacted hippocampal neuronal integrity in otherwise healthy brains, possibly through negative compensatory changes in energy

  12. High fat diet and food restriction differentially modify the behavioral effects of quinpirole and raclopride in rats.

    Science.gov (United States)

    Baladi, Michelle G; France, Charles P

    2009-05-21

    Nutritional status can impact dopamine systems in a manner that might be important to understanding possible common neurobiological mechanisms that mediate abnormal compulsive food (e.g., obesity) and drug taking. Limiting food intake, for example, can increase sensitivity to the behavioral effects of indirect-acting dopamine receptor agonists. Much less is known regarding possible diet-induced changes in sensitivity to direct-acting dopamine receptor drugs. The present study investigated the effects of a high fat diet and of food restriction on sensitivity of rats to the behavioral effects of a direct-acting dopamine receptor agonist and a dopamine receptor antagonist. Free access to high fat chow increased sensitivity to quinpirole-induced yawning without changing sensitivity to raclopride-induced catalepsy or quinpirole-induced hypothermia. Food restriction (10 g/day) decreased sensitivity to quinpirole-induced yawning and raclopride-induced catalepsy without affecting sensitivity to quinpirole-induced hypothermia. Free access to a standard chow restored sensitivity to the behavioral effects of both drugs in rats that were previously food-restricted but not in rats that previously ate a high fat diet. These data confirm that food restriction can decrease sensitivity to behavioral effects of direct-acting dopamine receptor drugs, they provide evidence (i.e., no change in hypothermic effects) indicating that these changes are not due to pharmacokinetic mechanisms, and they provide initial evidence showing enhanced sensitivity to behavioral effects of dopamine receptor drugs in rats eating a high fat diet. These changes in sensitivity of dopamine systems could be relevant to understanding the impact of nutrition on therapeutic and recreational drug use.

  13. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    OpenAIRE

    Tain, You-Lin; Sheen, Jiunn-Ming; Yu, Hong-Ren; Chen, Chih-Cheng; Tiao, Mao-Meng; Hsu, Chien-Ning; Lin, Yu-Ju; Kuo, Kuang-Che; Huang, Li-Tung

    2015-01-01

    Prenatal dexamethasone (DEX) exposure and high-fat (HF) intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS) technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg) or vehicle from gestational day 16 to 22. In ...

  14. Medium-chain triglyceride-rich enteral nutrition is more effective than low-fat enteral nutrition in rat colitis, but is equal in enteritis.

    Science.gov (United States)

    Tsujikawa, T; Ohta, N; Nakamura, T; Yasuoka, T; Satoh, J; Fukunaga, T; Itohi, A; Uda, K; Ihara, T; Andoh, A; Sasaki, M; Fujiyama, Y; Bamba, T

    2001-10-01

    Although enteral nutrition (EN) therapy for Crohn's disease has been confirmed to be as effective as steroid therapy, the precise mechanism responsible for the effects of EN remains unclear, although some of the therapeutic effects of EN are believed to be due to a low dietary fat content. In order to elucidate the influence of fat in EN, it is important to investigate not only the quantity of fat, but also the source of the fat. We compared two enteral nutritional formulae: Elental (Ajinomoto) (elemental diet; ED), which contains only 1.5% fat, provided as long-chain triglycerides (LCT), versus Twinline (Snow Brand Milk Products) (TL), which contains a high percentage of fat (20.4%), provided mainly as medium-chain triglycerides (MCT). These formulae were tested on rat enteritis and rat colitis induced by trinitrobenzene sulfonic acid (TNBS). Both ED and TL reduced the manifestations of enteritis. TL had a stronger anti-inflammatory effect than ED for colitis. TL also had nutritional advantages as compared with ED, as shown by the total serum protein in the TL group being significantly higher than that in the ED group. The results indicate that intraluminal MCT is suitable as a fat energy source during intestinal inflammation in rats. We suggest that Twinline may be more useful to improve nutritional status and to reduce the mucosal inflammation in rat colitis, but that Twinline is equal in effect to Elental for rat enteritis.

  15. Effects of high-fat diets with different carbohydrate-to-protein ratios on energy homeostasis in rats with impaired brain melanocortin receptor activity

    NARCIS (Netherlands)

    Morens, C.; Keijzer, M.; de Vries, K.; Scheurink, A; van Dijk, G

    Changes in dietary macronutrient composition and/or central nervous system neuronal activity can underlie obesity and disturbed fuel homeostasis. We examined whether switching rats from a diet with high carbohydrate content (HC; i.e., regular chow) to diets with either high fat (HF) or high fat/high

  16. Gut microbiota are linked to increased susceptibility to hepatic steatosis in low aerobic capacity rats fed an acute high fat diet

    Science.gov (United States)

    Poor aerobic fitness is linked to nonalcoholic fatty liver disease and increased all-cause mortality. We previously found that low capacity running (LCR) rats fed acute high fat diet (HFD; 45% kcal from fat) for 3 days resulted in positive energy balance and increased hepatic steatosis compared with...

  17. Kefir Peptides Prevent Hyperlipidemia and Obesity in High-Fat-Diet-Induced Obese Rats via Lipid Metabolism Modulation.

    Science.gov (United States)

    Tung, Yu-Tang; Chen, Hsiao-Ling; Wu, Hsin-Shan; Ho, Mei-Hsuan; Chong, Kowit-Yu; Chen, Chuan-Mu

    2018-02-01

    Obesity has reached epidemic proportions worldwide. Obesity is a complex metabolic disorder that is linked to numerous serious health complications with high morbidity. The present study evaluated the effects of kefir peptides on high fat diet (HFD)-induced obesity in rats. Kefir peptides markedly improved obesity, including body weight gain, inflammatory reactions and the formation of adipose tissue fat deposits around the epididymis and kidney, and adipocyte size. Treating high fat diet (HFD)-induced obese rats with kefir peptides significantly reduced the fatty acid synthase protein and increased the p-acetyl-CoA carboxylase protein to block lipogenesis in the livers. Kefir peptides also increased fatty acid oxidation by increasing the protein expressions of phosphorylated AMP-activated protein kinase, peroxisome proliferator-activated receptor-α, and hepatic carnitine palmitoyltransferase-1 in the livers. In addition, administration of kefir peptides significantly decreased the inflammatory response (TNF-α, IL-1β, and TGF-β) to modulate oxidative damage. These results demonstrate that kefir peptides treatment improves obesity via inhibition of lipogenesis, modulation of oxidative damage, and stimulation of lipid oxidation. Therefore, kefir peptides may act as an anti-obesity agent to prevent body fat accumulation and obesity-related metabolic diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. [Effect of jiaotai pill on pancreatic fat accumulation and islet cell apoptosis in rats with type 2 diabetes].

    Science.gov (United States)

    Zou, Xin; Liu, De-Liang; Lu, Fu-Er; Dong, Hui; Xu, Li-Jun; Luo, Yun-Huan; Wang, Kai-Fu

    2014-06-01

    In this study, the rat type 2 diabetes mellitus (T2DM) model was established through tail vein injection with low dose of streptozotocin (STZ) and high fat diet for 8 weeks, and then treated with Jiaotai Pill. The oral glucose tolerance test (OGTT), fasting serum insulin (FINS), free fatty acid(FFA) levels and blood lipid were assayed. HOMA-IR was calculated. Pancreatic pathology was performed. And pancreatic triglyceride (TG) content was examined by the lipid extraction method. Pancreatic islet cell apoptosis were detected by terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). According to the results, the model group showed abnormal OGTT, increased FINS, HOMA-IR, FFA, lipid disorder, obvious fat accumulation and significantly increased TG content in pancreatic tissues, and enhanced pancreatic islet cell apoptosis. Compared with the model group, the Jiaotai Pill group displayed improved OGTT, reduced FINS, HOMA-IR, FFA, recovered lipid disorder, decreased fat accumulation and significantly declined TG content in pancreatic tissues, and lowered pancreatic islet cell apoptosis. In summary, Jiaotai pill could effectively treat type 2 diabetes in rats. Its mechanism may be related to the reduction in pancreatic fat accumulation and islet cell apoptosis.

  19. Effects of chronic consumption of green tea on weight and body fat distribution of Wistar rats evaluated by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Renata Attademo, E-mail: luizronaldoa@yahoo.com.br [Instituto de Ensino e Pesquisa da Santa Casa, Belo Horizonte, MG (Brazil); Paim, Rebecca Rodrigues Bergamaschini; Pinheiro, Sergio Veloso Brant; Tavares Junior, Wilson Campos; Vasconcellos, Leonardo de Souza; Alberti, Luiz Ronaldo [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2017-05-15

    Purpose: To evaluate the effects of chronic consumption of green tea on body weight and distribution of visceral fat by Computed tomography in female Wistar rats. Methods: Wistar rats were divided into control group (n = 5), which received water and feed ad libitum, and green tea group (n = 8), in which water has been replaced by green tea. The animals were weighed weekly and Computed Tomography was used at the beginning (1{sup st} week) and end (18{sup th} week) of the experiment for evaluating the distribution of visceral fat. The animals were followed for 18 weeks. Results: There was no significant difference in body weight between the groups. However, there was significant difference in visceral fat area. The green tea group had less visceral fat area at the end of the experiment, 3.67 ± 1.2 cm 2 , while the control group showed an area of 6.25 ± 2.2 cm (p = 0.00). Conclusions: Chronic consumption of green tea leads to decreased visceral adipose tissue area. (author)

  20. Effects of chronic consumption of green tea on weight and body fat distribution of Wistar rats evaluated by computed tomography

    International Nuclear Information System (INIS)

    Raso, Renata Attademo; Paim, Rebecca Rodrigues Bergamaschini; Pinheiro, Sergio Veloso Brant; Tavares Junior, Wilson Campos; Vasconcellos, Leonardo de Souza; Alberti, Luiz Ronaldo

    2017-01-01

    Purpose: To evaluate the effects of chronic consumption of green tea on body weight and distribution of visceral fat by Computed tomography in female Wistar rats. Methods: Wistar rats were divided into control group (n = 5), which received water and feed ad libitum, and green tea group (n = 8), in which water has been replaced by green tea. The animals were weighed weekly and Computed Tomography was used at the beginning (1 st week) and end (18 th week) of the experiment for evaluating the distribution of visceral fat. The animals were followed for 18 weeks. Results: There was no significant difference in body weight between the groups. However, there was significant difference in visceral fat area. The green tea group had less visceral fat area at the end of the experiment, 3.67 ± 1.2 cm 2 , while the control group showed an area of 6.25 ± 2.2 cm (p = 0.00). Conclusions: Chronic consumption of green tea leads to decreased visceral adipose tissue area. (author)

  1. Body weight gain in rats by a high-fat diet produces chronodisruption in activity/inactivity circadian rhythm.

    Science.gov (United States)

    Bravo, Rafael; Cubero, Javier; Franco, Lourdes; Mesa, Mónica; Galán, Carmen; Rodríguez, Ana Beatriz; Jarne, Carlos; Barriga, Carmen

    2014-04-01

    In the last few decades, obesity has become one of the most important public health problems. Adipose tissue is an active endocrine tissue which follows a rhythmic pattern in its functions and may produce alterations in certain circadian rhythms. Our aim was to evaluate whether the locomotor activity circadian rhythm could be modified by a hypercaloric diet in rodents. Two groups were considered in the experiment: 16 rats were used as a control group and were fed standard chow; the other group comprised 16 rats fed a high-fat diet (35.8% fat, 35% glucides). The trial lasted 16 weeks. Body weight was measured every week, and a blood sample was extracted every two weeks to quantify triglyceride levels. The activity/inactivity circadian rhythm was logged through actimetry throughout the trial, and analysed using the DAS 24© software package. At the end of the experiment, the high-fat fed rats had obese-like body weights and high plasma triglyceride levels, and, compared with the control group, increased diurnal activity, decreased nocturnal activity, reductions in amplitude, midline estimating statistic of rhythm, acrophase and interdaily stability, and increases in intradaily variability of their activity rhythms. The results thus show how obesity can lead to symptoms of chronodisruption in the body similar to those of ageing.

  2. Grape juice concentrate modulates p16 expression in high fat diet-induced liver steatosis in Wistar rats.

    Science.gov (United States)

    Ferreira, Andressa Orlandeli; Gollücke, Andréa Pittelli Boiago; Noguti, Juliana; da Silva, Victor Hugo Pereira; Yamamura, Elsa Tiemi Hojo; Ribeiro, Daniel Araki

    2012-04-01

    The goal of this study was to investigate whether subchronic treatment with grape juice concentrate is able to protect the liver from high fat diet injury in rats. The effects of grape juice concentrate treatment on histopathological changes, and immunohistochemistry for p53, p16 and p21 were evaluated. Male Wistar rats (n = 18) were distributed into three groups: group 1: negative control; group 2: cholesterol at 1% (w/w) in their diet, treated during 5 weeks; and group 3: cholesterol at 1% in their chow during 5 weeks, and grape juice concentrate at 222 mg per day in their drinking-water in the last week only. The results pointed out that treatment with grape juice concentrate did not show remarkable differences regarding liver tissue in the cholesterol-exposed group when compared to group 2. However, grape juice concentrate was able to modulate p16 immunoexpression when compared to high fat diet group. p53 and p21 did not show any significant statistical differences among groups. Taken together, our results suggest that subchronic grape juice concentrate administration was able to modulate cell cycle control by downregulation of p16 immunoexpression in high fat diet-induced liver steatosis in rats.

  3. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose; Musatov, Serguei; Magnan, Christophe; Levin, Barry E

    2013-08-01

    Hypothalamic "metabolic-sensing" neurons sense glucose and fatty acids (FAs) and play an integral role in the regulation of glucose, energy homeostasis, and the development of obesity and diabetes. Using pharmacologic agents, we previously found that ~50% of these neurons responded to oleic acid (OA) by using the FA translocator/receptor FAT/CD36 (CD36). For further elucidation of the role of CD36 in neuronal FA sensing, ventromedial hypothalamus (VMH) CD36 was depleted using adeno-associated viral (AAV) vector expressing CD36 short hairpin RNA (shRNA) in rats. Whereas their neuronal glucosensing was unaffected by CD36 depletion, the percent of neurons that responded to OA was decreased specifically in glucosensing neurons. A similar effect was seen in total-body CD36-knockout mice. Next, weanling rats were injected in the VMH with CD36 AAV shRNA. Despite significant VMH CD36 depletion, there was no effect on food intake, body weight gain, or total carcass adiposity on chow or 45% fat diets. However, VMH CD36-depleted rats did have increased plasma leptin and subcutaneous fat deposition and markedly abnormal glucose tolerance. These results demonstrate that CD36 is a critical factor in both VMH neuronal FA sensing and the regulation of energy and glucose homeostasis.

  4. Improvement of thoracic aortic vasoreactivity by continuous and intermittent exercise in high-fat diet-induced obese rats.

    Science.gov (United States)

    Liu, Hongpeng; Yang, Zhen; Hu, Jian; Luo, Yan; Zhu, Lingqin; Yang, Huifang; Li, Guanghua

    2015-07-01

    The aim of the present study was to explore the effects of continuous and intermittent exercise on the thoracic aortic vasoreactivity and free radical metabolism in rats fed with a high-fat diet (HD). Sprague-Dawley (SD) rats were randomly divided into four groups (n=8, each group): Conventional diet (CD), HD, HD with continuous exercise (HCE) and HD with intermittent exercise (HIE). HCE rats swam once/day for 90 min; HIE rats performed swimming exercises 3 times/day, 30 min each time with an interval of 4 h. In these two groups, the exercise was conducted 5 days a week for 8 weeks. Rats in the CD and HD groups were fed without swimming training. At the end of the exercise, all the rats were sacrificed and the blood, thoracic aorta and myocardium were collected immediately. The thoracic aortic vasoreactivity, the plasma total cholesterol (TC), triglyceride (TG), high-density lipoprotein (HDL), low-density lipoprotein (LDL), superoxide dismutase (SOD), malondialdehyde (MDA) and vascular endothelial nitric oxide synthase (eNOS) gene expression were measured. Compared to the control group, in the HD group the enhanced contractile response of the thoracic aortic rings to noradrenaline (NA) was observed (Pimprove the activity of the thoracic aorta in obese rats, which may be associated with enhanced antioxidant enzyme activity and reduced free radical generating. Additionally, intermittent exercise is better than the continuous exercise in improving the thoracic aorta vasoreactivity.

  5. Piper sarmentosum is comparable to glycyrrhizic acid in reducing visceral fat deposition in adrenalectomised rats given dexamethasone.

    Science.gov (United States)

    Fairus, A; Ima Nirwana, S; Elvy Suhana, M R; Tan, M H; Santhana, R; Farihah, H S

    2013-01-01

    Visceral obesity may be due to the dysregulation of cortisol production or metabolism that lead to metabolic disease. In adipose tissue, the enzyme 11beta-hydroxysteroid dehydrogenase type 1 regulates cortisol metabolism (11beta-HSD1). A previous study showed an increase in the visceral fat deposition in adrenalectomised rats given intramuscular dexamethasone. Glycyrrhizic acid (GCA) has been shown to reduce fat deposition because it is a known potent inhibitor of the 11beta-HSD1 enzyme. Piper sarmentosum (PS) is an edible medicinal plant commonly used in Asia as traditional medicine for treating diabetes, hypertension and joint pains. In this study, we determined the effects of PS extract on the disposition and morphology of perirenal adipocytes of adrenalectomised rats given intramuscular dexamethasone. A total of 21 male Spraque Dawley rats were adrenalectomised and given intramuscular dexamethasone, 120 μg/kg/day. These rats were further divided into three groups: adrenalectomised control (ADR+Dexa; n=7), GCA-treated (ADR+Dexa+GCA; dose=240 mg/kg/day; n=7) and PS-treated (ADR+Dexa+PS; dose=125 mg/kg/day; n=7) groups. The various treatments were given via gastric gavage following 2 weeks of adrenalectomy. Treatment with PS extract for 8 weeks showed decreased deposition of perirenal adipocytes which was similar to the GCA-treated group. However, PS-treated rats had thinner adipocyte membrane compared with that of the GCA-treated group. In conclusion, PS extract decreased perirenal fat deposition and reduced the diameter of the adipocyte membrane. However, the mechanisms of action needed further study.

  6. Effect of Herbal Acupuncture with Sang-hwang(Phellinus linteus on High Fat Diet-induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Ji Hyun Kim

    2004-02-01

    Full Text Available Acupuncture has fairly good weight-reducing effect in treating simple obesity due to the neuroendocrine regulation. In this study, the anti-obesity effects of herbal acupuncture (HA with Sang-hwang (Phellinus linteus at Fuai (SP16 were investigated in the rat fed on high-fat (HF diet. Sang-hwang mushroom has been proven to have anti-carcinogenic effects and Sang-hwang extracts are highly effective in treatment and preventive treatment of AIDS, diabetes and high blood-pressure. To determine whether the Sang-hwang herbal acupuncture may have the anti-obesity effect, male Sprague-Dawley (4-wk-old rats were fed a HF diet for 5 wk, which produced significant weight gain compared to rats were fed a normal diet, and then herbal acupuncture were treated for 3 wk in HF diet group. The body weight, food consumption, food effeciency ratio (FER, body fat mass, plasma nitric oxide (NO were investigated in rats fed on normal diet, HF diet, and HF diet with HA (HF-diet-HA groups. NO has been proposed to be involved in the regulation of food intake. In addition, the expression of appetite peptides such as orexigenic peptide neuropeptide Y (NPY and the anorectic peptide cholecystokinin (CCK were observed in the hypothalamus. HF-HA group reduced body weight gain, FER, body fat contents and NO concentration compared to HF diet group. The expression of NPY was reduced in arcuate nucleus (ARC, and CCK was increased in the paraventricular nucleus (PVN after treatment of HA. In conclusion, Sang-hwang HA reduced adipocity, plasma NO and hypothalamic NPY, but increased CCK expression in the HF diet-induced obesity rat, therefore HA may have anti-obesity action through regulating body weight and appetite peptide of the central nervous system.

  7. Ileal Transposition Surgery Decreases Fat Mass and Improves Glucose Metabolism in Diabetic GK Rats: Possible Involvement of FGF21

    Directory of Open Access Journals (Sweden)

    Kemin Yan

    2018-03-01

    Full Text Available Objective: Ileal transposition (IT surgery has been reported to improve glucose and lipid metabolism, and fibroblast growth factor 21 (FGF21 is a powerful metabolic regulator. In the present study, we aimed to investigate the effects of IT surgery on metabolism and its possible relationship with the FGF21 signaling pathway in diabetic Goto-Kakizaki (GK rats.Methods: Ten-week-old male GK rats were subjected to IT surgery with translocation of a 10 cm ileal segment to the proximal jejunum (IT group or sham surgery without the ileum transposition (Sham-IT group. Rats in the no surgery group did not receive any surgical intervention. Six weeks later, body weight, fat mass, fasting blood glucose (FBG, and serum levels of FGF21 and leptin were measured. The expression of the FGF21 signaling pathway and white adipose tissue (WAT browning-related genes in the WAT and liver were evaluated by real-time reverse transcription polymerase chain reaction (RT-qPCR and western blot.Results: IT surgery significantly decreased the body weights and FBG levels and increased the insulin sensitivity of GK rats. The total WAT mass of the IT rats showed a 41.5% reduction compared with the Sham-IT rats, and serum levels of FGF21 and leptin of the IT rats decreased by 26.3 and 61.7%, respectively (all P < 0.05. The mRNA levels of fibroblast growth factor receptor 1 (FGFR1 and its co-receptor β klotho (KLB in the perirenal WAT (pWAT of the IT rats were 1.4- and 2.4-fold that of the Sham-IT rats, respectively, and the FGFR1 protein levels were 1.7-fold of the Sham-IT rats (all P < 0.05. In accordance with the pWAT, the protein levels of FGFR1 and KLB in the epididymal WAT (eWAT of the IT rats notably increased to 3.0- and 3.9-fold of the Sham-IT rats (P < 0.05. Furthermore, uncoupling protein 1 (UCP1 protein levels in the eWAT and pWAT of the IT rats also increased to 2.2- and 2.3-fold of the Sham-IT rats (P < 0.05. However, the protein levels of FGFR1 and KLB in the

  8. Emodin Prevents Intrahepatic Fat Accumulation, Inflammation and Redox Status Imbalance During Diet-Induced Hepatosteatosis in Rats

    Directory of Open Access Journals (Sweden)

    Valerio Nobili

    2012-02-01

    Full Text Available High-fat and/or high-carbohydrate diets may predispose to several metabolic disturbances including liver fatty infiltration (hepatosteatosis or be associated with necro-inflammation and fibrosis (steatohepatitis. Several studies have emphasized the hepatoprotective effect of some natural agents. In this study, we investigated the potential therapeutic effects of the treatment with emodin, an anthraquinone derivative with anti-oxidant and anti-cancer abilities, in rats developing diet-induced hepatosteatosis and steatohepatitis. Sprague-Dawley rats were fed a standard diet (SD for 15 weeks, or a high-fat/high-fructose diet (HFD/HF. After 5 weeks, emodin was added to the drinking water of some of the SD and HFD/HF rats. The experiment ended after an additional 10 weeks. Emodin-treated HFD/HF rats were protected from hepatosteatosis and metabolic derangements usually observed in HFD/HF animals. Furthermore, emodin exerted anti-inflammatory activity by inhibiting the HFD/HF-induced increase of tumor necrosis factor (TNF-α. Emodin also affected the hepatocytes glutathione homeostasis and levels of the HFD/HF-induced increase of glutathionylated/phosphorylated phosphatase and tensin homolog (PTEN. In conclusion, we demonstrated that a natural agent such as emodin can prevent hepatosteatosis, preserving liver from pro-inflammatory and pro-oxidant damage caused by HFD/HF diet. These findings are promising, proposing emodin as a possible hindrance to progression of hepatosteatosis into steatohepatitis.

  9. Maternal High-Fat and High-Salt Diets Have Differential Programming Effects on Metabolism in Adult Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    Stephanie A. Segovia

    2018-03-01

    Full Text Available Maternal high-fat or high-salt diets can independently program adverse cardiometabolic outcomes in offspring. However, there is a paucity of evidence examining their effects in combination on metabolic function in adult offspring. Female Sprague Dawley rats were randomly assigned to either: control (CD; 10% kcal from fat, 1% NaCl, high-salt (SD; 10% kcal from fat, 4% NaCl, high-fat (HF; 45% kcal from fat, 1% NaCl or high-fat and salt (HFSD; 45% kcal from fat, 4% NaCl diets 21 days prior to mating and throughout pregnancy and lactation. Male offspring were weaned onto a standard chow diet and were culled on postnatal day 130 for plasma and tissue collection. Adipocyte histology and adipose tissue, liver, and gut gene expression were examined in adult male offspring. HF offspring had significantly greater body weight, impaired insulin sensitivity and hyperleptinemia compared to CD offspring, but these increases were blunted in HFSD offspring. HF offspring had moderate adipocyte hypertrophy and increased expression of the pre-adipocyte marker Dlk1. There was a significant effect of maternal salt with increased hepatic expression of Dgat1 and Igfb2. Gut expression of inflammatory (Il1r1, Tnfα, Il6, and Il6r and renin–angiotensin system (Agtr1a, Agtr1b markers was significantly reduced in HFSD offspring compared to HF offspring. Therefore, salt mitigates some adverse offspring outcomes associated with a maternal HF diet, which may be mediated by altered adipose tissue morphology and gut inflammatory and renin–angiotensin regulation.

  10. Comparative evaluation of flavone from Mucuna pruriens and coumarin from Ionidium suffruticosum for hypolipidemic activity in rats fed with high fat diet.

    Science.gov (United States)

    Dharmarajan, Satheesh Kumar; Arumugam, Kottai Muthu

    2012-10-02

    The objective of the study is a comparative evaluation of flavone isolated from Mucuna pruriens and coumarin isolated from Ionidium suffruticosum was assessed for the hypolipidemic activity in rats fed with high fat diet. The acute toxicity study was found that flavone (M.pruriens) and coumarin (I.suffruticosum) are safe up to 100 mg/kg, so one tenth of this dose (10 mg/kg) was consider as a evaluation dose. High fat diet group of rats showed significant (ppruriens) and coumarin isolated from (I.suffruticosum) at the dose of 10mg/kg b.wt/day along with high fat diet significantly (ppruriens).

  11. (-)[125I]-iodopindolol, a new highly selective radioiodinated beta-adrenergic receptor antagonist: measurement of beta-receptors on intact rat astrocytoma cells

    International Nuclear Information System (INIS)

    Barovsky, K.; Brooker, G.

    1980-01-01

    (-)-Pindolol, one of the most potent beta-adrenergic receptor antagonists, was radioiodinated using chloramine-T oxidation of carrier-free Na 125I and separated from unreacted pindolol to yield 2200 Ci/mmole (-)-[125I]-iodopindolol ((-)-[125I]-IPin). Mass and ultraviolet spectra confirmed that the iodination occurred on the indole ring, presumably at the 3 position. The binding of radiolabeled (-)-[125I]-IPin to beta-adrenergic receptors has been studied using intact C6 rat astrocytoma cells (2B subclone) grown in monolayer cultures. Binding of (-)[125IPin was saturable with time and concentration. Using 13 pM (-)-[125I]IPin, binding equilibrium was reached in 90 min at 21-22 degrees C. The reverse rate constant was 0.026 min-1 at 21 0 C. Specific binding (expressed as 1 microM(-)-propranolol displaceable counts) of (-)-[125I]-IPin was 95% of total binding. Scatchard analysis of (-)-[125I]-I]Pin binding revealed approximately 4300 receptors/cell and a dissociation constant of 30 pM. This was in excellent agreement with the kinetically determined dissociation constant of 35 pM. Displacement by propranolol and isoproterenol showed that (-)-[125I]-IPin binding sites were pharmacologically and stereospecifically selective. These results indicate that (-)-[125I]-IPin, a pure (-)-stereoisomer, high specific activity radioligand, selectively binds to beta-adrenergic receptors in whole cells with a high percentage of specific binding and should therefore be useful in the study and measurement of cellular beta-adrenergic receptors

  12. Low-carbohydrate, high-fat diets have sex-specific effects on bone health in rats

    DEFF Research Database (Denmark)

    Zengin, Ayse; Kropp, Benedikt; Chevalier, Yan

    2016-01-01

    the effects in female rats remain unknown. Therefore, we investigated whether sex-specific effects of LC-HF diets on bone health exist. METHODS: Twelve-week-old male and female Wistar rats were isoenergetically pair-fed either a control diet (CD), "Atkins-style" protein-matched diet (LC-HF-1), or ketogenic......PURPOSE: Studies in humans suggest that consumption of low-carbohydrate, high-fat diets (LC-HF) could be detrimental for growth and bone health. In young male rats, LC-HF diets negatively affect bone health by impairing the growth hormone/insulin-like growth factor axis (GH/IGF axis), while...... low-protein diet (LC-HF-2) for 4 weeks. In females, microcomputed tomography and histomorphometry analyses were performed on the distal femur. Sex hormones were analysed with liquid chromatography-tandem mass spectrometry, and endocrine parameters including GH and IGF-I were measured by immunoassay...

  13. Rats Fed a Diet Rich in Fats and Sugars Are Impaired in the Use of Spatial Geometry.

    Science.gov (United States)

    Tran, Dominic M D; Westbrook, R Frederick

    2015-12-01

    A diet rich in fats and sugars is associated with cognitive deficits in people, and rodent models have shown that such a diet produces deficits on tasks assessing spatial learning and memory. Spatial navigation is guided by two distinct types of information: geometrical, such as distance and direction, and featural, such as luminance and pattern. To clarify the nature of diet-induced spatial impairments, we provided rats with standard chow supplemented with sugar water and a range of energy-rich foods eaten by people, and then we assessed their place- and object-recognition memory. Rats exposed to this diet performed comparably with control rats fed only chow on object recognition but worse on place recognition. This impairment on the place-recognition task was present after only a few days on the diet and persisted across tests. Critically, this spatial impairment was specific to the processing of distance and direction. © The Author(s) 2015.

  14. Enhanced flavor-nutrient conditioning in obese rats on a high-fat, high-carbohydrate choice diet.

    Science.gov (United States)

    Wald, Hallie S; Myers, Kevin P

    2015-11-01

    Through flavor-nutrient conditioning rats learn to prefer and increase their intake of flavors paired with rewarding, postingestive nutritional consequences. Since obesity is linked to altered experience of food reward and to perturbations of nutrient sensing, we investigated flavor-nutrient learning in rats made obese using a high fat/high carbohydrate (HFHC) choice model of diet-induced obesity (ad libitum lard and maltodextrin solution plus standard rodent chow). Forty rats were maintained on HFHC to induce substantial weight gain, and 20 were maintained on chow only (CON). Among HFHC rats, individual differences in propensity to weight gain were studied by comparing those with the highest proportional weight gain (obesity prone, OP) to those with the lowest (obesity resistant, OR). Sensitivity to postingestive food reward was tested in a flavor-nutrient conditioning protocol. To measure initial, within-meal stimulation of flavor acceptance by post-oral nutrient sensing, first, in sessions 1-3, baseline licking was measured while rats consumed grape- or cherry-flavored saccharin accompanied by intragastric (IG) water infusion. Then, in the next three test sessions they received the opposite flavor paired with 5 ml of IG 12% glucose. Finally, after additional sessions alternating between the two flavor-infusion contingencies, preference was measured in a two-bottle choice between the flavors without IG infusions. HFHC-OP rats showed stronger initial enhancement of intake in the first glucose infusion sessions than CON or HFHC-OR rats. OP rats also most strongly preferred the glucose-paired flavor in the two-bottle choice. These differences between OP versus OR and CON rats suggest that obesity is linked to responsiveness to postoral nutrient reward, consistent with the view that flavor-nutrient learning perpetuates overeating in obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Dietary creatine supplementation lowers hepatic triacylglycerol by increasing lipoprotein secretion in rats fed high-fat diet.

    Science.gov (United States)

    da Silva, Robin P; Leonard, Kelly-Ann; Jacobs, René L

    2017-12-01

    Recent studies have shown that dietary creatine supplementation can prevent lipid accumulation in the liver. Creatine is a small molecule that plays a large role in energy metabolism, but since the enzyme creatine kinase is not present in the liver, the classical role in energy metabolism does not hold in this tissue. Fat accumulation in the liver can lead to the development of nonalcoholic fatty liver disease (NAFLD), a progressive disease that is prevalent in humans. We have previously reported that creatine can directly influence lipid metabolism in cell culture to promote lipid secretion and oxidation. Our goal in the current study was to determine whether similar mechanisms that occur in cell culture were present in vivo. We also sought to determine whether dietary creatine supplementation could be effective in reversing steatosis. Sprague-Dawley rats were fed a high-fat diet or a high-fat diet supplemented with creatine for 5 weeks. We found that rats supplemented with creatine had significantly improved rates of lipoprotein secretion and alterations in mitochondrial function that were consistent with greater oxidative capacity. We also find that introducing creatine into a high-fat diet halted hepatic lipid accumulation in rats with fatty liver. Our results support our previous report that liver cells in culture with creatine secrete and oxidize more oleic acid, demonstrating that dietary creatine can effectively change hepatic lipid metabolism by increasing lipoprotein secretion and oxidation in vivo. Our data suggest that creatine might be an effective therapy for NAFLD. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. High-fat diet enhanced retinal dehydrogenase activity, but suppressed retinol dehydrogenase activity in liver of rats

    Directory of Open Access Journals (Sweden)

    Mian Zhang

    2015-04-01

    Full Text Available Evidence has shown that hyperlipidemia is associated with retinoid dyshomeostasis. In liver, retinol is mainly oxidized to retinal by retinol dehydrogenases (RDHs and alcohol dehydrogenases (ADHs, further converted to retinoic acid by retinal dehydrogenases (RALDHs. The aim of this study was to investigate whether high-fat diet (HFD induced hyperlipidemia affected activity and expression of hepatic ADHs/RDHs and RALDHs in rats. Results showed that retinol levels in liver, kidney and adipose tissue of HFD rats were significantly increased, while plasma retinol and hepatic retinal levels were markedly decreased. HFD rats exhibited significantly downregulated hepatic ADHs/RDHs activity and Adh1, Rdh10 and Dhrs9 expression. Oppositely, hepatic RALDHs activity and Raldh1 expression were upregulated in HFD rats. In HepG2 cells, treatment of HFD rat serum inhibited ADHs/RDHs activity and induced RALDHs activity. Among the tested abnormally altered components in HFD rat serum, cholesterol reduced ADHs/RDHs activity and RDH10 expression, while induced RALDHs activity and RALDH1 expression in HepG2 cells. Contrary to the effect of cholesterol, cholesterol-lowering agent pravastatin upregulated ADHs/RDHs activity and RDH10 expression, while suppressed RALDHs activity and RALDH1 expression. In conclusion, hyperlipidemia oppositely altered activity and expression of hepatic ADHs/RDHs and RALDHs, which is partially due to the elevated cholesterol levels.

  17. Effects of 3,5-diiodo-L-thyronine on the liver of high fat diet fed rats

    Directory of Open Access Journals (Sweden)

    Marco Giammanco

    2016-06-01

    Full Text Available Experimental studies have highlighted that the administration of 3,5-diiodo-L-thyronine (T2 to rats fed diets rich in lipids induces a decrease of cholesterol and triglycerides plasma levels and body weight (BW without inducing liver steatosis. On the basis of these observations we carried out some experimental in vivo studies to assess the effects of multiple high doses of T2 on the pituitary thyroid axis of rats fed diet rich in lipids. Fifteen male Wistar rats were divided into three groups of five animals each. The first group (N group received standard diet, the second group was fed with a high fat diet (HFD group, while the third group (HFDT2 group was additionally given T2 intraperitoneally at a dose level of 70 µg/100 g of BW three times a week up to four weeks. At the end of the treatment, blood sample from each animal was collected, centrifuged and the serum was stored at -20°C. The serum concentrations of thyroidstimulating hormone (TSH, triiodothyronine, thyroxine, adrenocorticotropic hormone, triglycerides, cholesterol, glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase were then determined. In addition, liver of rats was examined by histology in order to assess the presence and degree of steatosis. The administration of T2 to rats fed with a high fat diet suppressed TSH secretion (P=0.013 while no steatosis was observed in the liver of these animals. Our data show that multiple administrations of high doses of T2 to rats fed diets rich in lipid inhibit TSH secretion and prevent the onset of liver steatosis in these animals.

  18. Potential impact of Paracentrotus lividus extract on diabetic rat models induced by high fat diet/streptozotocin

    Directory of Open Access Journals (Sweden)

    Amel M. Soliman

    2016-10-01

    Full Text Available Antioxidant therapy has been thought to be effectual for the prevention and treatment of various diseases including diabetes. Therefore, the present study was designed to investigate the potency of Paracentrotus lividus extract (PLE for alleviating the complications that resulted after induction of the diabetic rat models (T1DM and T2DM using high fat diet (HFD/streptozotocin (STZ. Thirty six male Wistar albino rats were assigned into normal control, T1DM and T2DM untreated, and PLE treated diabetic rat groups. Induction of T1DM was performed by streptozotocin injection (60 mg/kg of dissolved in sodium citrate buffer, 0.1 mol/L, i.p. T2DM induction through 4 weeks of high fat diet (HFD intervention was followed by a single low dosage of STZ (30 mg/kg dissolved in 0.1 mol/L citrate buffer at pH 4.5, i.p. Both diabetic rat models showed a significant increase in serum; levels of fasting glucose, total protein, bilirubin, activities of arginase, transaminases (AST and ALT, alkaline phosphatase (ALP, γ glutamyl transferase (GGT, lipid profile parameters, and liver malondialdehyde (MDA. However, T1DM and T2DM rats have decreased levels of serum insulin, and liver glucose 6 phosphate dehydrogenase (G6PD, glutathione reduced (GSH, nitric oxide (NO, and antioxidant enzymes. Furthermore, the present study showed the hypoglycemic, hypolipidemic, and antioxidant potency of the PLE as confirmed by its ability for ameliorating most of the alterations caused in the studied parameters of diabetic rats. In conclusion, PLE may be useful as therapy against oxidative stress and liver damage in both types of diabetes mellitus and is therefore recommended for further studies.

  19. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Rahman, Md Mizanur; Alam, Mohammad Nazmul; Ulla, Anayt; Sumi, Farzana Akther; Subhan, Nusrat; Khan, Trisha; Sikder, Bishwajit; Hossain, Hemayet; Reza, Hasan Mahmud; Alam, Md Ashraful

    2017-08-14

    Cardamom is a well-known spice in Indian subcontinent, used in culinary and traditional medicine practices since ancient times. The current investigation was untaken to evaluate the potential benefit of cardamom powder supplementation in high carbohydrate high fat (HCHF) diet induced obese rats. Male Wistar rats (28 rats) were divided into four different groups such as Control, Control + cardamom, HCHF, HCHF + cardamom. High carbohydrate and high fat (HCHF) diet was prepared in our laboratory. Oral glucose tolerance test, organs wet weight measurements and oxidative stress parameters analysis as well as liver marker enzymes such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) activities were assayed on the tissues collected from the rats. Plasma lipids profiles were also measured in all groups of animals. Moreover, histological staining was also performed to evaluate inflammatory cells infiltration and fibrosis in liver. The current investigation showed that, HCHF diet feeding in rats developed glucose intolerance and increased peritoneal fat deposition compared to control rats. Cardamom powder supplementation improved the glucose intolerance significantly (p > 0.05) and prevented the abdominal fat deposition in HCHF diet fed rats. HCHF diet feeding in rats also developed dyslipidemia, increased fat deposition and inflammation in liver compared to control rats. Cardamom powder supplementation significantly prevented the rise of lipid parameters (p > 0.05) in HCHF diet fed rats. Histological assessments confirmed that HCHF diet increased the fat deposition and inflammatory cells infiltration in liver which was normalized by cardamom powder supplementation in HCHF diet fed rats. Furthermore, HCHF diet increased lipid peroxidation, decreased antioxidant enzymes activities and increased advanced protein oxidation product level significantly (p > 0.05) both in plasma and liver tissue which were modulated by

  20. High fat diet-induced non alcoholic fatty liver disease in rats is associated with hyperhomocysteinemia caused by down regulation of the transsulphuration pathway

    Directory of Open Access Journals (Sweden)

    Napolitano Mariarosaria

    2011-04-01

    Full Text Available Abstract Background Hyperhomocysteinemia (HHcy causes increased oxidative stress and is an independent risk factor for cardiovascular disease. Oxidative stress is now believed to be a major contributory factor in the development of non alcoholic fatty liver disease, the most common liver disorder worldwide. In this study, the changes which occur in homocysteine (Hcy metabolism in high fat-diet induced non alcoholic fatty liver disease (NAFLD in rats were investigated. Methods and results After feeding rats a standard low fat diet (control or a high fat diet (57% metabolisable energy as fat for 18 weeks, the concentration of homocysteine in the plasma was significantly raised while that of cysteine was lowered in the high fat as compared to the control diet fed animals. The hepatic activities of cystathionine β-synthase (CBS and cystathionine γ-lyase (CGS, the enzymes responsible for the breakdown of homocysteine to cysteine via the transsulphuration pathway in the liver, were also significantly reduced in the high fat-fed group. Conclusions These results indicate that high fat diet-induced NAFLD in rats is associated with increased plasma Hcy levels caused by down-regulation of hepatic CBS and CGL activity. Thus, HHcy occurs at an early stage in high fat diet-induced NAFLD and is likely to contribute to the increased risk of cardiovascular disease associated with the condition.

  1. The effects of chromium complex and level on glucose metabolism and memory acquisition in rats fed high-fat diet.

    Science.gov (United States)

    Sahin, Kazim; Tuzcu, Mehmet; Orhan, Cemal; Agca, Can A; Sahin, Nurhan; Guvenc, Mehmet; Krejpcio, Zbigniew; Staniek, Halina; Hayirli, Armagan

    2011-11-01

    Conditions in which glucose metabolism is impaired due to insulin resistance are associated with memory impairment. It was hypothesized that supplemental chromium (Cr) may alleviate insulin resistance in type 2 diabetes and consequently improve memory acquisition, depending upon its source and level. In a complete randomized design experiment, male Wistar rats (n=60; weighing 200-220 g) were fed either normal (8%, normal diet (ND)) or high-fat (40%, high-fat diet (HFD)) diet and supplemented with Cr as either chromium-glycinate (CrGly) or chromium-acetate (CrAc) at doses of 0, 40, or 80 μg/kg body weight (BW) via drinking water from 8 to 20 weeks of age. Feeding HFD induced type 2 diabetes, as reflected by greater glucose/insulin ratio (2.98 vs. 2.74) comparing to feeding ND. Moreover, HFD rats had greater BW (314 vs. 279 g) and less serum (53 vs. 68 μg/L) and brain (14 vs. 24 ng/g) Cr concentrations than ND rats. High-fat diet caused a 32% reduction in expressions of glucose transporters 1 and 3 (GLUTs) in brain tissue and a 27% reduction in mean percentage time spent in the target quadrant and a 38% increase in spatial memory acquisition phase (SMAP) compared with ND. Compared with supplemental Cr as CrAc, CrGly was more effective to ameliorate response variables (i.e., restoration of tissue Cr concentration, enhancement of cerebral GLUTs expressions, and reduction of the glucose/insulin ratio and SMAP) in a dose-response manner, especially in rats fed HFD. Supplemental Cr as CrGly may have therapeutic potential to enhance insulin action and alleviate memory acquisition in a dose-dependent manner, through restoring tissue Cr reserve and enhancing cerebral GLUTs expressions.

  2. Antihypertensive Effect of Radix Paeoniae Alba in Spontaneously Hypertensive Rats and Excessive Alcohol Intake and High Fat Diet Induced Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Chen Su-Hong

    2015-01-01

    Full Text Available Radix Paeoniae Alba (Baishao, RPA has long been used in traditional Chinese medicine formulation to treat hypertension by repression the hyperfunction of liver. However, whether the RPA itself has the antihypertensive effect or not is seldom studied. This study was to evaluate the protective effect of RPA on hypertensive rats. Alcohol in conjunction with a high fat diet- (ACHFD- induced hypertensive rats and spontaneously hypertensive rats (SHR was constantly received either RPA extract (25 or 75 mg/kg or captopril (15 mg/kg all along the experiments. As a result, RPA extract (75 mg/kg could significantly reduce systolic blood pressure of both ACHFD-induced hypertensive rats and SHR after 9-week or 4-week treatment. In ACHFD-induced hypertensive rats, the blood pressure was significantly increased and the lipid profiles in serum including triglyceride, total cholesterol, LDL-cholesterol, and HDL-cholesterol were significantly deteriorated. Also, hepatic damage was manifested by a significant increase in alanine transaminase (ALT and aspartate transaminase (AST in serum. The RPA extract significantly reversed these parameters, which revealed that it could alleviate the liver damage of rats. In SHR, our result suggested that the antihypertensive active of RPA extract may be related to its effect on regulating serum nitric oxide (NO and endothelin (ET levels.

  3. Effect of High Fat and High Sugar Diet on Glucose Tolerance, Insulin Response to Glucose Load and Insulin Sensitivity in Rats

    OpenAIRE

    岡﨑, 悟

    1987-01-01

    To investigate the precipitating effects of the westernized diet on diabetes mellitus, glucose tolerance and insulin response to oral glucose load (1.5g/kg body weight) and insulin sensitivity to exogenous insulin (0.2U/kg) were studied in rats fed an experimental diet for 8 weeks. Four experimental diets were used : low fat-no sugar diet (energy ratio of 10% fat, 70% starch, a model of the traditional Japanese diet), high fat-high sugar diet (40% fat, 20% starch, 20% sugar, a model of the we...

  4. Limited Access to a High Fat Diet Alters Endocannabinoid Tone in Female Rats

    Directory of Open Access Journals (Sweden)

    Valentina Satta

    2018-02-01

    Full Text Available Emerging evidence suggest an impaired endocannabinoid activity in the pathophysiology of binge eating disorder (BED. Herein, we investigated whether endocannabinoid tone could be modified as a consequence of dietary-induced binge eating in female rats. For this purpose, brain levels of the endocannabinoids anandamide (AEA and 2-arachidonoyl glycerol (2-AG, as well as two endocannabinoid-like lipids, oleoylethanolamide (OEA and palmitoylethanolamide (PEA, were assessed in different brain areas involved in the hedonic feeding (i.e., prefrontal cortex, nucleus accumbens, amygdala, hippocampus, and hypothalamus. The brain density of cannabinoid type-1 receptors (CB1 was also evaluated. Furthermore, we determined plasma levels of leptin, ghrelin, and corticosterone hormones, which are well-known to control the levels of endocannabioids and/or CB1 receptors in the brain. To induce binge eating behavior, rats were subject to an intermittent and limited access to a high fat diet (HFD (margarine. Three experimental groups were used, all with ad libitum access to chow: control (CTRL, with no access to margarine; low restriction (LR, with 2 h margarine access 7 days/week; high restriction (HR, with 2 h margarine access 3 days/week. Bingeing was established when margarine intake in the HR group exceeded that of the LR group. Our results show that, compared to CTRL, AEA significantly decreased in the caudate putamen, amygdala, and hippocampus of HR group. In contrast, 2-AG significantly increased in the hippocampus while OEA decreased in the hypothalamus. Similar to the HR group, AEA and OEA decreased respectively in the amygdala and hypothalamus and 2-AG increased in the hippocampus of LR group. Moreover, LR group also had AEA decreased in the prefrontal cortex and increased in the nucleus accumbens. In both groups we found the same reduction of CB1 receptor density in the prefrontal cortex compared to CTRL. Also, LR and HR groups showed alterations in both

  5. Cardiovascular and metabolic consequences of the association between chronic stress and high-fat diet in rats.

    Science.gov (United States)

    Simas, Bruna B; Nunes, Everson A; Crestani, Carlos C; Speretta, Guilherme F

    2018-05-01

    Obesity and chronic stress are considered independent risk factors for the development of cardiovascular diseases and changes in autonomic system activity. However, the cardiovascular consequences induced by the association between high-fat diet (HFD) and chronic stress are not fully understood. We hypothesized that the association between HFD and exposure to a chronic variable stress (CVS) protocol for four weeks might exacerbate the cardiovascular and metabolic disturbances in rats when compared to these factors singly. To test this hypothesis, male Wistar rats were divided into four groups: control-standard chow diet (SD; n = 8); control-HFD (n = 8); CVS-SD (n = 8); and CVS-HFD (n = 8). The CVS consisted of repeated exposure of the rats to different inescapable and unpredictable stressors (restraint tress; damp sawdust, cold, swim stress and light cycle inversion). We evaluated cardiovascular function, autonomic activity, dietary intake, adiposity and metabolism. The HFD increased body weight, adiposity and blood glucose concentration (∼15%) in both control and CVS rats. The CVS-HFD rats showed decreased insulin sensitivity (25%) compared to CVS-SD rats. The control-HFD and CVS-HFD rats presented increased intrinsic heart rate (HR) values (∼8%). CVS increased cardiac sympathetic activity (∼65%) in both SD- and HFD-fed rats. The HFD increased basal HR (∼10%). Blood pressure and baroreflex analyzes showed no differences among the experimental groups. In conclusion, the present data indicate absence of interaction on autonomic imbalance evoked by either CVS or HFD. Additionally, HFD increased HR and evoked metabolic disruptions which are independent of stress exposure.

  6. Plantago maxima leaves extract inhibits adipogenic action of a high-fat diet in female Wistar rats.

    Science.gov (United States)

    Tinkov, Alexey A; Nemereshina, Olga N; Popova, Elizaveta V; Polyakova, Valentina S; Gritsenko, Viktor A; Nikonorov, Alexandr A

    2014-04-01

    The primary objective of this study is to investigate the content of biologically active compounds producing an antioxidant effect in Plantago maxima and their influence on main mechanisms of dietary obesity development. Biologically active compounds in P. maxima were tested using paper chromatography. In in vivo experiment, high-fat-fed Wistar rats obtained P. maxima water extract for 3 months. Morphometric parameters, weight gain, serum adipokines, and cytokines, as well as oxidative stress biomarkers in rats’ tissues were evaluated. Gut microflora was also examined. Plantago maxima leaves used in the experiment contained significant amount of flavonoids, iridoids, phenol carboxylic acids, and tannins and ascorbic acid. Our in vivo experiment data demonstrate that P. maxima water extract prevents excessive adiposity in a diet-induced model. P. maxima consumption reduced serum leptin (twofold), macrophage chemoattractant protein-1 (sevenfold), tumornecrosis factor-α (25%), and interleukine-6 (26%) levels. P. maxima water extract decreased adipose tissue oxidative stress biomarkers in rats fed a high-fat diet. In addition, increased bacterial growth in the diet-induced obesity model was reversed by the P. maxima extract treatment. Plantago maxima water extract possessed antiadipogenic, antidiabetic, antiinflammatory, antioxidant activity, and normalized gut microflora in a rat model of diet-induced excessive adiposity due to a high content of biologically active compounds.

  7. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    Science.gov (United States)

    Lecomte, Virginie; Kaakoush, Nadeem O; Maloney, Christopher A; Raipuria, Mukesh; Huinao, Karina D; Mitchell, Hazel M; Morris, Margaret J

    2015-01-01

    The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD) at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks) to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (Pdevelopment of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  8. The Effect of Exercise on the Skeletal Muscle Phospholipidome of Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Jong Sam Lee

    2010-10-01

    Full Text Available The aim of this study was to examine the effect of endurance training on skeletal muscle phospholipid molecular species from high-fat fed rats. Twelve female Sprague-Dawley rats were fed a high-fat diet (78.1% energy. The rats were randomly divided into two groups, a sedentary control group and a trained group (125 min of treadmill running at 8 m/min, 4 days/wk for 4 weeks. Forty-eight hours after their last training bout phospholipids were extracted from the red and white vastus lateralis and analyzed by electrospray-ionization mass spectrometry. Exercise training was associated with significant alterations in the relative abundance of a number of phospholipid molecular species. These changes were more prominent in red vastus lateralis than white vastus lateralis. The largest observed change was an increase of ~30% in the abundance of 1-palmitoyl-2-linoleoyl phosphatidylcholine ions in oxidative fibers. Reductions in the relative abundance of a number of phospholipids containing long-chain n-3 polyunsaturated fatty acids were also observed. These data suggest a possible reduction in phospholipid remodeling in the trained animals. This results in a decrease in the phospholipid n-3 to n-6 ratio that may in turn influence endurance capacity.

  9. Activation of the central melanocortin system in rats persistently reduces body and fat mass independently of caloric reduction.

    Science.gov (United States)

    Côté, Isabelle; Green, Sara M; Morgan, Drake; Carter, Christy S; Tümer, Nihal; Scarpace, Philip J

    2018-03-01

    Recent evidence indicate that melanotan II (MTII) reduces body mass independently of caloric reduction. Because MTII induces a transient hypophagia, caloric reduction is still considered a primary mechanism for MTII-mediated body mass loss. To examine the contribution of caloric reduction to long-term body mass loss in response to MTII, we centrally infused MTII or vehicle in ad libitum fed (MTII and Control) animals in comparison with a group of animals that were pair-fed (PF) to the MTII group. Food intake and body mass were recorded daily, and body composition was assessed biweekly. The present study demonstrates that central MTII-mediated body mass loss is only partially mediated by caloric restriction, and the long-term body mass loss is independent of the initial hypophagia. More importantly, central MTII administration induced a rapid but sustained fat mass loss, independently of caloric reduction. MTII-treated animals preserved their lean/fat mass ratio throughout the study, whereas PF animals underwent a transient reduction of lean/fat mass ratio that was only normalized when food intake returned to Control level. In summary, it can be concluded that activation of the central melanocortin system in rats persistently reduces body and fat mass independently of caloric reduction.

  10. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Bietiger, William; Pinget, Michel; Jeandidier, Nathalie; Maillard-Pedracini, Elisa; Schini-Kerth, Valérie; Sigrist, Séverine

    2014-01-01

    Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.

  11. Comparative evaluation of the hypolipidemic effects of coconut water and lovastatin in rats fed fat-cholesterol enriched diet.

    Science.gov (United States)

    Sandhya, V G; Rajamohan, T

    2008-12-01

    The coconut water presents a series of nutritional and therapeutic properties, being a natural, acid and sterile solution, which contains several biologically active components, l-arginine, ascorbic acid, minerals such as calcium, magnesium and potassium, which have beneficial effects on lipid levels. Recent studies in our laboratory showed that both tender and mature coconut water feeding significantly (Pcholesterol fed rats [Sandhya, V.G., Rajamohan, T., 2006. Beneficial effects of coconut water feeding on lipid metabolism in cholesterol fed rats. J. Med. Food 9, 400-407]. The current study evaluated the hypolipidemic effect of coconut water (4ml/100g body weight) with a lipid lowering drug, lovastatin (0.1/100g diet) in rats fed fat-cholesterol enriched diet ad libitum for 45 days. Coconut water or lovastatin supplementation lowered the levels of serum total cholesterol, VLDL+LDL cholesterol, triglycerides and increased HDL cholesterol in experimental rats (Pcholesterol in the liver were higher in coconut water treated rats. Coconut water supplementation increased hepatic bile acid and fecal bile acids and neutral sterols (Pcholesterol enriched diet.

  12. High-fat diet reprograms the epigenome of rat spermatozoa and transgenerationally affects metabolism of the offspring

    DEFF Research Database (Denmark)

    de Castro Barbosa, Thais; Ingerslev, Lars R; Alm, Petter S

    2016-01-01

    OBJECTIVES: Chronic and high consumption of fat constitutes an environmental stress that leads to metabolic diseases. We hypothesized that high-fat diet (HFD) transgenerationally remodels the epigenome of spermatozoa and metabolism of the offspring. METHODS: F0-male rats fed either HFD or chow diet......1 male offspring showed common DNA methylation and small non-coding RNA expression signatures. Altered expression of sperm miRNA let-7c was passed down to metabolic tissues of the offspring, inducing a transcriptomic shift of the let-7c predicted targets. CONCLUSION: Our results provide insight...... into mechanisms by which HFD transgenerationally reprograms the epigenome of sperm cells, thereby affecting metabolic tissues of offspring throughout two generations....

  13. Omega-3 attenuates high fat diet-induced kidney injury of female rats and renal programming of their offsprings.

    Science.gov (United States)

    Shamseldeen, Asmaa Mohammed; Ali Eshra, Mohammed; Ahmed Rashed, Laila; Fathy Amer, Marwa; Elham Fares, Amal; Samir Kamar, Samaa

    2018-05-09

    Maternal diet composition could influence fetal organogenesis. We investigated effects of high fat diet (HFD) intake alone or combined with omega 3 during pregnancy, lactation and early days of weaning on nephrogenesis of pups and maternal renal function and morphology. Mothers and their pups included in each group were supplied with the same diet composition. Rats were divided into group I, II and III supplied with chow of either 10 kcal%, 45 kcal% or 45 kcal% from fat together with omega-3 respectively. Group II showed increased serum urea and creatinine, renal TNF-α, IL1β. Structural injury was observed in mothers and their pups as Bowman's capsule and tubular dilatation and increased expression of PCNA that were decreased following omega-3 supplementation added to down regulation of Wnt4, Pax2 gene and podocin expression. Omega-3 supplementation improves lipid nephrotoxicity observed in mothers and their pups.

  14. Hepatic and biochemical repercussions of a polyunsaturated fat-rich hypercaloric and hyperlipidic diet in Wistar rats

    Directory of Open Access Journals (Sweden)

    Idália M. B. Burlamaqui

    2011-06-01

    Full Text Available CONTEXT: Non-alcoholic fatty liver disease is characterized by lipid deposits in the hepatocytes and has been associated with obesity, dyslipidemia and type-2 diabetes. It is considered a hepatic manifestation of the metabolic syndrome, of which the main component is insulin resistance leading to hyperinsulinemia and increased production of inflammatory cytokines. Saturated fat promotes hypertriglyceridemia and hyperinsulinemia, reduces levels of high-density cholesterol and increases levels of low-density cholesterol, while polyunsaturated fat is associated with hypolipidemic, antiinflammatory and imunoregulating action. OBJECTIVE: To evaluate the hepatic and biochemical repercussions of a polyunsaturated fat-rich diet in Wistar rats. METHODS: Twenty-two rats were distributed equally in two groups: GI - standard diet (Biobase Bio-tec Ratos e Camundongos® providing 3.000 kcal/kg and GII - hypercaloric and hyperlipidic diet providing 4.250 kcal/kg (ω-6:ω-3 = 3:1. The animals were euthanized after 23 weeks of experiment. The weight, biochemical parameters and hepatohistological changes were registered. RESULTS: Findings were submitted to variance analysis with the level of statistical significance at 5%. The average weight did not differ significantly between the groups at baseline (P = 0.711, but was greater in Group II by the end of the experiment (P = 0.000. The levels of triglycerides (P = 0.039, total cholesterol (P = 0.015 and HDL (P = 0.005 were higher in Group I than in Group II. Macrovesicular steatosis was significantly more common in Group II than in Group I (P = 0.03. CONCLUSION: Hypercaloric and hyperlipidic diet rich in polyunsaturated fat promotes weight gain and favors the development of hepatic steatosis while reducing serum levels of triglycerides, total cholesterol and HDL.

  15. Valproic acid reduces insulin-resistance, fat deposition and FOXO1-mediated gluconeogenesis in type-2 diabetic rat.

    Science.gov (United States)

    Khan, Sabbir; Kumar, Sandeep; Jena, Gopabandhu

    2016-06-01

    Recent evidences highlighted the role of histone deacetylases (HDACs) in insulin-resistance, gluconeogenesis and islet function. HDACs can modulate the expression of various genes, which directly or indirectly affect glucose metabolism. This study was aimed to evaluate the role of valproic acid (VPA) on fat deposition, insulin-resistance and gluconeogenesis in type-2 diabetic rat. Diabetes was developed in Sprague-Dawley rats by the combination of high-fat diet and low dose streptozotocin. VPA at the doses of 150 and 300 mg/kg/day and metformin (positive control) 150 mg/kg twice daily for 10 weeks were administered by oral gavage. Insulin-resistance, dyslipidemia and glycemia were evaluated by biochemical estimations, while fat accumulation and structural alteration were assessed by histopathology. Protein expression and insulin signaling were evaluated by western blot and immunohistochemistry. VPA treatment significantly reduced the plasma glucose, HbA1c, insulin-resistance, fat deposition in brown adipose tissue, white adipose tissue and liver, which are comparable to metformin treatment. Further, VPA inhibited the gluconeogenesis and glucagon expression as well as restored the histopathological alterations in pancreas and liver. Our findings provide new insights on the anti-diabetic role of VPA in type-2 diabetes mellitus by the modulation of insulin signaling and forkhead box protein O1 (FOXO1)-mediated gluconeogenesis. Since VPA is a well established clinical drug, the detailed molecular mechanisms of the present findings can be further investigated for possible clinical use. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. Omega-3 fatty acids revert high-fat diet-induced neuroinflammation but not recognition memory impairment in rats.

    Science.gov (United States)

    de Andrade, Aline Marcelino; Fernandes, Marilda da Cruz; de Fraga, Luciano Stürmer; Porawski, Marilene; Giovenardi, Márcia; Guedes, Renata Padilha

    2017-12-01

    Neuroinflammation is a consequence of overeating and may predispose to the development of cognitive decline and neurological disorders. This study aimed to evaluate the impact of omega-3 supplementation on memory and neuroinflammatory markers in rats fed a high-fat diet. Male Wistar rats were divided into four groups: standard diet (SD); standard diet + omega-3 (SD + O); high fat diet (HFD); and high fat diet + omega-3 (HFD + O). Diet administration was performed for 20 weeks and omega-3 supplementation started at the 16th week. HFD significantly increased body weight, while omega-3 supplementation did not modify the total weight gain. However, animals from the HFD + O group showed a lower level of visceral fat along with an improvement in insulin sensitivity following HFD. Thus, our results demonstrate a beneficial metabolic role of omega-3 following HFD. On the other hand, HFD animals presented an impairment in object recognition memory, which was not recovered by omega-3. In addition, there was an increase in GFAP-positive cells in the cerebral cortex of the HFD group, showing that omega-3 supplementation can be effective to decrease astrogliosis. However, no differences in GFAP number of cells were found in the hippocampus. We also demonstrated a significant increase in gene expression of pro-inflammatory cytokines IL-6 and TNF-α in cerebral cortex of the HFD group, reinforcing the anti-inflammatory role of this family of fatty acids. In summary, omega-3 supplementation was not sufficient to reverse the memory deficit caused by HFD, although it played an important role in reducing the neuroinflammatory profile. Therefore, omega-3 fatty acids may play an important role in the central nervous system, preventing the progression of neuroinflammation in obesity.

  17. GABA dramatically improves glucose tolerance in streptozotocin-induced diabetic rats fed with high-fat diet.

    Science.gov (United States)

    Sohrabipour, Shahla; Sharifi, Mohammad Reza; Talebi, Ardeshir; Sharifi, Mohammadreza; Soltani, Nepton

    2018-05-05

    Skeletal muscle, hepatic insulin resistance, and beta cell dysfunction are the characteristic pathophysiological features of type 2 diabetes mellitus. GABA has an important role in pancreatic islet cells. The present study attempted to clarify the possible mechanism of GABA to improve glucose tolerance in a model of type 2 diabetes mellitus in rats. Fifty Wistar rats were divided into five groups: NDC that was fed the normal diet, CD which received a high-fat diet with streptozotocin, CD-GABA animals that received GABA via intraperitoneal injection, plus CD-Ins1 and CD-Ins2 groups which were treated with low and high doses of insulin, respectively. Body weight and blood glucose were measured weekly. Intraperitoneal glucose tolerance test (IPGTT), insulin tolerance test (ITT), urine volume, amount of water drinking, and food intake assessments were performed monthly. The hyperinsulinemic euglycemic clamp was done for assessing insulin resistance. Plasma insulin and glucagon were measured. Abdominal fat was measured. Glucagon receptor, Glucose 6 phosphatase, Phosphoenolpyruvate carboxykinase genes expression were evaluated in liver and Glucose transporter 4 (GLUT4) genes expression and protein translocation were evaluated in the muscle. GABA or insulin therapy improved blood glucose, insulin level, IPGTT, ITT, gluconeogenesis pathway, Glucagon receptor, body weight and body fat in diabetic rats. GLUT4 gene and protein expression increased. GABA whose beneficial effect was comparable to that of insulin, also increased glucose infusion rate during an euglycemic clamp. GABA could improve insulin resistance via rising GLUT4 and also decreasing the gluconeogenesis pathway and Glucagon receptor gene expression. Copyright © 2018. Published by Elsevier B.V.

  18. Hypolipidemic, antioxidant and antiatherogenic property of sardine by-products proteins in high-fat diet induced obese rats.

    Science.gov (United States)

    Affane, Fouad; Louala, Sabrine; El Imane Harrat, Nour; Bensalah, Fatima; Chekkal, Hadjera; Allaoui, Amine; Lamri-Senhadji, Myriem

    2018-04-15

    Fish by-products valorization on account of their richness in bioactive compounds may represent a better alternative to marine products with a view to economic profitability and sustainable development. In this study, we compared the effect of sardine by-product proteins (SBy-P), with those of the fillets (SF-P) or casein (Cas), on growth parameters, serum leptin level, lipids disorders, lipid peroxidation and reverse cholesterol transport, in diet-induced obese rats. Obesity was induced by feeding rats a high-fat diet (20% sheep fat), during 12 weeks. At body weight (BW) of 400 ± 20 g, eighteen obese rats were divided into three homogenous groups and continue to consume the high-fat diet for 4 weeks containing either, 20% SBy-P, SF-P or Cas. The results showed that SBy-P, compared to SF-P and Cas, efficiently reduced food intake (FI), BW gain and serum leptin level, and improved blood lipids levels and reverse cholesterol transport by reducing total cholesterol (TC), triacylglycerols (TG) and low-density lipoprotein cholesterol (LDL-HDL 1 -C) serum levels, increasing the level of high-density lipoprotein cholesterol (HDL 2 -C and HDL 3 -C), and enhancing lecithin: cholesterol acyltransferase (LCAT) activity. Furthermore, they attenuated lipid peroxidation by increasing atheroprotective activity of the paraoxonase-1 (PON-1). Sardine by-product proteins due to their richness in certain essential amino acids, highlight weight-loss, lipid-lowering, antioxidant and anti-atherogenic potentials, contributing to the improvement of the complications associated with obesity. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effects of exercise and diet change on cognition function and synaptic plasticity in high fat diet induced obese rats

    Science.gov (United States)

    2013-01-01

    Background Nutritional imbalance-induced obesity causes a variety of diseases and in particular is an important cause of cognitive function decline. This study was performed on Sprague Dawley (SD) rats with 13-weeks of high fat diet-induced obesity in connection to the effects of regular exercise and dietary control for 8 weeks on the synaptic plasticity and cognitive abilities of brain. Methods Four weeks-old SD rats were adopted classified into normal-normal diet-sedentary (NNS, n = 8), obesity-high fat diet-sedentary (OHS, n = 8), obesity-high fat diet-training (OHT, n = 8), obesity-normal diet-sedentary (ONS, n = 8) and obesity- normal diet-training (ONT, n = 8). The exercise program consisted of a treadmill exercise administered at a speed of 8 m/min for 1–4 weeks, and 14 m/min for 5–8 weeks. The Western blot method was used to measure the expression of NGF, BDNF, p38MAPK and p-p38MAPK proteins in hippocampus of the brain, and expressions of NGF, BDNF, TrkA, TrkB, CREB and synapsin1 mRNA were analyzed through qRT-PCR. Results The results suggest cognitive function-related protein levels and mRNA expression to be significantly decreased in the hippocampus of obese rats, and synaptic plasticity as well as cognitive function signaling sub-pathway factors were also significantly decreased. In addition, 8-weeks exercises and treatment by dietary change had induced significant increase of cognitive function-related protein levels and mRNA expression as well as synaptic plasticity and cognitive function signaling sub-pathway factors in obese rats. In particular, the combined treatment had presented even more positive effect. Conclusions Therefore, it was determined that the high fat diet-induced obesity decreases plasticity and cognitive function of the brain, but was identified as being improved by exercises and dietary changes. In particular, it is considered that regular exercise has positive effects on memory span and learning

  20. Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats

    OpenAIRE

    Shih, Shen-Liang; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2015-01-01

    Background The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50?mg/kg, dio50) was intervened daily concurrent HF diet (HF diet?+?dio50) for five w...

  1. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats

    Science.gov (United States)

    Kim, Ji Hye; Kim, Ok-Kyung; Yoon, Ho-Geun; Park, Jeongjin; You, Yanghee; Kim, Kyungmi; Lee, Yoo-Hyun; Choi, Kyung-Chul; Lee, Jeongmin; Jun, Woojin

    2016-01-01

    Background Even though Curcuma longa L. possesses various biological activities, it has strong flavor and taste, which decrease consumer palatability and limit industrial applications in food. Objective The present study investigates the effects of C. longa L. fermented with Aspergillus oryzae supplementation in 60% high-fat diet-induced obese rats measured by the activation of adipogenesis and lipolysis. Design Rats were divided into four groups (n=6 per group) after 1 week of acclimatization: a normal diet group comprised rats fed the AIN76A rodent diet; a high-fat diet-induced obese group with rats fed a 60% high-fat diet; a Garcinia cambogia treated group (positive control) with rats fed a 60% high-fat diet with G. cambogia 500 g/kg body weight (b.w.)/day; and an fermented C. longa L. 50% ethanolic extract treated group (FCE50) with rats fed a 60% high-fat diet with FCE50 500 g/kg b.w./day. Each group received the appropriate vehicle or sample daily by gastric intubation for 12 weeks. Results We found that FCE50 administration suppressed b.w. gain and reduced white adipose tissue weight, serum triglyceride (TG), and cholesterol in high-fat diet-induced obese rats. These results can be associated with the suppression of adipocyte differentiation and lipogenesis with a decrease in the mRNA expressions of fatty acid synthase, acetyl-CoA carboxylase, adipocyte protein 2, and lipoprotein lipase induced by FCE50 administration. In addition, FCE50 increased lipolysis and β-oxidation by up-regulating the expression of lipases such as adipose triglyceride lipase, hormone-sensitive lipase, adiponectin, and AMP-activated protein kinase. Conclusions These results suggest that FCE50 can be a candidate for the prevention of obesity via suppressing adipogenesis and promoting lipolysis. PMID:26822962

  2. Effect of Hibiscus sabdariffa L. Dried Calyx Ethanol Extract on Fat Absorption-Excretion, and Body Weight Implication in Rats

    Science.gov (United States)

    Carvajal-Zarrabal, O.; Hayward-Jones, P. M.; Orta-Flores, Z.; Nolasco-Hipólito, C.; Barradas-Dermitz, D. M.; Aguilar-Uscanga, M. G.; Pedroza-Hernández, M. F.

    2009-01-01

    The effect of Hibiscus sabdariffa L. (Hs) calyx extract on fat absorption-excretion and body weight in rats, was investigated. Rats were fed with either a basal diet (SDC = Control diet) or the same diet supplemented with Hs extracts at 5%, 10% and 15% (SD5, SD10 and SD15). Only SD5 did not show significant increases in weight, food consumption and efficiency compared to SDC. The opposite occurred in SD15 group which showed a significant decrease for these three parameters. The SD10 responses were similar to SD15, with the exception of food consumption. In both SDC and SD5 groups, no body weight loss was observed; however, only in the latter group was there a significantly greater amount of fatty acids found in feces. A collateral effect emerging from the study is that components of Hs extract at the intermediate and greater concentrations used in this experiment could be considered possible antiobesity agents. PMID:19756159

  3. Clerodendron glandulosum Coleb., Verbenaceae, ameliorates high fat diet-induced alteration in lipid and cholesterol metabolism in rats

    Directory of Open Access Journals (Sweden)

    RN Jadeja

    Full Text Available The present study was undertaken to evaluate the efficacy of freeze dried extract of Clerodendron glandulosum Coleb., Verbenaceae, leaves (FECG on alteration in lipid and cholesterol metabolism in high fat diet fed hyperlipidemic rats. Plasma and hepatic lipid profiles, lipid and cholesterol metabolizing enzymes in target tissues and fecal total lipids and bile acid contents were evaluated in FECG treated normolipidemic and hyperlipidemic rats. These results were compared with synthetic hypolipidemic drug Lovastatin (LVS. Results indicate that FECG was able to positively regulate induced experimental hyperlipidemia by significant alteration in plasma and tissue lipid profiles. These results can be attributed to reduced absorption, effective elimination and augmented catabolism of lipids and cholesterol possibly due to high content of saponin and phytosterols in C. glandulosum. Use of C. glandulosum extract as a potential therapeutic agent against hypercholesterolemia and hypertriglyceridemia is indicated.

  4. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy

    DEFF Research Database (Denmark)

    Armitage, James A.; Lakasing, Lorin; Taylor, Paul D.

    2005-01-01

    Evidence from human and animal studies suggests that maternal nutrition can induce developmental programming of adult hypertension in offspring. We have previously described a model of maternal dietary imbalance in Sprague-Dawley rats whereby administration of a maternal diet rich in animal lard......-Dawley rats fed a control diet (OC) or lard-rich diet (OHF) during pregnancy and suckling followed by a control diet post-weaning. To gain further insight, we assessed aortic reactivity and elasticity in an organ bath preparation and renal renin and Na+,K+-ATPase activity. Plasma aldosterone concentration...... weight, glomerular number or volume in OHF compared with OC, but renin and Na+,K+-ATPase activity were significantly reduced in OHF compared with controls. Programmed alterations to aortic structure and function are consistent with previous observations that exposure to maternal high fat diets produces...

  5. Centrally administered urocortin 2 decreases gorging on high-fat diet in in both diet induced obesity-prone and -resistant rats

    Science.gov (United States)

    Cottone, Pietro; Sabino, Valentina; Nagy, Tim R.; Coscina, Donald V.; Levin, Barry E.; Zorrilla, Eric P.

    2013-01-01

    Objective Obesity is a costly, deadly public health problem for which new treatments are needed. Individual differences in meal pattern have been proposed to play a role in obesity risk. The present study tested the hypothesis that i) the microstructure of chronic high-fat diet intake differs between genetically selected Diet-Induced Obesity (DIO) and Diet Resistant (DR) rats, and ii) central administration of urocortin 2 (Ucn 2), a corticotropin-releasing factor type 2 (CRF2) agonist, decreases high-fat diet intake not only in lean DR rats, but also in obese DIO rats. Design Male, selectively bred DIO and DR rats (n=10/genotype) were chronically fed a high-fat diet. Food and water intake as well as ingestion microstructure were then compared under baseline conditions and following third intracerebroventricular injection of Ucn 2 (0, 0.1, 0.3, 1, 3 µg). Results Irrespective of genotype, Ucn 2 reduced nocturnal food intake with a minimum effective dose of 0.3 µg, suppressing high-fat diet intake by ~40% at the 3 µg dose. Ucn 2 also made rats of both genotypes eat smaller and briefer meals, including at doses that did not reduce drinking. Obese DIO rats ate fewer but larger meals than DR rats, which they ate more quickly and consumed with 2/3rd less water. Conclusions Unlike leptin and insulin, Ucn 2 retains its full central anorectic efficacy to reduce high-fat diet intake even in obese, genetically-prone DIO rats, which otherwise show a “gorging” meal pattern. These results open new opportunities of investigation towards treating some forms of diet-induced obesity. PMID:23478425

  6. Biochemical Study of Oxidative Stress Markers in the Liver, Kidney and Heart of High Fat Diet Induced Obesity in Rats

    Directory of Open Access Journals (Sweden)

    Noeman Saad A

    2011-08-01

    Full Text Available Abstract Background Obesity has become a leading global health problem owing to its strong association with a high incidence of diseases. Aim To induce rat obesity using high fat diet (HFD and to estimate oxidative stress markers in their liver, heart and kidney tissues in order to shed the light on the effect of obesity on these organs. Materials and methods Sixty white albino rats weighing 150-200 g were randomly divided into two equal groups; group I: received high fat diet for 16 weeks, and group II (control group: received only normal diet (rat chow for 16 weeks. Blood samples were taken for measurement of lipid profile, tissue samples from liver, heart and kidney were taken for determination of malondialdehyde (MDA, protein carbonyl (PCO, reduced glutathione (GSH levels, and the activities of glutathione S- transferase (GST glutathione peroxidase (GPx, catalase (CAT and paraoxonase1 (PON1 enzymes. Results Data showed that feeding HFD diet significantly increased final body weight and induced a state of dyslipideamia. Also our results showed a significant increase MDA and PCO levels in the hepatic, heart and renal tissues of obese rats, as well as a significant decrease in the activity of GST, GPx and PON 1 enzymes. On the other hand CAT enzyme activity showed significant decrease only in renal tissues of obese rats with non significant difference in hepatic and heart tissues. GSH levels showed significant decrease in both renal and hepatic tissues of obese animals and significant increase in their heart tissues. Correlation studies in obese animals showed a negative correlation between MDA and PCO tissue levels and the activities of GPx, GST and PON1 in all tissues and also with CAT enzyme activity in renal tissues. Also a negative correlation was detected between MDA & PCO tissues levels and GSH levels in both hepatic and renal tissues. While positive correlation was found between them and GSH levels in heart tissues. Conclusion High fat

  7. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats.

    Science.gov (United States)

    Pintana, Hiranya; Apaijai, Nattayaporn; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2012-10-05

    Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Modulatory role of ginger on some physiological and histological changes in female rats induced by gamma radiation and/or fat

    International Nuclear Information System (INIS)

    Ali, S.E.

    2007-01-01

    The objective of this study was to determine the potential benefits of ginger against the radiation and fat hazards in female rats. This study was carried out on 42 female albino rats (100-120 g) exposed to shot dose of gamma radiation (4.5 Gy) and/or feeding on diet contain 20% fat then treated with 2% ginger solution. The results showed that ginger minimized the physiological disorders (clotting time, cholesterol, Na + , K + , lipid peroxide and progesterone hormone) induced by gamma irradiation and/or fat. The histological examination revealed that exposure to gamma radiation or fat supplementation caused vacuolar epithelial lining of renal tubules and interstitial hemorrhage with fibrosis in kidney. Ginger treatment minimized the histological changes in kidney and lung

  9. Hydrogenated fat intake during pregnancy and lactation modifies serum lipid profile and adipokine mRNA in 21-day-old rats.

    Science.gov (United States)

    Pisani, Luciana P; Oyama, Lila M; Bueno, Allain A; Biz, Carolina; Albuquerque, Kelse T; Ribeiro, Eliane B; Oller do Nascimento, Claudia M

    2008-03-01

    We examined whether feeding pregnant and lactating rats hydrogenated fats rich in trans-fatty acids modifies the plasma lipid profiles and the expression of adipokines involved with insulin resistance and cardiovascular disease in their 21-d-old offspring. Pregnant and lactating Wistar rats were fed with a control diet (C group) or one enriched with hydrogenated vegetable fat (T group). After delivery, male offspring were weighed weekly and killed at day 21 of life by decapitation. Blood and retroperitoneal, epididymal, and subcutaneous white adipose tissues were collected. Offspring of T-group rats had increased serum triacylglycerols and cholesterol, white adipose tissue plasminogen activator inhibitor-1, and tumor necrosis factor-alpha gene expression, and carcass lipid content and decreased blood leptin and adiponectin and adiponectin gene expression. Ingestion of hydrogenated vegetable fat by the mother during gestation and lactation alters the blood lipid profiles and the expression of proinflammatory adipokynes by the adipose tissue of offspring aged 21 d.

  10. Diosgenin reorganises hyperglycaemia and distorted tissue lipid profile in high-fat diet-streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Naidu, Parim Brahma; Ponmurugan, Ponnusamy; Begum, Mustapha Sabana; Mohan, Karthick; Meriga, Balaji; RavindarNaik, Ramavat; Saravanan, Ganapathy

    2015-12-01

    Diabetes is often connected with significant morbidity, mortality and also has a pivotal role in the development of cardiovascular diseases. Diet intervention, particularly naturaceutical antioxidants have anti-diabetic potential and avert oxidative damage linked with diabetic pathogenesis. The present study investigated the effects of diosgenin, a saponin from fenugreek, on the changes in lipid profile in plasma, liver, heart and brain in high-fat diet-streptozotocin (HFD-STZ)-induced diabetic rats. Diosgenin was administered to HFD-STZ induced diabetic rats by orally at 60 mg kg(-1) body weight for 30 days to assess its effects on body weight gain, glucose, insulin, insulin resistance and cholesterol, triglycerides, free fatty acids and phospholipids in plasma, liver, heart and brain. The levels of body weight, glucose, insulin, insulin resistance, cholesterol, triglycerides, free fatty acids, phospholipids, VLDL-C and LDL-C were increased significantly (P rats. Administration of diosgenin to HFD-STZ diabetic rats caused a decrease in body weight gain, blood glucose, insulin, insulin resistance and also it modulated lipid profile in plasma and tissues. The traditional plant fenugreek and its constituents mediate its anti-diabetic potential through mitigating hyperglycaemic status, altering insulin resistance by alleviating metabolic dysregulation of lipid profile in both plasma and tissues. © 2014 Society of Chemical Industry.

  11. Hypocholesterolaemic effect of whole-grain highland hull-less barley in rats fed a high-fat diet.

    Science.gov (United States)

    Xia, Xuejuan; Li, Guannan; Song, Jiaxin; Zheng, Jiong; Kan, Jianquan

    2018-05-01

    Whole-grain highland hull-less barley (WHLB) contains high amounts of bioactive compounds that potentially exhibit cholesterol-lowering effects. This study investigated the hypocholesterolaemic effect of WHLB. A total of seventy-two male Sprague-Dawley rats were divided into four groups and were fed with the normal control diet, high-fat diet (HFD) and HFD containing low or high dose (10 or 48·95 %) of WHLB. High dose of WHLB significantly decreased the organ indexes of liver and abdominal fat and lipid levels of plasma and liver in HFD rats. The lipid regulation effect of WHLB, which was reconfirmed through hepatocyte morphologic observation, was accompanied by a large excretion of bile acids in the small intestinal contents and the faeces. Real-time PCR analyses, which were further reconfirmed through Western blot analyses, revealed that a high dose of WHLB significantly enhanced the hepatic expressions of AMP-activated protein kinase α, cholesterol 7α-hydroxylase, LDL receptor, liver X receptor, and PPARα and decreased the expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase. It also enhanced the ileal expression of farnesoid X receptor and resulted in the decrease of expression of apical sodium-dependent bile acid transporter. WHLB exhibited hypocholesterolaemic effects mainly by inhibiting cholesterol synthesis, cholesterol accumulation in peripheral tissue, and bile acid reabsorption and by stimulating bile acid synthesis.

  12. Trace glucose and lipid metabolism in high androgen and high-fat diet induced polycystic ovary syndrome rats

    Directory of Open Access Journals (Sweden)

    Zhai Hua-Ling

    2012-01-01

    Full Text Available Abstract Background There is a high prevalence of diabetes mellitus (DM and dyslipidemia in women with polycystic ovary syndrome (PCOS. The purpose of this study was to investigate the role of different metabolic pathways in the development of diabetes mellitus in high-androgen female mice fed with a high-fat diet. Methods Female Sprague-Dawley rats were divided into 3 groups: the control group(C, n = 10; the andronate-treated group (Andronate, n = 10 (treated with andronate, 1 mg/100 g body weight/day for 8 weeks; and the andronate-treated and high-fat diet group (Andronate+HFD, n = 10. The rate of glucose appearance (Ra of glucose, gluconeogenesis (GNG, and the rate of glycerol appearance (Ra of glycerol were assessed with a stable isotope tracer. The serum sex hormone levels, insulin levels, glucose concentration, and the lipid profile were also measured. Results Compared with control group, both andronate-treated groups exhibited obesity with higher insulin concentrations (P P Conclusions Andronate with HFD rat model showed ovarian and metabolic features of PCOS, significant increase in glucose Ra, GNG, and lipid profiles, as well as normal blood glucose levels. Therefore, aberrant IR, increased glucose Ra, GNG, and lipid metabolism may represent the early-stage of glucose and lipid kinetics disorder, thereby might be used as potential early-stage treatment targets for PCOS.

  13. Effect of excessive intake of dietary carbohydrates and fats on incidence of apoptosis and proliferation in male rats

    International Nuclear Information System (INIS)

    El-Mahdy, A.A.

    2006-01-01

    This study was planned to investigate the programmed cell death and cellular aging by estimating the relation between cell proliferation and cell death in tissue of pancreas and testis. All the biochemical parameters in this study were carried out on two aged groups (adult and senile) of male albino rats. Moreover, the study extended to emphasize the possible effect of certain dietary elements such as carbohydrate and fat on the rate of apoptosis and proliferation in some tissues and their physiological functions. Two aged groups of rats (adult and senile) were included in this study. According to the data obtained, it could be concluded that excess dietary carbohydrate could be considered as a high risk factor when given to the adult and senile age, since it produced some significant changes in the blood chemistry with non-significant changes on the proliferative and apoptotic balance of the tested tissues. Moreover, excess dietary fat could be considered as high risk factor when given to adult and senile age groups

  14. DHEA supplementation in ovariectomized rats reduces impaired glucose-stimulated insulin secretion induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Katherine Veras

    2014-01-01

    Full Text Available Dehydroepiandrosterone (DHEA and the dehydroepiandrosterone sulfate (DHEA-S are steroids produced mainly by the adrenal cortex. There is evidence from both human and animal models suggesting beneficial effects of these steroids for obesity, diabetes mellitus, hypertension, and osteoporosis, conditions associated with the post-menopausal period. Accordingly, we hypothesized that DHEA supplementation in ovariectomized (OVX female rats fed a high-fat diet would maintain glucose-induced insulin secretion (GSIS and pancreatic islet function. OVX resulted in a 30% enlargement of the pancreatic islets area compared to the control rats, which was accompanied by a 50% reduction in the phosphorylation of AKT protein in the pancreatic islets. However, a short-term high-fat diet induced insulin resistance, accompanied by impaired GSIS in isolated pancreatic islets. These effects were reversed by DHEA treatment, with improved insulin sensitivity to levels similar to the control group, and with increased serine phosphorylation of the AKT protein. These data confirm the protective effect of DHEA on the endocrine pancreas in a situation of diet-induced overweight and low estrogen concentrations, a phenotype similar to that of the post-menopausal period.

  15. Responses of skeletal muscle lipid metabolism in rat gastrocnemius to hypothyroidism and iodothyronine administration: a putative role for FAT/CD36.

    Science.gov (United States)

    Lombardi, Assunta; De Matteis, Rita; Moreno, Maria; Napolitano, Laura; Busiello, Rosa Anna; Senese, Rosalba; de Lange, Pieter; Lanni, Antonia; Goglia, Fernando

    2012-11-15

    Iodothyronines such as triiodothyronine (T(3)) and 3,5-diiodothyronine (T(2)) influence energy expenditure and lipid metabolism. Skeletal muscle contributes significantly to energy homeostasis, and the above iodothyronines are known to act on this tissue. However, little is known about the cellular/molecular events underlying the effects of T(3) and T(2) on skeletal muscle lipid handling. Since FAT/CD36 is involved in the utilization of free fatty acids by skeletal muscle, specifically in their import into that tissue and presumably their oxidation at the mitochondrial level, we hypothesized that related changes in lipid handling and in FAT/CD36 expression and subcellular redistribution would occur due to hypothyroidism and to T(3) or T(2) administration to hypothyroid rats. In gastrocnemius muscles isolated from hypothyroid rats, FAT/CD36 was upregulated (mRNA levels and total tissue, sarcolemmal, and mitochondrial protein levels). Administration of either T(3) or T(2) to hypothyroid rats resulted in 1) little or no change in FAT/CD36 mRNA level, 2) a decreased total FAT/CD36 protein level, and 3) further increases in FAT/CD36 protein level in sarcolemma and mitochondria. Thus, the main effect of each iodothyronine seemed to be exerted at the level of FAT/CD36 cellular distribution. The effect of further increases in FAT/CD36 protein level in sarcolemma and mitochondria was already evident at 1 h after iodothyronine administration. Each iodothyronine increased the mitochondrial fatty acid oxidation rate. However, the mechanisms underlying their rapid effects seem to differ; T(2) and T(3) each induce FAT/CD36 translocation to mitochondria, but only T(2) induces increases in carnitine palmitoyl transferase system activity and in the mitochondrial substrate oxidation rate.

  16. [Effect of indole-3-carbinol and rutin on rats' provision by vitamins' A and E with different fat content in its diet].

    Science.gov (United States)

    Beketova, N A; Kravchenko, L V; Kosheleva, O V; Vrzhesinskaia, O A; Kodentsova, V M

    2013-01-01

    Effect of indole-3-carbinol (I-3-C) and rutin (R) supplementation on vitamins A and E status of growing Wistar rats, receiving for 6 or 4 week semi-synthetic diets with different levels (1, 11 and 31%) of fat (lard and sunflower oil at a ratio of 1:1) has been studied. The content of vitamin E was 6, 9 and 15 IU, vitamin A - 400 IU in 100 g of ration. Against the various fat content during the last 7 or 14 days of the experiment rats received respectively I-3-C (20 mg per 1 kg of body weight per day) or R (0.4% of the feed weight). Rat tissues were analyzed for vitamins A (retinol and retinyol palmitate) and E (alpha-tocopherol) by HPLC. Reducing fat content in diet from 11 to 1% was associated with significant (pvitamin E in rats, regardless of the fat content in the diet. With excess fat content (31%) in the diet, supplementation of I-3-C and R lowered hepatic RP by 22-52% (pvitamin A concentration in blood plasma by 12% (p=0.024) and in liver by 37% (p=0.002).

  17. Diacylglycerol-enriched structured lipids containing CLA and capric acid alter body fat mass and lipid metabolism in rats.

    Science.gov (United States)

    Kim, Hye-Jin; Lee, Ki-Teak; Lee, Mi-Kyung; Jeon, Seon-Min; Choi, Myung-Sook

    2006-01-01

    The present study compared the effect of corn oil, diacylglycerol (DG) oil, and DG-enriched structured lipids (SL-DG) produced from corn oil, capric and conjugated linoleic acid on adiposity in rats fed an AIN-76 diet (5% fat) for 6 weeks. The plasma and hepatic lipids, adipose tissue weight, and enzyme activities related to fatty acid metabolism were determined. The weights of the epididymal white adipose tissue (WAT), perirenal WAT, and interscapular WAT were significantly lower in the SL-DG group than in the DG group. Reduction of fat mass in the SL-DG group was related to suppressing fatty acid synthase activities and enhancing beta-oxidation activity in perirenal WAT. The plasma leptin was lower in the SL-DG group than in the DG group, plus a lower plasma TG level was accompanied by an increase in adipocyte LPL activity. Meanwhile the SL-DG supplement lowered the plasma and hepatic cholesterol level. In addition, the hepatic HMG-CoA reductase and ACAT activities were significantly lower in the SL-DG group than in the other groups. The DG-enriched SL used in this study was effective in enhancing triglyceride metabolism in adipose tissue, especially as regards reducing the abdominal fat mass and cholesterol metabolism in the liver. Copyright 2006 S. Karger AG, Basel.

  18. Effect of high-fructose and high-fat diets on pulmonary sensitivity, motor activity, and body composition of brown Norway rats exposed to ozone

    Science.gov (United States)

    pulmonary parameters, BALF biomarkers, body composition, motor activity data collected from rats exposed to ozone after high fructose or high fat diets.This dataset is associated with the following publication:Gordon , C., P. Phillips , A. Johnstone , T. Beasley , A. Ledbetter , M. Schladweiler , S. Snow, and U. Kodavanti. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone. INHALATION TOXICOLOGY. Taylor & Francis, Inc., Philadelphia, PA, USA, 28(5): 203-15, (2016).

  19. Effects of red pitaya juice supplementation on cardiovascular and hepatic changes in high-carbohydrate, high-fat diet-induced metabolic syndrome rats.

    Science.gov (United States)

    Ramli, Nurul Shazini; Brown, Lindsay; Ismail, Patimah; Rahmat, Asmah

    2014-06-12

    The fruit of Hylocereus polyrhizus, also known as red pitaya, and buah naga in Malay, is one of the tropical fruits of the cactus family, Cactaceae. Red pitaya has been shown to protect aorta from oxidative damage and improve lipid profiles in hypercholesterolemic rats probably due to phytochemicals content including phenolics and flavonoids. The aim of this study was to investigate the changes in cardiac stiffness, hepatic and renal function in high-carbohydrate, high-fat diet-induced obese rats following supplementation of red pitaya juice. Total 48 male Wistar rats were divided into 4 groups: corn-starch group (CS), corn-starch+red pitaya juice group (CRP), high-carbohydrate, high fat group (HCHF) and high-carbohydrate, high fat+red pitaya juice (HRP). The intervention with 5% red pitaya juice was started for 8 weeks after 8 weeks initiation of the diet. Heart function was determined ex vivo with Langendorff hearts while plasma liver enzymes, uric acid and urea were measured using commercial kits. Total fat mass was determined with Dual-energy X-ray absorptiometry (DXA) scan. Glucose uptake was measured with Oral Glucose Tolerance Test (OGTT). Liver and cardiac structures were defined by histology. Supplementation of red pitaya juice for 8 weeks increased energy intake and abdominal circumference but no change in body fat and lean mass respectively. Also, there were a trend of uric acid and glucose normalization for HRP as compared to H-fed rats. Red pitaya juice treatment reduced ALP and ALT but caused significant increment in AST. Diastolic stiffness of the heart was reduced after supplementation of red pitaya juice in corn starch fed rats. However, the reduction was not significant in HRP rats in comparison with H rats. The present study concluded that red pitaya juice may serve as a complimentary therapy for attenuating some signs of metabolic syndrome.

  20. Effects of maternal high-fat diet and sedentary lifestyle on susceptibility of adult offspring to ozone exposure in rats.

    Science.gov (United States)

    Gordon, C J; Phillips, P M; Johnstone, A F M; Schmid, J; Schladweiler, M C; Ledbetter, A; Snow, S J; Kodavanti, U P

    2017-05-01

    Epidemiological and experimental data suggest that obesity exacerbates the health effects of air pollutants such as ozone (O 3 ). Maternal inactivity and calorically rich diets lead to offspring that show signs of obesity. Exacerbated O 3 susceptibility of offspring could thus be manifested by maternal obesity. Thirty-day-old female Long-Evans rats were fed a control (CD) or high-fat (HF) (60% calories) diet for 6 wks and then bred. GD1 rats were then housed with a running wheel (RW) or without a wheel (SED) until parturition, creating four groups of offspring: CD-SED, CD-RW, HF-SED and HF-RW. HF diet was terminated at PND 35 and all offspring were placed on CD. Body weight and %fat of dams were greatest in order; HF-SED > HF-RW > CD-SED > CD-RW. Adult offspring were exposed to O 3 for two consecutive days (0.8 ppm, 4 h/day). Glucose tolerance tests (GTT), ventilatory parameters (plethysmography), and bronchoalveolar fluid (BALF) cell counts and protein biomarkers were performed to assess response to O 3 . Exercise and diet altered body weight and %fat of young offspring. GTT, ventilation and BALF cell counts were exacerbated by O 3 with responses markedly exacerbated in males. HF diet and O 3 led to significant exacerbation of several BALF parameters: total cell count, neutrophils and lymphocytes were increased in male HF-SED versus CD-SED. Males were hyperglycemic after O 3 exposure and exhibited exacerbated GTT responses. Ventilatory dysfunction was also exacerbated in males. Maternal exercise had minimal effects on O 3 response. The results of this exploratory study suggest a link between maternal obesity and susceptibility to O 3 in their adult offspring in a sex-specific manner.

  1. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats ( n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  2. Effect of different exercise protocols on metabolic profiles and fatty acid metabolism in skeletal muscle in high-fat diet-fed rats.

    Science.gov (United States)

    Shen, Youqing; Xu, Xiangfeng; Yue, Kai; Xu, Guodong

    2015-05-01

    To evaluate the efficacy of mild-intensity endurance, high-intensity interval, and concurrent exercise on preventing high-fat diet-induced obesity. Male rats were divided into five groups, control diet/sedentary group, high-fat diet/sedentary, high-fat diet/endurance exercise, high-fat diet/interval exercise (HI), and high-fat diet/concurrent exercise. All exercise groups were made to exercise for 10 weeks, with matched running distances. Body weight, fat content, blood metabolites, quantitative insulin sensitivity check index (QUICKI), and adipocyte and liver lipid droplet size were assessed, and the expression of fatty acid metabolism-related genes was quantified. All exercise protocols reduced body weight, adiposity, serum triglycerides, and fasting glucose and also improved QUICKI to some extent. However, only HI prevented obesity and its associated pathologies completely. The expression of stearoyl-coenzyme A desaturase-1 was elevated in all rats fed a high-fat diet whereas carnitine palmitoyltransferase 1 (CPT1) expression was increased with exercise. Rev-erbα expression was elevated only in the HI group, which also had the highest level of CPT1 expression. The HI-induced increase in Rev-erbα and CPT1 expression was associated with the complete prevention of diet-induced obesity. Moreover, the increased caloric expenditure achieved with this protocol was preferential over other exercise regimens, and might be used to improve lipid metabolism. © 2015 The Obesity Society.

  3. High-fat diet-induced plasma protein and liver changes in obese rats can be attenuated by melatonin supplementation.

    Science.gov (United States)

    Wongchitrat, Prapimpun; Klosen, Paul; Pannengpetch, Supitcha; Kitidee, Kuntida; Govitrapong, Piyarat; Isarankura-Na-Ayudhya, Chartchalerm

    2017-06-01

    Obesity triggers changes in protein expression in various organs that might participate in the pathogenesis of obesity. Melatonin has been reported to prevent or attenuate such pathological protein changes in several chronic diseases. However, such melatonin effects on plasma proteins have not yet been studied in an obesity model. Using a proteomic approach, we investigated the effect of melatonin on plasma protein profiles after rats were fed a high-fat diet (HFD) to induce obesity. We hypothesized that melatonin would attenuate abnormal protein expression in obese rats. After 10weeks of the HFD, animals displayed increased body weight and fat accumulation as well as increased glucose levels, indicating an obesity-induced prediabetes mellitus-like state. Two-dimensional gel electrophoresis and liquid chromatography-mass spectrometry/mass spectrometry revealed 12 proteins whose expression was altered in response to the HFD and the melatonin treatment. The altered proteins are related to the development of liver pathology, such as cirrhosis (α1-antiproteinase), thrombosis (fibrinogen, plasminogen), and inflammation (mannose-binding protein A, complement C4, complement factor B), contributing to liver steatosis or hepatic cell death. Melatonin treatment most probably reduced the severity of the HFD-induced obesity by reducing the amplitude of HFD-induced plasma protein changes. In conclusion, we identified several potential biomarkers associated with the progression of obesity and its complications, such as liver damage. Furthermore, our findings reveal melatonin's beneficial effect of attenuating plasma protein changes and liver pathogenesis in obese rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Changes in gut microbiota in rats fed a high fat diet correlate with obesity-associated metabolic parameters.

    Directory of Open Access Journals (Sweden)

    Virginie Lecomte

    Full Text Available The gut microbiota is emerging as a new factor in the development of obesity. Many studies have described changes in microbiota composition in response to obesity and high fat diet (HFD at the phylum level. In this study we used 16s RNA high throughput sequencing on faecal samples from rats chronically fed HFD or control chow (n = 10 per group, 16 weeks to investigate changes in gut microbiota composition at the species level. 53.17% dissimilarity between groups was observed at the species level. Lactobacillus intestinalis dominated the microbiota in rats under the chow diet. However this species was considerably less abundant in rats fed HFD (P<0.0001, this being compensated by an increase in abundance of propionate/acetate producing species. To further understand the influence of these species on the development of the obese phenotype, we correlated their abundance with metabolic parameters associated with obesity. Of the taxa contributing the most to dissimilarity between groups, 10 presented significant correlations with at least one of the tested parameters, three of them correlated positively with all metabolic parameters: Phascolarctobacterium, Proteus mirabilis and Veillonellaceae, all propionate/acetate producers. Lactobacillus intestinalis was the only species whose abundance was negatively correlated with change in body weight and fat mass. This species decreased drastically in response to HFD, favouring propionate/acetate producing bacterial species whose abundance was strongly correlated with adiposity and deterioration of metabolic factors. Our observations suggest that these species may play a key role in the development of obesity in response to a HFD.

  5. Solanum nigrum Protects against Hepatic Fibrosis via Suppression of Hyperglycemia in High-Fat/Ethanol Diet-Induced Rats

    Directory of Open Access Journals (Sweden)

    Cheng-Jeng Tai

    2016-02-01

    Full Text Available Background: Advanced glycation end products (AGEs signal through the receptor for AGE (RAGE, which can lead to hepatic fibrosis in hyperglycemia and hyperlipidemia. We investigated the inhibitory effect of aqueous extracts from Solanum nigrum (AESN on AGEs-induced RAGE signaling and activation of hepatic stellate cells (HSCs and hyperglycemia induced by high-fat diet with ethanol. Methods: An animal model was used to evaluate the anti-hepatic fibrosis activity of AESN in rats fed a high-fat diet (HFD; 30% with ethanol (10%. Male Wistar rats (4 weeks of age were randomly divided into four groups (n = 6: (1 control (basal diet; (2 HFD (30% + ethanol (10% (HFD/ethanol; (3 HFD/ethanol + AESN (100 mg/kg, oral administration; and (4 HFD/ethanol + pioglitazone (10 mg/kg, oral administration and treated with HFD for 6 months in the presence or absence of 10% ethanol in dietary water. Results: We found that AESN improved insulin resistance and hyperinsulinemia, and downregulated lipogenesis via regulation of the peroxisome proliferator-activated receptor α (PPARα, PPARγ co-activator (PGC-1α, carbohydrate response element-binding protein (ChREBP, acetyl-CoA carboxylase (ACC, and fatty acid synthase (FAS mRNA levels in the liver of HFD/ethanol-treated rats. In turn, AESN may delay and inhibit the progression of hepatic fibrosis, including α-smooth muscle actin (α-SMA inhibition and MMP-2 production. Conclusions: These results suggest that AESN may be further explored as a novel anti-fibrotic strategy for the prevention of liver disease.

  6. The impact of chronic blackberry intake on the neuroinflammatory status of rats fed a standard or high-fat diet.

    Science.gov (United States)

    Meireles, Manuela; Marques, Cláudia; Norberto, Sónia; Fernandes, Iva; Mateus, Nuno; Rendeiro, Catarina; Spencer, Jeremy P E; Faria, Ana; Calhau, Conceição

    2015-11-01

    Neuroinflammation has been suggested as a central mediator of central nervous system dysfunction, including in dementia and neurodegenerative disease. Flavonoids have emerged as promising candidates for the prevention of neurodegenerative diseases and are thought to be capable of antiinflammatory effects in the brain. In the present study, the impact of a chronic intake of an anthocyanin extract from blackberry (BE) on brain inflammatory status in the presence or absence of a high-fat diet was investigated. Following intake of the dietary regimes for 17 weeks neuroinflammatory status in Wistar rat cortex, hippocampus and plasma were assessed using cytokine antibody arrays. In the cortex, intake of the high-fat diet resulted in an increase of at least 4-fold, in expression of the cytokine-induced neutrophil chemoattractant CINC-3, the ciliary neurotrophic factor CNTF, the platelet-derived growth factor PDGF-AA, IL-10, the tissue inhibitor of metalloproteinase TIMP-1 and the receptor for advanced glycation end products RAGE. BE intake partially decreased the expression of these mediators in the high-fat challenged brain. In standard-fed animals, BE intake significantly increased cortical levels of fractalkine, PDGF-AA, activin, the vascular endothelial growth factor VEGF and agrin expression, suggesting effects as neuronal growth and synaptic connection modulators. In hippocampus, BE modulates fractalkine and the thymus chemokine TCK-1 expression independently of diet intake and, only in standard diet, increased PDGF-AA. Exploring effects of anthocyanins on fractalkine transcription using the neuronal cell line SH-SY5Y suggested that other cell types may be involved in this effect. This is the first evidence, in in vivo model, that blackberry extract intake may be capable of preventing the detrimental effects of neuroinflammation in a high-fat challenged brain. Also, fractalkine and TCK-1 expression may be specific targets of anthocyanins and their metabolites on

  7. The administration of long-term high-fat diet in ovariectomized wistar rat (Study on Daily Food Intake, Lee Index, Abdominal Fat Mass and Leptin Serum Levels

    Directory of Open Access Journals (Sweden)

    Dita Fitriani

    2016-12-01

    Conclusion: Serum leptin levels positively correlated with Lee index and abdominal fat mass, but negatively correlated with daily food intake. Administration of long-term high-fat diet in this study cannot induce leptin resistance.

  8. Transplantation of dedifferentiated fat cell-derived micromass pellets contributed to cartilage repair in the rat osteochondral defect model.

    Science.gov (United States)

    Shimizu, Manabu; Matsumoto, Taro; Kikuta, Shinsuke; Ohtaki, Munenori; Kano, Koichiro; Taniguchi, Hiroaki; Saito, Shu; Nagaoka, Masahiro; Tokuhashi, Yasuaki

    2018-03-20

    Mature adipocyte-derived dedifferentiated fat (DFAT) cells possesses the ability to proliferate effectively and the potential to differentiate into multiple linages of mesenchymal tissue; similar to adipose-derived stem cells (ASCs). The purpose of this study is to examine the effects of DFAT cell transplantation on cartilage repair in a rat model of osteochondral defects. Full-thickness osteochondral defects were created in the knees of Sprague-Dawley rats bilaterally. Cartilage-like micromass pellets were prepared from green fluorescent protein (GFP)-labeled rat DFAT cells and subsequently transplanted into the affected right knee of these rats. Defects in the left knee were used as a control. Macroscopic and microscopic changes of treated and control defects were evaluated up to 12 weeks post-treatment with DFAT cells. To observe the transplanted cells, sectioned femurs were immunostained for GFP and type II collagen. DFAT cells formed micromass pellets expressing characteristics of immature cartilage in vitro. In the DFAT cell-transplanted limbs, the defects were completely filled with white micromass pellets as early as 2 weeks post-treatment. These limbs became smooth at 4 weeks. Conversely, the defects in the control limbs were still not repaired by 4 weeks. Macroscopic ICRS scores at 2 and 4 weeks were significantly higher in the DFAT cells-transplanted limbs compared to those of the control limbs. The modified O'Driscol histological scores for the DFAT cell-transplanted limbs were significantly higher than those of the control limbs at corresponding time points. GFP-positive DAFT cells were detected in the transplanted area at 2 weeks but hardly visible at 12 weeks post-operation. Transplantation of DFAT cell-derived micromass pellets contribute to cartilage repair in a rat osteochondral defect model. DFAT cell transplantation may be a viable therapeutic strategy for the repair of osteochondral injuries. Copyright © 2018 The Authors. Published by

  9. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    International Nuclear Information System (INIS)

    Tanoue, Shirou; Uto, Hirofumi; Kumamoto, Ryo; Arima, Shiho; Hashimoto, Shinichi; Nasu, Yuichiro; Takami, Yoichiro; Moriuchi, Akihiro; Sakiyama, Toshio; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito

    2011-01-01

    Highlights: → Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. → Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. → Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. → Regulation of the TGF-β1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-α were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-α, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-β1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-β1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result from altered metabolic gene expression

  10. Liver regeneration after partial hepatectomy in rat is more impaired in a steatotic liver induced by dietary fructose compared to dietary fat

    Energy Technology Data Exchange (ETDEWEB)

    Tanoue, Shirou [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Uto, Hirofumi, E-mail: hirouto@m2.kufm.kagoshima-u.ac.jp [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan); Kumamoto, Ryo; Arima, Shiho; Hashimoto, Shinichi; Nasu, Yuichiro; Takami, Yoichiro; Moriuchi, Akihiro; Sakiyama, Toshio; Oketani, Makoto; Ido, Akio; Tsubouchi, Hirohito [Department of Digestive and Lifestyle-Related Diseases, Kagoshima University, Graduate School of Medical and Dental Sciences, Kagoshima (Japan)

    2011-04-01

    Highlights: {yields} Hepatic steatosis in rats fed a high fructose diet was less severe than that in rats fed a high fat diet. {yields} Liver regeneration was more impaired in rats fed a high fructose diet than in rats fed a high fat diet. {yields} Dysregulation of genes associated with metabolism may contribute to impairment of liver regeneration. {yields} Regulation of the TGF-{beta}1 level after partial hepatectomy may be impaired in rats fed a high fructose diet. -- Abstract: Hepatic steatosis (HS) has a negative effect on liver regeneration, but different pathophysiologies of HS may lead to different outcomes. Male Sprague-Dawley rats were fed a high fructose (66% fructose; H-fruc), high fat (54% fat; H-fat), or control chow diet for 4 weeks. Based on hepatic triglyceride content and oil red O staining, HS developed in the H-fruc group, but was less severe compared to the H-fat group. Hepatic mRNA expression levels of fatty acid synthase and fructokinase were increased and those of carnitine palmitoyltransferase-1 and peroxisome proliferator-activated receptor-{alpha} were decreased in the H-fruc group compared to the H-fat group. Liver regeneration after 70% partial hepatectomy (PHx) was evaluated by measuring the increase in postoperative liver mass and PCNA-positive hepatocytes, and was impaired in the H-fruc group compared to the H-fat and control groups on days 3 and 7. Serum levels of tumor necrosis factor-{alpha}, interleukin-6 and hepatocyte growth factor did not change significantly after PHx. In contrast, serum TGF-{beta}1 levels were slightly but significantly lower in the control group on day 1 and in the H-fat group on day 3 compared to the level in each group on day 0, and then gradually increased. However, the serum TGF-{beta}1 level did not change after PHx in the H-fruc group. These results indicate that impairment of liver regeneration after PHx in HS is related to the cause, rather than the degree, of steatosis. This difference may result

  11. Insulin detemir attenuates food intake, body weight gain and fat mass gain in diet-induced obese Sprague-Dawley rats.

    Science.gov (United States)

    Rojas, J M; Printz, R L; Niswender, K D

    2011-07-04

    Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.

  12. Food quality and motivation: a refined low-fat diet induces obesity and impairs performance on a progressive ratio schedule of instrumental lever pressing in rats.

    Science.gov (United States)

    Blaisdell, Aaron P; Lau, Yan Lam Matthew; Telminova, Ekatherina; Lim, Hwee Cheei; Fan, Boyang; Fast, Cynthia D; Garlick, Dennis; Pendergrass, David C

    2014-04-10

    Purified high-fat diet (HFD) feeding causes deleterious metabolic and cognitive effects when compared with unrefined low-fat diets in rodent models. These effects are often attributed to the diet's high content of fat, while less attention has been paid to other mechanisms associated with the diet's highly refined state. Although the effects of HFD feeding on cognition have been explored, little is known about the impact of refined vs. unrefined food on cognition. We tested the hypothesis that a refined low-fat diet (LFD) increases body weight and adversely affects cognition relative to an unrefined diet. Rats were allowed ad libitum access to unrefined rodent chow (CON, Lab Diets 5001) or a purified low-fat diet (REF, Research Diets D12450B) for 6 months, and body weight and performance on an instrumental lever pressing task were recorded. After six months on their respective diets, group REF gained significantly more weight than group CON. REF rats made significantly fewer lever presses and exhibited dramatically lower breaking points than CON rats for sucrose and water reinforcement, indicating a chronic reduction of motivation for instrumental performance. Switching the rats' diet for 9 days had no effect on these measures. Diet-induced obesity produces a substantial deficit in motivated behavior in rats, independent of dietary fat content. This holds implications for an association between obesity and motivation. Specifically, behavioral traits comorbid with obesity, such as depression and fatigue, may be effects of obesity rather than contributing causes. To the degree that refined foods contribute to obesity, as demonstrated in our study, they may play a significant contributing role to other behavioral and cognitive disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. High dietary fat-induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism.

    Science.gov (United States)

    Shirai, Tomomi; Shichi, Yuta; Sato, Miyuki; Tanioka, Yuri; Furusho, Tadasu; Ota, Toru; Tadokoro, Tadahiro; Suzuki, Tsukasa; Kobayashi, Ken-Ichi; Yamamoto, Yuji

    2016-03-01

    Obesity is a major risk factor for type 2 diabetes, which is caused mainly by insulin resistance. Retinol binding protein 4 (RBP4) is the only specific transport protein for retinol in the serum. RBP4 level is increased in the diabetic state and high-fat condition, indicating that retinol metabolism may be affected under these conditions. However, the precise effect of diabetes and high fat-induced obesity on retinol metabolism is unknown. In this study, we examined differences in retinol metabolite levels in rat models of diet-induced obesity and type 2 diabetes (Goto-Kakizaki [GK] rat). Four-week-old male Wistar and GK rats were given either a control diet (AIN-93G) or a high-fat diet (HFD, 40% fat kJ). After 15 weeks of feeding, the RBP4 levels increased by 2-fold in the serum of GK rats but not HFD-fed rats. The hepatic retinol concentration of HFD-fed rats was approximately 50% that of the controls (P type 2 diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cold-increase in brown fat thyroxine 5'-monodeiodinase is attenuated in Zucker obese rat

    International Nuclear Information System (INIS)

    Wu, S.Y.; Stern, J.S.; Fisher, D.A.; Glick, Z.

    1987-01-01

    In this study the authors examined the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for enzymic conversion of thyroxine (T 4 ) to triiodothyronine (T 3 ) in BAT. A total of 34 lean and obese rats, ∼4 mo old were divided into three treatment groups: group 1 (5 lean and 6 obese) was fed Purina rat chow for 21 days, and group two (5 lean and 6 obese) was fed a cafeteria diet for 21 days, and groups 3 (6 lean and 6 obese) was fed Purina rat chow and maintained in the cold (8 +/- 1 0 C) for 7 days. Activity of T 4 5'-deiodinase was determined as the rate of T 3 production from added T 4 under controlled in vitro conditions. Serum T 4 and T 3 were determined by radioimmunoassay. The rate of T 4 -to-T 3 conversion in BAT was similar in the lean and obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet. However, expressed per scapular BAT depot, lean rats exposed to cold displayed about a fivefold increase in BAT T 3 production whereas only a small increase was observed in the cold-exposed obese rats. Serum T 3 levels tended to be reduced in the Zucker obese rats. The data indicate a reduced capacity for T 3 production of Zucker rat BAT exposed to cold. This defect may account for the reduced tolerance of the obese animals to cold, but it does not account for their reduced diet-induced BAT thermogenesis

  15. Effect of Regular Exercise on the Histochemical Changes of d-Galactose-Induced Oxidative Renal Injury in High-Fat Diet-Fed Rats

    International Nuclear Information System (INIS)

    Park, Sok; Kim, Chan-Sik; Lee, Jin; Suk Kim, Jung; Kim, Junghyun

    2013-01-01

    Renal lipid accumulation exhibits slowly developing chronic kidney disease and is associated with increased oxidative stress. The impact of exercise on the obese- and oxidative stress-related renal disease is not well understood. The purpose of this study was to investigate whether a high-fat diet (HFD) would accelerate d-galactose-induced aging process in rat kidney and to examine the preventive effect of regular exercise on the obese- and oxidative stress-related renal disease. Oxidative stress was induced by an administration of d-galactose (100 mg/kg intraperitoneally injected) for 9 weeks, and d-galactose-treated rats were also fed with a high-fat diet (60% kcal as fat) for 9 weeks to induce obesity. We investigated the efficacy of regular exercise in reducing renal injury by analyzing Nε-carboxymethyllysine (CML), 8-hydroxygluanine (8-OHdG) and apoptosis. When rats were fed with a HFD for 9 weeks in d-galactose-treated rats, an increased CML accumulation, oxidative DNA damage and renal podocyte loss were observed in renal glomerular cells and tubular epithelial cells. However, the regular exercise restored all these renal changes in HFD plus d-galactose-treated rats. Our data suggested that long-term HFD may accelerate the deposition of lipoxidation adducts and oxidative renal injury in d-galactose-treated rats. The regular exercise protects against obese- and oxidative stress-related renal injury by inhibiting this lipoxidation burden

  16. Nicotine and ethanol co-use in Long-Evans rats: Stimulatory effects of perinatal exposure to a fat-rich diet

    Science.gov (United States)

    Karatayev, Olga; Lukatskaya, Olga; Moon, Sang-Ho; Guo, Wei-Ran; Chen, Dan; Algava, Diane; Abedi, Susan; Leibowitz, Sarah F.

    2015-01-01

    Clinical studies demonstrate frequent co-existence of nicotine and alcohol abuse and suggest that this may result, in part, from the ready access to and intake of fat-rich diets. Whereas animal studies show that high-fat diet intake in adults can enhance the consumption of either nicotine or ethanol and that maternal consumption of a fat-rich diet during pregnancy increases operant responding for nicotine in offspring, little is known about the impact of dietary fat on the co-abuse of these two drugs. The goal of this study was to test in Long-Evans rats the effects of perinatal exposure to fat on the co-use of nicotine and ethanol, using a novel paradigm that involves simultaneous intravenous (IV) self-administration of these two drugs. Fat- vs. chow-exposed offspring were characterized and compared, first in terms of their nicotine self-administration behavior, then in terms of their nicotine/ethanol self-administration behavior, and lastly in terms of their self-administration of ethanol in the absence of nicotine. The results demonstrate that maternal consumption of fat compared to low-fat chow during gestation and lactation significantly stimulates nicotine self-administration during fixed-ratio testing. It also increases nicotine/ethanol self-administration during fixed-ratio and dose-response testing, with BEC elevated to 120 mg/dL, and causes an increase in breakpoint during progressive ratio testing. Of particular note is the finding that rats perinatally exposed to fat self-administer significantly more of the nicotine/ethanol mixture as compared to nicotine alone, an effect not evident in the chow-control rats. After removal of nicotine from the nicotine/ethanol mixture, this difference between the fat- and chow-exposed rats was lost, with both groups failing to acquire the self-administration of ethanol alone. Together, these findings suggest that perinatal exposure to a fat-rich diet, in addition to stimulating self-administration of nicotine, causes

  17. Shugan Xiaozhi Decoction Attenuates Nonalcoholic Steatohepatitis by Enhancing PPARα and L-FABP Expressions in High-Fat-Fed Rats

    Directory of Open Access Journals (Sweden)

    Yu-feng Xing

    2016-01-01

    Full Text Available This study aimed to investigate the effects of Shugan Xiaozhi decoction (SX on nonalcoholic steatohepatitis (NASH induced by high-fat diet in rats. The rats were randomly divided into 6 groups, namely, control, model, fenofibrate, and three different dosage of SX (10, 20, and 40 g/kg/day, p.o.. After establishing the NASH model, at 8 weeks of the experiment, treatments were administrated intragastrically to the fenofibrate and SX groups. All rats were killed after 4 weeks of treatment. Compared with the model group, alanine aminotransferase (ALT, aspartate aminotransferase (AST, free fatty acid (FFA, total cholesterol (TC, triacylglycerol (TG, and low-density lipoprotein cholesterol (LDL serum in the serum were significantly reduced in all SX treatment groups in a dose-dependent manner. Evidence showed that SX could protect the liver by upregulating the gene and protein expressions of peroxisome proliferator-activated receptor alpha (PPARα and liver fatty acid binding protein (L-FABP in a dose-dependent manner. Chemical constituents of SX were further analyzed by ultraperformance liquid chromatography coupled with electrospray ionization mass spectrometry (UPLC-ESI-MS and 30 chemicals in the ethanolic extract were tentatively identified. To conclude, our results clearly indicated that SX could protect liver functions and relieve hepatic steatosis and inflammation.

  18. Characterization of an alcoholic hepatic steatosis model induced by ethanol and high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Alves de Souza

    2015-06-01

    Full Text Available Alcoholic liver disease is characterized by a wide spectrum of liver damage, which increases when ethanol is associated with high-fat diets (HFD. This work aimed to establish a model of alcoholic hepatic steatosis (AHS by using a combination of 10% ethanol and sunflower seeds as the source of HFD. Male rats received water or 10% ethanol and regular chow diet and/or HFD, which consisted of sunflower seeds. The food consumption, liquid intake and body weight of the rats were monitored for 30 days. After this period, blood was collected for biochemical evaluation, and liver samples were collected for histological, mitochondrial enzyme activity and oxidative stress analyses. Our results indicated that the combination of 10% ethanol and HFD induced micro- and macrosteatosis and hepatocyte tumefaction, decreased the levels of reduced glutathione and glutathione S-transferase activity and increased the level of lipoperoxidation and superoxide dismutase activity. The mitochondrial oxidation of NADH and succinate were partially inhibited. Complexes I and II were the main inhibition sites. Hepatic steatosis was successfully induced after 4 weeks of the diet, and the liver function was modified. The combination of 10% ethanol and sunflower seeds as an HFD produced an inexpensive model to study AHS in rats.

  19. Resveratrol Increases Nephrin and Podocin Expression and Alleviates Renal Damage in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Qing-Rong Pan

    2014-07-01

    Full Text Available Resveratrol is well known for its anti-inflammation and anti-oxidant properties, and has been shown to be effective in alleviating the development of obesity. The purpose of this investigation was to analyze the effect of resveratrol on renal damage in obese rats induced by a high-fat diet (HFD and its possible mechanisms. Male Sprague-Dawley rats were divided into three groups: control, HFD, and HFD plus resveratrol (treated with 100 mg/kg/day resveratrol. Body weight, serum and urine metabolic parameters, and kidney histology were measured. Meanwhile, the activities of nuclear factor-κB (NF-κB and superoxide dismutase (SOD, the content of malondialdehyde (MDA, and the protein levels of tumor necrosis factor (TNF-α, monocyte chemotactic protein-1 (MCP-1, nephrin and podocin in kidney were detected. Our work showed that resveratrol alleviated dyslipidemia and renal damage induced by HFD, decreased MDA level and increased SOD activity. Furthermore, the elevated NF-κB activity, increased TNF-α and MCP-1 levels, and reduced expressions of nephrin and podocin induced by HFD were significantly reversed by resveratrol. These results suggest resveratrol could ameliorate renal injury in rats fed a HFD, and the mechanisms are associated with suppressing oxidative stress and NF-κB signaling pathway that in turn up-regulate nephrin and podocin protein expression.

  20. Silicon Alleviates Nonalcoholic Steatohepatitis by Reducing Apoptosis in Aged Wistar Rats Fed a High-Saturated Fat, High-Cholesterol Diet.

    Science.gov (United States)

    Garcimartín, Alba; López-Oliva, M Elvira; Sántos-López, Jorge A; García-Fernández, Rosa A; Macho-González, Adrián; Bastida, Sara; Benedí, Juana; Sánchez-Muniz, Francisco J

    2017-06-01

    Background: Lipoapoptosis has been identified as a key event in the progression of nonalcoholic fatty liver disease (NAFLD), and hence, antiapoptotic agents have been recommended as a possible effective treatment for nonalcoholic steatohepatitis (NASH). Silicon, included in meat as a functional ingredient, improves lipoprotein profiles and liver antioxidant defenses in aged rats fed a high-saturated fat, high-cholesterol diet (HSHCD). However, to our knowledge, the antiapoptotic effect of this potential functional meat on the liver has never been tested. Objective: This study was designed to evaluate the effect of silicon on NASH development and the potential antiapoptotic properties of silicon in aged rats. Methods: One-year-old male Wistar rats weighing ∼500 g were fed 3 experimental diets containing restructured pork (RP) for 8 wk: 1 ) a high-saturated fat diet, as an NAFLD control, with 16.9% total fat, 0.14 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg (control); 2 ) the HSHCD as a model of NASH, with 16.6% total fat, 16.3 g cholesterol/kg diet, and 46.8 mg SiO 2 /kg [high-cholesterol diet (Chol-C)]; and 3 ) the HSHCD with silicon-supplemented RP with amounts of fat and cholesterol identical to those in the Chol-C diet, but with 750 mg SiO 2 /kg (Chol-Si). Detailed histopathological assessments were performed, and the NAFLD activity score (NAS) was calculated. Liver apoptosis and damage markers were evaluated by Western blotting and immunohistochemical staining. Results: Chol-C rats had a higher mean NAS (7.4) than did control rats (1.9; P silicon substantially affects NASH development in aged male Wistar rats fed an HSHCD by partially blocking apoptosis. These results suggest that silicon-enriched RP could be used as an effective nutritional strategy in preventing NASH. © 2017 American Society for Nutrition.

  1. Plasma lipids and prothrombin time in rats fed palm oil and other commonly used fats in Egypt

    Directory of Open Access Journals (Sweden)

    Hussein, Mona M.

    1993-02-01

    Full Text Available Sprague-Dawley rats were fed for a total period of 8 weeks on six diets that were different in the source of their fat content. The fat content was provided either, palm oil or palm olein or corn oil or hydrogenated fat, or frying palm oil and mixture of corn oil + hydrogenated fat in the ratio (1:1. The latter was given to the control group. Animals fed these various experimental diets showed statistically significant differences in serum cholesterol and serum triglycerides content among all group. Increased HDL-cholesterol content was evident in animals fed on palm-olein and palm oil. The frying oil fed group showed lowest HDL-cholesterol content. In these experiments palm olein fed animals showed highest ratio of HDL-cholesterol to total cholesterol while the lowest ratio was shown in rats fed on frying oil. Prothrombin (PT and activated partial thromboplastin time (PTT showed higher values In palm oil, palm olein and corn oil diets as compared to all groups with each other.

    Ratas Sprague-Dawley fueron alimentadas durante un periodo total de 8 semanas con seis dietas diferentes en su contenido graso. El contenido graso fue proporcionado por aceite de palma u oleína de palma o aceite de maíz o grasa hidrogenada o aceite de palma de fritura y mezcla de aceite de maíz + grasa hidrogenada en la relación (1:1. El último fue dado al grupo de control. Los animales alimentados con las diferentes dietas experimentales mostraron diferencias significativas estadísticamente en el contenido en colesterol y triglicéridos en suero entre todos los grupos. El aumento en contenido HDL-colesterol fue evidente en animales alimentados con oleína de palma y aceite de palma. El grupo alimentado con aceite de fritura mostró el más bajo contenido en HDL-colesterol. En estos experimentos, los animales alimentados con oleína de palma mostraron la mayor relación de HDL-colesterol a colesterol total, mientras que la relación más baja fue mostrada

  2. Onion peel extracts ameliorate hyperglycemia and insulin resistance in high fat diet/streptozotocin-induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Kim Ji Yeon

    2011-03-01

    Full Text Available Abstract Background Quercetin derivatives in onions have been regarded as the most important flavonoids to improve diabetic status in cells and animal models. The present study was aimed to examine the hypoglycemic and insulin-sensitizing capacity of onion peel extract (OPE containing high quercetin in high fat diet/streptozotocin-induced diabetic rats and to elucidate the mechanism of its insulin-sensitizing effect. Methods Male Sprague-Dawley rats were fed the AIN-93G diet modified to contain 41.2% fat and intraperitoneally injected with a single dose of streptozotocin (40 mg/kg body weight. One week after injection, the rats with fasting blood glucose levels above 126 mg/dL were randomly divided into 4 groups to treat with high fat diet containing 0 (diabetic control, 0.5, or 1% of OPE or 0.1% quercetin (quercetin equivalent to 1% of OPE for 8 weeks. To investigate the mechanism for the effects of OPE, we examined biochemical parameters (insulin sensitivity and oxidative stresses and protein and gene expressions (pro-inflammatory cytokines and receptors. Results Compared to the diabetic control, hypoglycemic and insulin-sensitizing capability of 1% OPE were demonstrated by significant improvement of glucose tolerance as expressed in incremental area under the curve (P = 0.0148. The insulin-sensitizing effect of OPE was further supported by increased glycogen levels in liver and skeletal muscle (P P = 0.0089, respectively. Quantitative RT-PCR analysis showed increased expression of insulin receptor (P = 0.0408 and GLUT4 (P = 0.0346 in muscle tissues. The oxidative stress, as assessed by superoxide dismutase activity and malondialdehyde formation, plasma free fatty acids, and hepatic protein expressions of IL-6 were significantly reduced by 1% OPE administration (P = 0.0393, 0.0237, 0.0148 and 0.0025, respectively. Conclusion OPE might improve glucose response and insulin resistance associated with type 2 diabetes by alleviating metabolic

  3. Hypolipidemic effects of chitosan and its derivatives in hyperlipidemic rats induced by a high-fat diet

    Directory of Open Access Journals (Sweden)

    Haitao Pan

    2016-05-01

    Full Text Available Background: Hyperlipidemia (HLP is the primary risk factor of cardiovascular disease (CVD. Various factors, including genetics, physical inactivity, and daily nutritional habits, affect the prevalence of HLP. Recently, it was revealed that dietary fibers, such as pectin, psyllium, and especially chitosan (CTS, may play important roles in hypolipidemic management. Thus, this study aims to determine the hypolipidemic effect and mechanism of CTS and its water-soluble derivatives, chitosan oligosaccharides (MN≤1,000 Da (COSI and MN≤3,000 Da (COSIII, in male hyperlipidemic rats induced by a high-fat diet (HFD. Design: After the model creation, 120 Sprague-Dawley (SD rats were equally assigned to 12 groups fed various diets as follows: the normal group with basic diet, an HFD group, an HFD group supplemented with three doses of CTS, COSI and COSIII groups, and an HFD group treated with simvastatin (7 mg/kg·d. After 6 weeks, body weight, fat/body ratio, and the relevant biomarkers of serum, liver, and feces were measured. Additionally, the histological analysis of liver and adipose tissue was performed, and the mRNA expressions of liver peroxisome proliferator-activated receptor-α (PPARα and hepatic lipase (HL were examined. Results: Compared with HFD group, rats fed CTS, COSI, and COSIII showed a better ability to regulate their body weight, liver and cardiac indices, fat/body ratio, as well as serum, liver, and fecal lipids, and simultaneously to maintain the appropriate activity of liver and serum superoxide dismutase (SOD, alanine aminotransferase (ALT, aspartate aminotransferase (AST, as well as liver and fecal total bile acids (TBA. Simultaneously, there had been a higher mRNA expression of PPARα and HL in the treatment groups. Conclusion: The obtained results suggested that these three function foods can effectively improve liver lipid metabolism by normalizing the expressions of PPARα and HL, and protect liver from the oxidized trauma

  4. Fat absorption in germ-free and conventional rats artificially deprived of bile secretion

    OpenAIRE

    Demarne, Y.; Corring, T.; Pihet, A.; Sacquet, E.

    1982-01-01

    Bile duct ligation was performed in germ-free and conventional rats in order to study the effects of bile deprivation on the absorption of dietary lipids and the excretion of faecal lipids in the presence or the absence of gastrointestinal flora. The main consequence of bile duct ligation in conventional rats was decrease of about 50% in the apparent absorption of dietary lipids (peanut oil). In germ-free rats, absorption decreased by only about 25%.In conventional as well as in germ-free con...

  5. Relationship between lipogenesis, ketogenesis, and malonyl-CoA content in isolated hepatocytes from the obese Zucker rat adapted to a high-fat diet.

    Science.gov (United States)

    Malewiak, M I; Griglio, S; Le Liepvre, X

    1985-07-01

    The relationship between lipogenesis and ketogenesis and the concentration of malonyl coenzyme A (CoA) was investigated in hepatocytes from adult obese Zucker rats and their lean littermates fed either a control low-fat diet or a high-fat diet (30% lard in weight). With the control diet, lipogenesis--although strongly inhibited in the presence of either 1 mmol/L oleate, 10(-6) mol/L glucagon or 0.1 mmol/L TOFA (a hypolipidemic drug)--remained about fifteen-fold higher in the obese rats than in the lean rats. In contrast, ketogenesis under some conditions (oleate + TOFA) was not significantly lower (30%) as compared with the lean rats. After adaptation to the high-fat diet, lipogenesis was depressed fourfold in the lean rats and ninefold in the obese ones; however its magnitude remained significantly higher in the latter, namely at a value close to that measured in control-fed lean rats. Ketogenesis was comparable in lean and obese rats and much higher in the presence of 1 mmol/L oleate than of 0.3 mmol/L oleate, whereas lipogenesis did not vary with increasing oleate concentration in the medium. Acetyl-CoA carboxylase activity measured in liver homogenates was higher in the obese group, but was stepwise inhibited by increasing concentrations of oleyl-CoA regardless of the diet for both lean and obese rats, thus showing no abnormality of in vitro responsiveness to this inhibitor. With the control diet, hepatocyte malonyl-CoA levels were significantly higher in the obese rats, both in the basal state and after inhibition of lipogenesis by oleate and TOFA.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Fish Oil and Microalga Omega-3 as Dietary Supplements: A Comparative Study on Cardiovascular Risk Factors in High-Fat Fed Rats.

    Science.gov (United States)

    Haimeur, Adil; Mimouni, Virginie; Ulmann, Lionel; Martineau, Anne-Sophie; Messaouri, Hafida; Pineau-Vincent, Fabienne; Tremblin, Gérard; Meskini, Nadia

    2016-09-01

    Dietary supplementation with marine omega-3 polyunsaturated fatty acids (n-3 PUFA) can have beneficial effects on a number of risk factors for cardiovascular disease (CVD). We compared the effects of two n-3 PUFA rich food supplements (freeze-dried Odontella aurita and fish oil) on risk factors for CVD. Male rats were randomly divided into four groups of six animals each and fed with the following diets: control group (C) received a standard diet containing 7 % lipids; second group (HF high fat) was fed with a high-fat diet containing 40 % lipids; third group (HFFO high fat+fish oil) was fed with the high-fat diet supplemented with 0.5 % fish oil; and fourth group (HFOA high fat+O. aurita) received the high-fat diet supplemented with 12 % of freeze-dried O. aurita. After 8 weeks rats fed with the high-fat diet supplemented with O. aurita displayed a significantly lower bodyweight than those in the other groups. Both the microalga and the fish oil significantly reduced insulinemia and serum lipid levels. O. aurita was more effective than the fish oil in reducing hepatic triacyglycerol levels and in preventing high-fat diet-induced steatosis. O. aurita and fish oil also reduced platelet aggregation and oxidative status induced by high fat intake. After an OA supplementation, the adipocytes in the HFOA group were smaller than those in the HF group. Freeze-dried O. aurita showed similar or even greater biological effects than the fish oil. This could be explained by a potential effect of the n-3 PUFA but also other bioactive compounds of the microalgae.

  7. High-fat diet with stress impaired islets' insulin secretion by reducing plasma estradiol and pancreatic GLUT2 protein levels in rats' proestrus phase.

    Science.gov (United States)

    Salimi, M; Zardooz, H; Khodagholi, F; Rostamkhani, F; Shaerzadeh, F

    2016-10-01

    This study was conducted to determine whether two estrus phases (proestrus and diestrus) in female rats may influence the metabolic response to a high-fat diet and/or stress, focusing on pancreatic insulin secretion and content. Animals were divided into high-fat and normal diet groups, then each group was subdivided into stress and non-stress groups, and finally, each one of these was divided into proestrus and diestrus subgroups. At the end of high-fat diet treatment, foot-shock stress was applied to the animals. Then, blood samples were taken to measure plasma factors. Finally, the pancreas was removed for determination of glucose transporter 2 (GLUT2) protein levels and assessment of insulin content and secretion of the isolated islets. In the normal and high-fat diet groups, stress increased plasma corticosterone concentration in both phases. In both study phases, high-fat diet consumption decreased estradiol and increased leptin plasma levels. In the high-fat diet group in response to high glucose concentration, a reduction in insulin secretion was observed in the proestrus phase compared with the same phase in the normal diet group in the presence and absence of stress. Also, high-fat diet decreased the insulin content of islets in the proestrus phase compared with the normal diet. High-fat diet and/or stress caused a reduction in islet GLUT2 protein levels in both phases. In conclusion, it seems possible that high-fat diet alone or combined with foot-shock, predispose female rats to impaired insulin secretion, at least in part, by interfering with estradiol levels in the proestrus phase and decreasing pancreatic GLUT2 protein levels.

  8. Chronic high-fat diet-induced obesity decreased survival and increased hypertrophy of rats with experimental eccentric hypertrophy from chronic aortic regurgitation.

    Science.gov (United States)

    Dhahri, Wahiba; Drolet, Marie-Claude; Roussel, Elise; Couet, Jacques; Arsenault, Marie

    2014-09-24

    The composition of a diet can influence myocardial metabolism and development of left ventricular hypertrophy (LVH). The impact of a high-fat diet in chronic left ventricular volume overload (VO) causing eccentric LVH is unknown. This study examined the effects of chronic ingestion of a high-fat diet in rats with chronic VO caused by severe aortic valve regurgitation (AR) on LVH, function and on myocardial energetics and survival. Male Wistar rats were divided in four groups: Shams on control or high-fat (HF) diet (15 rats/group) and AR rats fed with the same diets (ARC (n = 56) and ARHF (n = 32)). HF diet was started one week before AR induction and the protocol was stopped 30 weeks later. As expected, AR caused significant LV dilation and hypertrophy and this was exacerbated in the ARHF group. Moreover, survival in the ARHF group was significantly decreased compared the ARC group. Although the sham animals on HF also developed significant obesity compared to those on control diet, this was not associated with heart hypertrophy. The HF diet in AR rats partially countered the expected shift in myocardial energy substrate preference usually observed in heart hypertrophy (from fatty acids towards glucose). Systolic function was decreased in AR rats but HF diet had no impact on this parameter. The response to HF diet of different fatty acid oxidation markers as well as the increase in glucose transporter-4 translocation to the plasma membrane compared to ARC was blunted in AR animals compared to those on control diet. HF diet for 30 weeks decreased survival of AR rats and worsened eccentric hypertrophy without affecting systolic function. The expected adaptation of myocardial energetics to volume-overload left ventricle hypertrophy in AR animals seemed to be impaired by the high-fat diet suggesting less metabolic flexibility.

  9. Influence of fat/carbohydrate ratio on progression of fatty liver disease and on development of osteopenia in male rats fed alcohol via total enteral nutrition (TEN)

    Science.gov (United States)

    Alcohol abuse is associated with the development of fatty liver disease and also with significant bone loss in both genders. In this study, we examined ethanol (EtOH)-induced pathology in response to diets with differing fat/carbohydrate ratios. Male Sprague-Dawley rats were fed intragastrically wit...

  10. Gastric Bypass Surgery Recruits a Gut PPAR-α-Striatal D1R Pathway to Reduce Fat Appetite in Obese Rats

    DEFF Research Database (Denmark)

    Hankir, Mohammed K; Seyfried, Florian; Hintschich, Constantin A

    2017-01-01

    Bariatric surgery remains the single most effective long-term treatment modality for morbid obesity, achieved mainly by lowering caloric intake through as yet ill-defined mechanisms. Here we show in rats that Roux-en-Y gastric bypass (RYGB)-like rerouting of ingested fat mobilizes lower small int...

  11. Effect of High Fructose and High Fat Diets on Pulmonary Sensitivity, Motor Activity, and Body Composition of Brown Norway Rats Exposed to Ozone

    Science.gov (United States)

    Diet-induced obesity has been suggested to lead to increased susceptibility to air pollutants such as ozone (03); however, there is little experimental evidence. Thirty day old male and female Brown Norway rats were fed a normal, high-fructose or high-fat diet for 12 weeks and th...

  12. Diminished metabolic responses to centrally-administered apelin-13 in diet-induced obese rats fed a high-fat diet.

    Science.gov (United States)

    Clarke, K J; Whitaker, K W; Reyes, T M

    2009-02-01

    The central administration of apelin, a recently identified adipokine, has been shown to affect food and water intake. The present study investigated whether body weight could affect an animal's response to apelin. The effects of centrally-administered apelin-13 on food and water intake, activity and metabolic rate were investigated in adult male diet-induced obese (DIO) rats fed either a high fat (32%) or control diet. Rats were administered i.c.v. apelin-13, 15-30 min prior to lights out, and food and water intake, activity and metabolic rate were assessed. Intracerebroventricular administration of apelin-13 decreased food and water intake and respiratory exchange ratio in DIO rats on the control diet, but had no effect in DIO rats on the high-fat diet. In an effort to identify potential central mechanisms explaining the observed physiological responses, the mRNA level of the apelin receptor, APJ, was examined in the hypothalamus. A high-fat diet induced an up-regulation of the expression of the receptor. Apelin induced a down-regulation of the receptor, but only in the DIO animals on the high-fat diet. In conclusion, we have demonstrated a diminished central nervous system response to apelin that is coincident with obesity.

  13. High fat diet and in utero exposure to maternal obesity disrupts circadian rhythm and leads to metabolic programming of liver in rat offspring

    Science.gov (United States)

    The risk of obesity in adulthood is subject to programming beginning at conception. In animal models, exposure to maternal obesity and high fat diets influences the risk of obesity in the offspring. Among other long-term changes, offspring from obese rats develop hyperinsulinemia, hepatic steatosi...

  14. The regulatory effects of fish oil and chitosan on hepatic lipogenic signals in high-fat diet-induced obese rats.

    Science.gov (United States)

    Chiu, Chen-Yuan; Chang, Tien-Chia; Liu, Shing-Hwa; Chiang, Meng-Tsan

    2017-10-01

    The present study investigated the regulatory effects of fish oil and chitosan on the signals of hepatic lipid metabolism and the postulated mechanism in high-fat diet-induced obese rats. Diet supplementation of chitosan and fish oil efficiently suppressed the increased weights in body and livers of high-fat diet-fed rats. Supplementation of chitosan and fish oil significantly decreased the activities of hepatic lipid biosynthesis-related enzymes and efficiently regulated plasma lipoprotein homeostasis. Both chitosan and fish oil significantly ameliorated the alterations in the protein expressions of hepatic lipogenic transcription factors (LXRα and PPARα), and could also significantly regulate the downstream hepatic lipogenic genes (FAS, HMGCR, CYP7A1, FATP, FABP, AOX, and ABCA) expressions in high-fat diet-fed rats. These results suggest that both fish oil and chitosan exerts downregulative effects on hepatic lipid metabolism in high-fat diet-induced obese rats via the LXRα inhibition and PPARα activation, which further affect the expressions of hepatic lipogenesis-associated genes. Copyright © 2017. Published by Elsevier B.V.

  15. Tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea

    Directory of Open Access Journals (Sweden)

    Mohamed Hédi Hamdaoui

    2016-12-01

    Conclusion: Chronic GTD and BTD prevent fat storage in the liver, lowering blood lipids and glucose, increasing fecal excretion of TG, decreasing AT and weight gains in rats fed HFD, with a strong effect of BTD compared to GTD. Therefore, these beverages containing high amounts of TPC and caffeine could constitute a natural alternative in the prevention of obesity.

  16. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns

    NARCIS (Netherlands)

    La Fleur, S. E.; Luijendijk, M. C. M.; van der Zwaal, E. M.; Brans, M. A. D.; Adan, R. A. H.

    2014-01-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced

  17. Maternal high fat diet alters skeletal muscle mitochondrial catalytic activity in adult male rat offspring.

    Directory of Open Access Journals (Sweden)

    Chantal Anne Pileggi

    2016-11-01

    Full Text Available A maternal high-fat (HF diet during pregnancy can lead to metabolic compromise such as insulin resistance in adult offspring. Skeletal muscle mitochondrial dysfunction is one mechanism contributing to metabolic impairments in insulin resistant states. Therefore, the present study aimed to investigate whether mitochondrial dysfunction is evident in metabolically compromised offspring born to HF-fed dams. Sprague-Dawley dams were randomly assigned to receive a purified control diet (CD; 10% kcal from fat or a high fat diet (HFD; 45% kcal from fat for 10 days prior to mating, throughout pregnancy and during lactation. From weaning, all male offspring received a standard chow diet and soleus muscle was collected at day 150. Expression of the mitochondrial transcription factors nuclear respiratory factor-1 (NRF1 and mitochondrial transcription factor A (mtTFA were downregulated in HF offspring. Furthermore, genes encoding the mitochondrial electron transport system (ETS respiratory complex subunits were supressed in HF offspring. Moreover, protein expression of the complex I subunit, NDUFB8, was downregulated in HF offspring (36%, which was paralleled by decreased maximal catalytic linked activity of complex I and III (40%. Together, these results indicate that exposure to a maternal HF diet during development may elicit lifelong mitochondrial alterations in offspring skeletal muscle.

  18. Changes in weight and body fat after use of tetracycline and Lactobacillus gasseri in rats

    Directory of Open Access Journals (Sweden)

    Jorge José Marciano

    2017-04-01

    Full Text Available ABSTRACT Recent studies have shown a role of intestinal microbiota in obesity. The consumption of antibiotics in the last 70 years has led to changes in intestinal microbiota, which has led to weight gain and body fat accumulation. To evaluate the possibility of weight gain induced by antibiotics and the possible protective effect of probiotics, we divided 45 animals (Rattus norvegicus into groups and administered the following treatments over two weeks: tetracycline, tetracycline + Lactobacillus gasseri, and NaCl. The animals were weighed over the course of 8 weeks, and at the end of the treatment period, they were measured and subjected to bioelectrical impedance analysis. The results show that the group receiving tetracycline alone had a higher body mass index (p=0.030, a greater Lee index (p=0.008, and a lower body water percentage than the control group, indicating a greater accumulation of body fat. The group receiving the probiotics with tetracycline presented similar results to the control group, indicating a possible protective effect of body fat accumulation in the group receiving tetracycline alone. The results show that tetracycline increased the concentration of body fat, and the use of probiotics was associated with an ability to protect the animals from the pro-obesity effect.

  19. Impairment of mitochondrial function of rat hepatocytes by high fat diet and oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Garnol, T.; Endlicher, R.; Kučera, O.; Drahota, Zdeněk; Červinková, Z.

    2014-01-01

    Roč. 63, č. 2 (2014), s. 271-274 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LL1204 Grant - others:Univerzita Karlova(CZ) PRVOUK P37/02 Institutional support: RVO:67985823 Keywords : hepatocytes * high fat diet * mitochondrial activities * ROS Subject RIV: ED - Physiology Impact factor: 1.293, year: 2014

  20. Effects of insulin therapy on weight gain and fat distribution in the HF/HS-STZ rat model of type 2 diabetes

    DEFF Research Database (Denmark)

    Skovsø, Søs; Damgaard, J; Fels, J J

    2015-01-01

    insulin on fat distribution in the high-fat/high-sucrose fed rat treated with streptozotocin (HF/HS-STZ) rat model of type 2 diabetes. We also examined effects of insulin therapy on circulating CVD markers, including adiponectin, triglycerides (TGs), total cholesterol and high-density lipoprotein......-density lipoprotein (HDL) and adiponectin levels were elevated (Ptype 2 diabetes, we find that insulin therapy modulates fat distribution. Specifically, our data show that insulin has a relatively positive effect on CVD-associated parameters......BACKGROUND/OBJECTIVES: Insulin therapy is required for many patients with the obesity-related disorder type 2 diabetes, but is also associated with weight gain. The specific location of adipose tissue location matters to cardiovascular disease (CVD) risk. We investigated effects of exogenous...

  1. Analysis of time-dependent adaptations in whole-body energy balance in obesity induced by high-fat diet in rats

    Directory of Open Access Journals (Sweden)

    Maghdoori Babak

    2011-06-01

    Full Text Available Abstract Background High-fat (HF diet has been extensively used as a model to study metabolic disorders of human obesity in rodents. However, the adaptive whole-body metabolic responses that drive the development of obesity with chronically feeding a HF diet are not fully understood. Therefore, this study investigated the physiological mechanisms by which whole-body energy balance and substrate partitioning are adjusted in the course of HF diet-induced obesity. Methods Male Wistar rats were fed ad libitum either a standard or a HF diet for 8 weeks. Food intake (FI and body weight were monitored daily, while oxygen consumption, respiratory exchange ratio, physical activity, and energy expenditure (EE were assessed weekly. At week 8, fat mass and lean body mass (LBM, fatty acid oxidation and uncoupling protein-1 (UCP-1 content in brown adipose tissue (BAT, as well as acetyl-CoA carboxylase (ACC content in liver and epidydimal fat were measured. Results Within 1 week of ad libitum HF diet, rats were able to spontaneously reduce FI to precisely match energy intake of control rats, indicating that alterations in dietary energy density were rapidly detected and FI was self-regulated accordingly. Oxygen consumption was higher in HF than controls throughout the study as whole-body fat oxidation also progressively increased. In HF rats, EE initially increased, but then reduced as dark cycle ambulatory activity reached values ~38% lower than controls. No differences in LBM were detected; however, epidydimal, inguinal, and retroperitoneal fat pads were 1.85-, 1.89-, and 2.54-fold larger in HF-fed than control rats, respectively. Plasma leptin was higher in HF rats than controls throughout the study, indicating the induction of leptin resistance by HF diet. At week 8, UCP-1 content and palmitate oxidation in BAT were 3.1- and 1.5-fold higher in HF rats than controls, respectively, while ACC content in liver and epididymal fat was markedly reduced

  2. Treatment of pregnant rats with oleoyl-estrone slows down pup fat deposition after weaning

    Directory of Open Access Journals (Sweden)

    Vilà Ruth

    2008-06-01

    Full Text Available Abstract Background In rats, oral oleoyl-estrone (OE decreases food intake and body lipid content. The aim of this study was to determine whether OE treatment affects the energy metabolism of pregnant rats and eventually, of their pups; i.e. changes in normal growth patterns and the onset of obesity after weaning. Methods Pregnant Wistar rats were treated with daily intragastric gavages of OE in 0.2 ml sunflower oil from days 11 to 21 of pregnancy (i.e. 10 nmol oleoyl-estrone/g/day. Control animals received only the vehicle. Plasma and hormone metabolites were determined together with variations in cellularity of adipose tissue. Results Treatment decreased food intake and lowered weight gain during late pregnancy, mainly because of reduced adipose tissue accumulation in different sites. OE-treated pregnant rats' metabolic pattern after delivery was similar to that of controls. Neonates from OE-treated rats weighed the same as those from controls. They also maintained the same growth rate up to weaning, but pups from OE-treated rats slowed their growth rate afterwards, despite only limited differences in metabolite concentrations. Conclusion The OE influences on pup growth can be partially buffered by maternal lipid mobilization during the second half of pregnancy. This maternal metabolic "imprinting" may condition the eventual accumulation of adipose tissue after weaning, and its effects can affect the regulation of body weight up to adulthood.

  3. Activity of thyroxine 5' deiodinase in brown fat of lean and obese zucker rats

    International Nuclear Information System (INIS)

    Wu, S.Y.; Fisher, D.A.; Stern, J.S.; Glick, Z.

    1986-01-01

    This study examines the possibility that the reduced brown adipose tissue (BAT) thermogenesis in the Zucker obese rat may result from a limited capacity for conversion of T 4 to T 3 in BAT, through activity of T 4 5' deiodinase. Eighteen lean (Fa/.) and 18 age matched obese (fa/fa), about 16 weeks old, were each divided into 3 groups (n=6 per group). Group 1 and 2 were fed Purina Rat Chow and a cafeteria diet respectively for 21 days, and maintained at 22 0 C+/-2. Group 3 was fed rat chow and maintained at 8 0 C+/-1 for 7 days. Activity of T 4 5'deiodinase was determined in vitro. T 3 was measured by a radioimmunoassay. The rate of T 4 to T 3 conversion was similar in the lean and the obese rats maintained at room temperature, whether fed rat chow or a cafeteria diet (about 40 to 50 pmol T 3 /scapular BAT depot, per hour). However, lean rats exposed to the cold displayed about a 5 fold increase in T 4 5' deiodinase activity (p 3 may account for the reduced tolerance of obese animals to cold, but it does not account for their reduced diet induced BAT thermogenesis

  4. Use of rat mature adipocyte-derived dedifferentiated fat cells as a cell source for periodontal tissue regeneration

    Directory of Open Access Journals (Sweden)

    Daisuke eAkita

    2016-02-01

    Full Text Available Lipid-free fibroblast-like cells, known as dedifferentiated fat (DFAT cells, can be generated from mature adipocytes with a large single lipid droplet. DFAT cells can re-establish their active proliferation ability and can transdifferentiate into various cell types under appropriate culture conditions. The first objective of this study was to compare the multilineage differentiation potential of DFAT cells with that of adipose-derived stem cells (ASCs on mesenchymal stem cellsWe obtained DFAT cells and ASCs from inbred rats and found that rat DFAT cells possess higher osteogenic differentiation potential than rat ASCs. On the other hand, DFAT cells show similar adipogenic differentiation, and chondrogenic differentiation potential in comparison with ASCs. The second objective of this study was to assess the regenerative potential of DFAT cells combined with novel solid scaffolds composed of PLGA (Poly d, l-lactic-co-glycolic acid on periodontal tissue, and to compare this with the regenerative potential of ASCs combined with PLGA scaffolds. Cultured DFAT cells and ASCs were seeded onto PLGA scaffolds (DFAT/PLGA and ASCs/PLGA and transplanted into periodontal fenestration defects in rat mandible. Micro computed tomography analysis revealed a significantly higher amount of bone regeneration in the DFAT/PLGA group compared with that of ASCs/PLGA and PLGA-alone groups at 2, 3 and 5 weeks after transplantation. Similarly, histomorphometric analysis showed that DFAT/PLGA groups had significantly greater width of cementum, periodontal ligament and alveolar bone than ASCs/PLGA and PLGA-alone groups. In addition, transplanted fluorescent-labeled DFAT cells were observed in the periodontal ligament beside the newly formed bone and cementum. These findings suggest that DFAT cells have a greater potential for enhancing periodontal tissue regeneration than ASCs. Therefore, DFAT cells are a promising cell source for periodontium regeneration.

  5. Effects of yam dioscorin interventions on improvements of the metabolic syndrome in high-fat diet-induced obese rats.

    Science.gov (United States)

    Shih, Shen-Liang; Lin, Yin-Shiou; Lin, Shyr-Yi; Hou, Wen-Chi

    2015-12-01

    The metabolic syndrome (MS) is termed a cluster of multiple metabolic risk criteria which is positively correlated with cardiovascular disease and type 2 diabetes mellitus (DM). Yam dioscorins have been reported to exhibit biological activities, however, little is known their preventive effects on the MS. Therefore, a high-fat (HF) diet was used to induce Wistar rat obesity and then yam dioscorin (50 mg/kg, dio50) was intervened daily concurrent HF diet (HF diet + dio50) for five weeks to check the changes of weights of body and tissues, blood pressures, and impaired glucose tolerances. The in vitro peptic hydrolysates of dioscorin with molecular mass between 3 kDa and 10 kDa and less than 3 kDa were used to determine dipeptidyl peptidase IV (DPP IV) inhibitory activities which DPP IV inhibitor has been reported to prevent and treat type 2 DM. There were no significant difference in body weights, feed intakes, feed conversion, and weights of adipose tissues of obese rats in groups of HF and (HF diet + dio50). However, the systolic blood pressures in obese rats of 2-, 3- and 4-week dioscorin interventions were showed significantly lower (P dioscorin intervention (HF+ dio50) was showed significantly different (P dioscorin peptic hydrolysates (5 mg/ml) showed inhibitory activities against DPP IV using sitagliptin phosphate as positive controls. Yam dioscorins exhibit improved MS activities in obese rats which the related mechanisms may need further investigations.

  6. Short exposure to a diet rich in both fat and sugar or sugar alone impairs place, but not object recognition memory in rats.

    Science.gov (United States)

    Beilharz, Jessica E; Maniam, Jayanthi; Morris, Margaret J

    2014-03-01

    High energy diets have been shown to impair cognition however, the rapidity of these effects, and the dietary component/s responsible are currently unclear. We conducted two experiments in rats to examine the effects of short-term exposure to a diet rich in sugar and fat or rich in sugar on object (perirhinal-dependent) and place (hippocampal-dependent) recognition memory, and the role of inflammatory mediators in these responses. In Experiment 1, rats fed a cafeteria style diet containing chow supplemented with lard, cakes, biscuits, and a 10% sucrose solution performed worse on the place, but not the object recognition task, than chow fed control rats when tested after 5, 11, and 20 days. In Experiment 2, rats fed the cafeteria style diet either with or without sucrose and rats fed chow supplemented with sucrose also performed worse on the place, but not the object recognition task when tested after 5, 11, and 20 days. Rats fed the cafeteria diets consumed five times more energy than control rats and exhibited increased plasma leptin, insulin and triglyceride concentrations; these were not affected in the sucrose only rats. Rats exposed to sucrose exhibited both increased hippocampal inflammation (TNF-α and IL-1β mRNA) and oxidative stress, as indicated by an upregulation of NRF1 mRNA compared to control rats. In contrast, these markers were not significantly elevated in rats that received the cafeteria diet without added sucrose. Hippocampal BDNF and neuritin mRNA were similar across all groups. These results show that relatively short exposures to diets rich in both fat and sugar or rich in sugar, impair hippocampal-dependent place recognition memory prior to the emergence of weight differences, and suggest a role for oxidative stress and neuroinflammation in this impairment. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Hepatoprotective and Antioxidant Potential of Organic and Conventional Grape Juices in Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Iselde Buchner

    2014-04-01

    Full Text Available The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ or organic (OGJ grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with a high-fat diet (HFD for three months. The results demonstrated that HFD induced an increase in thiobarbituric acid-reactive substances (TBARS, catalase (CAT activity and 2′,7′-dihydrodichlorofluorescein (DCFH oxidation and a decrease in sulfhydryl content and superoxide dismutase (SOD and glutathione peroxidase (GPx activities. HFD also induced hepatocellular degeneration and steatosis. These alterations were prevented by CGJ and OGJ, where OGJ was more effective. Therefore, it was concluded that HFD induced oxidative stress and liver damage and that the chronic use of grape juice was able to prevent these alterations.

  8. DNA adductomics to study the genotoxic effects of red meat consumption with and without added animal fat in rats.

    Science.gov (United States)

    Hemeryck, Lieselot Y; Van Hecke, Thomas; Vossen, Els; De Smet, Stefaan; Vanhaecke, Lynn

    2017-09-01

    Digestion of red and processed meat has been linked to the formation of genotoxic N-nitroso compounds (NOCs) and lipid peroxidation products (LPOs) in the gut. In this study, rats were fed a meat based diet to compare the possible genotoxic effects of red vs. white meat, and the interfering role of dietary fat. To this purpose, liver, duodenum and colon DNA adductomes were analyzed with UHPLC-HRMS. The results demonstrate that the consumed meat type alters the DNA adductome; the levels of 22 different DNA adduct types significantly increased upon the consumption of beef (compared to chicken) and/or lard supplemented beef or chicken. Furthermore, the chemical constitution of the retrieved DNA adducts hint at a direct link with an increase in NOCs and LPOs upon red (and processed) meat digestion, supporting the current hypotheses on the causal link between red and processed meat consumption and the development of colorectal cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. [The effects of renin-angiotensin system blockade on the liver steatosis in rats on long-term high-fat diet].

    Science.gov (United States)

    Chen, Ying-Hua; Yuan, Li; Chen, Yuan-Yuan; Qi, Cui-Juan

    2008-03-01

    To observe the relationship between liver steatosis in rats with long-term high-caloric and high-fat diet and the expression of angiotensinogen (AGT), uncoupling protein 2 (UCP-2) and transforming growth factor beta1 (TGFbeta1). Then angiotensin-converting enzyme inhibitor (ACEI) and angiotensin II receptor blocker (ARB) drugs were given to investigate whether rennin-angiotensin system (RAS) blockade can mitigate the liver steatosis and to probe its mechanisms. Forty male Wistar rats were divided into normal control group (NC group, n = 10), high-calorie and high-fat fed group (HF group, n = 10), ARB treated group (AR group, n = 10) and ACEI treated group (AE group, n = 10). Rats were fed with high-calorie and high-fat diet and given RAS inhibitor drugs (valsartan 40 mg/kg to the AR group and perindopril 4 mg/kg to the AE group) for eight weeks. Serum TG, free fatty acids (FFAs) lever and the fat content in liver were then measured with biochemical tests; insulin resistance was evaluated with euglycemic hyperinsulinemia clamp technique, the expression of UCP-2 and TGFbeta1 in liver tissue were examined with immunohistochemical staining and AGT mRNA, UCP-2 mRNA and TGFbeta1 mRNA were tested with RT-PCR. With the administration of RAS inhibitor drugs, following changes were observed. The levels of TG and FFAs and the fat content in liver decreased (P liver steatosis, inflammation and fibrosis were mitigated. The levels of UCP-2 decreased by 36.5% (P liver injury of long term high-fat fed rats and have a protective effect on liver. The mechanism may be associated with the effects of improved insulin resistance, the interaction within RAS and the down-regulation of UCP-2 and TGFbeta1 in liver tissue.

  10. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats.

    Science.gov (United States)

    Hankir, Mohammed K; Patt, Marianne; Patt, Jörg T W; Becker, Georg A; Rullmann, Michael; Kranz, Mathias; Deuther-Conrad, Winnie; Schischke, Kristin; Seyfried, Florian; Brust, Peter; Hesse, Swen; Sabri, Osama; Krügel, Ute; Fenske, Wiebke K

    2016-01-01

    Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [ 11 C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [ 11 C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.

  11. Dietary fat (virgin olive oil or sunflower oil) and physical training interactions on blood lipids in the rat.

    Science.gov (United States)

    Quiles, José L; Huertas, Jesús R; Ochoa, Julio J; Battino, Maurizio; Mataix, José; Mañas, Mariano

    2003-04-01

    We investigated whether the intake of virgin olive oil or sunflower oil and performance of physical exercise (at different states) affect plasma levels of triacylglycerols, total cholesterol, and fatty acid profile in rats. The study was carried out with six groups of male rats subjected for 8 wk to a diet based on virgin olive oil (three groups) or sunflower oil (three groups) as dietary fat. One group for each diet acted as sedentary control; the other two groups ran in a treadmill for 8 wk at 65% of the maximum oxygen consumption. One group for each diet was killed 24 h after the last bout of exercise and the other was killed immediately after the exercise performance. Triacylglycerols, total cholesterol, and fatty acid profile were analyzed in plasma. Analysis of variance was used to test differences among groups. Animals fed on virgin olive oil had lower triacylglycerol and cholesterol values. Physical exercise reduced these parameters with both dietary treatments. Fatty acid profile showed higher monounsaturated fatty acid proportion in virgin olive fed oil animals and a higher omega-6 polyunsaturated fatty acid proportion in sunflower oil fed animals. Physical exercise reduced the levels of monounsaturated fatty acids with both diets and increased the proportions of omega-3 polyunsaturated fatty acids. Results from the present study supported the idea that physical exercise and the intake of virgin olive oil are very good ways of reducing plasma triacylglycerols and cholesterol, which is desirable in many pathologic situations. Concerning findings on fatty acid profile, we had results similar to those of other investigators regarding the effect of different sources of dietary fat on plasma. The most interesting results came from the effect of physical exercise, with significant increases in the levels of omega-3 polyunsaturated fatty acids, which may contribute to the antithrombotic state and lower production of proinflammatory prostanoids attributed to

  12. High Fat Diet Administration during Specific Periods of Pregnancy Alters Maternal Fatty Acid Profiles in the Near-Term Rat

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2016-01-01

    Full Text Available Excessive fat intake is a global health concern as women of childbearing age increasingly ingest high fat diets (HFDs. We therefore determined the maternal fatty acid (FA profiles in metabolic organs after HFD administration during specific periods of gestation. Rats were fed a HFD for the first (HF1, second (HF2, or third (HF3 week, or for all three weeks (HFG of gestation. Total maternal plasma non-esterified fatty acid (NEFA concentrations were monitored throughout pregnancy. At day 20 of gestation, maternal plasma, liver, adipose tissue, and placenta FA profiles were determined. In HF3 mothers, plasma myristic and stearic acid concentrations were elevated, whereas docosahexaenoic acid (DHA was reduced in both HF3 and HFG mothers. In HF3 and HFG mothers, hepatic stearic and oleic acid proportions were elevated; conversely, DHA and linoleic acid (LA proportions were reduced. In adipose tissue, myristic acid was elevated, whereas DHA and LA proportions were reduced in all mothers. Further, adipose tissue stearic acid proportions were elevated in HF2, HF3, and HFG mothers; with oleic acid increased in HF1 and HFG mothers. In HF3 and HFG mothers, placental neutral myristic acid proportions were elevated, whereas DHA was reduced. Further, placental phospholipid DHA proportions were reduced in HF3 and HFG mothers. Maintenance on a diet, high in saturated fat, but low in DHA and LA proportions, during late or throughout gestation, perpetuated reduced DHA across metabolic organs that adapt during pregnancy. Therefore a diet, with normal DHA proportions during gestation, may be important for balancing maternal FA status.

  13. Evaluation of jojoba oil as a low-energy fat. 1. A 4-week feeding study in rats.

    Science.gov (United States)

    Verschuren, P M

    1989-01-01

    The nutritional properties of jojoba oil (JO) were examined in a 4-wk feeding study of rats fed a diet with JO at dose levels of 2.2, 4.5 and 9%, supplemented with a conventional fat up to 18%. General health, survival and food intake were not adversely affected. Body-weight gains showed a dose-related decline, which amounted to 20% of the body weight in the high-dose group of both sexes. Clinical chemistry revealed significantly increased levels of various enzymes that were indicative of cell damage. Haematology showed a dose-related increase in white blood cells. On necropsy an apparent distension of the small intestine was found. Histopathological evaluation revealed marked intestinal changes characterized by massive vacuolization and lipid deposition in the enterocytes, accompanied by distension of the villi and an increased cell turnover of small intestinal cells. Faeces production and faeces lipid content were increased with increasing JO levels. The recovery of JO in the faeces also increased in a dose-related manner and was found to be correlated with the intestinal histopathological changes. The significant adverse clinical and histopathological effects observed in this study imply that JO cannot be considered as a promising alternative dietary fat with a low digestibility.

  14. Long-term High Fat Ketogenic Diet Promotes Renal Tumor Growth in a Rat Model of Tuberous Sclerosis.

    Science.gov (United States)

    Liśkiewicz, Arkadiusz D; Kasprowska, Daniela; Wojakowska, Anna; Polański, Krzysztof; Lewin-Kowalik, Joanna; Kotulska, Katarzyna; Jędrzejowska-Szypułka, Halina

    2016-02-19

    Nutritional imbalance underlies many disease processes but can be very beneficial in certain cases; for instance, the antiepileptic action of a high fat and low carbohydrate ketogenic diet. Besides this therapeutic feature it is not clear how this abundant fat supply may affect homeostasis, leading to side effects. A ketogenic diet is used as anti-seizure therapy i.a. in tuberous sclerosis patients, but its impact on concomitant tumor growth is not known. To examine this we have evaluated the growth of renal lesions in Eker rats (Tsc2+/-) subjected to a ketogenic diet for 4, 6 and 8 months. In spite of existing opinions about the anticancer actions of a ketogenic diet, we have shown that this anti-seizure therapy, especially in its long term usage, leads to excessive tumor growth. Prolonged feeding of a ketogenic diet promotes the growth of renal tumors by recruiting ERK1/2 and mTOR which are associated with the accumulation of oleic acid and the overproduction of growth hormone. Simultaneously, we observed that Nrf2, p53 and 8-oxoguanine glycosylase α dependent antitumor mechanisms were launched by the ketogenic diet. However, the pro-cancerous mechanisms finally took the ascendency by boosting tumor growth.

  15. High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats

    Directory of Open Access Journals (Sweden)

    Marlon E. Cerf

    2015-08-01

    Full Text Available Pregnant rats were fed a high fat diet (HFD for the first (HF1, second (HF2, third (HF3 or all three weeks (HFG of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Model Assessment (HOMA-insulin resistance were also determined. HF3 fetuses were heaviest concomitant with elevated glycemia and insulin resistance (p < 0.05. HFG fetuses had elevated plasma linoleic (18:2 n-6 and arachidonic (20:4 n-6 acid proportions (p < 0.05. In the liver, HF3 fetuses displayed elevated linoleic, eicosatrienoic (20:3 n-6 and arachidonic acid proportions (p < 0.05. HFG fetuses had reduced hepatic docosatrienoic acid (22:5 n-3 proportions (p < 0.05. High fat maintenance during the final week of fetal life enhances hepatic omega-6 FA profiles in fetuses concomitant with hyperglycemia and insulin resistance thereby presenting a metabolically compromised phenotype.

  16. Acute and perinatal-programming effects of a fat-rich diet on rat muscle mitochondrial function and hepatic lipid accumulation

    DEFF Research Database (Denmark)

    Hellgren, Lars; Jensen, Runa I.; Waterstradt, Michelle S. G.

    2014-01-01

    respiratory control ratio with pyruvate, increased post weaning (p hepatic steatosis......Objective. Maternal high-fat intake during pregnancy may have long-term consequences in the offspring. Since this might relate to the capacity of mitochondrial metabolic adaptation and hepatic lipid metabolism, we investigated how maternal high-fat intake affected mitochondrial function and hepatic...... steatosis in the offspring. Design. Sprague–Dawley rats were fed a high-fat (20% w/w) or a control diet (chow, C) from 10 days before pregnancy and throughout lactation. At weaning the litters were split into two groups; one was continued on the maternal diet and the other was fed low-fat chow. Sample...

  17. High-protein diet selectively reduces fat mass and improves glucose tolerance in Western-type diet-induced obese rats

    Science.gov (United States)

    Stengel, Andreas; Goebel-Stengel, Miriam; Wang, Lixin; Hu, Eugenia; Karasawa, Hiroshi; Pisegna, Joseph R.

    2013-01-01

    Obesity is an increasing health problem. Because drug treatments are limited, diets remain popular. High-protein diets (HPD) reduce body weight (BW), although the mechanisms are unclear. We investigated physiological mechanisms altered by switching diet induced obesity (DIO) rats from Western-type diet (WTD) to HPD. Male rats were fed standard (SD) or WTD (45% calories from fat). After developing DIO (50% of rats), they were switched to SD (15% calories from protein) or HPD (52% calories from protein) for up to 4 weeks. Food intake (FI), BW, body composition, glucose tolerance, insulin sensitivity, and intestinal hormone plasma levels were monitored. Rats fed WTD showed an increased FI and had a 25% greater BW gain after 9 wk compared with SD (P Diet-induced obese rats switched from WTD to HPD reduced daily FI by 30% on day 1, which lasted to day 9 (−9%) and decreased BW during the 2-wk period compared with SD/SD (P < 0.05). During these 2 wk, WTD/HPD rats lost 72% more fat mass than WTD/SD (P < 0.05), whereas lean mass was unaltered. WTD/HPD rats had lower blood glucose than WTD/SD at 30 min postglucose gavage (P < 0.05). The increase of pancreatic polypeptide and peptide YY during the 2-h dark-phase feeding was higher in WTD/HPD compared with WTD/SD (P < 0.05). These data indicate that HPD reduces BW in WTD rats, which may be related to decreased FI and the selective reduction of fat mass accompanied by improved glucose tolerance, suggesting relevant benefits of HPD in the treatment of obesity. PMID:23883680

  18. Supplementation of Syzygium cumini seed powder prevented obesity, glucose intolerance, hyperlipidemia and oxidative stress in high carbohydrate high fat diet induced obese rats.

    Science.gov (United States)

    Ulla, Anayt; Alam, Md Ashraful; Sikder, Biswajit; Sumi, Farzana Akter; Rahman, Md Mizanur; Habib, Zaki Farhad; Mohammed, Mostafe Khalid; Subhan, Nusrat; Hossain, Hemayet; Reza, Hasan Mahmud

    2017-06-02

    Obesity and related complications have now became epidemic both in developed and developing countries. Cafeteria type diet mainly composed of high fat high carbohydrate components which plays a significant role in the development of obesity and metabolic syndrome. This study investigated the effect of Syzygium cumini seed powder on fat accumulation and dyslipidemia in high carbohydrate high fat diet (HCHF) induced obese rats. Male Wistar rats were fed with HCHF diet ad libitum, and the rats on HCHF diet were supplemented with Syzygium cumini seed powder for 56 days (2.5% w/w of diet). Oral glucose tolerance test, lipid parameters, liver marker enzymes (AST, ALT and ALP) and lipid peroxidation products were analyzed at the end of 56 days. Moreover, antioxidant enzyme activities were also measured in all groups of rats. Supplementation with Syzygium cumini seed powder significantly reduced body weight gain, white adipose tissue (WAT) weights, blood glucose, serum insulin, and plasma lipids such as total cholesterol, triglyceride, LDL and HDL concentration. Syzygium cumini seed powder supplementation in HCHF rats improved serum aspartate amino transferase (AST), alanine amino transferase (ALT), and alkaline phosphatase (ALP) activities. Syzygium cumini seed powder supplementation also reduced the hepatic thiobarbituric acid reactive substances (TBARS) and elevated the antioxidant enzyme superoxide dismutase (SOD) and catalase (CAT) activities as well as increased glutathione (GSH) concentration. In addition, histological assessment showed that Syzygium cumini seed powder supplementation prevented inflammatory cell infiltration; fatty droplet deposition and fibrosis in liver of HCHFD fed rats. Our investigation suggests that Syzygium cumini seed powder supplementation prevents oxidative stress and showed anti-inflammatory and antifibrotic activity in liver of HCHF diet fed rats. In addition, Syzygium cumini seed powder may be beneficial in ameliorating insulin

  19. Changes in weight and body fat after use of tetracycline and Lactobacillus gasseri in rats

    OpenAIRE

    Jorge José Marciano; Fernando de Sá Del Fiol; Alessandra Cristina Marciano Tardelli Ferreira; Maria Cláudia Marques; Luciane Lopes Santana

    2017-01-01

    ABSTRACT Recent studies have shown a role of intestinal microbiota in obesity. The consumption of antibiotics in the last 70 years has led to changes in intestinal microbiota, which has led to weight gain and body fat accumulation. To evaluate the possibility of weight gain induced by antibiotics and the possible protective effect of probiotics, we divided 45 animals (Rattus norvegicus) into groups and administered the following treatments over two weeks: tetracycline, tetracycline + Lactobac...

  20. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet

    Directory of Open Access Journals (Sweden)

    Donato Jose

    2011-09-01

    Full Text Available Abstract Background Studies suggest that leucine supplementation (LS has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD in rats. Methods Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10 or HFD (n = 37. After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF, LS, ET, and LS+ET (n = 7-8 rats per group. After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-α were analyzed. Results At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019. In addition, ET was more effective than LS in reducing adiposity (P = 0.019, serum insulin (P = 0.022 and TNF-α (P = 0.044. Conversely, LS increased serum adiponectin (P = 0.021 levels and reduced serum total cholesterol concentration (P = 0.042. Conclusions The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.

  1. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague-Dawley rat.

    Science.gov (United States)

    Bake, T; Morgan, D G A; Mercer, J G

    2014-04-10

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague-Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1-2 h and 10-11 h into the dark phase (2×1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2×1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic platform for mechanistic study

  2. Feeding and metabolic consequences of scheduled consumption of large, binge-type meals of high fat diet in the Sprague–Dawley rat

    Science.gov (United States)

    Bake, T.; Morgan, D.G.A.; Mercer, J.G.

    2014-01-01

    Providing rats and mice with access to palatable high fat diets for a short period each day induces the consumption of substantial binge-like meals. Temporal food intake structure (assessed using the TSE PhenoMaster/LabMaster system) and metabolic outcomes (oral glucose tolerance tests [oGTTs], and dark phase glucose and insulin profiles) were examined in Sprague–Dawley rats given access to 60% high fat diet on one of 3 different feeding regimes: ad libitum access (HF), daily 2 h-scheduled access from 6 to 8 h into the dark phase (2 h-HF), and twice daily 1 h-scheduled access from both 1–2 h and 10–11 h into the dark phase (2 × 1 h-HF). Control diet remained available during the scheduled access period. HF rats had the highest caloric intake, body weight gain, body fat mass and plasma insulin. Both schedule-fed groups rapidly adapted their feeding behaviour to scheduled access, showing large meal/bingeing behaviour with 44% or 53% of daily calories consumed from high fat diet during the 2 h or 2 × 1 h scheduled feed(s), respectively. Both schedule-fed groups had an intermediate caloric intake and body fat mass compared to HF and control (CON) groups. Temporal analysis of food intake indicated that schedule-fed rats consumed large binge-type high fat meals without a habitual decrease in preceding intake on control diet, suggesting that a relative hypocaloric state was not responsible or required for driving the binge episode, and substantiating previous indications that binge eating may not be driven by hypothalamic energy balance neuropeptides. In an oGTT, both schedule-fed groups had impaired glucose tolerance with higher glucose and insulin area under the curve, similar to the response in ad libitum HF fed rats, suggesting that palatable feeding schedules represent a potential metabolic threat. Scheduled feeding on high fat diet produces similar metabolic phenotypes to mandatory (no choice) high fat feeding and may be a more realistic

  3. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    Energy Technology Data Exchange (ETDEWEB)

    Sertié, R.A.L.; Andreotti, S. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil); Proença, A.R.G. [Laboratório de Biotecnologia, Faculdade de Ciências Aplicadas, Universidade Estadual de Campinas, Limeira, SP (Brazil); Campaña, A.B.; Lima, F.B. [Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP (Brazil)

    2015-05-26

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes.

  4. Prenatal Exposure to a Maternal High-Fat Diet Affects Histone Modification of Cardiometabolic Genes in Newborn Rats

    Directory of Open Access Journals (Sweden)

    Bijaya Upadhyaya

    2017-04-01

    Full Text Available Infants born to women with diabetes or obesity are exposed to excess circulating fuels during fetal heart development and are at higher risk of cardiac diseases. We have previously shown that late-gestation diabetes, especially in conjunction with a maternal high-fat (HF diet, impairs cardiac functions in rat-offspring. This study investigated changes in genome-wide histone modifications in newborn hearts from rat-pups exposed to maternal diabetes and HF-diet. Chromatin-immunoprecipitation-sequencing revealed a differential peak distribution on gene promoters in exposed pups with respect to acetylation of lysines 9 and 14 and to trimethylation of lysines 4 and 27 in histone H3 (all, false discovery rate, FDR < 0.1. In the HF-diet exposed offspring, 54% of the annotated genes showed the gene-activating mark trimethylated lysine 4. Many of these genes (1 are associated with the “metabolic process” in general and particularly with “positive regulation of cholesterol biosynthesis” (FDR = 0.03; (2 overlap with 455 quantitative trait loci for blood pressure, body weight, serum cholesterol (all, FDR < 0.1; and (3 are linked to cardiac disease susceptibility/progression, based on disease ontology analyses and scientific literature. These results indicate that maternal HF-diet changes the cardiac histone signature in offspring suggesting a fuel-mediated epigenetic reprogramming of cardiac tissue in utero.

  5. Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock

    2017-09-10

    Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.

  6. Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet.

    Science.gov (United States)

    Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul

    2015-03-23

    Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH.

  7. Fat gain with physical detraining is correlated with increased glucose transport and oxidation in periepididymal white adipose tissue in rats

    International Nuclear Information System (INIS)

    Sertié, R.A.L.; Andreotti, S.; Proença, A.R.G.; Campaña, A.B.; Lima, F.B.

    2015-01-01

    As it is a common observation that obesity tends to occur after discontinuation of exercise, we investigated how white adipocytes isolated from the periepididymal fat of animals with interrupted physical training transport and oxidize glucose, and whether these adaptations support the weight regain seen after 4 weeks of physical detraining. Male Wistar rats (45 days old, weighing 200 g) were divided into two groups (n=10): group D (detrained), trained for 8 weeks and detrained for 4 weeks; and group S (sedentary). The physical exercise was carried out on a treadmill for 60 min/day, 5 days/week for 8 weeks, at 50-60% of the maximum running capacity. After the training protocol, adipocytes isolated from the periepididymal adipose tissue were submitted to glucose uptake and oxidation tests. Adipocytes from detrained animals increased their glucose uptake capacity by 18.5% compared with those from sedentary animals (P<0.05). The same cells also showed a greater glucose oxidation capacity in response to insulin stimulation (34.55%) compared with those from the S group (P<0.05). We hypothesize that, owing to the more intense glucose entrance into adipose cells from detrained rats, more substrate became available for triacylglycerol synthesis. Furthermore, this increased glucose oxidation rate allowed an increase in energy supply for triacylglycerol synthesis. Thus, physical detraining might play a role as a possible obesogenic factor for increasing glucose uptake and oxidation by adipocytes

  8. Apricot and pumpkin oils reduce plasma cholesterol and triacylglycerol concentrations in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Ramadan, Mohamed F.

    2011-12-01

    Full Text Available Non-conventional oilseeds are being taken into greater consideration because their constituents have unique chemical properties and may increase the supply of edible oils. The purpose of the present study was to investigate the effect of apricot kernel oil (AO and pumpkin kernel oil (PO on the lipid profiles and liver functions of rats fed high fat diets. The high fat diet resulted in great alterations in plasma lipid profiles and liver functions. Twenty-four male albino rats were used over a 28 day period. The animals were divided into 4 groups, where group 1 represents the negative control which were a fed basal diet, while group 2 received a high fat diet to serve as the hypercholesterolemic group (positive control. The other two groups were given a high fat diet supplemented with AO and PO. Group 3 was treated daily with AO (1g/Kg body weight, while group 4 was treated with PO (1g/Kg body weight. The plasma lipid profile and liver functions in the different groups were determined after 14 and 28 days. The rats in the treated groups (AO and PO showed significantly lower levels of total cholesterol (TC, total triglycerides (TG, low density lipoprotein-cholesterol (LDL-C, alanine-aminotransferase (ALT and aspartateaminotransferase (AST activities as well as high levels of high density lipoprotein-cholesterol (HDL-C and total protein in comparison with the hypercholesterolemic group. It could be concluded that AO and PO under study are useful for the treatment of hypercholesterolemia.

    Las semillas oleaginosas no convencionales están siendo consideradas debido a que sus componentes tienen propiedades químicas únicas y pueden aumentar la oferta de los aceites comestibles. El propósito del presente estudio fue investigar el efecto de los aceites de semilla de albaricoque (AO y de calabaza (PO sobre los perfiles de lípidos y las funciones del hígado de ratas alimentadas con una dieta rica en grasas. Las dietas ricas en grasas dan lugar

  9. Application of pressure ultrafiltration in determining the binding capacity of drugs to human albumin and to plasma proteins of intact and irradiated rat females

    International Nuclear Information System (INIS)

    Zima, M.

    1976-01-01

    The significance of the binding of drugs to plasma proteins has repeatedly been demonstrated and draws the interest of many pharmacologists. The described experiments served to study the binding of isoniazid (INH) to human albumin of various dilution and to whole plasma proteins of irradiated (on the Oth, 3rd and 6th day after exposure to 154.8 mC/kg=600 R) and non-irradiated rats using the technique of modified accelerated ultrafiltration through cellophane. The total characteristics of the binding and its changes were demonstrated by the equilibrium constant, the numbers of binding sites and the changes of free binding energy. The results show that the dilution of human albumin affects the strength of the INH binding on this albumin and further that the normally weak INH binding is diminished even more in irradiated rats. This cannot be explained by the change in the percentage composition of the rat plasma. (author)

  10. Lymphatic absorption of structured triglycerides vs. physical mix in a rat model of fat malabsorption.

    Science.gov (United States)

    Tso, P; Lee, T; Demichele, S J

    1999-08-01

    Comparison was made between the intestinal absorption and lymphatic transport of a randomly interesterified fish oil and medium-chain triglyceride (MCT) structured triglycerides (STG) vs. the physical mix in rat small intestine following ischemia and reperfusion (I/R) injury. Under halothane anesthesia, the superior mesenteric artery (SMA) was occluded for 20 min and then reperfused in I/R rats. The SMA was isolated but not occluded in control rats. In both treatment groups, the mesenteric lymph duct was cannulated and a gastric tube was inserted. Each treatment group received 1 ml of the fish oil-MCT STG or physical mix (7 rats/group) through the gastric tube followed by an infusion of PBS at 3 ml/h for 8 h. Lymph was collected hourly for 8 h. Lymph triglyceride, cholesterol, and decanoic and eicosapentaenoic acids increased rapidly and maintained a significantly higher output (P triglyceride output decreased 50% compared with control. Gastric infusion of STG significantly improved lipid transport by having a twofold higher triglyceride, cholesterol, and decanoic and eicosapentaenoic acids output to lymph compared with its physical mix (P < 0.01). We conclude that STG is absorbed into lymph significantly better than physical mix by both the normal intestine and the intestine injured by I/R.

  11. The effect of dietary fat on the molecular species of lecithin from rat liver

    NARCIS (Netherlands)

    Golde, L.M.G. van; Deenen, L.L.M. van

    1966-01-01

    1. 1. Lecithins from the liver of rats maintained on diets devoid of essential fatty acids or supplemented with coconut oil or corn oil revealed significant differences in fatty acid composition, whilst monomolecular films of these lecithin samples exhibited only limited differences in force-area

  12. Moderate alcohol consumption aggravates high fat-diet induced steatohepatitis in rats

    Science.gov (United States)

    Background: Nonalcoholic steatohepatitis (NASH) develops in the absence of chronic and excessive alcohol consumption. However, it remains unknown whether moderate alcohol consumption aggravates liver inflammation in pre-existing NASH condition. Methods: Sprague-Dawley rats were first fed ad libitum...

  13. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    Directory of Open Access Journals (Sweden)

    Sofia Moran-Ramos

    Full Text Available Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6 and oxidative stress (ROS, modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA, and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  14. Effects of telmisartan and olmesartan on insulin sensitivity and renal function in spontaneously hypertensive rats fed a high fat diet

    Directory of Open Access Journals (Sweden)

    Hayato Yanagihara

    2016-07-01

    Full Text Available Although telmisartan, an angiotensin II receptor blocker (ARB, has an agonistic action for proliferator-activated receptor (PPAR-γ in vitro, it remains to be determined whether telmisartan exerts such an action in vivo using a non-toxic dose (<5 mg/kg in rats. To address the issue, telmisartan (2 mg/kg and olmesartan (2 mg/kg, another ARB without PPAR-γ agonistic action, were given to spontaneously hypertensive rats (SHR fed a high fat diet (HFD. HFD decreased plasma adiponectin, and caused insulin resistance, hypertriglyceridemia and renal damage, which were improved by ARBs. Protective effects of telmisartan and olmesartan did not significantly differ. In addition, in vitro study showed that 1 μM of telmisartan did not elevate the mRNA expression of adipose protein 2, which is a PPAR-γ-stimulated adipogenic marker gene, in preadipocytes with 3% albumin. To obtain 1 μM of plasma concentration, oral dose of telmisartan was calculated to be 6 mg/kg, which indicates that PPAR-γ agonistic action is negligible with a non-toxic dose of telmisartan (<5 mg/kg in rats. This study showed that 2 mg/kg of telmisartan and olmesartan ameliorated insulin resistance, hypertriglyceridemia and renal damage in SHR fed a HFD. As beneficial effects of telmisartan and olmesartan did not significantly differ, these were mediated through the PPAR-γ-independent actions.

  15. Nopal feeding reduces adiposity, intestinal inflammation and shifts the cecal microbiota and metabolism in high-fat fed rats.

    Science.gov (United States)

    Moran-Ramos, Sofia; He, Xuan; Chin, Elizabeth L; Tovar, Armando R; Torres, Nimbe; Slupsky, Carolyn M; Raybould, Helen E

    2017-01-01

    Nopal is a cactus plant widely consumed in Mexico that has been used in traditional medicine to aid in the treatment of type-2 diabetes. We previously showed that chronic consumption of dehydrated nopal ameliorated hepatic steatosis in obese (fa/fa) rats; however, description of the effects on other tissues is sparse. The aim of the present study was to investigate the effects of nopal cladode consumption on intestinal physiology, microbial community structure, adipose tissue, and serum biochemistry in diet-induced obese rats. Rats were fed either a normal fat (NF) diet or a HF diet containing 4% of dietary fiber from either nopal or cellulose for 6 weeks. Consumption of nopal counteracted HF-induced adiposity and adipocyte hypertrophy, and induced profound changes in intestinal physiology. Nopal consumption reduced biomarkers of intestinal inflammation (mRNA expression of IL-6) and oxidative stress (ROS), modfied gut microbiota composition, increasing microbial diversity and cecal fermentation (SCFA), and altered the serum metabolome. Interestingly, metabolomic analysis of dehydrated nopal revealed a high choline content, which appeared to generate high levels of serum betaine, that correlated negatively with hepatic triglyceride (TAG) levels. A parallel decrease in some of the taxa associated with the production of trimethylamine, suggest an increase in choline absorption and bioavailability with transformation to betaine. The latter may partially explain the previously observed effect of nopal on the development of hepatic steatosis. In conclusion, this study provides new evidence on the effects of nopal consumption on normal and HF-diet induced changes in the intestine, the liver and systemic metabolism.

  16. Islet inflammation, hemosiderosis, and fibrosis in intrauterine growth-restricted and high fat-fed Sprague-Dawley rats.

    Science.gov (United States)

    Delghingaro-Augusto, Viviane; Madad, Leili; Chandra, Arin; Simeonovic, Charmaine J; Dahlstrom, Jane E; Nolan, Christopher J

    2014-05-01

    Prenatal and postnatal factors such as intrauterine growth restriction (IUGR) and high-fat (HF) diet contribute to type 2 diabetes. Our aim was to determine whether IUGR and HF diets interact in type 2 diabetes pathogenesis, with particular attention focused on pancreatic islet morphology including assessment for inflammation. A surgical model of IUGR (bilateral uterine artery ligation) in Sprague-Dawley rats with sham controls was used. Pups were fed either HF or chow diets after weaning. Serial measures of body weight and glucose tolerance were performed. At 25 weeks of age, rat pancreases were harvested for histologic assessment. The birth weight of IUGR pups was 13% lower than that of sham pups. HF diet caused excess weight gain, dyslipidemia, hyperinsulinemia, and mild glucose intolerance, however, this was not aggravated further by IUGR. Markedly abnormal islet morphology was evident in 0 of 6 sham-chow, 5 of 8 sham-HF, 4 of 8 IUGR-chow, and 8 of 9 IUGR-HF rats (chi-square, P = 0.007). Abnormal islets were characterized by larger size, irregular shape, inflammation with CD68-positive cells, marked fibrosis, and hemosiderosis. β-Cell mass was not altered by IUGR. In conclusion, HF and IUGR independently contribute to islet injury characterized by inflammation, hemosiderosis, and fibrosis. This suggests that both HF and IUGR can induce islet injury via converging pathways. The potential pathogenic or permissive role of iron in this process of islet inflammation warrants further investigation. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Adverse effect of combination of chronic psychosocial stress and high fat diet on hippocampus-dependent memory in rats.

    Science.gov (United States)

    Alzoubi, K H; Abdul-Razzak, K K; Khabour, O F; Al-Tuweiq, G M; Alzubi, M A; Alkadhi, K A

    2009-12-01

    The combined effects of high fat diet (HFD) and chronic stress on the hippocampus-dependent spatial learning and memory were studied in rats using the radial arm water maze (RAWM). Chronic psychosocial stress and/or HFD were simultaneously administered for 3 months to young adult male Wister rats. In the RAWM, rats were subjected to 12 learning trials as well as short-term and long-term memory tests. This procedure was applied on a daily basis until the animal reaches days to criterion (DTC) in the 12th learning trial and in memory tests. DTC is the number of days that the animal takes to make zero error in two consecutive days. Groups were compared based on the number of errors per trial or test as well as on the DTC. Chronic stress, HFD and chronic stress/HFD animal groups showed impaired learning as indicated by committing significantly (Pchronic stress, HFD and chronic stress/HFD groups showed significantly impaired performance compared to control group. Additionally, the stress/HFD was the only group that showed significantly impaired performance in memory tests on the 5th training day, suggesting more severe memory impairment in that group. Furthermore, DTC value for above groups indicated that chronic stress or HFD, alone, resulted in a mild impairment of spatial memory, but the combination of chronic stress and HFD resulted in a more severe and long-lasting memory impairment. The data indicated that the combination of stress and HFD produced more deleterious effects on hippocampal cognitive function than either chronic stress or HFD alone.

  18. Response of gut microbiota and inflammatory status to bitter melon (Momordica charantia L.) in high fat diet induced obese rats.

    Science.gov (United States)

    Bai, Juan; Zhu, Ying; Dong, Ying

    2016-12-24

    Bitter melon (Momordica charantia L.) is rich in a variety of biologically active ingredients, and has been widely used in traditional Chinese medicine (TCM) to treat various diseases, including type 2 diabetes and obesity. We aimed to investigate how bitter melon powder (BMP) could affect obesity-associated inflammatory responses to ameliorate high-fat diet (HFD)-induced insulin resistance, and investigated whether its anti-inflammatory properties were effected by modulating the gut microbiota. Obese SD rats (Sprague-Dawley rats, rattus norregicus) were randomly divided into four groups: (a) normal control diet (NCD) and distilled water, (b) HFD and distilled water, (c) HFD and 300mg BMP/kg body weight (bw), (d) HFD and 10mg pioglitazone (PGT)/kg bw. We observed remarkable decreases in the fasting glucose, fasting insulin, HOMA-IR index, serum lipid levels, and cell sizes of epididymal adipose tissues in the BMP and PGT groups after 8 weeks. BMP could significantly improve the proinflammatory cytokine tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), anti-inflammatory cytokine interleukin-10 (IL-10), and local endotoxin levels compared to the HFD group (p<0.05). BMP suppressed the activation of nuclear factor-κB (NF-κB) by inhibiting inhibitor of NF-κB alpha (IκBα) degradation and phosphorylation of c-Jun N-terminal kinase/ p38 mitogen-activated protein kinases (JNK/p38 MAPKs) in adipose tissue. Sequencing results illustrated that BMP treatment markedly decreased the proportion of the endotoxin-producing opportunistic pathogens and increased butyrate producers. These results demonstrate that BMP ameliorates insulin sensitivity partly via relieving the inflammatory status in the system and in white adipose tissues of obese rats, and is associated with a proportional regulation of specific gut microbiota. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Green tea polyphenols ameliorate non-alcoholic fatty liver disease through upregulating AMPK activation in high fat fed Zucker fatty rats.

    Science.gov (United States)

    Tan, Yi; Kim, Jane; Cheng, Jing; Ong, Madeleine; Lao, Wei-Guo; Jin, Xing-Liang; Lin, Yi-Guang; Xiao, Linda; Zhu, Xue-Qiong; Qu, Xian-Qin

    2017-06-07

    To investigate protective effects and molecular mechanisms of green tea polyphenols (GTP) on non-alcoholic fatty liver disease (NAFLD) in Zucker fatty (ZF) rats. Male ZF rats were fed a high-fat diet (HFD) for 2 wk then treated with GTP (200 mg/kg) or saline (5 mL/kg) for 8 wk, with Zucker lean rat as their control. At the end of experiment, serum and liver tissue were collected for measurement of metabolic parameters, alanine aminotransferase (ALT) and aspartate aminotransferase (AST), inflammatory cytokines and hepatic triglyceride and liver histology. Immunoblotting was used to detect phosphorylation of AMP-activated protein kinase (AMPK) acetyl-CoA carboxylase (ACC), and sterol regulatory element-binding protein 1c (SREBP1c). Genetically obese ZF rats on a HFD presented with metabolic features of hepatic pathological changes comparable to human with NAFLD. GTP intervention decreased weight gain (10.1%, P = 0.052) and significantly lowered visceral fat (31.0%, P liver in GTP treated rats. The protective effects of GTP against HFD-induced NAFLD in genetically obese ZF rats are positively correlated to reduction in hepatic lipogenesis through upregulating the AMPK pathway.

  20. Gallic Acid Alleviates Hypertriglyceridemia and Fat Accumulation via Modulating Glycolysis and Lipolysis Pathways in Perirenal Adipose Tissues of Rats Fed a High-Fructose Diet

    Directory of Open Access Journals (Sweden)

    Da-Wei Huang

    2018-01-01

    Full Text Available This study investigated the ameliorative effect of gallic acid (GA on hypertriglyceridemia and fat accumulation in perirenal adipose tissues of high-fructose diet (HFD-induced diabetic rats. The previous results showed that orally administered GA (30 mg/kg body weight for four weeks significantly reduced the levels of plasma glucose and triglyceride (TG in HFD rats. GA also markedly decreased the perirenal adipose tissues weight of HFD rats in present study (p < 0.05. Western blot assay indicated that GA restored expression of insulin signaling-related proteins, such as insulin receptor (IR, protein kinase C-zeta (PKC-ζ, and glucose transporter-4 (GLUT4 in the perirenal adipose tissues of HFD rats. Moreover, GA enhanced expression of glycolysis-related proteins, such as phosphofructokinase (PFK and pyruvate kinase (PK, and increased the expression of lipolysis-related proteins, such as adipose triglyceride lipase (ATGL, which is involved in lipolysis in the perirenal adipose tissues of HFD rats. This study revealed that GA may alleviate hypertriglyceridemia and fat accumulation through enhancing glycolysis and lipolysis pathways in perirenal adipose tissues of HFD rats. These findings also suggest the potential of GA in preventing the progression of diabetes mellitus (DM complications.

  1. Evaluation of body fat composition after linagliptin treatment in a rat model of diet-induced obesity: a magnetic resonance spectroscopy study in comparison with sibutramine.

    Science.gov (United States)

    Klein, T; Niessen, H G; Ittrich, C; Mayoux, E; Mueller, H-P; Cheetham, S; Stiller, D; Kassubek, J; Mark, M

    2012-11-01

    The effects of linagliptin on fat content in diet-induced obese rats were compared with those of the appetite suppressant sibutramine. Female Wistar rats fed a high-fat diet (HFD) for 3 months received vehicle, linagliptin (10 mg/kg) or sibutramine (5 mg/kg) treatment orally, once daily for 6 additional weeks, while continuing the HFD. Magnetic resonance spectroscopy analysis of fat content was performed at baseline and at the end of the 6-week treatment period. Linagliptin treatment profoundly reduced hepatic fat compared with vehicle, with an effect comparable to that of sibutramine. The vehicle-corrected mean change (95% CI) from baseline in hepatic fat and intramyocellular lipid was -59.0% (-104.3%, -13.6%; p = 0.015) and -62.1% (-131.6%, 7.4%; p = 0.073), respectively, for linagliptin compared with -54.3% (-101.5%, -7.1%; p = 0.027) and -72.4% (-142.4%, -2.4%; p = 0.044), respectively, for sibutramine. © 2012 Blackwell Publishing Ltd.

  2. Increased cardiovascular reactivity to acute stress and salt-loading in adult male offspring of fat fed non-obese rats.

    Directory of Open Access Journals (Sweden)

    Olena Rudyk

    Full Text Available Diet-induced obesity in rat pregnancy has been shown previously to be associated with consistently raised blood pressure in the offspring, attributed to sympathetic over-activation, but the relative contributions to this phenotype of maternal obesity versus raised dietary fat is unknown. Sprague-Dawley female rats were fed either a control (4.3% fat, n = 11 or lard-enriched (23.6% fat, n = 16 chow 10 days prior to mating, throughout pregnancy and lactation. In conscious adult (9-month-old offspring cardiovascular parameters were measured (radiotelemetry. The short period of fat-feeding did not increase maternal weight versus controls and the baseline blood pressure was similar in offspring of fat fed dams (OF and controls (OC. However, adult male OF showed heightened cardiovascular reactivity to acute restraint stress (p<0.01; Δ systolic blood pressure (SBP and Δheart rate (HR with a prolonged recovery time compared to male OC. α1/β-adrenergic receptor blockade normalised the response. Also, after dietary salt-loading (8%-NaCl ad libitum for 1 week male OF demonstrated higher SBP (p<0.05 in the awake phase (night-time and increased low/high frequency ratio of power spectral density of HR variability versus OC. Baroreflex gain and basal power spectral density components of the heart rate or blood pressure were similar in male OF and OC. Minor abnormalities were evident in female OF. Fat feeding in the absence of maternal obesity in pregnant rats leads to altered sympathetic control of cardiovascular function in adult male offspring, and hypertension in response to stressor stimuli.

  3. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Seung Hwan Hwang

    2017-01-01

    Full Text Available The objective of the present study was to evaluate α-glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE and Nopal dry power (NADP in low-dose streptozotocin- (STZ- induced diabetic rats fed a high-fat diet (HFD. The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1 nondiabetic rats fed a regular diet (RD-Control; (2 low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control; (3 low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE; and (4 low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone. In results, NPWE and NADP had IC50 values of 67.33 and 86.68 μg/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05 μg/mL while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model (P<0.05. Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower (P<0.05 than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  4. Antidiabetic Effect of Fresh Nopal (Opuntia ficus-indica) in Low-Dose Streptozotocin-Induced Diabetic Rats Fed a High-Fat Diet.

    Science.gov (United States)

    Hwang, Seung Hwan; Kang, Il-Jun; Lim, Soon Sung

    2017-01-01

    The objective of the present study was to evaluate α -glucosidase inhibitory and antidiabetic effects of Nopal water extract (NPWE) and Nopal dry power (NADP) in low-dose streptozotocin- (STZ-) induced diabetic rats fed a high-fat diet (HFD). The type 2 diabetic rat model was induced by HFD and low-dose STZ. The rats were divided into four groups as follows: (1) nondiabetic rats fed a regular diet (RD-Control); (2) low-dose STZ-induced diabetic rats fed HFD (HF-STZ-Control); (3) low-dose STZ-induced diabetic rats fed HFD and supplemented with NPWE (100 mg/kg body weight, HF-STZ-NPWE); and (4) low-dose STZ-induced diabetic rats fed HFD and supplemented with comparison medication (rosiglitazone, 10 mg/kg, body weight, HF-STZ-Rosiglitazone). In results, NPWE and NADP had IC 50 values of 67.33 and 86.68  μ g/mL, both of which exhibit inhibitory activities but lower than that of acarbose (38.05  μ g/mL) while NPWE group significantly decreased blood glucose levels compared to control and NPDP group on glucose tolerance in the high-fat diet fed rats model ( P < 0.05). Also, the blood glucose levels of HR-STZ-NPWE group were significantly lower ( P < 0.05) than HR-STZ-Control group on low-dose STZ-induced diabetic rats fed HFD. Based on these findings, we suggested that NPWE could be considered for the prevention and/or treatment of blood glucose and a potential use as a dietary supplement.

  5. Effect of PPAR-α and -γ agonist on the expression of visfatin, adiponectin, and TNF-α in visceral fat of OLETF rats

    International Nuclear Information System (INIS)

    Choi, K.C.; Ryu, O.H.; Lee, K.W.; Kim, H.Y.; Seo, J.A.; Kim, S.G.; Kim, N.H.; Choi, D.S.; Baik, S.H.; Choi, K.M.

    2005-01-01

    A variety of adipocytokines and peptides secreted from adipocytes have been considered to play a crucial role in obesity, insulin resistance, and type 2 diabetes. Recently, visfatin, a new adipocytokine, known as a pre-B cell colony-enhancing factor, has been isolated from visceral fat deposits. It has been shown to activate insulin receptors in a manner different from insulin. To understand the role of adipocytokines in improving insulin sensitivity via activation of the nuclear receptor peroxisome proliferator-activated receptor-α (PPAR-α) and -γ (PPAR-γ), we examined the expression of visfatin, adiponectin, and TNF-α in visceral fat depots of Otsuka Long-Evans Tokushima fatty (OLETF) rats from early to advanced diabetic stage (from 28 to 40 weeks of age). Serum glucose and insulin concentrations significantly (P < 0.05) decreased in rosiglitazone or fenofibrate-treated OLETF rats compared to untreated OLETF rats. Rosiglitazone significantly increased serum adiponectin concentration from 20 to 40 weeks of age (P < 0.05), whereas fenofibrate reduced TNF-α concentration. The expression of visfatin and adiponectin mRNA in visceral fat deposits was elevated by rosiglitazone or fenofibrate treatments when compared to untreated OLETF rats (P < 0.05), whereas, TNF-α mRNA was down-regulated by these drugs (P < 0.05). These results suggest that rosiglitazone and fenofibrate may prevent type 2 diabetes by regulating adipocytokines including visfatin, adiponectin, and TNF-α

  6. LPS from Porphyromonas gingivalis increases the sensitivity of contractile response mediated by endothelin-B (ET(B)) receptors in cultured endothelium-intact rat coronary arteries

    DEFF Research Database (Denmark)

    Ghorbani, Bahareh; Holmstrup, Palle; Edvinsson, Lars

    2010-01-01

    The purpose of our study was to examine if lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g.) modifies the vasomotor responses to Endothelin-1 (ET-1) and Sarafotoxin 6c (S6c) in rat coronary arteries. The arteries were studied directly or following organ culture for 24h in absence...

  7. Potential Lipid-Lowering Effects of Eleusine indica (L) Gaertn. Extract on High-Fat-Diet-Induced Hyperlipidemic Rats.

    Science.gov (United States)

    Ong, Siew Ling; Nalamolu, Koteswara Rao; Lai, How Yee

    2017-01-01

    To date, anti-obesity agents based on natural products are tested for their potential using lipase inhibition assay through the interference of hydrolysis of fat by lipase resulting in reduced fat absorption without altering the central mechanisms. Previous screening study had indicated strong anti-obesity potential in Eleusine indica ( E. indica ), but to date, no pharmacologic studies have been reported so far. This study was performed to investigate the lipid-lowering effects of E. indica using both in vitro and in vivo models. The crude methanolic extract of E. indica was fractionated using hexane (H-Ei), dichloromethane (DCM-Ei), ethyl acetate (EA-Ei), butanol (B-Ei), and water (W-Ei). All the extracts were tested for antilipase activity using porcine pancreatic lipase. Because H-Ei showed the highest inhibition, it was further subjected to chemical profiling using high-performance liquid chromatography. Subsequently, oral toxicity analysis of H-Ei was performed [Organization for Economic Cooperation and Development guidelines using fixed dose procedure (No. 420)]; efficacy analysis was performed using high-fat diet (HFD)-induced hyperlipidemic female Sprague-Dawley rats. According to the toxicity and efficacy analyses, H-Ei did not demonstrate any noticeable biochemical toxicity or physiologic abnormalities and did not cause any tissue damage as per histologic analysis. Furthermore, H-Ei significantly reduced body weight and improved serum profile and did not show hepatotoxicity and nephrotoxicity based on the serum profile. Moreover, H-Ei alleviated HFD-induced hepatosteatosis and ameliorated induced adiposity in both visceral and subcutaneous adipose tissue. Our results demonstrate that H-Ei effectively improved hyperlipidemia. Further studies to explore its possibility as an alternative pharmacologic agent to treat obesity are warranted. Hexane extract of Eleusine indica (H-Ei) showed strong potential in the inhibition of porcine pancreatic lipase (27.01

  8. Goat Milk Kefir Supplemented with Porang Glucomannan Improves Lipid Profile and Haematological Parameter in Rat Fed High Fat and High Fructose Diet

    Directory of Open Access Journals (Sweden)

    Nurliyani

    2018-03-01

    Full Text Available Background and Aims: Diet with a high fat and high sugar is associated with an increased incindence of the metabolic syndrome. Kefir has been known as a natural probiotic, while glucomannan from porang (Amorphophallus oncophyllus tuber was demonstrated as prebiotic in vivo. Probiotics and prebiotics can be used adjuvant nutritional therapy for metabolic syndrome. The aim of this study was to evaluate the effect of goat milk kefir supplemented with porang glucomannan on the lipid profile and haematological parameters in rats fed with a high-fat/high-fructose (HFHF diet.

  9. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jing [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Luo, Hanwen [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Ma, Lu [Department of Epidemiology & Health Statistics, Public Health School of Wuhan University, Wuhan 430071 (China); Magdalou, Jacques [UMR 7561 CNRS-NancyUniversité, Faculté de Médicine, Vandoeuvre-lès-Nancy (France); Chen, Liaobin [Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China); Wang, Hui, E-mail: wanghui19@whu.edu.cn [Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071 (China); Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071 (China)

    2015-05-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  10. Effect of berberine on the ratio of high-molecular weight adiponectin to total adiponectin and adiponectin receptors expressions in high-fat diet fed rats.

    Science.gov (United States)

    Wu, Yue-Yue; Zha, Ying; Liu, Jun; Wang, Fang; Xu, Jiong; Chen, Zao-Ping; Ding, He-Yuan; Sheng, Li; Han, Xiao-Jie

    2016-11-17

    To assess the effects of berberine (BBR) on high-molecular weight (HMW) adiponectin and adiponectin receptors (adipoR1/adipoR2) expressions in high-fat (HF) diet fed rats. Forty Wistar male rats were randomly assigned into a normal diet fed group and three HF diet (fat for 45% calories) fed groups (n=10 for each group). All rats underwent 12 weeks of feeding. After 4 weeks feeding, rats in the two of three HF diet fed groups were treated with 150 mg·kg -1 ·day -1 BBR (HF+LBBR group) and 380 mg·kg -1 ·day -1 BBR (HF+HBBR group) by gavage once a day respectively for the next 8 weeks while the rats in other groups treated with vehicle (NF+Veh and HF+Veh). Body weight and food intake were observed and recorded on daily basis. At the end of 12 weeks, the blood, liver, epididymal fat tissues and quadriceps femoris muscles were collected. Fasting insulin, plasma fasting glucose, serum free fatty acid (FFA), total adiponectin and HMW adiponectin levels were measured by enzyme linked immunosorbent assay method. Glucose tolerance test (GTT) and insulin tolerance test (ITT) were performed to determine the insulinsensitizing. Meanwhile the homeostasis model assessment (HOMA) method was used to determine insulin resistance (HOMA-IR). The expressions of adipoR1, adipoR2 and adenosine monophophate activated protein kinase (AMPK) phosphorylation level in skeletal muscle and liver tissue were detected by Western blot. Liver and kidney toxicity were evaluated during treatment. The body weight of rats in high- or low-dose BBR group reduced as well as HOMA-IR, FFA concentrations and fasting insulin levels decreased compared with HF+Veh group (Pinsulin resistance by increasing the expression of adiponectin receptors and the ratio of HMW to total adiponectin.

  11. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (Zingiber officinale Roscoe) extract in rats fed a high-fat diet.

    Science.gov (United States)

    de Las Heras, Natalia; Valero-Muñoz, María; Martín-Fernández, Beatriz; Ballesteros, Sandra; López-Farré, Antonio; Ruiz-Roso, Baltasar; Lahera, Vicente

    2017-02-01

    Hypolipidemic and hypoglycemic properties of ginger in animal models have been reported. However, information related to the mechanisms and factors involved in the metabolic effects of ginger at a hepatic level are limited. The aim of the present study was to investigate molecular factors involved in the hypoglycemic and hypolipidemic effects of a hydroethanolic ginger extract (GE) in the liver of rats fed a high-fat diet (HFD). The study was conducted in male Wistar rats divided into the following 3 groups: (i) Rats fed a standard diet (3.5% fat), the control group; (ii) rats fed an HFD (33.5% fat); and (iii) rats fed an HFD treated with GE (250 mg·kg -1 ·day -1 ) for 5 weeks (HFD+GE). Plasma levels of glucose, insulin, lipid profile, leptin, and adiponectin were measured. Liver expression of glycerol phosphate acyltransferase (GPAT), cholesterol 7 alpha-hydroxylase, peroxisome proliferator-activated receptors (PPAR), PPARα and PPARγ, glucose transporter 2 (GLUT-2), liver X receptor, sterol regulatory element-binding protein (SREBP1c), connective tissue growth factor (CTGF), and collagen I was measured. Data were analyzed using a 1-way ANOVA, followed by a Newman-Keuls test if differences were noted. The study showed that GE improved lipid profile and attenuated the increase of plasma levels of glucose, insulin, and leptin in HFD rats. This effect was associated with a higher liver expression of PPARα, PPARγ, and GLUT-2 and an enhancement of plasma adiponectin levels. Furthermore, GE reduced liver expression of GPAT, SREBP1c, CTGF, and collagen I. The results suggest that GE might be considered as an alternative therapeutic strategy in the management of overweight and hepatic and metabolic-related alterations.

  12. Gender-specific increase in susceptibility to metabolic syndrome of offspring rats after prenatal caffeine exposure with post-weaning high-fat diet

    International Nuclear Information System (INIS)

    Li, Jing; Luo, Hanwen; Wu, Yimeng; He, Zheng; Zhang, Li; Guo, Yu; Ma, Lu; Magdalou, Jacques; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal caffeine exposure (PCE) alters the hypothalamic–pituitary–adrenocortical (HPA) axis-associated neuroendocrine metabolic programming and induces an increased susceptibility to metabolic syndrome (MS) in intrauterine growth retardation (IUGR) offspring rats. High-fat diet (HFD) is one of the main environmental factors accounting for the incidence of MS. In this study, we aimed to clarify the gender-specific increase in susceptibility to MS in offspring rats after PCE with post-weaning HFD. Maternal Wistar rats were administered with caffeine (120 mg/kg·d) from gestational day 11 until delivery. The offspring rats with normal diet or HFD were euthanized at postnatal week 24, and blood samples were collected. Results showed that PCE not only reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels, but also enhanced serum glucose, triglyceride and total cholesterol (TCH) concentrations in the offspring rats. Moreover, several interactions among PCE, HFD and gender were observed by a three-way ANOVA analysis. In PCE offspring, HFD could aggravate the degree of increased serum triglyceride level. Meanwhile, serum corticosterone levels of females were decreased more obviously than those of males in PCE offspring. The results also revealed interactions between HFD and gender in the levels of serum ACTH, triglyceride and TCH, which were changed more evidently in female HFD offspring. These results indicate that HFD could exacerbate the dysfunction of lipid metabolism and the susceptibility to MS induced by PCE, and the female offspring are more sensitive to HFD-induced neuroendocrine metabolic dysfunction than their male counterparts. - Highlights: • Caffeine induced HPA axis dysfunction in offspring rats fed by high-fat diet (HFD). • Caffeine induced an increased susceptibility to metabolic syndrome. • HFD aggravated susceptibility to metabolic syndrome induced by caffeine. • Female was more sensitive to HFD-induced neuroendocrine

  13. Lipolysis stimulating peptides of potato protein hydrolysate effectively suppresses high-fat-diet-induced hepatocyte apoptosis and fibrosis in aging rats

    Directory of Open Access Journals (Sweden)

    Wen-Dee Chiang

    2016-07-01

    Full Text Available Background: Non-alcoholic fatty liver disease (NAFLD is one of the most common outcomes of obesity and is characterized by the accumulation of triglycerides, increased tissue apoptosis, and fibrosis. NAFLD is more common among elderly than in younger age groups, and it causes serious hepatic complications. Objective: In this study, alcalase treatment derived potato protein hydrolysate (APPH with lipolysis-stimulating property has been evaluated for its efficiency to provide hepato-protection in a high-fat-diet (HFD-fed aging rats. Design: Twenty-four-month-old SD rats were randomly divided into six groups (n=8: aged rats fed with standard chow, HFD-induced aged obese rats, HFD with low-dose (15 mg/kg/day APPH treatment, HFD with moderate (45 mg/kg/day APPH treatment, HFD with high (75 mg/kg/day APPH treatment, and HFD with probucol. Results: APPH was found to reduce the NAFLD-related effects in rat livers induced by HFD and all of the HFD-fed rats exhibited heavier body weight than those with control chow diet. However, the HFD-induced hepatic fat accumulation was effectively attenuated in rats administered with low (15 mg/kg/day, moderate (45 mg/kg/day, and high (75 mg/kg/day doses of APPH. APPH oral administration also suppressed the hepatic apoptosis- and fibrosis-related proteins induced by HFD. Conclusions: Our results thus indicate that APPH potentially attenuates hepatic lipid accumulation and anti-apoptosis and fibrosis effects in HFD-induced rats. APPH may have therapeutic potential in the amelioration of NAFLD liver damage.

  14. Cannabinoid receptor 2 agonist attenuates pain related behavior in rats with chronic alcohol/high fat diet induced pancreatitis.

    Science.gov (United States)

    Zhang, Liping; Kline, Robert H; McNearney, Terry A; Johnson, Michael P; Westlund, Karin N

    2014-11-17

    Chronic Pancreatitis (CP) is a complex and multifactorial syndrome. Many contributing factors result in development of dysfunctional pain in a significant number of patients. Drugs developed to treat a variety of pain states fall short of providing effective analgesia for patients with chronic pancreatitis, often providing minimal to partial pain relief over time with significant side effects. Recently, availability of selective pharmacological tools has enabled great advances in our knowledge of the role of the cannabinoid receptors in pathophysiology. In particular, cannabinoid receptor 2 (CB2) has emerged as an attractive target for management of chronic pain, as demonstrated in several studies with inflammatory and neuropathic preclinical pain models. In this study, the analgesic efficacy of a novel, highly selective CB2 receptor agonist, LY3038404 HCl, is investigated in a chronic pancreatitis pain model, induced with an alcohol/high fat (AHF) diet. Rats fed the AHF diet developed visceral pain-like behaviors detectable by week 3 and reached a maximum at week 5 that persists as long as the diet is maintained. Rats with AHF induced chronic pancreatitis were treated with LY3038404 HCl (10 mg/kg, orally, twice a day for 9 days). The treated animals demonstrated significantly alleviated pain related behaviors after 3 days of dosing, including increased paw withdrawal thresholds (PWT), prolonged abdominal withdrawal latencies (ABWL), and decreased nocifensive responses to noxious 44°C hotplate stimuli. Terminal histological analysis of pancreatic tissue sections from the AHF chronic pancreatitis animals demonstrated extensive injury, including a global pancreatic gland degeneration (cellular atrophy), vacuolization (fat deposition), and fibrosis. After the LY3038404 HCl treatment, pancreatic tissue was significantly protected from severe damage and fibrosis. LY3038404 HCl affected neither open field exploratory behaviors nor dark/light box preferences as measures

  15. In vivo determination of triglyceride (TG) secretion in rats fed different dietary saturated fats using [2-3H]-glycerol

    International Nuclear Information System (INIS)

    Lai, H.C.; Yang, H.; Lasekan, J.; Clayton, M.; Ney, D.M.

    1990-01-01

    Male, Sprague-Dawley rats (154±1 g) were fed diets containing 2% corn oil (CO) + 14% butterfat (BF), beef tallow (BT), olive oil (OO) or coconut oil (CN) vs a 16% CO control diet for 5 weeks. Changes in plasma TG specific activity (dpm/mg TG) were determined in individual unanesthetized rats after injection of 100 μCi [2- 3 H]-glycerol via a carotid cannula. Fractional rate constants were obtained using a 2-compartment model and nonlinear regression analysis. Results demonstrated no difference in the fractional rate constants among dietary groups; but, differences in the rates of hepatic TG secretion were noted. Rats fed BT showed a higher rate of hepatic TG secretion than rats fed CO. Rats fed BF, OO or CN showed somewhat higher rates of hepatic TG secretion than CO. VLDL TG, phospholipid, and apolipoprotein B and E levels were higher with saturated fats vs CO. The data suggest that the higher plasma TG levels noted in response to feeding saturated fats vs corn oil can be explained, in part, by an increased flux of hepatic TG secretion

  16. The snacking rat as model of human obesity: effects of a free-choice high-fat high-sugar diet on meal patterns.

    Science.gov (United States)

    la Fleur, S E; Luijendijk, M C M; van der Zwaal, E M; Brans, M A D; Adan, R A H

    2014-05-01

    Rats subjected to a free-choice high-fat high-sugar (fcHFHS) diet persistently overeat, exhibit increased food-motivated behavior and become overtly obese. Conversely, several studies using a non-choice (nc) high-energy diet showed only an initial increase in food intake with unaltered or reduced food-motivated behavior. This raises the question of the importance of choice in the persistence of hyperphagia in rats on a fcHFHS diet. Meal patterns, food intake and body weight gain were studied in male Wistar rats on free-choice diets with fat and/or sugar and in rats on nc diets with fat and sugar (custom made with ingredients similar to the fcHFHS diet). Rats on a ncHFHS diet initially overconsumed, but reduced intake thereafter, whereas rats on a fcHFHS diet remained hyperphagic. Because half of the sugar intake in the fcHFHS group occurred during the inactive period, we next determined whether sugar intake during the light phase was a necessary requirement for hyperphagia, by restricting access to liquid sugar to either the light or dark period with unlimited access to fat and chow. Results showed that hyperphagia occurred irrespective of the timing of sugar intake. Meal pattern analysis revealed consumption of larger but fewer meals in the ncHFHS group, as well as the fcHF group. Interestingly, meal number was increased in all rats drinking liquid sugar (whether on a fcHFHS or a fcHS diet), whereas a compensatory decrease in meal size was only observed in the fcHS group, but not the fcHFHS group. We hereby show the importance of choice in the observation of fcHFHS diet-induced hyperphagia, which results in increases in meal number due to sugar drinking without any compensatory decrease in meal size. We thus provide a novel dietary model in rats that mimics important features of human overconsumption that have been ignored in rodent models of obesity.

  17. Composição tecidual e qualidade da gordura na carne de cordeiros castrados e não castrados confinados sob dois fotoperíodos Tissue composition and fat quality of meat of intact or castrated male lambs confined under two photoperiods

    Directory of Open Access Journals (Sweden)

    M.H. Klein Júnior

    2008-04-01

    Full Text Available Avaliaram-se os efeitos do fotoperíodo e da castração sobre a composição dos tecidos da paleta e características de qualidade da gordura do lombo e da paleta, de 20 cordeiros mestiços Ideal, distribuídos em esquema fatorial 2 x 2 (dois fotoperíodos - curto (FC, com 12 horas de luz, e longo (FL, com 18 horas de luz, e duas condições sexuais - não castrados (NC e castrados (C, com cinco repetições. Os animais foram abatidos aos 37kg de peso corporal. Maior quantidade de gordura total ocorreu nos cordeiros C e mais tecido conjuntivo nos animais NC. A castração influenciou o resíduo mineral fixo (RMF, o extrato etéreo (EE e a proteína da gordura subcutânea. O efeito da interação entre fotoperíodo longo e castração resultou em aumento do teor de umidade na gordura intermuscular da paleta. A castração elevou o teor de EE e diminuiu o percentual de RMF. Não foi evidenciado efeito do fotoperíodo no EE dos músculos da paleta, e os animais castrados apresentaram gordura intramuscular mais elevada. Os níveis de colesterol da paleta foram mais elevados que os do lombo. Na carne de animais C, verificou-se maior quantidade de ácidos graxos saturados.The effects of photoperiod and castration on tissue muscle composition, fat physical-chemical composition, and cholesterol was determined for two muscles of 20 Ideal crossbred lambs. The animals were divided into four treatments: five intact males and five castrate during a short photoperiod of 12 light hours, and five intact males and five castrated during a long photoperiod of 18 light hours. The animals were allocated in individual pens, in two identical rooms, with light intensity of 300 lux, (intact and castrated animals x short and long photoperiod. The animals were slaughtered as they reached 37kg of body weight. Castrated lambs showed a significantly higher amount of total fat tissues while intact animals showed higher connective tissue for the shoulder tissue composition

  18. Effect of a postnatal high-fat diet exposure on puberty onset, estrous cycle regularity, and kisspeptin expression in female rats

    DEFF Research Database (Denmark)

    Lie, Maria Elena Klibo; Overgaard, Agnete; Mikkelsen, Jens D

    2013-01-01

    Kisspeptin, encoded by Kiss1, plays a key role in pubertal maturation and reproduction as a positive upstream regulator of the hypothalamic-pituitary-gonadal (HPG) axis. To examine the role of high-fat diet (HFD) on puberty onset, estrous cycle regularity, and kisspeptin expression, female rats...... were exposed to HFD in distinct postnatal periods. Three groups of rats were exposed to HFD containing 60% energy from fat during the pre-weaning period (postnatal day (PND) 1-16, HFD PND 1-16), post-weaning period (HFD PND 21-34), or during both periods (HFD PND 1-34). Puberty onset, evaluated...... that postnatal HFD exposure induced irregular estrous cycles, but had no effect on puberty onset or kisspeptin....

  19. Short-term beef consumption promotes systemic oxidative stress, TMAO formation and inflammation in rats, and dietary fat content modulates these effects.

    Science.gov (United States)

    Van Hecke, Thomas; Jakobsen, Louise M A; Vossen, Els; Guéraud, Françoise; De Vos, Filip; Pierre, Fabrice; Bertram, Hanne C S; De Smet, Stefaan

    2016-09-14

    A high consumption of red and/or processed meat is associated with a higher risk to develop several chronic diseases in which oxidative stress, trimethylamine-N-oxide (TMAO) and/or inflammation are involved. We aimed to elucidate the effect of white (chicken) vs. red (beef) meat consumption in a low vs. high dietary fat context (2 × 2 factorial design) on oxidative stress, TMAO and inflammation in Sprague-Dawley rats. Higher malondialdehyde (MDA) concentrations were found in gastrointestinal contents (up to 96% higher) and colonic tissues (+8.8%) of rats fed the beef diets (all P stress, TMAO formation and inflammation, depending on the dietary fat content and composition.

  20. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats

    Directory of Open Access Journals (Sweden)

    Haimeur Adil

    2012-10-01

    Full Text Available Abstract Background Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Methods Male Wistar rats were divided into 4 groups and were fed with a standard diet (control; with the standard diet supplemented with 3% freeze-dried O. aurita (COA; with a high-fat diet (HF; or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. Results After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. Conclusions O. aurita is a marine diatom rich in EPA as well as in other

  1. The role of Odontella aurita, a marine diatom rich in EPA, as a dietary supplement in dyslipidemia, platelet function and oxidative stress in high-fat fed rats.

    Science.gov (United States)

    Haimeur, Adil; Ulmann, Lionel; Mimouni, Virginie; Guéno, Frédérique; Pineau-Vincent, Fabienne; Meskini, Nadia; Tremblin, Gérard

    2012-10-31

    Dietary changes are a major factor in determining cardiovascular risk. n-3 polyunsaturated fatty acids modulate the risk factors for metabolic syndrome via multiple mechanisms, including the regulation of the lipid metabolism. We therefore investigated the effect of Odontella aurita, a microalga rich in EPA, which is already used as a food supplement, on the risk factors for high-fat diet induced metabolic syndrome in rats. Male Wistar rats were divided into 4 groups and were fed with a standard diet (control); with the standard diet supplemented with 3% freeze-dried O. aurita (COA); with a high-fat diet (HF); or with the high-fat diet supplemented with 3% of freeze-dried O. aurita (HFOA) for 7 weeks. In this study we evaluated the impact of these different diets on the risk factors for metabolic syndrome, such as hyperlipidemia, platelet aggregation, thromboxane B2 production, and oxidative stress. After 7 weeks of treatment, high fat feeding had increased final body weight, glycemia, triacylglycerol, and total cholesterol levels in plasma and liver compared to the control diet. Collagen-induced platelet aggregation and basal platelet thromboxane B2 were also higher in the high-fat fed rats than in those in the control group. In the liver, oxidative stress was greater in the HF group than in the control group. O. aurita intake in HFOA-fed rats resulted in lower glycemia and lipid levels in the plasma and liver relative than in the HF group. Thus, in the HFOA group, n-3 polyunsaturated fatty acid levels in the tissues studied (plasma, liver, and platelets) were higher than in the HF group. Platelet hyper-aggregability tended to decrease in HFOA-fed rats as basal platelet thromboxane B2 production decreased. Finally, O. aurita reduced oxidative stress in the liver, with lower malondialdehyde levels and increased glutathione peroxidase activity. O. aurita is a marine diatom rich in EPA as well as in other bioactive molecules, such as pigments. The synergistic effect

  2. The effects of losartan on memory performance and leptin resistance induced by obesity and high-fat diet in adult male rats.

    Science.gov (United States)

    Sharieh Hosseini, Seyydeh Gohar; Khatamsaz, Saeed; Shariati, Mehrdad

    2014-01-01

    Leptin is a hormone secreted by adipose tissue and is involved not only in the regulation of feeding and energy expenditure, but also its role in memory enhancement has been demonstrated as well. The partial transfer of leptin across the blood-brain barrier in obese individuals causes leptin resistance and prevents leptin reaching brain. On the other hand, studies have shown that angiotensin antagonists such as losartan can improve memory and learning abilities. The aim of this study was to evaluate the effects of losartan on improving memory and leptin resistance induced by high fat diet in obese rats. 40 Wistar male rats were divided in 4 groups: control (C), losartan (LOS), high-fat diet (HFD) and high-fat diet and losartan (HFD and LOS). The spatial memory performances of the rats were assessed in the Morris water maze after 2 months of treatment. Then they were weighed and serum levels of leptin and triglyceride were measured. In spite of receiving high-fat diet, no significant differences in body weight were observed in the (HFD & LOS) group. In the Morris water maze trial, the (LOS) and (HFD & LOS) groups also showed a significant reduction (P <0.05) in latency and path length. In addition, a significant decrease (P <0.05) in serum levels of leptin and no significant difference in serum levels of triglyceride was observed in the (HFD & LOS) group. Losartan can improve leptin resistance induced by obesity and high fat diet. At the same time, it modulates body weight and enhances learning and memory.

  3. Maternal Melatonin Therapy Rescues Prenatal Dexamethasone and Postnatal High-Fat Diet Induced Programmed Hypertension in Male Rat Offspring

    Directory of Open Access Journals (Sweden)

    You-Lin eTain

    2015-12-01

    Full Text Available Prenatal dexamethasone (DEX exposure and high-fat (HF intake are linked to hypertension. We examined whether maternal melatonin therapy prevents programmed hypertension synergistically induced by prenatal DEX plus postnatal HF in adult offspring. We also examined whether DEX and melatonin causes renal programming using next-generation RNA sequencing (NGS technology. Pregnant Sprague-Dawley rats received intraperitoneal dexamethasone (0.1 mg/kg or vehicle from gestational day 16 to 22. In the melatonin-treatment groups (M, rats received 0.01% melatonin in drinking water during their entire pregnancy and lactation. Male offspring were assigned to five groups: control, DEX, HF, DEX+HF, and DEX+HF+M. Male offspring in the HF group were fed a HF diet from weaning to 4 months of age. Prenatal DEX and postnatal HF diet synergistically induced programmed hypertension in adult offspring, which melatonin prevented. Maternal melatonin treatment modified over 3000 renal transcripts in the developing offspring kidney. Our NGS data indicate that PPAR signaling and fatty acid metabolism are two significantly regulated pathways. In addition, maternal melatonin therapy elicits longstanding alterations on renal programming, including regulation of the melatonin signaling pathway and upregulation of Agtr1b and Mas1 expression in the renin-angiotensin system (RAS, to protect male offspring against programmed hypertension. Postnatal HF aggravates prenatal DEX induced programmed hypertension in adult offspring, which melatonin prevented. The protective effects of melatonin on programmed hypertension is associated with regulation of the RAS and melatonin receptors. The long-term effects of maternal melatonin therapy on renal transcriptome require further clarification.

  4. Beneficial effects of a red wine polyphenol extract on high-fat diet-induced metabolic syndrome in rats.

    Science.gov (United States)

    Auberval, Nathalie; Dal, Stéphanie; Maillard, Elisa; Bietiger, William; Peronet, Claude; Pinget, Michel; Schini-Kerth, Valérie; Sigrist, Séverine

    2017-06-01

    Individuals with metabolic syndrome (MS) show several metabolic abnormalities including insulin resistance, dyslipidaemia, and oxidative stress (OS). Diet is one of the factors influencing the development of MS, and current nutritional advice emphasises the benefits of fruit and vegetable consumption. Here, we assessed the effects of naturally occurring antioxidants, red wine polyphenols (RWPs), on MS and OS. Wistar rats (n = 20) weighing 200-220 g received a high-fat diet (HFD) for 2 months before they were divided into two groups that received either HFD only or HFD plus 50 mg/kg RWPs in their drinking water for an additional 2 months. A control group (n = 10) received a normal diet (ND) for 4 months. Rats receiving HFD increased body weight over 20 % throughout the duration of the study. They also showed increased blood levels of C-peptide, glucose, lipid peroxides, and oxidised proteins. In addition, the HFD increased OS in hepatic, pancreatic, and vascular tissues, as well as induced pancreatic islet cell hyperplasia and hepatic steatosis. Addition of RWPs to the HFD attenuated these effects on plasma and tissue OS and on islet cell hyperplasia. However, RWPs had no effect on blood glucose levels or hepatic steatosis. RWPs showed an antioxidant mechanism of action against MS. This result will inform future animal studies exploring the metabolic effects of RWPs in more detail. In addition, these findings support the use of antioxidants as adjunctive nutritional treatments for patients with diabetes.

  5. Dietary fat and bile juice, but not obesity, are responsible for the increase in small intestinal permeability induced through the suppression of tight junction protein expression in LETO and OLETF rats

    Directory of Open Access Journals (Sweden)

    Suzuki Takuya

    2010-03-01

    Full Text Available Abstract Background An increase in the intestinal permeability is considered to be associated with the inflammatory tone and development in the obesity and diabetes, however, the pathogenesis of the increase in the intestinal permeability is poorly understood. The present study was performed to determine the influence of obesity itself as well as dietary fat on the increase in intestinal permeability. Methods An obese rat strain, Otsuka Long Evans Tokushima Fatty (OLETF, and the lean counter strain, Long Evans Tokushima Otsuka (LETO, were fed standard or high fat diets for 16 weeks. Glucose tolerance, intestinal permeability, intestinal tight junction (TJ proteins expression, plasma bile acids concentration were evaluated. In addition, the effects of rat bile juice and dietary fat, possible mediators of the increase in the intestinal permeability in the obesity, on TJ permeability were explored in human intestinal Caco-2 cells. Results The OLETF rats showed higher glucose intolerance than did the LETO rats, which became more marked with the prolonged feeding of the high fat diet. Intestinal permeability in the OLETF rats evaluated by the urinary excretion of intestinal permeability markers (Cr-EDTA and phenolsulfonphthalein was comparable to that in the LETO rats. Feeding the high fat diet increased intestinal permeability in both the OLETF and LETO rats, and the increases correlated with decreases in TJ proteins (claudin-1, claudin-3, occludin and junctional adhesion molecule-1 expression in the small, but not in the large intestine (cecum or colon. The plasma bile acids concentration was higher in rats fed the high fat diet. Exposure to bile juice and the fat emulsion increased TJ permeability with concomitant reductions in TJ protein expression (claudin-1, claudin-3, and junctional adhesion molecule-1 in the Caco-2 cell monolayers. Conclusion Excessive dietary fat and/or increased levels of luminal bile juice, but not genetic obesity, are

  6. Effects of the GABA(B) receptor agonist baclofen administered orally on normal food intake and intraperitoneally on fat intake in non-deprived rats.

    Science.gov (United States)

    Bains, Rasneer S; Ebenezer, Ivor S

    2013-01-05

    It has been previously reported that the GABA(B) receptor agonist baclofen decreases food intake after oral administration and fat intake after intraperitoneal administration. The aim of the study was to investigate the effects of baclofen (1-4 mg/ kg) administered orally (Experiment 1) on food intake in non-deprived rats (n=6) and intraperitoneally (Experiment 2) on fat intake in non-deprived rats (n=8) that were naïve to baclofen (1st set of trials) and in the same group of rats after they were sub-chronically exposed to baclofen (2nd set of trials). The results from Experiment 1 show that baclofen had no effects on food intake during the 1st set of trials, but the 2 and 4 mg/kg doses significantly increased food consumption during the 2nd set of trials. Baclofen produced sedation during the 1st set of trials, but tolerance occurred to this effect and was not apparent during the 2nd set of trials. These observations suggest that the motor effects may have competed with the hyperphagic effects of baclofen during the 1st set of trials. The data from Experiment 2 show that baclofen had no effects on fat intake during either the 1st or 2nd set of trials. The results of the study thus indicate that orally administrated baclofen increases food intake and intraperitoneal administration has no effect on fat intake in non-deprived rats under the conditions used in this study. These findings may have important implications for research on the use of baclofen in studies concerned with ingestive behaviours. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effects of black adzuki bean (Vigna angularis, Geomguseul extract on body composition and hypothalamic neuropeptide expression in rats fed a high-fat diet

    Directory of Open Access Journals (Sweden)

    Mina Kim

    2015-10-01

    Full Text Available Background: Obesity is often considered to result from either excessive food intake or insufficient physical activity. Adzuki beans have been evaluated as potential remedies for various health conditions, and recent studies have reported their effects on the regulation of lipid metabolism, but it remains to be determined whether they may be effective in overcoming obesity by regulating appetite and satiety. Objective: This study investigated the effect of black adzuki bean (BAB extract on body composition and hypothalamic neuropeptide expression in Sprague Dawley rats (Rattus norvegicus fed a high-fat diet. Design: The rats were fed for 8 weeks with a control diet containing 10 kcal% from fat (CD, a high-fat diet containing 60 kcal% from fat (HD, or a high-fat diet with 1% or 2% freeze-dried ethanolic extract powder of BAB (BAB-1 and BAB-2. Results: The body weights and epididymal fat weights were significantly reduced and the serum lipid profiles were improved in the group fed the diet containing BAB compared to the HD group. The expression of AGRP mRNA significantly decreased in the BAB groups, and treatment with BAB-2 resulted in a marked induction of the mRNA expression of POMC and CART, which are anorexigenic neuropeptides that suppress food intake. Furthermore, mRNA expression levels of ObRb, a gene related to leptin sensitivity in the hypothalamus, were significantly higher in the BAB groups than in the HD group. Conclusions: These results suggest that supplementation with BAB has a significant effect on body weight via regulation of hypothalamic neuropeptides.

  8. A Free-Choice High-Fat High-Sugar Diet Alters Day-Night Per2 Gene Expression in Reward-Related Brain Areas in Rats.

    Science.gov (United States)

    Blancas-Velazquez, Aurea Susana; Unmehopa, Unga A; Eggels, Leslie; Koekkoek, Laura; Kalsbeek, Andries; Mendoza, Jorge; la Fleur, Susanne E

    2018-01-01

    Under normal light-dark conditions, nocturnal rodents consume most of their food during the dark period. Diets high in fat and sugar, however, may affect the day-night feeding rhythm resulting in a higher light phase intake. In vitro and in vivo studies showed that nutrients affect clock-gene expression. We therefore hypothesized that overconsuming fat and sugar alters clock-gene expression in brain structures important for feeding behavior. We determined the effects of a free-choice high-fat high-sugar (fcHFHS) diet on clock-gene expression in rat brain areas related to feeding and reward and compared them with chow-fed rats. Consuming a fcHFHS diet for 6 weeks disrupted day-night differences in Per2 mRNA expression in the nucleus accumbens (NAc) and lateral hypothalamus but not in the suprachiasmatic nucleus, habenula, and ventral tegmental area. Furthermore, short-term sugar drinking, but not fat feeding, upregulates Per2 mRNA expression in the NAc. The disruptions in day-night differences in NAc Per2 gene expression were not accompanied by altered day-night differences in the mRNA expression of peptides related to food intake. We conclude that the fcHFHS diet and acute sugar drinking affect Per2 gene expression in areas involved in food reward; however, this is not sufficient to alter the day-night pattern of food intake.

  9. Effects of red wine, grape juice and resveratrol consumption on bone parameters of Wistar rats submitted to high-fat diet and physical training.

    Science.gov (United States)

    Cardoso, Letícia Monteiro da Fonseca; Pimenta, Nina Da Matta Alvarez; Fiochi, Raiza Da Silva Ferreira; Mota, Bruna Ferreira Mota; Monnerat, Juliana Arruda de Souza; Teixeira, Cristiane Correia; Ramalho, Renata Beatriz Da Rocha; Maldronato, Isabelle Waleska; Dolisnky, Manuela; Boaventura, Gilson Teles; Blondet, Vilma; Barroso, Sergio Girão; Costa, Carlos Alberto Soares da; Rocha, Gabrielle De Souza

    2017-10-27

    intake of diets with high saturated fat may produce deleterious effects on bone mineralization. Lifestyle changes help reduce the bone loss observed in osteoporosis. Resveratrol, present in grape juice and red wine, has osteogenic and osteoinductive effects, being potentially beneficial for bone health. to evaluate the effects of red grape juice, red wine and resveratrol consumption on bone parameters in Wistar rats submitted to a high-fat diet and physical training. female Wistar rats, with 90 days of age, were divided into five groups and followed up for 60 days: a) control group; b) high-fat group; c) grape juice group; d) red wine group; and e) resveratrol group. The different groups of animals performed a physical training protocol. Animal's weight and consumption were monitored weekly. After 60 days, femoral dimensions, bone mineral density (BMD) and bone mineral content (BMC) were evaluated. there was no difference in body mass; however, all groups consuming the high-fat diet had higher consumption (p diet.

  10. Comparison of purple carrot juice and β-carotene in a high-carbohydrate, high-fat diet-fed rat model of the metabolic syndrome.

    Science.gov (United States)

    Poudyal, Hemant; Panchal, Sunil; Brown, Lindsay

    2010-11-01

    Anthocyanins, phenolic acids and carotenoids are the predominant phytochemicals present in purple carrots. These phytochemicals could be useful in treatment of the metabolic syndrome since anthocyanins improve dyslipidaemia, glucose tolerance, hypertension and insulin resistance; the phenolic acids may also protect against CVD and β-carotene may protect against oxidative processes. In the present study, we have compared the ability of purple carrot juice and β-carotene to reverse the structural and functional changes in rats fed a high-carbohydrate, high-fat diet as a model of the metabolic syndrome induced by diet. Cardiac structure and function were defined by histology, echocardiography and in isolated hearts and blood vessels; liver structure and function, oxidative stress and inflammation were defined by histology and plasma markers. High-carbohydrate, high-fat diet-fed rats developed hypertension, cardiac fibrosis, increased cardiac stiffness, endothelial dysfunction, impaired glucose tolerance, increased abdominal fat deposition, altered plasma lipid profile, liver fibrosis and increased plasma liver enzymes together with increased plasma markers of oxidative stress and inflammation as well as increased inflammatory cell infiltration. Purple carrot juice attenuated or reversed all changes while β-carotene did not reduce oxidative stress, cardiac stiffness or hepatic fat deposition. As the juice itself contained low concentrations of carotenoids, it is likely that the anthocyanins are responsible for the antioxidant and anti-inflammatory properties of purple carrot juice to improve glucose tolerance as well as cardiovascular and hepatic structure and function.

  11. No Additive Effects of Polyphenol Supplementation and Exercise Training on White Adiposity Determinants of High-Fat Diet-Induced Obese Insulin-Resistant Rats

    Directory of Open Access Journals (Sweden)

    Karen Lambert

    2018-01-01

    Full Text Available One of the major insulin resistance instigators is excessive adiposity and visceral fat depots. Individually, exercise training and polyphenol intake are known to exert health benefits as improving insulin sensitivity. However, their combined curative effects on established obesity and insulin resistance need further investigation particularly on white adipose tissue alterations. Therefore, we compared the effects on different white adipose tissue depot alterations of a combination of exercise and grape polyphenol supplementation in obese insulin-resistant rats fed a high-fat diet to the effects of a high-fat diet alone or a nutritional supplementation of grape polyphenols (50 mg/kg/day or exercise training (1 hr/day to 5 days/wk consisting of treadmill running at 32 m/min for a 10% slope, for a total duration of 8 weeks. Separately, polyphenol supplementation and exercise decreased the quantity of all adipose tissue depots and mesenteric inflammation. Exercise reduced adipocytes’ size in all fat stores. Interestingly, combining exercise to polyphenol intake presents no more cumulative benefit on adipose tissue alterations than exercise alone. Insulin sensitivity was improved at systemic, epididymal, and inguinal adipose tissues levels in trained rats thus indicating that despite their effects on adipocyte morphological/metabolic changes, polyphenols at nutritional doses remain less effective than exercise in fighting insulin resistance.

  12. Effects of high-intensity interval versus mild-intensity endurance training on metabolic phenotype and corticosterone response in rats fed a high-fat or control diet.

    Science.gov (United States)

    Shen, Youqing; Huang, Guoyuan; McCormick, Bryan P; Song, Tao; Xu, Xiangfeng

    2017-01-01

    The aim of the present study was to compare the effects of high-intensity interval training (HI) to mild-intensity endurance training (ME), combined with a high-fat diet (HFD) or control diet (CD) on metabolic phenotype and corticosterone levels in rats. Fifty-three rats were randomized to 6 groups according to diet and training regimen as follows: CD and sedentary (CS, n = 11), CD and ME (CME, n = 8), CD and HI (CHI, n = 8), HFD and sedentary (HS, n = 10), HFD and ME (HME, n = 8), and HFD and HI (HHI, n = 8). All exercise groups were trained for 10 weeks and had matched running distances. Dietary intake, body composition, blood metabolites, and corticosterone levels were measured. Histological lipid droplets were observed in the livers. The HFD led to hyperglycemia, hyperlipidemia and higher body fat (all, P 0.06), as well as higher corticosterone levels (P training improved fat weight, glucose, and lipid profiles, and reduced corticosterone levels (P body and fat weight, serum glucose and triglycerides, lipid content in the liver, and corticosterone levels (P training compared to ME training. Reductions in HFD-induced body weight gain, blood glucose and lipid profiles, and corticosterone levels, as well as improvements in QUICKI were better with HHI compared to HME. Correlation analyses revealed that corticosterone levels were significantly associated with phenotype variables (P training, HI training contributes to greater improvements in metabolic and corticosterone responses, leading to a greater reduction in susceptibility to HFD-induced disorders.

  13. Validation of HOMA-IR in a model of insulin-resistance induced by a high-fat diet in Wistar rats.

    Science.gov (United States)

    Antunes, Luciana C; Elkfury, Jessica L; Jornada, Manoela N; Foletto, Kelly C; Bertoluci, Marcello C

    2016-04-01

    Objective The present study aimed to validate homeostasis model assessment of insulin resistance (HOMA-IR) in relation to the insulin tolerance test (ITT) in a model of insulin-resistance in Wistar rats induced by a 19-week high-fat diet. Materials and methods A total of 30 male Wistar rats weighing 200-300 g were allocated into a high-fat diet group (HFD) (55% fat-enriched chow, ad lib, n = 15) and a standard-diet group (CD) standard chow, ad lib, n = 15), for 19 weeks. ITT was determined at baseline and in the 19th week. HOMA-IR was determined between the 18-19th week in three different days and the mean was considered for analysis. Area under the curve (AUC-ITT) of the blood glucose excursion along 120 minutes after intra-peritoneal insulin injection was determined and correlated with the corresponding fasting values for HOMA-IR. Results AUC-ITT and HOMA-IR were significantly greater after 19th week in HFD compared to CD (p HOMA-IR was strongly correlated (Pearson's) with AUC-ITT r = 0.637; p HOMA-IR and AUC-ITT showed similar sensitivity and specificity. Conclusion HOMA-IR is a valid measure to determine insulin-resistance in Wistar rats. Arch Endocrinol Metab. 2016;60(2):138-42.

  14. Reduction of abdominal fat accumulation in rats by 8-week ingestion of a newly developed sweetener made from high fructose corn syrup.

    Science.gov (United States)

    Iida, Tetsuo; Yamada, Takako; Hayashi, Noriko; Okuma, Kazuhiro; Izumori, Ken; Ishii, Reika; Matsuo, Tatsuhiro

    2013-06-01

    Many studies have shown that ingestion of high-fructose corn syrup (HFCS) may cause an increase in body weight and abdominal fat. We recently developed a new sweetener containing rare sugars (rare sugar syrup; RSS) by slight isomerization of HFCS. Here, the functional effects of RSS on body weight and abdominal fat, and biochemical parameters in Wistar rats were examined. Rats (n=30) were randomly divided into three groups and maintained for 8-weeks on starch, starch+HFCS (50:50), and starch+RSS (50:50) diets. Rats in the Starch and HFCS groups gained significantly more body weight and abdominal fat than the RSS group. Fasting serum insulin in the RSS group was significantly lower than in the Starch and HFCS groups, although serum glucose in the HFCS and RSS groups was significantly lower than that in the Starch group. Thus, the substitution of HFCS with RSS prevents obesity induced by the consumption of HFCS. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Ameliorating effects of goby fish protein hydrolysates on high-fat-high-fructose diet-induced hyperglycemia, oxidative stress and deterioration of kidney function in rats.

    Science.gov (United States)

    Nasri, Rim; Abdelhedi, Ola; Jemil, Ines; Daoued, Ines; Hamden, Khaled; Kallel, Choumous; Elfeki, Abdelfattah; Lamri-Senhadji, Myriem; Boualga, Ahmed; Nasri, Moncef; Karra-Châabouni, Maha

    2015-12-05

    This study investigated the therapeutic potential of undigested goby fish (Zosterisessor ophiocephalus) muscle proteins (UGP) and their hydrolysates on high-fat-high-fructose diet (HFFD)-fed rats. HFFD induced hyperglycemia, manifested by a significant increase in the levels of glucose and glycogen as well as α-amylase activity when compared to normal rats. The administration of GPHs to HFFD-fed rats significantly decreased α-amylase activity and the contents of blood glucose and hepatic glycogen. By contrast, the UGP increased the glucose metabolic disorders in HFFD-fed rats. Furthermore, HFFD-fed rats showed oxidative stress, as evidenced by decreased antioxidant enzyme activities and glutathione (GSH) levels and increased concentration of the lipid peroxidation product malondialdehyde in liver and kidney. Interestingly, the daily gavage of UGP and GPHs improved the redox status in liver and kidney of HFFD-rats by ameliorating or reversing the above-mentioned changes. Moreover, GPHs exhibited a renal protective role by reversing the HFFD-induced decease of uric acid and increase of creatinine levels in serum and preventing some HFFD-induced changes in kidney architecture. The results demonstrate that GPHs contain bioactive peptides that possess significant hypoglycemic and antioxidant properties, and ameliorate renal damage in rats fed hypercaloric diet. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Biochemical studies of effects of alcohol consumption on fat and carbohydrate metabolism in rats fed different levels of proteins

    International Nuclear Information System (INIS)

    Shalan, M.G.M.

    1996-01-01

    Alcohol, ethanol and ethyl alcohol are synonymously used during the present dissertation. Alcohol probably was among the first psychoactive substances to be used by man (Winger et al., 1992). Ethanol is mainly oxidized to acetaldehyde in the liver (Ugarte and Peresa, 1978) by alcohol dehydrogenase (ADH). Alcohol is associated with many metabolic disorders inside the body (Thayer and Rubin, 1979; Forsander and Poso, 1988; Poso and Hirsimaki, 1991; Bernal, et al., 1992). The nutritional factors which received little attention have an important role in alcoholic metabolizing alterations. Morphologically and biochemically, an increase in hepatic lipid was demonstrated when ethanol was given either as a supplement or as an iso caloric substitute for carbohydrate together with an otherwise nutritionally adequate diet. Low-protein diets have been shown to diminish hepatic alcohol dehydrogenase (ADH) levels in rats and to slow down the metabolism of ethanol considerably (Wilson et al., 1986). Hepatic steatosis was produced, even with a high-protein, vitamin-supplemented diet and was accompanied by major ultrastructural liver changes and by elevations of hepatic transaminases in blood (Lieber et al., 1963 and 1965 and Lane and Lieber, 1966). If dietary fat was reduced from 35 to 25% of total calories, hepatic triglyceride accumulation greatly decreased (Lieber and DeCarli, 970)

  17. Growth hormone and IGF-1 deficiency exacerbate high-fat diet-induced endothelial impairment in obese Lewis dwarf rats: implications for vascular aging.

    Science.gov (United States)

    Bailey-Downs, Lora C; Sosnowska, Danuta; Toth, Peter; Mitschelen, Matthew; Gautam, Tripti; Henthorn, Jim C; Ballabh, Praveen; Koller, Akos; Farley, Julie A; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2012-06-01

    Previous studies suggest that the age-related decline in circulating growth hormone (GH) and insulin-like growth factor-1 (IGF-1) levels significantly contribute to vascular dysfunction in aging by impairing cellular oxidative stress resistance pathways. Obesity in elderly individuals is increasing at alarming rates, and there is evidence suggesting that elderly individuals are more vulnerable to the deleterious cardiovascular effects of obesity than younger individuals. However, the specific mechanisms through which aging, GH/IGF-1 deficiency, and obesity interact to promote the development of cardiovascular disease remain unclear. To test the hypothesis that low circulating GH/IGF-1 levels exacerbate the pro-oxidant and proinflammatory vascular effects of obesity, GH/IGF-1-deficient Lewis dwarf rats and heterozygous control rats were fed either a standard diet or a high-fat diet (HFD) for 7 months. Feeding an HFD resulted in similar relative weight gains and increases in body fat content in Lewis dwarf rats and control rats. HFD-fed Lewis dwarf rats exhibited a relative increase in blood glucose levels, lower insulin, and impaired glucose tolerance as compared with HFD-fed control rats. Analysis of serum cytokine expression signatures indicated that chronic GH/IGF-1 deficiency exacerbates HFD-